

Copyright © 2006, Lucent Technologies. All Rights Reserved.
Permission is granted to copy for the PLoP 2006 conference.

 1 01/08/07

Error Containment

Robert S. Hanmer
Alcatel-Lucent

2000 Lucent Lane 2H-207
Naperville, IL 60566-7033

hanmer@alcatel-lucent.com
Abstract:

High availability is required in many computer systems today. These include web
servers, e-commerce applications, network and telephony devices such as routers and
switches, and many others. No software is defect free, and neither is the environment in
which the software operates. As a result errors happen. To prevent errors from causing
failures they must be kept from spreading. The goal is to limit the parts of the system that
the error infects with its incorrectness. These patterns discuss two ways of containing
errors.

The patterns in this paper describe ways to limit error propagation through the
containment of errors. Error containment is an essential part of error detection and
mitigation. The objective is to tolerate faults and errors that exist in the system to allow
general system operation to continue. An aspect of tolerating faults is to limit their
effects. Errors in one part of the system should not cause errors in other parts of the
system. Once an error is detected the system must either recover from the error by
moving the system to a state that does not contain the error, or mitigate the error by
undoing the error to put the system in a state equivalent to the current one but without the
error. Containment, the subject of these patterns, is focused on preventing the current
error state from spreading.

The terms fault, error and failure have specific meanings.
A system failure occurs when the delivered service no longer complies with the

specification, the latter being an agreed description of the system’s expected function and/or
service. An error is that part of the system state that is liable to lead to subsequent failure; an
error affecting the service is an indication that a failure occurs or has occurred. The adjudged or
hypothesized cause of an error is a fault. [Lap91]

A fault is the defect that is present in the system that can cause an error. The fault
might be a latent software “bug”, or it might be a garbled message received on a
communications channel, or a variety of other things. In general, software is not aware of
the presence of a fault until an error occurs. An example of a software fault is a
misplaced decimal point in a data constant, for example the number of steps needed to
rotate an assembly robot’s arm one degree.

An error is the manifestation of the fault, usually an incorrect action taken by the
system. Continuing the example, the incorrect result of an arithmetic computation made

mailto:hanmer@alcatel-lucent.com

Copyright © 2006, Lucent Technologies. All Rights Reserved.
Permission is granted to copy for the PLoP 2006 conference.

 2 01/08/07

with the faulty data constant is the error; for example the number of steps an order of
magnitude too large for a certain desired motion because of the misplaced decimal point.

The failure is the deviation from the agreed-upon correct operation of the system.
In the case of the robots arm, the failure might be that it rotates in the wrong direction
because of the erroneous computation made with the faulty decimal point.

The four phases of fault tolerance: error detection, error recovery, error
mitigation and fault treatment describe the execution time lifecycle of a fault that is
present in a system. Assuming that there is a latent fault in the system, at first it must be
detected. This can happen through a routine means such as an audit (checksum) check,
or it might be detected when an error is detected. The presence of the error is an
indicator that there is a fault present in the system. The fault is no longer latent but is
active when an error occurs. A number of patterns that discuss detection are available:
for example Watchdog Detection [Han04], “A system of Patterns for Fault Tolerance” by
Titos Saridakis [Sar02], and also many examples in Patterns for Time-Triggered
Embedded Systems by Michael Pont [Pon01].

Once the error is detected it must be processed. Depending on the type of error,
the processing either consists of error recovery or error mitigation. Both of these types
of processing work to contain the error to prevent its effects from spreading to other parts
of the system causing other errors, or even a failure. Error recovery moves the system to
a state that does not contain the error. ROLLBACK and ROLL-FORWARD [Lea00] are two
patterns that support error recovery. Error mitigation masks the error without changing
the system’s execution state (meaning the program counter doesn’t change).
CORRECTING AUDITS and ERROR CORRECTING CODES (both unwritten) are examples of
error mitigation patterns.

 Fault treatment is done last, and is the step in which the fault is removed from
the system through a process of diagnosis and correction.

Another phase, fault prevention reflects the ability during design and development
to avoid the insertion of the fault into the system. Fault prevention is performed at design
time, not at execution time.

The first pattern in this paper, ERROR CONTAINMENT BARRIER (1)1, is a pattern to
assist in the error detection phase. The second pattern, MARKED DATA (2), is an error
mitigation pattern that describes a way of mitigating erroneous data that is detected
during execution.

Some assumptions must be outlined to understand the larger context of these
patterns. These assumptions represent things that are covered by other portions of the
larger work that includes these patterns.

1 Pattern names will be presented in ALL CAPS. Pattern names are usually followed either by an

internal reference number contained within parenthesis, or by a reference to a published paper. Thumbnails
for all the patterns mentioned appear at the end.

Copyright © 2006, Lucent Technologies. All Rights Reserved.
Permission is granted to copy for the PLoP 2006 conference.

 3 01/08/07

 Reporting to the fault tolerance control entity (who might be human) about all errors
detected and actions taken is a basic function that all parts of the system must do.

 Most of the patterns are narrowly focused so that they are small enough that an
individual developer or a small team can include the artifacts that they describe in
their designs. As a result there are these following assumptions:

o The basic framework to support fault tolerance is in place in the system.

o The Fault Observer receives reports, but does not micro-manage the
actions of the objects discussed in these patterns.

o To simplify talking about concepts the activities that are described might
be best integrated with other functionality (either application or fault
tolerance related). Patterns are used to explain the activities that must be
designed; the patterns do not constrain the implementation of the
functionality.

 The system capabilities that are discussed in these patterns rest on top of the
application-required functionality and are orthogonal to it in many ways.

 Achieving fault tolerance and maintaining a state of fault tolerance are not free. Both
development and execution resources are required.

1. ERROR CONTAINMENT BARRIER

… The system is designed to perform as well as it can in the presence of faults.
The necessary fault tolerance framework elements are in place. The software knows that
it is supposed to be within a highly available system.

There are mechanisms for detection of faults that have been designed into the
system sprinkled throughout the various UNITS OF MITIGATION (unwritten).

Errors in one part of the system, or in one computation, can spread and cause
errors or failures in other parts of the system. Errors spread through several mechanisms:
erroneous messages, corrupted (incorrect) pooled memory or actions based on the results
of other incorrect actions.

The error(s) have been detected through some detection mechanisms such as
WATCHDOGS, SYSTEM MONITORS, ROUTINE AUDITS and others (all unwritten).

How do you contain an error and keep it from propagating?
Unless something is done the error will continue through the system forever or

until it eventually causes a failure that results in termination. This is the nature of errors.

The effects of an error cannot always be predicted in advance. Nor can all the
potential errors be predicted. Software reliability modeling, verification techniques and
software quality efforts reduce the number of faults present in the system. The system
must be adaptable and able to handle unanticipated errors. Any capability that the
software has to deal with the effects of an error must be put in place during the design
phase. The capabilities require conscious preparation.

Copyright © 2006, Lucent Technologies. All Rights Reserved.
Permission is granted to copy for the PLoP 2006 conference.

 4 01/08/07

Copyright © 2006, Lucent Technologies. All Rights Reserved.
Permission is granted to copy for the PLoP 2006 conference.

 5 01/08/07

Fault tolerance is living with faults. In order to live with faults present in the
system is to find a way to ignore or mask them. But some ways of masking errors result
in their still being propagated throughout the system. If the system doesn’t just “ignore”
errors, what can it do? One option is to say “HELP” and terminate. But this does not fit
into the framework of fault tolerance within the system (see MINIMIZE HUMAN
INTERVENTION [ACG+96]). Sometimes terminating is the only practical option, for
example when an error is detected that makes the system unsafe.

Another option is to take steps to mitigate the error. This isn’t always possible
though; it depends on the nature of the error and the fault. Some errors, particularly data
errors can be mitigated by means such as CORRECTIVE AUDITS (unwritten)

In the case of some errors an effective way of mitigation is to mark them for all
other parts of the system to know that they are erroneous. This eliminates the need for
the other parts of the systems to detect the errors; they can concentrate on taking the steps
appropriate for them to mitigate them. This is discussed in MARKED DATA (2).

Sometimes the errors cannot be corrected, and moreover stopping the system is
not possible because we choose to MINIMIZE HUMAN INTERVENTION is being used so
simply stopping is not sufficient. In these cases error recovery steps must be taken to
move the system to an error free state.

Therefore,

Stop the flow of errors from one part to another by either initiating error
recovery or error mitigation. Stop the error from progressing and then invoke
appropriate notification, logging, mitigation and recovery functions. Do not leave
the error unprocessed.

These techniques can be used to contain the error:

1. Mitigate the error, either by

a. Marking the erroneous data for avoidance, as described in MARKED
DATA (2), and define rules for processing erroneous data; or by

b. Masking the erroneous element so that it is no longer erroneous, for
example CORRECTING AUDITS.

2. Initiate a recovery action TO put the system in an error-free state. CHECKPOINT
[Han03], ROLLBACK [Lea00] or ROLL-FORWARD [Lea00] discuss
several recovery options.

Regardless of the technique used, report the error to the appropriate fault handlers
(both internal and via FAULT OBSERVERS (unwritten)) for higher-level mitigation.

In order to be able to contain errors the system must be able to detect them.
Additionally it must have the ability to decide what the course of action is the safest
given the circumstances of the error. Detection as close to the fault in either structural
proximity or time is the best-case scenarios.

Copyright © 2006, Lucent Technologies. All Rights Reserved.
Permission is granted to copy for the PLoP 2006 conference.

 6 01/08/07

Hardware error containment can include isolating faulty hardware components
through activity bits and other techniques.

MARKED DATA (2) describes a method of marking erroneous information to
contain its future use.

ROLLBACK and ROLL-FORWARD discuss ways of transitioning to an error-free
state.

 “Design Patterns for Fault Containment” by Titos Saridakis [Sar03] contains
three patterns that deal with guarding against errors propagating. Two of the patterns
describe the use ways to detect and contain the spread of errors through an INPUT GUARD
or an OUTPUT GUARD. The third pattern describes a CONTAINER object. …

Copyright © 2006, Lucent Technologies. All Rights Reserved.
Permission is granted to copy for the PLoP 2006 conference.

 7 01/08/07

2. MARKED DATA

… The system has a way to detect errors in data that it uses. Once detected, an
ERROR CONTAINMENT BARRIER (1) will initiate processing of the error.

Erroneous data was detected, either in a message that is passing through this part
of the system, or in an element of data that was stored earlier and accessed by this part of
the system. Alternatively, the error might be detected as the result of an operation.

The system doesn’t have enough information to be able to correct the erroneous
data automatically. This can be because there isn’t any record or a priori knowledge of
what the correct value should be, or it does not contain sufficient information embedded
within it to be corrected, e.g. it does not contain any ERROR CORRECTING CODES
(unwritten).

The error that has been detected has a limited scope that doesn’t require that the
system state be greatly altered even though it can’t be immediately corrected. In other
words, error mitigation is more appropriate than error recovery actions such as restoring
from a CHECKPOINT [Han03], or conducting a ROLLBACK and ROLL-FORWARD [Lea00].

When uncorrectable erroneous data is found, how can the error be kept from

spreading?
Sometimes stored data contains an error, for example when it is something that

was put away for later use into a medium to longer-term storage. The part of the system
that is going to contain the error might not have enough information to be able to
determine if it was incorrect when first stored or if it was corrupted during storage.
Using the invalid data will cause a failure; it must be contained to prevent this from
happening. The corruption may have occurred in the past, but it remained unidentified
until the data is about to be used. ROUTINE AUDITS (unwritten) are used to detect corrupt
data before the data is needed for processing. In many cases CORRECTING AUDITS can be
written to correct these elements of faulty data. But if the audits aren’t available or the
nature of the data prevents automatic correction then the data won’t be correctable.

The storage medium can be made to tolerate errors on its own. For example the
memory of the system can be designed to contain ERROR-CORRECTING CODES. These
codes can only detect a certain number of bit errors in a given memory unit, but this will
be sufficient for many error cases. This memory is common in systems that are designed
from the hardware-up to be fault tolerant, but these error correcting and detecting code
memories add expense.

If the data cannot be corrected it must be contained. In the short term the entity
that detects that it is erroneous should not use it. The results of any actions taken with
that data can be discarded.

Copyright © 2006, Lucent Technologies. All Rights Reserved.
Permission is granted to copy for the PLoP 2006 conference.

 8 01/08/07

We also don’t want the data to be used by any other parts of the system. It can be
marked in a way that other parts of the system don’t have to spend much time detecting
that it was erroneous, and can quietly contain the impact of the error. Rules for how to
proceed with data items that has been marked as erroneous are encountered must be
defined.

In some cases merely marking the data as erroneous is insufficient and active
error recovery steps need to be taken to contain an error. For example when there is no
correct action possible because the erroneous data is to be used to control a branching of
program execution.

The IEEE “Not a Number” is an example for marking a value erroneous in a way
that allows processing to continue. The IEEE standard 754-1985 defines standard
representations for binary floating-point numbers. While defining the numerical
representation they also define a special value “Not a Number” or “NaN”. NaN is stored
in place of a floating-point value as the result of certain illegal floating-point operations,
for example division by zero. The standard defines rules for how subsequent
computations should behave when one of the operands is NaN. [IEEE754]

Rules for processing an operand that was marked by someone else as being
erroneous should include two different types of information, both present in the NaN
rules from the IEEE. The first type of information is how the operation should proceed.
Possible rules include assuming a default value, skipping the operation and marking the
result as erroneous, seeking the information from an alternate source, aborting execution
or taking an EXCEPTION (unwritten) and so on. The second type of information that
should be part of any rule is whether any notification to other parts of the system should
be made previously marked erroneous value is encountered. The IEEE standard refers to
this as signaled or quiet. This signaling is appropriate if some intermediate mechanism
would have been expected to correct the error and so the current occurrence of the
erroneous flag is totally unexpected.

Messages sometimes contain data elements that are erroneous. These must also
be contained. In some cases the entire message can be discarded. This is most effortless
when the protocol supports retransmission until received and the message has not been
acknowledged yet.

Individual data elements within the message are sometimes identifiable as being
erroneous. If only parts of a message are incorrect then a mechanism such as the IEEE
NaN can be used to identify the erroneous part. This allows computing to continue while
taking into account the elements that are erroneous.

When the results of a computation or processing are determined to be erroneous
the NaN approach of marking the data element can work as well. In some cases the
detection of an error at this level indicates that the part of the system that performed the
computation is erroneous. In these cases the entire part of the system should be marked
and avoided rather than just the result. In these cases a marking is needed, but the IEEE
NaN is too low level. One approach is to report to the FAULT OBSERVER (unwritten) and
rely on higher-level system functions to contain and repair the faulty entity.

Copyright © 2006, Lucent Technologies. All Rights Reserved.
Permission is granted to copy for the PLoP 2006 conference.

 9 01/08/07

Marking data or results so that they aren’t used isn’t free. In the case of IEEE
NaN the mark is encoded in place of the value, but sometimes the NaN mark might
require additional “meta-memory”. Resources are required to check for the erroneous
mark and take appropriate actions.

Therefore,

Mark erroneous data to indicate that it should not be used. Define rules for
how these values should be processed when they are encountered.

The IEEE defines two types of NaNs, “signaling” and “quiet” and rules for how
the implementations should handle these types of NaNs.

The periodic checking of data for correctness is a variant of this pattern. Instead

of waiting for the data to be accessed in normal operations, the ROUTINE AUDIT
mechanism will periodically check for correctness and either mark or correct it.

“CHECKS” by Ward Cunningham [Cun95] introduces the idea of an exceptional
value as a computational result. This effectively contains the error to everywhere
upstream from where it is detected. Failures are prevented because the system does not
use the erroneous value if it is flagged as exceptional. …

Copyright © 2006, Lucent Technologies. All Rights Reserved.
Permission is granted to copy for the PLoP 2006 conference.

 10 01/08/07

Pattern Thumbnails

Pattern Intent

CHECKPOINT Save state periodically in a way that allows execution to be
resumed with a consistent state.

CONTAINER Perform computations in a safe space that is being protected
by INPUT GUARDS and OUTPUT GUARDS.

CORRECTING AUDIT Some data can be corrected based on other data found in the
system. Correct it and return it to usefulness

ERROR CONTAINMENT
BARRIER (1)

Build barriers into your system so that errors can’t propagate
from one part of the system to another.

ERROR CORRECTING
CODES

Store enough extra information with each data value that will
allow it to be corrected for bit errors in a storage device.

FAULT OBSERVER Some part of the system should know that a fault is present
and report it and maybe escalate actions.

INPUT GUARD Detect errors and prevent them from spreading by checking
input values.

MARKED DATA (2) Mark erroneous data values as invalid and define rules for
how to process these values when encountered later to
prevent any part of the system from propagating the error.

MINIMIZE HUMAN
INTERVENTION

Humans make mistakes and are slow; to minimize downtime
the system should take care of itself, without human
intervention.

OUTPUT GUARD Detect errors on exit from a module and prevent them from
spreading.

ROLLBACK Move the system to an error-free state by returning to a state
before the error occurred.

ROLL-FORWARD Move the system to an error-free state by advancing to a
future state that doesn’t contain the error.

ROUTINE AUDIT Check data with a background task to make sure that it is
correct

UNITS OF MITIGATION Decide during architecture what the units of fault tolerance
are.

Copyright © 2006, Lucent Technologies. All Rights Reserved.
Permission is granted to copy for the PLoP 2006 conference.

 11 01/08/07

Acknowledgements:

Thanks to Dirk Riehle who shepherded this paper through many changes of
direction. Ralph Johnson provided valuable feedback on the patterns.

The photo accompanying Error Containment Boundary is used courtesy of the US
National Archives and Records Administration. www.nara.gov ARC identifier 198978.

A large thank you to the PLoP 2006 Writers’ Workshop Group Intimacy Gradient
for their comments and suggestions on this paper. The group consisted of: Mirko Raner,
Erol Thompson, Anders Janmyr, Philipp Bachmann, Daniel Vainsencher, Maurice Rabb,
Andrew Black, Sachin Bammi, Kanwardeep Singh Ahluwalia, Ward Cunningham, Brian
Foote, Ademar Aguiar and Ricardo Lopez.

References

[ACG+96] Adams, M. E., J. O. Coplien, R. J. Gamoke, R. S. Hanmer, F. Keeve,
and K. L. Nicodemus. “Fault-Tolerant Telecommunications System Patterns.” In
[VCK96], pp 549-573.

 [Cun95] Cunningham, W., “The CHECKS Pattern Language of Information
Integrity.” In [CS95], pp 145-155.

[CS95] Coplien, J. and Schmidt, D., eds. Pattern Languages of Program
Design. Reading: Addison-Wesley, 1995.

[Han03] Hanmer, R. S., "Patterns of System Checkpointing," in Proceedings of
2003 PLoP Conference.

[Han04] Hanmer, R. S., "Watchdog Detection," in Proceedings of 2004 PLoP
Conference.

[IEEE754] -. IEEE 754-1984, IEEE Standard for Binary Floating-Point
Arithmetic. New York: IEEE 1985.

[Lap91] Laprie, J. C. Dependability: Basic Concepts and Terminology. New
York: Springer-Verlag, 1991, p 4.

[Lea90] Lea, D. Concurrent Programming in Java, Second Edition: Design
Principles and Patterns.. Reading, MA: Addison-Wesley, 2000.

[Pon01] Pont, M. J. Patterns for Time-Triggered Embedded Systems. New
York, ACM Press, 2001.

[Sar02] Saridakis, T., “A System of Patterns for Fault Tolerance,” in Proceedings
of 2002 EuroPLoP Conference.

[Sar03] Saridakis, T., “Design Patterns for Fault Containment,” in Proceedings of
2003 EuroPLoP Conference.

[VCK96] Vlissides, J., J. Coplien and N. Kerth, eds. Pattern Languages of
Program Design-2. Reading, Mass: Addison-Wesley, 1996.

http://www.nara.gov/

	1. Error Containment Barrier
	2. Marked Data
	Pattern Thumbnails
	Acknowledgements:
	References

