
APPLYING PATTERNS TO BUILD
A LIGHTWEIGHT MIDDLEWARE

FOR EMBEDDED SYSTEMS

D. BELLEBIA
CEDRIC-CNAM

292, rue Saint-Martin
75141 Paris cedex 03

FRANCE

Facilité Informatique
62, bis rue des peupliers

92100 Boulogne Billancourt
France

djbel.consulting@free.fr

 J-M. DOUIN
CEDRIC-CNAM

292, rue Saint-Martin
75141 Paris cedex 03

FRANCE

douin@cnam.fr

ABSTRACT
Today, patterns are used in several domains (distributed
applications, security, software requirements, architecture…). Our
purpose is double: first, to know if existing patterns can be
applied in the particular domain of embedded systems
middleware, second, to establish the grounding towards a patterns
language for that domain.

In this paper, we describe how to design and build a lightweight
middleware for embedded systems with well known patterns such
as Composite, Proxy, Visitor, Observer, Publish/Subscribe,
Leasing, Evictor or Configurator. The patterns we selected and
implemented allow keeping the memory footprint reduced. Yet,
they were relevant to address the need of creating topology views
of Networked Embedded Systems (NES), to monitor and to
manage them. As a result, the middleware is modular, flexible,
extensible, and lightweight (< 128 kb) according to targeted
embedded systems requirements.

In addition, this paper describes a concrete case study, illustrating
how to select appropriate patterns to build a dedicated middleware
in order to interconnect numerous small devices.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Contructs and
Features – patterns, architecture, patterns sequences, java

General Terms
Design, Experimentation, Languages

Keywords
Patterns, Lightweight Middleware for Embedded Systems,
Requirements for Embedded Systems’ Middleware, Use cases,
Architecture, JavaCard

1. INTRODUCTION
Embedded systems are specific-purpose computer, which are
completely encapsulated by the device they control. They are
ubiquitous in our everyday life, in form of many devices such as
cars, medical components, clothes, personal mobile devices,
sensors [26].

Advances in electronic and wireless communications (e.g. Wifi,
Bluetooth, Wireless USB…) enabled the advent of Networked
Embedded Systems (NES), i.e. systems comprised of
interconnected devices [50].

Besides, there is now a real trend to use middleware technologies
in order to interconnect NES. Indeed, middleware is a distributed
software layer sitting above the network operating system and
below the application layer [16]. It provides common abstractions
that can be reused across different applications within a specific
domain. It supports tailoring in order to meet the requirements of
each application [10 p30-3]. In addition, it hides the heterogeneity
of the underlying environment, it simplifies programming task,
and managing distributed applications. In other words,
middleware is about integration and interoperability of
applications and services running on heterogeneous computing
and communication devices.

However, trying to develop a middleware for embedded systems
introduces many challenges we must deal with. There is no stable
network infrastructure, the disconnections are inopportune and it
is required that each device discovers each other in ad-hoc
manner. Furthermore, embedded systems are severely
constrained by scarce resources such as low battery, few memory
and slow CPU [44, 50].

Since their introduction, a decade ago, patterns provide proven
solutions for many software design problems. Yet they enable to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

PLoP '06, October 21–23, 2006, Portland, OR, USA.

Copyright 2006 ACM 978-1-60558-151-4/06/10…$5.00.

reduce the complexity and improve the flexibility of software
products in particular connection management, data transfer, de-
multiplexing and concurrency control [51].

What motivated our work can be summarized in three points:
first, to build embedded systems’ middleware with all required
functionalities having non-volatile memory footprint less than 128
kilobytes; second, how patterns can be applied to build that
middleware and lastly, to establish the bases towards NES pattern
language.

With Regard to previous works related to this topic, two1
middleware JINI and TAO are the most significant because they
quietly present the required capabilities and their design was
driven by patterns.

JINI is a Java based middleware for building services oriented
solutions. It provides ‘plug and play’ mechanism and supports ad-
hoc networking by allowing services to be spontaneously added to
a network [4 p185].

TAO [27, 12] is a CORBA (Common Object Request Broker
Architecture) [54] compliant middleware built over ACE
(Adaptive Communication Environment). It implements entire
CORBA functionalities and provides real-time QoS (Quality of
Service).

However, both of them were do not fit our specification because
of their memory footprint was higher than 128 kilobytes.

Our middleware is designed with patterns such as Composite,
Proxy, Visitor, Observer, Publish/Subscribe, Leasing, Evictor or
Configurator, etc. It is lightweight (68 kb in ROM for
interconnecting JavaCards) and keeps the common qualities of
patterns such as loose coupling and flexibility.

This paper is organized as follows: section 2 presents the
requirements, the use cases of the middleware and an overview of
a case study. Section 3, reviews design patterns applied to build
this middleware. Section 4, summarizes achieved results. Section
5, concludes this paper and suggests an outlook to future work.

2. EMBEDDED SYSTEMS MIDDLEWARE
In the following subsections, we give first the NES middleware
requirements that we have selected basing on [10 chapter 30, 12,
16 chapter 11 and 50]. Next, we present the use cases derived
from these requirements. Finally, we introduce a case study as a
particular application of our middleware.

2.1 Requirements

2.1.1 Functional requirements
Composition support: There are many breeds of embedded
systems and they are ubiquitous. Therefore, the middleware is
required to have capabilities that facilitate the organization and
the grouping of devices as form of trees.

Event notifications: Many of embedded systems are interacting
continuously with their environment through sensors and
actuators. They must react accordingly when their environment
changes. The middleware has to provide mechanisms to notify
embedded system when an event occurs within the environment.

1 The reader can refer to [50] for a complete survey of

middleware for networked embedded systems.

Reduced memory footprint: The middleware should be deployed
on small devices such as mobile phones. However, those devices
are very constrained by limited resources such as small memory
footprint. The middleware has to take into account these scarce
resources and its memory footprint must not exceed 128
kilobytes.

Reliability: In NES, it is not rare that one device relies on another
to perform seamlessly its task. However, more and more of
embedded systems are connected through a wireless connection.
Therefore, the middleware must ensure at least a minimal
reliability because network connections may be broken due to
several reasons.

Asynchronous communication: The middleware supports the
synchronous communication model. That it is. However, it must
also support the asynchronous communication paradigm in order
to allow messages to be exchanged whether or not each endpoint
is operating at the same time.

Ad-hoc discovery: The middleware should implement a
mechanism to allow devices to discover each other and discover
services and available protocols.

2.1.2 Non-Functional requirements
Location independence: When an embedded system asks for a
service, it should not worry that service resides locally or
remotely. In other words, the middleware has to hide the network
distribution.

Security: Embedded systems’ resources are shared. Therefore, the
middleware has to provide mechanism for monitoring shared
resources, both in term of authentication and concurrency.

Heterogeneity support: There are many kinds of embedded
systems: mobile phones, sensors, music players, cars, Personal
Digital Assistant (PDA). Some of them are java-based and accept
only IrDA connections. Others are running over Windows or
Linux and accept Bluetooth or Wifi connections. Therefore, the
middleware has to be concerned about the environment
heterogeneity, which involves hardware platforms, programming
languages and operating systems.

Adaptability: Two factors motivate the need of adaptability:
changes in environmental conditions and users requirements. The
middleware should take into account those constraints and be able
to change its behavior accordingly.

Configuration: The middleware should accept dynamic
configuration and reconfiguration.

Evolutions Support: The environment of NES is constantly
changing. Indeed, the user’s needs change over time and
technologies evolve. Thus, the middleware has to provide a way
to upgrade or add new functionalities.

Modularity: The middleware should be modular enough to
support to tailor it.

Scalability: As already mentioned, embedded systems are
omnipresent and their proliferation is still going on. Therefore, the
middleware has to scale according to the number of nodes or
service.

2.2 Use cases

System

Compose

Configure

Publish

Subscribe

SysAdmin

EmbeddedThing

Join

Exit

Propose

Upgrade

Renew

Grant

User

Monitor

Composite
LeafEvict

Hold

System Controller

Observe

Notify

Lease

Sign

Figure 1. The middleware use cases diagram

2.2.1 Actors
EmbeddedThing is used as an abstraction of any embedded
system. It can both fire and react to events and it can receive and
send messages. It proposes its services to the other actors. In
addition, it can connect and disconnect from the network (join and
exit).

Composite is an extension of the EmbeddedThing actor.
Therefore, it inherits the behavior of EmbeddedThing. It regroups
several embedded systems. It accepts composition operations such
as remove and add children and it is responsible for managing and
providing resource references to its children.

Leaf is an extension of the EmbeddedThing actor. It inherits thus
the behavior of EmbeddedThing. It is an abstraction of only one
embedded system and is responsible for resource references
inquiring.

User represents any user interested in the services provided by the
middleware or any applications built over it. He initiates actions
and waits for results. He can subscribe to events that may occur.

SysAdmin represents the application designer. He configures,
composes and upgrades the application. He has to propose the
implementation code corresponding to actions.

Controller is in charge of monitoring that the system is correctly
performing.

2.2.2 Cases addressing functional requirements

Table 1. Use cases and functional requirements

Use case Requirement

Compose Composition support

Lease

Evict

Hold

Renew

Small footprint

Observer/Notify Events notification

Publish/Subscribe Asynchronous
communication

Join/Exit Ad-hoc discovery

Monitor Reliability

Compose provides to the SysAdmin actor all operations related to
the way of regrouping embedded systems in order to compose
hierarchical views, such as tree, that facilitating the traverse and
the upgrade of the embedded systems.

Lease provides methods to create and manage resources by using
leases. Since resources in embedded systems are limited, this use
case provides to Composite all operations (create, delete, set
duration, etc.) needed for managing its resources by using time-
based leases.

Evict manages the lifecycle of a resource. It implements
mechanisms to control resources usage. In addition, it allows
freeing and recycling used resources.

Hold describes a way to acquire resources and leases. This use
case symbolizes how an EmbeddedThing needs to use resources
of another EmbeddedThing, obtains a reference of this resource
and a time to live of the reference.

Renew allows renewing leases according to strategies, e.g. a time-
based strategy. When an EmbeddedThing obtained a resource
reference and if it wants to keep it, it has to renew this reference.

Observe and Notify allow to an EmbeddedThing: the observer, to
register with another EmbeddedThing: the observable. The
observer is notified when the observable’s state is changed.

Publish and Subscribe allow to an EmbeddedThing to subscribe
with filters to a publisher EmbeddedThing. The subscriber
EmbeddedThing is notified according to its filters.

Join and Exit use cases address the mobility requirement
introduced by wireless devices. It allows detection of arrival and
departure of devices.

Monitor describes how to provide a minimal mechanism to ensure
minimal reliability.

2.2.3 Cases addressing non-functional requirements

Table 2. Use cases and non-functional requirements

Use case Requirement

Grant

Sign

Security

Configure Adaptability

Upgrade/Propose Evolutions support

Configure Configuration

Grant implements the security mechanisms such as
authentication, authorization and accounting in order to control
access to the EmbeddedThing.

Sign implements authentication mechanism to access to restricted
EmbeddedThing.

Configure provides ability to configure and reconfigure
dynamically the middleware according to different topics (type of
the system, set of services, lease duration…).

Upgrade and Propose allow SysAdmin to modify or add new
services.

2.3 Case study overview
JavaCard is a credit card-sized plastic card with an integrated
micro controller chip inside. It is capable both to store
information and run Java programs within the JavaCard Runtime
Environment (JCRE) [16 chapter 15] it contains. Thereby, it is a
perfect specimen of an embedded system. However, JavaCard
suffers from it is isolated from the network. Nevertheless, when it
is combined with an additional network-based device: called Card
Acceptance Device (CAD), it can turn then into a node like others
within the network. Although it is severely constrained by
memory limitations, this does not prevent us to upload cardlets
inside it and invoke them as services from the web.

At CNAM Paris, there are several JavaCards widespread among
the different buildings. Most of them are embedded within
iButton™ or TINI cards. In addition, there are some students
possessing their own JavaCards.

It is possible using our middleware to group all these JavaCards to
build new collaborative applications to provide useful services
(such as authentication, courses planning, exams results, labs
solutions, etc.) for both the students and the teachers.

By now, we have concretely used the middleware to offer to
students a Web-Based JavaCard Development Platform
(WBJDP), helping them getting more practice with this
technology. The picture below depicts the architecture of the
WBJDP.

Figure 2. The WBJDP Architecture

The JavaCard contains several cardlets and it is plugged in a
CAD. The CAD runs a Brazil [53] web server and is reachable via
the web for other students

3. Patterns to build the middleware
According to [18], design patterns and middleware complement
each other. They describe a generalized solution to a commonly
occurring problem [8]. The patterns that we present here, address
the architectural concerns and the requirements outlined in the
previous section. In the following sections, we describe first the
patterns we have selected for our middleware and how we
concretely applied them (subsections 3.1 to 3.7). Next, we bring
your attention on the relations between the patterns and the
underlying pattern language (subsection 3.8).

3.1 Architecture
We deal first with the architectural patterns since they have
governed the whole middleware design [2 p26, 8 142]. Those
patterns deal with the organization of the system’s elements into
subsystems and components. They also specify the
responsibilities of each element and the rules defining their
relationship. Both the Layers and the Microkernel patterns fall
into this category. The first one helps to structure systems into
groups of subtasks. The second one is considered as a
specialization of the Layers pattern.

3.1.1 Layers Pattern
When we are facing a large or complex system, we intuitively try
to decompose it progressively into smaller and more manageable
entities. The Layers pattern described in [2 p31, 8 p142] is
suitable for such decomposition. It allows to structure systems, so
that they can be decomposed into groups of subtasks in which
each subgroup is at a particular level of abstraction. There are
three ways to implement this pattern.

� Closed layered, one layer can only invoke its own
services or those provided by the next layer down.

� Open layered, one layer can invoke its own services or
those provided by any layer below it.

� Layering through Inheritance, lower layers are
implemented as base classes from which higher layers
inherit.

We applied this pattern to decompose the middleware architecture
onto two layers (cf. figure 3): the lowest layer is dedicated to the
core functionalities of the middleware while the higher is
concerned with user application. Doing so, we isolated the core
services such as resource management from the application’s
services.

Figure 3. The middleware multi-layered architecture

3.1.2 Microkernel Pattern
The Microkernel pattern [2, 8] is considered as a specialized layer
among the layers of the Layers pattern. In order to build an

Microkernel Layer

Application Layer

adaptable system, it allows defining minimal core services of a
system that can be extended at build-time with a variety of
additional services.

First, it allows decomposing a whole system onto three
subsystems:

� The Microkernel subsystem, which provides the minimum
core set of services such as communication facilities and
resource management,

� The Internal Services subsystem, which comprises the core
functionalities having incidences both on the complexity and
the memory footprint of the Microkernel,

� The External Services subsystem, which provides optional
services, bound to the Microkernel.

Next, it surrounds the whole system with an API shared by the
three subsystems, which is accessible from the outside scope of
the system.

We have implemented the main-core layer according to
Microkernel pattern. Therefore, it was possible to start the system
only with a minimal core required elements such as the web
server and service for the resource management. Other services
are invoked just in time according to occurring events or
incoming requests.

3.2 Topology management

3.2.1 Composite
By using Composite [1], one can recursively create with
composites - i.e. containers - and leaves either complex or
hierarchical structures like trees. From the user’s point of view,
this pattern provides a unique interface. So, the user can address
in the same way leaves and containers.

For our middleware, we applied Composite in order to organize
elements hierarchically. The following picture shows a typical
composition of a Networked Embedded Systems (NES).

Netmaster

TINI Card

IButton

IButton

Cardlets

Sensor

Figure 4. Overview of NES

The Netmaster [47] is hosting the IButton JavaCard containing
several cardlets. The TINI card [48], in which we have plugged a
sensor, is added as child to the Netmaster.

Figure 5. NES composition
The logical tree corresponding to this composition is showed
above. Colored box represents a composite: the Netmaster, the
TINI card and the IButton. While blank box represents leaves:
cardlets and sensors.

3.2.2 Visitor
The Visitor [1, 7] is related to the Composite. Suppose, on one
hand, you have an operation applicable both on leaves and on
containers objects of the structure. On the other hand, suppose
also that the implementation of this operation depends on the type
of the object, i.e. composite or leaf. Applying the Visitor pattern,
i.e. implement the operation in a separate subclass, it allows you
to keep the structure loosely coupled with the operation.
Furthermore, as this pattern is aware about the underlying
Composite structure, you can easily adapt the operation
accordingly [20].

All operations that imply the propagation through the topology
structure (devices grouping, updating…) are implemented as
concrete visitors.

3.3 Resource management

3.3.1 Leasing
It is commonly admitted that managing resources in distributed
systems is more complicated than in the centralized systems. In
deed, errors may be occurred for different reasons in distributed
systems: resource corruption, network congestion or failure,
remote host crashing, etc. For this purpose, the Leasing [4] allows
managing resources by using time-based leases.

That occurs as follows:

� Step 1: a lease is associated with a resource as it is
acquired.

� Step 2: if the lease is never renewed, the resource is
automatically released when the time-lease expires.

When an embedded system is added as child to a composite
children table (c.f. figure 4: the TINI card is added to the
Netmaster), the composite creates a time-based lease for that child
and sends back to the child the duration of the lease. If the child
never renews the lease before its expiration, the composite delete
the child from its children table.

Netmaster

IButton

Cardlet

Cardlet

Tini Card

IButton

Sensor

3.3.2 Evictor
The resource management is a key concern in embedded systems
[25]. Therefore, in order to cope with that, one can use the Evictor
pattern as described in [4]. Indeed, this pattern focuses on how
and when resources must be released. It allows you to apply
different strategies to determine automatically and optimally,
which resources should be released and when they should be
released.
In order to optimize system resources, this pattern is applied to
evict leases that have never been renewed and those that have
been the least recently used.

3.4 Reliability

3.4.1 Heartbeat
Consider a system composed by two subsystems: a subsystem A
and a subsystem B. Actually; Heartbeat [6 p209] is useful when
A is performing an operation on behalf B or when it is used by B
for providing reliability. Concretely, the subsystem A must
periodically send signals to B in order to indicate that it is still
alive.

Critic nodes in NES have to send “still-alive” notifications to
nodes monitoring them. For example, we configured a node
hosting a sensor to send periodically you a message on your
cellular phone.

3.4.2 Watchdog
Watchdog [30, 8] is closely related to the Heartbeat pattern. It is
intended to control that the whole system is processing as
required. Consider once again the system we discussed above,
where B is using A in order to provide reliability. In this case,
Watchdog is commonly implemented in B and it monitors that
“still-alive” messages, coming from A, are received at the right
time: neither too quickly nor too slowly. Otherwise, it moves the
part-whole system into a fail-safe state.

In NES, some nodes such as those hosting sensors are critic.
Thereby, to provide the reliability, it is required for those systems
to be checked periodically. We applied the Watchdog for this
purpose.

3.5 Events notification

3.5.1 Observer
The intent of Observer [1, 7] is to keep a set of objects, i.e. the
observers, up to date when the state of an object they depend on,
i.e. the subject, has changed. In other words, this pattern
implements a one-to-many dependency between the subject and
the observers. Concretely, it allows you to attach anonymously a
set of observers to a subject. Then, when the state of the subject
changes it automatically invokes the callback update method of
each observer.

For instance, we wanted to log any modification of a JavaCard in
a HSQLDB [52] database. In this case, the database is registered
as an observer with the Netmaster and the TINI card. Thus, every
time their state is updated, a notification is sent to the database.

3.5.2 Publish Subscribe
Publish Subscribe (Pub/Sub) is a special case of the Observer. It
is applicable when there are several distributed entities, which

should communicate with each other and remain loosely coupled.
It exposes four primitives: pub, sub, unsub and notify [36]. One
can implement the Pub/Sub according to two different strategies:
topic-based and content-based. The first strategy is fairly the same
as newsgroups strategy. The system notifies the subscribers
whenever a publication related topic occurs. The second strategy
gives to the subscribers the ability to specify predicates over what
they exactly want to be notified about [14].

We applied this pattern in order to provide asynchronous
communication. Indeed, some notifications are important they
must thus be delivered even if the receiver is not present.
Concretely, these notifications are queued in a Distributed
Hashtable (DHT) replicated in some identified stable nodes.

3.6 Network communication

3.6.1 Proxy
The intent of the Proxy [5 p79, 4 p199] is to provide a surrogate
object to a real object. Actually, the surrogate receives client
method calls and invokes the same method on the real object. The
surrogate object and the real object share the same interface or
super class. Hence, the client is not aware that it is calling Proxy’s
methods rather than the methods of real object.

We have applied this pattern for remote invocation. More
precisely, we created in the Netmaster and TINI nodes (from the
picture 4) a proxy to the HSQLDB database. When these nodes
receive a request, they automatically notify the database using
this proxy.

3.6.2 Strategy
Strategy [1] let us to define a family of algorithms, encapsulate
each one and make them interchangeable. In fact, it allows the
algorithm to be unaware about the client using it.

In NES, there are several protocols to connect peers: Ethernet,
Wifi, Bluetooth, IrDA, and Serial… Thereby, we applied Strategy
in order to let applications to use one protocol or another
according to the device network interfaces.

3.7 System and Services configuration

3.7.1 Configurator
In order to achieve more flexibility, the Services Configuration or
Configurator [35, 3 p75] provides a way for decoupling the
behavior of services from the moment when their
implementations are configured into applications. It allows
services to evolve independently from configuration issues such
as concurrency model or location. In addition, it allows linking
and unlinking services implementation to an application at
runtime without having to modify, recompile, or statically relink
the application. Besides, it centralizes the administration of the
services that it configures, allowing therefore automatic
initialization and termination of services.

This pattern is used to define the eviction strategy and the list of
services and interceptors per embedded system. In addition, it is
applied to set the nature of each system (i.e. composite or leaf)
and other metadata such as listening port.

Hereafter, an example of a TINI card’s configuration file is
presented.

Figure 6. The TINI card configuration file

One can see that the TINI card is defined as a composite node and it can have up to five children. In addition, it has a set of interceptors
and a set of services.

3.7.2 Interceptor
Interceptor as described in [3 p109, 37] is suitable when
designing frameworks or middleware systems. Indeed, the intent
of this pattern is to allow services to be added dynamically and
triggered only when certain events occur. Therefore,
applications using the frameworks or middleware can add
services addressing their own functional or non-functional
requirements without changing the system implementation.
Besides, services provided by the system can be modified
without altering its core architecture.

We applied this pattern in order to provide adaptability.

3.7.3 Chain of Responsibility
The Chain of Responsibility (CoR) [1, 7] pattern aims at
decoupling the request sender from the receiver by interposing a
chain of object handlers between them. Each handler in the
chain may either handle the request; pass it on to the next
handler or both. This pattern allows greater flexibility since it let
handlers decide what to do with the request and users to
dynamically modify or add handlers in the chain.

This pattern is applied in order to compose a chain of
interceptors.

3.8 Putting all together

3.8.1 No pattern is an island
The picture below shows an overview of the patterns we applied to build the middleware. The dashed arrows are used to represent the
connections between the patterns.

Layers

Microkernel

Configurator

Watchdog

Interceptor

Visitor

Composite

Pub/Sub

Strategy

Proxy

Observer

CoR

Leasing

Evictor

Core

Lifecycle

Operation

Heartbeat

Monitoring

Interceptors List

Chain of Interceptors

Topology

Architecture

Network

Relliability

Memory

Configuration

Notification

Figure 7. Patterns relationship

Layers uses Microkernel to design a multi-layered architecture
of the middleware in order to separate core concerns (protocol
implementation, or resource management) from user’s concerns
(how to configure applications or select the services needed).

Microkernel is a specialized layer from Layers. It uses:
Watchdog for ensuring reliability, Leasing for memory
management, Observer for synchronous notifications, Pub/Sub
for asynchronous communication, Composite for topology
management and Configurator for system and services
configuration.

Watchdog and Heartbeat are both used for implementing
reliability. Watchdog is a daemon running on System Controller
monitoring that “still-alive” notifications are received at the
right time. Heartbeat uses Proxy to send “still-alive” messages
to the Watchdog.

Leasing and Evictor are applied in order to optimize memory
usage. Leasing is used in order to manage memory resource with
time-based leases; it uses Proxy when a resource holder has to
renew leases with a remote resource provider. Evictor manages
the lifecycle of the memory resource.

Observer and Pub/Sub are respectively applied for synchronous
and asynchronous notifications. Both of them use Proxy for
remote communications.

Composite is applied with Visitor in order to achieve a loosely
coupling between the topology structure and operations that
must be performed on it. Composite uses Observer to notify its
state change and to observe changes that may occur within the
network. In addition, it uses Pub/Sub for publishing and
subscribing to events; and Proxy to have surrogates to remote
devices.

Proxy and Strategy are applied to deal with network distribution.
Proxy takes a place as a surrogate of remote devices. Strategy
subclasses provide protocol communication implementation to
Proxy and they implement eviction strategies, which are useful
to the Evictor.

Configurator, Interceptor and CoR are applied to implement the
adaptability. Configurator provides mechanisms to access and
modify the system configuration. CoR uses Interceptor and
Configurator to define the interceptors list in order to compose a
chain of interceptors.

3.8.2 Towards a Pattern Language for embedded systems middleware

CompositeThing

EmbeddedThing

LeafThing

ResourceUser

ResourceProvider

Lease

renew

create

ResourceEvictor

EvictionStrategy

Visitable

Visitor

Interceptor

+next

Visite

Error

accept

ThingProxy

RemoteThing

Composition

Observer
Subject Component

compose

Configuration

Application Layer

ObservationEvent

Publisher Subscriber

Heartbeat

attachment

INTERNAL SERVICES

Protocol

HTTPProtocolEventChanel

AbstractEvent Filter

subscribepublish delegates

Configurable

configure

Watchdog

EXTERNAL SERVICES

LoggingService

SecurityService

DiscoveryService

Monitor

change

Composite Leasing Evictor Visitor Pub/sub Observer Proxy

Heartbeat Watchdog

Startegy

Interceptor/CoR

ThingVisitor

update

Dispatcher

Server

1..*

Discovery

apply

Resource

use

evicts

MICROKERNEL

Microkernel Layer

visit

Service
ResourceMgmt

Logging

Security

ServiceInvocator

ServiceLocator

Configurator

ServiceRepositery
invoke

Figure 8. Towards a pattern language for embedded systems middleware

The previous picture shows which patterns we applied and how
we arranged them among the middleware layers. The
MICROKERNEL, within the microkernel layer, is the core of the
middleware. It allows composing (Composite) NES topology
views, resource management (Leasing and Evictor) and
operations performing (Visitor). It uses the INTERNAL
SERVICES subsystem for remote connection (Proxy) and

protocol adapter (Strategy), as well as for asynchronous events
subscribing and publishing (Pub/Sub). The EXTERNAL
SERVICES provides additional services such as monitoring
(Watchdog and Heartbeat). One can observe that the
CompositeThing class can act as resource provider and resource
evictor. This “schizophrenia” can also be observed with the
EmbeddedThing class that can at the same time act as a subject

and an observer (Observer) or publisher and subscriber
(Pub/Sub). In addition, the EmbeddedThing class, which is in fact
an abstraction of any embedded system, may change its
configuration according to the context (Configurator). At the
application layer, one can notice that both the Interceptor and
CoR are applied for user’s requests or events handling.

4. CASE STUDY IMPLEMENTATION

4.1 A dedicated Pattern Language
Not all functionalities of the middleware are needed to the
implement the WBJDP (Web-Based JavaCard Development
Platform) case study. Actually, according to the requirements2 of
this application, only the memory management, the topology
composition, the synchronous events notifications and the
configurations support functionalities are required.

The next picture shows the dedicated Pattern Language for
WBJDP.

Layers

Microkernel

Configurator

Interceptor

Visitor

Composite

Strategy

Proxy

Observer

CoR

Leasing

Evictor

Core

Lifecycle

Operation

Interceptors List

Chain of Interceptors

Topology

Architecture

Network

Memory

Configuration

Notification

Figure 9. WBJDP dedicated Pattern Language

4.2 The Pattern Language application
Hereafter, an excerpt of the network topology tree corresponding
to application of Composite.

Figure 10. A tree of JavaCards (from [11])

2 The requirements of the case study are very based on the

middleware requirements. That is why we chose not detail them
here.

The picture above shows how, behind each node, we attached
indifferently cards or other nodes. We assume that cards can
contain more than one cardlet. Each cardlet is stored in binary
format.

The following picture shows a logs view that illustrating a server-
side application of Observer.

Figure 11. Journal’s view (from [11])

The application logs in a HSQLDB database each event
corresponding to the JavaCards plugging-in or plugging-off. It
also logs all events related to the modification of a JavaCard.
From above, you can see a generated view from the journal table.

The next figure is an applet screenshot showing the client-side
application of Observer.

Figure 12. An applet as an observer (from [11])

When the applet starts, it registers itself with a node hosting a
JavaCard as an observer. When the state of the JavaCard
changes, it calls back the notify method of the applet.

The picture below shows the events propagation tree
corresponding to the application of Visitor.

Figure 13. Request forward-propagation (from [11])

When a node receives stimuli, it propagates them forward to all
its children. In the picture, above, you can see such propagation.

Hereafter, the table shows the non-volatile memory footprint of
the case study.

Table 3. WBJDP memory footprint

Module Size (kb)

Brazil Server tailored for TINI (implementing:
Configurator, CoR)

43

Interceptor 4.471

Composite & Observer 5.994

Proxy 2.663

Leasing 3.727

Evictor 1.448

HTTP command 4.494

The final size of the middleware compressed jar file is about 68
kilobytes:

The middleware jar file’s size is about 24 kilobytes.

The configuration file is 1 kilobyte.

Brazil-TINI Server library is 43 kilobytes.

5. Conclusion and outlook
5.1 Synopsis
Embedded systems technologies are an ever-changing field.
Therefore, the challenge is to find a solution to interconnect
them. That solution has to take into account their constraints
(limited memory) and their constant evolution.

We stated in this paper that the middleware technologies are the
suitable solution to achieve that. Also, we agreed that design
patterns are a good approach for the construction of the
middleware since they represent proven techniques. Furthermore,
they enable loosely coupling and object oriented structure.

However, despite patterns provide solutions to almost all
software design problems; they do not yet deal with specific
embedded systems topic such ad-hoc networking. Yet, that did
not prevent us to apply them to design JavaCards’ middleware
with a memory footprint less than 70 kilobytes in ROM and to
establish groundings toward NES pattern language.

5.2 Work in progress
Security and ad-hoc networking represent two important topics to
focus on. Even there are not yet patterns to settle the matter of ad-
hoc networking; [9] describes a set of patterns to solve security
issues. We are still working on how to apply those security
patterns.

Also, basing on previous work [29, 41], we are investigating on
how AOP (Aspect Oriented Programming) can help us to improve
our middleware and reduce the overall memory footprint and best
address the modularity. As for autonomic computing, we are
waiting results from another project in progress in order to
integrate such technologies.

Yet, we have already identified other patterns like Abstract
Factory, Lazy loading, and Coordinator to implement in the near
future.

6. ACKNOWLEDGMENTS
We would like to express our great gratitude to our PLoP 2006
shepherd Uwe Zdun. In addition, we thank all persons who have
reviewed this document to help to improve either the correctness
of the English language or technical aspects.

7. REFERENCES
[1] E. Gamma, R. Helm, R. Johnson, J. Vlissides: Design

patterns – Elements of Reusable Object-Oriented Software,
Addison-Wesley Professional, 1995

[2] F. Buschmann, R. Meunier, R. Rohnert, P. Sommerlad, M.
Stal: Pattern-Oriented Software Architecture – A System of
Patterns, John Wiley & Sons, 1996

[3] D.C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann:
Pattern oriented software Architecture – Patterns for
Concurrent and Networked Objects, John Wiley & Sons,
2000

[4] P. Jain, M. Kircher: Pattern oriented software Architecture –
Patterns for Resource Management, John Wiley & Sons,
2004

[5] M. Grand: Patterns in Java, John Wiley & Sons, 1998

[6] M. Grand: Java Enterprise Design Pattern, John Wiley &
Sons, 2001

[7] O. Maassen, S. Stelting: Applied JAVA Patterns, Prentice
Hall, 2001

[8] B. P. Douglass: Real-Time Design Patterns – Robust
Scalable Architecture for Real-Time Systems, Addison-
Wesley, 2003

[9] M. Schumacher, E. Fernandez-Buglioni, D. Hybertson, F.
Buschmann, P. Sommerlad: Security Patterns – Integrating
Security and Systems Engineering, John Wiley & Sons, 2005

[10] R. Zurawski: Embedded Systems Handbook, Taylor &
Francis, 2005

[11] N. Bonardelle : Motifs de Conception et Intergiciel pour
Systèmes embarqués, in Conférence Française sur les
Systèmes d’Exploitation (CFSE’05), Croisic, April 2005

[12] F. Eliassen, A. Andersen, G. S. Blair & co: Next Generation
Middleware – Requirements, Architecture, and Prototypes,
60, The Seventh IEEE Workshop on Future Trends of
Distributed Computing Systems, 1999

[13] G.S. Blair, G. Coulson, P. Robin, M. Papathomas, An
Architecture for Next Generation Middleware, Proc. IFIP
International Conference on Distributed Systems Platforms
and Open Distributed Processing (Middleware’98), Kluwer,
September 1998.

[14] P.Triantafillou, Ioannis Aekaterinidis: Content-based
publish-Subscribe over Structured P2P networks,In DEBS,
2004 http://www-
serl.cs.colorado.edu/~carzanig/debs04/debs04triantafillou.pd
f

[15] Microsoft: Patterns and practices – Publish/Subscribe
http://msdn.microsoft.com/library/default.asp?url=/library/en
-us/dnpag/html/despublishsubscribe.asp

[16] Q. H. Mahmoud: Middleware for Communications, John
Wiley & Sons, 2004

[17] C. Britton, P. Bye: IT Architectures and Middleware –
Second Edition, Addison-Wiley, 2004

[18] U. Zdun, M. Kircher, M. Volter: Remoting Patterns, IEEE
Internet Computing, vol. 08, no. 6, pp. 60-68, Nov/Dec,
2004

[19] J. Rees, P. Honeyman: Webcard: a Java Card web server,
(Proc. IFIP CARDIS 2000
http://www.citi.umich.edu/techreports/reports/citi-tr-99-3.pdf

[20] J-M. Douin, J-M. Gilliot: Collaboration patterns for
networked embedded servers, in ETFA, 2003
http://www-info.enst-bretagne.fr/publication/2003-06.pdf

[21] S. Vinoski: Chain of Responsibility, EEE Internet
Computing, vol. 6, no. 6, 2002, pp. 80–83
http://csdl.computer.org/dl/mags/ic/2002/06/w6080.pdf

[22] Sun Microsystems: Why Jini Now?, 1998
http://www.di.uniovi.es/~falvarez/whyjininow.pdf

[23] J. Barber: The Smart Card URL Programming Interface,
Proceedings of Gemplus Developer Conference (GDC’99),
Paris, France, 21-22 June 1999

[24] F. Fahrion: Embedded Ethernet Systems – Application tips
for 2004, TechOnLine, 2004
http://www.techonline.com/community/ed_resource/tech_pa
per/36916

[25] J-M. Douin, J-M. Gilliot: A Pattern Oriented Lightweight
Middleware for Smartcards, in CARDIS’04, 2004
http://www-info.enst-
bretagne.fr/publication/2004/ENSTBrINFORR2004.019.pdf

[26] ERCIM: Special Embedded Systems, News No 52, 2003
http://www.ercim.org/publication/Ercim_News/enw52/EN52
.pdfm

[27] TAO, http://www.theaceorb.com/

[28] D. Bakken: MicroQoSCORBA: A Configurable Middleware
Framework for small Embedded Systems that Support
Multiple Quality of Service Properties, Washington
University, 2005
http://www.comp.lancs.ac.uk/computing/research/mpg/reflec
tion/papers/MicroQoSCORBA-Lancaster-25April2005.ppt

[29] J. Hannemann and G. Kiczales: Design Pattern
Implementation in Java and AspectJ, in OOPSLA 2002
http://www.cs.ubc.ca/labs/spl/papers/2002/oopsla02-
patterns.pdf

[30] C. Webel, I. Fliege, A. Geraldy, R. Gotzhein: Developing
Reliable Systems with SDL Design Patterns and Design
Components, in ISSRE04 Workshop on Integrated-reliability
with Telecommunications and UML Languages, 2004
http://www.sdl-forum.org/issre04-
witul/papers/witul04_developing_reliable_systems.pdf

[31] G. Hohpe, B. Woolf: Enterprise Integration Patterns – JMS
Publish/Subscribe Example
http://www.enterpriseintegrationpatterns.com/ObserverJmsE
xample.html

[32] L. Aldred, Wil M.P. van der Aalst, M. Dumas, and A. H.M.
ter Hofstede: On the Notion of Coupling in Communication
Middleware, In Proceedings On the Move to Meaningful
Internet Systems - 7th International Symposium on
Distributed Objects and Applications (DOA), pages
pp. 1015-1033, 2005

[33] STARUML, http://www.staruml.com

[34] Wikipedia: http://en.wikipedia.org/wiki/Embedded_system

[35] P. Jain, D. C. Schmidt: Dynamically Configuring
Communication Services with the Service Configurator
Pattern, in Third USENIX Conference on Object-Oriented
Technologies (COOTS), 1997
http://www.cs.wustl.edu/~schmidt/PDF/O-Service-
Configurator.pdf

[36] L. Fiege1, F. C. Gärtner, O. Kasten, and A. Zeidler:
Supporting Mobility in Content-Based Publish/Subscribe
Middleware, Proceedings of the 8th ACM international
symposium on Modeling, analysis and simulation of wireless
and mobile systems, 2005
http://lpdwww.epfl.ch/upload/documents/publications/neg--
1241122820log_mobility_mw03.pdf

[37] P. Aschenbrenner, M. Förster: The POSA Interceptor
Pattern, in Conceptual Architecture Patterns Seminar, 2003
http://wendtstud1.hpi.uni-
potsdam.de/SCAP/presentations/ThePOSAInterceptorPattern
NEU.pdf

[38] F .A. Rosa, A. R. Silva: Component Configurer: A Design
Pattern for Component-Based Configuration, in Proceedings
of the 2nd European Conference on Pattern Languages of
Programming (EuroPLoP '97). Siemens Technical Report
120/SW1/FB. Munich, Germany: Siemens, 1997
http://francisco.assisrosa.com/pubs/europlop97-1.ps

[39] S.Baehni1, P. Th. Eugster, R. Guerraoui : OS Support for
P2P Programming: a Case for TPS, in ICDCS 2002
(Vienna, Austria, 2002).

[40] E. A. Lee: What’s Ahead for Embedded Software?, IEEE
Computer Magazine, September 2000, pp. 18-26, 2000
http://www.cs.utah.edu/classes/cs6935/papers/lee.pdf

[41] C. Zhang, H-A. Jacobsen, Refactoring Middleware with
Aspects, IEEE Transactions on Parallel and Distributed
Systems, vol. 14, no. 11, pp. 1058-1073, Nov., 2003.

[42] D. Harel, M. Politi: Modeling Reactive Systems with
Statecharts, Mcgraw-Hill, 1998

[43] M. Panahi, T. Harmon, R. Klefstad, Adaptive Techniques for
Minimizing Middleware Memory Footprint for Distributed,
Real-Time, Embedded Systems, Proceedings of the IEEE
18th Annual Workshop on Computer Communications. 18,
pp. 54-58. 10.1109/CCW.2003.1240790, 2003
http://repositories.cdlib.org/postprints/656

[44] M. Kircher, C. Schwanninger Enterprise meets Embedded,
Workshop - Reuse in constrained environments, OOPSLA
2003, Anaheim, USA, 2003 http://www.kircher-
schwanninger.de/michael/publications/KircherSchwanninger
.pdf

[45] R. Klefstad, M. Deshpande, C. O’Ryan , A. Corsaro, A. S
Krishna, S. Rao, K. Raman Real Time CORBA with ZEN,
University of California, 2002
http://doc.ece.uci.edu/publications/zen-performance-
2002.pdf

[46] J2ME Specifications http://jcp.org/en/home/index

[47] Elsist, the Netmaster manufacturer web site,
http://www.elsist.net/

[48] TINI web site, http://www.maxim-ic.com

[49] A. Corsaro, D-C. Schmidt, R. Klefstad, C. O’Ryan,

Virtual component – A design Pattern for Memory-Constrained
Embedded Applications, 2002

http://www.cs.wustl.edu/~schmidt/PDF/virtual-component.pdf

[50] C.Mascolo, S.Hailes, L.Lymberopoulos, and all,

SIXTH FRAMEWORK PROGRAMME PRIORITY 2
“Information Society Technologies” – Survey of Middleware for
Networked Embedded Systems, 2005

http://www.ist-runes.org/docs/deliverables/D5_01.pdf

[51] D-C. Schmidt, C. Cleeland, Applying a pattern language to
Develop Extensible ORB Middleware,2000

[52] http://www.cs.wustl.edu/~schmidt/PDF/ORB-patterns.pdf

 http://www.hsqldb.org

[53] http://www.experimentalstuff.com/Technologies/Brazil/inde
x.html

[54] CORBA, http://www.corba.org/

