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1. OVERVIEW

This paper presents a collectionpaftterns within a pattern languaige agentbased systems. Agents
have appeared in a widange of applications, including personalized user interfaces, enterprise
integration, manufacturing, arfslisiness process support. Thag viewed asthe next significant
software abstraction, and it is expected they bgtome as ubiguitous gsaphical user interfaces are
today. Agentsare stillfairly new, so only some dhe patterns presented here haeel widespread

use; others have been uncovered as being uaetlleoccurring problemandsolutions at RMIT in

the Java Application Framewofr Intelligentand Mobile Agents (JAFIMA) Project.  Following
Examples (Section 2gnd Context (Section 3), theayeredAgent is discussed in Section 4; other
patterns are presented accordinghteir location within this architectural pattern 8ections 5 to 9.
Section 10 summarizes the 23 patterns presented in this paper.

2. EXAMPLES

The following illustrate the kinds of problems that agents address [26].

e Upon logging into your computer, you are presentéith a list of news grouptems, sorted intp
order of importance by your personal digital assistdPiDA). The assistardrawsyour attentior
to one article omnew work inyour area. After discussiowith other PDAs, yours obtains | a
relevant report for you vi&TP. When a papeyou have submitted to a conference is accepted,
your PDA makes travel arrangements by consulting a number of networked information sources.

» The air- traffic control systems in the country of ABC suddenly fail, dweather conditions.
Fortunately, agent- based air- traffic control systems in neighboring countries negotiate between
themselves to deal with affected flights, and the potentially disastrous situation passes.

» Thenewhome robot developed by Company XYZ is engineered by a team of agent designers.
Five disciplines --- marketing, mechanics, electronics, computers, and manufacturing |--- are
represented, and the agents work together to develop a sound, concurrently engineered product
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Figure 1: Model of Agent Behavior [17]

3. CONTEXT

Agent- based systems arise out of the following needs:

» Personalized and customized user interfaces that are pro-active in assisting the use
* Adaptable, fault tolerant distributed systems that solve complex problems

* Open systems where components come and go and new components are continually added.
» Migration and load balancing across platforms, throughout a network.
* New metaphors, such as negotiation, for solving distributed, multi- disciplinary problems.

—
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An agent [26] is i) autonomous - acts withbuiman intervention, iiocial - collaborates with other

agents via structured messages, iii) reactive - responds to environmental caadggro- active -

acts to achieve goals. It the combination of thesbehaviorsthat distinguishes an agerfitom

objects, actors [1], and robots. Agent behavior is summarized in Figure 1. Agyéeds models of

the world and themselves to select a capability or plan to address the present situationvaRede

each plan executes in its own thread, and several of these may execute concurrently. Agents negotiate
with each other; agent collaboration across disciplin@grequire thasemantics can be exchanged.

Three sample capabilitiesre shown in Figure 1. One involves &ffector;the othertwo feature
collaboration with other agents, either within the origsadiety orexternal to it.  If the agents are

in different societies, they must migrate, either virtually or in reality, in order to collaborate.

4. THE LAYERED AGENT ARCHITECTURAL PATTERN
Problem:

How can agent behavior be best organized and structured into software? What software architecture
best supports the behavior of agents ?

Forces:

* An agent system is complex and spans several levels of abstraction.

» There are dependencies between neighboring levels, with two way information flow.
» The software architecture must encompass all aspects of agency.

» The architecture must be able to address simple and sophisticated agent behavior.

Solution:

Agents should be decomposiedo layers [7]because ihigherlevel or more sophisticated behavior
depends on lower level capabilities, ii) layers only depend on their neighbdrsi) there iswo way
information flow betweenneighboring layers. Théayerscan be identifiedrom the model of the
agent’s real world; Fig. 2 structures Fig. 1 into seven layers.

Top Down Bottom Up
Layer 7: brings in messages frgqm ~ MOBILITY Layer 7:  transports the agent to
distant agent societies * * distant societies
Layer 6: translates incoming TRANSLATION Layer 6: translates the agent’s messages
messages * ? to other agent’s semantics (ontologies)
Layer 5. determines whether 1” COLLABORATION Layer 5: verifies & directs outgoing messages
incoming message should be to distant and local agents
processed + *
ACTIONS . Layer 4: stores and carries out the instantiated
Layer 4: takes in pending action plans being undertaken by the agent
* + Layer 3: processes the beliefs to determine
Layer 3: reasons regarding the REASONING what should be done next; stores the
selected action * * reasoner and the plans
Layer 2: updates beliefs BELIEFS Layer 2: storesthe agent's beliefs; updates
according to reasoning beliefs according to sensor input
. v * :Layer 1: senses changes in the
Layer 1: thers r lar sensor
up)c/i:\tes gamhets fegtia senso SENSORY environment; messages updates

Figure 22 The Layered Agent Architectural Pattern

In Figure 2, top down information flow is on the left, while bottom- up is on the right. Bottom- up, an
agent’sbeliefs are based on sensorpput. When presented with @oblem, an agent reasons to
determine what to do. When the agdatides on an action,éan carry itout directly, but an action
thatinvolvesother agents requires collaboration. Once the approach to collaboration is determined,
the actual message is formulated at translation and delivered to distant societies by mobility.

Top- down, distanmessages arrive at mobility. An incoming messageairslated into the agent’s
semantics. The collaboratiteyer determines whether or nbe agent shoulgrocess a message. If
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the message should be processed, it is passed on to actions. When an action is selected for processing,
it is passed tthe reasoning layer, ifecessary. Oncepan placed in the actions layer,dbes not
require the services of any lower layers, but it can call on the services of higher ones.

Sample Usage:

A sample use dhe LayeredAgent can beseen in Figure 3. lIthis, the individual agents eabtlave
senses, beliefsgasoning, andctions. Becauseahe societiesare centralized, the agents share a
collaboration layer and a translation layer. Three agent societies share a common mobility layer.

Agent Society®

Agent Society:"ai

Air Traffic Air Traffic
Control —1 =1 = Control =1 I=1 I
Quadrant B Quadrant C

Collaboration

Agent Society: Action Action

Air Traffic Control
Quadrant A Reasoning Reasoning

Beliefs Beliefs
el | Sensory ey | Sensory

Figure 3: Layered Agents: Centralized Collaboration and Translation and Shared Mobility Layers
Known Uses:

There are manyayered agent architectures; early ones did not requmability or translation.
GRATE [26] features domain, cooperatiomnd control layers, equivalent to sensory, beliefs,
reasoning, actioandcollaboration. TouringMachines [10] consist of perception, aciwhcontrol.
InterRRaP [20] has four layers: cooperation, plan-based, behaviour-based and world interface.

5. THE SENSORY, BELIEFS, AND REASONING LAYERS

5.1 CONTEXT AND OVERVIEW

The Sensoryand Beliefs layeramaintain the agent’'models of its environmeranditself. Based on
these models, the agent determines what to do next in Reasoning.

5.2 THE REACTIVE AGENT
Problem

How can an agent react to an environmental stimulus or a request from another agent when there is
no symbolic representation and no known solution ?

Forces

* An agent needs to be able to respond to a stimulus or a request.

* There may not be a symbolic representation for an application.

* An application may not have a knowledge based, prescriptive solution.

Solution

A ReactiveAgentdoesnot have anynternal symbolic models otheir environment; iacts using a
stimulus/ responstype ofbehavior. It gathersensoryinput, but its Belief and Reasoning layers are

reduced to a set of situated action rules. A sif@activeAgent is not proactive, but society of
these agents can exhibit such behavior. A Reactive Agent is known as a weak agent.
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Known Uses

Reactive theory wagriginated byBrooks[6] and Agre and Chapman [2];eactive agents haugeen
widely used22]. They have been used to simuldte behavior ofint societiesand to utilizesuch
societies for search and optimization [9].

5.3 THE DELIBERATIVE AGENT
Problem
How can an agent select a capability to proactively achieve a goal within a given problem context ?

Forces

* An agent should be capable of intelligent behavior, selecting a plan to achieve a goal.

» For some applications, a symbolic representation or model of the environment can be specified.
* Some problems have a knowledge based solution that can be identified by experts.

Solution

A Deliberative Agentpossesses aimternal symbolic reasoning model ofheir environment and
themselveswithin their Beliefs and Reasoning layers. They selectplan or capability that can
achieve their goal in the context of the present situation. A Deliberative Agent is a strong agent, and
a sample use involves a society of agents with knowledge of particular business processes.

Known Uses

Deliberative Agents wereriginated by Cohen [8dndGeorgeff[12], andthey have beewidely used
by Jennings [15] and others [22].

5.4 THE OPPORTUNISTIC AGENT
Problem

How can an agent opportunistically address problems, identifying an approach that is not known

appriori ?

Forces

* A problemcan have assymbolic representation but not have kmowledge based, prescriptive
solution.

» For these applications, only constraints may be known; these indicate what can not be done.

* An agent needs to be able to avoid known constraints but still move toward a solution.

Solution

An Opportunistic Agentloesnot attempt to have prescriptive plans to address a problem. Rather,
their Beliefs consist ofconstraints found inthe problem,and their Reasoning or capabilities
accomplish constraint propagatiamd satisfaction. Problems with symbolic representation but
with no known appriori, prescriptive solution can be solved this way.

Known Uses

Fox [4, 21, 23] hagioneeredthis approach andsed it successfully inistributed scheduling and
resource allocation; these problems typically have no knowledge based approach.

5.5 THE INTERFACE AGENT
Problem
How can an agent adapt to the needs of a human user ?

Forces

* Some agents work directly withhmman user, assisting them in usingagplication or in finding
information or services.

« The needs ohumanusers are variabldut thereare certaincategories of userand established
patterns of user behavior.

Solution

An Interface Agent collaborates withhrmmancomputer user. Typicallypnly oneagent is found,
although a full agensociety may beised. This kind of agenbbserveshe userand adapts to their
needs by identifying whatind of usertheyare and their patterns obmputer useage. An Interface
Agent’s beliefs are typically parametric user models, and their sensors monitor the user’s actions.
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Known Uses
Maes [19] has led the development of Interface Agents, also called Personal Assistants [22].

6. THE ACTION LAYER

6.1 CONTEXT AND OVERVIEW

The Actionlayer carries outhe planselected byhe Reasoning layer. There is a némdhelayer to
be able to schedulend prioritizeactions. It makes use tie following patterns: Intention, Plan as
Command, Plan and Intention Factory, Prioritizer, Future Observer, and Adaptive- Active Object.

6.2 THE INTENTION
Problem
How can an agent commit to performing reactive and proactive behavior ?

Forces

* An agent needs to be able to carry out proactine reactive behavior; it needs to be able to
commit to these activities, seeing them through to completion.

» Behavior executes with the beliefs that the agent had when it (the behavior) was initiated.

* An agent may have many activities or plans executing concurrently.

* An agent’s plan impacts the environment throughetffiectors; it calls on collaboration when it
needs to involve other agents.

Solution

An Intention represents the commitment of an agent to being in a state whareviés it is about to
actually perform a set of actions [8]. An instantiapdan is an Intention thagxecutes irits own

thread of control; it executes until completion, unless it is suspended awaiting a reply. Ajpis’'s

are stated in invocation conditions; additional criteria, such as environmental situations or stimuli, are
in context conditions. Conditionand plansreside in the Reasoninigyer (Figure 4). If the
conditions are satisfied, the plan is instantiated and executed by an Intention in the Actions layer. All
variablesand expressions in th@lan areevaluated, based otle agent’sbeliefs, atthe time of
instantiation, when the agent commits to performingptlh@. An Intention can bgpecialized to a
Collaborationintentiorand aReactioniIntention (Figures dnd 5). Once an Intention is created, it
does not require the services of any of the lower layers; collaboration can involve higher layers.

Known Uses

Intentions were first introduced byGeorgeff and Lansky [12], aspart of their Belief- Desires-
Intentions agent architecture. Intentions prowteproactiveandreactive behavior of many strong
and weak agent systems, including [8] and [15].

Collaboration
Reaction All items
Intention indicated
are
Reasoning @

objects
Figure 4: Intentions in the Action Layer, Plans and Conditions in the Reasoning Layer

or
patterns

6.3 RANAS COMMAND
Problem
How can a plan be encapsulated as an object ?

Forces

» Each Intention has a plan to execute. They have a wide range and are known only at run time.

* A plan specifiesprimitive actions, executed directly ltiie effectors orthe Collaboratioriayer
interface.

« There is a need to define a structdioe plans thatprovides high level operations based on
primitive ones.
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Figure 5: The Intention, Plan as Command, and Plan and Intention Factory Patterns
Solution

The Plan as Command pattern [Isdlvesthis problem, as shown in Figure 5 in threbjects/

interfaces: INT- ActionPlan, ConcretePlan, and EffectorRep. Each ConcretePlan is a carbjeeind
which implements the ActionPlan interfatieat declares thehigh level operation Execute(). The
receiver ofthis command is a ConcretePlabject which is instantiated at runtime. Each
ConcretePlan uses primitive methods of EffectorRep and the Collaboration interface (not shown).

6.4 RANAND INTENTION FACTORY
Problem
How can different plans and intentions be instantiated at run time ?

Forces

* A plan is instantiatedor every newlntention, andthey mustall utilize the same interface for
creation.

* Thetype ofintention (Collaboration or Reaction) will depend ttve action plan to bexecuted,;
therefore, the type of intention thread to be instantiated can not be anticipated before run time.

* There is a need to delegate the responsibility of instantiating intention objects.

¢ New subclasses of intentions may become necessary.

Solution

The AbstractFactory and Factory Methodpatterns [11] areused together to formthe Plan and
Intention Factory, as shown in Figure 5The PlanFactory is abstract; ptovidesthe interface to
create the ActionPlanbjects.The ConcretePlanFactogyrovidesthe implementation to create the
ConcretePlans. For this usesthe Library which stores several ActionPlan clasaed instantiates
the requested oneThis planobject isthenused bythe IntentionThread. Per th&actory Method
pattern, Reactionintention or Collaborationintentsubclasses will bnstantiated depending on the
ActionPlan type. Both of these definlke virtual methods of the IntentionThread clasBhese
methods araised bythe IntentionThread clader creating therespectiveintention threadobjects,
letting the subclasses determine how an object is to be instantiated.

6.5 THE PRIORITIZER
Problem
How can priority handling and other forms of behavior be added to an intention dynamically ?

Forces

» There aregwo main Intentionsubclasses: Reactiand Collaboration. Additional refinement is
needed, especially for priority handling.

¢ Furthersubclassification will result in duplication, as both Reactiad Collaboration Intentions
can feature the same priority handling.

» Priority handling should be attached to aobject, and not aclass, becaus¢he type of
IntentionThread is not known before run time.
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Solution

Additional responsibilities can be attached to an Interdigmamically using Decorators [11]. The
Prioritizer pattern can besed to decoratthe run() method of the IntentionThreaghere action
plans areexecuted. The run() method isleclared in Runnable interfaeend iscalled whenever a
thread is started. Additional priorityandling can badded dynamically to it by usirthe decorator
object,the ThreadControl clagbat encapsulates the IntentionThread. Both the ThreadControl and
the IntentionThread classes conform to the Runnable interface, so the instance of Thread@sstrol
can beused transparently in placelotentionThread. Theubclass of ThreadContrahe Controller
class, provides the concrete decorator.

6.6 FUTURE OBSERVER
Problem

How cantwo separate threads, an intentiand a concurrergerver, communicate asynchronously ?
How can the dependent intention be notified of the server’s response ?

Forces

* In Java, threads can not return results directly as Runnable.run() has a void return type.

* In an agentiwo separate threads, one of an intentéoil another of a concurresgrver, have to
be able to communicate asynchronously when a result is returned from the server thread.

» There can potentially be many intentions executmglonly some of these will béealing with a
given concurrent server.

Solution

In the Future pattern [16], an instance of Futurasied as a placeholder for a future value. In the
Observermpattern [11], aone to many dependency is definedisat dependents can be notified when
the observablechanges. The Futur@bserverpatterncombines these tsolve the problem stated
above. The Client will execute an asynchronous operation, DoOperation(), wihsfantiates a
Futureobjectand returns itseference. The Client wilnessagé¢he Futureobject'sread() which will

block threadexecution ifthe Future is not in its updated state. Later on, the concurrently executing
CoexistingServer updates the state of the Fuibject. Each Futureobject is an observable for the
corresponding observelients who register themselves witthe related Futures. When a Future is
updated by the CoexistingServer it notifies thelsserversThis notification will executethe update
method of the Client, and in this method the blocked (or suspended) Client thread is resumed.

6.7 ADAPTABLE ACTIVE OBJECT
Problem

How do youmanage different threads of contfol agent actions ?How can the agent’'s actions
conform to different environments ?

Forces

* Agent intentions act concurrently in different threads of control.

» An object inthe environmenmay need to be affected or impactedthg agent in a sequential
manner.

* Agents may act in various environments, with different effectors.

* The Active Object pattern uses MethodObjects, but it is not practical to represent each method as a

separate class and instantiate it at runtime because of the variability in effectors.
Solution

The Active Objectpattern [18]decouples method exectuion from method invocatiororeer to
simplify synchronised access toshared resource. In Figure 6, Clientinterface, Scheduler and
ActivationQueue fornthe Active Objectpattern, along witiMethod Object(not shown). However,

new Method Object classes would be necessargdoh method in each environment. The solution
to thisproblem is provided bthe Adapter pattern [1Hnd theclass ConcreteAdapter. The user has
to providethe ConcreteAdapter which marshalls the method call when a methmebkedand later

on demarshalls the method object when it is dispatched.
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Figure 6: Use of Active Object and Adapter (Adaptive Active Object) in the Action Layer

6.8 THE M ESSAGEFORWARDER
Problem

How can messages from other agents be passemlgh the Actiorlayer tothe agent’'s reasoning
capability ?

Forces

* Messages arrive from other agents concurrently.

» The agent’'s Reasoning layer is sequential.

Solution
The Message Forwarder, based thwe Active Object[18] decouples sequentiadasoning execution
from concurrent requests to simplify synchronized access to the agent’s shared resource.

7. THE COLLABORATION LAYER

7.1 CONTEXT AND OVERVIEW

In the Collaboration layer, the agent determines its approach to cooperating or working with other
agents. Patterns are utilizetbr messaging (Conversation)centralization (Facilitator),
decentralization (Agent Proxy), and social policies (Protocol, Emergent Society).

7.2 THE CONVERSATION
Problem
How can structured messaging between agents occur in sequences rather than in isolated acts ?

Forces

» Successive messages between agents are often related.

» Endless loops of messages between agents need to be avoided.

Solution

A Conversation [5] is a sequence of mességdseen twagents, takinglace over a period dime.

There are termination conditiofier any given occurrencand Conversations may givese to other
Conversations. In sonagentsocieties, messages betwegentsmay occur onlywithin the context
of conversations; isolated messages are not supported.

Known Uses

COOL [4] and AgenTalk [22] support Conversations between agents, as does KA0S [5].

7.3 CENTRALIZED COLLABORATION : THE FACILITATOR
Problem

How is an agent able to freely collaborate with other agents without direct knowledge of their
existence?

Forces
» Each agent may not have knowledge of every other agent
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» Proliferating interconnectionand dependencies increase complexity, complicatntenance,
and reduce reusability

Solution
Each Mediator [11] isassociated with a multitude of Colleaguesjectsthat rely on it for all
communication. The Facilitator ased orthe Mediatorand itprovides a gateway or clearinghouse

for agent collaboration [5]. With a Facilitator, agents do not have to have kit@etedge of one
another for collaboration, and agents within the same society share a single Collaboration layer.

Known Uses

ARCHON [15], PACT [25],and other agerdapplications have utilized Facilitators, refering to this
approach as a federated agent architecture [22].

7.4 DECENTRALIZED COLLABORATION : THE AGENT PROXY

Problem:

How can agents collaborate directly with one another?

Forces:

* An agentmaynot have a Facilitator to represént Then, each agent mustmmunicate directly
with other agents, support different interfaces, and maintdiaboration knowledge.

» Agents collaborate with each other via structured messages; there are many agent dialects.

» Bottlenecks encountered in a centralized architecture need to be avoided.

* An agent must be able to recover Conversations that it is involved in.

Solution:

A Proxy [11] controls access the Real Subject; itanalso provide a distinct interfacdEach Agent
Proxy class (Figure 7) would subscribe t@ertain interface. An agent must be able to determine its
behavior based upahe state of the conversation itifssolved in. Oneagentmay be engaged in
several conversations simultaneousigquiring context switching.  Th&lemento pattern [11]
externalizes arobject’s state sothat thestate can be restored later. Agéhbxiesthat support
conversations must store and recabeir state, delegating this tdviemento.
NG — -
/ Agent Proxy\ / Agent
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~

~
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~ | —~

— ~

/
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Figure 7: The Agent Proxy Pattern for Decentralized Collaboration

7.5 RRoToCOL
Problem
How can agent collaborative behavior be prescribed to follow certain policies ?

Forces
* Agents need to be able to follow certain conventions or policies for collaboration.

Solution

Conversation policies [5] or Protocols prescriptively encaggularities that characterize
communication sequences between users @nguage. AgenProtocols explicitly define what
sequences of which messages are permissible between a given set of participating agents.
Known Uses

COOL [4] prescribes particular form of agent negotiatiorKAoS [5] and AgenTallf22] stipulate
several protocols or conversation policiegluding contract net, infornoffer, andrequest [5]. In
the contract neprotocol, one agent asker bids for tasks it needs performeahd otheragents
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respond, if theyare available to do thwork. If a bid meetdhe originating agent’s criteria, it can
award the work to the successful bidder.

7.6 THE EMERGENT SOCIETY

Problem

How can agents collaborate without known protocols ? How can Reactive Agents collaborate ?

Forces

* There may not be known agent protocols for a given application.

* Reactive Agents need to be able to collaborate and carry out proactive behavior together.

* Reactive Agents simply react to stimuli and are not capable of any knowledge based behavior.

Solution

Each individual agent, even a Reactive Agent, can, through their own actions, provide a stimulus to a
neighboring agent. As each individual agent reacts to stimuli providéldebyneighbors, the net

result is the Emerger8ociety. Complepatterns of behaviocan emergdrom these interactions

when the agergociety is viewed globall{22]. No model exists fathis behavior, althougleconomic

and game theory have been applisdccessfully.  Reactive Agentgad agentfrom Emergent
Societies have reduced Collaboration layers; they merely provide stimuli to neighboring agents.

Known Uses
All Reactive Agent systems [9] rely on the Emergent Society for collaboration [22].

8. THE MOBILITY LAYER

8.1 CONTEXT AND OVERVIEW

The Mobility layer must support reahnd virtual migration. Iconsists of a region shareatross
several agentand agensocietiesand a region thdtelongs to an individuagent. It is made up of
the following patterns: Clone, Broker [7], Client Proxy, and Remote Configurator.

8.2 THE CLONE
Problem
How can an agent relocate itself and become resident in distant societies ?

Forces

* An agent must be able to bring its capabilities, facilities, and state with it to a new society.

» The agent must bable to travel to a remote locatiand interact,negotiate,and exchange
information in the new society.

Solution

Make a copy or clone of the original agent, and place the new agent in the distant society. The clone
must have all of the capabilities and facilities of the original agent, along with any state information.
Known Uses

The originaluse ofagentself replication was cooperating mobile WAV&gents [3]. More recent
approaches that utilize cloning include IBM Aglets [188jd theAgent TransfeProtocol (ATP) [14].

An aglet is a Javabjectthat canmove from onehost on the Internet to another. When the aglet

moves, it takeslong its prograntode as well ag#s state (data). Bradshaw [5] refers to agent
cloning as teleportation.

8.3 THE REMOTE CONFIGURATOR
Problem
How can an agent be appropriately configured for various destination societies ?

Forces

* For actual migration, an agehas to becloned inthe destinatiorsociety. Configuration details
are needed for cloning, such as the plan library and the beliefs.

« The configuration details and their format depend on the given society’s requirements. Thus each
agent has to support various kinds of configuration access operations.

* There is a need to represent the configuration accessing funsgpasately fromthe agent
structure; otherwise each agérds to supportany distinctand unrelatedperations inobject
structure.
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» Each agent has a similar object structure as all of them are created by the same framework

Solution

Figure 8 shows how the Visitor pattern [THsbeen utilized to desigthe RemoteConfigurator. The
ActualMigration handler transfers the Visitthom a distantsociety tothe migrating agent. The
ClientProxy in theMobility layer instantiates the Visitoobject. This Visitor object is passed to the
corresponding layers, such as Reasoner, by calling Accept(). As sth@®easoner object iturn

calls back the Visitor object’s Visit method and passes its reference to the Visitor object. As the object
structure of thdayer of an agent is fixedhe Visitor can gather the configuration information by

using the public interface methods, such as GetPlan(), of the Reasoner. Thus there is no need to define
separate methods ftransferring the configuration details to anotheciety. Moreover, services can

be added by adding new Visitor subclasses, and no change is needed in the agent structure.
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Figure 8: The Remote Configurator in the Mobility Layer

8.4 THE BROKER
Problem:

How is an agent able to gain access to resources and other agents outside its society without actually

migrating ?

Forces:

* Agents must be able to access each other and other resources across platforms and societies
without having to actually migrate.

* Making every agent responsible for access, security and interactions for a society leads to N- to- N
connections and redundancy.

Solution:

The Brokerpattern [7]provides for location transparency fobjectsthat wish to be clients and
servers of on@nother. With this, the agent (or its Agdfrbxy) canbecome avirtual member of
open societiesnanaged by th8rokers. Bridges between societe® also supported. Agents who
wish to be clienteindservers for onanother musemploy a Broker who is responsible focating a
server once a cliefitasrequested its services. Bdtie client and theerver must register with the
Broker. The Broker patternprovides virtual agentnigration. Bradshaw refers to a Broker as a
Matchmaker [5].

8.5 MIGRATION THREAD FACTORY
Problem
How can an agent migrate virtually or in reality, dynamically ?

Forces

* An agent can request service fromanother society (virtual migration) or it can migrate
physically.

* Thetype ofthe request isnly known atruntime, and théehaviour required for eadipe is very
different.
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* Requests occur concurrently, and services should be concurrent.
» There is a need to dynamically create the handler object according to the incoming request.
* New types of migration services may need to be added.

Solution

Figure 9 showsthe design of the Migration ThreaBactory [11], where the Brokerhas a
ThreadManager and BlandlerCreator. The abstract class Handler declaredfatttery method
MakeHandler in its interfacand usesthis factory method inthe Create(Message). Tl®ncrete
definition of thisfactory method is given bthe subclasse¥irtualMigration andActualMigration.
The HandlerCreatmselectshe appropriatsubclass according the client requedbr migration and
instantiates it. It thenpalls Create() on thisbjectwhich thencomposes itselfind creates the@bject
by using MakeHandler().

— — — -~ — e
— ~ — ~ — ~

/" Broker / Thread /" Handler
Manager H Creator

\ — \ — \ —

“Crehtes P
—— — T — — ~—
s - - — / ™
_ Handler /
_— Message
__Handler Create(Message) ~ \
\\«irtu@oid MakeHandIer()\ I

\//’\/\‘/, - -

VirtualMigration /
— V{"d MakeHandler() \

\\,// . //—\\/

/ ActualMigration
/\ void MakeHandler(),
N

Figure 9: The Migration Thread Factory
9. PATTERNS FOR AGENT CONFIGURATION AND INTEGRATION

9.1 CONTEXT AND OVERVIEW

The process of creating anctonfiguring an agent consists of creatihg variouslayersand then
integrating them. The desidgor creating theobject structure of individual layerand integrating
them uses: Agent Builder and Layer Linker.

9.2 THE AGENT BUILDER

Problem

How can the construction of theomplex objectstructure of the agent be separated from its
representation so that the same construction process can create different representations?
Forces

» Each agent has fundamentally the same structure.

* The creationprocess ofthe agent should be isolated #mt thesame processan beused to
generate different object structures.

— _ 7 — 7 —_ -~ . —

/" Client / Agent Conflgurator h / BLayer D
( H Creator Conflglnfo

\V o \V / /f//
— y
BLayer Stores

/ Conflgurator
N
N

BLayerObJ
o Structure )
- Creates Vo

~ —_—

Figure 10: The Agent Builder for Creating the Object Structure of Each Agent Layer
Solution

The AgentCreatorcollects the user configuration detailand passes it tothe Creatorobject.
According to the Builder pattern [11], Creator is a directoject (Figure 10). It storeshe process
used to create aagent. The AgentCreator instantiates the Creator s@tlen Configuratoobjects,
and theConfiguratorobjectsare the buildeobjectswhich actually create thebjectstructure of each
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individual layer based othe information in the Configuration. The Configurator declares a virtual
method Configure. The concrete definition of this method is provided by the layer specific subclasses.

9.3 LAYER LINKER
Problem :

How can the various individual layers of the agent be integrated together ?

Forces

possible.
Solution

It is necessary to provide an interface to each layer but also to decouple the layers as much as

Each Configurator creates thacade objecind othewobjectswhich form the structure configured by
an agent applicatiodeveloper. Use ofhe Facadepattern [11] (Figure 11provides both a simple
interfaceand decoupling betweethe layers. Thd-acade objeamplements the unified interface for

the layer,

promotinglayer independencend portability.

For example,

layers And C are

neighbouring layers to layer Bhen, ashown in the figurelNT-CB Interface declarethe interface
from layer C to layer B, and, correspondingly, INT-AB Interface declares the interface from layer A to
layer B. The Configurator registers them in the configuratiepository object BlayerConfiginfo.
These repositories are used to get the Facade object reference during the integratiexephsess by

the Creator object’s integrate().

— 7~
¢ /INT-CB
Interface -7~
\ / ™
/\h Facade y
- \
/" INT-AB 3 =- ~
\W -
( _ Interface /‘\/é‘/ BFacade -
- / BLayerObJect Y
Structure \
\ —
— - — — N\ - -
/ BLayer / Blayer

( Conflglnfo/-.—( configuratorf
~

\_

Figure
10. SOLUTION SUMMARY

)

L7

11: Design for the Layer Linker

Problem

Solution

Pattern(s)

How can agent behavior be best
organized and structured into
software?

Layered architectures have many benefits. Asped
of an agent are abstracted into a 7 layer model. 1
layer provides a service to adjacent layers.

téayered Agent
Fach

How can an agent simply react to a Utilize a stimulus/response type of behavior, withguReactive
stimulus or a request ? any symbolic representation. Agent

How can an agent select a plan to| The agent reasons about a symbolic model of the| Deliberative
achieve a goal within a given environment and themselves to determine what | Agent
context ? capability is pertinent to the present context.

How can an agent address problemdRepresent the problem’s constraints, and let the | Opportunistic
when no solution is known agent accomplish constraint propagation and Agent
beforehand ? satisfaction to opportunistically solve the problem,.

How can an agent adapt to the needBrovide the agent with parametric user models andnterface

of a human user ? sensors to monitor the user’s actions. Agent

How can an agent commit to An instantiated plan is an Intention that executes|iintention
behavior ? its own thread of control.

How can a plan or request be Implement a plan interface for a high level operat|oRlan as
encapsulated as an object ? with different subclasses. Command
How can different plans, intentions Provide an interface for creating families of related Plan an
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and requests be instantiated at objects without specifying their concrete classes. |@ntention
runtime ? let subclasses determine which class to instantiate Factory

How do you manage different Decouple method execution from method invocatioAdaptable
threads of control for agent actiong to simplify synchronized access to a shared resourdective Object
and migrations? by methods invoked in different threads of control

How can messages from other ageni@ecouple reasoning execution from invocation to | Message

be passed to the agent’s reasoning simplify synchronized access to the agent’s sharedForwarder
capability ? reasoning resource.

How can priority handling and other Decorate or add behavior to the run () method of theriority
forms of behavior be added to an | intention thread, where a plan executes. Decorator
intention dynamically ?

How can two separate threads, an Provide a placeholder for a result. Provide an Future
intention and a concurrent server, | observable relationship between the server and theObserver
communicate asynchronously ? placeholder.

How can messaging between agentAgent messaging can occur within a context Conversation
occur in sequences ? established by previous messages.

How can agents collaborate without Encapsulate agent interaction in a Facilitator that Facilitator

direct knowledge of each other ?

coordinates agents within a given society.

How can agents collaborate direct
with one another ?

yProvide a Proxy to control access to the agent ar
provide distinct interfaces. Store and retrieve
conversations.

dAgent Proxy

How can agent collaboration be Establish conversation policies that explicitly Protocol

prescribed ? characterize communication sequences.

How can agents cooperate to achigv€hough stimulus/response behavior, each agent cd&fmergent

goals when there is no established stimulate its neighbors. Complex patterns of Society

protocol ? behavior emerge when viewed globally..

How can an agent become resident Replicate the agent, providing sensors and effector€lone

in a distant society ? for the new environment.

How can an agent be cloned in a | Define operations for cloning in the destination Remote

distant society ? society without changing the agent class. Separat€onfigurator
the construction of the agent from its representatipn.

How is an agent able to gain accessLocation transparency is provided by a Broker. Broker

to resources and other agents outsideroxies must be employed for the client and server to

its society transparently ? be able to respond to the interface of the Broker.

How can an agent migrate virtually Provide a Thread Manager and a Handler CreatoriMigration

or in reality, dynamically ? and allow the subclasses for virtual and actual Thread
migration to address thread instantiation. Factory

How can the construction of the
agent be separated from its
representation ?

Delegate layer construction to a Builder and a
Director.

Agent Builder

How can a simple interface betwee

nimplement a unified interface for each layer.

the layers be provided ?

Provide Facades for each layer interface.

Layer Linker
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