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ABSTRACT
The classic UNIX principle to write code that generates code
instead of writing this code yourself [48, Chapters 1,9] is
experiencing a revival. Much research was done, the tech-
niques are better understood now, and the generation tools
were refined.

This pattern catalog consists of adaptations of the Gang of
Four design patterns [27] Abstract Factory, Adapter, Strat-
egy, and Visitor to the metaprogramming level. It shows
that replacing runtime polymorphism by static polymor-
phism helps to lift variation from the code level up to the
meta level, where it might more naturally belong to. Some
of the patterns proposed are especially useful for facilitating
portable code.

The patterns shown can be used to build static Frame-
works [50]. A simple example is also presented.

For all patterns proposed we identified usage examples in
popular existing applications or libraries.

Each pattern presentation is accompanied with an exam-
ple. These examples show sample code in C++. The tem-
plate metaprogramming capabilities of C++ [2, 17, 65] allow
us to express both the program and the meta program in the
same programming language.

Categories and Subject Descriptors
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of Systems—Modeling techniques; D.2.11 [Software En-

gineering]: Software Architectures—Domain–specific ar-
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D.3.3 [Programming Languages]: Language Constructs
and Features—Abstract Data Types, Frameworks, Polymor-
phism; D.4.0 [Operating Systems]: General—Microsoft
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1. OVERVIEW
Code generation can help to assemble a series of applica-

tions from the same set of separate parts at compile time, to
explicitly represent the construction plan in the generation
software, and to allow for future adaptations by changing the
construction plan. Generative programming [17] provides
another way to deal with variation additionally to patterns
based on runtime polymorphism. Domain specific languages
(DSLs) describe how a system should be generated. If gener-
ative programming is available and understood, some points
of variation can be moved up from the generated software
into the DSL. This often leads to better optimization oppor-
tunities.

The author identified patterns on the metaprogramming
level. His goal was to centralize the configuration and to
reduce the need for conditional compilation.

Table 1 lists the patterns proposed.
With generative programming at hand the recurring prob-

lem of software portability can be solved in an appropriate
and more elegant way than without. The patterns Static
Adapter and Static Abstract Type Factory especially aim at
portability. Usually portability means cross–platform porta-
bility. Portability also has a temporal aspect. The availabil-
ity of a product for many platforms and for long periods
of time can provide a significant competitive advantage. So
this pattern catalog also assists you in both understanding
variability necessary for portable applications and filling the
gaps where supportive libraries are not available or cannot
be used.

The presentation of each pattern follows the style well
known from [13] and [54]. Additionally, each pattern de-
scription contains a twofold statement:



Table 1: Pattern–Thumbnails of Static and Metaprogramming Patterns

Section Title Intent

3 Static Strategy Delegate certain tasks an object needs to perform to another object. Allow
the delegation to be chosen statically.

4 Static Visitor Encapsulate operations that should be applied to all elements of an object
structure in a separate object. Adding new operations becomes easier then.
Different from the Visitor pattern the Static Visitor pattern does not depend
on runtime polymorphism at all. It shifts the dependency cycle present in
the original Visitor design pattern from the program to the meta program.

5 Static Adapter Adapt a series of different interfaces to a common interface. The choice of
which interface is actually to be adapted can be done at compile time.

6 Static Abstract Type
Factory

The Static Abstract Type Factory provides an extensible means to associate
expressions in the domain specific language with application data types.

7 Static Framework Portable code must meet performance requirements on each platform. Static
Frameworks assist you in writing code that can be adapted more easily to
multiple platforms while making sure that on each platform the application
can fulfill its original purpose.

1. It presents a pattern on the meta level and

2. it shows how to move variation from the program to
the meta program.

The overall pattern descriptions are such that they point
to the first statement, whereas contrasting the motivating
example with the respective implementation section points
you to the second statement.

The code examples are in the C++ programming lan-
guage, because its generative programming capabilities al-
low us to use it at both the base and meta levels.

2. METAPROGRAMMING PATTERNS

What can be said at all can be said clearly.

Ludwig Josef Johann Wittgenstein: Preface of
Tractatus logico–philosophicus [71]

The following four Sections 3 to 6 propose the use of gen-
erative and template metaprogramming techniques [2, 17,
65] to express classic patterns by the Gang of Four [27] on
the metaprogramming level.

After reading these sections the reader will know how to
refactor code to move points of variation from the base level
to the metaprogramming level.

As domain specific languages (DSLs) statically describe a
system, using metaprogramming patterns can help with the
design of portable code the same way as patterns help with
the design of the concrete implementation for one platform.

The Static Strategy (see Section 3) idea has been pub-
lished as an implementation option of the Strategy design
pattern before in [32]. We repeat it here in more detail be-
cause it is a good introduction to static and metaprogram-
ming patterns. Metaprogramming variants of other Gang of
Four patterns can be found e.g. in [17, pp 224–234].

3. STATIC STRATEGY
An instance or class based bahavioral pattern

3.1 Also known as
Policy [5, pp 27–51], [66, pp 429–436]

Strategy [32, pp 378–379]

3.2 Intent
Delegate certain tasks an object needs to perform to an-

other object. Allow the delegation to be chosen statically.

3.3 Example
Suppose that you need to implement a stack. The stack

abstract data type itself does not depend on how exactly
memory is allocated. Suppose this independence should be
reflected by the design of the stack data structure to allow for
plugging in different allocation strategies, for example one
using allocation on the heap, one using allocation in shared
memory segments, and another one allocating memory in
terms of memory mapped files.

Traditionally such allocation code would be dynamically
added by means of the Strategy [32] design pattern as sketch-
ed in Listing 1.

Listing 1: Dynamically injecting an allocator into a stack

struct AllocatorIf {
virtual ~AllocatorIf () {}
virtual void *allocate(std:: size_t) =0;
virtual void deallocate (void *) =0;

};

struct NewAllocator : public AllocatorIf {
void *allocate (std:: size_t n) {

return operator new(n);
}
void deallocate (void *p) throw () {

operator delete(p);
}

};

class IntStack {
AllocatorIf *allocator_ ;
...

public:
explicit IntStack (AllocatorIf &a}

: allocator_ (&a), ... {}
...
void pop() throw () {

// Calls "allocator_ ->deallocate ()"
...

}
void push(int data) {

// Calls "allocator_ ->allocate ()"
...



}
int top() const {

// Returns topmost element , but don’t
// remove it from the stack
...

}
};

The details of IntStack do not matter here. They are sim-
ilar to the implementation shown below in Listing 3. An
implementation of the AllocatorIf interface is injected into
IntStack on construction. Note that different instances us-
ing different allocators do not differ in type.

Listing 2 shows how the parts proposed above work to-
gether to instantiate and use a stack.

Listing 2: How to use Strategy

int main () {
NewAllocator alloc;
IntStack s(alloc );
for(int i(0);i <42;++i)

s.push(i);
for(int i(0);i <42;++i) {

std::cout <<s.top()<<" ";
s.pop ();

}
std::cout <<std::endl;
return EXIT_SUCCESS;

}

Additionally to this simple usage example the (dynamic)
Strategy pattern allows for strategies to be generated by
a Factory Method [28] or other creational pattern, which
returns a pointer to AllocatorIf thus hiding its dynamic
type.

The Template Method design pattern [31] was another
implementation option to factor out implementation details.
A disadvantage compared to Strategy was that implemen-
tation details factored out into subclasses cannot be reused
as Strategies can.

In many cases you know the allocator for a certain stack at
compile time. Using dynamic polymorphism may be consid-
ered too much of a good thing therefore. So a way is sought
to statically bind allocators to the stack instance while still
separating allocator from stack code.

3.4 Context
The implementation of certain classes representing e.g. ab-

stract data types consists of different concerns that crosscut
each other [37]. These concerns are often bound to the class,
not to its instances, and must then be kept immutable for
consistency reasons.

3.5 Problem
How to inject implementation details into a class to allow

for a flexible way to replace these details?

3.6 Forces

• Abstract data types are by definition independent of a
special implementation. Their representation in code
should be decomposed into a generic essence and im-
plementation details to keep code duplication to a min-
imum even in the case that the implementation details
need to be adapted to use the code within another
environment.

• The decomposition into several parts should not result
in runtime overhead.

• The implementation details itself should be general
enough to be reused in the context of other abstract
data types.

3.7 Solution
Separate an abstract data type into its essence and an

exchangeable class or instance of another class to which it
delegates implementation details. Define a concept for the
classes that represent these implementation details. Stat-
ically configure the abstract data type with the type of a
model of this concept.

A first sketch of the solution is shown in Table 2.

3.7.1 Participants

AbstractDataType Class template that delegates imple-
mentation details to the Static Strategy it gets stati-
cally configured with. A Concrete Strategy might be
offered as a default Static Strategy.

Client Client code instantiates the Abstract Data Type
template for a Concrete Strategy.

ConcreteStrategy Provides algorithms that can be used
by Abstract Data Types within their implementations.
Concrete Strategy is a model of Static Strategy Con-
cept.

StaticStrategyConcept Defines interface each Concrete
Strategy has to conform to. Static Strategy Concepts
provide a contract to Abstract Data Types the latter
can program against.

Figure 1 sketches the participants and their relations to each
other.

3.7.2 Dynamics
The Client binds the Abstract Data Type template pass-

ing a Concrete Strategy. The Client instantiates the result-
ing type. It then calls member functions, which in turn dele-
gate some implementation details to the Concrete Strategy.

3.7.3 Rationale
Some configuration issues can be decided early at compile

time. In fact, some Abstract Data Types only work correct,
if their Strategies will remain fixed during the life time of
the instance of the respective Abstract Data Type. Assem-
bling code at compile time instead of virtual calls at runtime
results in fewer indirections and less bias against inlining.

3.8 Resulting Context
Implementation details were factored out of the Abstract

Data Type. The AbstractDataType is more reusable than
before, and the Static Strategies can also be used to de-
termine the implementation details of other Abstract Data
Types. The Client can define its own Static Strategies.

3.8.1 Pros and Cons
The Static Strategy pattern has the following benefits:

1. No runtime overhead. As the compiler binds Concrete
Strategy to Abstract Data Type, at runtime every-
thing is readily prepared.



Table 2: Class–Responsibility–Collaboration Cards

AbstractDataType
Delegates implementa-
tion details to

StaticStrategy

Provides interface to Client

(a) Abstract Data Type

Client
Instantiates template AbstractDataType,

Concrete Strategy
Calls member function
of

AbstractDataType

(b) Client

ConcreteStrategy
Binds template argu-
ment of

AbstractDataType

Model of StaticStrategy-
Concept

Encapsulates algo-
rithm implementation

(c) Concrete Strategy

StaticStrategyConcept
Declares interface to
algorithm

(d) Static Strategy Concept

Figure 1: Class diagram illustrating Static Strategy

2. Extensible. If the Static Strategy Concept was pub-
lished, the Client can replace a Concrete Strategy with
customized implementations.

The Static Strategy pattern has the following liability:

1. No relationship among different instantiations of Ab-
stract Data Type. Abstract Data Types bound to dif-
ferent StaticStrategies do not relate to each other. If it
is intented to assign them to each other, there have to
be special assignment operator member function and
copy constructor templates to enable this [63, 64, 42].

Additionally to these general pros and cons we identified
the following implementation specific ones.

The implementation technique of the Static Strategy pat-
tern shown has the following liabilities:

2. No concept of Concrete Strategy. The Concrete Strate-
gies have to be models of the same concept Static
Strategy Concept: They all have to provide member
functions of the same names. Such concepts cannot
currently be expressed in C++. There are matured
proposals to overcome this issue in a future version of
the C++ standard, e.g. [18, 33].

3. Definitions must be inlined. This technique reveals im-
plementation details in header files. This might not be
appropriate.

3.9 Implementation
Once we decided on what is the essence of the Abstract

Data Type and which parts better should be factored out
into a Static Strategy, the data structure repesenting Ab-
stract Data Type has to be made statically configurable
by turning it or its member functions into templates. A
Static Strategy Concept has to be developed that declares
the interface between Abstract Data Type and the Concrete
Strategy.

3.9.1 Example Resolved
The code shown in Listing 3 shows a stack data structure

capable of storing integral numbers only and a simplified ver-
sion of the Allocator concept of the C++ Standard Library.
The NewAllocator shown as an example for all models of
the simplified allocator concept acquires memory from and
releases it to the freestore.

Listing 3: Statically injecting an allocator into a stack

struct NewAllocator {
static void *allocate(std:: size_t n) {

return operator new(n);
}
static void deallocate (void *p) throw ()
{

operator delete(p);
}

};

template <
typename Allocator =NewAllocator



> class IntStack {
struct IntNode {

int data_;
IntNode *next_;
IntNode(int data ,IntNode *next)

: data_(data), next_(next) {}
};
Allocator allocator_ ;
IntNode *top_;

public:
IntStack () : top_ (0) {}
IntStack (const IntStack &rhs) : top_ (0)
{

try {
for(const IntNode *ci=rhs.top_;

0!=ci;
ci=ci ->next_

)
push(ci ->data_ );

}
catch (...) {

clear ();
throw;

}
}
~IntStack () {

clear ();
}
IntStack &operator =( const IntStack &rhs)
{

IntStack tmp(rhs);
swap(tmp);
return *this;

}
void swap(IntStack &rhs) throw () {

IntNode *const tmp=top_;
top_=rhs.top_;
rhs.top_=tmp;

}
void clear () throw () {

while(top_)
pop ();

}
bool empty () const {

return !top_;
}
void pop() throw () {

assert(top_);
IntNode *const tmp=top_;
top_=top_ ->next_;
// Call destructor to get plain , raw
// memory (not really necessary here
// because of trivial destructor )
tmp ->~ IntNode ();
// Delegate deletion to Allocator
allocator_ .deallocate (tmp);

}
void push(int data) {

// Delegate allocation to Allocator
IntNode *node=allocator_ .allocate (

sizeof(IntNode)
);

try {
// Construct instance into raw
// memory
new(node) IntNode(data ,top_);
top_=node;

}
catch (...) {

allocator_ .deallocate (node);
throw;

}
}

int top() const {
assert(top_ );
return top_ ->data_;

}
};

Note that different instances using different allocators differ
in type in contrast to the version using the Strategy pattern
as shown in Listing 1. Concepts are less restrictive than
interfaces regarding to the exact signatures of member func-
tions prescribed; the above stack will also compile bound to
allocators with e.g. non–static member functions.

The dynamics of IntStack< NewAllocator >::push() is
shown in Figure 2.

Listing 4 shows how the parts proposed above work to-
gether to instantiate and use a stack.

Listing 4: How to use Static Strategy

int main() {
// Uses "NewAllocator", its default
// allocator
IntStack s;
for(int i(0);i <42;++i)

s.push(i);
for(int i(0);i <42;++i) {

std::cout <<s.top()<<" ";
s.pop ();

}
std::cout <<std::endl;
return EXIT_SUCCESS;

}

Different from the (dynamic) Strategy pattern the strat-
egy can’t be dynamically created using a creational design
pattern—the type of the strategy has to be known at compile
time. A static parallel to the creational patterns is proposed
in Section 6. Using this technique the strategy class could
be hidden behind a typedef after all.

3.9.2 Relationship of Example and Participants
The code shown as an example above maps to the partic-

ipants defined in Section 3.7.1 as shown in Figure 3.

3.10 Variants
Depending on the purpose of the Strategy there are two

different implementation options with respect to the granu-
larity of configuration possible. Either the Strategy affects
the whole class template Abstract Data Type and remains
fixed during the whole lifetime of the template instantiation,
or the member functions of Abstract Data Type are declared
as templates, such that for each member function template
and on each call a different Strategy can be chosen. This
description concentrates on the first option. The second one
can be implemented similar to the Static Visitor pattern (see
Section 4).

3.11 Known Uses
Examples of Static Strategy can be found in existing soft-

ware.

3.11.1 C++ Standard Library Allocator concept
The C++ Standard Library contains various containers,

e.g. associative containers like std::map<>, arrays like std::
vector<>, and list–like structures like std::stack<>. All of
these delegate allocation of their elements to a Static Strat-
egy that must be a model of the Allocator concept.



Figure 2: Sequence diagram illustrating Static Strategy

Table 3: Relationship of Code and Participants

Code Participant

template<> class IntStack AbstractDataType
int main() Client
struct NewAllocator ConcreteStrategy
Implicit. See liability 2 in Section 3.8.1. StaticStrategyConcept

3.11.2 C++ Standard Library StrictWeakOrdering
concept

The associative containers of the C++ Standard Library
additionally pose the requirement on their so called keys
that for their type a binary function or function object ex-
ists that is a model of the concept StrictWeakOrdering. In
other words the keys must be strict weakly ordered, and
this order is represented by a comparison function or func-
tion object. The respective container instance delegates the
task of comparing two keys to this.

The Standard C library contains e.g. the Quicksort imple-
mentation qsort(). It uses the Strategy pattern instead to
both make the function independent of a special data type
and delegate the comparison to user code, not the Static
Strategy pattern and thus forbids inlining of the compari-
son function.

3.11.3 C++ Standard Library Algorithms
The C++ Standard Library provides a lot of algorithms

that map a unary function to each element of a container.
They cast popular uses of loops into function templates. On
instantiation these templates are configured by an Iterator
[29] type and the type of the unary function, which in fact
is a Static Strategy.

If the Static Strategies furthermore statically reflect their
argument and return types using certain member type def-
initions e.g. by inheriting from std::unary_function<> or
std::binary_function<> the functions can be chained: Bi-
nary functions can be turned into unary ones using one of
the binders std::bind1st<> or std::bind2nd<>, and unary
functions can be negated using std::negate<>.

3.12 Related Patterns
The Static Visitor pattern (see Section 4) also inverts con-

trol flow.
The Strategy design pattern uses (runtime) polymorphism

to allow for substitution of a concrete strategy by another

implementation. The Static Strategy pattern is its static
counterpart.

4. STATIC VISITOR
In languages like C++ there is no built–in dynamic dou-

ble dispatch, i.e. on calling a virtual member function the
actual member function called is chosen solely based on the
dynamic type of the respective instance, but never addition-
ally dependent on the dynamic type of one of its arguments.
The Visitor design pattern [25] uses runtime polymorphism
and inversion of control to provide double dispatch. The
class diagram corresponding to the original Visitor pattern
is shown in Figure 3.

4.1 Intent
Encapsulate operations that should be applied to all ele-

ments of an object structure in a separate object. Adding
new operations becomes easier then. Different from the Vis-
itor pattern the Static Visitor pattern does not depend on
runtime polymorphism at all. It shifts the dependency cy-
cle present in the original Visitor design pattern from the
program to the meta program.

4.2 Example
Consider you have a set of classes representing the differ-

ent entities a file system consists of. One of these classes
represents a directory. Directories are Composites [30] that
contain instances of classes within the given set including
directories. A user might want to traverse the directories
recursively and apply a function on the elements encoun-
tered. A simple case was to count the elements residing in
a certain directory regardless of whether these elements are
files or directories. This can be implemented as follows.

Listing 5: Life without visitors

struct FileSystemElementIf {
virtual ~FileSystemElementIf () {}



virtual std:: size_t count () const =0;
};

class File : public FileSystemElementIf {
...

public:
std:: size_t count () const {

return 1;
}
...

};

class Directory
: public FileSystemElementIf {
...
typedef

std::list < FileSystemElementIf * >
list_type ;

public:
std:: size_t count () const {

list_type ls;
...
// Count oneself
std:: size_t result (1);
for(list_type :: const_iterator

ci(ls.begin ());
ls.end ()!=ci;
++ci

)
result +=(*ci)->count ();

return result;
}
...

};

The details of File and Directory do not matter here. They
are similar to the implementation shown below in Listing 8.

There are two dimensions to extend this class hierarchy.
You could add more virtual member functions like FileSys-
temElementIf::count(). And you could add more realiza-
tions of FileSystemElementIf, i.e. siblings of File and Di-

rectory. The first extension requires you to modify FileSys-

temElementIf, which is impossible if the class hierarchy re-
sides within a library and you don’t have access to its source
code.

Consider you decided that it’s more likely that you will
add further virtual member functions like FileSystemEle-

mentIf::count() than that you will add new classes to the
hierarchy. The Visitor design pattern helps then. It works
similar to find -exec from a UNIX shell.

A traditional implementation looks as shown in Listing 6.

Listing 6: Classic Visitor with double dispatch

class File;
class Directory ;

struct VisitorIf {
virtual ~VisitorIf () {}
virtual void visitFile (File &) =0;
virtual void visitDirectory(Directory &)

=0;
};

struct FileSystemElementIf {
virtual ~FileSystemElementIf () {}
virtual void accept(VisitorIf &) =0;

};

class File : public FileSystemElementIf {
...

public:

void accept(VisitorIf &v) {
v.visitFile (*this);

}
...

};

class Directory
: public FileSystemElementIf {
...
typedef

std::list < FileSystemElementIf * >
list_type ;

public:
void accept(VisitorIf &v) {

v. visitDirectory (*this);
list_type ls;
...
for(list_type :: iterator

in(ls.begin ());
ls.end ()!= in;
++in

)
(*in)->accept(v);

}
...

};

The details of File and Directory do not matter here. They
are similar to the implementation shown below in Listing 8.

Concrete visitor classes have to realize the interface Vis-

itorIf:

Listing 7: Example for visitors

class Count : public VisitorIf {
std:: size_t number_of_elements_ ;

public:
Count () : number_of_elements_ (0) {}
void visitFile (File &) {

++ number_of_elements_ ;
}
void visitDirectory(Directory &) {

++ number_of_elements_ ;
}
std:: size_t getNumber_of_elements ()

const {
return number_of_elements_ ;

}
};

The usage of such visitors doesn’t differ from Listing 10.
However, different from the listing just referred to, the clas-
sic Visitor pattern allows for visitors to be generated by a
Factory Method [28] or other creational pattern, which re-
turns a pointer to VisitorIf thus hiding its dynamic type.

It is worth noting that the visitor interface depends on
the (incomplete) types of all possible elements the file system
can consist of, and that FileSystemElementIf, the interface
all file system elements realize, depends on the (incomplete)
visitor interface. This cyclic dependency can also be seen
in the accompanying Figure 3 and could hardly be tighter.
Adding another file system element class not only requires
its definition, but also requires the modification of the visitor
interface and thus of all its realizations if there is no default
realization. The latter is a hard task and can even be impos-
sible as the supplier of the file system class hierarchy might
not have control over all visitor classes. Therefore this im-
plementation applies only if the class hierarchy to visit is
nearly stable. Furthermore strong dependencies can lead to
much longer compilation times, if code was changed.



Figure 3: Class diagram illustrating the classic Visitor with
double dispatch [25]

It is also worth noting that this implementation uses dou-
ble dispatch. The meaning of a call to one of the virtual
accept() member functions both depends on the dynamic
type of the instance accept() is called on and on the dy-
namic type of the visitor, the argument to accept().

As the hierarchy of all classes implementing FileSys-

temElementIf needs to be stable anyway, however, it might
be beneficial to replace runtime by static polymorphism.

4.3 Context
A fixed set of classes is given. Some of them are object

structures that can aggregate instances of classes from the
set and thus instances can be arranged in a hierarchical man-
ner. Changes to this set can nearly be ruled out.

4.4 Problem
Different algorithms will be applied to the instances ar-

ranged in the hierarchy possibly using different traversal
strategies. The algorithms are not known at the time the
class hierarchy was fixed. So it is not an option to add
all algorithms to the set of classes given. But nevertheless
the algorithms are known at compile time. The problems
therefore are as follows: How to a priori add minimal func-
tionality to each of the classes the set consists of to allow
for maximal extensibility regarding applying arbitrary user
defined algorithms to each instance reachable though an in-
stance aggregating others? How to shield the traversal from
the user?

4.5 Forces

• A user may want to traverse the object structure both
just to accumulate data and to change the elements.

• Dependencies and associations among classes should
be kept to a minimum, especially cyclic ones.

• Programming towards typesafety means to detect er-
rors early at compile time instead of runtime.

• If the execution of the member functions of a visitor
is inexpensive, then the overhead caused by virtual
calls—indirection and missing inlining opportunities—
becomes a large fraction of the overall traversal time
of this visitor.

4.6 Solution
Equip the classes the set consists of once and for all with

a member function template accepting an instance of any
class that is a model of some visitor concept. This prevents
you from the need to repeatedly add functionality to each of
these classes. Whenever new algorithms should be applied
to the hierarchy of instances these algorithms will have to
be represented by an appropriate visitor class. The visitor
can differentiate between the different classes of the set by
means of different member functions for each class or by
means of overloading.

A first sketch of the solution is shown in Table 4.

4.6.1 Participants

ClassN One class of a bounded and known set of classes.
Object Structure aggregates one or more instances of
these classes. Each class likely provides an interface
that differs from the interfaces of the other classes con-
tained in the set. The Visitor interacts with Class N
by calling its member functions.

Client The Client intends to execute a function on all el-
ements directly or indirectly contained within Object
Structure. To do so it instantiates a Visitor that rep-
resents the function and passes it to Object Structure.

ObjectStructure A special variant of Class N. A collec-
tion of instances of Class N and other classes from the
well–known, bounded set. Object Structure provides a
template member function to accept any Visitor that
is model of Visitor Concept. Often this function is
responsible to traverse the member instances and call
the member function of the Visitor for each instance
encountered.

Visitor A model of Visitor Concept that overloads a mem-
ber function prescribed by the concept for all classes
similar to Class N. If some of these classes have a com-
mon superclass, then the Visitor might only overload
its member function for the superclass.

VisitorConcept All Visitor classes must be models of a
Visitor Concept to offer Class N and Object Structure
a single way to use Visitors.

Figure 4 sketches the participants and their relations to
each other.



Figure 4: Class diagram illustrating Static Visitor



Table 4: Class–Responsibility–Collaboration Cards

Client
Instantiates Visitor
Passes Visitor to ObjectStructure

(a) Client

ClassN
Offers interface to Visitor

(b) Class N

ObjectStructure
Accepts Visitor
Contains instances of ClassN
Traverses through its
instances of

ClassN

(c) Object Structure

Visitor
Declares member func-
tion overload for each

ClassN

Is model of VisitorConcept
Potentially accumu-
lates some state

(d) Visitor

VisitorConcept
Declares interface to ObjectStructure

(e) Visitor Concept

4.6.2 Dynamics
The Client instantiates a Visitor and passes it to the in-

stance of Object Structure. The Object Structure traverses
through its elements and repeatedly and potentially recur-
sively calls the member function on the Visitor instance pre-
scribed by Visitor Concept passing the current element to
the Visitor. Because of strong typing the compiler binds this
function call early to the appropriate function overload.

The dynamics of Static Visitor is shown in Figure 5.

4.6.3 Rationale
It is well known that the application of the Visitor design

pattern in its original version introduces cyclic dependencies:
The Visitor depends on Class N and its siblings, and every
class that accepts a Visitor depends on the Visitor class.
Therefore the visitor especially works if the set of classes is
fixed and bounded. Then the Visitor helps to add arbitrary
functionality to existing classes without the need to modify
them. This dependency cycle isn’t eliminated with Static
Visitor, but it is shifted to the meta program. Because of
liability 2 in Section 4.7.1 it cannot be expressed in the code.

The original publication of Visitor uses runtime polymor-
phism to get double dispatch even in programming lan-
guages that don’t provide this as a language feature. Here
we use static polymorphism and lift the double dispatch to
the meta level.

Now classes accepting visitors do not depend on any visi-
tor interface any more. Instead they accept instances of all
visitor classes that are models of the same visitor concept.
As no virtual call is involved any more, the traversal through
the class hierarchy and the application of the visitor happen
without indirection and can be inlined by the compiler as
long as the recursion allows.

4.7 Resulting Context
The Clients can apply arbitrary functions to the elements

of Object Structure without knowledge in how to traverse
it. Class N and its siblings do not have to be modified to
add functionality common to all of them. For each new task
a new Visitor class will be developed.

4.7.1 Pros and Cons
The Static Visitor pattern has the following benefits:

1. Algorithms can be added. It’s easy to add further al-
gorithms.

2. No virtual calls to Visitor. As the Visitor is statically
bound to the parameter of the accept member func-
tion of Object Structure and Class N, the calls to the
overloaded member functions of the Visitor instance
are direct and can be inlined.

3. Accept does not depend on Visitor The accept mem-
ber functions do not depend on a Visitor interface any-
more. Instead they depend on a Visitor Concept.

The Static Visitor pattern has the following liability:

1. Extending Object Structure is hard. The Visitor and
Static Visitor patterns trade extensibility regarding
new classes in for extensibility regarding further al-
gorithms.

Additionally to these general pros and cons we identified
the following implementation specific ones.

The implementation technique of the Static Visitor pat-
tern shown has the following liability:

2. No concept of Visitor. The Visitors have to be models
of the same concept Visitor Concept: They all have to
provide member function overloads of the same name.
Such concepts cannot currently be expressed in C++.
There are matured proposals to overcome this issue in
a future version of the C++ standard, e.g. [18, 33].

4.8 Implementation
This section shows the implementation of the pure Static

Visitor design pattern. It is not combined with other varia-
tions of the same pattern.

4.8.1 Example Resolved
Listing 8 shows the two classes Directory and File. For

simplicity reasons it is assumed that file systems consist of
instances of these classes only. In the real UNIX world you
would additionally expect classes like SymbolicLink, De-

vice, and Process. Directory is a container that can hold
an arbitrary number of Directory and File instances. In-
stances of both Directory and File can be asked to tell



Figure 5: Sequence diagram illustrating Visitor

their size, a property with very different meaning among
the different file system objects.

Extensibility is given by the fact that instances of both
File and Directory can be visited by arbitrary visitors.
Here we substituted the different visitFile() and visit-

Directory() member functions present in Listing 6 by a
series of overloaded visit() member functions just to sup-
port visitor implementations as simple as Count as shown in
Listing 9.

Listing 8: Static Visitor

class File {
const std:: string name_;

public:
explicit File(const char name [])

: name_(name) {}
template < typename Visitor >
void accept(Visitor &v) {

v.visit (*this);
}
std:: size_t fileSize () const {

stat s;
stat(name_ ,&s);
return s.st_size;

}
};

class Directory {
const std:: string name_;
// Separate list types - thus double
// dispatch is not necessary
typedef std::list < Directory > dir_list ;
typedef std::list < File > file_list ;

public:
explicit Directory (const char name [])

: name_(name) {}
template < typename Visitor >
void accept(Visitor &v) {

v.visit (*this);
dir_list dir;
file_list file;
DIR *const dirp=opendir(name_ );
dirent *direntp =0;
while (( direntp=readdir(dirp ))) {

stat s;
stat(direntp ->d_name ,&s);

if(S_ISDIR(s.st_mode ))
dir.push_back (

static_cast < Directory >(
direntp ->d_name

)
);

else if(S_ISREG(s.st_mode ))
file.push_back (

static_cast < File >(
direntp ->d_name

)
);

}
closedir (dirp);
for(dir_list :: iterator

in(dir.begin ());
dir.end ()!=in;
++in

)
in ->accept(v);

for(file_list :: iterator
in(file.begin ());

file.end ()!=in;
++in

)
in ->accept(v);

}
std:: size_t size() const {

stat s;
stat(name_ ,&s);
return s.st_size;

}
};

Listing 9 shows two visitors. Both do not modify the in-
stances visited. AccumulateSize sums up the sizes of all
nodes encountered. Count simply counts all nodes regard-
less of their types. Both visitors carry some state. This
state can only be fed back to the client because the ac-

cept<>() member function templates in the listing before
pass the visitor by reference. Another implementation op-
tion of the accept<>() member function templates was to
return the visitor taken by value as the algorithms of the
C++ Standard Library do.



Listing 9: Two examples for visitors

class AccumulateSize {
std:: size_t size_;

public:
AccumulateSize () : size_ (0) {}
void visit(const File &f) {

size_ +=f.fileSize ();
}
void visit(const Directory &d) {

size_ +=d.size ();
}
std:: size_t size() const {

return size_;
}

};

class Count {
std:: size_t number_of_elements_ ;

public:
Count () : number_of_elements_ (0) {}
template < typename FileSystemElement >
void visit(const FileSystemElement &) {

++ number_of_elements_ ;
}
std:: size_t getNumber_of_elements ()

const {
return number_of_elements_ ;

}
};

Listing 10 shows how the parts proposed above work to-
gether to count the number of file system elements.

Listing 10: How to use visitors

int main () {
Directory dir("/home/bachlipp ");
Count ctr;
dir.accept(ctr);
std::cout <<"\"/ home/bachlipp \" contains "

<<" "
<<ctr.getNumber_of_elements ()-1
<<" elements ."
<<std::endl;

return EXIT_SUCCESS;
}

Different from the classic Visitor pattern the visitor can’t be
dynamically created using a creational design pattern—the
type of the visitor has to be known at compile time. A static
parallel to the creational patterns is proposed in Section 6.
Using this technique the visitor class could be hidden behind
a typedef after all.

Implementing visit() as a template member function as
with Count additionally breaks the dependency of the visitor
class from the classes of the elements visited. However, this
only works if the visitor does not really access the elements
as in the example or if the element classes all model the
same concept, which is not the case in the example, because
the member functions returning a size have different names
in File and Directory.

4.8.2 Relationship of Example and Participants
The code shown as an example above maps to the partic-

ipants defined in Section 4.6.1 as shown in Figure 5.

4.9 Variants
A particularly attractive variant is the combination with

a variation [68, pp 87–90] of Acyclic Visitor [38], [5, pp 322–
328]. It moves the dependency of the declaration of Visitor

from the class hierarchy to the definition of Visitor. To ac-
complish this the Visitor uses dynamic_cast<>() to convert
a reference to a common superclass to a reference to one of
the classes the hierarchy consists of. Combining Static Vis-
itor with this variant of Acyclic Visitor can further reduce
the dependencies between the interfaces of the visitor classes
and the classes visited.

Figure 6 and Listings 11 and 12 sketch this variant.

Listing 11: Static Visitor enabling the use of Acyclic Visitors

struct PolymorphObject {
virtual ~PolymorphObject () =0 {}

};

class File : public PolymorphObject {
...

public:
template < typename Visitor >
void accept(Visitor &);
...

};

class Directory : public PolymorphObject {
...

public:
template < typename Visitor >
void accept(Visitor &);
...

};

The details of File and Directory do not matter here. They
are similar to the implementation shown above in Listing 8.
The difference is that both specialize the nearly trivial class
PolymorphObject now. This is done for the sole purpose of
enabling polymorphism, as in C++ there is no standard root
class or interface of all classes like e.g. java.lang.Object in
Java [7, pp 47,110–112].

The modified visitor class example exploits this property
to move the dependencies from concrete file system element
classes from its header file to its implementation file only.

Listing 12: An example for an Acyclic Visitor

// Header file
class AccumulateSize {

std:: size_t size_;
public:

AccumulateSize ();
void visit(const PolymorphObject &);
std:: size_t size() const;

};

// Implementation file
AccumulateSize :: AccumulateSize ()

: size_ (0) {}

void AccumulateSize ::visit (
const PolymorphObject &o

) {
if(const File *const f

=dynamic_cast < const File * >(&o)
) {

size_ +=f->fileSize ();
return;

}
if(const Directory *const d

=dynamic_cast < const Directory * >(
&o

)
) {

size_ +=d->size ();



Table 5: Relationship of Code and Participants

Code Participant

class Directory, class File ClassN
int main() Client
class Directory ObjectStructure
class Count Visitor
Implicit. See liability 2 in Section 4.7.1. VisitorConcept

Figure 6: Class diagram illustrating Yet Another Acyclic Visitor



return;
}
// Ignore instance of unknown file
// system element type

}

std:: size_t AccumulateSize ::size() const
{

return size_;
}

Without establishing the relation between the classes rep-
resenting file system elements and the common base class
with at least one virtual member function the visitor classes
could not benefit from dynamic_cast<>().

Compared to the original Visitor design pattern the vir-
tual visit*() member functions and the interface Visi-

torIf, which declares them, became replaced by static poly-
morphism in terms of the template member functions ac-

cept<>(), that now take any visitor that is a model of a
visitor concept. The static selection of the visit*() mem-
ber functions became replaced by dynamic polymorphism
in terms of dynamic_cast<>(). So the original pattern is
nearly turned upside down—runtime polymorphism becomes
static polymorphism and vice versa—leading to a vast reduc-
tion of bidirectional dependencies between the visitor inter-
face and the class hierarchy visited.

4.10 Known Uses
Examples of Static Visitor can be found in existing soft-

ware.

4.10.1 Boost.Variant
Boost.Variant [20] represents a C++ container that holds

exactly one value of arbitrary type. This kind of classes is
often used when interfacing a strongly typed language like
C++ with a scripting language or with a remoting library
like MS COM. Boost.Variant provides both a runtime type
checked access and a compile time type checked access to the
value stored. The latter uses the Static Visitor pattern by
means of the boost::apply_visitor<>() member function
template that fulfills the purpose accept<>() fulfills above.

4.10.2 Boost Graph library
The Boost Graph library [57, 59] defines several Visitor

Concepts. There is no need for a common Visitor base class
for each concept, because the Static Visitor pattern is used.
For example the template function boost::depth_first_-

search<>() accepts all Visitor classes that are models of the
DFSVisitor concept and plays the role of the accept<>()

member function templates in the description above.

4.11 Related Patterns
The Static Strategy pattern (see Section 3) also inverts

control flow.
The Static Visitor is an Internal resp. Passive Iterator

[29, pp 339–340,348–352] executing different Static Strate-
gies depending on overloading or on the names of member
functions.

The Visitor design pattern uses (runtime) polymorphism
to allow for substitution of a concrete visitor by another im-
plementation. The Static Visitor pattern is its static coun-
terpart.

5. STATIC ADAPTER
A class based pattern to map types to behavior. The

Static Adapter pattern helps decouple an application from
a single platform. It ensures that all adapters reliably model
the same concept.

5.1 Also known as
Wrapper Facade [56, pp 66–67]

5.2 Intent
Adapt a series of different interfaces to a common inter-

face. The choice of which interface is actually to be adapted
can be done at compile time.

5.3 Example
Consider that a library will be built to abstract from dif-

ferent concurrency control primitives on different platforms.
For example there will be a class ReadersWriter_Mutex pro-
viding the member functions readAcquire(), writeAcqui-
re(), and release(). The implementation of the class trans-
lates platform specific interfaces—most likely imperative and
not object oriented ones—into an object oriented interface
common to a variety of platforms. The constructor will per-
form initialization of the platform specific primitive if neces-
sary, and the destructor will free resources again if required.

Traditionally such code would either use the Adapter de-
sign pattern [23], or the original Wrapper Facade pattern
is used with conditional compilation, i.e. the interface and
especially the implementation is interspersed with prepro-
cessor instructions as shown in Listing 13.

Listing 13: Using conditional compilation to adapt platform
specific readers / writer locks to a uniform interface

class ReadersWriter_Mutex {
#if defined(_WIN32)

CRITICAL_SECTION lock_;
#elif defined(UNIX)

pthread_rwlock_t lock_;
#else /* defined(_WIN32) */

#error ReadersWriter_Mutex : Fatal
error: Platform not supported .

#endif /* defined(_WIN32) */
// No copy allowed , therefore private
// and declared only
ReadersWriter_Mutex (

const ReadersWriter_Mutex &
);
// No assignment allowed , therefore
// private and declared only
ReadersWriter_Mutex &operator =(

const ReadersWriter_Mutex &
);

public:
ReadersWriter_Mutex () {

#if defined(_WIN32)
InitializeCriticalSection (& lock_ );

#elif defined(UNIX)
if(pthread_rwlock_init (&lock_ ,NULL))

throw std:: runtime_error(
"Call to "
"\" pthread_rwlock_init ()\" "
" failed."

);
#endif /* defined(_WIN32) */

}
~ReadersWriter_Mutex () {

#if defined(_WIN32)
DeleteCriticalSection (& lock_ );



#elif defined(UNIX)
assert (! pthread_rwlock_destroy (

&lock_
)

);
#endif /* defined(_WIN32) */

}
void readAcquire () {

#if defined(_WIN32)
EnterCriticalSection (&lock_ );

#elif defined(UNIX)
if(pthread_rwlock_rdlock (& lock_ ))

throw std:: runtime_error(
"Call to "
"\" pthread_rwlock_rdlock ()\" "
"failed."

);
#endif /* defined(_WIN32) */

}
void writeAcquire() {

#if defined(_WIN32)
EnterCriticalSection (&lock_ );

#elif defined(UNIX)
if(pthread_rwlock_wrlock (& lock_ ))

throw std:: runtime_error(
"Call to "
"\" pthread_rwlock_wrlock ()\" "
"failed."

);
#endif /* defined(_WIN32) */

}
void release () {

#if defined(_WIN32)
LeaveCriticalSection (&lock_ );

#elif defined(UNIX)
if(pthread_rwlock_unlock (& lock_ ))

throw std:: runtime_error(
"Call to "
"\" pthread_rwlock_unlock ()\" "
"failed."

);
#endif /* defined(_WIN32) */

}
};

For every member function and for the attribute conditional
compilation is used here.

Preprocessor instructions are somewhat outside of the pro-
gramming language used, however. This solution is not very
elegant, the compiler cannot assist much in detecting errors,
and maintenance likely becomes a nightmare. So the goal is
to reduce conditional compilation to a minimum.

5.4 Context
Different platforms potentially adhere different standards.

A mapping was defined to provide a common programming
interface, sometimes referred to as a portable runtime or a
Wrapper Facade.

5.5 Problem
How can the compiler(s) guarantee, that all implemen-

tations for different platforms model the same concept (e.g.
provide the member functions readAcquire(), writeAcqui-
re(), and release())? The Wrapper Facade pattern sug-
gests a way to provide a common abstraction of platform
specific interfaces to user code, but does not discuss in de-
tail how to adapt this abstraction to more than one platform
[10].

5.6 Forces

• The more platforms to be supported and the more de-
grees of freedom static configuration by means of the
domain specific language available, ensuring that each
variant compiles and works becomes a nightmare with-
out processes and tools that help.

• Explicit representation of (static) configurability makes
the code more understandable.

• Dynamic configuration by means of the Adapter design
pattern is not an option for code that would benefit
from early binding and inlining.

5.7 Solution
Static polymorphism can be used to statically configure

the Wrapper Facade to choose the correct, platform specific
implementation. The configuration has to be restricted to
the member functions and not to the whole class to ensure
that the interface remains identical on all platforms.

A first sketch of the solution is shown in Table 6.

5.7.1 Participants

Client Client code instantiates the Static Adapter template
for a Platform Type.

PlatformType A low Layer [11], likely with an imperative
interface. The interfaces handling different Platform
Types might differ significantly. Platform Types often
represent entities that can be acquired and then re-
leased again. Such entities are referred to as resources.
A Platform Type remains fixed during runtime of the
application and most likely for even much longer peri-
ods.

SpecializationOfMemberFunctions For each Platform
Type all member functions of the Static Adapter are
specialized and defined.

StaticAdapter A class template declaring the platform in-
dependent static interface of the Wrapper Facade. The
member functions are declared, but not defined. There-
fore the template parameter is not restricted to a cer-
tain concept.

Figure 7 sketches the participants and their relations to each
other.

5.7.2 Dynamics
The Client binds the template parameter of Static Adapter

to an appropriate Platform Type. Most often it does so by
a typedef. The resulting class will be instantiated then.
Within the same translation unit there are declarations of
Specializations of Member Functions. During binding of
template parameters the compiler records the respective sym-
bols to the object code, and during link editing the linker will
take the appropriate definitions of Specialization Of Mem-
berFunctions.

5.7.3 Rationale
If runtime efficiency is critical dynamic configuration would

lead to systems with virtual calls and less opportunities for
inlining. Given that there is no need to let the configuration



Table 6: Class–Responsibility–Collaboration Cards

Client
Instantiates template PlatformType, Static

Adapter, Special-
ization of Member
Functions

(a) Client

PlatformType
Binds template argu-
ment of

Static Adapter

Fixed for a single Client
Provides interface to Specialization of Mem-

ber Functions

(b) Platform Type

SpecializationOfMemberFunctions
Adapts PlatformType
Statically implements Static Adapter

(c) Specialization of Member Functions

StaticAdapter
Provides platform ag-
nostic interface to

Client

(d) Static Adapter

Figure 7: Class diagram illustrating Static Adapter



depend on e.g. user input or configuration files, then static
configuration can solve these efficiency problems. Static
polymorphism is used to let take Static Adapter possibly
totally different implementations from one Platform Type
to another.

This pattern uses explicit specialization of member func-
tions, not of the whole class template. This ensures that
the interface of the Wrapper Facade is the same for each
Platform Type. By some sense Static Adapter is a concept
the Client can trust in, and the instantiated template which
binds a Platform Type to the template argument of Static
Adapter and implements the member functions by means of
their Specializations is a model of the concept.

This design pattern is not restricted to the implementation
technique promoted. Other techniques are elaborated on in
Sections 5.10 and 5.11, respectively.

5.8 Resulting Context
For each Platform Type there is a Wrapper Facade. The

compiler guarantees that these Wrapper Facades do not dif-
fer regarding to their interfaces.

5.8.1 Pros and Cons
The Static Adapter pattern has the following benefits:

1. Runtime efficiency. As with Wrapper Facade this pat-
tern tries to keep the platform abstraction Layer as
thin as possible.

2. Cross–platform contract. Static Adapter provides a
cross–platform contract. The Client can trust in the
concept defined by the Static Adapter.

The Static Adapter pattern has the following liability:

1. Static configuration itself must be portable. The Static
Adapter pattern presumes a portable technique for
static configuration. The more platforms have to be
supported the more restrictions this requirement will
impose.

Additionally to these general pros and cons we identified
the following implementation specific ones.

The implementation technique of the Static Adapter pat-
tern shown has the following benefits:

3. More than one specialization per platform. This special
technique allows for more than a single specialization
for specific platforms, while on other platforms there
might be only a single specialization. See Section 5.9
for an example. Providing a toolset from which a tool
can be chosen by means of a simple typedef supports
delaying irreversible decisions, an Agile and lean prin-
ciple [47, 73].

4. One language only. An implementation based on meta-
programming techniques of the programming language
used anyway means that all can be done within a sin-
gle environment. There is no need to use another tool
to perform static configuration.

The implementation technique of the Static Adapter pattern
shown has the following liability:

2. For some compilers everything must be inlined. Then
this technique reveals implementation details in header

files. This might not be appropriate. There are notable
exceptions among the compilers where in the case of
explicit specializations the definitions do not have to be
inlined anymore and can go into separate implementa-
tion files because of increasing support of [6, 14.7.3/5],
however.

5.9 Implementation
Static polymorphism is implemented using specialization

of member function templates.

5.9.1 Example Resolved
Listing 14 shows two different implementations of a Wrap-

per Facade. The implementation for CRITICAL_SECTIONs
works on MS Win32 and does not make a difference between
reading and writing. The implementation for pthread_rw-

lock_t works on POSIX 1003.1c compliant systems and
treats reading and writing differently.

Listing 14: Statically adapting platform specific readers /
writer locks to a uniform interface

// Header file
template < typename Lock >
class ReadersWriter_Mutex {

Lock lock_;
// No copy allowed , therefore private
// and declared only
ReadersWriter_Mutex (

const ReadersWriter_Mutex &
);
// No assignment allowed , therefore
// private and declared only
ReadersWriter_Mutex &operator =(

const ReadersWriter_Mutex &
);

public:
ReadersWriter_Mutex ();
~ReadersWriter_Mutex ();
void readAcquire ();
void writeAcquire();
void release ();

};

// Specializations of member functions
#ifdef _WIN32
template <>
ReadersWriter_Mutex <

CRITICAL_SECTION
>:: ReadersWriter_Mutex ();

template <>
ReadersWriter_Mutex <

CRITICAL_SECTION
>::~ ReadersWriter_Mutex ();

template <>
void ReadersWriter_Mutex <

CRITICAL_SECTION
>:: readAcquire ();

template <>
void ReadersWriter_Mutex <

CRITICAL_SECTION
>:: writeAcquire ();

template <>
void ReadersWriter_Mutex <

CRITICAL_SECTION
>:: release ();
#endif /* defined(_WIN32) */



#ifdef UNIX
template <>
ReadersWriter_Mutex <

pthread_rwlock_t
>:: ReadersWriter_Mutex ();

template <>
ReadersWriter_Mutex <

pthread_rwlock_t
>::~ ReadersWriter_Mutex ();

template <>
void ReadersWriter_Mutex <

pthread_rwlock_t
>:: readAcquire ();

template <>
void ReadersWriter_Mutex <

pthread_rwlock_t
>:: writeAcquire ();

template <>
void ReadersWriter_Mutex <

pthread_rwlock_t
>:: release ();
#endif /* defined(UNIX) */

// Implementation file
#ifdef _WIN32
ReadersWriter_Mutex <

CRITICAL_SECTION
>:: ReadersWriter_Mutex () {

InitializeCriticalSection (&lock_ );
}

ReadersWriter_Mutex <
CRITICAL_SECTION

>::~ ReadersWriter_Mutex () {
DeleteCriticalSection (& lock_ );

}

void ReadersWriter_Mutex <
CRITICAL_SECTION

>:: readAcquire () {
EnterCriticalSection (& lock_ );

}

void ReadersWriter_Mutex <
CRITICAL_SECTION

>:: writeAcquire() {
EnterCriticalSection (& lock_ );

}

void ReadersWriter_Mutex <
CRITICAL_SECTION

>:: release () {
LeaveCriticalSection (& lock_ );

}
#endif /* defined(_WIN32) */

#ifdef UNIX
ReadersWriter_Mutex <

pthread_rwlock_t
>:: ReadersWriter_Mutex () {

if(pthread_rwlock_init (&lock_ ,NULL))
throw std:: runtime_error(

"Call to \" pthread_rwlock_init ()\""
" failed."

);
}

ReadersWriter_Mutex <

pthread_rwlock_t
>::~ ReadersWriter_Mutex () {

assert(! pthread_rwlock_destroy (&lock_ ));
}

void ReadersWriter_Mutex <
pthread_rwlock_t

>:: readAcquire () {
if( pthread_rwlock_rdlock (& lock_ ))

throw std:: runtime_error(
"Call to \" pthread_rwlock_rdlock ()\""
" failed."

);
}

void ReadersWriter_Mutex <
pthread_rwlock_t

>:: writeAcquire() {
if( pthread_rwlock_wrlock (& lock_ ))

throw std:: runtime_error(
"Call to \" pthread_rwlock_wrlock ()\""
" failed."

);
}

void ReadersWriter_Mutex <
pthread_rwlock_t

>:: release () {
if( pthread_rwlock_unlock (& lock_ ))

throw std:: runtime_error(
"Call to \" pthread_rwlock_unlock ()\""
" failed."

);
}
#endif /* defined(UNIX) */

With this code in place the configuration consists of a simple
typedef ReadersWriter_Mutex< platformLock > rw_mu-

tex_t; where platformLock is one of the locks the tem-
plate is specialized for as the class template lacks a default
implementation. As you can see the MS Windows imple-
mentation does not use readers / writer locking in its im-
plementation; with the above approach it is also possible
to add another specialization for the UNIX platform family
for pthread_mutex_t which does not use readers / writer
locking in its implementation, too. Providing multiple spe-
cializations for a single platform can be beneficial in cases
where special implementations have side effects not appro-
priate in certain situations. An example for this was an MS
Windows emulation for real readers / writer locks that allo-
cates handles. Each use of such locks in fields of unknown
size must be avoided not to run out of handles, so in this
case you are better off using CRITICAL_SECTIONs.

This technique results in a great reduction of preprocessor
instructions compared to Listing 13. The remaining condi-
tional compilation code serves for two purposes: First, the
correct typedef has to be selected. This could alternatively
be done by the Static Abstract Type Factory pattern pro-
posed in Section 6 as shown in Listing 17. The second pur-
pose is to hide platform specific types from the compilers on
all other platforms—otherwise compilation errors are likely.

The Listings 15 and 16 show how the parts proposed above
work together to instantiate and use a readers / writer lock.

Listing 15: How to use Static Adapter

int main() {
#if defined(_WIN32)

typedef ReadersWriter_Mutex <
CRITICAL_SECTION



> rw_mutex ;
#elif defined(UNIX)

#if defined(RW_LOCKING )
typedef ReadersWriter_Mutex <

pthread_rwlock_t
> rw_mutex ;

#elif defined( NO_RW_LOCKING)
typedef ReadersWriter_Mutex <

pthread_mutex_t
> rw_mutex ;

#else /* defined(RW_LOCKING ) */
#error main (): Fatal error: Missing

or invalid configuration define.
#endif /* defined(RW_LOCKING ) */

#else /* defined(_WIN32) */
#error main (): Fatal error: Platform

not supported .
#endif /* defined(_WIN32) */
rw_mutex lock;
...
lock.writeAcquire ();
...
lock.release ();
...
return EXIT_SUCCESS;

}

The compilation includes the configuration step. Note that
conditional compilation fulfills two different purposes here:
NO_RW_LOCKING and RW_LOCKING denote alternatives valid
(though not necessarily implemented) on each platform,
whereas _WIN32 and UNIX here simply prevent the compiler
to fail because of unknown types only defined on some plat-
forms. In Listing 13 these two purposes were interspersed
with each other.

Listing 16: How to compile Static Adapter

g++ -DRW_LOCKING -DUNIX -c client.cxx
-o client.o

Different from the Adapter pattern the concrete adapter
can’t be dynamically created using a creational design pat-
tern—the type of the adapter has to be known at compile
time. A static parallel to the creational patterns is proposed
in Section 6. Using this technique the adapter class could
be hidden behind a typedef after all.

5.9.2 Relationship of Example and Participants
The code shown as an example above maps to the partic-

ipants defined in Section 5.7.1 as shown in Figure 7.

5.10 Variants
In languages which have the distinction between header

and source files one header and as many source files can
be defined as platforms have to be supported. The build
mechanism, e.g. Make, then determines which of the source
files to compile. If more than one implementation exists for
a Platform Type, then the decision of which one to take can
be deferred until link–edit time.

A macro processor like M4 can be used to generate plat-
form specific code.

Instead of an Adapter style implementation [10] suggests
the use of Static Strategy (see Section 3) to solve the same
problem.

Adaptation to the platform can also happen at the link–
editing step. To do so you have to factor out platform spe-
cific functionality into static libraries and distribute your
application as a collection of static libraries along with an

appropriate installation tool. Similar approaches also work
for the runtime linker and shared libraries, respectively. The
precondition in both cases is that the binary format must
not be specific to one platform only.

5.11 Known Uses
Examples of Static Adapter can be found in existing soft-

ware. Though none of the following libraries uses the imple-
mentation technique presented in Section 5.9, nevertheless
all of them solve the problem to statically adapt Wrapper
Facades to a variety of different platforms.

5.11.1 ACE
The ADAPTIVE Communication Environment (ACE)

consists of multiple Layers. Wrapper Facades build the low-
est Layer. ACE supports many platforms and is written in
C++. The Wrapper Facades are organized as one header
and one implementation file each. The platform differences
are implemented using conditional compilation within the
bodies of the member functions. Configuration is done by
preprocessor constants defined in a central header file in-
cluded by all files. A header file appropriate for the plat-
form given has either to be manually declared as the central
header file by the user before ACE is going to be compiled
or can be generated using GNU Autoconf.

5.11.2 APR
The Apache Portable Runtime (APR) consists of Wrap-

per Facades. It supports BeOS, Novell Netware, IBM OS/2,
UNIXes, and MS Windows and is written in C. Each Wrap-
per Facade is declared in one header file. For each plat-
form supported there is a corresponding implementation file.
Which implementation file to compile and link is chosen
by means of the Python script gen_build.py called from
buildconf. After this static configuration step GNU Auto-
conf configures remaining degrees of freedom. Then APR
can be compiled, linked, and installed using Make.

5.11.3 Boost.Threads
The Boost project contains a set of Wrapper Facades for

multithreading [36]. It supports POSIX, Apple OS X and
MS Win32 and is written in C++. Platform independence is
gained by conditional compilation within the bodies of mem-
ber functions. The static configuration is done by Perforce
Jam files, which force appropriate preprocessor constants to
be set.

5.11.4 GTK+ GLib
The GTK+ library forms the basic layer of Gimp and

Gnome. Its GLib base Layer is a counterexample for Static
Adapter, as the Adapter pattern is being used instead.

5.11.5 Loki‹library›
The Loki library contains a set of multithreading Wrap-

per Facades [5, pp 391–402]. It supports POSIX and MS
Win32 and is written in C++. The code is completely in-
lined within a single header file. Conditional compilation
determines which implementation to take. The configura-
tion relies on preprocessor constants set differently by the
compilers on different platforms or set within platform spe-
cific standard header files.



Table 7: Relationship of Code and Participants

Code Participant

int main() Client
CRITICAL_SECTION, pthread_mutex_t,
pthread_rwlock_t

PlatformType

ReadersWriter_Mutex<>-

::ReadersWriter_Mutex(),
ReadersWriter_Mutex<>-

::~ReadersWriter_Mutex(),
void ReadersWriter_Mutex<>::readAcquire(),
void ReadersWriter_Mutex<>::writeAcquire(),
void ReadersWriter_Mutex<>::release()

SpecializationOfMemberFunctions

template<> class ReadersWriter_Mutex StaticAdapter

5.11.6 NSPR
The Netscape Portable Runtime consists of Wrapper Fa-

cades. It supports POSIX and many other flavours of UNIX,
Apple Mac and MS Win32 and is written in C. NSPR is im-
plemented using a mixed approach: First, for each Wrapper
Facade there are one header file and many implementation
files for different platforms. Second, further static config-
uration is established by means of conditional compilation
within an implementation file appropriate to the platform.
A GNU Autoconf script both sets preprocessor constants for
conditional compilation and Make variables to compile and
link the correct implementation file.

5.11.7 Oracle DBMS
During the installation of the Oracle Database Manage-

ment System on UNIX a so–called linking phase takes place.
This is an example for adaptation at link–editing time.

5.11.8 SAL
Open Office System Abstraction Layer (SAL) consists of

Wrapper Facades. It supports both UNIX systems which
adhere to the POSIX standards and MS Windows. Each
Wrapper Facade is splitted into two halfs. The lower level
C Layer consists of one header and two implementation files
each. A Perl build mechanism determines which of the im-
plementation files is compiled and linked. On top of this
a thin and completely inlined C++ Layer establishs object
oriented abstractions.

5.12 Related Patterns
The Wrapper Facade pattern proposes a way to abstract

from a specific platform by defining an interface common
to all platforms. The implementation translates imperative
application programming interfaces into an object oriented
representation and unifies return values and the signaliza-
tion of error conditions. The description of Wrapper Facade
states the need for such an abstraction layer, but it does
not discuss ways to ensure that exactly the same interface
is implemented for each platform.

The Adapter design pattern uses (runtime) polymorphism
to allow for changes of concrete adapters. The compiler
guarantees that each adapter implements the same interface.
The Static Adapter pattern is its static counterpart.

6. STATIC ABSTRACT TYPE FACTORY
A class based pattern to map types to types.

6.1 Also known as
Generator [17, pp 397–501]

Type Selection [5, pp 65–67]
Type Traits [5, pp 74–83], [67]

6.2 Intent
The Static Abstract Type Factory provides an extensible

means to associate expressions in the domain specific lan-
guage with application data types.

6.3 Example
Different platforms provide different data types for ba-

sically the same entity. A POSIX 1003.1c compliant UNIX
system represents mutual exclusion locks by the type
pthread_mutex_t, on MS Win32 CRITICAL_SECTION can be
taken. Depending on an expression in the domain specific
language the correct type should be chosen.

A traditional approach was to implement one header file
for each platform, each defining the same type names. Ei-
ther before compilation one of these header files has to be
renamed to a predefined file name that is used in the in-

clude preprocessor directives, or conditional compilation is
used to include the appropriate header file into the appli-
cation code. One problem with this approach is that the
units of configurability are compilation units, a quite coarse
entity.

6.4 Context
A domain specific language is given. The application to be

build for a special static configuration will consist of types,
data, and behavior.

6.5 Problem
How to associate application data types to the different

static configurations? How to encapsulate variation in types?

6.6 Forces

• The association of a certain static configuration to ap-
plication properties is unidirectional.

• The domain specific language should be agnostic about
these associations.

• The association mechanism should be extensible.



6.7 Solution
Static polymorphism can be used to statically configure

typedef members of a class template. For this to happen
specializations of the class template are defined represent-
ing the associations resulting from different static configu-
rations.

A first sketch of the solution is shown in Table 8.

6.7.1 Participants

Configuration An expression in the domain specific lan-
guage to represent a special static configuration.

Client Client code instantiates the Static Abstract Type
Factory template for a Configuration. It then uses one
of its member types or type definitions.

SpecializationOfClassTemplate There’s one specializa-
tion of Static Abstract Type Factory for each Configu-
ration supported. As a model of Static Abstract Type
Factory Concept it defines member types and provides
them under a unified type name to the Client.

StaticAbstractTypeFactory A class template just for the
sake of defining specializations.

StaticAbstractTypeFactoryConcept Every Specializa-
tion of Class Template must define the same type names
given by this concept to offer a consistent interface to
the Client.

Figure 8 sketches the participants and their relations to each
other.

6.7.2 Dynamics
The Client binds the template parameter of Static Ab-

stract Type Factory to an appropriate Configuration. Most
often it does so by a typedef. Within the same translation
unit there are Specializations of Class Template. During
binding the compiler takes the appropriate specialization
instead of the more general Static Abstract Type Factory
template. The Client then uses the member types defined
within Specialization of Class Template to instantiate them.

6.7.3 Rationale
As all Specializations of Class Template provide the same

member type name for potentially different types which de-
pend on Configuration, the implications of a certain con-
figuration can be hidden from the Client. Static Abstract
Type Factory associates a static configuration to a config-
uration specific type. This association is extensible in two
ways: First, further specializations can be added to support
more configurations. Second, this pattern allows to associate
any number of configuration dependend types with a static
configuration by adding either another StaticAbstractType-
Factory and appropriate specializations or another member
type or type name to all existing specializations of a Stati-
cAbstractTypeFactory.

6.8 Resulting Context
The Client can ask the Static Abstract Type Factory for a

type passing an expression in the domain specific language
and does not need to care about the details. The Static
Abstract Type Factory maps these configuration expressions
to appropriate types.

6.8.1 Pros and Cons
The Static Abstract Type Factory pattern has the follow-

ing benefits:

1. Arbitrarily complex mappings at compile time. This
pattern allows to perform arbitrarily complex map-
pings from a representation of a static configuration
to types at compile time.

2. Extensibility. It is easy to add new specializations for
new static configurations.

3. Parallel usage possible. It is possible to use multiple
specializations for different configurations in parallel
in the same file.

Additionally to these general pros and cons we identified
the following implementation specific ones.

The implementation technique of the Static Abstract Type
Factory pattern shown has the following liabilities:

1. Inheritance relations among Configuration not consid-
ered. Say you organize your domain specific classes
in a hierarchy. A Linux and a SunSolaris class may
inherit from a Unix class. If a template specialization
exists for Unix, but not for Linux, then the lookup of
template specializations for configuration Linux will
result in the non specialized class template, not in the
specialization for Unix. The need to also specialize the
class template for Linux and SunSolaris will probably
result in double work.

2. No concept of Specialization of Class Template. The
specializations of StaticAbstractTypeFactory have to
be models of the same concept: They all have to pro-
vide the same member types or type names. Such con-
cepts cannot currently be expressed in C++. There
are matured proposals to overcome this issue in a fu-
ture version of the C++ standard, e.g. [18, 33].

6.9 Implementation
Here the whole class template is going to be specialized.

In fact the default class template can be trivial. This Ab-
stract Factory [22] depends on static configuration and cre-
ates types.

6.9.1 Example Resolved
Listing 17 proposes the class template Multithreading<>

that can be instantiated for either MSWin32 or Unix. Depend-
ing on the template instantiation the member type Multi-

threading<>::rw_lock is another name for either CRITI-

CAL_SECTION or pthread_rwlock_t. Multithreading<>

could be extended to also hold type definitions for other
types of the multithreading domain, e.g. condition variables,
thread identifiers, semaphores, and keys identifying thread
local storage.

Listing 17: Portable association of an operating system
with certain platform specific types combined with Static
Adapter (see Section 5)

// DSL
struct MSWin32 {};
struct Unix {};

template < typename OperatingSystem >
struct Multithreading {};



Table 8: Class–Responsibility–Collaboration Cards

Configuration
Determines a static
configuration

(a) Configuration

Client
Instantiates template StaticAbstract-

TypeFactory, Spe-
cializationOfClass-
Template, Configura-
tion

(b) Client

SpecializationOfClassTemplate
Is model of StaticAbstractType-

FactoryConcept
Specialized for Configuration
Specializes StaticAbstract-

TypeFactory
Defines unified name
for type

(c) Specialization of Class Template

StaticAbstractTypeFactory
Exists just to enable
specializations

(d) Static Abstract Type Factory

StaticAbstractTypeFactoryConcept
Declares interface to Client

(e) Static Abstract Type Factory Concept

Figure 8: Class diagram illustrating Static Abstract Type Factory



// Specializations of class template
#ifdef _WIN32
typedef MSWin32 OS;

template <>
struct Multithreading < MSWin32 > {

typedef CRITICAL_SECTION rw_lock;
// Other types ...

};
#endif /* defined(_WIN32) */

#ifdef UNIX
typedef Unix OS;

template <>
struct Multithreading < Unix > {

typedef pthread_rwlock_t rw_lock;
// Other types ...

};
#endif /* defined(UNIX) */

...

typedef Multithreading < OS >
multithreading_type ;

...

// Apply Static Adapter on a static type ,
// which real name is hidden from code
ReadersWriter_Mutex <

multithreading_type :: rw_lock
> rw_mutex ;

6.9.2 Relationship of Example and Participants
The code shown as an example above maps to the partic-

ipants defined in Section 6.7.1 as shown in Figure 9.

6.10 Variants
The technique of specialization of the class template can

also be used to let a class template define different val-
ues to a member enum for its specializations and thus map
types to integer constants. Often a standard value will then
be defined by the class template, which will be overridden
for certain template arguments by means of specializations.
This is the most popular meaning of a Trait. The tech-
nique can similarly be modified to map types to behavior;
std::numeric_limits<> from the C++ Standard Library
and Static Adapter (see Section 5) are examples for this
case; as pointed out in Section 5.7.3 the mapping of types to
behavior already lets you represent concepts in C++, which
is not the case with mappings to types or numbers.

The injection of members into class templates and its spe-
cializations can also be performed by public inheritance in-
stead of explicit definition.

Templates can also be defined with integral template pa-
rameters instead of type parameters. Using specializations
on certain values integers can be mapped to types, numbers,
or behavior, respectively.

6.11 Known Uses
Examples of Static Abstract Type Factory can be found

in existing software.

6.11.1 Boost.TypeTraits
Boost.TypeTraits [3] provide both class templates to get

meta information on types and class templates to transform

types. The first kind of templates works with explicit spe-
cialization and returns integral constants, while the second
kind works with partial specialization and contains member
type definitions.

6.11.2 C++std::iterator_traits<>

The C++ way of Iterators [29] provides a mechanism to
statically gather information on e.g. the type an Iterator
points to by means of the class template std::iterator_-

traits<>. For most Iterator types the default implementa-
tion of this class template will fit. If not, std::iterator_-
traits<> can be explicitly or partially specialized on the
type of the uncommon Iterator. The C++ standard pro-
vides such a partial specialization for pointers to arbitrary
types.

6.11.3 The Matrix Template Library
The Matrix Template Library [58, 17] uses Type Gener-

ators to provide tools for linear algebra. The matrix types
are the result of static configuration with many degrees of
freedom. The client can request e.g. full or sparse matrix
types to be generated at compile time.

6.12 Related Patterns
The Abstract Factory design pattern uses runtime poly-

morphism to allow for the substitution of a concrete instance
factory by another one. The Static Abstract Type Factory
pattern uses compile time polymorphism to allow for the
substitution of a type factory by another one.

7. STATIC FRAMEWORK

It may well be that in principle we cannot make any
machine the elements of whose behavior we cannot
comprehend sooner or later. This does not mean in
any way that we shall be able to comprehend these
elements in substantially less time than the time
required for operation of the machine, or even within
any given number of years or generations.

Norbert Wiener [70, p 1355]

Ready–made software artifact designed reusable with help
of static patterns

7.1 Intent
Portable code must meet performance requirements on

each platform. Static Frameworks assist you in writing code
that can be adapted more easily to multiple platforms while
making sure that on each platform the application can fulfill
its original purpose.

7.2 Example
Server design involves decisions on how to deal with con-

current service requests issued by clients. This decision de-
pends on the target platform. Some platforms are good at
multiprocessing, some perform better if multithreading is
used instead, and other platforms might show their full po-
tential with event based designs. Therefore it does not suf-
fice to treat platform dependencies on a low level Wrapper
Facade [56] Layer [11] only. Instead experience is made avail-
able in terms of Frameworks [50] that use design patterns
to allow for adaptation to certain environments. Listing 18
shows a simple class that frees the user from the burden of
portable thread handling.



Table 9: Relationship of Code and Participants

Code Participant

typedef MSWin32 OS, typedef Unix OS Configuration
typedef Multithreading< OS > multithread-

ing_type

Client

template<> struct Multithread-

ing< MSWin32 >, template<> struct Multi-

threading< Unix >

SpecializationOfClassTemplate

template<> struct Multithreading StaticAbstractTypeFactory
Implicit. See liability 2 in Section 6.8.1. StaticAbstractTypeFactoryConcept

Listing 18: Black–Box Framework

// Header file
extern "C" {

void *svc_run(void *);
}

struct Method_Request {
virtual ~Method_Request ();
virtual void call() =0;

};

class MQ_Scheduler {
friend void *svc_run(void *);
struct Impl;
typedef std::auto_ptr < Impl > impl_type ;
impl_type impl_;

public:
explicit MQ_Scheduler(size_t);
~MQ_Scheduler ();
// Transfers ownership
void insert(Method_Request *);

};

// Implementation file
struct MQ_Scheduler:: Impl {

Activation_List act_queue_ ;
static impl_type createImpl (size_t);
explicit Impl(size_t high_water_mark )

: act_queue_ (high_water_mark ) {}
virtual ~Impl() {}
virtual void createUE (MQ_Scheduler &)=0;
virtual void joinUE() =0;

};

MQ_Scheduler:: MQ_Scheduler(
size_t high_water_mark

)
: impl_(Impl:: createImpl (

high_water_mark
)) {

impl_ ->createUE (*this);
}

MQ_Scheduler ::~ MQ_Scheduler () {
// Poor men’s approach to cancellation
// - initiate
impl_ ->act_queue_ .insert (0);
impl_ ->joinUE ();

}

void MQ_Scheduler :: insert(
Method_Request *method_request

) {
impl_ ->act_queue_ .insert(method_request );

}

void *svc_run(void *arg) {
assert(arg);

MQ_Scheduler :: impl_type *const impl
=static_cast < MQ_Scheduler * >(

arg
)->impl_;

for (;;) {
Method_Request *mr;
try {

// Block until the queue is not
// empty
impl ->act_queue_ .remove(&mr);
// Poor men’s approach to
// cancellation - react
if(!mr)

break;
mr ->call ();

}
catch (...) {
}
delete mr;

}
return 0;

}

#if defined(_WIN32)

class Win32Impl
: public MQ_Scheduler :: Impl {
HANDLE thread_;
// No copy allowed , therefore private
// and declared only
Win32Impl (const Win32Impl &);
// No assignment allowed , therefore
// private and declared only
Win32Impl &operator =( const Win32Impl &);

public:
Win32Impl (size_t high_water_mark )

: MQ_Scheduler ::Impl(high_water_mark ),
thread_ (0) {}

void createUE (MQ_Scheduler &sched) {
thread_=reinterpret_cast < HANDLE >(

_beginthreadex(
0,0,svc_run ,&sched ,0,0

)
);

if(! thread_)
throw std:: runtime_error(

"Call to \" _beginthreadex ()\" "
"failed."

);
}
void joinUE() {

if(thread_)
if(WAIT_FAILED == WaitForSingleObject (

thread_ ,INFINITE
)) {

throw std:: runtime_error(
"Call to "
"\" WaitForSingleObject ()\" "



"failed."
);
thread_ =0;

}
}

};

MQ_Scheduler:: impl_type
MQ_Scheduler::Impl:: createImpl (

size_t high_water_mark
) {

return static_cast <
MQ_Scheduler :: impl_type

>(
new Win32Impl (high_water_mark )

);
}

#elif defined(UNIX)

class UNIXImpl
: public MQ_Scheduler:: Impl {
pthread_t thread_;
// No copy allowed , therefore private
// and declared only
UNIXImpl (const UNIXImpl &);
// No assignment allowed , therefore
// private and declared only
UNIXImpl &operator =( const UNIXImpl &);

public:
UNIXImpl (size_t high_water_mark )

: MQ_Scheduler:: Impl(high_water_mark )
{}
void createUE (MQ_Scheduler &sched ) {

if(pthread_create(
&thread ,0,svc_run ,&sched

))
throw std:: runtime_error(

"Call to \" pthread_create ()\" "
"failed."

);
}
void joinUE() {

if(pthread_join(thread_ ,0))
throw std:: runtime_error(

"Call to \" pthread_join ()\" "
"failed."

);
}

};

MQ_Scheduler:: impl_type
MQ_Scheduler::Impl:: createImpl (

size_t high_water_mark
) {

return static_cast <
MQ_Scheduler :: impl_type

>(
new UNIXImpl (high_water_mark )

);
}

#endif /* defined(_WIN32) */

The thread function and an opaque argument structure
are passed Strategy [32] like to the constructor of Thread_

Operation.
MQ_Scheduler is used as an illustration of the Active Ob-

ject architecture pattern [51, p 425]. The client hands own-
ership over instances of Method_Request over to the Active
Object, i.e. it passes a pointer to a Command [24] to an
instance of MQ_Scheduler. The scheduler asynchronously

executes the Command and deletes it afterwards.
The portability is gained using the Bridge design pattern

[26]. Even the constructors of MQ_Scheduler do not have to
know concrete implementation classes, because it delegates
the creation of an appropriate implementation to a Factory
Method [28].

More recent versions of the JAWS Adaptive Web System
(JAWS) [54, pp 27,47–48], an application closely related to
the ADAPTIVE Communication Environment (ACE), are
examples for this implementation technique. They use the
Active Object design pattern combined with Bridge. The
worker thread design is prescribed by a Strategy. All pos-
sible Strategies are derived from a single Abstract Class [8,
72]. The base class provides for access to the request pro-
cessing.

The original MQ_Scheduler additionally uses the Template
Method design pattern [31] to make the loop executed by the
worker thread adaptable. In this case starting and stopping
threads from within the bodies of the constructor and the
destructor of the scheduler can lead to bad surprises that
can be solved using a helper class implementing Resource
Acquisition is Initialization [62, pp 388–393], [61, pp 495–
497] as shown in [9].

Neither the operating system nor the thread function will
change during the life time of MQ_Scheduler. In fact, es-
pecially the operating system will remain constant during
the whole time the application is installed on the particular
computer. So there is an option to move the configurability
up to the meta level.

7.3 Context
A series of applications share implementation similarities

not only on a basic Layer, but also regarding the interac-
tion of objects. An example of this are TCP/IP servers for
different protocols, that likely have similar solutions to the
problem how to react upon incoming connections.

7.4 Problem
From analysis through architecture and design to the im-

plementation of the initial system ideas central to the design
might have been lost in the final code; these ideas are the
reason why the code is how it is, but they might not explic-
itly be represented within the code. This can make reuse of
code hard, if it has to be adapted to a different environment.

7.5 Forces

• Code duplication has to be avoided.

• Sometimes higher Layers must be adaptable.

• Future adaptations might be requested by a customer.

• The code base needs to remain maintainable.

• Some configuration remains fixed during a period often
much longer than the runtime of an application.

• Experience should be transformed into ready–made
software artifacts, if reuse is likely.

7.6 Solution
Cast the real intent of a software construct into a code rep-

resentation. Make the abstractions explicit. Raise the level
of abstraction from a pure series of commands to a function



or a function object, potentially an Active Object [51]. De-
velop a Framework that is configurable in two ways: Enable
static configurability of user code supplied as a function or
function object by means of a Static Strategy (see Section
3) or Static Visitor (see Section 4). Allow for configuration
of the code that deals with platform specific interfaces by
means of e.g. Static Adapter (see Section 5).

A first sketch of the solution is shown in Table 10.

7.6.1 Participants

Client The Client requests a service from Static Frame-
work. Many clients may request the same service in
parallel. Responsiveness or throughput are important
for each Client.

Platform An interface to a Layer the Static Adapter com-
municates with. The interfaces of different Platforms
might differ significantly. Platforms often provide ac-
cess to entities that can be acquired and then released
again. Such entities are referred to as resources. A
Platform remains fixed during runtime of the applica-
tion and most likely for even much longer periods.

StaticAdapter Mediates between Static Framework and
Platform to allow for easier reuse of Static Framework
on many Platforms.

StaticFramework A Framework like representation of the
idea of the implementation of the server reacting upon
service requsts from Clients. Resource usage should
be minimized. Static Framework delegates implemen-
tation details specific to a certain Platform to Static
Adapter and the implementation of a specific service
to Static Strategy.

StaticStrategy A user supplied function pointer or func-
tion object which plugs into a Hot Spot [50, pp 478–
479] of the Static Framework. Conforms to the Static
Strategy or the Static Visitor design pattern.

Figure 9 sketches the participants and their relations to each
other.

7.6.2 Dynamics
Instead of interweaving user code with Framework code

this pattern advocates the introduction of Static Framework.
The Client directs a service request to Static Framework.
With help of Static Adapter and indirectly of Platform the
latter prepares an environment necessary to fulfill the re-
quest. From within this environment it delegates work to
the Static Strategy. The dynamics is shown in Figure 10.

7.6.3 Rationale
Increasing the level of abstraction and explicitly repre-

senting the intent of implementations means to generalize
the code. Separating Framework code from user code helps
to substitute another implementation, that better conforms
to a new platform, for the Static Adapter, i.e. instead of the
code the intent will be the starting point of porting this ap-
plication. Otherwise adaptation means three steps at once:

1. The original intent must be reconstructed from the im-
plementation which is mixed up of Static Framework,
Platform specific code and the Static Strategy, if the
intent did not have been clearly documented.

2. An analysis of the target environment results in a new
implementation of this intent.

3. The new implementation has to be merged with the
Static Strategy.

This potentially has to be repeated for every new situation.
Because this is hard work, most of the time a short cut will
be taken: The original code will be ported one by one, even
if the result is an incorrect application.

Because different service implementations can be injected
into the Static Framework in terms of a Static Strategy, it
can be reused in a lot of different situations, that share the
same orchestration of objects with each other.

7.7 Resulting Context
The level of abstraction represented in the code became

increased. The implementation is split into Platform specific
code and code that does not depend on a specific Platform.
The Platform dependent code is organized such that it can
be replaced easily by another implementation for another
Platform. For this to work only the Static Adapter has to
be replaced. There are at least as many Static Adapters
available as there are supported Platforms. The Platform
independent code is splitted up in a Static Strategy and the
Static Framework. The latter orchestrates the interplay of
the other participants.

7.7.1 Pros and Cons
The Static Framework pattern has the following benefits:

1. Design reveals essence of problem. Splitting an ap-
plication into several components often contributes to
a better understanding of the overall business prob-
lem. In theory this understanding was the result of
the analysis phase. Understanding requirements more
often will be an iterative process, and trying to find
key components necessary to fulfill these requirements
yields better systems.

2. Keeping the architecture healthy. Introducing Static
Frameworks contributes to an important intent of Ag-
ile approaches. Architectures need continuous Refac-
toring [19] to keep them healthy [46, pp 141–142].

3. Reusability. Frameworks designed this way facilitate
reusability regarding both different Platforms and dif-
ferent services represented by the user supplied Static
Strategies.

4. Shifting the point of variation upwards. The point of
variation got shifted, thus the system is adaptable to
a wider range of Platforms. Large parts of the or-
chestration of objects performed by Static Framework
can be made configurable. This increases adaptability
even further and leads to a larger Static Adapter and a
thinner Static Framework or advocates the additional
use of Template Method Based on Parameterized In-
heritance [17, pp 231–234].

5. Preserves performance as if optimized for a single Plat-
form only. Each Static Adapter can carfully be opti-
mized for its Platforms. Because the configuration is
performed statically, the final application is assembled
by the compiler, and there will be no overhead induced
by virtual calls or missing opportunities for inlining.



Table 10: Class–Responsibility–Collaboration Cards

Client
Requests service Static Framework

(a) Client

Platform
Grants access to re-
sources to

StaticAdapter

(b) Platform

StaticAdapter
Adapts implementa-
tion of

StaticFramework

to Platform

(c) Static Adapter

StaticFramework
Prepares environment StaticAdapter
Passes service request
from

Client

to StaticAdapter

(d) Static Framework

StaticStrategy
Finally processes ser-
vice request on behalf
of

StaticFramework

(e) Static Strategy

Figure 9: Class diagram illustrating Static Framework

Figure 10: Sequence diagram illustrating Static Framework



The Static Framework pattern has the following liability:

1. Building Frameworks is hard. It requires much expe-
rience to decide what has to go into Static Framework
and what into Static Strategy. Some of the difficulties
result from the fact that both Static Framework and
Static Strategy reify behavior—there are no real world
entities that parallel the object oriented abstractions.
As with Frameworks in general finding a good balance
might require Three Examples [50, pp 472–474].

7.8 Implementation
As this is a very general design pattern, there can hardly

be a detailed suggestion for an implementation that fits all
cases. Probably the most difficult step during implementa-
tion is to decide how to split the code into Static Frame-
work, Static Strategy, and Static Adapter. As a rule of
thumb code that depends on Platform more likely belongs
to Static Adapter than to Static Framework and vice versa.
Service specific code that is likely to change between differ-
ent instantiations of Static Framework should go into Static
Strategy.

7.8.1 Example Resolved
Listing 19 shows the class template MQ_Scheduler<>. MQ_

Scheduler<> carries the intention of the example presented
in Section 7.2.

Here a static variant of the Command pattern similar to
Static Strategy was substituted for the use of the original
Command design pattern, and the Adapters used in con-
junction with Bridge were replaced by Static Adapters, that
determine how to deal with specific Units of Execution [40,
pp 217–221].

Listing 19: A Unit of Execution executing a function object

// Header file
extern "C" {

void *svc_run(void *);
}

class Impl {
Activation_List act_queue_ ;

public:
struct command_adapter {

virtual ~command_adapter ();
virtual void call() =0;

};
template < typename Command >
class command_proxy

: public command_adapter {
Command &command_ ;

public:
explicit command_proxy(

Command &command
) : command_ (command) {}
void call() {

command_ .call ();
}

};
explicit Impl(size_t);
template < typename Command >
void insert(

const Command &method_request
) {

act_queue_ .insert(new command_proxy <
Command

>(method_request ));
}

};

template < typename UE > class MQ_Scheduler
: public Impl {
UE thread_;
void createUE ();
void joinUE ();

public:
explicit MQ_Scheduler(

size_t high_water_mark
)

: Impl(high_water_mark ) {
createUE ();

}
~MQ_Scheduler () {

// Poor men’s approach to cancellation
// - initiate
act_queue_ .insert (0);
joinUE ();

}
};

// Specializations of member functions
#ifdef _WIN32
template <>
void MQ_Scheduler < HANDLE >:: createUE ();

template <>
void MQ_Scheduler < HANDLE >:: joinUE ();
#endif /* defined(_WIN32) */

#ifdef UNIX
template <>
void MQ_Scheduler < pthread_t >

:: createUE ();

template <>
void MQ_Scheduler < pthread_t >:: joinUE ();
#endif /* defined(UNIX) */

// Implementation file
void *svc_run(void *arg) {

assert(arg);
Impl *const impl

=static_cast < Impl * >(arg);
for (;;) {

Impl:: command_adapter *mr;
try {

// Block until the queue is not
// empty
impl ->act_queue_ .remove(&mr);
// Poor men’s approach to
// cancellation - react
if(!mr)

break;
mr ->call ();

}
catch (...) {
}
delete mr;

}
return 0;

}

Impl:: command_adapter ::~ command_adapter () {
}

Impl:: Impl(size_t high_water_mark )
: act_queue_ (high_water_mark ) {}

#ifdef _WIN32
void MQ_Scheduler < HANDLE >:: createUE () {

thread_=reinterpret_cast < HANDLE >(



_beginthreadex(
0,0,svc_run ,this ,0,0

)
));

if(! thread_)
throw std:: runtime_error(

"Call to \" _beginthreadex ()\" "
"failed."

);
}

void MQ_Scheduler < HANDLE >:: joinUE() {
if(WAIT_FAILED == WaitForSingleObject (

thread_ ,INFINITE
)) {

throw std:: runtime_error(
"Call to \" WaitForSingleObject ()\" "
"failed."

);
}
#endif /* defined(_WIN32) */

#ifdef UNIX
void MQ_Scheduler < pthread_t >

:: createUE () {
if(pthread_create(

&thread_ ,NULL ,svc_run ,this
))

throw std:: runtime_error(
"Call to \" pthread_create ()\" "
"failed."

);
}

void MQ_Scheduler < pthread_t >
:: joinUE() {
if(pthread_join(thread_ ,0))

throw std:: runtime_error(
"Call to \" pthread_join ()\" "
"failed."

);
}
#endif /* defined(UNIX) */

MQ_Scheduler<> can be instantiated using either HANDLE or
pthread_t. Not all template instantiations are possible on
all platforms. It was also possible to add an explicit special-
ization e.g. for pid_t on UNIX platforms—doing so would
offer the possibility to switch between threads and processes
to the user.

Of course Commands with statically bound types here
look somewhat artificial, because they are converted into
Commands with dynamically bound types by means of Impl
::command_adapter. The latter is a technical implementa-
tion detail, however, as the operating system does not deal
with user defined types, but with opaque pointers instead.

7.8.2 Relationship of Example and Participants
The code shown as an example above maps to the partic-

ipants defined in Section 7.6.1 as shown in Figure 3.

7.9 Variants
Template Method Based on Parameterized Inheritance

can further increase the adaptability of Static Framework.
That way MQ_Scheduler<> could be extended to support
designs like One Child per Client [60, pp 732–736] and One
Thread per Client [60, pp 752–753] which do not map well
to Active Objects.

7.10 Known Uses
Examples of Static Framework can be found in existing

software.

7.10.1 Apache httpd 2.x
For a long time Apache httpd is one of the most popular

webservers. It is available for a big variety of different hard-
ware architectures and operating systems. With Apache
2.0 multiprocessing modules (MPMs) were introduced. The
code was divided into an aspect concerned with the manage-
ment of Units of Execution and another aspect responsible
for request processing. The first aspect was factored out into
an MPM with a general interface thus allowing for exchang-
ing a concrete MPM with another implementation. Each
MPM potentially daemonizes the webserver and then starts
Units of Execution, distributes and balances work among
them, adapts the number of Units to the load, listens to
asynchronous requests to terminate the webserver, and then
shuts the Units down again. The currently available MPMs
are grouped into platformspecific sets. The interface is gen-
eral enough to allow for both threads and processes as Units
of Execution. For the UNIX family of operating systems
there exist multiprocessed modules similar to the Apache
1.3 design, but also multithreaded and hybrid ones imple-
menting either the Half–Sync / Half–Async [52] or Leader /
Followers [53], [60, pp 754–756] design pattern. Each Apache
webserver runs with exactly one MPM. The configuration is
done statically before compilation by means of an appro-
priate command line option on calling the GNU configure

script. The request processing code is called from the Units
of Execution spawned in the MPM configured.

7.11 Related Patterns
Though Model–View–Controller [12], Presentation–Ab-

straction–Control [14], and Separation of Powers [49, pp
24–26] relate to user interfaces, hence another domain than
Static Framework, all these patterns separate software into
classes with higher likelihood to change and into classes
that likely remain stable. User interfaces change because
of both technology changes and because Perceived Integrity
is a competitive advantage on the market [45], whereas the
Static Framework allows for adaptation to multiple plat-
forms. By some sense it is a user interface, too.

As Platforms often give access to resources, Static Frame-
work will be implemented using techniques like Resource
Acquisition is Initialization in languages like C++ [62, pp
388–393], [61, pp 495–497], [9, 15, 55] or the Dispose pattern
in C# [43] and Java [7, pp 228–230], [1], see further [35, pp
6–7].

8. ACKNOWLEDGEMENTS
Without the invaluable feedback of Peter Sommerlad, who

was the PLoP shepherd of this work, this paper would not
have been the way it is now.

The author would like to thank all the participants of
PLoP 2006 for their contributions. Special thanks go to the
members of the Writers’ Workshop [21] “Intimacy Gradient”
[4, pp 610–613] the author participated in: Ademar Aguiar,
Kanwardeep Singh Ahluwalia, Sachin Bammi, Andrew P.
Black, Danny Dig, Brian Foote, Anders Janmyr, June Kim,
Ricardo Lopez, Maurice Rabb, Mirko Raner, Errol Thomp-
son, Daniel Vainsencher and last but not least both Robert
S. Hanmer and Ward Cunningham, its moderators. Their



Table 11: Relationship of Code and Participants

Code Participant

Not shown. Client
MS Windows API (e.g. uintptr_t _be-

ginthreadex()), represented by HAN-

DLE, and POSIX Threads API (e.g.
int pthread_create()), represented by
pthread_t

Platform

template<> class MQ_Scheduler without Impl,
its base class

StaticAdapter

template<> class MQ_Scheduler StaticFramework
Any possible substitute for Command StaticStrategy

feedback had a significant impact on the current version of
Static Visitor and Static Abstract Type Factory.

I thank Frank Buschmann and Douglas C. Schmidt for
their openness to discuss the Wrapper Facade pattern back
in spring 2002. The respective email correspondance moti-
vated me to write down the Static Adapter pattern.

Last but not least my thanks and love go to Cornelia
Kneser, my wife, for her constant support throughout the
writing of the paper.

This work was supported in part by the Institute for Med-
ical Informatics and Biostatistics, Basel, Switzerland.

9. REFERENCES
[1] Releasing resources in Java. Retrieved January 9,

2007, from <http://www.c2.com/cgi/wiki?-

ReleasingResourcesInJava>.

[2] D. Abrahams and A. Gurtovoy. C++ Template
Metaprogramming. Concepts, Tools, and Techniques
from Boost and Beyond. C++ In–Depth Series; ed. by
Bjarne Stroustrup. Addison Wesley Professional,
Boston, Massachusetts. . . , Jan. 2005.

[3] Adobe Systems Inc., D. Abrahams, S. Cleary,
B. Dawes, A. Gurtovoy, H. Hinnant, J. Jones,
M. Marcus, I. Maman, J. Maddock, T. Ottosen,
R. Ramey, and J. Siek. Boost.TypeTraits. Retrieved
January 9, 2007, from <http://www.boost.org/doc/-

html/boost_typetraits.html>.

[4] C. Alexander, S. Ishikawa, and M. Silverstein. A
Pattern Language. Towns, Buildings, Construction.
With Max Jacobson, Ingrid Fiksdahl–King and
Shlomo Angel. Oxford University Press, New York,
1977.

[5] A. Alexandrescu. Modernes C++ Design. Generische
Programmierung und Entwurfsmuster angewendet,
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Zöttl. Programmer’s Choice. Addison–Wesley. An
Imprint of Pearson Education, München · Boston ·

San Francisco · Harlow, England · Don Mills,
Ontario · Sydney · Mexico City · Madrid ·

Amsterdam, 2001. German translation of “The Java
Programming Language. Third Edition”.

[8] K. Auer. Reusability through self–encapsulation. In
Coplien and Schmidt [16], chapter 27, pages 505–516.

[9] P. Bachmann. Change of authority and thread safe
interface goes synchronized. In Proceedings of the 12th
Pattern Languages of Programs (PLoP) conference
2005, Allerton Park, Monticello, IL, USA, Dec. 2005.
Retrieved January 9, 2007, from
<http://hillside.net/plop/2005/proceedings/-

PLoP2005_pbachmann1_0.pdf>.

[10] W. Blochinger and W. Küchlin. Cross–platform
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