APPLYING PATTERNS TO BUILD
A LIGHTWEIGHT MIDDLEWARE
FOR EMBEDDED SYSTEMS

D. BELLEBIA
CEDRIC-CNAM
292, rue Saint-Martin
75141 Paris cedex 03
FRANCE

Facilité Informatique
62, bis rue des peupliers
92100 Boulogne Billancourt
France

djbel.consulting@free.fr

ABSTRACT

Today, patterns are used in several domains (olisé&d
applications, security, software requirements, itgcture...). Our
purpose is double: first, to know if existing patie can be
applied in the particular domain of embedded system
middleware, second, to establish the grounding tdsva patterns
language for that domain.

In this paper, we describe how to design and baildjhtweight

middleware for embedded systems with well knowrtgoas such
as Composite, Proxy, Visitor, Observer, Publish&sube,

Leasing, Evictor or Configurator. The patterns veéested and
implemented allow keeping the memory footprint et Yet,

they were relevant to address the need of cretjpgjogy views
of Networked Embedded Systems (NES), to monitor &nd
manage them. As a result, the middleware is modfikxible,

extensible, and lightweight (< 128 kb) according tasgeted
embedded systems requirements.

In addition, this paper describes a concrete dasly sillustrating
how to select appropriate patterns to build a dedit middleware
in order to interconnect numerous small devices.

Categories and Subject Descriptors
D.3.3 [Programming Languages|: Language Contructs and
Features patterns, architecture, patterns sequences, java

General Terms
Design, Experimentation, Languages

Permission to make digital or hard copies of alpart of this work for

personal or classroom use is granted without feeiged that copies are
not made or distributed for profit or commercialvadtage and that
copies bear this notice and the full citation oa flist page. To copy
otherwise, to republish, to post on servers oredistribute to lists,

requires prior specific permission and/or a fee.

PLoP '06, October 21-23, 2006, Portland, OR, USA.
Copyright 2006 ACM 978-1-60558-151-4/06/10...$5.00.

J-M. DOUIN
CEDRIC-CNAM
292, rue Saint-Martin
75141 Paris cedex 03
FRANCE

douin@cnam.fr

Keywords

Patterns, Lightweight Middleware for Embedded Sysie
Requirements for Embedded Systems’ Middleware, thses,
Architecture, JavaCard

1. INTRODUCTION

Embedded systems are specific-purpose computerchwhre
completely encapsulated by the device they conffbky are
ubiquitous in our everyday life, in form of manyvites such as
cars, medical components, clothes, personal motideices,
sensors [26].

Advances in electronic and wireless communicati@ng. Wifi,
Bluetooth, Wireless USB...) enabled the advent ofwdeked
Embedded Systems (NES), i.e. systems comprised
interconnected devices [50].

Besides, there is now a real trend to use middlewsshnologies
in order to interconnect NES. Indeed, middlewara distributed
software layer sitting above the network operatiygtem and
below the application layer [16]. It provides commabstractions
that can be reused across different applicatiotisinwea specific
domain. It supports tailoring in order to meet thquirements of
each application [10 p30-3]. In addition, it hidhe heterogeneity
of the underlying environment, it simplifies progmaing task,
and managing distributed applications. In other dspr
middleware is about integration and interoperabiliof
applications and services running on heterogeneousputing
and communication devices.

However, trying to develop a middleware for embetidgstems
introduces many challenges we must deal with. Tieen® stable
network infrastructure, the disconnections are pospune and it
is required that each device discovers each othemd-hoc
manner. Furthermore,
constrained by scarce resources such as low batésvymemory
and slow CPU [44, 50].

Since their introduction, a decade ago, patterowige proven
solutions for many software design problems. Yeytbnable to

of

embedded systems are severely

reduce the complexity and improve the flexibility software
products in particular connection management, ttatssfer, de-
multiplexing and concurrency control [51].

What motivated our work can be summarized in thpests:

first, to build embedded systems’ middleware withraquired

functionalities having non-volatile memory footgrlass than 128
kilobytes; second, how patterns can be applied uid bthat

middleware and lastly, to establish the bases WsvhIES pattern
language.

With Regard to previous works related to this topiwo*
middleware JINI and TAO are the most significantdese they
quietly present the required capabilities and ttdgsign was
driven by patterns.

JINI is a Java based middleware for building servicesnted

solutions. It provides ‘plug and play’ mechanisnd @upports ad-
hoc networking by allowing services to be spontasgoadded to
a network [4 p185].

TAO [27, 12] is a CORBA (Common Object Request Broker
Architecture) [54] compliant middleware built oveACE
(Adaptive Communication Environment). It implemergstire
CORBA functionalities and provides real-time QoSuélty of
Service).

However, both of them were do not fit our speciiima because
of their memory footprint was higher than 128 kiftds.

Our middleware is designed with patterns such asgosite,
Proxy, Visitor, Observer, Publish/Subscribe, LegsiBvictor or
Configurator, etc. It is lightweight (68 kb in ROMor
interconnecting JavaCards) and keeps the commolitigsiaof
patterns such as loose coupling and flexibility.

This paper is organized as follows: section 2 presehe
requirements, the use cases of the middleware miodexview of
a case study. Section 3, reviews design patterpkedpto build
this middleware. Section 4, summarizes achievedlteesSection
5, concludes this paper and suggests an outlofikue work.

2. EMBEDDED SYSTEMSMIDDLEWARE

In the following subsections, we give first the NEfddleware

requirements that we have selected basing on [4pteh 30, 12,
16 chapter 11 and 50]. Next, we present the usescdsrived

from these requirements. Finally, we introduce secstudy as a
particular application of our middleware.

2.1 Requirements

2.1.1 Functional requirements

Composition support:There are many breeds of embedded
systems and they are ubiquitous. Therefore, thedlicare is
required to have capabilities that facilitate thrgamization and
the grouping of devices as form of trees.

Event notifications:Many of embedded systems are interacting
continuously with their environment through senscaad
actuators. They must react accordingly when theuirenment
changes. The middleware has to provide mechanisnmtify
embedded system when an event occurs within thiecemvent.

! The reader can refer to [50] for a complete spra
middleware for networked embedded systems.

Reduced memory footprinthe middleware should be deployed
on small devices such as mobile phones. Howevesgtldevices
are very constrained by limited resources suchnaalsnemory
footprint. The middleware has to take into accotngse scarce
resources and its memory footprint must not excded
kilobytes.

Reliability: In NES, it is not rare that one device relies nother
to perform seamlessly its task. However, more aratenof
embedded systems are connected through a wiretesgection.
Therefore, the middleware must ensure at least minmal
reliability because network connections may be énoklue to
several reasons.

Asynchronous communicationfhe middleware supports the
synchronous communication model. That it is. Howeitemust
also support the asynchronous communication paradigorder
to allow messages to be exchanged whether or bt ex@adpoint
is operating at the same time.

Ad-hoc discovery: The middleware should implement a
mechanism to allow devices to discover each othdrdiscover
services and available protocols.

2.1.2 Non-Functional requirements

Location independencéiVhen an embedded system asks for a
service, it should not worry that service residesally or
remotely. In other words, the middleware has teHhtte network
distribution.

Security:Embeddedystems’resources are shared. Therefore, the
middleware has to provide mechanism for monitorsiwared
resources, both in term of authentication and coeoay.

Heterogeneity supportThere are many kinds of embedded
systems: mobile phones, sensors, music players, €arsonal
Digital Assistant (PDA). Some of them are java-lobaad accept
only IrDA connections. Others are running over \wsg or
Linux and accept Bluetooth or Wifi connections. fiéfere, the
middleware has to be concerned about the environmen
heterogeneity, which involves hardware platformsgpamming
languages and operating systems.

Adaptability: Two factors motivate the need of adaptability:
changes in environmental conditions and users reqpgints. The
middleware should take into account those congsa@nd be able
to change its behavior accordingly.

Configuration The middleware
configuration and reconfiguration.

should accept dynamic

Evolutions Support:The environment of NES is constantly
changing. Indeed, the user's needs change over tme
technologies evolve. Thus, the middleware has twige a way
to upgrade or add new functionalities.

Modularity: The middleware should be modular enough to
support to tailor it.

Scalability: As already mentioned, embedded systems are
omnipresent and their proliferation is still goiog. Therefore, the
middleware has to scale according to the numbenacafes or
service.

2.2 Usecases

A

System Controller

System

2.2.2 Cases addressing functional requirements

Table 1. Use cases and functional requirements

i

Observe

\
|
U0

/

W

X

EmbeddedThing

R
I

Leaf

V17

Propose

>4Oo——">
%‘

SysAdmin

vl
0
[

Upgrade

?

Composite

Figure 1.
2.2.1 Actors

The middleware use cases diagram

Use case Requirement
Compose Composition support
Lease Small footprint
Evict
Hold
Renew
Observer/Notify Events notification

Publish/Subscribe Asynchronous

communication

Join/Exit Ad-hoc discovery

Monitor Reliability

Composeprovides to theSysAdmiractor all operations related to
the way of regrouping embedded systems in orderotapose
hierarchical views, such as tree, that facilitatihg traverse and
the upgrade of the embedded systems.

Leaseprovides methods to create and manage resourcesify
leases. Since resources in embedded systems dex|ithis use
case provides tdCompositeall operations (create, delete, set
duration, etc.) needed for managing its resourgessing time-
based leases.

Evict manages the lifecycle of a resource. It implements
mechanisms to control resources usage. In addiftoallows

EmbeddedThingis used as an abstraction of any embedded freeing and recycling used resources.

system. It can both fire and react to events awdrtreceive and
send messages. It proposes its services to the atiters. In

addition, it can connect and disconnect from thigvaek (join and

exit).

Composite is an extension of theEmbeddedThingactor.
Therefore, it inherits the behavior BfbeddedThindt regroups
several embedded systems. It accepts compositieratgns such
asremoveandadd childrenand it is responsible for managing and
providing resource references to its children.

Leafis an extension of the EmbeddedThing actor. leiite thus
the behavior of EmbeddedThing. It is an abstractibonly one
embedded system and is responsible for resourcererefes
inquiring.

Userrepresents any user interested in the servicesdawby the
middleware or any applications built over it. Hhitiates actions
and waits for results. He can subscribe to eviattsmay occur.

SysAdminrepresents the application designer. He configures
composes and upgrades the application. He hasojoge the
implementation code corresponding to actions.

Controller is in charge of monitoring that the system is ectly
performing.

Hold describes a way to acquire resources and leabés.use
case symbolizes how @&mbeddedThingieeds to use resources
of anotherEmbeddedThingobtains a reference of this resource
and a time to live of the reference.

Renewallows renewing leases according to strategigs,aetime-
based strategy. When d@@mbeddedThingobtained a resource
reference and if it wants to keep it, it has taeserthis reference.

Observe and Notifgllow to anEmbeddedThingthe observer, to
register with anotherEmbeddedThing:the observable. The
observer is notified when the observable’s stath#nged.

Publish and Subscribellow to anEmbeddedThingo subscribe
with filters to a publisherEmbeddedThing The subscriber
EmbeddedThing notified according to its filters.

Join and Exit use cases address the mobility requirement
introduced by wireless devices. It allows detecdrarrival and
departure of devices.

Monitor describes how to provide a minimal mechanism taens
minimal reliability.

2.2.3 Cases addressing non-functional requirements

Table 2. Use cases and non-functional requirements

Usecase Requirement
Grant Security
Sign
Configure Adaptability
Upgrade/Propose Evolutions support
Configure Configuration
Grant implements the security mechanisms such as

authentication, authorization and accounting ineortb control
access to thEmbeddedThing

Signimplements authentication mechanism to accessstoicted
EmbeddedThing

Configure provides ability to configure and reconfigure
dynamically the middleware according to differemits (type of
the system, set of services, lease duration...).

Upgrade and Proposallow SysAdminto modify or add new
services.

2.3 Casestudy overview

JavaCard is a credit card-sized plastic card withirdegrated
micro controller chip inside. It is capable both ®tore
information and run Java programs within the Javd@®untime
Environment (JCRE) [16 chapter 15] it contains. rEhg, it is a
perfect specimen of an embedded system. HowevegCaad
suffers from it is isolated from the network. Nethetess, when it
is combined with an additional network-based deviedled Card
Acceptance Device (CAD), it can turn then into @etike others
within the network. Although it is severely consated by
memory limitations, this does not prevent us tooadl cardlets
inside it and invoke them as services from the web.

At CNAM Paris, there are several JavaCards widespemong
the different buildings. Most of them are embeddeithin

iButton™ or TINI cards. In addition, there are somstedents
possessing their own JavaCards.

It is possible using our middleware to group afisé JavaCards to
build new collaborative applications to provide fuseservices
(such as authentication, courses planning, exarssltse labs
solutions, etc.) for both the students and thehiesac

By now, we have concretely used the middleware fter do
students a Web-Based JavaCard Development
(WBJDP), helping them getting more practice withisth
technology. The picture below depicts the architextof the
WBJDP.

0=

[]
-

Figure 2. TheWBJDP Architecture

The JavaCard contains several cardlets and itugged in a
CAD. The CAD runs a Brazil [53] web server anddachable via
the web for other students

3. Patternsto build the middleware

According to [18], design patterns and middlewapenplement
each other. They describe a generalized soluticm ¢commonly
occurring problem [8]. The patterns that we presemne, address
the architectural concerns and the requirementénedtin the
previous section. In the following sections, wealib® first the
patterns we have selected for our middleware and ke
concretely applied them (subsections 3.1 to 3.8xtNwe bring
your attention on the relations between the padteand the
underlying pattern language (subsection 3.8).

3.1 Architecture

We deal first with the architectural patterns sirtbey have
governed the whole middleware design [2 p26, 8 .14Pjpse
patterns deal with the organization of the systeatésnents into
subsystems and components. They also specify
responsibilities of each element and the rulesndefi their
relationship. Both thd.ayers and theMicrokernel patterns fall
into this category. The first one helps to struetsystems into
groups of subtasks. The second one is considereda as
specialization of theayerspattern.

the

3.1.1 Layers Pattern
When we are facing a large or complex system, wetively try
to decompose it progressively into smaller and nmoamageable
entities. Thelayers pattern described in [2 p31, 8 p142] is
suitable for such decomposition. It allows to stuoe systems, so
that they can be decomposed into groups of subtaskgich
each subgroup is at a particular level of abswactiThere are
three ways to implement this pattern.
= Closed layered one layer can only invoke its own
services or those provided by the next layer down.
= Open layeredpne layer can invoke its own services or
those provided by any layer below it.
= Layering through Inheritance, lower layers are
implemented as base classes from which higher dayer
inherit.
We applied this pattern to decompose the middlewerkitecture
onto two layers (cf. figure 3): the lowest layerdisdicated to the
core functionalities of the middleware while thegler is

Platformconcerned with user application. Doing so, we isulathe core

services such as resource management from thecafph’'s

services.
A
Application Layer
Microkernel Layer
Figure 3. The middleware multi-layered architecture

3.1.2 Microkernel Pattern
The Microkernelpattern [2, 8] is considered as a specializedrlaye
among the layers of theayers pattern. In order to build an

adaptable system, it allows defining minimal coegvices of a
system that can be extended at build-time with detya of
additional services.

First, it allows decomposing a whole system ontgedh
subsystems:

= The Microkernel subsystem, which provides the murim
core set of services such as communication faslitnd
resource management,

= The Internal Services subsystem, which comprisesctire
functionalities having incidences both on the carjty and
the memory footprint of the Microkernel,

= The External Services subsystem, which providesooak
services, bound to the Microkernel.

Next, it surrounds the whole system with an APIretaby the

three subsystems, which is accessible from theideutscope of

the system.

We have implemented the main-core layer according
Microkernelpattern. Therefore, it was possible to start retesn
only with a minimal core required elements suchttes web
server and service for the resource managemener @trvices
are invoked just in time according to occurring rege or
incoming requests.

3.2 Topology management

3.2.1 Composite

By using Composite [1], one can recursively create with
composites - i.e. containers - and leaves eithanptex or
hierarchical structures like trees. From the uspomt of view,
this pattern provides a unique interface. So, ther @an address
in the same way leaves and containers.

For our middleware, we appli€dompositein order to organize
elements hierarchically. The following picture stsowa typical
composition of a Networked Embedded Systems (NES).

TINI Card

Netmaster

IButton IBLTtton
Cardlets Sensor
Figure 4. Overview of NES

The Netmaster [47] is hosting the IButton JavaCewdtaining
several cardlets. The TINI card [48], in which wavé plugged a
sensor, is added as child to the Netmaster.

Netmaster

|Button
Cardlet

Cardlet

— Tini Card

—| IButton

—| Sensor

Figure 5. NES composition
The logical tree corresponding to this compositienshowed
above. Colored box represents a composite: the agémn the
TINI card and the IButton. While blank box represefeaves:
cardlets and sensors.

3.2.2 Visitor

The Visitor [1, 7] is related to th&€omposite Suppose, on one
hand, you have an operation applicable both oneteand on
containers objects of the structure. On the otlardh suppose
also that the implementation of this operation dejseon the type
of the object, i.e. composite or leaf. Applying Misitor pattern,
i.e. implement the operation in a separate suhciaafiows you
to keep the structure loosely coupled with the apen.
Furthermore, as this pattern is aware about theenlyidg
Composite structure, you can easily adapt the operation
accordingly [20].

All operations that imply the propagation througte ttopology
structure (devices grouping, updating...) are impleteeé as
concrete visitors.

3.3 Resource management

3.3.1 Leasing

It is commonly admitted that managing resourcesligtributed
systems is more complicated than in the centralgedems. In
deed, errors may be occurred for different reasordistributed
systems: resource corruption, network congestionfailure,
remote host crashing, etc. For this purposel #asing[4] allows
managing resources by using time-based leases.

That occurs as follows:

= Step 1: a lease is associated with a resource &s it
acquired.
= Step 2: if the lease is never renewed, the resoisrce
automatically released when the time-lease expires.
When an embedded system is added as child to acsi@p
children table (c.f. figure 4: the TINI card is @&d to the
Netmaster), the composite creates a time-based feathat child
and sends back to the child the duration of thede# the child
never renews the lease before its expiration, tmposite delete
the child from its children table.

3.3.2 Evictor

The resource management is a key concern in embtexydéems
[25]. Therefore, in order to cope with that, one cae theéEvictor

pattern as described in [4]. Indeed, this pattecu$es on how
and when resources must be released. It allows tgoapply

different strategies to determine automatically asutimally,

which resources should be released and when theyldsibe

released.

In order to optimize system resources, this patterapplied to
evict leases that have never been renewed and thaséave
been the least recently used.

3.4 Reliability

3.4.1 Heartbeat

Consider a system composed by two subsystems:systein A
and a subsystem B. Actuallifeartbeat[6 p209] is useful when
A is performing an operation on behalf B or wheisitised by B
for providing reliability. Concretely, the subsysteA must

periodically send signals to B in order to indic#tat it is still

alive.

Critic nodes in NES have to send “still-alive” rfmations to
nodes monitoring them. For example, we configueedode
hosting a sensor to send periodically you a messageour
cellular phone.

3.4.2 Watchdog

Watchdog[30, 8] is closely related to théeartbeatpattern. It is
intended to control that the whole system is prsiogs as
required. Consider once again the system we disduabove,
where B is using A in order to provide reliabilitih this case,

Watchdogis commonly implemented in B and it monitors that

“still-alive” messages, coming from A, are receivadthe right
time: neither too quickly nor too slowly. Otherwisemoves the
part-whole system into a fail-safe state.

In NES, some nodes such as those hosting sensersritic.
Thereby, to provide the reliability, it is requiréat those systems
to be checked periodically. We applied théatchdogfor this
purpose.

3.5 Eventsnotification
3.5.1 Observer

The intent ofObserver[1, 7] is to keep a set of objects, i.e. the

observers, up to date when the state of an oljegtdepend on,
i.e. the subject, has changed. In other words, thastern
implements a one-to-many dependency between thecsudnd
the observers. Concretely, it allows you to attaobnymously a
set of observers to a subject. Then, when the efatiee subject
changes it automatically invokes the callback updaethod of
each observer.

For instance, we wanted to log any modificatioraafavaCard in
a HSQLDB [52] database. In this case, the datalsassgistered
as an observer with the Netmaster and the TINI.CEnds, every
time their state is updated, a notification is gerthe database.

3.5.2 Publish Subscribe
Publish SubscribéPub/Sub) is a special case of thbserver It
is applicable when there are several distributetities;, which

should communicate with each other and remain lgasmipled.

It exposes four primitives: pub, sub, unsub andfiyn¢86]. One
can implement th&@ub/Subaccording to two different strategies:
topic-based and content-based. The first stratedpirly the same
as newsgroups strategy. The system notifies thescsiblers
whenever a publication related topic occurs. Thmisé strategy
gives to the subscribers the ability to specifydprates over what
they exactly want to be notified about [14].

We applied this pattern in order to provide asyoobus
communication. Indeed, some notifications are irtguar they
must thus be delivered even if the receiver is podsent.
Concretely, these notifications are queued in atribiged
Hashtable (DHT) replicated in some identified statbdes.

3.6 Network communication

3.6.1 Proxy

The intent of theProxy [5 p79, 4 p199] is to provide a surrogate
object to a real object. Actually, the surrogateerees client
method calls and invokes the same method on thelbgect. The
surrogate object and the real object share the satedace or
super class. Hence, the client is not aware thatciallingProxys
methods rather than the methods of real object.

We have applied this pattern for remote invocatidmore

precisely, we created in the Netmaster and TINlesodrom the
picture 4) a proxy to the HSQLDB database. Whesd¢heodes
receive a request, they automatically notify théabase using
this proxy.

3.6.2 Strategy

Strategy[1] let us to define a family of algorithms, ensafate
each one and make them interchangeable. In faelloivs the
algorithm to be unaware about the client using it.

In NES, there are several protocols to connectspegthernet,
Wifi, Bluetooth, IrDA, and Serial... Thereby, we ajgul Strategy
in order to let applications to use one protocol aother
according to the device network interfaces.

3.7 System and Services configuration

3.7.1 Configurator

In order to achieve more flexibility, tHgervices Configuratioor
Configurator [35, 3 p75] provides a way for decoupling the
behavior of services from the moment when their
implementations are configured into applications. allows
services to evolve independently from configuratissues such
as concurrency model or location. In addition, libwas linking
and unlinking services implementation to an applica at
runtime without having to modify, recompile, or tgtally relink
the application. Besides, it centralizes the adshiation of the
services that it configures, allowing therefore omustic
initialization and termination of services.

This pattern is used to define the eviction stratead the list of
services and interceptors per embedded systendditian, it is
applied to set the nature of each system (i.e. ositg or leaf)
and other metadata such as listening port.

Hereafter, an example of a TINI card’'s configuratifile is
presented.

#

TINI card configuration.
#

handler=main

log=5

root=.

port=1111

host=localhost

#
main.class=sunlabs.brazil.server.ChainHandler
main.handlers=thing

feuilles
thing.class=application.interceptor.Dispatcher
thing.prefix=/thing/

#may be empty, SimpleThing, CompositeThing
_ INTERFACE=CompositeThing
_CHILDREM TABLE SIZE=5

#Token use to split strings
_TOKENS_SEPA=,

#Interceptors list
_ INTERCEPTORS PKAG=application.interceptor.interceptors.

_ INTERCEPTORS LIST=ResourceManagment,Logging, Security,RequestToService, Servicelocator, Servicelnvocator

#3ervices list
_SERVICES PKAG=kernel.external.service.services.

7SERVICE5:LIST:discovery,configuration,composition,reaction,viaite,upgrade,

_SERVICES LIST SIZE=S

#Resource optimisation
_EVICTION STRATEGY=LastReccentlyUse
LEASING DEFAULT TIME=30

Figure 6.

The TINI card configuration file

One can see that the TINI card is defined as a ositgonode and it can have up to five childrenadidition, it has a set of interceptors

and a set of services.

3.7.2 Interceptor

Interceptor as described in [3 pl09, 37] is suitable when
designing frameworks or middleware systems. Indéedintent

of this pattern is to allow services to be addedadyically and
triggered only when certain events occur. Therefore
applications using the frameworks or middleware caid
services addressing their own functional or norcfiomal
requirements without changing the system implentemta
Besides, services provided by the system can beifigad
without altering its core architecture.

We applied this pattern in order to provide adaifitpb

3.7.3 Chain of Responsibility

The Chain of Responsibility(CoR) [1, 7] pattern aims at
decoupling the request sender from the receiventeyposing a
chain of object handlers between them. Each handlghe
chain may either handle the request; pass it othéonext
handler or both. This pattern allows greater fléiibsince it let
handlers decide what to do with the request andsugse
dynamically modify or add handlers in the chain.

This pattern is applied in order to compose a chafn
interceptors.

3.8 Putting all together
3.8.1 No pattern is an island

The picture below shows an overview of the pattevasapplied to build the middleware. The dashedvesrare used to represent the

connections between the patterns.

Watchdog

Monitoring

Figure 7.

LayersusesMicrokernelto design a multi-layered architecture
of the middleware in order to separate core corscéurotocol
implementation, or resource management) from usereerns
(how to configure applications or select the sersineeded).

Microkernel is a specialized layer fromLayers It uses:

Watchdog for ensuring reliability, Leasing for memory

managementObserverfor synchronous notificationdub/Sub

for asynchronous communicatiorComposite for topology

management andConfigurator for system and services
configuration.

Watchdog and Heartbeat are both used for implementing
reliability. Watchdogs a daemon running d8ystem Controller
monitoring that “still-alive” notifications are retved at the
right time. HeartbeatusesProxy to send “still-alive” messages
to theWatchdog

Leasing and Evictoare applied in order to optimize memory
usageleasingis used in order to manage memory resource with
time-based leases; it usBsoxy when a resource holder has to
renew leases with a remote resource provid&sictor manages
the lifecycle of the memory resource.

ObserverandPub/Subare respectively applied for synchronous
and asynchronous notifications. Both of them ®sexy for
remote communications.

Chain of Interceptors Configuration
Interceptor

Patterns relationship

Compositeis applied withVisitor in order to achieve a loosely
coupling between the topology structure and opamatithat
must be performed on i€CompositeusesObserverto notify its
state change and to observe changes that may wittim the
network. In addition, it used?ub/Sub for publishing and
subscribing to events; arféroxy to have surrogates to remote
devices.

ProxyandStrategyareapplied to deal with network distribution.
Proxy takes a place as a surrogate of remote dev&testegy
subclasses provide protocol communication impleatént to
Proxy andthey implement eviction strategies, which are usefu
to theEvictor.

Configurator, Interceptor and Co&reapplied to implement the
adaptability. Configurator provides mechanisms to access and
modify the system configurationCoR uses Interceptor and
Configuratorto define the interceptors list in order to cormgpas
chain of interceptors.

3.8.2 Towards a Pattern Language for embedded systentienidre

ServiceLocator

|Event |Observation| @)
attachment Visjtor
Configuration
change ThingVisitor
compose Application Layer
configure! accept
igur
(Oppdate © 9 S ® O
j Visitable
Obsdrver Suliect o clurable Component visit
| EmbeddedThing |
o CompositeThin | | LeafThin |
ResourceProvider | 9 9
icreate
EvictionStrategy
W ige “apply
evicts O
ResourceUser n
MICROKERNEL ResourceEvictor O
i Heartbeat
i subscribe
publish | P %Iegates
O
Publisher Subscriber RemotieThing _
AbstractEven [Filter| | ThingProxy
HTTPProtocol Watchdog
INTERNAL SERVICES EXTERNAL SERVICES
Microkernel Layar

{ Evictor] {Visitor] [Pub/sub] { Observer] [Proxy] { Startegy]
{ Hearﬂaeat] [Watchdog] (Conﬁgurator) Interceptor/CoR

Figure 8.

Towards a pattern language for embedded systendiemedre

The previous picture shows which patterns we agpdied how
we
MICROKERNEL, within the microkernel layer, is there of the
middleware. It allows composingCémposit¢ NES topology
views, resource managementeésing and Evictor) and
operations performing \sitor). It uses the INTERNAL
SERVICES subsystem for remote connectiofroky) and

protocol adapterStrategy, as well as for asynchronous events

arranged them among the middleware layers. The subscribing and publishing Pgb/Sub. The EXTERNAL

SERVICES provides additional services such as rodng
(Watchdog and Heartbea). One can observe that the
CompositeThinglass can act as resource provider and resource
evictor. This “schizophrenia” can also be obserweith the
EmbeddedThinglass that can at the same time act as a subject

and an observer Qbservey or publisher and subscriber
(Pub/Sub. In addition, theEmbeddedThinglass, which is in fact
an abstraction of any embedded system, may chatge i
configuration according to the contextdnfigurato). At the
application layer, one can notice that both th&erceptor and
CoRare applied for user’s requests or events handling

4. CASE STUDY IMPLEMENTATION
4.1 A dedicated Pattern Language

Not all functionalities of the middleware are neeéd® the
implement the WBJDP (Web-Based JavaCard Development
Platform) case study. Actually, according to theuieements of

this application, only the memory management, thgolbgy
composition, the synchronous events notificationsd ahe
configurations support functionalities are required

The next picture shows the dedicated Pattern Layguar
WBJDP.

Core

ot ification

Architecture

Configurator
¥4

Interceptors List

Chain of Inferceptors

Configuration

Clansing> <

emory -

Lifecycle -
Operation

Figure 9. WBJDP dedicated Pattern Language

4.2 ThePattern Language application
Hereafter, an excerpt of the network topology tesesponding
to application ofComposite

Figure 10.

A tree of JavaCards (from [11])

2 The requirements of the case study are very basedhe
middleware requirements. That is why we chose ptibithem
here.

The picture above shows how, behind each node, ttaehed
indifferently cards or other nodes. We assume tizatls can
contain more than one cardlet. Each cardlet isedtan binary
format.

The following picture shows a logs view that illging a server-
side application o©bserver

T=NET]

[HTML 401 | cs52 | Butineur || Quickmark || ant || DocBook || Ant-Contrb >

@ [rowsi(155,175.228.59:0765 favacardimonkor 1009900001 25435/ FSE0

=[Gl

=i
Ci dessous, un exemple d'interrogation par la java card d"un observateur de notifications ol
notifications émises par la java card C100900000126496
DATE TIME OBSERVABLEURL ARGEVENT
2005-02-09 [13:28:2/ |Bitp 1163, 173,228 593 /b avacardfmontor/ | ADD_SERVLEL Wtp/ 1641 /5225 59: /8 bfsavacardimentorC 1009000001
2005-02-07 [15:31:02||htp //163.173.228 59:876 3/ avacard/monitor/ | ARRIVAL C100500000126496
2005 02 03 [12:0241 |http /163, 173.028. 111:8765 javacard/monitor/ | ARRTVAL_C100900000126196
005-02-04 [10-54-24) http 1164 144 228 144 f6higavanardfmonitor! | ARRIY A1 _C100900000126496
2005-02-02 [14.23.38 |ip /163, 173.228. 144. 6765 favacar ditnouilor/ | ARRTVAL_C100900000126496
2005 02 0110:56:16 fhttp#/163. 173.228. 111:8765 javacard/monitor/ | ARRTVAL_C100900000126196
2005-01-31[10:42:01 |hep/ 163, 173.228. 144 3765 favacardmonitor/ | AKETVAL_C 100500000 126496
2005-01-28 [15:04:25 fhttp #1163, 173.228. 144:6765 javacard/monitor/ | ARRTVAL_C100900000126456
2005-01-28 [15:03:58 fhttp//163. 173.228. 598765/ avacard/monitor/ | DEPARTURE_C100900000126496
2005-01-28 [10:18:53| |hup //163.173.228 58765/ avacard/monitor/ | ARRIVAL_C100500000126496
2005-01-26 [19:15:48 [http #7163, 173.228. 598765/ avacard/monitor/ | ARRIVAL_C100900000126456
2005-01-26 [19:15:45 http /7163, 173.228 598765 avacardimenitor/ | DEPARTIRE_C 100900000 126496
2005-01-18 [15:34:54| hp //163.173.228 598765/ avacard/monitor/ | ARRTVAL_C100500000126496
2005-01-18 [15:23:58 fhttp//163. 173.228.59-2 765 avacard/menitor/ | DEDARTURE_C100900000126496
180955 [attpi//1 65, 1 /4,228,295 rbafjavacard/menster, | ABEIVAL_C100800000126496

20050717

=

[Friday, February 11, 2005 - 5i24 1

Bl
[t for 163.173.228.59

=

Figure 11. Journal's view (from [11])

The application logs in a HSQLDB database each teven
corresponding to the JavaCards plugging-in or phgoff. It
also logs all events related to the modificationaoflavaCard.
From above, you can see a generated view fronotireal table.

The next figure is an applet screenshot showinglibet-side
application ofObserver

() Netscape s : - (ol x|
. File Edit Yiew Go Bookmarks Tools Window Help
3 5 X =3 =
@ = A = L
il Rdosd o | hpyjiesarszessv [Cgseardh] pmo (@

~
. B, &l B AM & Home §) Radio [tilletscape Oy Search () Shop Bookmarks % Instant Message

ES

date observable arg

09/12/03-11:04 hitp:if1 63.173.228.59:8765/avacard/monitor’ DEPARTURE_9600C0000018B796
09/12/03-11:04 hitp:f163.173.228 59:8765Mavacardimonitorf ARRIVAL_S600C0000015B796
09/12/03-11:06 hitp:if163.173.228.80.8765/avacard/monitor’ ARRIVAL_1C00900000205596
09/12/03-11:06 hitp:if163.173.228 80:8765fjavacardimonitor ARRIVAL_A10090000025D296
09712/03-11:06 hitp:ir1 63.173.228.80.8765/avacard/monitor” ARRIVAL_BEDDC00000173B96
09/12/03-11:06 hitp:/r163.173.228.80:8765/avacard/manitor’ ARRIVAL_3900C0000018CE96

E

© D B OF) | Apvle Consolesib [1} |~ ==

Figure 12. An applet as an observer (from [11])

When the applet starts, it registers itself witmade hosting a
JavaCard as an observer.
changes, it calls back the notify method of theleipp

When the state of thaCaas

The picture below shows the events propagation tree
corresponding to the application\disitor.

http://adslupdate/

http://Imi80/up date/

http://Imi73/up date/

http://vivaldi/motify/

http://lmi71/update/

http://Imi74/up date/

‘l http://Tmi72/up date/ http://Imi75/up date/ ‘

http://Imi76/up date/

Figure 13. Request forward-propagation (from [11])

When a node receives stimuli, it propagates themvdad to all
its children. In the picture, above, you can sedhqropagation.

Hereafter, the table shows the non-volatile menfootprint of
the case study.

Table 3. WBJDP memory footprint

Module Size (kb)
Brazi] Server tailored for TINI (implementing: 43
Configurator, CoR)
Interceptor 4.471
Composite & Observer 5.994
Proxy 2.663
Leasing 3.727
Evictor 1.448
HTTP command 4.494

The final size of the middleware compressed jar il about 68
kilobytes:

The middleware jar file’s size is about 24 kilotsite
The configuration file is 1 kilobyte.
Brazil-TINI Server library is 43 kilobytes.

5. Conclusion and outlook
5.1 Synopsis

Embedded systems technologies are an ever-charfgidy
Therefore, the challenge is to find a solution méeiconnect
them. That solution has to take into account theinstraints
(limited memory) and their constant evolution.

We stated in this paper that the middleware teduie$ are the
suitable solution to achieve that. Also, we agréeat design
patterns are a good approach for the constructibnthe
middleware since they represent proven technidtgshermore,
they enable loosely coupling and object orienteacstire.

However, despite patterns provide solutions to atmall
software design problems; they do not yet deal wsiecific
embedded systems topic such ad-hoc networking. tiat, did
not prevent us to apply them to design JavaCarddtleware
with a memory footprint less than 70 kilobytes i®R and to
establish groundings toward NES pattern language.

5.2 Work in progress

Security and ad-hoc networking represent two ingrartopics to
focus on. Even there are not yet patterns to sttlenatter of ad-
hoc networking; [9] describes a set of patternsdlve security
issues. We are still working on how to apply thasurity
patterns.

Also, basing on previous work [29, 41], we are stigating on
how AOP (Aspect Oriented Programming) can helpousprove
our middleware and reduce the overall memory foot@nd best
address the modularity. As for autonomic computing are
waiting results from another project in progress arder to
integrate such technologies.

Yet, we have already identified other patterns likbstract
Factory, Lazy loading, and Coordinator to implemienthe near
future.

6. ACKNOWLEDGMENTS

We would like to express our great gratitude to BuoP 2006
shepherd Uwe Zdun. In addition, we thank all pesseho have
reviewed this document to help to improve either ¢tbrrectness
of the English language or technical aspects.

7. REFERENCES

[1] E. Gamma, R. Helm, R. Johnson, J. VlissidBssign
patterns— Elements of Reusable Object-Oriented Software
Addison-Wesley Professional, 1995

[2] F.Buschmann, R. Meunier, R. Rohnert, P. Sommekd,
Stal: Pattern-Oriented Software ArchitectureA System of
Patterns John Wiley & Sons, 1996

[3] D.C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann
Pattern oriented software Architecture — Patteons f
Concurrent and Networked Objects, John Wiley & Sons
2000

[4] P.Jain, M. Kircher: Pattern oriented software Atetture —
Patterns for Resource Management, John Wiley & Sons
2004

[5] M. Grand:Patterns in JavaJohn Wiley & Sons, 1998

[6] M. Grand:Java Enterprise Design Patterdohn Wiley &
Sons, 2001

[7] O. Maassen, S. SteltingApplied JAVA Patterndrentice
Hall, 2001

[8] B. P.Douglass: Real-Time Design Patterns — Robust
Scalable Architecture for Real-Time Systems, Adaliso
Wesley, 2003

[9] M. Schumacher, E. Fernandez-Buglioni, D. Hybert$on,
Buschmann, P. Sommerla8ecurity Patterns — Integrating
Security and Systems Engineeridghn Wiley & Sons, 2005

[10] R. Zurawski:Embedded Systems Handbo®aylor &
Francis, 2005

[11] N. Bonardelle Motifs de Conception et Intergiciel pour
Systemes embarqués Conférence Francgaise sur les
Systemes d’Exploitation (CFSE’'05), Croisic, A005

[12] F. Eliassen, A. Andersen, G. S. Blair & co: Nexn@&etion
Middleware — Requirements, Architecture, and Pyqtes,
60, The Seventh IEEE Workshop on Future Trends of
Distributed Computing Systems, 1999

[13] G.S. Blair, G. Coulson, P. Robin, M. Papathordas,
Architecture for Next Generation Middlewafrroc. IFIP
International Conference on Distributed System#@tas
and Open Distributed Processing (Middleware’98)wér,
September 1998.

[14] P.Triantafillou, loannis Aekaterinidis: Content-bds
publish-Subscribe over Structured P2P networksHBS,
2004http://www-
serl.cs.colorado.edu/~carzanig/debs04/debs04tfibmigpd
f

[15] Microsoft: Patterns and practices — Publish/Subscr
http://msdn.microsoft.com/library/default.asp?uiibrary/en
-us/dnpag/html/despublishsubscribe.asp

[16] Q. H. Mahmoud:Middleware for Communicationsohn
Wiley & Sons, 2004

[17] C. Britton, P. ByelT Architectures and Middleware
Second EditionAddison-Wiley, 2004

[18] U. Zdun, M. Kircher, M. VolterRemoting PatterndEEE

Internet Computing, vol. 08, no. 6, pp. 60-68viDec,
2004

[19] J. Rees, P. HoneymaiWebcard: a Java Card web server,
(Proc. IFIP CARDIS 2000
http://www.citi.umich.edu/techreports/reports/c¢iti99-3.pdf

[20] J-M. Douin, J-M. Gilliot: Collaboration patternsrfo
networked embedded servers, in ETFA, 2003
http://www-info.enst-bretagne.fr/publication/2008-0df

[21] S. Vinoski:Chain of ResponsibilityeEE Internet
Computing, vol. 6, no. 6, 2002, pp. 80-83
http://csdl.computer.org/dl/mags/ic/2002/06/w608d.p

[22] Sun Microsystemsivhy Jini Now?1998
http://www.di.uniovi.es/~falvarez/whyjininow.pdf

[23] J. Barber: The Smart Card URL Programming Interface
Proceedings of Gemplus Developer Conference (GDGC'99
Paris, France, 21-22 June 1999

[24] F. Fahrion: Embedded Ethernet Systems — Applicaijpmn
for 2004, TechOnLine, 2004
http://www.techonline.com/community/ed_resourcditgma
per/36916

[25] J-M. Douin, J-M. Gilliot: A Pattern Oriented Ligheight
Middleware for Smartcards, in CARDIS'04, 2004
http://www-info.enst-
bretagne.fr/publication/2004/ENSTBrINFORR2004.089.p

[26] ERCIM: Special Embedded Systemigws No 52, 2003
http://www.ercim.org/publication/Ercim_News/enw5RIE2
.pdfm

[27] TAO, http://www.theaceorb.com/

[28] D. Bakken: MicroQoSCORBA: A Configurable Middleware
Framework for small Embedded Systems that Support
Multiple Quality of Service Properties, Washington
University, 2005
http://www.comp.lancs.ac.uk/computing/research/medtpc
tion/papers/MicroQoSCORBA-Lancaster-25April2005.ppt

[29] J. Hannemann and G. Kiczal&sesign Pattern
Implementation in Java and Aspedtd OOPSLA 2002
http://www.cs.ubc.ca/labs/spl/papers/2002/oopsla02-
patterns.pdf

[30] C. Webel, I. Fliege, A. Geraldy, R. Gotzhebeveloping
Reliable Systems with SDL Design Patterns and Desig
Componentsin ISSRE04 Workshop on Integrated-reliability
with Telecommunications and UML Languages, 2004
http://www.sdl-forum.org/issre04-
witul/papers/witul04_developing_reliable_system§.pd

[31] G. Hohpe, B. WoolfEnterprise Integration Patterns IMS
Publish/Subscribe Example
http://www.enterpriseintegrationpatterns.com/ObseinsE
xample.html

[32] L. Aldred, Wil M.P. van der Aalst, M. Dumas, and A.M.
ter Hofstede:On the Notion of Coupling in Communication
Middleware In Proceedings On the Move to Meaningful
Internet Systems - 7th International Symposium on
Distributed Objects and Applications (DOA), pages
pp. 1015-1033, 2005

[33] STARUML, http://www.staruml.com
[34] Wikipedia: http://en.wikipedia.org/wiki/Embedded_system

[35] P. Jain, D. C. Schmidbynamically Configuring
Communication Services with the Service Configurato
Pattern in Third USENIX Conference on Object-Oriented
Technologies (COOTS), 1997
http://www.cs.wustl.edu/~schmidt/PDF/O-Service-
Configurator.pdf

[36] L. Fiegel, F. C. Gartner, O. Kasten, and A. Zeidler
Supporting Mobility in Content-Based Publish/Subiser
Middleware Proceedings of the 8th ACM international
symposium on Modeling, analysis and simulation oéless
and mobile systems, 2005
http://Ipdwww.epfl.ch/upload/documents/publicatimen--
1241122820log_mobility_mw03.pdf

[37] P. Aschenbrenner, M. Forstathe POSA Interceptor
Pattern in Conceptual Architecture Patterns Seminar, 2003
http://wendtstudl.hpi.uni-
potsdam.de/SCAP/presentations/ThePOSAIntercepterRat
NEU.pdf

[38] F .A. Rosa, A. R. SilvaComponent Configurer: A Design
Pattern for Component-Based ConfigurationProceedings
of the 2nd European Conference on Pattern Languzges
Programming (EuroPLoP '97). Siemens Technical Repor
120/SW1/FB. Munich, Germany: Siemens, 1997
http://francisco.assisrosa.com/pubs/europlop97-1.ps

[39] S.Baehnil, P. Th. Eugster, R. GuerracD& Support for
P2P Programming: a Case for TPi&,ICDCS 2002
(Vienna, Austria, 2002).

[40] E. A. Lee: What's Ahead for Embedded Software? HEE
Computer Magazine, September 2000, pp. 18-26, 2000
http://www.cs.utah.edu/classes/cs6935/papers/IEe.pd

[41] C. Zhang, H-A. JacobseRgefactoring Middleware with
AspectslEEE Transactions on Parallel and Distributed
Systems, vol. 14, no. 11, pp. 1058-1073, N&@@03.

[42] D. Harel, M. Politi:Modeling Reactive Systems with
StatechartsMcgraw-Hill, 1998

[43] M. Panahi, T. Harmon, R. Klefstalldaptive Techniques for
Minimizing Middleware Memory Footprint for Distribed,
Real-Time, Embedded SysteRsceedings of the IEEE
18th Annual Workshop on Computer Communications. 18
pp. 54-58. 10.1109/CCW.2003.1240790, 2003
http://repositories.cdlib.org/postprints/656

[44] M. Kircher, C. SchwanningeEnterprise meets Embedded
Workshop - Reuse in constrained environme®@©PSLA
2003, Anaheim, USA, 2008ttp://www.kircher-
schwanninger.de/michael/publications/KircherSchvimaer
-pdf

[45] R. Klefstad, M. Deshpande, C. O'Ryan , A. Cors&.0S
Krishna, S. Rao, K. Ramd®real Time CORBA with ZEN
University of California, 2002
http://doc.ece.uci.edu/publications/zen-performance
2002.pdf

[46] J2ME Specificationshttp://jcp.org/en/home/index

[47] Elsist, the Netmaster manufacturer web site,
http://www.elsist.net/

[48] TINI web site,http://www.maxim-ic.com
[49] A. Corsaro, D-C. Schmidt, R. Klefstad, C. O’'Ryan,

Virtual component — A design Pattern for Memory-Soained
Embedded Applications, 2002

http://www.cs.wustl.edu/~schmidt/PDF/virtual-compeon pdf

[50] C.Mascolo, S.Hailes, L.Lymberopoulos, and all,

SIXTH FRAMEWORK PROGRAMME PRIORITY 2
“Information Society Technologies” — Survey of Middare for
Networked Embedded Systems, 2005

http://www.ist-runes.org/docs/deliverables/D5_01.pd

[51] D-C. Schmidt, C. Cleeland, Applying a patterngaage to
Develop Extensible ORB Middleware,2000

[52] http://www.cs.wustl.edu/~schmidt/PDF/ORB-patterds.p
http://www.hsqgldb.org

[53] http://www.experimentalstuff.com/Technologies/Biéade
x.html

[54] CORBA, http://www.corba.org/

