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1 INTRODUCTION 

When planning a major new release of a software system, or next generation, developers have an 
opportunity to use the existing code base and make some architectural changes. The changes may solve 
chronic problems of the existing design by reorganizing hierarchies, change languages, and add or eliminate 
framework. 

The developers may decouple the new components from their original versions when names and hierarchies  
are changed. Although this clean-up is beneficial, it can also result in loss of design knowledge. A class that 
grew to thousands of lines may now be split into a number of more concern-focused units. The builder of a 
complex object can be split off into a factory. An implied dependency between remotely collaborating objects 
may be known to the original developer and not apparent to future personnel. Refactoring for efficiency might 
obscure a previously more-readable algorithm.  

Simply asking the developers to design for maintainability does not provide specific techniques for doing so. 
The Generatrix design pattern describes a way of retaining design knowledge in a form that guides and is 
useful to design of the next generation of a software system. The other design patterns support the 
application of the Generatrix pattern and provide a way of thinking about a system as a multi-generation 
product. 

1.1 The Issues 

An important issue in large MIS-based institutions is the need to reproduce results from past generations of 
the system. Maintenance can degrade the capability to reproduce results in past generations (by re-
generating, not just by retrieving results). This problem is mitigated in part by data provenance. Laws are 
enacted to regulate financial institutions, leading to large, abrupt demands on their MIS systems. In a 
comparable way, science journals have withdrawn research papers after discovering that research results 
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could not be reproduced in later generations of studies. The problem has been recognized by database 
vendors as evidenced by their release of products attempting to address the issue such as historical table 
statistics (Ural). Often, maintaining legacy systems general leads to ever increasing cost (Defense Logistics 
Agency). 

1.1.1 Design Provenance 

This pattern language puts a name on the kind of preservation of past functionality: Design Provenance is a 
systematic trace from design artifacts to their predecessors and the underlying design abstractions which 
explain the reasoning, analysis, and concepts behind the particular design artifact. This is different from 
Software Provenance which addresses purposes like security where you only want to know if a product is 
authentic. It is also different from Data Provenance which is concerned with a record of data handling to 
ensure that the data is not corrupted and its sources verifiable. 

The ultimate predecessor of a component may be a completely abstract design sketch that represents  
intention, purpose, scope, leaving the choice of a particular design element to another step in the design 
process. Design Provenance says that we do not discard that Design Abstraction, which is often done by 
replacing its symbolic “place holder” with a particular design choice. At that point, trade-offs and specific 
protocols are decided. The considerations of architecture and quality that went into the design can be lost 
except in the mind of the designer. It may still exist in the clutter of source code control, but not readily 
findable from the derivative designs.  

1.1.2 The supporting design patterns 

This pattern language involves are second-order design patterns. Some of the elements of the Generatrix  
design pattern are themselves design patterns rather than classifier-level symbols. The structure diagram 
for the Generatrix requires a way of depicting certain elements by their abstract role in the pattern, rather 
than “hard coding” them as a particular class symbol, say. This level of abstraction cannot be represented 
by a simple abstract class, as in the Java language. Specifically, the Generatrix is directly  concerned with 
the role of creating objects but is also concerned about the role of creator element can be fulfilled by a variety  
of different creational pattern elements. This is different from the challenges of the GoF Structural and 
Behavioral design patterns. In GoF (E. Gamma, R Helm, R. Johnson, J. Vlissides), those patterns simply 
leave out a symbol for the component that creates or instantiates the objects that are central to the concern 
of the pattern. It is left to the software designer to decide how the objects are created. In an implementation 
of a given GoF pattern the creator of objects is changed, the pattern itself is not disturbed. In the Generatrix ,  
however, the role of create is one of the central concerns. It directly speaks to the creator and components  
that it creates, how their coupling varies or remains through iterations, and how their abstraction is invariant  
through iterations. 

1.2   Intent 
Software designers use a variety of techniques for documenting their design decisions. They are aware of 
the need to code for maintainability and to communicate with stakeholders of different technical backgrounds.  
They use previous versions of code and often change names, implementations within defined interface 
definitions, and refactor code. These artifacts and activities are known in different forms and names. They 
are not viewed as a unified and universally practicable pattern.  These concepts are brought together as part  
of a single design pattern language.  It identifies several of the familiar solutions. 

x Maintain knowledge of the design concepts of previous generations of the system in a form that can 
be found and understood when application to redesign. 

x Promote the separation of the design of a component from how it is constructed, built, assembled. 

x Promote the explicit knowledge-capture of components that are coupled within their generation and 
progress together. 

x Establish design practices that will make reverse-engineering in the future unnecessary. 

Promote the use of design abstractions that are not discarded as detail designs are created but retained and 
attached to the artifacts they lead to.  
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1.3 Motivation 
x The problems experienced in the maintenance phase of a software development lifecycle are 

amplified when a significant new generation of the project is undertaken.  

x A variety of solutions to specific kinds of maintenance projects are used in re-engineering a system 
for a new generation. But they are separate solutions and not part of a cohesive design pattern 
strategy for designing. 

x We desire to promote planning for the next generation during current development. This pattern 
language helps a project to be more “plan-like”. 

x When this set of patterns was first developed, there was no real-world experience with attempting to 
apply them. It was difficult to advocate its use without an example of its application. 

The Generatrix design pattern was presented in stand-alone form recently (J. R. Reza, The Generatrix  
Design Pattern) as an attempt to address the (above) stated intent. Based on discussion of that pattern the 
it  was decided to express separate supporting design patterns around the Generatrix which became this 
pattern language. 

The earlier paper revealed that the concept of “a generation” was not easy for the reader to accept in the 
way that it is intended here. The tendency was to think of the word “generation” as an awkward attempt to 
use a different word for the familiar “stable release,” “redesign,”, “evolution” or a way of automatically  
generating code from sketches or specs. There is no formula for deciding when a system is “a new 
generation”, being an intuitive concept that depends on the kind of system. Section 1.8 illustrates what is 
meant by a generation in this paper. 

1.4 Summary of solution 
The problems are addressed by the design patterns comprising this pattern language applied individually  
and in combination.  The patterns are: 

x Section 2. Generatrix design pattern 
x Section 3. Design Abstraction design pattern 
x Section 4. Design Provenance design pattern 
x Section 5. Creator design pattern 
x Section 6. Generation-sensitivity design pattern 
x Section 7. Accord design pattern 

1.5  Structure 

The diagram of the pattern language shows the Generatrix as comprised of several patterns and their basic 
relationship to a software system, Figure 1. Together they comprise the pattern language. Each pattern is 
elaborated in the upcoming sections. First, a walkthrough of the diagram will show how the patterns and 
design artifacts interrelate. See also the specialized symbols in Figure 1a. 

Design Abstraction patterns capture “purpose” and technique without committing to a particular form of 
implementation. By enabling us to create Design Abstractions explicitly, the design implementations need 
not become disassociated from the purpose expressed by their abstractions, or cluttered with explanations.  

The Creator design pattern represents any creational design pattern and is not limited to those in the 
original GoF. As such we can think of Creator as not just a Design Abstraction pattern but a second-order 
pattern. 

The Provenance design pattern is a key feature of this pattern language. It defines a predecessor  
relationship between a Component and either its Design Abstraction or an earlier design addressing the 
same or earlier set of requirements, or both. 

The Accord design pattern is presented in brief form in order to show that the coherent generational design 
pattern language is not a closed system. It invites the discovery of additional patterns that address 
intergenerational concerns. The Accord discusses designs where two or more components that are coupled 
within the same generation of the system. One or both of the components can only interact properly with its 
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partner. Each component is part of a family of components that are changed with each new generation of 
the system.  

 

 
Fig. 1. Informal view  of Generatrix as a collaboration of patterns and classes across generations of a softw are system. 

 
Fig. 1a. Notation used in Figure 1. 

The System in Generation n, n+1, etc. is shown containing a couple of representative components labeled 
B and P. Very concisely, the B component is intended to represent the Builder pattern as an example of a 
particular creational-patterned component. This construct suggests a pattern construct with a strongly explicit 
Creator-Component relationship. Notice the it is a Creator design pattern that points to the Builder to indicate 
that the abstraction of a Creator gives rise to the particular design choice of builder. The P similarly represents  
a particular Part component. In both builder and part, the derivation of their design is indicated with the 
Predecessor arrow. 

1.6 Terminology 
A few words have specialized meaning within this pattern language. Along with the six constituent patterns 
described in this paper, these terms comprise much of the vocabulary of the pattern language whereby 
generations of a software system may be developed and maintained more coherently.  

x Generation - a software system derived from an earlier product which represents a very significant  
change of form or functionality, perhaps exhibiting a “quantum leap” in technology or set of 
requirements. It is not simply software evolution since that term suggests a continuous pattern of 
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small changes. A series of generations is more like punctuated equilibrium (PBS staff. Credits to 
Scott Freeman and Jon C. Herron), to borrow a term from evolutionary biology.  

x Generatrix – a term borrowed from geometry. The Generatrix design pattern is the central feature of 
this pattern language. It is concerned with overcoming the loss of quality and knowledge as a 
software system progresses in quantum leaps, or large scale iterations, from one generation of a 
product to the next. 

x Predecessor - An abstract reference that identifies the component or components of a previous 
generation of the system from which a component was derived, redesigned, or augmented (in a 
generation subsequent to the previous generation). The predecessor relationship can exists 
between any software artifacts including a method, a class, interface, package or group of artifacts 
(and not necessarily between artifacts of the same kind).  

x Design Abstraction - Knowledge that is captured in documentation or other forms becomes detached 
from design and software artifacts. The Design Abstraction design patterns seek to remedy this be 
supporting more design knowledge in the same kinds of artifacts as the conventional design and 
implementation. 

x Form-Agnostic – A kind of abstraction that does not specify all of the format, or calling protocols but 
defines the functionality of a design component. It defines what must be done to connect or interface 
with it but not how. Contrast this with an abstract method which specifies how to call it, and not much 
about what it does. 

x Creator-Component relationship – a more-general kind of builder-part relationship. Creator-
Component is the Design Abstraction for a component that somehow constructs, retrieves, builds, 
or initializes another Component. The created Component is, in this context,  also a Design 
Abstraction for some kind of software component in the post general sense: a Component refers to 
a specific design involving one or a collaboration of classes and objects, as well as resources such 
as database, framework functionality, files, and so forth. 

x A Creator is itself a Component of the system. A Component may be designated in a diagram as a 
Component or Creator to indicate the point being made (not to say that it isn’t the other).  

x Resource - a component that is designed to be referenced by Components of more than one 
generation. A resource obtains no generational awareness merely by its role as a resource. It can 
be an ordinary component. 

x Accord relationship – one or more components with a dependency on a component of the same 
generation. 

1.7 Audience 
This Pattern Language is intended to “speak to you” if you are . . .  

x A manager or customer of MIS or applications in the broad sense: You are a user, marketer,  
financial agency or business, information-security, compliance mgr., SME 1, contract analyst, or other 
participant. Or, 

x A Scientist or research institution that needs to maintain scientific provenance and reproducibility .  
You need to prove how your system delivered results in the past or to enable other researchers to 
reproduce your analysis. Or, 

x A software engineer, or technical team  member in the broad sense: programmer, computer 
scientist, business analyst, QA tester, build engineer, network admin, system admin, database 
admin, marketing rep., security admin. 

x Developers and researchers whose coding effort is solely for their own academic work might not 
have the problems addressed by this pattern language. If you write small, one-shot, or stand-alone 

                                                 
1 SME - Subject Matter Expert, ei ther formal ly in an CMMI or ITIL environment, or s imi lar s i tuation . 
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application with no major generations and user base, the problems and solutions presented here 
might be rather alien. 

1.8 What is a Generation? 
Very succinctly, a new generation of a software system is characterized as a quantum leap in features,  
requirements, or underlying technology. The scope of the change in the product is usually dramatized by a 
big change in its packaging. The concept is intuitive and has no general formula for distinguishing a 
generation from a routine iteration or release. But a generation would normally not apply to iterations of a 
system under development that is a step closer to release into production. It is different for different kinds of 
applications. One consideration is whether the system has been published (Orchard). The publication and 
subsequent editions of a book would be a reasonable basis of comparison. 

This section describes two very different kinds of product line going through multiple generations. This  
extended explanation of the concept is a response early reviews of this pattern language which revealed that 
the intent of “generation” needed much clarification. The story of multi-generation product lines is illustrated 
with the Sony Walkman, and Generations of a typical insurance-industry product.. 

1.8.1 Multi-generation product line; Sony Walkman 
The Sony Walkman product line had 3 or 4 generations of models called Walkman (Wikipedia, with 
contributions from Sony Inc.), pictured in Figure 2. These generations could be called, in summary fashion,  
(1) the cassette-based Walkman, (2) the flash memory-based MP3 player, and (3) the disk-based Walkman 
with several codecs. A 4th generation would be the ear-bud format, not discussed here. 

 
Fig. 2. Three generations of the Sony Walkman 

The three generations of the Sony Walkman are shown in 2 (Haire). By casual inspection, you would be 
correct in guessing that these Walkman units represent a series of generations of the product line. Inside,  
the first (left) is built on tape recording technology. The next (center) is clearly a new generation of the 
product. The visible change is due to a major technological shift: flash memory. Next (right) is a generation 
that looks more slick. Not visible, though, is that it has additional features which are achieved by using a 
micro disk. 

The Walkman illustrates 3 kinds of “quantum leap.” 

i) Creation. A new set of technologies and requirements are established (from no comparable 
predecessor). 

ii) Technology is the quantum leap. Replace tape with flash memory. Requirements basically 
follow. 

iii) Requirements take a quantum leap. Replace flash memory with micro-disk drive to meet high-
capacity and cost requirements; also add audio formats, slick appearance, and interoperability  
features for competitive reasons. The basic features (recording and playing music) are 
unchanged except in capacity and media formats. 

During the life of each generation, there were undoubtedly new iterations of internal software, stable or 
tagged releases, some hardware changes, and fixes, and iterations of the manufacturing process involving 
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the code base. Internal to the development team, some of those iterations might have embodied a new 
generation of software architecture such as change of language, compiler, test processes, and out-sourcing.  

Software systems can have large game-changing requirements placed on them such as requirements  
beyond configuration and refactoring to implement them (Fowler, Beck and Brant). This fosters a new 
generation of the third kind (requirement quantum leap). 

The example of the Walkman illustrates generations of a product that may be marketed concurrently for a 
time. But in this kind of stand-alone product there was never a need for more than one generation to be 
interoperable with, or even operable directly with models of another generation as illustrated in the next 
example of a pan-generation system. 

1.8.2 Pan-generation insurance product line system 

This example of a real-world insurance product line has no gadgets or visible packaging to illustrate. The 
quantum leaps arise from problems unique to service organizations that have new requirements on an annual 
or periodic basis. 

1) Periodically a dramatic new set of requirements is imposed on the MIS system that supports a 
particular property insurance package. Requirements come from annual legislative actions (laws and 
regulations) of the State. They come from unplanned court decisions, which may result in rerunning 
analytic and decision-making components as it would have been in a year past. Simply retrieving a 
code base and setting system times on a database is not feasible.  

2) The changed requirements also come from new compliance mandates of Federal and consortium 
sources (Conference of State Bank Supervisors). 

3) Important DSS2 functions run 3 consecutive “years” of the system in order to determine charges,  
trends, and various statistics about groups of clients.  In the example of Figure 3, each yearly 
generation of an insurance policy product is a near-copy of the same system implementing the policy. 
This prevents the large database from being reengineered into separate instance “years”. Changes 
to the schema to accommodate this year’s requirements make legacy code inoperable.  
Consequently, each year hundreds of lines of code across the whole system are tweaked with 
conditional logic (e.g. if year < ‘2009’ and price(year-1) > price(year)…). The system is becoming 
impossible to maintain. Testing cannot be done on small subsets of the database which now contains 
over 30 years of data with millions of accounts. 

 
Fig. 3. Pan-generational design: insurance system example.  

Each generation of the product adds custom code and new configuration items to support 3rd party 
productivity products. Development and maintenance is usually scoped into projects that live through a small 
portion of the life of the product line. There is no time to assess the global situation. As such, the system can 
build up toxic code over time and periodically experiences crises.  

4) In a large institution, the system might experience personnel upheavals, change of service providers ,  
and lack of resources appropriate to rapid technological change. As such the designation of a “nex t 
generation” might be organizational and not due to a significant sudden change of scope or 
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technology. If the new staff faces a lot of reverse-engineering, rediscovering underlying system 
concepts, and having to fix broken and missing pieces, to them maintenance is a quantum leap. 

5) Simple details in code can have rippling impact on stored procedures and logic. Suppose that in year 
1, a field for dollars is declared as NUMBER(8). The next year it was changed to allow an embedded 
dollar type, VARCHAR(12), the next year it splits into a numeric and currency type field.  
Consequently the creation of the reference in a class has to change. However, the design abstraction 
is stable: there is a currency value. The creator must be implemented with a different design. But the 
dollar value field in a corresponding class, and computations on it, are unchanged from year 1 
(NUMBER) to year 2 (VARCHAR containing digits plus a code), and in year 3 the value field can still 
be unchanged while a new field (currency type) is added if it was not anticipated beforehand. 

Multiply the effect of the above field-level example by tens or hundreds of such fields referenced and created 
in many places in the application code.  

1.9 Consequences 

The design patterns supporting coherent generational design have been applied by the author in two large 
MIS systems under continuing development. The first objective was to exercise the patterns and confirm that 
a developer can see the components and design of a system in terms of  these patterns. The effort was 
informal and not systematic, as would often be the case in introducing a new strategic design pattern. In the 
situation where the concepts and constructs were implemented, the intended benefits were observed with 
the natural bias of one who is eager to see confirmation but strives to be objective. The informal results, 
advantages and disadvantages are summarized as follows. 

The separation of creator and component largely achieved the ease of updating fewer artifacts and only what  
needed updating for implementation of the new generation. The Generatrix can viewed in tabular form, a 
matrix of components by generations. In matrix form it has been easy to communicate with stakeholders  
about the cumulative impact of numerous small changes. The means of implementing the Predecessor 
concept was not supported directly by the existing infrastructures. The informal use of comments and 
annotations begins to help in reverse-engineering the code base. 

The Generatrix and related design patterns were introduced along with a number of well-known design 
patterns without the scope of the consulting contract. The use of design patterns was viewed as strange and 
unnecessary by some legacy personnel. The Generatrix in tabular form was accepted as easy to understand,  
however. The concept of a next generation was familiar to people in an area like insurance and tax, but 
others saw no difference between a generation of a product and a tagged release. Some developers thought  
that the concept of a Design Abstraction was actually due to misunderstanding the Java abstract class 
construct.  
The most significant obstacle to successful application of these patterns is the education level and cultural 
shift that comes with it. 

1.10  Summary 

With the foregoing examples of generations of a product in mind, generational design can be thought of as 
designing with an awareness of how subsequent generations may benefit, and benefitting from such efforts.   

The design patterns following this section may omit the customary Known Uses, Applicability and 
Consequences since the patterns have been developed and applied together with the Generatrix, hence this 
pattern language as a whole. The Design Abstraction, Provenance, and Creator patterns could be used 
independently, perhaps as a way of easing the language into an existing development environment. 
. 

2 GENERATRIX DESIGN PATTERN 

A set of artifacts in the grand design of a software system which support the creation, capture, and transfer 
of design knowledge and reasoning across generations, or major releases, of a product line.  
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2.1 Intent 

Conventional practices involved in software maintenance may complicate development of multi -generation 
software systems. In the interest of changing and adding features to a system for the set of requirement in 
hand, the existing system is, in a sense, destroyed. Knowledge of how to run the system in a previous 
configuration of data and functionality is lost. How to run the current system is alive in the form of institutional 
knowledge and so is not captured deliberately for the next generation, the next crop of employees. The cause 
of irreproducible results becomes an untraceable mystery. Code is duplicated, dead code is left around,  
place-holders are discarded. 

Generatrix is a design pattern for designing components of a system with the next and previous generation 
in mind. It provides a pattern in which the derivation of a component from a predecessor in the previous 
generation is explicitly recorded. The pattern supports the separation of the creator of a component from the 
component so that each may be iterated independently in the next generation as needed. The pattern 
supports and encourages the capture of higher level abstractions as part of the design base so that the 
knowledge of design decisions is not lost in the detail designs. 

2.2 Motivation 

Certain problems arise when developing a new generation of an existing software system.  

x Typical design tools such as UML capture a design at a “point in time”. Upon modification, a given 
component only exhibits one form and functionality of the component. While a series of point-in-time 
diagrams may be accessible to a software engineer, there is no single design artifact capturing the 
change and reasoning or trace behind the transition. 

x A new generation of a software system often involves a lot of reverse-engineering because the 
reasons for the legacy design are not apparent; the thought and analysis are lost.  

x Software development practices often neglect opportunities to design for the next generation of the 
system. Code is often duplicated in order to implement new variants of a set of requirements in the 
new generation. 

x Multiple generations of a system are sometimes used together for multi-year business analysis and 
regulatory mandates. The legacy system’s architecture remains the dominant structure of the system 
but it was not designed for the multi-year purposes. Versioning systems do not capture or enforce 
this knowledge. 

x The legacy code clutters the current design, making it hard to understand what it is supposed do. 
There is no clear separation between legacy code that must be retained and new artifacts.  

x Interdependencies between components that were intended to work together in the same generation 
may break. 

x A key reason for poor maintainability is the diffuse repetition of large and small chunks of code that 
do not adhere to “separation of concerns” or the concept “don’t repeat yourself.” (Steve Smith). 

x The name of a component may be changed so that if it existed in the previous generation under a 
different name, that fact is obscured. The same name may be used for a completely different purpose 
of a component, creating confusion. Name-changes solely to avoid name collisions is a waste and 
introduces unnecessary complications. 

x When a bug is discovered in a released product, the tendency is to fix it in-place and not preserve 
the released system in a form that can be rerun (with the bug) if required.  

x Conventional source control systems alone do not effectively capture the evolving knowledge.  
Simple design rules such as in “checkstyle” (Pomeroy-Huff, Cannon and Chick 1.2.3. Forms) do not 
adequately address architecture-level design change issues. 

x Source control systems alone to not provide for the above-mentioned problems especially when 
different languages, perhaps with their own versioning systems, work together in the same system.se  

x There is no simple metaphor and vocabulary that could be included in requirements to make the 
future concern a present concern that developments can follow and check objectively. 

x Requirements traceability is not enough. Even good traceability is often not granular and does not 
convey the reasoning behind technical design choices, just the requirements being addressed by a 
component. 
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The list of problems includes small coding issues as well as concerns at the large-scale business level. The 
various concerns are address by the several design patterns comprising this pattern language. 

2.3 Summary of Solution 

The Generatrix design pattern identifies several techniques that work together to avoid the problems 
mentioned above. It provides an explicit Design Abstraction for capturing knowledge about design intentions 
that are often lost. It provides a clear element (Predecessor) for associat ing design artifacts with their Design 
Provenance, both abstract and non-abstract. It raises awareness of the benefit of separating the creator of 
a component from the component, at least in the abstract if the language does not always support actual 
separation (e.g. constructors). This pattern largely provides simple archetypal names for concepts that are 
familiar in other forms. 
The supporting design patterns in rest of this paper appear in order in which they were just described. The 
Design Abstraction supports (is used by) Design Provenance, which in turn supports the use of the Creator 
design pattern, followed by then Accord design pattern. 

2.4 Structure 
Throughout this paper, the UML-like class diagrams include informal notations that are not UML compliant  
for illustration purposes. 

 
Fig. 4. Illustration: In an abstract-level design, a Client invokes the generational system. 

The configuration in Figure 4 illustrates a complex of components. This is an example of a combination of 
Creator-Component pairs with their relationships across generations. The separat ion of Creator and 
Component is intended to facilitate large change and retention of design knowledge with flexibility. The 
diagram here is just one configuration, not the template for the Generation design pattern in general.  

The Client component is shown disregarding the generation borders to indicate that the client is completely 
unaware of the generation nature or version. Component Tj was derived from, and might even delegate some 
function to Component Ti  in a previous generation of the system. In generations j and k , the Component and 
Creator are shown as iterated for their respective generation. 

The scenarios in Figure 5 illustrate the basic configurations in which a Creator and it Component are 
designed across generations. The diagram calls attention to the use of a Resource to help a component  
when it needs to “know” which generation is in play. 
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Scenario A. There is a completely different Creator design choice in the next generation. It also builds a 
different Component. But that Component inherits or in some form derives from its predecessor. 

Scenario B. A Component is modified in the next generation, but the same Creator is able to create (initialize, 
inject, load, etc.) its subject component. Presumably, the Creator can use some information to build the 
Component that makes the Component different. That difference could be something as simple as the 
release version of the system. 

 
Fig. 5. Creator-Component scenarios. 

Scenario B would seem to defy the rule that a previous generation’s elements must be unaware of elements  
in any subsequent generation. The Resource must be supplying something to the Generation j Creator that 
causes it to build a Generation j+1 Component. That could simply be the Component to the implementation 
of the Generation j+1 Component. 

Scenario C. A Component is built differently, but its design did not change in the next generation. The 
Creator was redesigned for reasons that could include defect correction, completing requirements, or 
improved qualities. The notation <<Design Abstraction>> is an archetype designate the role the classifier 
(the box). 

2.5 Applicability 
Use the Generatrix pattern when . . . 

1. It is desirable to maintain and develop the system with the next generation’s development in mind.  
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2. The cost of doing work in anticipation of future pay-off would benefit from a simple compelling metric. 
It would also help if specific artifacts which address next-generation concerns can be included in 
present requirements. 

3. The problems listed as motivating factors are present. 

2.6 Related Patterns 

x Abstract Factory, (E. Gamma, R Helm, R. Johnson, J. Vlissides). 
o Different implementations under a common set of interfaces are supported, as does 

Generatrix. Generatrix differs from Abstract Factory : 
o The different families of components of Generatrix are not parallel alternatives to each other 

as in Abstract Factory. Generations may be concurrently supported “alternatives” but with a 
sense of progression. Much of the next generation is the same as the previous.  

o The Abstract Factory conceives of providing one Factory for each alternative family of 
Components. All components of each alternative are different and specific to the whole 
variant under the Abstract Factory.  

x Chain of Responsibility, (supra). 
o A generational component may delegate all or part of its functionality to a predecessor. It is 

more like a general chain since the component can choose to also filter and modify its 
request and response.  

o A component, in Generatrix, may implement the “chain” concept is ways other than runtime 
references to components having a compatible interface with a handler method. It can 
instead use standard subclassing, for purposes expected to be rather stable. It can also use 
other referencing mechanisms, loading, or distributed communication.  

x Façade, (supra). 
o A generational component can be designed to accept requests that are serviced by a 

particular past generation implementation. As such, it has the quality of a Façade. The 
component can even be designed to accept requests created by a generation of the system 
that is newer than that of the component. Here delegation would be necessary. 

o A generational component could instead reject requests that cannot be properly serviced 
except by the intended generation.  

x Intercepting Filter, (Sun Developer Network (SDN)). 
o Filter chains in SOA, can modify messages along the way. Here the component can 

consume a request of one generation and modify it for servicing by the service of another 
generation, appropriately. 

2.7 Implementations 
We have two approaches for implementing a simple Generatrix. 

In a system that is based largely in a language such as Java, we can easily adopt a convention based on 
annotations. The Predecessor construct is easy to represent as an annotation such as @Predecessor with 
various attributes for pointing out the elements that we wish to consider. It is flexible in that the attributes can 
be of the same or of a different kind than the element it is applied to. Example: The predecessor of a class 
containing a factory method may be a set of constructors in a class residing in a previous generation of the 
system. When inheritance is the mechanism through which a new unit is derived, in this case extending 
rather than replacing, the @Predecessor can also identify the new items and the unit in the extends c lause. 

The concept of a Design Abstraction can also take advantage of constructs such as enum or interface. The 
substance of the abstraction should not include method signatures since signatures create form -
dependence. The Design Abstraction may include verbal descriptions and links to any external artifacts 
appropriate to the project. 
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This approach captures the Design Provenance of any element of a design to the extent that developers  
have the self-discipline to carry it out. The limitation of this approach is that it fails to consider systems with 
multiple languages and is not readily understood by non-programmers. 

The second mechanism for implementing a simple Generatrix is based on a matrix or spreadsheet. It is more 
useful for database-centric systems. In this situation, a schema is altered periodically to support drastic new 
requirements. The spreadsheet lists each field of the (pertinent subset of) the system on a separate row. The 
row represents the design concept for that field as the schema evolves.  One or more related database tables 
may be represented in the same spreadsheet. Each column represents a new generation of the schema. 
With this layout, developers, database administrators and subject -matter (business) experts readily see 
where the fields are changed. The entries should contain the field names, which may evolve, the field types 
as known in the database and if useful as known by the programming language using the data. The particular 
way of building complex objects and records should be indicated. When a field is split, or combines others, 
or is eliminated is also shown. 

Using the matrix format of Generatrix, developers can easily maintain it and see where the data they need 
is changing in the next generation of the system. A financial system may need to be re-run for past years for 
purposes of audit, retroactive corrections, legal reasons, or analysis and decision-making. The tabular 
representation of the past form of the system should be useful to all stakeholders.  

3 DESIGN ABSTRACTION DESIGN PATTERN 

Also may be known as: Place-holder. Conceptual Design. Form-Agnostic. Algorithm specification. 

3.1 Intent 

During the design process, we need various techniques for specifying structure and functionality without  
committing to final forms. We may use specific concrete example, knowing they are place-holders for an 
abstraction that we have yet to understand. We may use constructs available in the design language which 
are specifically geared toward representing abstractions. We intend that design to not abandon these 
abstractions as the details come about. Rather, we intend for the abstractions to retain knowledge of the 
reasoning behind design decisions. We need for the framework in which these artifacts evolve will provide  
connection into the past generations of a system that are appropriate for the system’s long-term viability. 

During system maintenance, engineers who are newly assigned to the product line need ways into the 
design: its specific and abstract structures and processes. They need to be able to find their way through the 
system by first getting a handle on the abstractions. They benefit from abstractions that provide paths into 
the derivative detail design artifacts. 

This design pattern seeks to counter the problem of design intentions getting lost as the components become 
well defined. It is different from an “abstract class” or “interface” in that it does not assert the 
particular form or method signatures. In that sense it is form-independent or “form agnostic” while being  
specific about purpose. When a detail design is developed to implement a Design Abstraction, or derived 
from a previous version, it can take various forms. The component design can consist of one or more 
classifiers, design patterns involving a collaboration of objects, and even resources such as files, 
configuration variables, and functionality provided by frameworks such as dependency injection and 
database operations. This pattern expects that in some way these artifacts will capture the fact that their 
design predecessor is that particular design abstraction. Whether this connection is accomplished in-place 
through annotations or through a separate indexing artifact is not discussed here. The form of this information 
is not constrained by this pattern except that it is intended to be well maintained through multiple generations 
of the system. 

Because of the availability of the explicit Design Abstraction, the software design provenance of all 
components of the system can be traced to their ultimate purpose if the pattern is followed judiciously. 

3.2 Motivation 

Software engineers encounter several problems in the effort to design for long-term viability of the system 
beyond what source-control systems alone can address. 
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x Designers like to use standardized diagrams for constructs . UML lacks a symbol for a design 
abstraction. 

x The concept of “predecessor” of a class may take the form of inheritance, reference to another class, 
or replacement of the class within a separate “copy” of the containing system.  

x Code changes may obscure what was essential and what was intended about a previous version of 
a component.  

x The programming language may not have a construct supporting certain techniques that would be 
used to evolve a component. As an example, the “trick” of invalidating a constructor or override 
method for the purpose of taking it out of the “type” is not directly supported by Java. Doing so could 
be accomplished by adding a feature such as supervenience (J. R. Reza, Java supervenience). 

x The need for explicit design artifacts representing the abstractions behind the implementation design 
has been recognized in the engineering discipline of circuit design (Altium), resulting in productivity  
CASE tools. The concept was described early in the evolution of object-orientation as a mechanism 
important to capturing the derivation of artifacts (Koopman and Siewiorek). Designing abstractions 
is a bit different from designing classes or even abstract classes and takes deliberation (Ousterhout).  
If we were to simply declare that developers shall create documentation about abstractions, it is 
greeted with either claims that we already do that or we don’t need to do that extra work. If presented 
as a design pattern instead, it may be accepted enthusiastically.  

3.3 Summary of solution 

Create an explicit artifact as part of the software design to represent components purpose, functionality, and 
some of the constraints. The artifact is intended to retain knowledge of the reasoning behind subsequent  
component designs and implementations. The Design Abstraction may serve as a Place-holder until specific 
design are created. But unlike the usual temporary nature of “place holders” it is not d iscarded but maintained 
as a permanent part of the design. As such it may be part of a complete Conceptual Design of the system. 
It may contain a complete algorithm with everything but the actual names signatures and format. Finally, The 
Design Abstraction artifact is itself a Component. As such, in this pattern language, it may be modified for 
purposes in the next generation of the system in which case the original remains unchanged and the new 
“version” of it will identify it as a Predecessor, thus supporting Design Provenance. 

3.4 Structure 

The six configurations in Figure 6 demonstrate uses of the Design Abstraction pattern. They show that either 
Components and Design Abstractions may be in the role of the Predecessor of the other. The configuration 
at the bottom shows that two components have been combined in some way. Perhaps it is discovered that 
they are the same or can be gently modified for one component to take on the responsibility of both. 
Components also split (not shown). 

3.5 Applicability 
Use a Design Abstraction software element when: 

It is desirable to capture the fact that a design can be implemented in other ways. This is to retain the 
knowledge of the reasons behind a particular (concrete) group of software elements that might get lost or fall  
out-of-date unless the abstraction is somehow tied to the concrete design. This is thinking in terms of UML 
classes. 

Redesign is expected to involve more than simple refactoring.  

When reverse-engineering a legacy system you discover the underlying design intention behind a 
component especially if that discovery process was harder than it seems it should have been.  

When you realize that your new design has changed the underlying design intention of an artifact, you can 
point out where the new design came from (your new/modified Design Abstraction) and the artifact that your 
new abstraction was derived from whether it was an abstraction of specific design. 
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Fig. 6. Various configurations involving a Design Abstraction. 

3.5.1 Illustration from another discipline. 
This fanciful example is not about software development. It gives us an more visual idea of the archetypal use of design abstractions.  

The concept of an abstract design element can be illustrated by analogy to architecture. Suppose a professional office complex is being 
designed. The architect defines an entrance component that can be detailed at construction time as a sliding door, a revolving door, a 
hinged pair, or other product meeting specif ied constraints. The overall design is agnostic about the exact kind of door at some point. 
The architectural design “does not care”, in a sense, and the customer decides separately w hat door product w ith be installed . 

After the building has been constructed and is in use for several years, new requirements lead a renovation architectural f irm to plan to 
replace the revolving door w ith a heavy security door. Fortunately, the blueprints retain the abstract door design w hich spec ified 
dimensions, operational constraints, heat-conductivity, and local building codes that must be satisf ied. Now , the renovation architect 
does not have to try to infer the purposes that w ere intended from the actual door installed because they are documented w ith the f inal 
blueprints.  

Current blueprints include or reference the design abstraction. Those intentions remain w hen the renovation is done, and a subsequent 
repair or renovation again does not have to rely solely on the door then in place to understand the des ign provenance of the entrance. 

This f ictional example may help to visualize how  the softw are Design Abstraction component may play out. 

3.6 Implementation 

An example of an implementation of Design Abstractions is found in all of the UML-like diagrams in this 
paper. Developers can adopt a convention to use existing UML classifier symbols to represent Design 
Abstractions. 
There are two UML elements that can be used to indicate that a class or object is considered to represent a 
form-agnostic abstraction. The classifier annotated with <<Design Abstraction>> represents a class or 
collaboration of software elements and resources. 

3.7 Consequences 
The availability of an artifact for representing Design Abstractions invites the possibility of requiring and 
measuring their use by developers. The patterns of this paper can be used uniformly or selectively where 
deemed useful. By including Design Abstraction elements in the actual code base, with linkage to external 
documentation where necessary, we can retain the knowledge behind design choices in the next generation 
of the system as well as in the present. 
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4 DESIGN PROVENANCE DESIGN PATTERN 

Also may be known as: Design Traceability. Design for Reproducibility. Knowledge Management. 

4.1 Intent 

We need to ensure that the reasoning behind a design is not lost. We need to ensure that the requirements  
trace to design elements remains accessible and valid. We need to ensure that the previous implementations 
of the design will be able to operate concurrent with new generations of the product line. As staff members  
transition in and out, they need to know how to access all of the foregoing. These things are collectively the 
design provenance of a software system. 

4.2 Motivation 

x Loss of knowledge of previous versions of components contributes to difficulty in understanding the 
original intent of a component. 

x This loss of knowledge increases the tendency to create a new version by starting from scratch.  

x Lack of understanding of an existing component’s design can lead to making a whole copy of it as a 
starting point rather than trying to understand where a sensible segmentation might be 
accomplished. This leads to duplication and hence future duplicate maintenance effort and defects. 
This problem is very pervasive in in-house code shops. 

x Requirements traceability alone does not create a record of the derivation of a given component  
from its actual or conceptual predecessor(s). 

x New components, whether derived from legacy or created in support of fresh requirements ,  
collaborate with legacy components in the previous generations. Those components often have 
dependencies on collaborating components that must be of the same generation. With the loss of 
this design knowledge, the new functionality may create subtle defects, especially when the behavior 
appears to work but gives different output. 

Doing some of these “right” things may be punished in the form of performance reviews because it reads 
like extra work that is not specifically required. Such work is easy to omit when we do not even have the 
words to call for it and common acceptance of its value. 

4.3 Summary of solution 

Data provenance and software provenance are not the same as (and do not cover) design provenance (K. 
Fowler). Software provenance addresses concerns about the authenticity of a product, as in “is this download 
safe? Is it the real thing?” Data provenance addresses the concern that data must be handled in a way that 
does not allow intentional or accidental changes (IEEE). Finally, the well-known “requirements traceability” 
does not encompass the design decisions and analysis underlying a resulting design instance. This design 
pattern provides for explicitly capturing a trace to the source of knowledge behind a design.  

4.4 Structure 
The Form-Agnostic predecessor reference represents various ways that a component may be a derivat ion 
of a component in a previous generation of the system. The most basic form is an actual (ordinary) reference,  
and instance member variable. 
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Fig. 7. Predecessor relationship accomplished via inheritance. 

In Figure 7 several configurations are shown. The inheritance construct is illustrated as one way to directly 
implement the Predecessor concept. The interface of a Chain of Responsibility is shown unchanged across 
several generations of the system. However, since the interface is also a Component, it can also be 
revised in a new generation and maintain predecessor relationships.  

The Predecessor relationship may or may not be realized as a single artifact. For example, if inheritance is 
used in implementing a new component, then there is a simple physical artifact corresponding to the 
relationship that connects the new component to its predecessor. The notation is typically the “extends” 
syntax. (Note: this does not suggest that all inheritance implies “previous”). In other situations however, the 
new component or components may have no connection in code with its predecessor; no reference,  
inheritance, or mention of a predecessor. Here, it is the knowledge of the predecessor relationship that is 
considered valuable and needing to be preserved in the pan-generational design. 

The illustration of Figure 8 suggests a situation in which a component’s functionality is enhanced by letting it 
delegate to its predecessor component where possible so as to avoid duplicating code. This design may be 
an application of the Chain of Responsibility pattern. 

 

 

Fig. 8. A class family revised across generation w ith unchanging interface.   
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5 CREATOR DESIGN PATTERN 

May also be known as: Creational design pattern, Specification-Driven provider, Abstract Creator. 

5.1 Intent 
A higher level abstraction is needed to represent the creational patterns that create a software component. 
This creator abstraction needs not specify how to construct, initialize, retrieve, populate, initialize, and/or 
build it. It may specify functional requirements that imply some constraints on the type of creational design 
patterns that can be used. We need to decouple the development of the creator component(s) from the 
development of the component. We ultimately want the design provenance of all creators in the system to 
be traceable from one generation to its predecessors and successors. 

5.2 Motivation 

Programming languages have constructs for abstraction of classes and constructs for creational methods.  
But these do not directly support the design of abstract creational components.  Software engineers must 
provide for capturing the abstract reasoning behind concrete constructors, factories, initializers themselves.  
This allows the opportunities to lose the knowledge and know-how that went into a given design. 

x Developers hard-code the way to create instances, perform initializations and accomplish cumulative 
construction or populating of object. The separation of the creating code and the objective “work” 
code can be obscured. Maintenance programmers must later reverse engineer this knowledge out 
of the code. 

x Some components are appropriately hard-coded as to the way they must be created because that 
is intrinsic to their design concept. Other components are hard-coded with their own creation, using 
a constructor, or partner class builder, or other specific creational technique. Now when these 
components are present in the design of the system, later developers often have no direct way of 
knowing which hard-coded creational approach was incidental to the design of the component and 
which were intended as central. 

x As a component evolves, the creation portion of it may become complicated and distributed to 
several other components. Worse yet, it might accumulate in a single excessively large class.  

x The knowledge of the reasoning behind the separation of creation and work concerns is often not 
captured or findable when needed. 

5.3 Summary of solution 

The Creator design pattern is a Design Abstraction for representing “what” a software component does with 
little or no specification the form, structure, and perhaps how it is implemented. However, it is more than just 
a specification. 
Each of the creational patterns from GoF and other sources are named in a way that strongly suggests that 
the pattern is all about “how” it creates objects. The other patterns leave out the creator of objects, unless a 
specific kind of creator is intrinsic to the pattern, as in the Abstract Factory. In the Generatrix, however, the 
creator of components is an intrinsic feature of the pattern and being an abstraction is the key feature of the 
Creator to emphasize the point that its purpose is specific but the particular design pattern and the “how” is 
separate from it. 

5.4 Applicability 
Use the Creator design pattern when . . . 

Design of software is being done at an architectural level where the particular way to instantiate (and 
complete) certain objects is not pertinent to design decisions.  

An explicit generational design is created. The abstraction of a Creator should be used even if the designer 
“knows” up front which kind of creational pattern is intended at the time, for the present generation.  

5.5 Structure 
A representative few of the applicable configurations of this pattern is presented here.  
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Fig. 9. Creator Design Abstraction used four different w ays. 

The diagram Figure 9 illustrates four of many possible configurations involving a Creator. A Creator is shown 
as being updated in the next generation (top). There, it has a specific Creator as its Predecessor. A Creator 
may also be design when introducing Coherent Generational Design into a legacy system. In that case the 
Predecessor may be an ordinary Constructor, Factory, Builder or other familiar pattern.  

Next in the diagram is a Factory method that is derived from its Creator predecessor. It is the method that 
has a predecessor, not the class containing it. Here the Creator and created component may be in the same 
generation, or across generations. But there should not be a succession of predecessors beyond thi s within 
the same generation. Upon normal coding iteration, only the latest creator or component is the one that 
matters to the design. 

Next is Abean which demonstrates that more than one element, constructors in this case, can come from 
the same Predecessor.  

Lastly in the diagram is an example of a kind of object creator that is beyond the core language. In this case 
the annotation that causes a framework to inject an object is the design element that implements the Creator 
abstraction.  

5.6 Consequences 
The design retains more of the knowledge of the reasoning that goes into specific design artifacts. The 
explicit representation of artifacts in the same language supports maintenance of that knowledge.  

The explicit representation of the Creator might appear to developers as an extra maintenance burden with 
delayed rewards that will accrue to others. 

5.7 Related patterns 

The Creator represents a creational design. Any of the GoF patterns (E. Gamma, R Helm, R. Johnson, J.  
Vlissides) as well as some of the other constructs are suited to be the design instance represented by the 
Creator. 

6 GENERATION-SENSITIVITY DESIGN PATTERN 

Also may be known as: Robust maintainable design, Configurable design, Evolvable, Upward-compatibility. 

6.1 Intent 
We have two issues in designing in anticipation of a next generation.  First is the simple matter of establishing 
a convention for identifying the generation that a component as part of its conceptual interface so that it will 
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only work if used in the generation(s) which it was designed. Second, we need to recommend a simple 
architecture-level organization that will support the development of subsequent generations and their making 
best use of former generations design base. 

The client of a system has a specific requirement as to which generation of the system it uses. There is a 
range of possible generation-compatibility requirements that apply to different systems. One application may 
require that the latest release or current database be automatically provided when a client requests service 
from that system. In another system, the client is an application designed to request only the specific 
generation of the service system it was designed for. An upgrade involves deliberation and may involve a 
team effort. It may or may not provide an automatic invitation to upgrade. In other situations, an application 
may provide the user with the capability to select a “year” or set of past and present database states. A 
system that can run “as” more than one generation of itself for a certain purpose is called pan-generational. 

6.2 Motivation 

In this context, more than one generation of the software and its database are maintained and in-use 
concurrently. The version expected by a client, and by components that use the system, take one of several 
possible forms. 

x The client module is expected to contact what the user thinks of “the system” and determine for the 
user which generation of the system should respond. The user effectively “does not care” which 
system responds, delegating the “care” decision to the client application which possesses 
generation-specific logic. (Or…) 

x The client application has no concern about which version of the system responds. The client can 
be from an any generation and the system will handle its request by redirection as necessary. (Or…)  

x The choice of generation may be made by examining the compatibility of request and service or 
methods available, rather than explicit identification of generation “number”, say.  (Or…) 

x The user is aware that the latest generation is required and the client application performs to that 
expectation. 

6.3 Summary of solution 

x The most fundamental design decision is to never render the previous generation code base and 
database state unusable as a result of replacing components of the system.  

x Establish a clear generation-awareness capability that can be maintained across multiple 
generations of the system without struggle. The system may be highly generation agnostic, or very  
specific about client-system matching. 

x Establish a structure for source, resources, and executables that is capable of supporting multiple 
generations without creating new maintenance problems or overhead frameworks.  

6.4 Applicability 
Use the Generation-Sensitivity pattern when . . . 

Awareness of the generation of a system is an identified concern.  

The software designer is aware of using, reusing, extending, deriving, or refactoring a component of the 
previous generation to create a new one. This knowledge can be captured as the predecessor relationship 
without imposing a particular form if it abstract, or identifying the actual implementation element as 
predecessor if possible. 

This pattern would not be applicable when a system never develops beyond a single release: it would not 
have a concern about generations as discussed in this paper. Maintainability is narrowly interested in keeping 
the system running with no big changes. 

6.5 Implementation 

The two issues involved with designing for multiple generations are considered here.  
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The most direct approach to associate classes with a given generation of the system is to establish a project  
(as in the Eclipse or NetBeans environment) or a set of class paths to host all artifacts developed for a new 
generation of the project. The Java class loaders can be configured to benefit from the correspondence of 
packages so that classes from multiple generations reside in separate directories but may appear in the 
same packages. This approach allows multiple generations of same-named classes from different  
generations to be loaded in the same JVM if necessary. It is flexible and simple for simple needs, and only 
grows in complexity with complex need. 

Aside from this approach that should be familiar to most java developers, annotations or constants can be 
used by convention. A simple identifier is sufficient to associate a design artifact with the generation of the 
system that it was developed for.  In Java, certain classes are designed with a built -in version ID requirement .  
This represents a conscious design decision to anticipate upgrades in the future. Projects decide on different  
mechanisms to populate the ID field, or to ignore it. 

The issue of how to organize the architecture to support multiple generations may later be subject to one or 
more design patterns. For now, an approach that has been used successfully is presented. It is not as general 
as will be needed to fully realize the intentions of Generation-Sensitivity. Here the context is a Java-centric  
code base in a NetBeans or Eclipse environment. 

The approach is based on creating a number of “projects.” This project construct is the handy mechanism 
that the IDE uses to organize source and classes into a directory hierarchy with class path (project root) at 
their top. A development “project” may be implemented using multiple IDE “projects”.  

The concept is to use a feature of the Java language in which the loader can find classes in multiple places 
provided that their “package” paths correspond with respect to their project root. Given that software 
developers are well-versed in using this feature the solution to organizing multiple-generations is simple. 

1. The legacy generation remains in its own project. It is assumed to be unchanged; no more 
maintenance fixes. 

2. The next generation now under development resides in its own project. The particulars of naming 
conventions are not significant to this approach. 

3. A complete copy of the legacy project is made so that its code can be shared by the next generation’s  
project. This will be called the legacy-copy project. 

4. As development of the next generation progresses we will have three situations in which a component  
is new, a replacement, or an “inheriting” update of its legacy predecessor.  

A) New: no complications. The new module resides only in the new project.  

B) Replacement: The same-named module is deleted from the legacy-copy project completely and 
the new component resides in the new project. The class loader will find just one class of the 
intended qualified name among the two projects (the new and legacy-copy projects).  

C) Inheriting Upgrade: Here is a situation that often drives coders to come up with ad hoc version-
naming conventions or bring in a 3rd party dependency-injection framework. The present  
approach does not require those actions. First, the new component is created and resides in the 
new project. It needs to delegate to the version of itself that resides in the legacy project. The 
copy in the legacy-copy must be deleted. In order to load the original version of the component  
now residing in the (unchangeable) legacy project the reflection mechanism of the class loader 
is used. This is the part of this approach that might seem tricky to developers. It can introduce 
complexity if used inappropriately. Developers should not see this as a reason to start loading 
everything through reflection. 

This architectural construct lends itself to development generations which are infrequent. This approach is 
probably inappropriate for numerous frequent iterations as in an Agile environment. The management of too 
many “project” containers is no great burden for relatively few and occasional new generations of the system. 

6.6 Related patterns 

x Database anti-patterns (Karwin). For example, Foreign Keys creates a rigid relationship between 
tables. When the structure, use, or range of values of one table is drastically changed in a new 
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generation of the system, the use of the foreign key column may have to be constrained, or queries  
using it may need additional logic to produce different effects depending on whether the table is 
being used for the previous generation or the next generation of the pan-generational system. 

x Canonical Versioning design pattern of (Erl). It deals with Service Oriented Architectures using 
different versioning schemes. It views the solution to problems as being taken care of by 
conventional versioning tools. 

7 ACCORD DESIGN PATTERN 

Also may be known as: Coupling to version (version–specific). Family of objects in Accord with each other  
(mutually version-specific). 

This design pattern is included without a great deal of elaborat ion in order to show how the pattern language 
can promote the discovery of additional design patterns. This pattern is also an example of a second-order 
pattern in that it uses certain other design patterns as some of its basic components, rather than just  
conventional representations of class-level items. 

7.1 Intent 

Two or more components have a conceptual dependency or coupling to each other based on the generation 
of the system. When they are upgraded in the next generation, they are not interchangeable with their 
respective predecessors. The coupling is designed intentionally and has been called an Accord relationship 
(J. R. Reza). 

Unlike the coupling created by a single reference from one class to another, this coupling need not  have an 
explicit code that a maintenance programmer could readily discover. Instead, the functionality and 
dependencies through other objects makes for a generation-specific co-dependency. 

This design pattern provides an explicit design construct for the accord, a strategic agreement, between two 
or more families of classes or method families. A family in this context means that each generation results in 
a new version of the latest component in the family. That revision should be done to both families in order to 
ensure coherent design through the next generation. 

7.2 Motivation 

x The knowledge of when components must work only with collaborators of a certain generation is lost 
or becomes subtle and obscured. There is no specific notation in UML or typical languages to 
express this abstraction directly.  

x Even though components will not throw exceptions if used together improperly across generations 
of the system, their output will be wrong or unreliable and the cause of the problem difficult to 
discover by outward behavior. 

When a new generation of the system introduces a feature that must work with a specific generation of the 
product, or transparently with a previous generation, the components that are dependent on generation may 
be difficult to isolate unless they are identified as such when they are being designed. 

7.3 Summary of solution 

The corresponding families of classes or methods should be annotated so that each family names the other 
as interdependent by generation. The Accord design pattern provides for an explicit linkage between families  
of components indicating their compatibility by generation. The linkage may be in the form of a design 
abstraction (artifact) or it can take the form of a reference, annotation, or other element that is directly 
supported by the language. 

7.4 Illustration  

A classic paper by the Liskov substitution principle (Drossopoulou and Yang) describes a simulation of a Car 
and a Driver which are extended to a Race Car and RacingDriver class, respectively. It  defines the problem 
that could arise from a kind-of upward compatibility substitution. The RaceCar must be passed an argument 
value that is an instance of a RacingDriver. This dependency is an artifact of the discovery of racing in the 
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second generation of the product. The predecessors, Car and Driver, are compatible in their generation. The 
next generation extends Car to design RaceCar which takes a RaceCarDriver as a parameter type. The 
RaceCarDriver is an extension of a Driver. The implied constraint on the arguments to RaceCar is that the 
object must be a RaceCarDriver, not just any Driver. But if coded incorrectly a runtime Driver could be passed 
to the RaceCar. 

The problem is not with the original design. But future extension of the system in a next generation could be 
coded to allow the unintended Driver types to find their way into the driver seats. An explicit Accord between 
the families of classes would give the originator’s knowledge directly to the future developer to understand 
and comply with. 

7.5 Applicability 

Use the Accord pattern when … 

1. Two “partner” components are designed to work together fully and properly in the same generation.  

2. An upgrade of functionality to either partner in the next generation warrants a corresponding upgrade 
in the other in that generation. 

3. It is required that the design and implementation of the previous generation of the system will be 
available for use or reference by the next generation and absolutely unaltered for any purpose of the 
next generation. 

7.6 Implementation 

In the first generation of a fast conventional car, there is a fuel pump family of components and a flow 
controller family of components. In the next generation of the same product line, there is a new over-dri ve 
feature for sudden acceleration. Here, the flow controller can send a new signal to the fuel pump which the 
new fuel pump understands. The fuel pump could work in the previous generation of the vehicle, but its new 
feature of faster flow would never be exercised there. 

If Java inheritance were used to implement the next generation of components, the new Pump and 
FuelController classes would each extend their respective predecessors. The methods for sending and 
receiving flow control signals would be explicit @Overrides. In the game simulation, some cars are of the 
previous generation and some are of the new. There will be runtime object instances of both generations of 
Pump and both generations of  FuelControllers. It is up to the programmer to make sure that pump and 
controller objects only talk  to their partner components of the same generation. There are coding hazards in 
which the program can appear to be correct, but because of subtle effects of the types of argument variables  
and the types of the declared method parameters, the runtime dispatcher can route a call to the wrong 
generation (an easy mistake to miss in coding). 

The Accord relationship insists on a consistent means of ensuring that the coding hazards are avoided. It 
requires that when inheritance or other derivation mechanism is used to connect a new generation of a 
component to its predecessor, the predecessor relationship must be explicitly represented. 

Any form that the Accord relationship takes will have qualities resembling Java inheritance. The default  
dispatch function is based on parametric contravariance. But to achieve the intention of Accord, parametric  
covariance would be the most direct mechanism. Since the dispatcher is generally not a component available 
to developers to readily change, other “work-around” coding techniques are generally used. 

The specific means of representing “predecessor” and the generational partnering relationship are not 
defined in this paper. It will vary with languages. In Java, however, a simple @annotation mechanism can 
be adopted by the developers. For the purposes of this pattern language it is sufficient to describe the need 
for these representations in support of the Generatrix pattern. The Pump family of classes may have an 
annotation such as @Accord(Partner=”FlowController”), and the FlowController annotated 
@Accord(Partner=”Pump”), along with appropriate path qualifiers or imports. 
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8 CONCLUSION 

The various concepts comprising the coherent generational design pattern are often discussed during the 
design process. However, these concepts have not been thought of as parts of an overall higher-level 
pattern. The vocabulary of the concepts are not universally recognized or used consistently. It is hoped that 
understanding the concerns and solutions for multi-generation software systems will lead to the benefits  
suggested here. 

8.1 Other work 

The Pattern System for Tracing Architectural Concerns  (Mirakhorli and Cleland-Huang) gives us a possible 
solution to software maintenance problems based on adding traceability from design elements to underlying 
design decisions. The intent of their pattern system identifies the problem of degradation of the architecture 
as it evolves. As small coding iterations are performed during maintenance, the changes depart from the 
architecture’s requirements and reduce maintainability. The problem is compounded when design knowledge 
is lost in the development of a new generation of a system that derives from one or more predecessors.  

The approach described in this paper differs from Mirakhorli and Cleland-Huang in a few ways. The Coherent  
Generational Design pattern language does not involve requirements traceability. Also, the Design 
Provenance is not limited to pointers from specific design artifacts to their architecture-level items. It is not 
limited to having (present generation) architecture to which a design refers, but instead provides for 
generations of the architecture and design artifacts as a unified lineage. In addition to associating design 
artifacts with their underlying abstractions, it associates design artifacts with their predecessor designs which 
are not abstractions. Finally, this pattern language does not impose a 3rd party support system for maintaining 
pointers. 

Several studies of programmer performance, summarized by Yamashita, found that “On unplan-like 
programs … experts' performance deteriorated, as they seemed confused by the rule violations, and indeed 
their performance levels dropped to near the level of the novice programmers .” (Yamashita). Experienced 
programmers are naturally concerned for the next generation and can feel thwarted in projects with immature 
planning habits. The Coherent Generational Design pattern helps the experienced originators of a system, 
the less experienced maintenance programmers, and then the future experienced programmers who wish 
to reach across the time that has passed and access the knowledge of the originators. The shift in software 
development paradigm implied by this paper may promote a more timeless way of thinking in general. 

8.2 Future work 

Additional real-world application of the coherent generational design will progress slowly, as the systems that 
it is applicable to move on the scale of calendar years. On small applications it can be applied with 
deliberation. But the benefit of saving abstract design knowledge would be smaller and may be hard to justify 
until the application grows and personnel turn-over exposes the loss. 

One obstacle to acceptance of the Generatrix design pattern is that different languages should be annotated 
using their own mechanisms. The matrix format (e.g. a spreadsheet) is nice but developers would 
immediately point out the possibility of automatic updating of the matrix. That would make a nice graduate 
project. 

The concept of organizing projects and using class loader features should be described in the form of a 
proper design pattern. It should be presented with several examples. Its advantages and disadvantages 
should be studied and compared to the solution offered by other approaches such as dependency injection 
frameworks. 

8.3 Summary 

The real-world experiences that have lead up to the development of this pattern language have been 
summarized in this paper. Research on the application of Generatrix concepts has continued in the context 
of a large financial institution with a multi-generation MIS system. Each of the supporting design patterns has 
been exercised on different systems and for various objectives. A degree of stability has lead the author to 
feel justified in exhibiting the pattern language for the community to consider at this time. 
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