
Towards a Pattern Language for Affective Systems

Javier Gonzalez-Sanchez, Maria Elena Chavez-Echeagaray,
Robert Atkinson, Winslow Burleson

School of Computing, Informatics, and Decision Systems Engineering
Arizona State University Tempe, Arizona, US

University Drive and Mill Avenue, Tempe, AZ 85287
+1 (480) 965-9253

{javiergs, helenchavez, robert.atkinson, winslow.burleson}@asu.edu

Abstract. There is growing interest in how to leverage information about users’
emotions as a mean of personalizing the response of computer systems. This is
particularly useful for computer-aided learning, health, and entertainment systems.
Such systems are still designed and developed from scratch and the experience from
their implementation is not documented, resulting in forcing the development teams
to ‘re-invent the wheel’. Therefore, there are few architectures, frameworks,
libraries, or software tools that allow developers to easily integrate emotion
recognition into their software projects. This paper presents an approach of
recording the design experience in the form of patterns for emotional-aware systems
and aims to develop a pattern language for those systems.

Keywords: Patterns, Pattern Languages, Emotional-Aware Systems, Affective
Computing

1 Introduction

Affective Systems (AS) have the ability to accurately recognize, understand, and respond
to human emotions (Gonzalez-Sanchez et al. 2011b). The design and implementation of
such systems is not an easy task, since they are complex systems that: (a) incorporate
several sensing devices (hardware); (b) need to apply diverse machine learning algorithms
to deal with the vast amount of data generated by those sensing devices; and (c)
collaborate with existing code as a subsystem.

There are several examples of research conducted on creating AS to support learning
(Arroyo et al. 2009, Woolf et al. 2007, D’Mello et al. 2007), patient monitoring in health
care (Chao and Zhiyong 2008), and videogames (Gilleade et al. 2005). However, the
majority of this research does not focus on the creation of reusable software, software
frameworks, or the best methodological practices for those purposes. Instead, these
approaches are focused on creating a proof-of-concept system to collect data and validate
technology approaches.

Therefore, systematic disciplined approaches must be devised in order to leverage the
complexity and assortment of AS and achieve overall product quality within specific time
and budget limits aiming to design and implement AS based on reusable design
experience gained over several years of try-and-error attempts. One such approach is the
use of patterns.

Patterns describe a problem which occurs over and over again and then describe the core
of the solution to that problem, in such a way that one can use this solution a million times
over (Alexander et al. 1977). Patterns are not conceived but rather discovered or mined
after numerous implementations of the same solution for a given problem, usually by
different people. Patterns can be grouped in a pattern language, which is a collection of
related patterns that collaborate inside the boundaries of an application domain (Lyardet et
al. 1998) and can guide the designer through step-by-step design guidelines. Several
repositories of patterns exist for various disciplines and offer design-expertise reuse to the
corresponding communities. For example: the object-oriented software community has
documented the design patterns initiated by (Gamma et al. 1995); the hypermedia
community has established a repository of patterns in (Hypermedia 2012); the HCI
community has also launched a repository of patterns documented in (HCI Patterns 2012);
and the learning community has started a similar endeavor lead by (Iba 2011).

This proposal aims to move research a step towards that direction by proposing an initial
set of design patterns for AS. The patterns in this paper are meant to work synergistically
and become part of a pattern language. Researchers in affective computing field have
solved AS challenges repeatedly and have implemented solutions developing design
patterns implicitly. As part of our work, we harvested domain-specific patterns in the
attempt to document problem’s solutions present on AS. Designers of AS, especially
inexperienced designers, could take advantage of those patterns (i.e. previous design
expertise) and save time and resources assuring software quality.

The structure of this paper is as follows: Section 2 provides background about AS
classification and functionalities aimed to become patterns; the template for documenting
patterns is also described here. Section 3 provides the catalog of the found patterns and
enumerates their unique characteristics. Finally, Section 4 presents conclusions and ideas
for future work.

2 Background

This section provides a background about AS classification (considering common
implementation characteristics) and functionalities. Also present the template to be used
for pattern documentation.

2.1. Classification and Functionalities

The first step for the harvesting process was to classify AS in categories according with
their common implementation characteristics; two dimensions were considered: static or
dynamic (system ability to react in consequence to affect) and autonomous or dependent
(from other systems). As shown in the following table (Table 1) these dimensions became
three categories: Loggers, Adaptive Systems, and Companions.

Table 1. AS classification
Dimensions Autonomous Dependent
Static Logger Logger
Dynamic Adaptive System Companion

a) Logger. These are AS implemented to gather data to posterior analysis. They collect

affective signals and data about user’s interaction with the environment and store
them in files or databases.

b) Adaptive System. These are AS able to change their behavior in real-time, aiming to
show empathy to the user. For example, modifying an element of the environment to
increase the engagement in a game or changing the difficulty level of a task to reduce
frustration in a learning activity.

c) Companion. These are an extension of adaptive systems; companions live inside
other systems and their work is to complement them as an independent extension. For
example, affective companions are used in intelligent tutor systems to provide
affective support to the learner. The tutor and the companion interact but they are
independent of each other. Tutor can work with or without the companion, activate or
deactivate it, or even call different companions as needed.

We tried to discover common functionalities among some documented AS of each
category (logger, adaptive system, companion). If these functionalities were indeed found
in at least three or four AS, then these functionalities were considered widely adopted and
applicable and were therefore regarded as AS patterns. The methodology used in this
paper for ‘pattern mining’ is governed by such a philosophy.

The common functionalities detected in our exploration are summarized as follow:

a) Sensing. Measuring signals from a hardware device (sensors). The collected

measurements are a binary stream of raw data. For example: skin conductivity.
b) Perception. Parsing a binary stream of raw data to obtain a measure of an affective

state. For example: skin conductivity measurements are parsed to obtain arousal
levels.

c) Emotional Intelligence. When systems are conformed of several sensors and
therefore measure several signals, it makes necessary to take advantage of that data to
infer an affective state. This is a functionality characteristic of multimodal systems.
For example: skin conductivity, pupil dilatation, and face gestures can be used to
infer the engagement or frustration of a user.

d) Synapsis. Communicating the affective state with other systems or subsystems of the
current system. For Loggers this means put the information in a storage mean, for
adaptive systems and companions this implies a communication effort.

e) Introspection. Gathering information about the task the user is doing and the status
of the task: UI events, system failure, etc. This is useful to adaptive systems and
companions to be aware of the context related with the current affective state.

f) Rapport. Executing a behavior accordingly with the detected affect state while the
user is doing a specific task.

g) Behavior Coding Repository: Defining rules and policies to be applied for a specific
affective state while doing a specific task. These rules and policies define the
behavior of the system.

The relationships between these functionalities are shown in Fig 1.

Figure 1. Common functionalities. Sensing, Perception, and Emotional Intelligence are common to all AS. The
others functionalities are more common in adaptive systems (including companions) but not exclusive of them.

2.2. Sample of Systems

The set of AS used to harvest patterns is shown in Table 2, which includes the
classification of the AS and the detected functionalities.

Table 2. AS reviewed to harvest patterns. Detected functionalities: (1) sensing, (2) perception, (3) emotional
intelligence, (4) synapsis, (5) introspection, (6) rapport engine, (7) behavior coding repository.

The analysis done on these systems allows us to describe how their functionalities were
implemented, find commonalities among the systems, harvest patterns, and document
those patterns in a suitable format.

AS Category 1 2 3 4 5 6 7
Wayang Outpost by University of
Massachusetts Amherst.
(Cooper et al. 2009)

Logger X X X X X

Multi-sensor Affect Recognition
System by MIT Media Lab (Kapoor
and Picard 2005)

Logger X X X X

A Platform for Affective Agent
Research by MIT Media Lab (Burleson
et al. 2004)

Adaptive
System

X X X X X X X

Smart Sensor Integration by University
of Augsburg (Wagner, André, and Jung
2009)

Adaptive
System

X X X X

Affective Intelligent Tutor System:
Emilie-1 and Emile-2 by IEEE
(Nkambou 2006)

Companion X X X X X X X

SEMAINE by German Research Center
for Artificial Intelligence (Schroder
2010)

Adaptive
System

X X X X

The Emotion Branch: A Unified
software architecture by Université
Bordeaux (Clay, Couture, and Nigay
2009)

Logger X X X X

Multimodal Affect Recognition based
on Decision Fusion Technique by
University of Sydney (Hussain and
Calvo 2009)

Logger X X X X

Fusion Framework for Adaptive
Multimodal Affect Recognition of an
audience by VTT Technical Research
Centre of Finland (Vildjiounaite et al.
2009)

Logger X X X X

Replicants by University of Amsterdam
(Sebe, Cohen, and Huang 2005)

Logger X X X X

MAUI by University of Central Florida
(Lisetti and Nasoz 2002)

Companion X X X X X X

2.3. Pattern Description Template

Almost all of the approaches that have proposed patterns in a domain have also suggested
a novel way of describing and cataloging them. Gamma et al., suggest in (Gamma et al.
1995) that it is more difficult to describe patterns than to actually find them. That is not
our case for AS. We used a pattern description template taken from (Avgeriou et al. 2003)
with the following fields or attributes:

a) Name. A unique name to distinguish the pattern and uniquely refer to it.
b) Problem. A brief description of the design problem at hand.
c) Motivation. An explanation of the origins of the problem, probably with an example

for better communicating it. It may also contain the context of the particular problem
if it is necessary in order to make it more understandable.

d) Solution. A description of the solution proposed by this pattern that addresses the
problem and motivation ���stated earlier.

e) Forces. A list of the issues, pulled from the problem, which are addressed by the
solution.

f) Known uses. Examples of the pattern in current AS. This is an important attribute of
a pattern since it is ���claimed that a proposed pattern gets accepted by the
corresponding pattern community, only if there has been two or three examples of its
use by someone other than the one who is suggesting the pattern (Buschmann et al.
1996).

g) Related Patterns. Other patterns associated to this one in some way.

This template does not delve into implementation details, but rather expresses a generic
solution.

3. Catalog of Patterns

This section shows the application of the template proposed in the previous section, for
the harvested AS patterns. Notice that the template in the previous section contains seven
items per each pattern and the subsections below contain only six, due to the fact that the
first item on the template is the name of the pattern that is the title of each subsection. The
relationships between the described patterns are depicted in Fig 1.

3.1 Sensing

Problem. External hardware devices, called sensors, measure signals of affective
(emotional) changes. Those measurements are streams of binary data that are complex and
diverse, them can range from brain-waves (EEG) signals and physiological reactions
readings to face-based and gesture-based emotion recognition to posture and pressure
sensing (Gonzalez-Sanchez et al. 2011).

Motivation. Minimize dependency on the hardware devices used to measure signals of
affective (emotional) changes and provide genericity to access those signals.

Solution. The Sensing pattern defines a generic interface with a serial port device. The
main intention here is to completely encapsulate the interface with the serial port
hardware device. All components interfacing with the serial port will not be impacted by
changes in the hardware device. Thus, data is gathered no matter the hardware interface
(USB, Bluetooth, serial port, or any other communication approach).

The process to follow implies to:

1. Open a connection with the device establishing adequate parameters for speed,

number of data-bits per character, parity, and number of stop bytes. For example:
9600 bps, 8 data bits, 1 stop byte, and no parity check.

2. Establish a sampling rate. For example skin conductivity is measured at 2 Hz, EEG is
measured at 8 Hz.

3. Gather a group of bits from the connection and put them in a repository.

Forces. Isolating the hardware from the process. Sensing pattern keeps the hardware-
dependent commands confined in a component of the system; therefore simplifies the
software port to new hardware.

Known uses. The eleven AS described in Table 2 work in this way.

Related Patterns. PERCEPTION.

3.2. Perception

Problem. The organization, identification, and interpretation of sensed information in
order to match it with a value that represents a level of a specific affect. This implies a
process that transforms signal measurements from the environment (groups of bits) into
encoded meaningful values (magnitudes).

Motivation. Measured signals by themselves are not useful, there is the need to process
them and came with an understanding of that data, and parsing them into a standardized
format. The goal is to provide a value that represents the magnitude of an affect state.

Solution. Define a family of algorithms (called perception mechanisms), encapsulate each
perception mechanism, and make those perception mechanisms interchangeable.
Perception pattern allows applying different algorithms independently from the
components that use it.

The process to follow implies to:

1. Gather sensed information from a specified source.
2. Use this information as input for the perception algorithm. A perception algorithm

varies from regression models to inference networks. Researchers report diverse
approaches to implement perception using well-known machine learning algorithms.

3. Report the algorithm output.

Forces. Encapsulating perception mechanisms, isolating them from the rest of the system,
and making them interchangeable. Therefore, simplifying the software modifiability.

Known uses. The eleven AS described in Table 2 use this pattern.

Related Patterns. SENSING and EMOTIONAL INTELLIGENCE.

3.3 Emotional Intelligence

Problem. Affect detection is commonly implemented as multimodal, i.e. using several
sensing devices where each of them is associated with a specific perception algorithm.
The use of multiple inputs modality aims to increase accuracy. This modality could
provide magnitudes of the same affect or magnitudes of related affects. Multimodality
deals with lots of information that needs to be organized, structured, and conjugated. For
example: EEG sensors provide magnitudes for boredom and frustration, and face-based
sensors report magnitudes for interest and sureness; using those magnitudes (boredom,
frustration, sureness, and interest) makes possible for a system to make an intervention or
not, and if decided, the kind of the intervention.

Motivation: Emotional Intelligence is a key component in multimodal systems that
collect several signals and apply several perception mechanisms to increase the accuracy
of the affect state detected. The goal is providing the system with the ability to join
diverse perceptions in one affect state.

Solution: To use a collection of independent programs that fills cooperatively a common
data repository. Each program is providing a perception value using its own resources,
and all programs share their info to converge in a resulting affect state. Programs are
independent of each other. They do not call each other, nor is there a predetermined
sequence for their activation. A central control shell component evaluates the current
reported values and infers the true about the affect state. This data-directed control regime
is referred to as opportunistic problem solving, allows experimenting different algorithms,
and allows experimentally derived heuristics to control processing. This is close to
Blackboard pattern used to describe the situation where a group of human experts sit in
front of a real blackboard and work together to solve a problem. But in this case only one

expert is solving the problem and the knowledge sources are providing the information to
solve it.

The process to follow implies that:

1. A common knowledge base is iteratively updated by a diverse group of knowledge

sources (the perception mechanisms).
2. Each knowledge source updates the knowledge base with its own inference of a

user’s affect.
3. A control shell, the expert, is responsible to infer a common affect state joining the

reported values (selecting and rejecting values) from the diverse knowledge sources.
4. In a loop process, the knowledge sources and the control shell continue working

together to solve the problem handling the solution as a sum of its parts.

Forces. Provide support for experimentation combining knowledge sources (perception
mechanisms) and improve fault tolerance and robustness (failure in one perception
mechanism has less impact on the whole system).

Known uses. The eleven AS described in Table 2 use this pattern.

Related Patterns. PERCEPTION and SYNAPSIS.

3.4 Synapsis

Problem. Infer affective states is only one step in the process, now the final goal is to
communicate this affect state with other components that can use it to adjust or react and
make a system aware of the user’s affect state.

Motivation. Communicate or share affect states maintaining the sources decoupled from
the destinations; thus, sources and destinations can vary independently.

Solution. Provide a communication infrastructure based in a message-queue paradigm
for inter-process communication. Senders of messages publish the messages, without of
knowledge of what if any, receiver there may be; messages are sent to the systems or
components that are interested in receiving those messages.

The process to follow implies that:

1. Listening elements (receivers) exist and are willing to subscribe to specific messages.
2. Senders elements (sources) put messages in the message queue without of knowledge

of what if any, receiver there may be for it.

3. A control unit associated with the queue filters the message and each receiver is
notified only of those messages it was interested on.

Forces. Promote integration and scalability, concentrating in one point the access to the
data required by several components. Became a facade for external systems.

Known uses. The AS 3, 4, and 5 listed in Table 2 use this pattern approach.

Related Patterns. EMOTIONAL INTELLIGENCE and RAPPORT ENGINE.

3.5 Introspection

Problem. Determine the context of user’s affect state, i.e. what the user is doing and what
is receiving in consequence. To do that, it is necessary to examine the computer’s
program inputs (events received) and outputs (status) at runtime including the values,
properties, and functions of the system.

Motivation. Decide wisely the kind of intervention that is required to know the context on
what the user is working, i.e. having information about the actions (events created or
received) he is performing. For example: if it is reported that the user has a high level of
frustration it makes sense to introspect about the task he is doing and the status of the
computer (such as system failures).

Solution. Add additional responsibilities to some components into the system in order to
monitor its execution and maintain a log of relevant events (input and outputs) at runtime.

The process to follow implies:

1. To wrap the original system into new component.
2. Calls to the original systems will be received by the new wrapper element.
3. Wrapper calls to the system functionality and also reports the execution of the

action.
4. Wrapper provides data about the actions that the user is performing, the task, and

the system status while user’s affect state is been inferred.

Forces. Add to the components the functionality of maintaining and updating a log of
their actions, so when one changes its state, a log is maintained and updated automatically
recording inputs and outputs.

Know uses. The AS 1, 3, and 5 listed in Table 2 use this pattern.

Related patterns. RAPPORT ENGINE.

3.6. Rapport Engine

Problem. There are several and different ways (policies) in which a system could be
empathetic. How to choose the best option? Execute the proper reaction (behavior) for a
detected affect state while doing a specific task is key. It is required to provide some form
of artificial intelligence, which consists primarily of a set of rules about behavior.

Motivation. Provide the mechanism necessary to select and execute the predefined
behavior ad-hoc for the current situation in order to achieve some goal. Having systems
that are able to be empathetic with the user offers a social and affective support that has
been proven to have positive impact. To be empathetic it is necessary to show a behavior
compatible with the current affective information and the context of the user.

Solution. Define an element on the system able to combine the information shared by the
synapsis process and the introspection of user’s context to select the proper reaction to be
done. This element is able to define which would be the proper way to proceed
accordingly and bases its decisions on rules and polices previously defined and validated.

The process to follow implies:

1. Having access to synapsis data.
2. Having access to introspection data.
3. Having access to a set of defined behaviors that the system is able to execute.
4. Defining rules as conditions and providing a mechanism for prioritizing those rules

when more than one is triggered.
5. if a rule or condition matches the current state, of the world the condition is triggered

and the associated behavior fired. The Rapport Engine often has to choose between
mutually exclusive rules - since actions take time, only one action can be taken. Two
steps are necessary: (a) matching rules against the database, (b) selecting which of the
matched rules to apply and executing the selected actions.

The Engine chooses a behavior as follows:

1. Only one behavior can be active and in control at any time.
2. Each behavior has a fixed priority.
3. Each behavior has associated a condition that can determine if the behavior should be

executed or not.
4. The active behavior has higher priority than any other behavior that should take

control.

Forces. Encapsulate the decision-making capacity of the system.

Known uses. The AS 3, 5, 6, and 11 described in Table 2 use this pattern. Even thought
the AS’s strategies vary from the simple – IF conditions - to the complex – production
systems or machine learning models, whichever strategy is implemented, the method is
indeed crucial for the efficiency and correctness of companions and adaptive systems.

Related Patterns. SYNAPSIS, INTROSPECTION, and BEHAVIOR CODING
REPOSITORY.

3.7. Behavior Coding Repository

Problem. Create a repository, emulating a working memory, which maintains data about
rules and variables (state or knowledge) that defines the reactive behaviors for the system.

Motivation. Rules or polices, called behaviors, need to be defended as rationale of the
empathetic. Those rules or policies assure that the way in which the system is reacting is
the best according with the situation. Researchers define those rules with experience and
common sense.

Solution. An element is required to hold information in the mind to do reasoning and
comprehension and to make this information available for further processing.

The process to follow implies to:

1. Define and record behaviors into the repository including conditions, priority, and

content.
2. Provide a mechanism for behavior localization.

Forces. Strive to create the simplest, most powerful solution possible; even if it takes
slightly more time provide reusable approach. Allow adding and removing behaviors
without even looking at the rest of the code.

Known uses. The AS 3, 5, 6, and 11 described in Table 2 use a rudimentary form of this
pattern in which behaviors are if-else conditions, priority is driven by the structure of the
conditions itself. Forces in those solutions are hard to say simple or reusable but
researchers (outside of software community) could agree that if-else conditions are simple
and reusable for them. Our pattern proposal pleads for a more software engineering way
to implement this (such as using decision systems).

Related Patterns. RAPPORT ENGINE.

4. Conclusions and Future Work

This paper has attempted to initiate the establishment of a pattern language for AS,
expanding the application domain of design patterns in areas such as Affective Computing
and particularly in the development of AS. We believe that such a pattern language can
provide many advantages for designers of AS, such as reduce time and cost of designing
and developing AS, increase the software qualities on the AS especially in the usability of
the system, and increase pedagogical quality of AS especially in learning effectiveness.
Furthermore, an experimental AS is already being constructed following the patterns
proposed in this paper. The aim is to illustrate the actual implementation of this pattern
language by showing the implementation details and offering a complete description of
the patterns’ template.

Acknowledgments

We are grateful to Filipe Correia for his support during the writing process of this paper.
This research was supported by Office of Naval Research under Grant N00014-10-1-0143
awarded to Dr. Robert Atkinson.

References
	

Alexander,	
 C.,	
 Ishikawa,	
 S.,	
 Silverstein,	
 M.,	
 Jacobson,	
 M.,	
 Fiksdahl-­‐King,	
 I.,	
 and	
 Angel,	
 S.	
 1977.	
 A	
 Pattern	

Language,	
 New	
 York:	
 Oxford	
 University	
 Press.	

	

Arroyo,	
 I.,	
 Cooper,	
 D.	
 G.,	
 Burleson,	
 W.,	
 Woolf,	
 B.	
 P.,	
 Muldner,	
 K.,	
 and	
 Christopherson,	
 R.	
 2009	
 Emotion	

Sensors	
 Go	
 to	
 School.	
 In	
 V.	
 Dimitrova,	
 R.	
 Mizoguchi,	
 B.	
 du	
 Boulay	
 &	
 A.	
 Grasser	
 (Eds.),	
 Artificial	
 Intelligence	

in	
 Education.	
 Building	
 Learning	
 Systems	
 that	
 Care:	
 from	
 Knowledge	
 Representation	
 to	
 Affective	
 Modelling	

(Vol.	
 Frontiers	
 in	
 Artificial	
 Intelligence	
 and	
 Applications	
 200),	
 IOS	
 Press,	
 17—24	

	

Avgeriou,	
 Paris,	
 A.	
 Papasalouros,	
 S.	
 Retalis,	
 and	
 M.	
 Skordalakis.	
 2003.	
 “Towards	
 a	
 Pattern	
 Language	
 for	

Learning	
 Management	
 Systems.”	
 Educational	
 Technology	
 &	
 Society	
 6	
 (2):	
 11–24.	

	

Burleson,	
 Winslow,	
 Rosalind	
 W.	
 Picard,	
 K.	
 Perlin,	
 and	
 J.	
 Lippincott.	
 2004.	
 “A	
 Platform	
 for	
 Affective	
 Agent	

Research.”	
 Workshop	
 on	
 Empathetic	
 Agents,	
 International	
 Conference	
 on	
 Autonomous	
 Agents	
 and	

Multiagent	
 Systems,	
 Columbia	
 University,	
 New	
 York,	
 NY.	
 http://www-­‐
3.unipv.it/webpsyco/bacheca/materiale/pessametodi0607EmotionModel5.pdf.	

	

Buschmann	
 F.,	
 Meunier,	
 R.,	
 Rohnert,	
 H.,	
 Sommertland	
 P.,	
 and	
 Stal,	
 M.	
 1996.	
 Pattern-­‐Oriented	
 Software	

Architecture,	
 Volume	
 1:	
 A	
 System	
 of	
 Patterns,	
 Chichester,	
 UK:	
 John	
 Wiley	
 &	
 Sons.	

	

Chao,	
 X.	
 and	
 Zhiyong,	
 F.	
 2008.	
 A	
 Trusted	
 Affective	
 Model	
 Approach	
 to	
 Proactive	
 Health	
 Monitoring	
 System.	

In	
 Proceedings	
 of	
 the	
 2008	
 International	
 Seminar	
 on	
 Future	
 BioMedical	
 Information	
 Engineering.	
 FBIE	

'08,	
 IEEE	
 Computer	
 Society.	
 429-­‐-­‐432	

	

Clay,	
 A.,	
 N.	
 Couture,	
 and	
 L.	
 Nigay.	
 2009.	
 “Engineering	
 Affective	
 Computing:	
 a	
 Unifying	
 Software	

Architecture.”	
 In,	
 1–6.	

	

Cooper,	
 David	
 G.,	
 Ivon	
 Arroyo,	
 Beverly	
 P.	
 Woolf,	
 Kasia	
 Muldner,	
 Winslow	
 Burleson,	
 and	
 Robert	
 M.	

Christopherson.	
 2009.	
 “Sensors	
 Model	
 Student	
 Self	
 Concept	
 in	
 the	
 Classroom.”	
 User	
 Modeling,	
 Adaptation,	

and	
 Personalization:	
 30–41.	

	

D'Mello,	
 S.,	
 Picard,	
 R.	
 W.,	
 and	
 Graesser,	
 A.	
 2007.	
 Toward	
 an	
 Affect-­‐Sensitive	
 AutoTutor.	
 In	
 IEEE	
 Intelligent	

Systems,	
 (Vol.	
 22	
 no.	
 4),	
 53-­‐-­‐61	

	

Gamma,	
 E.,	
 Helm,	
 R.,	
 Johnson,	
 R.,	
 and	
 Vlissides,	
 J.	
 1995.	
 Design	
 Patterns:	
 Elements	
 of	
 Reusable	
 Object-­‐
Oriented	
 Software.	
 Addison-­‐Wesley	
 Longman	
 Publishing	
 Co.,	
 Inc.,	
 Boston,	
 MA,	
 USA.	
 	

	

Gilleade,	
 K.,	
 Dix,	
 A.,	
 and	
 Allanson,	
 J.	
 2005.	
 Affective	
 Videogames	
 and	
 Modes	
 of	
 Affective	
 Gaming:	
 Assist	
 Me,	

Challenge	
 Me,	
 Emote	
 Me.	
 In	
 Proceedings	
 of	
 Digital	
 Games	
 Research	
 Association.	
 DIGRA'05,	
 16—20	

	

Gonzalez-­‐Sanchez,	
 J.,	
 Chavez-­‐Echeagaray,	
 M.E.,	
 Atkinson,	
 R.,	
 and	
 Burleson,	
 W.	
 2011.	
 Affective	
 Computing	

Meets	
 Design	
 Patterns:	
 A	
 Pattern-­‐Based	
 Model	
 of	
 A	
 Multimodal	
 Emotion	
 Recognition	
 Framework,	

Proceedings	
 of	
 the	
 16th	
 European	
 Conference	
 on	
 Patterns	
 Languages	
 of	
 Programs.	
 	

	

Gonzalez-­‐Sanchez,	
 Javier,	
 Robert	
 M.	
 Christopherson,	
 Maria	
 E.	
 Chavez-­‐Echeagaray,	
 D.C.	
 Gibson,	
 Robert	

Atkinson,	
 and	
 Winslow	
 Burleson.	
 2011.	
 “How	
 to	
 Do	
 Multimodal	
 Detection	
 of	
 Affective	
 States?.”	
 Advanced	

Learning	
 Technologies	
 (ICALT),	
 2011	
 11th	
 IEEE	
 International	
 Conference	
 on:	
 654–655.	

	

HCI	
 design	
 patterns,	
 http://www.hcipatterns.org/	

	
 	

Hussain,	
 M.S.,	
 and	
 R.A.	
 Calvo.	
 2009.	
 “A	
 Framework	
 for	
 Multimodal	
 Affect	
 Recognition.”	
 Learning	
 Systems	

Group,	
 DECE,	
 University	
 of	
 Sydney.	

http://sf08.hcsnet.edu.au/files2/full_papers/A%20framework%20for%20affect%20recognition_200906
30-­‐2046.doc.	

	

Hypermedia	
 Design	
 Patterns	
 Repository,	
 	

http://www.designpattern.lu.unisi.ch/HypermediaHomePage.htm.	

	

Iba,	
 T.,	
 2011.	
 Pedagogical	
 Patterns	
 for	
 Creative	
 Learning,	
 18th	
 Conference	
 on	
 Pattern	
 Languages	
 of	

Programs	
 (PLoP).	

	

Kapoor,	
 Ashish,	
 and	
 Rosalind	
 W.	
 Picard.	
 2005.	
 “Multimodal	
 Affect	
 Recognition	
 in	
 Learning	
 Environments.”	

In,	
 677–682.	

	

Lisetti,	
 Christine	
 L.,	
 and	
 Fatma	
 Nasoz.	
 2002.	
 “MAUI:	
 a	
 Multimodal	
 Affective	
 User	
 Interface.”	
 In,	
 161–170.	

New	
 York,	
 NY,	
 USA:	
 ACM.	
 doi:http://doi.acm.org/10.1145/641007.641038.	

	

Lyardet,	
 F.,	
 Rossi,	
 G.,	
 and	
 Schwabe,	
 D.	
 1998.	
 Using	
 Design	
 Patterns	
 in	
 Educational	
 Multimedia	
 Applications.	

EDMedia'98.	

	

Nkambou,	
 R.	
 2006.	
 “A	
 Framework	
 for	
 Affective	
 Intelligent	
 Tutoring	
 Systems.”	
 In,	
 nil2–nil8.	

	

Schroder,	
 Marc.	
 2010.	
 “The	
 SEMAINE	
 API:	
 Towards	
 a	
 Standards-­‐Based	
 Framework	
 for	
 Building	
 Emotion-­‐
Oriented	
 Systems.”	
 Advances	
 in	
 Human-­‐Computer	
 Interaction	
 2010	
 (January).	

doi:http://dx.doi.org/10.1155/2010/319406.	

	

Sebe,	
 Nicu,	
 I.	
 Cohen,	
 and	
 T.S.	
 Huang.	
 2005.	
 “Multimodal	
 Emotion	
 Recognition.”	
 Handbook	
 of	
 Pattern	

Recognition	
 and	
 Computer	
 Vision	
 4:	
 387–419.	

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.110.1129&rep=rep1&type=pdf.	

	

Vildjiounaite,	
 E.,	
 V.	
 Kyllonen,	
 O.	
 Vuorinen,	
 S.M.	
 Makela,	
 T.	
 Keranen,	
 M.	
 Niiranen,	
 J.	
 Knuutinen,	
 and	
 J.	
 Peltola.	

2009.	
 “Requirements	
 and	
 Software	
 Framework	
 for	
 Adaptive	
 Multimodal	
 Affect	
 Recognition.”	
 In,	
 1–7.	

	

Wagner,	
 J.,	
 E.	
 André,	
 and	
 F.	
 Jung.	
 2009.	
 “Smart	
 Sensor	
 Integration:	
 a	
 Framework	
 for	
 Multimodal	
 Emotion	

Recognition	
 in	
 Real-­‐Time.”	
 In,	
 1–8.	

	

Woolf,	
 B.,	
 Burelson,	
 W.,	
 and	
 Arroyo,	
 I.	
 2007.	
 Emotional	
 Intelligence	
 for	
 Computer	
 Tutors.	
 In	

Supplementary	
 Proceedings	
 of	
 the	
 13th	
 International	
 Conference	
 on	
 Artificial	
 Intelligence	
 in	
 Education.	

AIED	
 ‘07,	
 6-­‐-­‐15	

