Applying Idioms for Synchronization
Mechanisms: Synchronizing communication
components for the Fast Fourier Transform

Jorge L. Ortega-Arjona
jloa@ciencias.unam.mx
Departamento de Matematicas
Facultad de Ciencias, UNAM
MEXICO

Abstract

The Idioms for Synchronization Mechanisms is a collec-
tion of patterns related with a method for the imple-
mentation of synchronization mechanisms within paral-
lel software systems. The selection of these idioms take
as input information (a) the design pattern of the com-
munication components to synchronize, (b) the memory
organization of the parallel hardware platform, and (¢)
the type of communication required.

In this paper, it is presented the application of the
Idioms for Synchronization Mechanisms to synchronize

the communication components for the Fast Fourier Trans-

form problem. The method takes the information from
the Problem Analysis, Coordination Design, and Com-
munication Design, applying an idiom for synchroniza-
tion mechanisms, and providing elements about its im-
plementation.

CCS Concepts: o Software and its engineering —
Designing software.

Keywords: Idioms, Fast Fourier Transform, Parallel Soft-

ware Design

ACM Reference Format:

Jorge L. Ortega-Arjona. 2022. Applying Idioms for Synchro-
nization Mechanisms: Synchronizing communication compo-
nents for the Fast Fourier Transform. In Latin American
Conference on Pattern Languages of Programming (Sugar-
LoafPLoP’22), October 18, 2022. ACM, New York, NY, USA,
8 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned
by others than the author(s) must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission
and /or a fee. Request permissions from permissions@acm.org.
SugarLoafPLoP’22, October 18, 2022,

(©) 2022 Copyright held by the owner/author(s). Publication rights
licensed to ACM.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. .. $15.00
https://doi.org/10.1145 /nnnnnnn.nnnnnnn

1 Introduction

A lot of work and experience has been gathered in con-
current, parallel, and distributed programming around
the synchronization mechanisms, as originally proposed
during the late 1960s and 1970s by E.W. Dijkstra [4],
C.A.R. Hoare [6-8], and P. Brinch-Hansen [1-3]. Further
work and experience has been gathered today, such as
the formalization of concepts and their representation
in different programming languages.

Synchronization is expressed in programming terms
as language primitives, known as synchronization mech-
anisms. Nevertheless, merely including such synchroniza-
tion mechanisms into a language is not sufficient for
creating a complete parallel program. They neither de-
scribe a complete coordination system nor represent com-
plete communication subsystems. To be applied effec-
tively, the synchronization mechanisms have to be or-
ganized and included within communication structures,
which themselves have to be composed and included in
an overall coordination structure [11].

Common synchronization mechanisms for concurrent,
parallel and distributed programming can be expressed
as idioms, that is, as software patterns for programming
code in a particular programming language. Several of
such synchronization mechanisms have been already ex-
pressed as idioms: the Semaphore idiom, the Critical
Region idiom, the Monitor idiom, the Message Pass-
ing idiom and the Remote Procedure Call idiom [11].
All these idioms describe the use of the synchronization
mechanism with a particular parallel programming lan-
guage, rather than a formal description of their theory
of operation.

The objective of this paper is to show how the id-
ioms that provide a pattern description of well-known
synchronization mechanisms can be applied for the Fast
Fourier Transform, as a particular programming prob-
lem under development. The description of synchroniza-
tion mechanisms as idioms should aid software designers

https://orcid.org/0000-0002-3863-9307
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

SugarLoafPLoP'22, October 18, 2022,

and engineers with a description of common program-
ming structures used for synchronizing communication
activities within a specific programming language, as
well as providing guidelines on their use and applica-
tion during the design and implementation stages of a
parallel software system. This development of implemen-
tation structures constitutes the main objective of the
Detailed Design step within the Pattern-based Parallel
Software Design method [11].

When implementing the components that act as syn-
chronization mechanisms within the communication com-
ponents of a parallel program, it is important to care-
fully consider how both communication and synchro-
nization are carried out by such synchronization mecha-
nisms. The Idioms for Synchronization Mechanisms (ISM)
[11] stand out from many of the sources, references, and
descriptions available about how to implement the syn-
chronization between communicating components (or
processes) of a parallel program, with the following ad-
vantages:

e The ISM represent programming constructs that
express synchronization beyond what is properly
included within the parallel programming language,
but giving the impression that their use is actually
part of the parallel language.

e The ISM attempt to reproduce good programming
practices, describing some common programmed
structures used to detail and implement the syn-
chronization required by a Design Pattern for Com-
munication Components. Thus, their objective is
to help the software designer or programmer un-
derstand and master features and details of the
parallel programming language at hand, by pro-
viding low-level, language specific descriptions of
code that are used to synchronize between par-
allel processing components. These Idioms, then,
help to solve recurring programming problems in
such a parallel programming language. There has
been extensive experience and research about such
codification in several different parallel program-
ming languages, but unfortunately, they have not
been related or linked with general communica-
tion structures or overall structures of parallel pro-
grams.

e The ISM are descriptions that relate a synchro-
nization function (in run-time terms) with a coded
form (in compile-time terms). In many parallel
languages, synchronization mechanisms are imple-
mented so their run-time function has little or no
resemblance to the code that performs it. Both,
function and code, are difficult to relate, so the
software designer or programmer cannot notice

Ortega-Arjona

how communication and synchronization are car-
ried out by coded components. The Idioms here
try to relate function and code, providing dynamic
and static information about the synchronization
mechanisms.

e ISM describe common coded programming struc-
tures based on data exchange and function call.
As such, they are guidance about how to achieve
synchronization between processing components.
This is a key for the success or failure of com-
munication. Hence, the Idioms proposed here are
classified based on (a) the memory organization
and (b) the type of communication between par-
allel components. These issues deeply affect the
selection of synchronization mechanisms and the
implementation of communication components.

e The ISM represent programmed forms as regular
organizations of code, aiming to allow software de-
signers to understand the synchronization between
component, and therefore, reducing their cognitive
burden. Moreover, if these idioms are used and
learnt, they ease understanding legacy code, since
programs tend to be easier to understand.

e The ISM are based on the common concepts and
terms originally used for inter-process communi-
cation [1-4, 6-8], and as such, they are a vehicle
to develop terminology for implementing synchro-
nization components for parallel programs.

Nevertheless, as it is obvious, the ISM present the
disadvantage of being non-portable, since they depend
on features of the parallel programming language. This
does not exclude that several idioms for expressing syn-
chronization mechanisms can be developed for the dif-
ferent parallel programming languages available.

This paper is the third in a series of three papers:
the first paper has covered the application of the Par-
allel Layers as an architectural pattern for solving the
Fast Fourier Transform [12] and; the second paper has
presented the application of the Multiple Remote Call
as a design pattern for dealing with the design of com-
munication components for the Fast Fourier Transform
[13]. Here, this paper explains the selection of idioms to
be used in solving synchronization issues within these
communication components. Together, the three papers
attempt to present a complete picture of a parallel im-
plementation for the Fast Fourier Transform.

2 Specification of the System

In the paper, Applying Architectural Patterns for Paral-
lel Programming. The Fast Fourier Transform [12], the

Applying Idioms for Synchronization Mechanisms: Synchronizing communication components for the F&tigaoloafPTLaiis®armctober 18, 2022,

Parallel Layers (PL) Architectural Pattern has been se-
lected as a solution for the coordination within the par-
allel program that solves the Fast Fourier Transform
problem. In order to apply the Idioms for Synchroniza-
tion Mechanisms (ISM), some information is required
related to the PL Pattern, such as the parallel platform
and programming language.

For this implementation, the parallel platform avail-
able for this parallel program is a cluster of computers,
specifically, a dual-core server (Intel dual Xeon proces-
sors, 1 Gigabyte RAM, 80 Gigabytes HDD) 16 nodes
(each with Intel Pentium IV processors, 512 Megabytes
RAM, 40 Gigabytes HDD), which communicate through
an Ethernet network. The parallel application for this
platform is programmed using the Java programming
language [12].

3 Specification of the Communication
Components

In the paper Applying Design Patterns for Communica-
tion Components. Communicating Parallel Layer com-
ponents for the Fast Fourier Transform [13], the Multi-
ple Remote Call Design Pattern has been selected for
the communication components of the PL pattern to
solve the Fast Fourier Transform problem. In order to
apply the ISM, some information related with the Mul-
tiple Remote Call Pattern is required as well. This in-
formation is summarized as follows.

3.1 The Multiple Remote Call pattern

The communication components are defined so they en-
able the exchange of values in a bidirectional, one-to-
many and many-to-one, remote communication subsys-
tem, having the form of a tree-like communication struc-
ture [13]. Hence, the Multiple Remote Call pattern has
already been previously chosen as an adequate solution
for such communications [9, 12, 13].

e Description of the communication. The Mul-
tiple Remote Call (MRC) pattern is used to dis-
tribute samples to other processing components in
lower layers of the PL pattern, executing on other
memory systems. Both the higher- and lower-layer
components are allowed to execute simultaneously
synchronously communicating during each remote
call over the network of the distributed memory
parallel system [13].

e Structure and dynamics
1. Structure. For background information, the struc-

ture of the MRC pattern has been taken from
[13], as it is shown in Figure 1, using a UML

root:Layer
[

:RemoteProcedureCall

vy [f
:MultiThreadServer

o

:ClientThread

:ClientThread

P i
:RemoteProcedureCall

1K 1K

childl:Layer

:RemoteProcedureCall

child2:L ayer

Figure 1. UML Collaboration Diagram of the Multiple
Remote Call pattern used for sending samples and com-
bining transforms between layer components of the PL
solution to the Fast Fourier Transform problem [13].

Collaboration Diagram [5]. Notice that the com-
munication component structure allows a syn-
chronous, bidirectional communication between
a higher- and two lower-layer components [10,
13].

2. Dynamics. This pattern actually performs a group
of remote calls within the available distributed
memory parallel platform. Figure 2 is taken from
[13], showing the behavior of the participants of
this pattern for the actual example [11, 13].

4 Detailed Design

This paper introduces the Detailed Design step
for solving in parallel the Fast Fourier Transform
[11]. In this step, the software designer applies
one or more idioms as the basis for synchroniza-
tion mechanisms. From the decisions taken in
the previous steps (Specification of the Problem
[12], Specification of the System [12], and Specifi-
cation of Communication Components [13]), the
main objective now is to decide which synchro-
nization mechanisms are to be used as part of
the communication substructures.

4.1 Specification of the Synchronization
Mechanism

— The scope. This section takes into considera-
tion the basic previous information for solving
the Fast Fourier Transform problem. The ob-
jective is to look for the relevant information

SugarLoafPLoP'22, October 18, 2022,

I

sotad o
get Rgquest ()

—
nmakeH

‘:MultiThreedServ%‘CIient:Threaj‘ ‘childl:LayeJ ‘CIiaﬁt:Threed‘ ‘chile:Layef{
L [I |
€T X

]

Figure 2. UML Sequence Diagram for the Multiple
Remote Call pattern applied for sending samples and
combining transforms between a higher- and two lower-
layer components of the PL solution for the Fast Fourier
Transform problem [13].

for applying a particular idiom as a synchro-
nization mechanism.

For the Fast Fourier Transform problem, the
factors that now affect selection of synchro-
nization mechanisms are as follows:

x The available hardware platform is a clus-
ter, this is, a distributed memory parallel
platform, programmed using Java as the pro-
gramming language [12].

* The PL pattern is used as an architectural
pattern, requiring to communicate layer soft-
ware components [12].

x The MRC design pattern is selected for the
design and implementation of communica-

tion components to support synchronous com-

munication between layers [13].
Based on this information, the procedure for
selecting an ISM for the Fast Fourier Trans-
form problem is as follows [11]:

a. Select the type of synchronization mechanism.

The MRC pattern requires a synchroniza-
tion mechanism that controls the access and
exchange of values between a higher- and
two lower-layers as software components that
cooperate. These values are communicated

using basically remote procedure calls. Hence,

the idioms that describe this type of synchro-
nization mechanism are the Message Passing

| nakeReguielst Wi t Repl y()
create()
create() doReq (0]
J doRequesit ()
getRe esfrlﬂQeReg lest Wai t Repl
doRequest (), get Req esanQ
axes
d
Repl
nmakeReplly() I
makeRep| y()RePI
Repl
Repl
gat her Repl|i es()
Repl
1y()
T T T T

t Vi t Repl y()
oRequest ()

Ortega-Arjona

idiom and the Remote Procedure Call idiom
[11].

. Confirm the type of synchronization mecha-

nism. The use of a distributed memory plat-

form, given the previous design decisions, con-
firms that the synchronization mechanisms

for communication components in this exam-

ple may be message passing or remote pro-

cedure calls.

. Select idioms for synchronization mechanisms.

Communication between layer components
needs to be performed synchronously, that
is, the high-layer component should wait for
a response from its two lower-layer compo-
nents. This is normally achieved using the
MRC pattern. Nevertheless, this design pat-
tern requires synchronization mechanisms. In
Java, the Remote Procedure Call idiom al-
lows to develop a synchronization mechanism
used here to show how implementation of
the MRC pattern can be achieved using this
idiom.

. Verify the selected idioms. Checking the Con-

text and Problem sections of the Remote

Procedure Call idiom [11]:

x Context: ‘A parallel or distributed appli-
cation s to be developed in which two or
more software components execute simul-
taneously on a distributed memory platform.
Specifically, two software components must
communicate, synchronize and exchange data.
Each software component must be able to
recognize the procedures or functions in the
remote address space of the other software
component, which is accessed only through
I/0 operations.”.

* Problem: ‘To allow communications between
two parallel software components execut-
ing on different computers on a distributed
memory parallel platform, it is necessary
to provide synchronous access to calls be-
tween their address spaces for an arbitrary
number of call and reply operations.’.

Comparing these sections with the synchro-
nization requirements of the actual example,
the Remoter Procedure Call idiom can be
used as the synchronization mechanism for
the communication. The use of a distributed
memory platform implies the use of message
passing or remote procedure calls, whereas
the need for synchronous communication be-
tween layer components points to the use of
remote procedure calls.

Applying Idioms for Synchronization Mechanisms: Synchronizing communication components for the F&tigaoloafPTLaiis®armctober 18, 2022,

The design of the parallel software system can
now continue using the Solution section of the
Remote Procedure Call idiom, directly imple-
menting it in Java.

— Structure and Dynamics.

a. Structure. The Remote Procedure Call 1d-
iom is used for implementing the synchro-
nization mechanisms of the communication
components for the PL pattern. The Remote
Procedure Call idiom in Java is presented as
an interface, declaring some basic methods
on which synchronization is achieved. Notice

which serves the call issued by the client,
operating on the actual parameters of the
call.

Once this procedure finishes, the server
invokes makeReply (), which encapsulates
the reply and sends it to the remote
procedure call component.

Once the remote procedure call hasthe
reply, it makes it available to the client,
which unblocks and continues. Note how
the remote procedure call acts as a syn-
chronization mechanism between client

that the remote procedure call allows a syn- and server.
chronization over the two basic distributed — Synchronization Analysis. This section describes
components: a server and a client [11]. the advantages and disadvantages of the Re-

mote Procedure Call idiom as a base for the

public abstract Object makeRequestWaitReply(Object m); synchronization code proposed [11]'
public abstract Object getRequest(); a. Advantages
public abstract void makeReply(); * Multiple parallel layer components can be

} created in different address spaces of the
computers that make up the cluster, as a
distributed memory parallel platform. They
are able to execute simultaneously, non-
deterministically and at different relative
speeds. All can execute independently, syn-
chronizing to communicate.

% Synchronization is achieved by blocking ev-
ery client until it receives a reply from
the server. When implementing remote
procedure calls, blocking is more man-
ageable than non-blocking: remote procedure

interface RemoteProcedureCallInterfaceq{

b. Dynamics. Remote Procedure Calls are used
in several ways as synchronization mecha-
nisms. Here, they are used for synchronous
communication. The Remote Procedure Call
idiom actually synchronizes the operation of
the layer components over distributed mem-
ory. Figure 3 shows a UML Sequence dia-
gram of the possible execution of the two
participants of this idiom as the synchro-
nization mechanism within the MRC pat-
tern. Two parallel software components: a
client c and a server s, which synchro-
nize to exchange values. Since they execute
on different nodes of the distributed memory

platform, they can only communicate using cClient ‘ ‘ rpc:RPC ‘

the remote procedure call methods. T

In this scenario, the synchronization over the makeRequest Vi t Repl y()

remote procedure call is performed as fol- 1

lows: L,

* The communication between software com- doRequest ()
ponents starts when the client invokes {

get Request E

makeRequestWaitReply (). Assuming that
the remote procedure call component makeRepl y(
is free, it receives the call along with its L—
arguments. The client waits until the
remote procedure call component issues reply
a reply. L’ 7@
% At the remote end, the server invokes
getRequest () to retrieve any requests is-
sued to the remote procedure call com-

ponent. Th1§ t.r iggers the execution of a Figure 3. UML Sequence Diagram for the Remote Pro-
procedure within the server, here doRequestégdure Call idiom

} doRequest ()

SugarLoafPLoP'22, October 18, 2022,

call implementations map well onto a block-
ing communication paradigm.

* Each layer component works its own ad-
dress space, issuing calls to accessing other
layers in a remote address space via net-
work facilities. No other layer component
interferes during communication.

* Data to be sorted is passed as arguments
of the remote procedure calls. The integrity
of arguments and results is maintained dur-
ing all communication.

b. Liabilities

* An implementation issue for remote pro-
cedure calls in this application example is
the number of calls that can be in progress
at any time from different threads within
a specific layer component. It is important
that a number of layer components on a
computer within a distributed system should
be able to initiate remote procedure calls
and, specifically, that several threads of
the same layer component should be able
to initiate remote procedure calls to the
same destination. Consider for example a
layer A using several threads to serve re-
mote procedure call requests from differ-
ent client layers. Layer A may itself need
to invoke the service of another layer, say
B. It must therefore be possible for a thread
on A to initiate a remote procedure call
to B and, while it is in progress, another
thread on A should be able to initiate other
remote procedure calls to layer B.

* It is commonly argued that the simple and
efficient remote procedure call can be used
as a basis for all distributed communica-
tion requirements of the present Fast Fourier
Transform problem. However, there are vari-
ations that can be applied here. Such vari-
ations include (a) a simple send for event
notification, with no requirement for reply,
(b) an asynchronous version of a remote
procedure call that requests the server to
perform the operation and keep the result
so the client can picks it up later, (c) a
stream protocol for different sources and
destinations, such as terminals, I/O and
SO on.

5 Implementation

The communication components and their respective re-
mote procedure call components are implemented as
described in the Detailed Design step, using the Java

Ortega-Arjona

programming language [12, 13]. So, the implementation
is presented here for developing the MRC as commu-
nication and synchronization components. Nevertheless,
this design and implementation of the whole parallel
software system goes beyond the actual purposes of the
present paper.

5.1 Communication components — Multiple
Remote Calls

The class RemoteProcedureCall is used as the synchro-
nization mechanism component of several components
of the MRC pattern. For example, let us consider the
synchronization within the communication between the
high-layer component and the MultithreadServer, us-
ing remote procedure calls [13].

class Layer implements Runnable {

private RemoteProcedureCall rpc; // reference to rpc
private Object data; // Data to be processed
private Object result; // Result from the call

public void run(){
rpc = new RemoteProcedureCall(socket s);
while(true){

result = rpc.getRequest(data);

The MultithreadServer receives this remote call as
follows:

class MultithreadServer implements Runnable {

private RemoteProcedureCall rpc; // reference to rpc
private int datal[]; // Data to be processed

private int subDatal[]; Data to be distributed

private int reply[]; // Results from client threads
private int result[]; // Overall result

private ClientThread clientThreadl[];

private int numClients;

private Boolean request = false; // is there a request?

//Function called by the rpc
private void performRequest(int d[]){
data = d;
synchronized(this){
request = true;
this.notify();
}
}

public void run(){
//Wait until someone make a request
while(true)q{
synchronized(this){

Applying Idioms for Synchronization Mechanisms: Synchronizing communication components for the F&tigaoloafPTLaiis®armctober 18, 2022,

while(!request){
try{wait();}
catch(InterruptedException e){}
}
}
//Create childthreads
for(int i=0;i<numClients;i++){
subdata = getNextSubData(data,i);
clientThread[i] = new ClientThread(subData) ;
}
//Wait for all child termination
for(int i=0;i<numClients;i++){
reply[i] = clientThread[i].returnResult();
try{
clientThread[i].join();
}
catch(InterruptedException e){}
}
result = gatherReplies();
rpc.makeReply(result) ;

Both components rely on a remote procedure call com-
ponent to exchange and distribute values as samples and
transforms of the FFT computation. Hence, the success-
ful operation of the communication structure relies on
how the remote procedure call component implements

send(in, m);
return receive(out);

}

public Object serverGetRequest() {
return receive(in);

}

public void serverMakeReply(Object m) {
send(out, m);

}

The class RemoteProcedureCall implements a two-
way flow of information based on sockets, as a one-way
flow of information between message passing sender and
receiver. The root Layer component sends an object
to the MultithreadedServer that represents a request,

and blocks waiting for the reply. The MultithreadedServer

blocks waiting for a request. When it gets the request,
computes the reply, and sends it to the root Layer com-
ponent, unblocking it. As described in the MRC pattern,
the MultithreadedServer may spawn off a thread to
handle the request while it gets additional requests.

Moreover, the MultithreadedServer also acts as a
call distributor: it waits for requests from the low-layer
components that they are able to do some work. The
MultithreadedServer sends a work command to the
layer components, sending the result back later in an-

the methods of the interface RemoteProcedureCallInterfacether call. Notice that this part of the functiona,lity of
makeRequestWaitReply (), getRequest (), and makeReply Othe MRC pattern is not shown in this code.

This is shown in the following section.

5.2 Synchronization Mechanism — Remote
Procedure Calls in Java

Based on the Remote Procedure Call idiom and their im-
plementation in the Java programming language, the ba-
sic synchronization mechanism that controls the commu-

The Remote Procedure Calls here are based on syn-
chronous message passing rather than asynchronous be-
cause buffering is unnecessary and would waste space;
any client blocks on the send in synchronous case and
on the receive in asynchronous case. Hence, there is no
need of synchronized methods, because synchronization
is handled inside the send and receive methods. This

nication between root Layer component and the Multithreaded$koteshould be synchronized if there are multiple

is presented as follows:

import java.net.*;

class RemoteProcedureCall extends UnicastRemoteObject
implements RemoteProcedureCalllnterface {

protected Object data;
protected Object reply;
private MultithreadedServer ms;

private MessagePassing in = null;
private MessagePassing out = null;

public RemoteProcedureCall(Socket socket) {

this.in = new ObjPipedMessagePassing(socket);
this.out = this.in;

}

public Object clientMakeRequestAwaitReply(Object m) {

client threads sharing this object.

Finally, it is important to notice that a deadlock possi-

bility exists: if the server makes another call to serverGetRequest ()
before calling serverMakeReply () then this RemoteProcedureCall

object is deadlocked (assuming just one client is using
this object, the intended situation) in the sense that
the client is blocked on receive (out) and the server is
blocked on receive (in). This still needs to be fixed for
the present implementation.

6 Summary

The ISM are applied here along with a method, in or-
der to show how to apply an idiom that copes with the
requirements of the communication components present
in the PL solution to the Fast Fourier Transform prob-
lem. The main objective of this paper is to demonstrate,

SugarLoafPLoP'22, October 18, 2022,

with a particular example, the detailed design and im-
plementation that may be guided by a selected idiom.
Moreover, the application of the ISM and the method
for selecting them is proposed to be used during the
Detailed Design and Implementation for other similar
problems that involve synchronous distribution of data,
executing on a distributed memory parallel platform.

References

[1] Brinch-Hansen, P., Structured Multiprogramming.

nications of the ACM, Vol. 15, No. 17. July, 1972.

Brinch-Hansen, P., The Programming Language Concurrent

Pascal. TEEE Transactions on Software Engineering, Vol. 1,

No. 2. June, 1975.

[3] P. Brinch-Hansen Distributed Processes: A Concurrent Pro-
gramming Concept., Communications of the ACM, Vol.21,
No. 11, 1978.

[4] E.W. Dijkstra Co-operating Sequential Processes, In
Programming Languages (ed. Genuys), pp.43-112, Academic
Press, 1968.

[5] M. Fowler, UML Distilled.
1997.

[6] Hoare, C.A.R., Towards a theory of parallel programming.
Operating System Techniques, Academic Press, 1972.

Commu-

[2

Addison-Wesley Longman Inc.,

Ortega-Arjona

[7] Hoare, C.A.R., Monitors: An Operating System Structuring
Concept. Communications of the ACM, Vol. 17, No. 10. Oc-
tober, 1974.

[8] C.A.R. Hoare Communicating Sequential Processes. ~ Com-
munications of the ACM, Vol.21, No. 8, August 1978.

[9] J.L. Ortega-Arjona The Parallel Layers Pattern. A Func-
tional Parallelism Architectural Pattern for Parallel Program-
ming., Proceedings of the 6th Latin American Conference
on Pattern Languages of Programming (SugarLoafPLoP2007),
Porto de Galinhas, Pernambuco, Brazil, 2007.

[10] J.L. Ortega-Arjona Design Patterns for Communication
Components, Proceedings of the 12th European Conference
on Pattern Languages of Programming and Computing (Eu-
roPLoP2007), Kloster Irsee, Germany, 2007.

[11] J.L. Ortega-Arjona Patterns for Parallel Software Design.
John Wiley & Sons, 2010.

[12] J.L. Ortega-Arjona Applying Architectural Patterns for Par-
allel Programming. The Fast Fourier Transform, Proceed-
ings of the 19th European Conference on Pattern Languages of
Programming and Computing (EuroPLoP2014), Kloster Irsee,
Germany, 2014.

[13] J.L. Ortega-Arjona Applying Design Patterns for Commu-
nication Components. Communicating Parallel Layer compo-
nents for the Fast Fourier Transform., Proceedings of the
23th European Conference on Pattern Languages of Program-
ming and Computing (EuroPLoP2018), Kloster Irsee, Ger-
many, 2018.

	Abstract
	1 Introduction
	2 Specification of the System
	3 Specification of the Communication Components
	3.1 The Multiple Remote Call pattern

	4 Detailed Design
	4.1 Specification of the Synchronization Mechanism

	5 Implementation
	5.1 Communication components – Multiple Remote Calls
	5.2 Synchronization Mechanism – Remote Procedure Calls in Java

	6 Summary
	References

