
Interoperability Marshaller/Unmarshaller

Youngsu Son, Jiwon Kim, Donguk Kim, Jungmin Son

Samsung Electronics

arload.son, jiwon.ss.kim, dude.kim, jungmin4.son@samsung.com

ABSTRACT

CORBA, XML Web Service which has been a standard of tradi-

tional Distributed Object systems, is a solution using Broker (Ob-

ject Request Broker, Enterprise Service Bus) for monitoring and

reliability of system. However, the system is too heavy to satisfy

various requirements such as reliability, availability, and hetero-

geneity. On the Contrary, traditional RPC (Remote Procedure

Call) is lighter than the legacy distributed object solution, but its

availability is limited to specific platform and it has language

dependency. Recently, several papers have been published de-

scribing lightweight solutions supported in several influential

systems and languages [Google Protocol Buffer] and [Facebook

Thrift]. This paper introduces a hybrid pattern which takes ad-

vantages of the strengths of both the heavier, legacy approaches

and lightweight approaches.

Categories and Subject Descriptors

D.2.11 [Software Engineering]: Software Architectures – pat-

terns.

General Terms

Architecture, Design

Keywords

Marshaller/Unmarshaller, Serializer

1. INTRODUCTION
A traditional distributed object such as CORBA or Web Service

can provide the best solution for both interoperability and system

monitoring.

However, if all we want is interoperability, we do not want to run

a heavy implementation with resource requirements that prohibit

the implementation running as a „think client‟ (such as in a

browser).

Although, traditional socket programming can be customized or

optimized to a specific environment, such as a thin client, We

want a reusable framework to avoid the effort/cost (and potential

for programmer error) associated with using a low level API to

implement each protocol.

Therefore it is needed to use Marshaller / Unmarshaller that sup-

ports light and various languages and is able to deliver data easi-

ly.

2. EXAMPLE
In case of Office Automation System, it consists of various devic-

es and systems such as security System, power management sys-

tem, fire management system, and so on. Some of the systems are

implemented as rich clients, but others can be thin clients.

Systems with enough resources to support a, can use a Distribut-

ed Object System such as CORBA(Common Object Request Bro-

ker Architecture), WCF (Windows Communication Foundation),

and JBOSS.

Thin Client systems cannot meet the resource requirements of a

Rich Client and, often, such systems implement interoperability

using low-level programming for example, Socket.

The Marshaller/Unmarshaller uses streams to communicate con-

veniently and easily supporting both Thin Clients and Rich Cli-

ents.

3. CONTEXT
It is necessary to be able to communicate each other in heteroge-

neous environment, via an easy to use and lightweight framework.

4. PROBLEM
In Server and Client System of heterogeneous environment, there

are a server based on Java and a thin client. To develop a new

protocol to communicate in a heterogeneous environment costs

too much in both communication and development resources.

To achieve Location Transparency, a distributed object such as

CORBA, WCF, and JBoss may be used; however, for a distribut-

ed system which needs quite simple communications we want to

enable use of a thin client.

Therefore, a system that works well in a heterogeneous environ-

ment with both heavier, legacy and lightweight lan-

guages/environments is desired.

5. FORCES
The following items should be regarded as forces:

 Lightness - The system should be lightweight for low per-

formance system

 Usability - Marshaling/Unmarshaling should be able to used

without being aware of Server/Client's protocol

 Simplicity - Code should be simple, approachable, and free

of unnecessary dependencies.

 Transparency - the system should consider a heterogeneous

environment.

 Consistency Niche, language-specific features belong in

extensions, not the core library.

6. SOLUTION
This system (refers figure 3) supports various Native Language,

Protocol and Transport for communication in Heterogeneous en-

vironment.

This pattern has largely divided to two parts.

Contract Converter - compiles Intermediate Language and sends

and receives data derived from various languages.

Channel - has various data formats and transport layer for com-

munication in Heterogeneous environment.

6.1 Structure
Contract Converter (refers figure 4) is quite similar to Modern

Compiler's which is well known. CodeGenerator is largely divid-

ed into Interpreter Pattern and Bridge Pattern.

 LexicalTokenizer - extracts Tokens from IDL.

 SyntaxParser - groups Syntax by unit. Syntax means separat-

ing a sentence to physical unit.

 SemanticAnalyzer - extracts semantics based on Syntax

which is divided into physical unit.

 Intermediate CodeGenerator - converts inserted IDL files to

Intermediate Code (Intermediate Representation) format.

 TargetCodeGenerator – replace IntermediateCode with

StringTemplate by correspondent to Native Language.

StringTemplate is combined with Name, ID, and then the fi-

nal Skeleton code is generated.

Channel (refers figure 5) transports messages consists of follow-

ing.

 ProtocolFactory - is AbstractFactory of ConcreteProtocol-

Factory that creates protocol.Client code is able to get neces-

sary protocol by Abstract Factory,

even though it doesn't know the specific concrete factory.

 ConcreteProtocolFactory - is Concrete Factory creating

Concrete Protocol that decides specific data format for

Communication

 Protocol - is abstract class of ConcreteProtocol which de-

cides data transport format. It has readMessage and

writeMessage that is Template Method and controls entire

flows of ConcreteProtocol such as how to work.

 ConcreteProtocol - is an object to support a variety of data

format. One or more than two protocols' combinations can

be used in communication, for example CompactProtocol

and SecurityProtocol.

 TransportFactory - is Abstract Factory of Con-

creteTransportFactory which creates transport layer. A pro-

tocol can use diverse transport.

 ConcreteTransportFactory - is Concrete Factory which cre-

ates ConcreateTransport deciding how to transport in detail.

 Transport - is an Interface which enables to access Con-

creteTransport as Interface. As a result, communication

method can be easily changed from Inter Procedure Call to

Remote Procedure Call

 ConcreteTransport - is an object to support a variety of

transport method which can be added and extended continu-

ously.

 Processor - is a dispatcher which decides how to process

data getting from server.

6.2 Dynamics

6.2.1 Contract Convertor
Scenario #1. Skeleton Code derived from IDL Compiler

(Scenario #1 refers figure 6)

1. Extracts tokens from IDL Scripts.

2. Parse tokens and compose Abstract Syntax Tree.

3. Edits semantics in each syntax.

4. Finds pattern template related to Semantic elements. There are

function setter/getter for data storing and Method Skeleton for

service to support and so on

5. Concrete Pattern Template which is optimized to Target Lan-

guage is created.

6. Skeleton code which combines significant name tokens from

syntax tree and pattern template derived from each target lan-

guage is created.

6.2.2 Channel
Scenario #2. Data Transmission from Server to Client.
(Scenario #2 refers figure 7)

1. IDL Compiler puts data into each field in Skeleton.

 For example, Setter such as Person.SetName() and

Person.SetAge() can be used to fill with data.

2. Once data is inserted, it is converted to message format that

is sent by protocol.

3. Appropriate transport is created by TransportFactory.

4. ProtocolFactory decides which protocol to use.

5. When messages created by Skeleton are delivered to Protocol,

Protocol converts them to proper format by parsing , and then

sends them through Transport.

6. Waits for messages coming, and then when data arrives through

Transport, it is parsed to correspondent protocol and delivered
with Skeleton format (Native Language)

Scenario #3. Return the result to Client after server gets a

message to Client.

(Scenario #3 refers figure 8)

1. Server parses messages coming from Processor(Dispatcher) and

gets information about what kind of Protocol is used from Header

data．

2. Reads entire messages from getTransport() to know which

Transport was used in Protocol.

3. Protocol splits data into each message and read data from each

file.

4. Messages needs to be unmarshalling as skeleton.

5. Server Skeleton gets data from correspondent field as object,

processes them , and return them.

6. To send the messages which returns Processor to client, it is

necessary to reorganize the messages and deliver them through

Transport to client.

7. Implementation

Step 1: Decide the message exchange format considering

Quality of Service (QoS).

Based on interoperability to support, you must decide whether to

use a system specific format or an IDL to get rid of language de-
pendency.

Using IDL provides interoperability and flexibility in a multi-
language environment, while degrading performance.

Also, you will need to have many discussions and tests regarding
User Defined Data Type for each different supported language.

You may decide to make trade-offs between the high-cost of lega-

cy approaches and the lower performance of an IDL. It is possible

to use system-specific functionality to get better performance than

an IDL without incurring the full cost of implementing CORBA
and Web Services.

In case of Google, there are following reasons why they use their
own structured data format.

 protocol buffers are 3 to 10 times smaller than xml

 protocol buffers are 20 to 100 times faster than xml

 protocol buffers are less ambiguous than xml.

 protocol buffers generate data access classes that are

easier to use programmatically

Design data format and protocol which is quite suitable for the
system environment to be used or use.

Step 2 : Test usability with objects' interface extracted in real

target system to be used , before integrate objects.

Usability of the framework is as important as meeting the interop-

erability requirements. Designers maintain a variety of language

and platform preferences they use to design systems. So, we want

to design a platform that supports the designers‟ desired environ-

ment. Therefore usability is necessary.

Before implementing the class, write the code supporting main

scenario first, and then get feedback from users. After that, de-

fine object models based on the code sample given from feedback.

For example, a framework designer familiar with C/C++ made a

file reading scenario like below.

static void Main(string[] args)

{

StreamReader sr = File.OpenText("MyFile.txt");

string s = sr.ReadLine();

while (s != null)

{

s = sr.ReadLine();

Console.WriteLine(s);

}

}

List1. File Reading Scenario

The designer thought that the code above was natural. However,

other designers familiar with other language gave feedback with

more intuitive code sample.

static void Main(string[] args)

{

 foreach (string s in File.ReadAllLines("MyFiles.text"))

 {

 Console.WriteLine(s);

 }

}

List2. File Reading Scenario as feedback

This is just the power of feedback. Framework designers

sometimes make mistakes by building a framework within a
familiar culture of familiar custom or language.

When you design actual framework API, if you verify the

framework scenario before implementation and get feedback, you
can get refined scenario naturally.

Finally, you can design a good API by putting these together and
constructing actual object model with that.

Step 3: Develop IDL Compiler

Developers can easily develop IDL compiler with Tools, for ex-

ample yacc, and so on. To make compiler becomes easier than last

decades.

By utilizing Lex that is an automation tool for tokenizing and yacc

for syntax analyzing, it has become so easy to make a simple

grammar compiler with small amount of knowledge about them.

Even though the IDL you are planning on supports complex func-

tionality, it is not quite difficult to make it as well if you study

Semantic in depth little bit more.

When you design IDL, you will think about simplicity and com-

plex and diverse functionality.

Usually, simplicity is better for interoperability. Thrift and Proto-

col Buffer are good examples of such simplicity.

Custom IDL complier requires maintenance features to reuse it.

Because it is not good way to make a new compiler when IDL is

changed, you need to implement and manage version control of

IDL. Just building changed IDL and dependent component is

better to support new functionality. When function or target lan-

guage's extension is implemented, Bridge Pattern which extends
expression range of generated code can be used.

Step 4 : Consider extensibility of messages sending and receiv-

ing.

The information which is sent to marshaling/unmarshaling meth-

od can be added/ modified according to the application scenario or

node's feature.

Various nodes are added in the system and thus, the exchange

information is designed for extension. For that reason, it should

consider using the Composite Message[1]or the Parameter Object

pattern[2].

Figure 1 Composite Message Pattern

8. Known Use
 Google Protocol Buffers

Protocol Buffers are a way of encoding structured data in an effi-

cient yet extensible format. Google uses Protocol Buffers for al-

most all of its internal RPC protocols and file formats.

 Facebook Thrift

Thrift is a software framework for scalable cross-language ser-

vices development. It combines a software stack with a code

generation engine to build services that work efficiently and

seamlessly between C++, Java, Python, PHP, Ruby, Erlang, Perl,

Haskell, C#, Cocoa, Smalltalk, and OCaml.

 Hadoop Avro

Hadoop‟s data serialization system that provides dynamic integra-

tion with scripting languages. Avro supports serialization among

C, C++ and Java based system.

9. Case Study
Apps in Google consist of many heterogeneous apps such as

GTalk, GMail, GoogleCalendar, Google Docs, and so on.

In order to support those heterogeneous system as one Cloud Ser-

vice,

Google internally uses Interoperabilty Marshaller/Unmarshaller

(Google Protocol Buffers) as their communication machanism.

Figure 2 Google Apps Engine

10. Resulting Context
The advantages of this pattern include:

 It is possible to get efficient communication channels with

transport layer protocol and data format for relatively thin

client with low costs and resource consumption of data build

in heterogeneous environment.

 Between heterogeneous client and server, there are no proto-

col limitations and reduced data format, serialization, and

additional work about transport layer.

 In case of needs about various services, channels and data

based on environment are selectively able to be offered.

 It is quite suitable to dynamic server-client configuration

since there is no dependency between them by environment

oriented and separated Transport, Protocol, and Service con-

figuration.

 It is easy to add new Transport , Protocol or service which

means easy maintenance.

 It is easy to reuse by separation of Transport, Protocol, and

service layers of Contractor and Channel.

 It is possible to monitor each type, such as Protocol, Format,
Transport Layer, in heterogeneous Transport.

Possible disadvantages are:

 It takes slightly time for marshalling/unmarshalling of vari-

ous languages' data packets.

 It might cause subtle calculation overhead in a system

architecture that doesn't need various language data.

 It might cause to make code dirty because of vast data type

and environment based serializer.

 There is a tradeoff which means that it is quite enough for

thin client communication but might cause speed limitation

because of packet, format, calculation complexity of

transport.

 It can cause only overhead in the environment which

supports various services and client-server have same.

11. Related Pattern

Composite Message [1]

This pattern is used for marshaling/un-marshaling data, extending

and adding messages you want to transfer while passing through
layers.

And enable to exchange without influence to others by separation

of Transport, Protocol, and Service. It is useful in case of dynam-
ic channel configuration.

Pipe & Filter [6]

This pattern is used when adding or filtering messages you want

to transmit flexibly according to the circumstance, used internally
in the aforementioned Composite Message.

Broker [6]

This pattern removes direct dependency (location information,
platform restrictions, etc.) between server and client.

And it is useful for coordination/Monitoring of messages between

Client and Server and possible to register and deregister various

services dynamically by Broker.

ACKNOWLEDGMENTS
We thank our shepherd Richard Lai for his valuable comments

that contributed to improve this paper. The EVA (Pattern Evan-

gelist Group), James Chang provided useful improvements and

corrections.

REFERENCES

[1] Aamond Sane, Roy Campbell, “Composite Messages: A

Structural Pattern for Communication between Components”,

OOPSLA‟ 95Workshop on Design Patterns for Concurrent, Dis-
tributed, and Parallel Object-Oriented Systems,1995.

[2] Martin Fowler, Kent Beck, John Brant, William Opdyke, Don

Roberts, “Refactoring : Improving the Design of Existing Code”,

Addison-Wesley Professional , 1999

[3] Robert S. Hanmer, “WatchDog”, Patterns for Fault Tolerant
Software, WILEY, 2007

[4] James C. Hu, Douglas Schmidt, "JAWS: A Framework for

High-Performance Web Servers", Domain-Specific Application

Frameworks: Frameworks Experience By Industry, John Wiley &
Sons, October, 1999.

[5] Michael Hicks, Jonathan T. Moore, Scott Nettles, “Dynamic

Software Updating”, ACM Transactions on Programming Lan-
guages and Systems (TOPLAS) ,Volume 27 , Issue 6

[6] Frank Buschmann , Regine Meunier , Hans Rohnert , Peter

Sommerlad , Michael Stal, "Pattern-Oriented Software Architec-
ture Volume 1: A System of Patterns", WILEY, 1996

[7] Douglas C. Schmidt, Michael Stal, Hans Rohert, and Frank

Buschmann, "Pattern-Oriented Software Architecture Volume 2:

Patterns for Concurrent and Networked Objects", WILEY, 2000.

Figure 3 Interoperability Marshaller/Unmarshaller Architecture

Figure 4 Contract Converter

Figure 5 Channel

Figure 6 Contract Converter Sequence

Figure 7 Channel Sequence

Figure 8 Server Handler Call Sequence

