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ABSTRACT
For the last 15 years, implementors of multiple view pro-
gramming environments have sought a single code model
that would form a suitable basis for all of the program anal-
yses and tools that might be applied to the code. They have
been unsuccessful. The consequences are a tendency to build
monolithic, single-purpose tools, each of which implements
its own specialized analyses and optimized representation.
This restricts the availability of the analyses, and also limits
the reusability of the representation by other tools. Uninte-
grated tools also produce inconsistent views, which reduce
the value of multiple views.

This paper describes a set of architectural patterns that al-
low a single, minimal representation of program code to be
extended as required to support new tools and program anal-
yses, while still maintaining a simple and uniform interface
to program properties. The patterns address efficiency, cor-
rectness and the integration of multiple analyses and tools
in a modular fashion.

1. INTRODUCTION
Our view of programs is that they are not linear text but
complex, multi-dimensional structures [5]. Our view of pro-
gramming environments is that they are tools to reveal and
elucidate this structure. As programs become more com-
plex, it is thus not surprising that integrated program de-
velopment environments (IDEs) are growing in importance
and sophistication.

This view of programs and environments is not new, but
in recent years it has become more widely accepted. The
agile development community, for example, emphasizes the
importance of incremental design, which implies frequent
refactoring of the code base. Refactoring tools require deep
knowledge of the structure of the program, and to be max-
imally effective they also require ways of displaying that
structure to their users [31]. In short, the agile revolution
could not have happened without supportive tools.
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1.1 IDEs are Ecosystems
Integrated development environments (IDEs) are ecosystems
in which three different “species”— communities of contrib-
utors — meet and interact. Two of these species are easy to
identify: the architects of the development environment it-
self, and the toolsmiths, who build plugins and components
to support some user task. The third species comprises the
program analysts: the people who write the code that builds
the parse trees, ASTs, dependency graphs, and other struc-
tures that the toolsmiths need to do their job.

The biological metaphor is imperfect because the same con-
tributor may belong to more than one of these species, but it
useful to distinguish them, because the contributions require
different expertise. Nevertheless, powerful forces urge these
three species to cooperate. Their works are synergistic: a
widely used IDE provides the analysts with a platform; the
availability of the analyses makes it simpler for the tool-
smiths to build more sophisticated tools; the availability of
more tools makes the IDE more attractive to programmers,
and having more programmers use the IDE is the goal of
the architects. All three species therefore collaborate to de-
sign the interfaces through which the tools, analyses and the
architectural framework interact.

Getting these interfaces “right”— or at least right enough —
is not easy. We believe that merely recognizing that there
are three inter-dependent communities helps in the process,
because the vital role of the analyst has not always been
recognized. Traditionally, some basic analyses were built
into the architectural framework; if a particular tool needed
a deeper, or just a different, analysis, the toolsmith would
incorporate this analysis into the tool itself. In effect, the
analyst was excluded from the ecosystem.

We became involved in this work because we were building
Multiview programming environments — IDEs in which mul-
tiple tools provide different views on the same program ele-
ments. This was easy to do when the architect had provided
a shared code model that exposed all the information needed
by the views. However, as our views started to expose latent
properties of the program — properties whose calculation re-
quired significant analysis — we were faced with the problem
of where to put the analysis code. Putting the analysis into
the tool would not work: the results of the analysis had to
be shared by several tools. It seemed clear that the right
place for the analysis was in the code model itself: all we
had to do was invent a “universal” shared code model that
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was general enough to provide the data for all views. Such
a shared model would need to make available not only all of
the information present in the code directly, but also all of
the information that could be inferred from it, just in case
some tool might need it. This may be difficult, but has the
important advantage of ensuring that all of the views are
consistent.

This paper advocates such a shared code model. We are
by no means the first to do so; as long ago as 1991 Scott
Meyers wrote: “many problems . . . would be solved if all the
tools in a development environment shared a single repre-
sentation. . . Unfortunately, no representation has yet been
devised that is suitable for all possible tools.” [27].

In three years of work, we also failed to devise a general,
abstract and efficient shared code model suitable for all pos-
sible tools. With the benefit of hindsight, we believe that
the task is impossible: generality and efficiency are almost
always at odds with each other. It now seems obvious that
what we need instead is an extensible code model, so that
generality can be added when it is found to be needed, but
not before. Moreover, by focussing the computationally ex-
pensive analyses on those parts of the code base that the
programmer actually finds interesting, we can avoid wasting
cycles computing information that will never be used.

Instead of searching for a “silver bullet” code model for each
programming language — a model that will satisfy of all pos-
sible toolsmiths, analysts and architects — we need an archi-
tecture and a common language that allows them to build
on each others’ work in mutual co-dependence. It is the be-
ginnings of such an architecture and language that we seek
to provide in this paper.

1.2 The Pattern Language
The main contribution of this paper is a pattern language
for an abstract, extensible and efficient shared code model.
The patterns are presented in four groups. The first group,
described in Section 3.1, answers the primary question posed

above: how should the responsibilities of a multi-view pro-
gramming environment be divided among the code model
and the tools that maintain the views? The second group
(Section 3.2) presents some common categories of informa-
tion that are strong candidates for integration into the code
model. The third group is devoted to performance con-
siderations, and how these affect the proposed design (Sec-
tion 3.3). One unfortunate consequence of performance work
is that it may add difficult-to-find bugs; the fourth group of
patterns (Section 3.4) is about removing them.

The essence of the pattern language to apply the model-view
architecture to program development environments. The
code — and all of the interesting analyses on it — becomes
the model; the various tools in the environment become
views that do nothing more than ask the model for the data
that they need and present it on the screen, using Observer
to ensure that they are notified of changes. This architec-
ture hides the distinction between those attributes of the
code that are stored explicitly in the model (or can be com-
puted from it immediately), and those attributes that must
be derived from a code analysis, perhaps at considerable
computational cost. The key to accommodating all of these
analyses in the model — including the ones that we haven’t
yet realized are interesting — is to make the model extensi-
ble. Some of these analyses will be complex, and will expose
global properties of the code. And yet: each model exten-
sion must be able to answer, at any moment, any sequence
of questions about the code that a tool might ask. More-
over, it must do so quickly, so that the view can respond in
real-time as the code is modified.

The benefits of this architecture to the toolsmith should
be obvious: the toolsmith no longer has to know which at-
tributes are part of the model and which are calculated by
analyses, and if multiple tools need to make similar analyses,
the results are easily shared.

In the Eclipse code model, in contrast, clients must be aware
of this distinction between stored and computed attributes.
For example, the interface org.eclipse.jdt.core.IType, repre-
senting a Java Class or Interface, has methods getSuperclass-
Name() and getSuperInterfaceNames(), but it does not have
methods to return the type’s subclasses or subinterfaces.
The toolsmith who needs that information must build an
ITypeHierarchy object and invoke its getAllSubtypes(IType)
method. The ITypeHierarchy is not kept up to date when
the model is changed; that too is the client’s responsibility.
The toolsmith is also warned that “once a type hierarchy
has been created, it is more efficient to query the hierarchy
for superinterfaces than to query a type recursively. Query-
ing an element performs a dynamic resolution, whereas the
hierarchy returns a pre-computed result”[11]. Thus, for op-
timal efficiency, the client needs to keep track of whether an
appropriate ITypeHierarchy object has been computed (in
which case it should be used), or not (in which case the
IType must be queried directly).

We hypothesize that the reason that the Eclipse JDT ex-
pects its clients to be aware of all of these details is that
hiding them was deemed to be too expensive. Of course it
would have been possible to build all of the functionality
of an ITypeHierarchy into the base model, and to refresh it
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every time that the model changed. But the computational
cost would be high, particularly as programs become large.
Moreover, much of the information thus computed would
never be used: making programmers using the IDE wait at
the keyboard for information that they do not want to see
is a bad idea.

For this reason, our patterns pay particular attention to
performance. Without a way to reduce the cost of comput-
ing derived information, our proposed architecture would be
nothing more than a hollow shell, attractive in the abstract,
but completely infeasible in practice.

In the next section (Section 2) we introduce a particular
code model extension, which we have implemented in the
Squeak environment for Smalltalk. We use this example
throughout the paper to illustrate the issues and how the
patterns address them. But first, we offer an apology.

1.3 Patterns or Proto-patterns?
In the introduction to Linda Rising’s collection Design Pat-
terns in Communications Software [35], Douglas Schmidt
writes:

Patterns represent successful solutions to chal-
lenges that arise when building software in par-
ticular contexts. When related patterns are wo-
ven together, they form a pattern language that
helps to (1) define a vocabulary for talking about
software development and integration challenges
and (2) provide a process for the orderly resolu-
tion of these challenges. [35, p. xii].

While there is no one definition of the term“design pattern”,
a useful rule of thumb, as Schmidt indicates, is that a pat-
tern present a solution to a problem in a context. Another
criterion is that a pattern should not seem startlingly new
to practitioners: on the contrary, the expected response to a
pattern is: “how elegant; I might have thought of that my-
self, if I had been faced with that problem” or “right; I have
done that before in other contexts, and I see that it might
be useful here too”. The purpose of presenting design ideas
in pattern form is to define a language for architecture in a
specified domain, and to open a dialog in and around it.

By all of these criteria, the pattern form is appropriate for
this work. However, there is commonly an expectation that
a pattern distills from multiple experiences. For example,
Buschmann et al. [7] propose finding at least 3 examples of
an idea when pattern mining, and Gamma et al. [16] offer
at least two examples of each pattern. By this criterion,
some of the strategies that we propose do not yet qualify
as patterns because we cannot offer evidence that they are
currently in wide use. However, we feel that these strate-
gies are more than proto-patterns: we have applied them
to a difficult programming problem, and found that things
suddenly became easier. Our implementation was in the
context of the Smalltalk programming environment, but the
patterns are certainly not language-specific. We have found
some (but not all) of them adopted in other environments,
for example, the Eclipse environment for Java. We feel that
reporting on our experience and presenting these patterns

now will enable more development environments to build on
this architecture in the future, and in the process extend and
evolve our contribution into a full-fledged pattern language.
In this spirit, we particularly welcome additional examples
for, or counterexamples to, our putative patterns.

Having raised this issue, for conciseness we will neverthe-
less refer to a specific proposed solution as a pattern in the
remainder of this paper.

2. A RUNNING EXAMPLE
Our implementation of these patterns has so far taken place
in Squeak Smalltalk, where we have been working on tools
to support traits [6, 39]. Although Smalltalk has no explicit
syntactic marker that identifies an abstract class, abstract
classes are widely used in practice. They can be identified
because they are missing critical methods. An example is
the class Collection, which is the abstract superclass of many
of the concrete kinds of collection, such as Sets, Bags and
Dictionaries. Collection is abstract because it does not pro-
vide implementations for add:, remove:ifAbsent:, and do:; it
is the responsibility of its subclasses to provide these meth-
ods. This is indicated by the existence of explicit marker
methods on these messages, i.e., methods with the body self
subclassResponsibility. (Such a method will raise an error if
it is ever invoked.) Collection does provide concrete meth-
ods for addAll:, remove:, collect:, select:, etc., which are all
implemented in terms of the abstract methods.

However, not all abstract methods are indicated by marker
methods like subclassResponsibility. An examination of the
methods provided by class Collection also reveals that a
message with selector atRandom: is sent to self in another
method, even though there is no maker method indicating
that atRandom: is abstract: atRandom: is an implicit ab-
stract method. Thus we see that an analysis of the whole
of the class Collection can reveal that the class is abstract,
and can also infer the names of the four abstract methods
that must be provided by subclasses. However, this analysis
can be computationally intensive for a large class or a deep
inheritance hierarchy.

While programming in Smalltalk, we have found it very use-
ful to show, in real time, which classes are abstract. When
viewing a particular class, it is also useful to show a list
of the abstract methods — which are known as its required
methods, or simply its requirements [38]. It is particularly
important to infer the implicit requirements because this
supports “programming by intention” [23]: the constant dis-
play of the required methods acts as a “to do list” for the
programmer. In Figure 1 the Smalltalk browser is showing
the required methods of Collection. We call this the“requires
view”; it is an example of a view that reflects the result of
an extensive non-local analysis of the code base.

In seeking to implement the requires view, we started out
with Schärli’s efficient algorithm for determining if a par-
ticular method is required by a specific class and its sub-
classes [36, 38]. Our problem, then, was to construct from
this algorithm a practical browser that would indicate which
classes in a possibly long list of classes were abstract, and
which methods were required by a particular class.
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Figure 1: The Smalltalk browser showing abstract classes and required methods. In the method list pane (at the top, on the far right),
all four of the required methods of class Collection are listed. In the class pane (at the top, second pane from the left), abstract classes
are highlighted in blue. The list of required methods and the fact that a class is abstract are both deduced by code analysis.

It turns out that when programmers use browsers they fre-
quently change the display of the list of classes. The näıve
approach of running Schärli’s algorithm on every defined se-
lector on every class in a long list was far too slow: the
results were not available within the 100 ms time box that is
the norm for interactive response. Our problem was how to
efficiently reify the information needed for the requirements
calculation in the code model so that this information could
be shared amongst various tools, without repeatedly recal-
culating it.

By “reify” we mean “make the information concrete”. In a
sense, the implicit information is there in the code model all
of the time, but a lot of computation is required to extract it.
Reified information, in contrast, is directly available through
an appropriate method with little computational overhead.
An additional problem was that Schärli’s algorithm itself re-
quired walking the inheritance hierarchy, and obtained part
of its efficiency from the careful use of caches to avoid re-
calculating on behalf of a subclass the same results that
had already been calculated for its superclass. We hoped to
be able to reuse these caches in a more general setting, so
that the cached information would become available to other
tools as part of the model, rather than being the exclusive
property of one algorithm.

3. THE PATTERNS
As we mentioned in Section 1.2, we have arranged our de-
scription of the patterns into four groups. The first group
(Section 3.1) describes the division of responsibilities be-
tween the code model and the tools that use it; the second
group (Section 3.2) addresses the content of the extended
model; the third group (Section 3.3) provides guidance on
making the extensible model fast enough, and the fourth
and final group (Section 3.4) addresses correctness. Figure 2
shows the relationships between the patterns and the prob-
lems that they address. When we use the names of these
patterns in the body of this article, we will set them in a
slanted sans-serif font.

3.1 A Code Model supporting Multiple Tools
Underlying any development environment is a representa-
tion of the code of the program under development. A very
common scheme for this representation is code files in di-
rectories, possibly with additional files for metadata about
the project. In contrast, Squeak Smalltalk [22], on which we
implemented the requirements browser, uses a rather differ-
ent code model, although it is one that is commonly used
for Smalltalk. Our first pattern describes the structure of
this code model and some of the features that contribute to
its extensibility. The existence of these features in Smalltalk
systems is not coincidental: there has been a long tradition
in the Smalltalk community of programmers augmenting the
set of available programming tools. Shared Code Model ,
described below, provides the foundation for programming
tools that display information that is available explicitly in
the model.

Shared Code Model

Context. You are designing, refactoring or extending a pro-
gram development environment that contains several inde-
pendent tools giving different views on the same code.

Problem. How can you ensure that each tool is up-to-date
regarding all of the changes made in every other tool, and
that the tools are consistent with one another in their inter-
pretation of the code?

Forces. The following forces are in play.

• The tools may be written by different developers.

• Multiple representations of the code increase mainte-
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Figure 2: Text in rounded rectangles summarizes a problem. Shaded ellipses name patterns discussed in the body of the paper; they are
colored by group. Arrows show how problems are addressed by the patterns, and how the use of the patterns gives rise to new problems.

nance costs, and lead to inconsistencies between the
tools.

• The model needs to be complete enough so that all
tools can be based on it.

• The whole development environment needs to be re-
sponsive to common actions, so requests on the model
should be sufficiently cheap.

• The size of the screen and the capacity of the user’s
brain are limited, so the user will most often be exam-
ining and changing only a small number of program
elements at any one time.

• Many tools may need access to the coarse structure of
the whole program, for example, the type hierarchy.

• The tools may live in separate address spaces, in which
case communication between the tools and the model
will be costly.

• When one tool changes the model, other tools view-
ing the model need to be able to reflect the change
promptly.

Solution. Maintain a single direct representation of the high-
level syntax of the program as a graph of objects, organized
to permit efficient browsing and searching. Lower levels of
syntax need not be built as object structures; instead they
can be kept as text.

Keep the shared code model minimal to avoid redundancy,
and the complexity and inconsistencies that result from it.
This means that information that can be calculated from
the model quickly should not be cached in the model. Some
other reasons for minimality are that specialized information
is likely to be useless to most of the tools, and that a minimal
model is simple to understand.

In order to keep the tools and other clients up to date, the
code model must implement a notification mechanism, such
as an Observer [17]. The notification events should include
enough information for a tool to update the relevant parts
of its output efficiently. In Squeak this information includes
the identity of the code model element (e.g., the method or
class) that changed, and the nature of the change (addition,
removal, or modification).
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Consequences. This solution has the following consequences.

• The shared nature of the code model and the use of
Observer to notify clients of changes together allow
multiple tools to remain synchronized and oblivious of
each other.

• The representation of the high levels of code as objects
makes common navigation tasks easy. For example, it
is easy to access the superclass of a class, or to enu-
merate the methods of a class.

• Detailed, structured representations of small parts of
the program can either be stored as part of the Shared
Code Model , or can be computed on demand from a
textual representation.

• Computing an alternative representation on demand
may be too slow. Rather than forcing clients to cache
this information themselves, put it in the shared code
model as an Alternative Representation (p. 10).

• The Shared Code Model may turn out not to be com-
plete: new tools may require information about the
program that you did not anticipate. In this case, im-
plement a Model Extension (p. 7).

Implementation. One of the decisions that must be made
when applying Shared Code Model is which parts of the code
to represent as structured objects and which parts as linear
text. A second decision is what to put in main memory, and
what to leave on the disk. Along with the choice of repre-
sentation, this will obviously dictate the memory footprint
of the model, and thus the scalability of the environment.

The two decisions are not entirely independent, because the
operation of following an object reference on the disk is
roughly 10 000 times slower than following a reference in
main memory, and so disk storage is much more suitable
for sequential representations, and main memory for linked
ones. In Squeak, the class hierarchy and compiled meth-
ods are stored as an object graph in main memory, whereas
method bodies are represented by pointers to text on the
disk. An environment for the manipulation of very large
programs might be forced to keep more information on disk;
in this case various kinds of database index structure could
be used to improve access times.

Known Uses. Possibly the first development environment
to use a structured code model was the Cornell Program
Synthesizer [40], which represented programs as threaded
“executable derivation trees”. This model was “shared” by
the editor and the interpreter. The Synthesizer was targeted
at beginning PL/I programmers; it seems unlikely that it
could handle commercial-size programs.

The Smalltalk-80 development environment [20] implemented
a Shared Code Model , and this model is alive and well in its
decedents, such as Squeak. However, it is not as complete
and straightforward as might be expected, principally due
to the limited memory on the early Smalltalk-80 systems.

For example, the navigation from a class to its methods and
back again is rather convoluted, reflecting some implemen-
tation decisions that ought to have been better hidden.

The Cadillac programming environment [13], developed at
Lucid for C++ and later named Energize, also had as its
goals easy extension by the builders of the environment, and
tight integration of the tools as perceived by the user. It
achieved these goals by defining tool protocol interfaces that
could be used to access a shared code model of persistent
objects that were stored either in ISAM files or in an object-
oriented data base.

The most well-known modern example of a Shared Code
Model is the Eclipse Java Development Toolkit (JDT), which
is designed to be extensible [15, 33]. The JDT includes
a Java model in which objects represent elements of the
program under development. It provides a way to read
and modify code, and includes a change notification mecha-
nism. In Eclipse version 2.1 the Java model was not kept in
memory, and so was inappropriate for queries that required
traversing the code of a whole project. However, in the cur-
rent version of Eclipse (version 3.2), the Java model is kept
in memory, and thus fits the Shared Code Model pattern.

According to some of our reviewers, the C++ language com-
ponent of Eclipse called CDT does not have one shared
code model, but several separate representations of the code,
making it difficult to decide which to use for particular pur-
poses.

Related patterns and variants. Riehle et al. [34] present the
Tools and Materials metaphor, which motivates the distinc-
tion between the application (a tool) and the model on which
it operates (the materials), and defines particular interfaces
between them. In terms of this metaphor, our pattern lan-
guage aims to make the code model a better material, by
moving the boundary between it and the tools. While both
approaches are intended to make the environment more ex-
tensible, they address different aspects of the problem, and
make different assumptions. For example, we strive for the
ability to add properties to a fixed set of code elements,
while they consider the set of properties fixed and make the
system extensible with new kinds of materials that enjoy
those properties.

Other patterns such as MVC [7] also make the distinction
between the model and the tools that allow the user to op-
erate on it.

We have already mentioned the role of the Observer pat-
tern [16] in connecting the code model to the tools that
operate on it, and the use of Alternative Representation, de-
scribed on page 10, when it is necessary to make available
two different representations of the same program element.

�

It was our goal to implement a tool that uses some informa-
tion that the Squeak code model does not provide explic-
itly: the requirements of a class. We wanted to access the
requirements in at least two places: first, to annotate a class
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as being abstract when its name appears in the browser’s
list of classes, and second, to display the requirements of a
class when the programmer browses that class. In addition,
because there were other kinds of code browser that might
be extended to use the requirements property, we wanted to
make it very easy to access this property — as easy as it is to
access the base properties of the code model. For example,
getting the names of the instance variables of the class Morph
in Smalltalk is very simple, because instance variables are
explicit in the base model: the programmer merely issues
the query Morph instVarNames. Our goal was to provide ac-
cess to the requirements of a class using an equally simple
query: Morph requiredSelectors.

However, our starting point was quite different: Schärli’s al-
gorithm, for good performance reasons, was implemented to
update a global cache of requirements. So, getting up-to-
date values required first updating the cache for the class in
question, and only then accessing it. So, if we were inter-
ested in the requirements of class Morph, the code that we
had to write was

Morph updateRequiredSelectors.
requirements := Morph requiredSelectors.

Thus, clients had the responsibility of ensuring that the
cache was up to date: this was both inconvenient and error-
prone. We felt that this was the wrong trade-off, and that
simplicity of interface was more important than simplicity
of implementation [12]. The next pattern, Model Extension,
shows how to retain both.

Model Extension

Context. A development environment uses a Shared Code
Model to represent the code and includes several tools that
operate on it.

Problem. How do tools access properties that are not stored
in the code model, but are calculated from it? How can such
properties be shared by multiple tools?

Forces. The following forces are in play.

• Many of the tools in an IDE exist to access proper-
ties and structures that are implicit in the code, and
therefore not present in a minimal shared code model.
Nevertheless, users of the code model would like to
be able to interrogate these properties and structures
through a simple and concise interface.

• Despite the fact that several tools may wish to access
the same properties and structure, the same calcula-
tions should not be repeated.

• Analysis algorithms should not be implemented multi-
ple times; the same implementation should be available
to multiple tools.

• One of the ways in which a new analysis can add value
is by defining new properties or making visible a new
level of structure, so these parts of the code model
should be open to extension.

• The implementation of an analysis may be complex; it
should be encapsulated and separated from the core of
the model.

Solution. Express each new property as an extension to the
interface of an appropriate class in the Shared Code Model .
Implement the calculation of this property as a Model Exten-
sion, that is, place it outside the Shared Code Model itself.

In our running example, the interface that we desire is my-
Class requiredMethods, since this will make requirements ac-
cessible in the same simple and direct way as other prop-
erties of the code model. To the tool writer, extensions
like requiredMethods add richness to the otherwise minimal
Shared Code Model , making it a more useful representation
of the code. By accessing all aspects of the code through the
code model, we make the implementations of different tools
simpler, and the tools more similar to each another. This
makes it easier to use, understand and maintain different
tools.

However, the logic necessary to implement the new inter-
face should be placed in its own class or classes, and the
extensions to the model classes should delegate all of their
responsibilities to this new class. This arrangement is illus-
trated in Figure 3(c). The separation of the implementation
from the interface enables authors of model extensions to
address the complexities of correct and efficient computa-
tion of each property without increasing the complexity of
the Shared Code Model itself.

The interface extensions should be class extension methods
if the implementation language supports open classes, or
Extension Objects [14] otherwise.

Consequences. This pattern says that the interpretation
of the Shared Code Model should be written as a Model Ex-
tension rather than as part of the tool that needs to use
it. The consequence is that these interpretations are made
available to other tools. This synergy between tools enables
a rich suite of tools to develops with less effort and more
speed. At the same time, the Shared Code Model itself re-
mains simple, and the interfaces to derived properties can
be consistent with the interfaces to the direct properties of
the model.

Implementation. Many programming languages do not rec-
ognize the importance of open classes [8]; they make it hard
to extend classes that have already been written by another
programmer or obtained from an outside organization. In
Java and C++, for example, any extension to the interface
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Figure 3: Here we show diagrammatically various alternatives for enriching a Shared Code Model . In (a), Class is part of the shared code
model, shaded buff. The algorithm to compute the required methods of the class has been added in a separate class, shaded blue. This
means that the user of each extension must be aware of a special-purpose interface to that extension, and may also have to be concerned
with initializing and finalizing the classes that implement it.
In (b), the whole of the implementation of the extension has been placed in the existing model class. This makes it possible to present
a uniform interface, but fails to encapsulate the new algorithm, and makes it hard to provide potentially more efficient alternative
interfaces. It also depends on the programming language providing a very complete implementation of class extension.
Alternative (c) exploits Model Extension (p. 7): the interface to the extension is in the appropriate model class, but the implementation
is encapsulated in its own class. Only the most modest class extension mechanism is required.

of a standard class library requires editing (rather than aug-
menting) its implementation; this may be impossible unless
the implementation is under the control of the extender.
Some Java variants such as MultiJava [8] and AspectJ [24]
recognize the value of open classes and do provide for class
extension; programmers using ordinary Java can fall back
on the Extension Object pattern [14].

Smalltalk supports open classes: the Smalltalk program-
mer can extend the interface of the code model by adding
new methods in a separate package that contains what is
known as a class extension. However, Squeak’s class ex-
tension mechanism does not allow an extension package to
modify the representation of an existing class; for example,
it can add a method, but cannot add an instance variable.

This pattern places all of the logic of the Model Extension in
new classes. Thus, the only extension facility that it requires
is the ability to add a new stateless method to an existing
class. This mitigates the impact of any deficiency of the
chosen implementation language.

Known Uses. In addition to our use of Model Extension to
support the required method property, this pattern is also
used in the Eclipse JDT to add higher-level functionality
to primitive objects. However, because Java does not allow

class extensions, an implementation of this pattern in Java
is somewhat inconvenient.

To see how this pattern is used in Eclipse, consider the in-
terface org.eclipse.core.resources.IFile, which represents raw
data and support methods like getContents() that make it
possible to read that data. If the data represents a Java
class, some tools may prefer to deal with a structured rep-
resentation in which one can examine individual fields, the
set of defined methods, and so on. This more structured
interface is called IType.

Eclipse uses the Extension Object pattern to effectively add
IType’s methods to IFile. IFile implements the IAdaptable
interface, which means that it provides a method called
getAdaptor(Class). Asking an IFile for an adaptor to IType
answers another object that represents the same code as the
IFile, but which can be cast to IType. This new object will
be able to respond to questions about the structure of the
code.

In addition to the non-uniform interface and the extra lines
of code, Extension Object has a further disadvantage: its use
must be anticipated. There is no way to proceed if the need
arises to extend a class that does not implement getAdap-
tor(Class). For example, while IType implements IAdaptable,
ITypeHierarchy does not.
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Related patterns and variants. This pattern specifies the
mechanism of interface extension, and the separation of in-
terface from implementation, but says nothing about the
form of the implementation itself. However, implementa-
tion is critical: although the architecture that we have spec-
ified so far is functionally complete, it is insufficient to allow
implementations to obtain reasonable performance on code
models of any significant size. Later we will describe the per-
formance issues, and some patterns that help resolve them.
The most important of these is Explicit Interest, described
on page 14, which describes a simple interface addition that
allows various implementation strategies, including the well
known Caching [25].

�

Using the patterns that we have described, we implemented
a requirements browser for Squeak, which flags classes that
are abstract and displays their requirements. In the process
we also implemented a reusable Model Extension, which is
thus available to existing Smalltalk browsers — if they are
extended to use it. However, implementing a simple inter-
face that answers a useful question can be more rewarding
than this: it should be possible to make use of a model ex-
tension even without requiring that a tool developer write
new tools or modify old ones. From the perspective of the
user, discovering the existence and usefulness of a code anal-
ysis of which he had not previously been aware should not
require him to learn to use a new tool. We can lower the
costs of using model extensions to both tool developers and
users by providing Generic Tools that are easily adapted to
make use of new model extensions.

What do we mean by a “generic tool” and how could one
have helped us with the requirements analysis? To answer
this question, consider a generalization of the requirements
browser. Our requirements browser displays in blue the
names of classes that respond positively to the message isAb-
stract. It could easily be modified to use some other pred-
icate to decide which classes to color. With a little more
work, the browser could be made to show users a list of all
of the predicates on classes, and allow them to decide which
predicate will determine class coloring. Every new model
extension that is a predicate would be added to this list au-
tomatically, making the extension immediately usable, even
before a tool tailored to take advantage of the extension has
been written. Even after tailored tools have been devel-
oped, any programmer opening the configuration dialog of
the generic tool will see all the predicates defined on classes,
and can choose to explore their usefulness without having
to learn to use the more specialized tools.

Of course the idea of Generic Tools is not limited to model
extensions that are predicates. Ducasse and Lanza [9] de-
scribe a tool that allows for the ad hoc definition of code
visualizations based on code metrics. In their tool, a code
element is represented by a rectangle, and the values of dif-
ferent metrics determine its height, width and color. These
metrics can be implemented as model extensions whose val-
ues are numeric.

Thus, a new code analysis, if given a sufficiently abstract
interface, provides us not with one new tool or view, but

with a new kind of information that can be used from many
existing and familiar views and the tools that implement
them. We capture this idea in the pattern Generic Tools.

Generic Tools

Context. A development environment exists, various Model
Extensions are implemented, and specialized tools use them.

Problem. How can you make the views of the program cor-
responding to these model extensions accessible without re-
quiring tool-builders to write new tools, and application pro-
gramers to learn to use them?

Forces. Many known and useful code analyses are under-
stood by few practitioners and used by even fewer. This is
true even though tools exist to apply them, because activat-
ing a specialized tool just to access an analysis takes time,
and thus makes the analysis less valuable. If programmers
must learn a new tool to take advantage of a new analysis,
they are less likely ever to do so.

For the developer of a code analysis, being forced to also
create a tool that displays the results of that analysis raises
the barrier to entry, and provides a disincentive to making
the analysis reusable.

While some code analyses result in specialized models of
the code, many others result in representations of the code
in terms of ordinary data types such as booleans, numbers,
collections and graphs. There are sophisticated techniques
for visualizing and manipulating this kind of data that are
not dependent on their particular meanings.

Solution. Instead of creating tools that are specialized to
show a specific model extension to best effect, create generic
tools that allow a programmer to make opportunistic use of
a variety of model extensions. Such tools should provide
a generally useful mechanism for using information about
code. Generic tools should be extensible to use information
from different sources.

Note that the requirement here is extensibility by a program-
mer, which can be achieved at different levels by different
means. A tool framework might be extended to use a new
Model Extension by coding a simple plugin. In some cases, a
configurable tool might be extended without any program-
ming, by merely specifying the name of an extension. The
main requirement is that the writer of a Model Extension can
make it visible from tools with small amounts of effort.
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Consequences. A development environment with a suite of
Generic Tools encourages the writing of reusable code anal-
yses; exposing the outputs of code analyses also encourages
the addition of new specialized tools that make use of them.

Note that Generic Tools are likely to sacrifice some aspects
of usability. This is because they give the programmer a
generic user interface rather than one specialized to a par-
ticular task. We might deduce that Generic tools are more
likely to complement than to replace more specialized tools.
However, the user can be overwhelmed by a plethora of tools:
a small number of more powerful, generic tools might actu-
ally be more friendly to the user, who is, after all, a practic-
ing programmer.

Known Uses. We present two more examples of Generic
Tools. First, we observe that a unit testing framework such
as SUnit [2] can be thought of as a generic tool. SUnit
allows convenient, reproducible checking of assertions about
code. The assertions are usually about code functionality,
and are checked by running application code on examples
with known desired results. However, the assertions can
also be about structural properties of the code, in which
case they can be checked by sending messages to the objects
in the Shared Code Model . Any new model extension can
be used in this way immediately, without writing any new
tools.

For example, unless one is building a framework extensible
by inheritance, it is reasonable to expect that any abstract
classes will have at least one concrete subclass. Leveraging
the requirements model extensions and SUnit, this assertion
can be expressed as follows.

(MyPackage allClasses) do: [ :each | self deny:
(each subclasses isEmpty and: [each isAbstract]) ]

A suite of SUnit tests containing assertions like this may
be thought of as turning the SUnit test browser into a gen-
eral tool for maintaining invariants about the structure of
the code. Naturally, such structural test suites complement,
rather than replace, conventional test suites that check the
function of the code.

The second example is the StarBrowser [43], which was de-
signed by Wuyts et al. specifically to allow unanticipated
integration of new properties. It displays a tree of nodes
that can represent different types of objects, including code
model elements. The StarBrowser can be made to display a
specific set of child nodes, for example the required methods
of a class, in an ad hoc fashion: one passes it an anonymous
function that returns the set of nodes. It can also be cus-
tomized more systematically, by creating a glue class that
defines a new menu item on the appropriate node type to
do the same thing. The latter type of customization can be
done by a tool integrator who is the author of neither the
StarBrowser nor the model extension. Thus, the working
programmer can be exposed to the model extension through
the StarBrowser without having to do the integration work.

�

3.2 Applications of Model Extensions
This section presents two general situations in which appli-
cation of Model Extension (p. 7) can help to resolve a de-
sign problem; the patterns discuss the concerns specific to
each, and how different Model Extensions may be composed.
The discussion is heavy with performance concerns, because
experience (both personal and vicarious) shows that perfor-
mance can be quite critical in development environments
that expose deep properties of the code in their views. In
each pattern we therefore mention the performance problems
typical to each kind of model extension, and point towards
solutions. However, the reader might prefer to ignore this
discussion on the first reading and focus on the effects of
applying each pattern, rather than the details of its efficient
implementation.

Alternative Representation

Context. The development environment has a specific repre-
sentation for each kind of element in the shared code model.

Problem. This representation is not the most appropriate
for the specific tool that you are implementing. For exam-
ple, the representation of a method might be textual; if you
are implementing parenthesis matching, an syntax tree rep-
resentation would be more convenient.

Forces. We cannot change the shared code model represen-
tation to fit our application. Because the Shared Code Model
is complete, the information that we need is in the model
somewhere. However, it is implicit where we would like it
to be explicit.

Solution. Define the representation that you prefer as a
Model Extension (p. 7). Calculate it when required in the
conventional way, for example, build an abstract syntax tree
by running a parser on the textual representation of the
code. Efficiency may require the use of Caching [25].

Consequences. There is inevitably a cost in providing an al-
ternative representation: time to compute it when needed,
or space if it is to be cached, or possibly code complexity if
some more efficient (but elaborate) solution is found. How-
ever, some of these costs are inevitable as soon as an IDE
needs to expose aspects of the code that are implicit in the
primary representation. For example, when implementing
parenthesis matching, if we do not introduce the alterna-
tive syntax tree representation, we would instead need to do
some form of ad-hoc parsing to find the parenthesis. This
ad-hoc parsing has an execution cost, may need to be cached,
and so on.

As with all Model Extensions, an Alternative Representation
can be shared by multiple tools. Thus, this pattern helps

10



to avoid code duplication, and reduces long-term mainte-
nance costs. For example, the ad-hoc parsing code men-
tioned above would to some extent duplicate the normal
parsing code that exists elsewhere.

Known Uses. The Squeak Shared Code Model represents
methods as pointers into a text file kept on disk. This
preserves all of the documentary structure of the source
code [42], and provides access to the code that is fast enough
for editing and browsing. However, an Alternative Represen-
tation is clearly needed for execution: Squeak uses byte-
codes. When the source code is edited (and when new
code is read into the environment), it is immediately com-
piled to bytecode s and the compiled methods are cached
as objects. Other Smalltalk implementations, such as Vi-
sualWorks, compile directly to machine code. However, in
all cases the existence of the cached of executable code is
hidden from the user of the environment, who is given the
consistent illusion of editing and manipulating source code.

�

Before we leave Alternative Representation, we note that al-
ternative representations are commonly used by particular
tools, even though they may not be exposed to other tool-
builders and users. For example, in addition to their target
language, compilers commonly use a variety of intermediate
representations, including control flow graphs, dependency
graphs, and single static assignment form. These represen-
tations might be useful to programmers seeking to better un-
derstand their programs, but they are rarely exposed. Even
if the compiler provides a way of exporting these represen-
tations, most IDEs do not make them readily visible. Com-
pilers are only one source for potentially useful alternate
representations; the program analysis literature has many
more. Program slices, for example, can be very useful when
debugging and transforming code [4].

We now move on to another application of Model Extension.

A common activity when reading code is navigating through
chains of references. In a procedural language, a procedure
call is linked to the definition of a procedure by the scoping
rules of the language. It is common for IDEs to automate
this navigation, allowing the programmer to navigate from
the call site to the definition with a single click. In an object-
oriented language, an IDE may provide a pop-up menu on
a message-send that allows the programmer to choose be-
tween the several correspondingly named method bodies.
This functionality is not particularly difficult to implement;
it is enough to parse the particular method being browsed
(this might be an Alternative Representation) and keep track
of procedure and method definitions in the program. Nei-
ther is it hard to keep this information current: when a
procedure or a method is changed, the IDE needs to update
the parse tree of that procedure or method only.

Our next pattern is motivated by a related feature: the abil-
ity to navigate in the other direction, from a procedure to its
call sites or from a method to the senders of the correspond-
ing message. Navigating in this direction is useful when at-

tempting to understand how a procedure or method is used,
or when considering a refactoring such as adding a param-
eter. Note that answering the query in the näıve way (by
searching for all calls to the procedure) would be expensive
even if the parse tree of whole program were available, so an
Alternative Representation is not the solution. Our proposed
solution is captured in the next pattern, Inverse Mapping .

Inverse Mapping

Context. The code model contains various natural reference
structures. These are accessible via the Shared Code Model
or by Alternative Representations, and used by programmers
and tools.

Problem. How can we allow efficient navigation in the op-
posite direction?

Forces. The following forces are in play.

• Because the shared code model is minimal, many map-
pings that it supports directly will be one-way. For
example, a class might have a direct reference to its
superclass, but not to its subclasses.

• Both end-user tools and higher-level Model Extensions
may wish to use these mappings in the other direction.

• Traversing the code base to search for such references
is expensive.

Solution. Provide each Inverse Mapping as a Model Exten-
sion, so that the mapping is available to clients directly, but
the implementation details are hidden.

Efficient implementation of inverse mappings can be com-
plex. The basic difficulty is that finding all references to a
code model element is a non-local task: references can be
anywhere in the code base. This means that traversing the
whole code base at each request is expensive. Caching the
precomputed inverse mapping allows us to avoid multiple
traversals of the whole code base for multiple queries. Then
the basic difficulty shows up in a different way: to correctly
answer queries about arbitrary reference targets this cached
inverse mapping has to be of the whole code model, making
it space-intensive for references that are common, such as
procedure calls or message sends.

Using a cache also means that the cache must be kept up-to-
date. Suppose that a procedure definition is modified, and
corresponding changes are made to the appropriate part of
the code model. To keep the cache current, we have to re-
move those entries corresponding to references that the pro-
cedure used to make, and add entries for the references that
it now makes. The latter is straightforward, but the former
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poses a potential problem: how do we find the references
that the previous version of a procedure used to make?

Sometimes this problem is solved by the change notification
mechanism providing access to the previous definition of the
changed element as well as to the new one. If this is not the
case, it may be necessary to keep a separate record of all
references in the forward direction, just for the purpose of
cache invalidation. In the worst case, it may be necessary
to rebuild the cache from scratch by exhaustive search.

Known Uses. Squeak Smalltalk maintains the superclass of
each class as an instance variable defined in class Behavior.
It also caches the inverse mapping, the set of subclasses, in
another instance variable (defined in class Class, a subclass
of Behavior). When a class is redefined (possibly changing
its superclass) the change notification mechanism provides
the model with both the old and the new definitions, so the
cache of subclasses can be updated incrementally.

However, Squeak is not always so organized. There are also
places where this pattern could be applied, but is not. For
example, it is easy to find the set of classes referenced by a
class, but harder to find all the classes that reference a par-
ticular class. If this pattern were used in a Smalltalk envi-
ronment, c referencedClasses would answer the set of classes
referenced by c; The inverse mapping would be c referring-
Classes, which would answer all of the classes that refer to c.
Whereas referencedClasses can be evaluated locally, by scan-
ning the names referred to by all of c’s methods, a näıve
implementation of referringClasses would require a global
traversal of all of the classes in the environment, searching
for classes that refer to c.

At present, Squeak does not put either enquiry in the code
model; instead the functionality to find all references to
a class is implemented in the SystemNavigation tool (us-
ing global search). Another tool, the Refactoring Browser,
implements the same functionality again. This illustrates
the sort of problem that extensible code models will help to
avoid.

Consequences. The maintenance of an Inverse Mapping might
be expensive even with a sophisticated implementation. There
is usually a tradeoff between space and time: making an in-
verse mapping available quickly will usually save time but
cost space (for a cache of an inverted index). However, if the
re-validation process is very complex, it can also cost time.
If it costs both space and time, Inverse Mapping may not be
appropriate.

Related patterns and variants. As we mentioned above, the
efficient implementation of an inverse mapping will some-
times require more than just a general cache. Explicit In-
terest makes it possible to maintain a more selective cache,
for example, one that contains information only about ref-
erences to specific code model elements. Batch Calculation
and Lazy Update show us how to take maximal advantage
of each non-local scan, particularly when a number of code
model elements are updated at one time.

When offering examples of inverse mappings, we assumed a
knowledge of the references from a method to other classes
and messages. These references might be found in an Alter-
native Representation, created by parsing the source code or
by abstract interpretation of the bytecode .

�

We now return to our motivating example, the task of list-
ing the methods required by a class. A method m can be
required either because m is explicitly marked as such, or be-
cause a m is not implemented by a class or its superclasses,
but m is nevertheless sent to self in a method of that class.

How can we find out whether a method is required in a
class? The simplest thing that could possibly work would
be the following. For every selector s that may be required,
scan every method implementation m to see if it self-sends
s. This defines a mapping self sends from methods to sets
of selectors. This is a poor implementation technique: it
would scan every method in every class many times. What
we need here is the Inverse Mapping self senders of which
provides, for each selector, the methods that self send it.
Thus, we find that we have quite naturally partitioned the
complex computation of required methods into three layers
of Model Extensions, each built on a simpler one. This leads
us to our next pattern: Layered Extension, described below.

Layered Extension

Context. You have a definition of an interesting but complex
Model Extension.

Problem. How do you implement this Model Extension effi-
ciently, while at the same time promoting reusability?

Forces. The following forces are in play.

• Calculating this Model Extension requires as input other,
expensive to compute information.

• This other information might itself be useful as a code
property, available to other analyses.

• The calculation of the interesting and complex Model
Extension can be broken down into a series of smaller,
loosely coupled definitions.

Solution. Define each complex Model Extension on top of
simpler ones, in layers. A higher-level property expresses
Explicit Interest (p. 14) in the lower-level extensions that it
requires. Note that layering model extensions requires us
to be careful in ordering recalculations. For example, we
do not want to recalculate the requirements property before
we have recalculated the self senders of mapping for the
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methods in the relevant classes. This ordering requirement
can be addressed by Lazy Update, described on page 18.

Consequences. When implementing a Layered Extension, a
number of competing forces come into play. For reusability,
it is tempting to break the definition of an extension into
small fragments. For performance, one needs to take care
that each layer encapsulates a sufficiently expensive calcu-
lation to warrant the existence of that layer. For example,
we found that in Squeak, caching the information “which su-
perclass of C implements a method on selector s” is useless,
because the dictionary lookups required to access the cache
were about as expensive as traversing the superclass chain to
recalculate the information. While this might be regarded
as commentary on a specific dictionary implementation, the
larger lesson should be clear: application of these patterns
complements, rather than replaces, good engineering and
performance-oriented design.

Related patterns and variants. This pattern is a specializa-
tion of the Layers pattern [7]. When one Model Extension
depends on another, it is important that they are recalcu-
lated in the right order. This is easy if the extensions are
truly layered. If the dependencies become more complicated,
one way to find an update order that respects the dependen-
cies is to use Lazy Update, described on page 18.

�

In our running example, we created a Model Extension for
the required methods of a class. We expect that as other
code analyses are presented this way, more patterns will
emerge, enriching this pattern language for discussing the
implementation architecture of program analyses.

3.3 Making it fast enough
This subsection is devoted to performance, a topic we have
mentioned several times, but haven’t yet tackled seriously.
A very important rule of thumb for optimization, codified in
Lazy Optimization [1], is to avoid it until it proves necessary.
This rule certainly applies here, and we advocate adhering
to it.

Why then does performance play such a major role in our
pattern language? It is our belief that efficiency consider-
ations are an inherent part of this domain. Before we dive
into detail, we will use an analogy to explain why perfor-
mance is a pervasive problem, and how we alleviate it. The
analogy is with the model-view architecture for graphical
interfaces and the role that the Observer pattern plays in
making that architecture feasible.

The key idea in the model-view architecture is to decouple
the model from the view. In an ideal world, the model will
know nothing at all about the various views: it will just get
on with the business of representing its domain. Whenever
a view needs to know some aspect of the state of the model,
it asks. The problem with this näıve scheme is that the view
needs to redraw itself on every display refresh cycle; it would
be hopelessly inefficient to poll the model 60 or 80 times

per second, usually to find that nothing has changed. The
standard solution is to use the Observer [16] pattern, which
requires the model to notify the views of any changes. The
model is no longer oblivious to the existence of views, but
it knows little or nothing about them beyond the fact that
they exist. No description of model-view can be complete
unless it shows how to address the performance challenge
that arises from the decoupling of model and view.

The key insight to solving the performance problems is that
only a small part of the program is in view at any one time,
and thus the extensions need only complete their analyses
for that part — if only they could somehow know which part!

Explicit Interest, described on the following page, provides
a way for a tool to notify the code model that someone is
interested in a particular part of the code without the model
having to care about who is interested.

This subsection presents patterns for dealing with real per-
formance issues once they have become apparent. Perfor-
mance improvements sometimes bring a cost in complexity,
which may in turn adversely affect correctness. This is the
topic of the following subsection (3.4). However, before we
move on to our patterns, we first reflect on why performance
matters, and then discuss the application of well-known pat-
terns from the literature.

Why Performance Matters. When and how do issues of
performance arise when computing a Model Extension (p. 7)?
The most näıve implementation of an Extension would sim-
ply compute the property whenever it is requested. For
properties that can be computed cheaply enough, this is a
good choice: if computing the property is not much more
expensive than retrieving it from a cache, there is no point
in precomputing it. However, as properties start to be used
in development environments to give interactive feedback to
programmers, the meaning of “cheaply enough” is becom-
ing more exacting. For example, whereas matching paren-
thesis used to be a by-product of the parsing step of a
compiler, performed every few minutes, today most envi-
ronments match parenthesis as they are typed. Similarly,
whereas in the past it might have been thought sufficient to
report missing “required” methods at release time, our de-
sire to show this information interactively requires a much
more sophisticated implementation, but supports new styles
of work [37]. Thus, the frequency of use of an analysis can
change from once every few minutes to multiple times per
second.

Caching, and other Patterns from the Literature. The
patterns literature contains quite a few performance-related
patterns relevant to implementing a Model Extension. If
some values are very common for a particular property, Fly-
weight [16] might be justified. Beck discusses Caching, and
observes that the biggest problem with caches is ensuring
that they remain valid. To simplify this problem, he sug-
gests reducing the scope and extent of the variable used for
the cache. Thus, while it is usually quite easy to keep a
caching temporary variable up to date, it is harder to do
so for a caching instance variable [3, p. 44–5]. The varia-
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tion that is most specifically relevant to us is the caching
of Model Extension values between client calls. After all, the
fastest way to compute something that hasn’t changed since
the last time we were asked is probably not to compute it
at all, but to cache our last answer.

While a cache is certainly an important performance tool,
caches can also be tricky in the best of cases, and costly
in many. So let us examine some techniques for managing
caches. Throughout, we assume that the implementation of
each Model Extension keeps a cache of property values.

The third volume of Pattern Oriented Software Architec-
ture [25] presents a set of patterns for managing resources
efficiently. A cached Model Extension, containing as it does
computed results, is not exactly the kind of resource as-
sumed in this volume, but some of the patterns are still
relevant. Evictor is a mechanism for ensuring that the el-
ements of a cache are flushed at the appropriate time; it
may be useful to us because we want to minimize the mem-
ory consumption of cached model extension data, and also
prevent these data from being used when they are stale.
However, Evictor gives us only the mechanism: how do we
find an efficient policy for deciding which Model Extension
to evict?

One way to avoid performing unnecessary analyses is to give
the implementation of a Model Extension more information
about the intentions of its clients. This is not a new idea,
indeed, one of the advantages of monolithic programming
tools is that usage information is available to their analy-
sis components. However, once we have separated the tools
from the model, we need to provide a way for the tools to
pass usage information to the analyses. The pattern Explicit
Interest, described below, and its specialization Life-long In-
terest, described on the facing page, show how to do this.

Performance issues in the Running Example. We use a
Model Extension to give client tools a simple interface for
obtaining the requirements of a class. Unfortunately, this
simple interface makes it hard for the implementation to
achieve good performance. For example, Schärli’s algorithm
is efficient when it is used to calculate the requirements of
a class and its subclasses at the same time. What happens
when a sequence of separate requests is made of the model?
If the first class requested is the superclass of the others, then
queries about the subclasses can be answered from the cache.
However, if the tool happens to request subclasses before
their superclass, the algorithm would repeatedly calculate
the same information. A tool might try to work around this
problem by applying the algorithm to some parent of the
class in which it is really interested; however, this parent
might have many subclasses in which the tool will never be
interested, in which case this work would be wasted.

The root cause of the inefficiency is that the calculation
mechanism does not know beforehand which classes the tool
is going to enquire about. This situation is not specific to
the required methods example. Consider the task of com-
puting an Inverse Mapping : the most efficient procedure is to
traverse all of the relevant code exacly once, gathering infor-
mation about references to just those elements that clients

will to ask about. We believe that the need to know in ad-
vance what will be interesting will be very common when
performing a non-local code analysis.

One way of giving the calculation mechanism this extra in-
formation about usage would be to provide an additional
“batch” interface. For example, we could provide an addi-
tional interface for required methods so that the client tool
could ask for the requirements of several classes at once.
However, this interface would be inconsistent with the Model
Extension pattern. Moreover, since the simple interface and
the “high performance” interface would be quite different,
the existence of the two interfaces would encourage prema-
ture optimization. Therefore we feel that it is better to keep
the simple interface unchanged, and to add a separate in-
terface by which the tool can explicitly express an interest
in specific classes. The pattern Explicit Interest describes
this additional interface, while Batch Calculation (p. 19) de-
scribes how to use it to obtain the same advantages as the
additional “batch” interface that we just dismissed. Minimal
Calculation (p. 16) examines when we can avoid updating
the Model Extension at all, while Eager Update (p. 17), and
Lazy Update (p. 18) address when to perform the updates
that cannot be avoided.

Explicit Interest

Context. You have a model extension that depends on cal-
culations that are significant enough to require optimization.

Problem. How do client tools provide the information nec-
essary to aid the optimizations?

Forces. The following forces are in play.

• Real time display of the code and its properties re-
quires interactive response times, which means 100 ms
or better.

• Property calculations may be expensive and non-local,
and the code model may be large.

• Caching all model extensions over the whole code model
requires too much space, or re-validating the caches
after a change to the model requires too much compu-
tation.

• The tools that are the clients of a model extension are
focussed on only a small part of the whole code base
at any given time.

• Having more information about the usage of a prop-
erty can mean that we are better able to optimize the
process of obtaining it.

• The code model is not completely static, because the
programmer will occaisonally type in a change, or mod-
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ify significant parts of the model by loading a new ver-
sion of parts of the code.

• Any implementation tricks necessary to make the var-
ious model extensions fast enough should be hidden
from client tools. The interface to each model exten-
sion should be as simple and uniform as possible

Solution. Add an interface to the model that allows clients
to explicitly declare and retract their interest in a specific
model extension for a specific code element. At any time,
the parts of the Shared Code Model in which interests are
declared are said to be interesting.

This solution is based on the assumption that, although
caching the model extensions over the whole model is in-
feasible, caching them over the interesting parts of the code
model is both feasible and cost-effective.

Consequences. Once this pattern has been applied, we may
assume that tools will make queries on only the interesting
elements of the code model. This assumption provides vari-
ous opportunities for optimization. For example, caches can
be focused on interesting information. This allows the client
tools to assume that the space costs of caches are linear in
the number of interests that they have registered.

Access to calculated properties of code elements not declared
interesting can be either prohibited (useful to ensure that the
interest declarations are complete), or merely less efficient
(more friendly to tools before they adapt). This choice might
also be controlled by a mode switch, to support different
stages in the development of tools.

Related patterns and variants. Explicit Interest and Observer
may seem similar because both make a model object aware
of its clients. However, there are significant differences in the
intent, effect, and consequences of the two patterns. An Ex-
plicit Interest is an optimization hint given to the provider of
information by the consumer. This hint allows the provider
more freedom of implementation; if the hint is not needed,
it is always correct to ignore it. In contrast, adding an Ob-
server creates the responsibility for the information provider
to notify the new consumer of changes; this new responsi-
bility can constrain the implementation, and cannot be ig-
nored. For example, a requirement to include information
about the new state in the notification message would force
the calculation of that information before the message is
sent. Explicit Interest has little consequence on the architec-
ture of the application: declaring an interest does not affect
when or how the consumer requests the value of the prop-
erty. In contrast, Observer affects the control flow by placing
initiative with the model, which must call the observer. The
final difference is that with Explicit Interest, the model is not
concerned with who expresses an interest, but solely with
which part of the model is interesting. In contrast, Observer
does say who is interested, but does not communicate which
part of the model is interesting. In this sense, Observer and
Explicit Interest are duals; they manage separate concerns,
and can be used together.

Because the model is unconcerned with how many times an
interest has been expressed, interests have some similarity to
reference counts on the data structures supporting a model
extension. As described by Meyers [28, Item 29], reference
counting is a pattern used at the application level to ensure
that a data structure stays available for as long as it has
at least one client. (Murray earlier outlined the same idea,
under the name “use counts” [32, §3.2].)

Explicit Interest provides information that could be used by
the other implementation patterns mentioned above. For
example, Lazy acquisition might be applied only to non-
interesting elements, and interest information could be used
by an Evictor.

�

In applying Explicit Interest (p. 14) we decided that each in-
stance of our code browser will tell the shared code model
which classes it is currently displaying. Note that two browsers
may display overlapping sets of classes, in which case there
will be two registered interests in the requirements of those
classes. Maintaining the interest registration requires the
browser to declare interests when new classes are first dis-
played (for example, when a new browser is opened) and
remove them later (when a browser is closed, or when the
user changes the set of classes being viewed).

As is typical in large software development projects, we did
not write this browser from scratch, but instead used an ex-
isting framework, the OmniBrowser1. The OmniBrowser is
highly object-oriented: an OmniBrowser window does not
display mere text strings, but model-specific node objects
that correspond to (and reference) part of the code model,
for example, a class or a method. These node objects have
behavior, for example, they can react to mouse-clicks in use-
ful ways.

In our browser, the node object representing a class has
a life-span that matches quite precisely the interest of the
browser in that class. Whenever a class is displayed, a node
object corresponding to the class is included in the browser’s
display list; when the browser is no longer displaying that
class, it ceases to reference the node object. We made the
creation of a node object register an interest in the corre-
sponding class; we also declare a finalization action, trig-
gered when the node is garbage collected, that de-registers
the interest. Thus, the requirements of a class are a Life-long
Interest of the node that represents that class in our browser;
this pattern is described below.

Life-long Interest

Context. You have a tool that derives its extensibility from
being an instance of a framework.

1http://www.wiresong.ca/OmniBrowser/

15

http://www.wiresong.ca/OmniBrowser/


Problem. You wish to adapt this tool to present a new
property. This property is captured by a Model Extension,
so to use it efficiently, you need to express Explicit Interest
in parts of the model being presented. How should you do
this in a manner consistent with the tool framework?

Forces. The following forces are in play.

• If the framework pre-dates the publication of these pat-
terns, it is unlikely to support Explicit Interest directly.

• To be effective, interests have to be declared before
queries are made, and must eventually be retracted,
though the timing for retraction is not critical.

• Failing to express an interest will hurt performance,
possibly making the tool unusable.

• Extending a framework in a way that its designers did
not anticipate is likely to produce code that is fragile
and hard to understand.

• A well-designed object-oriented framework is likely to
have objects representing the model elements that are
interesting, and is likely to allow for customization by
changing or replacing these objects.

Solution. Find the framework objects representing the parts
of the model that enjoy the new property, and adapt them
to express Explicit Interest in the corresponding part of the
Shared Code Model for the whole of their lifetime. This can
be achieved by making each of these objects register its in-
terest when it is initialized or constructed, and retract its
interest in when it is finalized or destroyed. A life-long in-
terest can also be declared by modifying the factory that cre-
ates the representation objects. If we assume that the tool
creates the representation objects before using the model ex-
tension, the interest declarations will be early enough; the
language’s object deallocation mechanisms will guarantee
that interest is eventually retracted. This gives your ob-
jects the desired property, while assuming little about the
framework, and making only local and easily understandable
adaptations to the code.

Consequences. Life-long Interest is not always applicable:
the framework may not have an object with an appropriate
lifetime, the object may not be extensible, or its factory may
not be available for modification. Using this pattern there-
fore constrains the implementation freedom of the frame-
work. For example, caching the framework objects, rather
than deallocating and reallocating them, will interfere with
the use of this pattern.

The exact moment when a declared interest is retracted de-
pends on when the run-time environment runs the garbage
collector, and even on the nature of the garbage-colleciton
algorithm.

Related patterns and variants. The C++ idiom Resource
Acquisition is Initialization (RAII) can be used to imple-
ment this pattern. The C++ constructor will express an
interest, and the destructor will retract it [21]. The imme-
diate retraction that is the hallmark of RAII is not needed
to implement Life-long Interest, but it does no harm.

�

So far we have discussed how to design an interface that
encapsulates a code analyis as a model extension, while pro-
viding it with information about client intentions. We now
resume the discussion of implementing a code analysis effi-
ciently in the context created by these patterns.

Returning to our running example, it is clear that the näıve
approach of recalculating the requirements of every class on
every request is far too expensive. In order to make calcu-
lations efficient, we look more closely at what to calculate,
and how and when to do so. These three questions are not
completely separable; we present patterns to address each,
but they interact and the boundaries between them are not
always clear.

Minimal Calculation, described below, is about limiting what
we calculate. Eager Update, described on the facing page,
and Lazy Update, described on page 18, are about when to
perform the calculation; each has its advantages and dis-
advantages. Batch Calculation, described on page 19, tells
us when and how to perform the calculation of a non-local
property that benefits from economies of scale: not as ea-
gerly as Eager Update, not as lazily as Lazy Update, and all
at once.

Minimal Calculation

Context. You have a Model Extension, and an interface
through which clients express Explicit Interest. You are main-
taining a cache to avoid re-calculating the extension.

Problem. When the Shared Code Model changes, how do you
avoid unnecessary re-computation of the cached properties
in the Model Extension?

Forces. The following forces are in play.

• The code model is large, and ordinary editing opera-
tions change only a small part of it.

• However, this is not the case when changes to the code
model are mechanized, as happens when a new pack-
age is loaded into the development environment, or a
global refactoring (such as re-organizing the class hi-
erarchy) is performed. In these situations, many parts
of the model can change at the same time.

• At any particular time, only a small part of the code
model affects the user’s display.
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Solution. Update only those model extensions that are both
interesting and affected by changes in the code. The first
criterion is applied by consulting the Explicit Interests. The
latter is calculated using notification of changes to the code
model and a knowledge of the dependencies of the property
represented by the Model Extension.

Consequences. Implicit in the use of this pattern is that
queries about uninteresting elements of the Model Extension
can be answered slowly. This should not be a problem, be-
cause these elements should not be queried often: that is the
purpose of requiring a declaration of Explicit Interest. How-
ever, correctness requires that a Model Extension employing
this pattern must invalidate cached information that is no
longer interesting, rather than letting it go stale. (The inval-
idation might be lazy, i.e., it could be done when the cache
is queried).

If computing the update is not too expensive, and the fre-
quency of calculations have been sufficiently reduced by the
the use of this pattern, then it may be perfectly satisfactory
to use Eager Update, described below, to actually perform
the computation as as soon as a change is notified. This will
often be the case when the first force applies.

When the second force applies, this pattern can help to avoid
slowing down the important work (the package load or the
refactoring) by not wasting computation on updates to the
code model that will not affect the tools that are currently
in use.

Related patterns and variants. Even after employing this
pattern, the amount of computation required to recalculate
a global property may still be great enough that using Eager
Update slows down the important work. Moreover, it does
so needlessly, because it repeatedly recalculates properties
that will soon be invalidated. In these situations, consider
using Lazy Update on the following page. If the computation
exhibits economies of scale, also consider Batch Calculation
on page 19.

�

When we have to recalculate the value of an interesting
Model Extension, we can choose to do the work as soon as
possible, or we can try to defer it as long as possible. Eager
Update, described below, characterizes the first situation,
and Lazy Update, described on the next page, characterizes
the second. Which is the better choice depends on the forces
that apply.

Eager Update

Context. You have defined a Model Extension (p. 7) or a
Layered Extension (p. 12) on top of a Shared Code Model
(p. 4).

Problem. How do you determine when the properties that
underlie the Model Extensions should be recalculated?

Forces. The following forces are in play.

• The Model Extension is an Observer of parts of the
Shared Code Model , and is notified when the relevant
parts of the model change. Alternatively,

• the Layered Extension is an Observer of a single, lower
layer Model Extension.

• Recalculating the property is a fast, local operation.

• Most of the time, the user wants interactive response.
However, bulk changes to the code, such as applying a
patch that updates 100 classes, should be efficient but
need not be interactive.

Solution. Update the Model Extension eagerly, that is, as
soon as you are notified of the change to the Shared Code
Model or the lower-layer Model Extension on which it de-
pends.

Consequences. Eagerness has several benefits.

1. The code is simple and readable: performing the up-
date calculation is the simplest and most obviously
correct response to a change notification.

2. The Model Extension will always be up-to-date, and
thus client queries can be answered instantly.

3. Eager Update supports notification of changes to any
tool or Layered Extension that depends on your Model
Extension.

However, this pattern also has some disadvantages.

1. It can be inefficient: bulk changes to the code model
may trigger many intermediate updates to the Model
Extensions. These updates may be useless because
they are almost immediately overwritten, or because
the relevant part of the model becomes uninteresting
before it is queried.
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2. A Layered Extension must not be recomputed until after
the update of the lower-layer Model Extension on which
it depends. However, if the Layered Extension is also
dependent on the Shared Code Model directly, then
it may receive a change notification from the model
before this update has completed. This can be a source
of subtle and hard to find bugs.

�

Eager Update earned its place in the pattern language not
because it is says anything surprising or unexpected, but
because it supplies a name for the simplest thing that could
possibly work. In particular, it provides a baseline to con-
trast with Lazy Update, described below.

Lazy Update

Context. You have defined a Model Extension (p. 7) or a
Layered Extension (p. 12) on top of a Shared Code Model
(p. 4). You are maintaining a cache to avoid re-calculating
the extension.

Problem. How do you determine when, and in what or-
der, the cached properties that underlie the Model Extension
should be recalculated?

Forces. The following forces are in play.

• The Model Extension may depend on other Model Ex-
tensions as well as on the Shared Code Model , and may
be an Observer of all of them.

• The Model Extension will be notified when the relevant
parts of the model change. However, the order in which
the notifications arrive may be undetermined.

• The interdependencies between properties may be com-
plex. The order in which the various Model Extensions
are updated should be consistent with the dependen-
cies.

• Recalculating the property is a fast, local operation.

• Most of the time, the user wants interactive response.
However, bulk changes to the code, such as applying a
patch that updates 100 classes, should be efficient but
need not be interactive.

Solution. The Model Extension keeps track of all the rele-
vant changes to the code model, but does not recompute its
cached properties. Instead, it simply invalidates its cache.
The Model Extension is updated lazily, that is, only in re-
sponse to client queries; the new values are cached at that
time.

Consequences. Laziness has several benefits.

• Model extensions that are not needed are not calcu-
lated.

• Batched changes will be executed without useless inter-
mediate updates to the model extensions. The even-
tual update can be made more efficient using Batch
Calculation (p. 19).

• Assuming that the dependencies between different Lay-
ered Extensions are not cyclic, their calculation will be
performed in an appropriate order. Note that it is
perfectly acceptable for the value of a property on one
part of the code model to depend on the same prop-
erty on a different part of the code model, even if both
are maintained by the same Model Extension.

However, this pattern also has some disadvantages.

• The first access to a Model Extension after an update
will take more time than other accesses. This may be
visible to the programmer at the user interface.

• Perhaps the most significant disadvantage, in compar-
ison with Eager Update, is that Lazy Update does not
support change notifications on the model extensions.

Related patterns and variants. When used in combination
with Batch Calculation, this pattern is not completely lazy,
so specific parts of a Model Extension may be calculated in
spite of not having been requested yet. However, this is a
reasonable tradeoff as long as the interests declared by the
tools are sufficiently precise.

The pattern Lazy Acquisition, also from Pattern Oriented
Software Architecture — Volume 3 [25], suggests that delay-
ing the moment of requesting a resource may improve per-
formance, because sometimes the resource will not be used
after all. Lazy Update can been seen as an application of this
pattern, under the assumption that the client of the Model
Extension does not actually request the resource until it is
essential.

�

In our running example, we used Lazy Update to minimize
the set of classes for which we recalculate the required meth-
ods. We now turn our attention to performing the calcula-
tion as efficiently as possible. Requirements have non-local
aspects — for example, an unimplemented method selector
may be self-sent by some superclass, making the correspond-
ing method required; to find such requirements we need
to check the code of all superclasses. This is reflected in
Schärli’s algorithm, which first updates a class and then all
its subclasses. These non-local aspects of the requirements
calculation make it attractive to update the model extension
in a Batch Calculation, rather than one class at a time.
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Batch Calculation

Context. You have defined a Model Extension (p. 7) that de-
pends on non-local aspects of the Shared Code Model (p. 4),
for example, the value of a property for a class depends on
the properties of all of its superclasses. Re-calculating this
non-local property will therefore benefit from economies of
scale. The interface to the model extension allows clients to
express Explicit Interest (p. 14) in parts of the model.

Problem. How can you organize the recalculation of the
property to take advantage of these economies of scale? In
other words, how can you avoid repeated re-calculation of
the Model Extension?

Forces. The client of the Model Extension might request
the extension’s properties for multiple classes in succession.
On the one hand, deferring updates of the properties until
their values are requested, and then näıvely satisfying these
requests, would result in multiple traversals of the common
parts of the model on which they depend. On the other
hand, recalculating the properties eagerly means calculating
them one at a time, which is no better.

Solution. Each Model Extension keeps track of all the rele-
vant changes to the code model, but defers acting on them.
When the model extension eventually updates its caches of
calculated information, all changes are dealt with, and the
extension is calculated for all interesting code elements, at
the same time. This makes it possible to use each traversal
optimally.

Consequences. Batch Calculation reduces the number of
traversals of the common parts of the model. However, it
also means that for a period of time, the properties main-
tained by a Model Extension are invalid. Steps must therefore
be taken to prevent clients seeing this invalid data.

This pattern tells us to defer acting on updates, but does
not tell us when to stop procrastinating and get to work!

Known Uses. We applied this pattern in our implementa-
tion of the requirements browser for Squeak. Batch Calcula-
tion allowed us to use Schärli’s algorithm as it was designed
to be used: to compute in one pass a batch of requirements
for classes that have an inheritance relationship.

Related patterns and variants. The timing and ordering of
the deferred re-calculation may be determined by Lazy Up-
date, described on the preceding page. When this pattern
is used in combination with Lazy Update, the computation
of the Model Extension will not be completely lazy. Spe-
cific parts of the Model Extension may be calculated earlier
than necessary, that is, before they are actually requested
by a client. However, this is a reasonable tradeoff. As long
as the interests declared by the tools are sufficiently pre-
cise, it is likely that those parts of the Model Extension that
are calculated earlier than necessary will be requested by a
client in the near future. Moreover, the economies of scale
that accrue from Batch Calculationare likely to outweigh any
inefficiency caused by computing a few properties that are
never used.

�

The problem of displaying code properties maintained by a
Model Extension is incremental in two different ways. First,
requests for the property values are made incrementally.
Second, changes to the code model are often small and spread
over time.

Consider the timing of the recalculation of a property. Eager
Update performs the calculation as early as possible: as soon
as the new model elements on which it depends have been
established. Lazy Update performs the calculation as late
as possible: if it were left any later, a client request could
not be answered. Between these extremes there may be a
significant interval of time: Batch Calculation performs the
recalculation somewhere in this interval. It lazily defers a
batch of updates until the effects of one of them must be
considered in order to satisfy a client request; at that time
it eagerly processes the whole batch.

When we implemented the requirements browser for Squeak,
we used Lazy Update to order the updating of the required
methods Layered Extension with the updating of the self
senders of Model Extension that it uses. In its turn, the im-
plementation of self senders of uses a combination of Batch
Calculation and Lazy Update — the cache for a class is invali-
dated when the class is modified, and recalculated when it is
requested. Lazy Update restricts the re-computation of self
senders of to the specific class requested, rather than all in-
teresting classes. This is sufficient for this particular model
extension because the self senders of mapping is local to
each class.

The complex interactions that result from these optimiza-
tion patterns should cause you to delay optimization until
you know that you need to do it, and then to reflect on the
issues of correctness mentioned in the next subsection.

3.4 Correctness Concerns
As performance concerns drive the code implementing a
model extension towards greater complexity, the code be-
comes more difficult to understand, and it becomes harder
to avoid inserting bugs during maintenance and revision.
How can we remain confident in the correctness of the im-
plementation? Our answer is to test it against a Canonical
Implementation, described on the following page.
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Canonical Implementation

Context. You have implemented a useful model extension.
Its definition is not trivial, and the simplest implementation
is not fast enough.

Problem. How do you improve performance while remaining
confident of correctness?

Forces. The calculation of a model extension must be fast
enough for interactive use. This necessitates optimizations
that make the code complex and harder to verify and trust.
The model extension must provide correct information if
users and tool builders are to trust it. Hand-written unit
tests check only what their authors thought of testing.

Solution. Before proceeding to complicate the implemen-
tation with optimizations, take the simplest possible imple-
mentation and encapsulate it as the Canonical Implementa-
tion. Now you can freely create an independent implemen-
tation with better performance; this is the implementation
that will actually used by client tools. Write tests that com-
pare the results of the two implementations over large ex-
isting code bases to gain confidence in the optimized imple-
mentation.

Consequences. Tests comparing the two implementations
complement hand-built unit tests, because the data over
which the tests run is independent of the assumptions in
the efficient implementation.

For this pattern to be useful, the Canonical Implementation
should be more likely to be correct than the optimized imple-
mentation, and should be more likely to stay correct. Why
should these things be so?

1. Performance is not a concern for the Canonical Im-
plementation, so you can use well-known, high-level
libraries instead of hand-tuned code.

2. The Canonical Implementation need not read from or
maintain any caches.

3. The Canonical Implementation can make use of data
objects that support the semantics of the desired math-
ematical operations (e.g., sets) rather than efficient
ones (e.g., arrays).

4. The Canonical Implementation is used only a test ora-
cle for the fast implementation. This puts fewer con-
straints on its interface, so it can correspond more
closely to a Formal Definition (p. 21).

5. You might choose to write the canonical implemen-
tation in a higher-level or more appropriate program-
ming language than that chosen for the fast implemen-
tation.

6. The canonical implementation is not modified to meet
performance or other pragmatic requirements, but only
to fix bugs or follow changes in the formal definition.
Therefore its code will change much more slowly, and
bugs will be introduced into it less frequently, than will
be the case for the fast implementation.

Realistically, the need for this pattern will not becomes ap-
parent until after some optimizations have already been ap-
plied, and the cost of debugging them has started to show.
Thus, finding a good canonical implementation might re-
quire using version control to retrieve the simplest version
that ever existed, and simplifying it a bit further.

Related patterns and variants. A canonical implementa-
tion can help you maintain confidence in the correctness
of the optimized version. Sometimes a Formal Definition
is also needed, in which case the canonical implementation
can act as a bridge between the non-executable, but maxi-
mally clear, formal definition, and the efficient implementa-
tion used in practice.

�

While using the Minimal Calculation pattern, we grew con-
vinced that by taking into account which classes had been
modified, and which classes implemented or self-sent each
method selector, we could run the requirements algorithm
less frequently. However, we found it difficult to be certain
of the correctness of this optimization. What we needed was
to prove a claim of the form: “if class C requires a method
named s, then one of the following statements must be true
about the code. . . ”

Proving this kind of theorem would only be possible if we
had a formal definition of the requirements property. Some
relevant formal definitions already existed [10] but were not
particularly well-adapted to our task. We found it useful to
create a minimal Formal Definition based on just the concepts
relevant to the requirements calculation: method lookup,
explicit requirements, reachability through self- and super-
sends, and required selectors. We used this definition to
prove some necessary conditions for a message selector to
be a requirement. In particular, we proved that if a selector
is not defined in a class, not self-sent in the class, and not
a requirement of its superclass, then it cannot be a require-
ment of the class.

These proofs allowed us to run the requirements extraction
algorithm only when the necessary conditions hold. Because
these conditions are cheap to check, and hold only rarely,
performance was improved significantly, because we ran the
costly algorithm much less often. This process is captured
in the pattern Formal Definition, described on the next page.
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Formal Definition

Context. You have thought of a property that is useful, but
complex.

Problem. How can you be sure that the property is well-
defined in all cases? How can you figure out what imple-
mentation shortcuts are possible, and convince yourself that
they are correct?

Forces. The following forces are in play.

• The programming language that your IDE supports
includes baroque features and corner cases that are
rarely encountered in ordinary programs, but which
are nevertheless represented in the Shared Code Model
and over which your property must be defined.

• Informal language is often imprecise when defining a
property in such corner cases.

• To improve performance, you will want to refrain from
examining parts of the program that cannot affect the
value of the property. This implies that you need a
way to be sure that a part of the program is always
irrelevant to the property of interest.

Solution. Use mathematical language — for example, sets,
relations, and constraints — to define the property formally,
in terms of primitive facts about the programming language
and simpler properties. When an optimization relies on a
non-trivial claim about the property, prove the claim from
the formal definition.

Consequences. Although it is still possible that the proof is
incorrect and the optimization introduces a bug, the prob-
ability of this has been reduced. Moreover, unit testing of
the optimized algorithm is likely to expose such a bug early,
because the formal definition specifies the test result.

Related patterns and variants. The Formal Definition, trans-
lated into your programming language without regard for ef-
ficiency, can become a Canonical Implementation (p. 20). For
example, the canonical implementation might be written in
terms of sets and relations in a functional style that mimics
the mathematics.

�

4. PATTERN LANGUAGE SUMMARY
We conclude our description of the pattern language with a
quick overview of our solution to the problem of building a
extensible, modular architecture for representing a program
in Squeak Smalltalk.

One important property of the Smalltalk programming en-
vironment is that it has a Shared Code Model (p. 4) on
which we could build. Since the shared code model does not
maintain the required methods of a class, we implemented
a Model Extension (p. 7) that exposes the required methods
as if they were part of the code model. We realized that
the Squeak shared code model is not minimal, but in fact
includes an Alternative Representation (p. 10) for methods.

Calculating the required methods for every class in a large
application would be prohibitively expensive, and much of
the effort would be wasted because programmers are inter-
ested in studying only a few classes at a time. The model
extension therefore allows tools to express Explicit Interest
(p. 14) in the properties of a specific class.

In the browser development framework in which we were
working, we found that a simple way of adapting the browser
to express Explicit Interest was Life-long Interest (p. 15),
in which a particular object’s interest endures until it is
garbage collected. Knowledge of the “interesting” classes
creates a context in which various optimization strategies
are applicable; two optimizations that we consider are Min-
imal Calculation (p. 16) and Batch Calculation (p. 19). Lazy
Update (p. 18) complements them by determining when re-
calculation of a property should take place after a model
change.

To prevent this preoccupation with efficiency from coming
at the expense of understandability and correctness, we used
a Formal Definition (p. 21) and a Canonical Implementation
(p. 20) as a test oracle. We found that the (rather compli-
cated) requirements property depends on two simpler prop-
erties, which led us to Layered Extension (p. 12). One of
those properties turns out to be useful both as an interme-
diate layer for a higher-level calculation and also to the end
user. It is an Inverse Mapping (p. 11), and as such exemplifies
a class of properties that are frequently useful to program-
mers using the IDE, to analysts, to architects building more
complex extensions, and to toolsmiths.

These patterns make it easier to write a second tool that
uses an existing analysis, and also make it easier to adapt
an existing tool to make use of a new analysis. Generic Tools
(p. 9) represent the limit of this second case — tools designed
to make use of any property of the code model exposed by
an extension, and thus to lower the barrier to using a new
analysis.

5. REVIEW OF THE RUNNING EXAMPLE
A pattern language is useful if it leads to an improvement
in the architecture, functionality, performance or reusabil-
ity of software that adopts it. In this section we return to
the Requirements Browser example, and consider how the
application of this pattern language has improved it as a
product.

The original version of the Requirements Browser [38] was
implemented as part of an incremental programming envi-
ronment. One of the principal goals of this environment
is to show the programmer in real time the actual state of
the code being developed; this includes what methods are
still missing, and which classes are incomplete. Meeting this
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goal requires responsiveness during typical browsing activi-
ties, and the constant display of requirements information.
These are difficult requirements to satisfy, because the re-
quirements calculation is non-local, and potentially quite ex-
pensive.

In the initial prototype, all of the self-, super- and class-send
information for every method in the image was calculated ea-
gerly and cached in a compressed form, at a significant space
cost. This cache was subsequently replaced by a custom ab-
stract interpreter that computed the send information from
the bytecode s on demand. However, achieving responsive-
ness still required that the Inverse Mapping self senders of be
cached. This cache, and a global cache of requirements infor-
mation for every class in the system, were updated eagerly
whenever a method changed. What were the performance
and deployment implications of these caches?

Our measurements show that the total memory footprint
of these caches was around 2 MB, for a code model (class
objects and bytecoded methods) of 4 MB. The cache was
updated at every change of any method. This worked rea-
sonably well for interactive changes to single methods, but
negatively affected bulk recompilations, such as those caused
by loading a new version of a package. This was true even if
the package being loaded had no effect on the requirements
being displayed. Building this cache from scratch, as was
required to deploy the requirements browser on a Squeak
image for the first time, took tens of minutes.

The patterns described in this paper made it easier to over-
come these problems. By caching information only for those
classes in which there was Explicit Interest, we reduced the
cache size to be proportional to the amount of code be-
ing displayed, rather than the amount of code loaded in
the system. Lazy Update removed any need for long re-
computations when installing the system, and speeded up
bulk package loads. Some of the optimization required to
make the incremental computations efficient were quite com-
plex, but Canonical Implementation and Formal Definition
greatly increased our confidence in their correctness.

The original Requirements Browser prototype added the im-
plementation of the required property directly to the Shared
Code Model ; the use of a Model Extension allow us to avoid
this modification of the core system classes, which had proved
to be a packaging and maintenance problem.

Applying the pattern language presented in this paper thus
made available for reuse a complex code analysis that was
originally buried in a particular tool. At the same time, the
analysis became more practical from the point of view of
performance, and less intrusive in the code model. We note
that while the particular example that we chose — abstract
classes — is commonly part of the explicit code model in
statically typed languages, global analyses and the enhanced
models that they require are not specific to latently typed
languages.

6. HISTORICAL CONTEXT
The idea of multiple-view software development environ-
ments has been studied at least since 1986 [18], when David
Garlan published the work that led to his doctoral the-

sis [19]. The Field environment constructed at Brown Uni-
versity in the early 1990s by Steve Reiss and his students
was a landmark in the development of such systems. A
1992 study by Meyers and Reiss [30] examined novice users
of Field and concluded that multiple views, or at least the
particular set of views that Field supported, did indeed help
programmers to perform maintenance tasks.

However, Field was constructed as a loose collection of sepa-
rate tools that communicated using what we would now call
a publish and subscribe system (Meyers called it “Selective
Broadcast” [27]). Although this made it quite easy to write
new tools and add them to Field, each tool duplicated the
core data of the system, making it hard to maintain consis-
tency, contributing to high latency when attempting to keep
simultaneous views up-to-date, and inevitably forcing pro-
grammers to introduce redundancy between the tools. The
approach to consistency that we are taking in Multiview
is close to what Meyers called “Canonical representation”,
which seemed then to be an unattainable dream.

Since 1991, the amount of core memory available on a typ-
ical development workstation has expanded from 16 MB to
2 GB. This has made it possible to keep all or most of the
representation of even quite large software systems in core
memory, and this permits the use of more flexible data struc-
tures than are supported by a database and, perhaps more
importantly, allows the parts of these data structures to link
to each other directly. Nevertheless, it is still the case that
“no representation has yet been devised that is suitable for
all possible tools”. The idea of an extensible architecture
for code models and the pattern language described in this
paper is a response to the (belated) recognition that no such
representation will ever be devised a priori.

From a review of previous research, Meyers concludes that
a Canonical Representation based on abstract syntax trees
(ASTs) is insufficient. Marlin [26] presents an architecture
(also called MultiView) that takes this approach, and con-
cludes that at least part of the problem is that the AST
“shows through” in the form of the syntax-structured editor.
The hybrid style of Smalltalk’s Shared Code Model avoids
this difficulty by representing method bodies as text. Ex-
perience has shown that textual views have advantages over
structured views at the method-level: textual views keep
white space and indentation which, while semantically use-
less, are important documentation [42]. Editing text also
makes it easier for the programmer to transform the code
by permitting it to pass through syntactically illegal inter-
mediate states.

Meyers and Reiss [29] describe another problem with ASTs:
they do a poor job of supporting views that are unrelated to
the program’s syntax. In their search for a “single canonical
representation for software systems”, they present their own
Semantic Program Graphs (SPGs), which support a range
of views directly. Meyers and Reiss themselves note that
SPGs do not faithfully represent all aspects of a program;
one of their solutions is to allow clients to annotate them.

The architecture that we propose in this paper combines the
advantages of a Canonical Representation with those of mul-
tiple specialized representations connected by message pass-
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ing. The Shared Code Model solves consistency problems by
being the unique modifiable representation, but additional
representations can be made available (as Model Extension
s) to help support disparate views. Thus, the research into
advanced representations such as SPGs can be leveraged by
using these representations as model extensions.

7. CODA
It used to be that conducting research in program develop-
ment tools required either settling for a mediocre user inter-
face (making it unlikely that the experimental tool would
be widely adopted) or creating an environment in which
to embed the tool, a larger investment than most research
projects could support. Fortunately, extensible development
environments, such as Eclipse, are now available: these en-
vironments are creating ecosystems in which IDE architects,
toolsmiths and program analysts can support each others’
work. In such an IDE, the investment required to move from
the idea for an analysis to a usable tool is reduced. Because
these environments are widely used, tools embedded in them
are more likely to be used than standalone tools. The exten-
sibility of these IDEs make it possible for them to include
capabilities beyond their architects’ initial planning and pri-
orities; if users are likely to find a tool useful, sooner or later
the toolsmiths will respond to that demand.

The patterns presented in this paper are intended to facili-
tate this process. A development environment is made ex-
tensible by the frameworks it provides and by the idioms it
promotes for sharing code between extenders. The patterns
that we have described support the use of a Shared Code
Model to which code analyses can be added systematically.
These analyses can then be shared between different exten-
ders of the development environment, so that not only tools
but other analyses can build on them.

The early patterns, particularly Shared Code Model and Model
Extension are known to exist in Eclipse and in Squeak; we
do not know how widespread they are. Some of the later
patterns may not have been used other than in our own
tools. Thus the architecture that we propose must be con-
sidered preliminary, and it seems likely that some of the pro-
posed patterns will change, and possibly more will be added,
as more architects, analysts and toolsmiths gain experience
with it.

Our confidence that these patterns will be found useful is
based on the same reasoning that argues for the usefulness of
the object-oriented paradigm itself. Objects facilitate reuse
when they represent entities in the real world. As a con-
sequence, different applications that manipulate the same
concerns in the real world are likely to be able to reuse
the corresponding objects in an object-oriented design. Of
course, these objects may need to be extended — but this is
also something that the paradigm supports.

In a program development environment, the “real world”
that is the meeting place for the various tools and analyses
is the program under development. The representation of
that program — the Shared Code Model — is highly reusable
because every tool builder and analyst understands the sub-
ject programming language, and the properties its elements.
For example, anyone who knows Java will assume that a

code model element that represents a Java class will pro-
vide method or attribute to access its superclass — and they
would be right to do so. In contrast, properties that are
available only by running an analysis and building a sepa-
rate result graph, which the client must then worry about
keeping up to date, are much less likely to be reused.

We are aware that there are some flaws in this argument.
While many analyses do indeed create new properties of ex-
isting elements in the Shared Code Model , there are code
analyses in the literature that create new entities that are
not local to any such element. One example is finding cyclicly
dependent sets of classes [41]. While the results of this anal-
ysis can be mapped back on to the Shared Code Model , that
is not the “obvious” way of looking at the them. Also, the
tradeoff between Lazy Update and Eager Update is worthy
of more study; we advocated Lazy Update for performance,
but Eager Update has the benefit of allowing a element of a
Model Extension to be observable.

In spite of these issues, we feel that we have made enough
progress with this architecture to expose it to the scrutiny
of the programming environment community. A demon-
stration of our implementation is available as a Squeak im-
age at http://www.cs.pdx.edu/˜black/goodies/TraitsBeta3.0/
TraitsBeta3.02.tgz. It has begun to solve the very real prob-
lem first identified by Meyers in 1991 [27], and has done so
in a way that enables us to build useful tools for Squeak. We
hope that others will be encouraged to critique and expand
on these patterns, and to report their findings.
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