
Taxonomy of Architectural Style Usage

Simon Giesecke
Carl von Ossietzky University of Oldenburg

Software Engineering Group
26129 Oldenburg, Germany

giesecke@informatik.uni-oldenburg.de

ABSTRACT
A taxonomy of architectural style usage is introduced, which
serves to design new (agile or heavy-weight) software devel-
opment methods that employ architectural styles. We use
the term “architectural styles” to refer to high-level design
patterns. We identified five major usages: ad-hoc, platform-
oriented, customized, pre-modeling and post-documentation/-
analysis. In addition generic and reference architectures are
compared to architectural styles based on their usage. Fi-
nally, a classification of these usages is presented that dis-
cusses the dimensions compositionality, specialization, expli-
cation/rigor, conceptual level, relationship to system quality
attributes, and the suitability for architectural design explo-
ration.

1. INTRODUCTION
Reuse has long been an important aspect of software en-

gineering, and it comes in many forms, e.g. code or design
reuse [29]. With the rise of software architecture as a disci-
pline [46], reuse has also been elevated to the level of soft-
ware architecture: Component-based software engineering
approaches specifically target the reuse of executable units,
i.e. software components. However, interoperability prob-
lems may inhibit the composition of components into an ar-
chitecture [10, 13]. Therefore, other approaches to reuse at
the architectural level are required as a prerequisite for com-
ponent reuse. One way to explicitly represent reusable archi-
tectural knowledge are architectural styles. An architectural
style can be interpreted as defining a family of software ar-
chitectures. Their benefits may be exploited by specifically
targeted software design methods. In this paper, we propose
a taxonomy of the various modes of using architectural style
that is meant to support future research into such design
methods.

Approach and Contribution.
We developed a taxonomy of architectural styles based on

the usage, i.e. the mode of use, within software engineer-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PLoP ’06, October 21-23, 2006, Portland, OR, USA
Copyright 2006 ACM 978-1-60558-151-4/06/10 ...$5.00.

ing. The taxonomy is not intended to directly support un-
derstanding an existing architecture description or designing
new systems. It is situated on a meta-level to the design new
systems, i.e. to software design methods. More specifically,
it refers to the development, comparison and discussion of
software design methods. Indirectly, however, knowledge on
the mode of using architectural styles that has been applied
or is intended to be applied helps in understanding the ar-
chitecture description of a system or in applying some design
method in the design of a new system.

The presented taxonomy is more or less indifferent to
the form of representation of architectural styles (e.g., in-
formally, using an ADL or as graph grammars). However,
the specific form of representation may make the style more
or less apt to a specific mode of use. Another aspect of
styles, which might be used for a taxonomy, is their genesis
or origin. We will only slightly discuss these aspects and
focus on the usages. This approach will not yield a classifi-
cation scheme for architectural styles themselves since any
particular style may, in principle, be used in various modes.
However, typical representatives of styles used in each of the
modes can be identified.

In our opinion, the work on architectural styles has been
focused too exclusively on aspects of representation and on
particular styles, while the use of these styles has been con-
sidered only implicitly. Our taxonomy contributes to present
knowledge in three ways:

1. From a more theoretical point of view, the usages of
styles can be better understood by making them ex-
plicit.

2. The existing literature on styles usages is assembled,
surveyed, and classified with respect to the style usage
that is promoted, making the current state of knowl-
edge more accessible.

3. The knowledge on current usages can be exploited in
designing new ways of using architectural styles, fixing
deficiencies of current usages or combining features of
distinct usages.

The latter aspect was our primary motivation for creating
the taxonomy, and it lead to the design of the MIDARCH
method for integrating and migrating business software sys-
tems on the architectural level [21].

We analyzed the literature on architectural styles and pat-
terns and identified several clusters of modes of use. We
will refer to these clusters simply as usages in the following
for better readability. We first describe and compare these

modes of use in a bottom-up manner. As part of this, we
provide references to literature that is relevant to each of the
modes of use. Furthermore, we provide typical examples of
architectural styles in each mode of use. Based on interest-
ing characteristics identified within this phase, we provide a
top-down categorization in Section 4.

Based on the study of the available literature, we iden-
tified five major modes of using architectural styles: Ad-
hoc, Platform-oriented, Customized, Pre-modeling and Doc-
umentation and analysis.

Overview.
The rest of the paper is structured as follows: First, our

understanding of the concepts of architectural styles and
patterns is described in Section 2. In Sections 3.1 to 3.6, each
mode of use is discussed in a bottom-up manner. Afterward,
Section 4 provides a classification scheme and fits the modes
of use in this classification scheme. The paper is concluded
in Section 5.

2. ARCHITECTURAL STYLES, PATTERNS
AND THEIR USAGE

Architectural knowledge, such as patterns, reference ar-
chitecture or guidelines, is represented in forms that are
usually more human-oriented at least in some part (doc-
umentation), while other parts (models, specifications, ex-
ample implementations, etc.) may be written in a formal
language as well. Architectural knowledge may be avail-
able only implicitly, or explicitly in either free natural lan-
guage or in some codified, i.e. standardized explicit, form.
Examples of codification templates are the various pattern
templates (Coplien form [12], Gang of Four form [15], etc.),
as well as architectural style specifications in ADLs such as
ACME [17].

We regard the notion of architectural styles as one of the
most interesting, but perhaps also most often misinterpreted
concepts in the area of codified architectural design knowl-
edge.

The idea of architectural styles more or less developed
within the ADL community, which follows a more formally-
oriented perspective on software architecture. In parallel,
the idea of design patterns (in the following, we will use the
term “pattern” in brief) evolved and a pattern community
grew. This community follows a more pragmatic perspective
on software architecture and therefore consists of software
development practitioners to a larger degree. The ADL com-
munity, on the other hand, is dominated by academic and
industrial software engineering researchers.

Perhaps due to their pragmatic perspective, some propo-
nents of the pattern community claim that styles may be
subsumed by the idea of patterns [8]. This is true to some
degree, as already noted in [39], but captures only a spe-
cific usage and requires a very broad interpretation of the
pattern concept. Intriguingly, on the one hand, the pattern
community seems to have very specific ideas what patterns
are and what role they play in software development, but
on the other hand they are unable to give a rigorous defi-
nition of a pattern, which would enable deciding if a given
artifact is a pattern or not [48]. The discussions reduce to
the question of syntactic representation and relationships of
patterns. These paths do not really help in deciding which
artifacts are patterns, and which are not: If the descriptions

Architectural
Design

Reference
Architecture

-oriented
Arch. Design

Style-
oriented

Arch. Design

Style
Description

Reference
Architecture
Description

uses uses

produces

Architecture
Description

Style
describes

Style Usage

conforms to

Figure 1: Major Modes of Using Architectural
Styles

contain natural language, which is an essential part of the
pattern descriptions in many cases, and merely a coarse-
grained structure for the text is prescribed, arbitrary con-
cepts may be put into the form of a pattern. Thus, the form
cannot suffice for deciding whether something is a pattern
or not. There has been some work on the formalization of
pattern descriptions [41], but this is somewhat decoupled
from the mainstream pattern community.

Since architectural styles and patterns are not usually dis-
tinguished consistently, we considered both as nearly equiv-
alent during creating the taxonomy. In this paper, we will
use the terms “design patterns” for lower-level artifacts, and
“architectural styles” for higher-level artifacts, except when
explicitly discussing differences between both concepts. A
taxonomy of these concepts and other types of architectural
constraints is presented in [23].

Figure 1 shows an overview of our view of the relationship
of architectural styles to other concepts of software architec-
ture, which applies to all the usages we identified. For sim-
plicity, we have neglected multiplicities of the associations
in the diagram. Style-based architectural design is a special
kind of architectural design, which uses style descriptions in
a way determined by the style usage. A style description
is an explicit representation of a style. Any architecture
description conforms to some style; whether it explicitly ref-
erences a style description is left open in this diagram.

3. TAXONOMY
Based on the study of the available literature, we iden-

tified five major modes of using architectural styles, which
are shown in Figure 2. Also mentioned in the diagram is
the MIDARCH Usage of architectural styles, which is an
example of a specific design method exploiting architectural
styles [20,22].

Additionally, we discuss the relationship of these usages
to the use of generic or reference architectures. These are
units of architectural knowledge which are not exactly ar-
chitectural styles, but similar artifacts.

3.1 Ad-hoc Use of Styles
As already mentioned above, sometimes the style concept

is subsumed under the pattern concept (see, e.g., [8,26,44]).
In this view, every style may be expressed as a design pat-
tern, but not necessarily vice versa. This view may also

Style Usage

Ad-hoc
Usage

Platform-
oriented
Usage

Customized
Usage

Pre-
Modeling

Usage

Documentation
& Analysis

Usage

MIDARCH
Usage

Figure 2: Major Modes of Using Architectural
Styles

be referred to as the styles-as-patterns view. These authors
conceive to an essentially ad-hoc usage of styles: The consul-
tation of a pattern collection and the selection of a pattern
to apply remains at the discretion of the architects on the
basis of their experience. Collections of patterns specify dif-
ferent kinds of relationships between multiple patterns (see,
e.g., [50]), but the relationships that refer to their usage can-
not be made explicit in general. Thus, using patterns/styles
in this way is difficult to teach or convey.

In principle, everything that has been said about using
patterns also applies to styles in this view [42, 43]. How-
ever, since not every design pattern is viewed as a style even
by the proponents of this view, some additional remarks
regarding the use of “typical” styles-as-patterns are neces-
sary. The relatively simplistic general-purpose styles origi-
nally described in [46], for example, are criticized as being
impossible to apply to a system as a whole [45]. Indeed, this
is a reflection and manifestation of the ad-hoc approach to
using styles-as-patterns: styles are not assumed to guide the
following architectural development, but they are reduced
to communication styles between two or more system ele-
ments. For any two elements that should communicate with
each other, a different communication style might be chosen.
This contradicts the original view of a style as embodying
a decomposition principle: the idea was that different styles
led to different system decompositions [18]. On the contrary,
the styles-as-patterns view tends to view the decomposition
of a software system to be relatively independent from the
styles employed and the style just influences the interaction
between pre-established, i.e. established prior to the selec-
tion of the style, elements. While this view masks several
aspects of architectural styles deemed relevant by other au-
thors, such as providing style-specific analyses, the scenario
is of major practical relevance when re-engineering an exist-
ing system or building a new system of existing (COTS or
not) components. The current state of the architecture may
be very heterogeneous, which is the ultimate reason for re-
engineering it. Still, it may be infeasible as well to provide
a coherent target architecture which follows a single archi-
tectural style, e.g. because some components are considered
intangible because they embody knowledge that cannot be
safely restored. It is in principle always possible to define
an overlay architecture on top of the implemented architec-
ture that is coherent, but this may not always be worth the

effort.

Relationship to other modes of use.
This usage should not be confused with the usage that re-

gards a style as defining a pattern language (cf. [39]), which
again puts styles at a level above patterns. This view is
discussed in Section 3.3.

Some “patterns” are actually complete, though very ab-
stract, generic architectures (e.g., the Model-View-Controller
architectural pattern) rather than patterns. They are dis-
cussed in Section 3.6.

When re-engineering a software system, the first step may
be the re-documentation of the current architecture (see
Documentation and analysis, Section 3.5). For the reasons
discussed above, often the only way to continue using styles
is then an ad-hoc usage.

Typical examples.
Typical examples can be found in the extensive litera-

ture on architectural patterns. Well-known are the POSA
books of Buschmann and others, the first of which names
the Layers, Pipes and Filters, Blackboard, Broker, Model-
View-Controller (MVC), Presentation-Abstraction-Control
(PAC), Microkernel and Reflection architectural patterns.

3.2 Use as Platform-oriented Styles
At first sight, this usage appears to be tightly bound to

the genesis of the architectural styles, namely their deriva-
tion from the platform that shall be used. The term “plat-
form” is used in a very generic sense here. The discussion
of what an (abstract) platform is in the sense of the MDA
is related (cf., e.g., [4]). For our purposes, target or im-
plementation platforms must be distinguished from mod-
eling platforms. A modeling platform is a modeling lan-
guage or notation, for example an ADL. There are ADLs
that are specifically designed to support a specific architec-
tural style, e.g. C2SADL [33] for the C2 style [47], but even
ADLs that claim to be style-independent are usually biased
towards some architectural styles [14]. Implementation plat-
forms can be distinguished into several types again:

System Software The system software (operating system)
and the services it offers to applications may impose
an architectural style. However, in particular for dis-
tributed applications the actual operating system is to-
day often hidden behind an additional software layer
referred to as middleware.

Middleware A middleware layer is some software layer
that is found between the operating system and appli-
cation layer. Its particular characteristics depend on
the type of application that is considered. Middleware-
induced architectural style have received some atten-
tion from the research community [6, 14, 31, 32]. They
are also in the focus of our main research [19].

Programming Paradigm The language constructs (classes,
objects, exception, event mechanisms, etc.) a pro-
gramming language provides and its implied execution
model advocate some programming paradigm. For ex-
ample, the execution model of languages such as Java
and C++ promotes the synchronous communication
model between objects. The paradigm of the lan-
guage(s) considered for implementing a system may

influence the structure of the resulting system at an
architectural level [34]. For relatively low-level lan-
guages, such as C, only very few constraints are im-
plied, but for very high-level languages, a very spe-
cific architectural style may result, in particular if the
language effectively inhibits access to lower-level con-
structs.

Hardware Besides the software artifacts mentioned before,
the hardware (or an abstract, virtual machine) also im-
poses some style on the software system, if only indi-
rectly through the software layers in between. For dis-
tributed software systems, however, the physical topol-
ogy and the properties of physical connections inevitably
influence quality properties of the running system, and
must thus be considered in system design.

Organizational Structure The famous Conway’s law al-
ready postulated the dependence of system structure
on the structure of the designing or developing orga-
nization: “[...] organizations which design systems [...]
are constrained to produce designs which are copies of
the communication structures of these organizations”
[11]. While the inevitability of this constraint may be
questioned, it is clear that a tendency towards it pre-
vails and it may adversely affect the structure of the
system from a technical point of view without compen-
sating measures. Similarly, the organizational struc-
ture of the target organization may influence the ar-
chitecture.

All in all, a software system makes use of many platforms
that may suggest different architectural styles. The archi-
tecture may be specified independently from the platforms
it is implemented on. However, a trade-off must be made be-
tween the platform-independence and the achievable quality
of the mapping to the target platform. One quality char-
acteristic of the mapping is its complexity, which should be
as low as possible. Furthermore, the risk that the mapping
will lead to a system with undesired quality characteristics
should be reduced. Such a risk may arise from incongruities
between the structure implied by the architecture and the
structural characteristics that are beneficial to the platform.

It is possible to define a taxonomy of platforms based on
the architectural styles they enable [14]. In defining such a
taxonomy, abstract platforms may need to be introduced in
addition to physically existing platforms, which reliefs the
tight binding of this usage to the genesis of the style. Based
on a taxonomy, the style may be incrementally refined from
an abstract towards a concrete style in a process based on
this usage, yielding a refinement hierarchy of architectures
as well. Unfortunately, only few taxonomies of platform-
oriented styles are available yet [14,22,31,32].

Typical examples.
Di Nitto et al. consider the styles induced by the (event-

based) JEDI and C2 middleware technologies. C2 is also
discussed by Medvidovic et al., as well as its relationship
to COM, CORBA, and Java RMI. In our own work, we
currently focus on the styles imposed by the Apache Merlin
and Apache Cocoon middleware frameworks.

3.3 Use as Customized Styles

This is the primary usage intended by the community
which focuses on ADLs that support the definition of ar-
chitectural styles and conforming architectures, e.g. Rapide
[30], Acme [17] resp. Armani [38], Wright [3], ArchWare
[5, 40], and Alfa [35, 36]. There has been important work
on formalizing the properties of architectural styles using
specifications in the general-purpose specification language
Z [1].

Garlan [16] discusses several different approaches to the
definition and use of architectural styles, but assumes sev-
eral common properties of any definition of the architectural
style concept:

a. The provision of a“vocabulary of design elements”, which
are “component and connector types”.

b. The definition of a “set of configuration rules”.

c. The definition of a “semantic interpretation”, which gives
some well-defined meaning to all configurations of design
elements that satisfy the configuration rules.

d. The definition of “analyses” for configurations of that
style. Examples include schedulability analysis, deadlock
analysis, code generation, and conformance checking.

Styles used in this way may be seen as a concept comple-
mentary to patterns according to Monroe et al. [39], who
point out that “for a given style there may exist a set of
idiomatic uses. These idioms act as microarchitectures, or
architectural design patterns, designed to work within a spe-
cific architectural style.” The architectural style provides
general guidance for the architectural development process,
while architecture-level design patterns solve specific prob-
lems within one or multiple styles [39]. As an example, Mon-
roe et al. give the Real-time Producer/Consumer style with
two subordinate architectural design patterns, the Shared-
resource and Message-Replications patterns.

Monroe et al. also point out that an architectural style can
be regarded not merely as a form of pattern, but as defining
a whole pattern language. However, the term “pattern lan-
guage” is controversial in itself. It is misleading as it may
be thought to appeal to the common notion of a formal lan-
guage, at least for computer scientists. It was used in [2] as a
vague metaphor to natural languages, but the same concept
could better be referred to as a pattern vocabulary (cf. [43]).

Typical examples.
Abowd et al. [1] discuss different variants of the Pipe-and-

Filter and Event-based architectural styles that are tailored
to specific needs.

Additional relevant literature.
Keshav et al. [25] propose a taxonomy of architectural

integration strategies, among which are both patterns and
styles. While the basic elements they identify—Translators,
Controllers, Extenders, and combinations thereof—are more
or less patterns or individual components. In addition, they
identify“loosely defined integration strategies”, which do not
fit into their main taxonomy, but may be regarded as archi-
tectural styles.

3.4 Style-based Pre-modeling
This usage is tightly bound to a specific type of archi-

tectural styles, which is briefly introduced in the following.

Klein et al. [27, 28] provide a derivative of the original ar-
chitectural style concept (as described in Section 3.3) which
focuses more explicitly on the quality characteristics of the
resulting architectures. These are referred to as “Attribute-
based Architectural Styles” (ABAS). One ABAS is assumed
to address one quality attribute1. A system is modeled ac-
cording to several ABASs, addressing the most critical at-
tributes, yielding several architectural models. Since each
model strictly conforms to a style, style-based analyses (cf.
Section 3.3) may be performed on them. When each model
is satisfactory in terms of its assigned quality attribute, an
overall system model is synthesized from the individual mod-
els.

By this approach, the original idea of different styles lead-
ing to different system decompositions is combined with
(some limited form of) heterogeneity of architectural styles
within a system. However, the way the final system is
derived from the multiple decompositions is not specified
(which is probably not possible in the generality that the
approach targets). Since it is known that many quality at-
tributes require trade-offs, the properties of the resulting
architecture may not conform to the properties of the indi-
vidual style-based models. Furthermore, it is unclear where
later changes to the architecture should be performed.

This usage of styles may be referred to as “style and for-
get”, since after the style-based modeling has been done
initially the benefits of architectural styles are abandoned
again. The concept of ABASs, however, seems promising
and might be used in the opposite way, which is described
in Section 3.5.

Typical examples.
Example ABASs are the Synchronization ABAS for com-

municating processes exchanging streams, which allows la-
tency analysis; and the Data Indirection ABAS, which al-
lows analyses of the degree of coupling. The latter style
provides the substyles of an Abstract Data Repository and
the Publish/Subscribe ABAS.

3.5 Style-based Documentation and Analysis
This usage may be regarded the reverse of the previously

described usage. Styles are not considered in the primary
development of the architecture, but only applied to inter-
mediate or final results of defining the architecture. This
mode of use is discussed in [9], for example. They may serve
to document the architecture by interpreting it in terms of
a specific architectural style, to ease understanding of the
overall system. Additionally, style-specific analyses may be
applied to the style-based views. An automatic mapping of
a generic architecture to a style will not be possible, but the
mapping may be defined once and needs only be adapted,
when the generic architecture changes. Perhaps even depen-
dent refactorings, which are attached to refactorings on the
primary system architecture, might be defined.

Essentially, any approach to software architecture that de-
fines multiple views on the architecture may be interpreted
as this usage. Similarly to generic ADLs, architectural views
impose some style upon the modeled entity, but usually this
style is conceptually not very deep.

1in the ISO 9126 terminology, it is probably more appropri-
ate to speak of a quality (sub-)characteristic

Typical examples.
As discussed above, the same architectural styles as con-

sidered in pre-modeling can be used for post-modeling and
documentation. In addition, Clements et al. discuss archi-
tectural styles for the following viewtypes: The Decomposi-
tion, Uses, Generalization, and Layered styles for the Mod-
ule Viewtype; the Pipe-and-Filter, Shared-Data, Publish-
Subscribe, Client-Server, Peer-to-Peer, and Communicating-
Processes styles for the Components & Connectors View-
type; and the Deployment, Implementation and Work As-
signment styles for the Allocation Viewtype.

3.6 Use as Generic Architectures
This usage is not strictly a usage of architectural styles,

since the artifacts that are employed in this usage do not fit
the definition of architectural styles, but represent a differ-
ent type of architectural constraint, namely generic architec-
tures. A generic architecture is expressed within the same
(or similar) language or notation as a (product) software
architecture, but may employ a different interpretation. A
generic architecture may be regarded as a template that is
enriched or refined into a product software architecture. In
some cases, a generic architecture can also be interpreted
immediately as the architecture of a product system.

Examples of architectural styles that are essentially generic
architectures are the Model-View-Controller architecture and
N -tier architectures (for a given N). These generic architec-
tures can themselves be explicitly based on an architectural
style in another usage. N -tier architectures, for example,
can obviously be regarded as following the Layered style.

Related Concepts.
Reference architectures are usually generic architectures

(see, e.g., [24]). Some approaches to product-line architec-
tures view a product-line architecture as a special kind of ref-
erence architecture that is specific to the product line. Such
product-line architectures may also be regarded as generic
architectures in our sense. More elaborate product-line ar-
chitecture approaches, which automatically derive individ-
ual product architectures or implementations, are beyond
the scope of our considerations.

Relationship to other modes of use.
This usage is sometimes regarded a special case of the ad-

hoc use, when only one pattern is used and this pattern has
system-wide scope.

4. CHARACTERISTICS OF THE MODES OF
USE

After the individual modes of use have been identified and
described, we now devise a set of characteristics and clas-
sify each of the modes of use with respect to these charac-
teristics. The characteristics describe several requirements
on the form of representation of the respective architectural
styles. We thereby establish the link to the typical level of
discussion of architectural styles.

We consider the following characteristics:

Compositionality The characteristic“Compositionality”de-
scribes whether the composition of individual styles
into a new style is possible, either manually or auto-
matically.

Specialization The characteristic“Specialization”describes
whether specialization relationships between styles are
relevant within the respective usage.

Explication and Rigor The characteristic“Explication and
Rigor” describes whether the architectural styles con-
sidered in the respective usage need to be explicitly
described in what detail and with what degree of for-
mal rigor.

Conceptual Level The characteristic “Conceptual level”
describes whether the architectural styles considered
in this mode of use are (typically) bound to technical
concepts (of an existing or planned technical platform)
or if they are more abstract in nature.

Relationship to System Quality Characteristics This
characteristic describes which kind of relationship the
styles exhibit to the quality characteristics of the sys-
tem. Of course, an architectural style always has some
implicit relationship to the system quality, but we con-
sider only explicated relationships here. In our view,
system quality comprises external and internal imple-
mentation quality as well as architectural quality (cf.
realms of software quality discussed in [7]). Essentially
two types of relationships can be considered here: An
explicit reference to some system quality characteris-
tic that a style addresses, and the reference to analysis
techniques that are enabled by the style (cf. [16]).

Suitability for Architectural Design Exploration
Architectural design exploration is a design activity
which covers the systematic specification of multiple
candidate architectures and their evaluation with re-
spect to architectural and system quality character-
istics. This characteristic describes which role the re-
spective usage of styles can play in the architectural de-
sign exploration process, i.e. how either different styles
or different design based on a style can be evaluated
in that usage. Since the modes of use do not exclude
each other, this only refers to the contribution of the
considered usage.

An overview of the classification is given in Table 1, the
details are explained for each characteristic in the following
subsections.

4.1 Compositionality
Let S be the set of architectural styles and A the set of

architectures. Style composition may be performed either
at the type or instance level.

Style composability at the instance level means the fol-
lowing: Let there be two styles x, y ∈ S. If an architecture
a ∈ A conforms to a style x, it is modified in a way that it
conforms to style x and conforms to style y as well. Then
x and y are composable for a. Thus, there is a (partial)
composition operator ×̄1 : (A× S)× S → A such that:

(×̄1(a, x, y) = b⇒ b conforms to y) (1)

∧ (×̄1(a, x, y) defined⇒ a conforms to x) (2)

Style composability at the type level is in place if a (partial)
composition operator ×̄2 : S × S → S is defined on the set
of architectural styles. Composability at the type level does
not imply that two architectures a, b ∈ A in two different

styles x, y ∈ S can be meaningfully combined into a new
architecture conforming to a ×̄2 b.

Compositionality can either be impossible resp. undefined,
manual, semi-automatic or automatic. It is automatic if
the composition operator is computable. If the composi-
tion operator is only partially computable, or if the deter-
mination of the composition is partially supported by an
program, compositionality is considered semi-automatic. Of
course, automatic compositionality is only conceivable for
styles which are formally specified.

Classification.
The composition of styles used in an ad-hoc manner is

expressly manual at the type level, and semi-automatic on
the instance level. On the type level, new styles may be
designed by combining the ideas underlying existing styles,
which is a creative process for the most part. On the instance
level, composition is often necessary, as no single style is
supposed to be apt to support the development of a whole
architecture. Tools might support the instantiation of new
styles into an existing architecture description, but conflicts
may occur, which cannot be resolved automatically.

In general, the composition of platform-oriented styles
is considered to be essentially undefined. In special cases,
composition may be simulated through multiple inheritance
of platform-oriented styles [22].

Compositionality at the instance level is not applicable
in documentation usage, since the derived views are not
meant to be tangible.

4.2 Specialization
Specialization relationships between different styles are

conceivable for all of the modes of use, but play a different
role for each of them. Specialization relationships can be
distinguished into single and multiple inheritance. Whether
subtyping concepts from type theory can be applied depends
on the degree of formality of style specification.

Classification.
In the case of ad-hoc usage, specialization is one of many

relationships that are defined between some patterns. It
might be exploited in choosing a pattern fitting a problem
at hand in a stepwise process, but no work on such a process
has been published. Since specialization relationships are
typically specified informally, multiple inheritance is possible
without introducing additional problems.

For platform-oriented styles, it is possible to exploit
specialization relationships in the development process. The
style may be incrementally refined from an abstract style to-
wards a concrete style, yielding a parallel hierarchy of mid-
dleware platforms. The resulting hierarchy may also make
use of multiple inheritance [19].

When defining customized styles, it is efficient to reuse
existing style definitions by defining the new style as a spe-
cialization, which also allow the reuse of analysis and design
tools existing for that style. The same applies to style-based
pre-modeling and documentation.

4.3 Explication and Rigor
In principle, the level of explication and rigor is indepen-

dent from the mode of use. Still, certain minimal levels
that the style specification must fulfill can be determined on
the one hand, and typical levels that can be found can be

Ad-hoc Platform-oriented Customized Pre-modeling Documentation

Compositionality Manual No Manual ? No n.a.
Specialization Yes Yes Yes Yes Yes
Explication & Rigor Informal No Formal Formal Informal
Conceptual Level (Abstract)/Technical Technical Abstract/(Technical) Abstract Both
Relationship to Sys-
tem Quality Charac-
teristics

No Analyses/Empirical Analyses (Analyses) Analyses

Suitability for Archi-
tectural Design Ex-
ploration

Limited Yes Partially Yes No

Table 1: Characteristics of the Architectural Style Usages

identified as well.

Classification.
In an ad-hoc use of styles, the level of rigor is typically

informal. Architectural patterns are only described very
vaguely by just giving examples of their instances that do
not claim generality at all.

Platform-oriented styles are seldom described explic-
itly at all yet, with the exception documented in [14]. How-
ever, the great variety of existing middleware platforms has
not yet been specified formally. In fact, access to the style
description might not be necessary at all after a taxonomy
of platforms has been derived based on formal style mod-
eling. Exploitation of additional style features still requires
the explicit use of formal style specifications.

In customized usage, formal specification of styles is ex-
pected in the context of ADL-based architecture specifica-
tion. Similarly, since formal analyses are an important as-
pect in style-based pre-modeling, thus a formal definition
of the style is required.

The required level of rigor depends on the focus in doc-
umentation usage. If the focus is on documentation, in-
formal and vague specification of the style may suffice, but
when formal analyses should be performed, formal style spec-
ification is necessary as well.

4.4 Conceptual Level
The characteristic “Conceptual level” describes whether

the architectural styles considered in this usage are (typi-
cally) bound to technical concepts (of an existing or planned
technical platform) or if they are more abstract in nature.
This distinction corresponds to different conceptual levels
at which software architecture can be specified in general
(e.g. conceptual vs. concrete architectures [37] or physical
vs. logical architecture [49]).

Classification.
For ad-hoc usage, both types are possible. While the

old general-purpose architectural styles [18] are quite generic
and abstract, current publications on architectural patterns
are focused towards specific platforms, and are either specif-
ically tailored towards one platform or provide examples for
multiple platforms and are thus more technically oriented.

Naturally, platform-oriented styles are conceptually
close to the platform they intend to support and are thus
technical in nature. However, generalizations made in a tax-
onomy of platform styles may introduce concepts that have
no direct counterparts in any existing platform.

Customized styles can be both abstract and technical in

nature. Due to the fact that the ADLs used for specification
are conceptually quite detached from typical implementation
techniques, abstract styles are more prevalent.

In pre-modeling usage, architectural styles are used in
an early stage of architectural development only, before the
final architecture of the system to be built is established.
Since the link of the pre-models and the final architecture is
quite loose, the styles in this usage are very abstract.

Finally, for documentation usage, both types of styles
are conceivable.

4.5 Relationship to System Quality Charac-
teristics

Architectural styles are intended to improve the process
quality of software development by acting as an intellectual
tool to the system designers. Additionally, they are intended
to improve the product quality of the product that is the
outcome of the development process. The different modes
of use support the product quality improvement in differing
ways.

Classification.
Due to the vague nature of the styles used ad-hoc, a re-

lationship to system quality characteristics is difficult to es-
tablish. The architectural pattern literature lists experience-
based hints on when to use which patterns, but the general
applicability of these rules is questionable.

Through defining multiple platform-oriented styles in
a commensurable way, styles and systems based on these
styles can be analysed and empirically evaluated to produce
a guideline for choosing a suitable style and platform for a
given scenario.

Styles in customized as well as documentation usage
often allow style-specific analyses [16]. In pre-modeling,
these analyses only establish properties of the pre-models,
and the link to the actual system’s quality is unknown.

4.6 Suitability for Architectural Design Explo-
ration

Architectural design exploration aims to support making
trade-offs between system quality characteristics in the de-
velopment process. This characteristic serves as a summary
judgment and combines the previous characteristic with the
possibility to exploit the relationship to the quality charac-
teristics in the architectural development process.

Classification.
Due to the ad-hoc nature of using styles, the suitability

for systematic architectural design exploration is very lim-
ited.

For platform-oriented style usage, a design method is
developed [21] that is targeted at supporting the choice of
an appropriate style and platform through tools and the
provision of guidelines.

Using styles as customized styles is only partially suited
for architectural design exploration. Many choices must be
made in customizing the style, i.e. before the actual model-
ing is done. A method for architectural design exploration
on this level is conceivable, but has not yet been proposed
and evaluated in detail.

Pre-modeling usage is in fact the most direct correspon-
dence of the idea of architectural design exploration. The
main issue with this usage is the linking of the architectural
design exploration with the actual modeling.

Documentation has a post-mortem relationship to mod-
eling activities, i.e. a modeling phase has been completed
when the documentation is consolidated. Thus, the suit-
ability for architectural design exploration is very limited.
Perhaps well-integrated tool support that enables a frequent
automatic derivation of style-based views would allow for en-
abling architectural design exploration.

5. CONCLUSION
A taxonomy of architectural style usages is presented.

We identified five major modes of using architectural styles,
which are discussed in detail, based on the relevant lit-
erature. In addition, while showing some commonalities
with architectural styles, generic or reference architectures
have been distinguished from architectural styles based on
their usage. Besides this bottom-up-oriented discussion, a
top-down classification of the identified usages discussing
compositionality, specialization, explication/rigor, concep-
tual level, relationship to system quality characteristics, and
the suitability for architectural design exploration has been
presented.

In our work, this coarse-grained taxonomy is currently
used to further explore platform-oriented usages of archi-
tectural styles, especially where the platforms to which the
styles are oriented are middleware platforms in the widest
sense. The MIDARCH Design Method exploits architec-
tural styles for design guidance and knowledge transfer in
migration and integration projects [19, 21, 22]. This work
will benefit from the research results presented in this pa-
per, because it provides the basis for incorporating benefi-
cial features from other modes of use. Similar work on other
modes of using architectural styles may be inspired by our
work as well.

6. REFERENCES
[1] G. D. Abowd, R. Allen, and D. Garlan. Formalizing

style to understand descriptions of software
architecture. ACM Trans. Softw. Eng. Methodol.,
4(4):319–364, 1995.

[2] C. Alexander, S. Ishikawa, and M. Silverstein. A
pattern language : towns, buildings, construction,
volume 2 of Center for Environmental Structure.
Oxford Univ. Press, New York, 1977.

[3] R. Allen and D. Garlan. A formal basis for
architectural connection. ACM Transactions on
Software Engineering and Methodology (TOSEM),
6(3):213–249, 1997.

[4] J. P. Almeida, R. Dijkman, M. van Sinderen, and
L. F. Pires. On the notion of abstract platform in mda
development. In EDOC ’04: Proceedings of the
Enterprise Distributed Object Computing Conference,
Eighth IEEE International (EDOC’04), pages
253–263. IEEE Computer Society Press, 2004.

[5] D. Balasubramaniam, R. Morrison, G. N. C. Kirby,
K. Mickan, and S. Norcross. Archware adl release 1
user reference manual. Technical Report D4.3,
ArchWare Project, 2004.

[6] L. Baresi, R. Heckel, S. Thöne, and D. Varró.
Style-based refinement of dynamic software
architectures. In Proceedings of the Fourth Working
IEEE/IFIP Conference on Software Architecture
(WICSA’04), page 155. IEEE Computer Society, 2004.

[7] L. Bass, P. Clements, and R. Kazman. Software
architecture in practice. Addison-Wesley Longman, 1.
edition, 1998.

[8] F. Buschmann, R. Meunier, H. Rohnert,
P. Sommerlad, and M. Stal. Pattern-Oriented Software
Architecture: A System of Patterns. John Wiley &
Sons, 1996.

[9] P. Clements, D. Garlan, L. Bass, J. Stafford, R. Nord,
J. Ivers, and R. Little. Documenting Software
Architectures: Views and Beyond. Pearson Education,
2002.

[10] D. Compare, P. Inverardi, and A. Wolf. Uncovering
architectural mismatch in component behavior.
Science of Computer Programming, 33(2):101–131,
1999.

[11] M. E. Conway. How do committees invent?
Datamation, 14(4):28–31, Apr. 1968.

[12] J. Coplien. Software Patterns. SIGS, New York, 1996.

[13] L. Davis, R. F. Gamble, and J. Payton. The impact of
component architectures on interoperability. J. Syst.
Softw., 61(1):31–45, 2002.

[14] E. Di Nitto and D. Rosenblum. Exploiting ADLs to
specify architectural styles induced by middleware
infrastructures. In Proceedings of the 21st
international conference on Software engineering,
pages 13–22. IEEE Computer Society Press, 1999.

[15] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design patterns: elements of reusable object-oriented
software. Addison-Wesley Longman Publishing Co.,
Inc., 1995.

[16] D. Garlan. What is style? In D. Garlan, editor,
Software architectures, volume 106 of
Dagstuhl-Seminar-Report, Saarbrücken, Germany,
February 1995. Proceedings of the Dagstuhl Workshop
on Software Architecture.

[17] D. Garlan, R. T. Monroe, and D. Wile. Acme:
architectural description of component-based systems.
In Foundations of component-based systems, pages
47–67. Cambridge University Press, New York, NY,
USA, 2000.

[18] D. Garlan and M. Shaw. An introduction to software
architecture. In V. Ambriola and G. Tortora, editors,
Advances in Software Engineering and Knowledge
Engineering, pages 1–39, Singapore, 1993. World
Scientific Publishing Company.

[19] S. Giesecke. A method for integrating enterprise
information systems based on middleware styles. In

G. A. Papadopoulos and J. Filipe, editors,
International Conference on Enterprise Information
Systems (ICEIS’06) Doctoral Symposium, Paphos,
Cyprus, pages 24–37. INSTICC Press, Portugal, 2006.

[20] S. Giesecke. Middleware-induced styles for enterprise
application integration. In Proc. 10th European
Conference on Software Maintenance and
Reengineering (CSMR06), Bari, Italy, pages 334–340.
IEEE Comp. Soc., 2006.

[21] S. Giesecke and J. Bornhold. Style-based architectural
analysis for migrating a web-based regional trade
information system. In A. Trentini, A. Marchetto, and
C. Bellettini, editors, First International Workshop on
Web Maintenance and Reengineering (WMR 2006),
volume 193 of CEUR Workshop Proceedings, pages
15–23, 2006.

[22] S. Giesecke, J. Bornhold, and W. Hasselbring.
Middleware-induced architectural style modelling for
architecture exploration. In Working IEEE/IFIP
Conference on Software Architecture (WICSA 2007),
January 2007, Mumbai, India. IEEE Computer
Society Press, 2007.

[23] S. Giesecke, W. Hasselbring, and M. Riebisch.
Classifying architectural constraints as a basis for
software quality assessment. Advanced Engineering
Informatics, 21(2):169–179, Apr. 2007. Special Issue
on Ontology and Epistemology of Systems and
Software Engineering.

[24] A. Grosskurth and M. W. Godfrey. A reference
architecture for web browsers. In ICSM ’05:
Proceedings of the 21st IEEE International Conference
on Software Maintenance (ICSM’05), pages 661–664,
Washington, DC, USA, 2005. IEEE Computer Society.

[25] R. Keshav and R. Gamble. Towards a taxonomy of
architecture integration strategies. In ISAW ’98:
Proceedings of the third international workshop on
Software architecture, pages 89–92, New York, NY,
USA, 1998. ACM Press.

[26] M. Kirchner and P. Jain. Pattern-oriented software
architecture, vol. 3: Patterns for resource
management. Wiley series in software design patterns.
Wiley, Chichester, 2004.

[27] M. Klein and R. Kazman. Attribute-based
architectural styles. Technical Report
CMU/SEI-99-TR-022, Software Engineering Institute,
Carnegie Mellon University, 1999.

[28] M. Klein, R. Kazman, and R. Nord. A basis (or abass)
for reasoning about software architectures. Software
Engineering Institute, 2000.

[29] C. W. Krueger. Software reuse. ACM Comput. Surv.,
24(2):131–183, 1992.

[30] D. C. Luckham, J. J. Kenney, L. M. Augustin,
J. Vera, D. Bryan, and W. Mann. Specification and
analysis of system architecture using Rapide. IEEE
Trans. Softw. Eng., 21(4):336–355, 1995.

[31] N. Medvidovic. On the role of middleware in
architecture-based software development. In
Proceedings of the 14th international conference on
Software engineering and knowledge engineering, pages
299–306. ACM Press, 2002.

[32] N. Medvidovic, E. M. Dashofy, and R. N. Taylor. The
role of middleware in architecture-based software

development. International Journal of Software
Engineering and Knowledge Engineering,
13(4):367–393, 2003.

[33] N. Medvidovic, D. S. Rosenblum, and R. N. Taylor. A
language and environment for architecture-based
software development and evolution. In ICSE ’99:
Proceedings of the 21st international conference on
Software engineering, pages 44–53, Los Alamitos, CA,
USA, 1999. IEEE Computer Society Press.

[34] N. Mehta, N. Medvidoviç, and M. Rakiç. Why
consider implementation-level decisions in software
architectures? Technical Report USC-CSE-2000-500,
University of Southern California, Computer Science
Department, 2000.

[35] N. R. Mehta and N. Medvidovic. Distilling software
architecture primitives from architectural styles.
Technical Report USC-CSE-2002-509, University of
Southern California, Computer Science Department,
2002.

[36] N. R. Mehta and N. Medvidovic. Composing
architectural styles from architectural primitives. In
Proceedings of the 9th European software engineering
conference held jointly with 10th ACM SIGSOFT
international symposium on Foundations of software
engineering, pages 347–350. ACM Press, 2003.

[37] N. R. Mehta, N. Medvidovic, and S. Phadke. Towards
a taxonomy of software connectors. In ICSE ’00:
Proceedings of the 22nd international conference on
Software engineering, pages 178–187, New York, NY,
USA, 2000. ACM Press.

[38] R. T. Monroe. Capturing software architecture design
expertise with armani. Technical Report
CMU-CS-98-163, Carnegie Mellon University, School
of Computer Science, Sept. 2000. Version 2.3.

[39] R. T. Monroe, A. Kompanek, R. Melton, and
D. Garlan. Architectural styles, design patterns, and
objects. IEEE Software, 14(1):43–52, Jan. 1997.

[40] F. Oquendo, B. Warboys, R. Morrison, R. Dindeleux,
F. Gallo, H. Garavel, and C. Occhipinti. Archware:
Architecting evolvable software. In F. Oquendo,
B. Warboys, and R. Morrison, editors, Software
Architecture, First European Workshop, EWSA 2004,
St Andrews, UK, May 21-22, 2004, Proceedings,
volume 3047 of Lecture Notes in Computer Science,
pages 257–271. Springer, 2004.

[41] R. R. Raje and S. Chinnasamy. elelepus – a language
for specification of software design patterns. In SAC
’01: Proceedings of the 2001 ACM symposium on
Applied computing, pages 600–604, New York, NY,
USA, 2001. ACM Press.

[42] D. Riehle and H. Züllighoven. Understanding and
using patterns in software development. Theory and
Practice of Object Systems, 2(1):3–13, 1996.

[43] D. C. Schmidt, R. E. Johnson, and M. Fayad.
Software patterns. Communications of the ACM,
39(10):37–39, Oct. 1996. Special Issue on Patterns and
Pattern Languages.

[44] D. C. Schmidt, M. Stal, H. Rohnert, and
F. Buschmann. Pattern-oriented software architecture,
vol. 2: Patterns for concurrent and networked objects.
Wiley series in software design patterns. Wiley,
Chichester, 2000.

[45] M. Shaw. Architectural issues in software reuse: it’s
not just the functionality, it’s the packaging.
SIGSOFT Softw. Eng. Notes, 20(SI):3–6, 1995.

[46] M. Shaw and D. Garlan. Software architecture:
perspectives on an emerging discipline. Prentice-Hall,
Inc., 1996.

[47] R. N. Taylor, N. Medvidovic, K. M. Anderson,
J. E. James Whitehead, J. E. Robbins, K. A. Nies,
P. Oreizy, and D. L. Dubrow. A component- and
message-based architectural style for GUI software.
IEEE Trans. Softw. Eng., 22(6):390–406, 1996.

[48] P. van Emde Boas. Resistance is futile; formal
linguistic observations on design patterns. Technical
Report ILLC-CT-97-02, ILLC, FWINS, Universiteit
van Amsterdam, Feb. 1997.

[49] A. Zendler and H. G. Schwartzel. From logical to
physical software architectures. IETE technical review,
15(5):355–369, 1998.

[50] W. Zimmer. Relationships between design patterns. In
J. O. Coplien and D. C. Schmidt, editors, Pattern
languages of program design, pages 345–364, Reading,
1995. Addison-Wesley. Proc. PLoP’94.

