
Kendall, Pathak, Murali Krishna, and Suresh, “The Layered Agent Pattern Language” 1

The Layered Agent Pattern Language
Elizabeth A.Kendall, Chirag V. Pathak, P.V. Murali Krishna, C.B. Suresh

Computer Systems Engineering, Royal Melbourne Institute Of Technology

City Campus, GPO Box 2476V, Melbourne, VIC 3001 AUSTRALIA

email : kendall@rmit.edu.au

1. OVERVIEW

This paper presents a collection of patterns within a pattern language for agent based systems. Agents
have appeared in a wide range of applications, including personalized user interfaces, enterprise
integration, manufacturing, and business process support. They are viewed as the next significant
software abstraction, and it is expected they will become as ubiguitous as graphical user interfaces are
today. Agents are still fairly new, so only some of the patterns presented here have had widespread
use; others have been uncovered as being useful and reoccurring problems and solutions at RMIT in
the Java Application Framework for Intelligent and Mobile Agents (JAFIMA) Project. Following
Examples (Section 2), and Context (Section 3), the Layered Agent is discussed in Section 4; other
patterns are presented according to their location within this architectural pattern in Sections 5 to 9.
Section 10 summarizes the 23 patterns presented in this paper.

2. EXAMPLES

The following illustrate the kinds of problems that agents address [26].

• Upon logging into your computer, you are presented with a list of news group items, sorted into
order of importance by your personal digital assistant (PDA). The assistant draws your attention
to one article on new work in your area. After discussion with other PDAs, yours obtains a
relevant report for you via FTP. When a paper you have submitted to a conference is accepted,
your PDA makes travel arrangements by consulting a number of networked information sources.

• The air- traffic control systems in the country of ABC suddenly fail, due to weather conditions.
Fortunately, agent- based air- traffic control systems in neighboring countries negotiate between
themselves to deal with affected flights, and the potentially disastrous situation passes.

• The new home robot developed by Company XYZ is engineered by a team of agent designers.
Five disciplines --- marketing, mechanics, electronics, computers, and manufacturing --- are
represented, and the agents work together to develop a sound, concurrently engineered product.

Sensors

External

Object(s)

Effectors

External

Object(s)
Models

Capabilities

Interpreter

Migration

Inst. Plan

Inst. Plan

Collaboration

Instantiated
Plan

 Agent

Agent

K ey:
 - agent component

 - component in thread of control

Figure 1: Model of Agent Behavior [17]

3. CONTEXT

Agent- based systems arise out of the following needs:

• Personalized and customized user interfaces that are pro-active in assisting the user
• Adaptable, fault tolerant distributed systems that solve complex problems
• Open systems where components come and go and new components are continually added.
• Migration and load balancing across platforms, throughout a network.
• New metaphors, such as negotiation, for solving distributed, multi- disciplinary problems.

Kendall, Pathak, Murali Krishna, and Suresh, “The Layered Agent Pattern Language” 2

An agent [26] is i) autonomous - acts without human intervention, ii) social - collaborates with other
agents via structured messages, iii) reactive - responds to environmental changes, and iv) pro- active -
acts to achieve goals. It is the combination of these behaviors that distinguishes an agent from
objects, actors [1], and robots. Agent behavior is summarized in Figure 1. Agents review models of
the world and themselves to select a capability or plan to address the present situation. Once invoked,
each plan executes in its own thread, and several of these may execute concurrently. Agents negotiate
with each other; agent collaboration across disciplines may require that semantics can be exchanged.
Three sample capabilities are shown in Figure 1. One involves an effector; the other two feature
collaboration with other agents, either within the original society or external to it. If the agents are
in different societies, they must migrate, either virtually or in reality, in order to collaborate.

4. THE LAYERED AGENT ARCHITECTURAL PATTERN

Problem:

How can agent behavior be best organized and structured into software? What software architecture
best supports the behavior of agents ?

Forces:
• An agent system is complex and spans several levels of abstraction.
• There are dependencies between neighboring levels, with two way information flow.
• The software architecture must encompass all aspects of agency.
• The architecture must be able to address simple and sophisticated agent behavior.

Solution:

Agents should be decomposed into layers [7] because i) higher level or more sophisticated behavior
depends on lower level capabilities, ii) layers only depend on their neighbors, and iii) there is two way
information flow between neighboring layers. The layers can be identified from the model of the
agent’s real world; Fig. 2 structures Fig. 1 into seven layers.

: senses changes in the
environment; messages updates

Layer 2: stores the agent’s beliefs; updates
beliefs according to sensor input

Layer 3: processes the beliefs to determine

 transports the agent to
distant societies

what should be done next; stores the
reasoner and the plans

Layer 4: stores and carries out the instantiated
plans being undertaken by the agent

Layer 6: translates the agent’s messages
to other agent’s semantics (ontologies)

Layer 5: verifies & directs outgoing messages
to distant and local agents

Layer 1:

Layer 7: MOBILITY

TRANSLATION

COLLABORATION

ACTIONS

REASONING

BELIEFS

SENSORYLayer 1: gathers regular sensor
updates

Layer 2: updates beliefs
according to reasoning

Layer 3: reasons regarding the
selected action

Layer 4: takes in pending actions

Layer 7: brings in messages from
 distant agent societies

Layer 6: translates incoming
 messages

Layer 5: determines whether an
 incoming message should be
 processed

Top Down Bottom Up

Figure 2: The Layered Agent Architectural Pattern

In Figure 2, top down information flow is on the left, while bottom- up is on the right. Bottom- up, an
agent’s beliefs are based on sensory input. When presented with a problem, an agent reasons to
determine what to do. When the agent decides on an action, it can carry it out directly, but an action
that involves other agents requires collaboration. Once the approach to collaboration is determined,
the actual message is formulated at translation and delivered to distant societies by mobility.

Top- down, distant messages arrive at mobility. An incoming message is translated into the agent’s
semantics. The collaboration layer determines whether or not the agent should process a message. If

Kendall, Pathak, Murali Krishna, and Suresh, “The Layered Agent Pattern Language” 3

the message should be processed, it is passed on to actions. When an action is selected for processing,
it is passed to the reasoning layer, if necessary. Once a plan placed in the actions layer, it does not
require the services of any lower layers, but it can call on the services of higher ones.

Sample Usage:

A sample use of the Layered Agent can be seen in Figure 3. In this, the individual agents each have
senses, beliefs, reasoning, and actions. Because the societies are centralized, the agents share a
collaboration layer and a translation layer. Three agent societies share a common mobility layer.

Agent Society:
Air Traffic Control
Quadrant A

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A

Collaboration

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A

Translation

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA

 Mobility

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA

Action

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA

Reasoning

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA

Beliefs

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA

Sensory

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA

Action

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA

Reasoning

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA

Beliefs

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA

Sensory

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA

Action

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA

Reasoning

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA

Beliefs

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA

Sensory

Agent Society:
Air Traffic
Control
Quadrant B AAAA

AAAA
A
AAction

AAAA
AAAA
AAAA

A
A
AReasoningAAAA

AAAA
AAAA

A
A
ABeliefsAAAA

AAAA
AAAA

A
A
ASensory

AAAA
AAAA

AA
AAAction

AAAA
AAAA
AAAA

AA
AA
AAReasoningAAAA

AAAA
AAAA

AA
AA
AABeliefsAAAA

AAAA
AAAA

AA
AA
AASensory

AAAA
AAAA

AA
AAAction

AAAA
AAAA
AAAA

AA
AA
AAReasoningAAAA

AAAA
AAAA

AA
AA
AABeliefsAAAA

AAAA
AAAA

AA
AA
AASensory

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

A
A

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

A
A

Agent Society:
Air Traffic
Control
Quadrant C AAAA

AAAA
AA
AAAction

AAAA
AAAA
AAAA

AA
AA
AAReasoningAAAA

AAAA
AAAA

AA
AA
AABeliefsAAAA

AAAA
AAAA

AA
AA
AASensory

AAAA
AAAA

A
AAction

AAAA
AAAA
AAAA

A
A
AReasoningAAAA

AAAA
AAAA

A
A
ABeliefsAAAA

AAAA
AAAA

A
A
ASensory

AAAA
AAAA

AA
AAAction

AAAA
AAAA
AAAA

AA
AA
AAReasoningAAAA

AAAA
AAAA

AA
AA
AABeliefsAAAA

AAAA
AAAA

AA
AA
AASensory

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Figure 3: Layered Agents: Centralized Collaboration and Translation and Shared Mobility Layers

Known Uses:

There are many layered agent architectures; early ones did not require mobility or translation.
GRATE [26] features domain, cooperation, and control layers, equivalent to sensory, beliefs,
reasoning, action and collaboration. TouringMachines [10] consist of perception, action and control.
InterRRaP [20] has four layers: cooperation, plan-based, behaviour-based and world interface.

5. THE SENSORY, BELIEFS, AND REASONING LAYERS

5.1 CONTEXT AND OVERVIEW

The Sensory and Beliefs layers maintain the agent’s models of its environment and itself. Based on
these models, the agent determines what to do next in Reasoning.

5.2 THE REACTIVE AGENT

Problem

How can an agent react to an environmental stimulus or a request from another agent when there is
no symbolic representation and no known solution ?

Forces
• An agent needs to be able to respond to a stimulus or a request.
• There may not be a symbolic representation for an application.
• An application may not have a knowledge based, prescriptive solution.

Solution

A Reactive Agent does not have any internal symbolic models of their environment; it acts using a
stimulus/ response type of behavior. It gathers sensory input, but its Belief and Reasoning layers are
reduced to a set of situated action rules. A single Reactive Agent is not proactive, but a society of
these agents can exhibit such behavior. A Reactive Agent is known as a weak agent.

Kendall, Pathak, Murali Krishna, and Suresh, “The Layered Agent Pattern Language” 4

Known Uses

Reactive theory was originated by Brooks [6] and Agre and Chapman [2]; reactive agents have been
widely used [22]. They have been used to simulate the behavior of ant societies and to utilize such
societies for search and optimization [9].

5.3 THE DELIBERATIVE AGENT

Problem

How can an agent select a capability to proactively achieve a goal within a given problem context ?

Forces
• An agent should be capable of intelligent behavior, selecting a plan to achieve a goal.
• For some applications, a symbolic representation or model of the environment can be specified.
• Some problems have a knowledge based solution that can be identified by experts.

Solution

A Deliberative Agent possesses an internal symbolic reasoning model of their environment and
themselves within their Beliefs and Reasoning layers. They select a plan or capability that can
achieve their goal in the context of the present situation. A Deliberative Agent is a strong agent, and
a sample use involves a society of agents with knowledge of particular business processes.

Known Uses

Deliberative Agents were originated by Cohen [8] and Georgeff [12], and they have been widely used
by Jennings [15] and others [22].

5.4 THE OPPORTUNISTIC AGENT

Problem

How can an agent opportunistically address problems, identifying an approach that is not known
appriori ?

Forces
• A problem can have a symbolic representation but not have a knowledge based, prescriptive

solution.
• For these applications, only constraints may be known; these indicate what can not be done.
• An agent needs to be able to avoid known constraints but still move toward a solution.

Solution

An Opportunistic Agent does not attempt to have prescriptive plans to address a problem. Rather,
their Beliefs consist of constraints found in the problem, and their Reasoning or capabilities
accomplish constraint propagation and satisfaction. Problems with a symbolic representation but
with no known appriori, prescriptive solution can be solved this way.

Known Uses

Fox [4, 21, 23] has pioneered this approach and used it successfully in distributed scheduling and
resource allocation; these problems typically have no knowledge based approach.

5.5 THE INTERFACE AGENT

Problem

How can an agent adapt to the needs of a human user ?

Forces
• Some agents work directly with a human user, assisting them in using an application or in finding

information or services.
• The needs of human users are variable, but there are certain categories of users and established

patterns of user behavior.

Solution

An Interface Agent collaborates with a human computer user. Typically, only one agent is found,
although a full agent society may be used. This kind of agent observes the user and adapts to their
needs by identifying what kind of user they are and their patterns of computer useage. An Interface
Agent’s beliefs are typically parametric user models, and their sensors monitor the user’s actions.

Kendall, Pathak, Murali Krishna, and Suresh, “The Layered Agent Pattern Language” 5

Known Uses

Maes [19] has led the development of Interface Agents, also called Personal Assistants [22].

6. THE ACTION LAYER

6.1 CONTEXT AND OVERVIEW

The Action layer carries out the plan selected by the Reasoning layer. There is a need for the layer to
be able to schedule and prioritize actions. It makes use of the following patterns: Intention, Plan as
Command, Plan and Intention Factory, Prioritizer, Future Observer, and Adaptive- Active Object.

6.2 THE INTENTION

Problem

How can an agent commit to performing reactive and proactive behavior ?

Forces
• An agent needs to be able to carry out proactive and reactive behavior; it needs to be able to

commit to these activities, seeing them through to completion.
• Behavior executes with the beliefs that the agent had when it (the behavior) was initiated.
• An agent may have many activities or plans executing concurrently.
• An agent’s plan impacts the environment through the effectors; it calls on collaboration when it

needs to involve other agents.

Solution

An Intention represents the commitment of an agent to being in a state where it believes it is about to
actually perform a set of actions [8]. An instantiated plan is an Intention that executes in its own
thread of control; it executes until completion, unless it is suspended awaiting a reply. A plan’s goals
are stated in invocation conditions; additional criteria, such as environmental situations or stimuli, are
in context conditions. Conditions and plans reside in the Reasoning layer (Figure 4). If the
conditions are satisfied, the plan is instantiated and executed by an Intention in the Actions layer. All
variables and expressions in the plan are evaluated, based on the agent’s beliefs, at the time of
instantiation, when the agent commits to performing the plan. An Intention can be specialized to a
CollaborationIntention and a ReactionIntention (Figures 4 and 5). Once an Intention is created, it
does not require the services of any of the lower layers; collaboration can involve higher layers.

Known Uses

Intentions were first introduced by Georgeff and Lansky [12], as part of their Belief- Desires-
Intentions agent architecture. Intentions provide the proactive and reactive behavior of many strong
and weak agent systems, including [8] and [15].

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AACollaboration

Actions

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

Reasoning

Collaboration
Intention Reaction

Intention
EffectorsThread

Thread

Plan Plan Condition
Condition

All items
indicated
are
objects
or
patterns

Figure 4: Intentions in the Action Layer, Plans and Conditions in the Reasoning Layer

6.3 PLAN AS COMMAND

Problem

How can a plan be encapsulated as an object ?

Forces
• Each Intention has a plan to execute. They have a wide range and are known only at run time.
• A plan specifies primitive actions, executed directly by the effectors or the Collaboration layer

interface.
• There is a need to define a structure for plans that provides high level operations based on

primitive ones.

Kendall, Pathak, Murali Krishna, and Suresh, “The Layered Agent Pattern Language” 6

A

INT-Action
Plan

A

Intention
Thread

{active}

Reaction
Intention
Thread

Concrete
Plan

A

INT-Plan
Factory

Concrete
PlanFactory

ActionConfig
Info

Library

n

Creates

Reads

GetLibrary

Execute()

EffectorRep

Collaboration
Intention
Thread

Figure 5: The Intention, Plan as Command, and Plan and Intention Factory Patterns

Solution

The Plan as Command pattern [11] solves this problem, as shown in Figure 5 in three objects/
interfaces: INT- ActionPlan, ConcretePlan, and EffectorRep. Each ConcretePlan is a command object
which implements the ActionPlan interface that declares the high level operation Execute(). The
receiver of this command is a ConcretePlan object which is instantiated at runtime. Each
ConcretePlan uses primitive methods of EffectorRep and the Collaboration interface (not shown).

6.4 PLAN AND INTENTION FACTORY

Problem

How can different plans and intentions be instantiated at run time ?

Forces
• A plan is instantiated for every new Intention, and they must all utilize the same interface for

creation.
• The type of intention (Collaboration or Reaction) will depend on the action plan to be executed;

therefore, the type of intention thread to be instantiated can not be anticipated before run time.
• There is a need to delegate the responsibility of instantiating intention objects.
• New subclasses of intentions may become necessary.

Solution

The Abstract Factory and Factory Method patterns [11] are used together to form the Plan and
Intention Factory, as shown in Figure 5. The PlanFactory is abstract; it provides the interface to
create the ActionPlan objects. The ConcretePlanFactory provides the implementation to create the
ConcretePlans. For this it uses the Library which stores several ActionPlan classes and instantiates
the requested one. This plan object is then used by the IntentionThread. Per the Factory Method
pattern, ReactionIntention or CollaborationIntention subclasses will be instantiated depending on the
ActionPlan type. Both of these define the virtual methods of the IntentionThread class. These
methods are used by the IntentionThread class for creating the respective intention thread objects,
letting the subclasses determine how an object is to be instantiated.

6.5 THE PRIORITIZER

Problem

How can priority handling and other forms of behavior be added to an intention dynamically ?

Forces
• There are two main Intention subclasses: Reaction and Collaboration. Additional refinement is

needed, especially for priority handling.
• Further subclassification will result in duplication, as both Reaction and Collaboration Intentions

can feature the same priority handling.
• Priority handling should be attached to an object, and not a class, because the type of

IntentionThread is not known before run time.

Kendall, Pathak, Murali Krishna, and Suresh, “The Layered Agent Pattern Language” 7

Solution

Additional responsibilities can be attached to an Intention dynamically using Decorators [11]. The
Prioritizer pattern can be used to decorate the run() method of the IntentionThread, where action
plans are executed. The run() method is declared in Runnable interface and is called whenever a
thread is started. Additional priority handling can be added dynamically to it by using the decorator
object, the ThreadControl class that encapsulates the IntentionThread. Both the ThreadControl and
the IntentionThread classes conform to the Runnable interface, so the instance of ThreadControl class
can be used transparently in place of IntentionThread. The subclass of ThreadControl, the Controller
class, provides the concrete decorator.

6.6 FUTURE OBSERVER

Problem

How can two separate threads, an intention and a concurrent server, communicate asynchronously ?
How can the dependent intention be notified of the server’s response ?

Forces
• In Java, threads can not return results directly as Runnable.run() has a void return type.
• In an agent, two separate threads, one of an intention and another of a concurrent server, have to

be able to communicate asynchronously when a result is returned from the server thread.
• There can potentially be many intentions executing, and only some of these will be dealing with a

given concurrent server.

Solution

In the Future pattern [16], an instance of Future is used as a placeholder for a future value. In the
Observer pattern [11], a one to many dependency is defined so that dependents can be notified when
the observable changes. The Future Observer pattern combines these to solve the problem stated
above. The Client will execute an asynchronous operation, DoOperation(), which instantiates a
Future object and returns its reference. The Client will message the Future object’s read() which will
block thread execution if the Future is not in its updated state. Later on, the concurrently executing
CoexistingServer updates the state of the Future object. Each Future object is an observable for the
corresponding observer Clients who register themselves with the related Futures. When a Future is
updated by the CoexistingServer it notifies these observers. This notification will execute the update
method of the Client, and in this method the blocked (or suspended) Client thread is resumed.

6.7 ADAPTABLE ACTIVE OBJECT

Problem

How do you manage different threads of control for agent actions ? How can the agent’s actions
conform to different environments ?

Forces
• Agent intentions act concurrently in different threads of control.
• An object in the environment may need to be affected or impacted by the agent in a sequential

manner.
• Agents may act in various environments, with different effectors.
• The Active Object pattern uses MethodObjects, but it is not practical to represent each method as a

separate class and instantiate it at runtime because of the variability in effectors.

Solution

The Active Object pattern [18] decouples method exectuion from method invocation in order to
simplify synchronised access to a shared resource. In Figure 6, ClientInterface, Scheduler and
ActivationQueue form the Active Object pattern, along with Method Object (not shown). However,
new Method Object classes would be necessary for each method in each environment. The solution
to this problem is provided by the Adapter pattern [11] and the class ConcreteAdapter. The user has
to provide the ConcreteAdapter which marshalls the method call when a method is invoked and later
on demarshalls the method object when it is dispatched.

Kendall, Pathak, Murali Krishna, and Suresh, “The Layered Agent Pattern Language” 8

Scheduler

void Dispatcher();
Future Schedule(String methodid, Object args);

{active}
Activation

Queue

{synchronous}

Concrete
Representation

ConcreteAdapter

Object Effect(String MethodId,Object args);

ClientInterface

Object NewMethod(String MethodId, Object args);
void update(Observable o, Object args);

Concrete
Plan

A

INT-Observer

Figure 6: Use of Active Object and Adapter (Adaptive Active Object) in the Action Layer

6.8 THE MESSAGE FORWARDER

Problem

How can messages from other agents be passed through the Action layer to the agent’s reasoning
capability ?

Forces
• Messages arrive from other agents concurrently.
• The agent’s Reasoning layer is sequential.

Solution

The Message Forwarder, based on the Active Object [18] decouples sequential reasoning execution
from concurrent requests to simplify synchronized access to the agent’s shared resource.

7. THE COLLABORATION LAYER

7.1 CONTEXT AND OVERVIEW

In the Collaboration layer, the agent determines its approach to cooperating or working with other
agents. Patterns are utilized for messaging (Conversation), centralization (Facilitator),
decentralization (Agent Proxy), and social policies (Protocol, Emergent Society).

7.2 THE CONVERSATION

Problem

How can structured messaging between agents occur in sequences rather than in isolated acts ?

Forces
• Successive messages between agents are often related.
• Endless loops of messages between agents need to be avoided.

Solution

A Conversation [5] is a sequence of messages between two agents, taking place over a period of time.
There are termination conditions for any given occurrence, and Conversations may give rise to other
Conversations. In some agent societies, messages between agents may occur only within the context
of conversations; isolated messages are not supported.

Known Uses

COOL [4] and AgenTalk [22] support Conversations between agents, as does KAoS [5].

7.3 CENTRALIZED COLLABORATION : THE FACILITATOR

Problem

How is an agent able to freely collaborate with other agents without direct knowledge of their
existence?

Forces
• Each agent may not have knowledge of every other agent

Kendall, Pathak, Murali Krishna, and Suresh, “The Layered Agent Pattern Language” 9

• Proliferating interconnections and dependencies increase complexity, complicate maintenance,
and reduce reusability

Solution

Each Mediator [11] is associated with a multitude of Colleagues, objects that rely on it for all
communication. The Facilitator is based on the Mediator, and it provides a gateway or clearinghouse
for agent collaboration [5]. With a Facilitator, agents do not have to have direct knowledge of one
another for collaboration, and agents within the same society share a single Collaboration layer.

Known Uses

ARCHON [15], PACT [25], and other agent applications have utilized Facilitators, refering to this
approach as a federated agent architecture [22].

7.4 DECENTRALIZED COLLABORATION : THE AGENT PROXY

Problem:

How can agents collaborate directly with one another?

Forces:
• An agent may not have a Facilitator to represent it. Then, each agent must communicate directly

with other agents, support different interfaces, and maintain collaboration knowledge.
• Agents collaborate with each other via structured messages; there are many agent dialects.
• Bottlenecks encountered in a centralized architecture need to be avoided.
• An agent must be able to recover Conversations that it is involved in.

Solution:

A Proxy [11] controls access to the Real Subject; it can also provide a distinct interface. Each Agent
Proxy class (Figure 7) would subscribe to a certain interface. An agent must be able to determine its
behavior based upon the state of the conversation it is involved in. One agent may be engaged in
several conversations simultaneously, requiring context switching. The Memento pattern [11]
externalizes an object’s state so that the state can be restored later. Agent Proxies that support
conversations must store and recover their state, delegating this to a Memento.

Agent
Subject

KQML Agent
Proxy

KQML interface()

Agent Proxy with
State

state
conversations

Memento

state

COOL Agent
Proxy

Agent Proxy

subject

Figure 7: The Agent Proxy Pattern for Decentralized Collaboration

7.5 PROTOCOL

Problem

How can agent collaborative behavior be prescribed to follow certain policies ?

Forces
• Agents need to be able to follow certain conventions or policies for collaboration.

Solution

Conversation policies [5] or Protocols prescriptively encode regularities that characterize
communication sequences between users of a language. Agent Protocols explicitly define what
sequences of which messages are permissible between a given set of participating agents.

Known Uses

COOL [4] prescribes a particular form of agent negotiation. KAoS [5] and AgenTalk [22] stipulate
several protocols or conversation policies, including contract net, inform, offer, and request [5]. In
the contract net protocol, one agent asks for bids for tasks it needs performed, and other agents

Kendall, Pathak, Murali Krishna, and Suresh, “The Layered Agent Pattern Language” 10

respond, if they are available to do the work. If a bid meets the originating agent’s criteria, it can
award the work to the successful bidder.

7.6 THE EMERGENT SOCIETY

Problem

How can agents collaborate without known protocols ? How can Reactive Agents collaborate ?

Forces
• There may not be known agent protocols for a given application.
• Reactive Agents need to be able to collaborate and carry out proactive behavior together.
• Reactive Agents simply react to stimuli and are not capable of any knowledge based behavior.

Solution

Each individual agent, even a Reactive Agent, can, through their own actions, provide a stimulus to a
neighboring agent. As each individual agent reacts to stimuli provided by their neighbors, the net
result is the Emergent Society. Complex patterns of behavior can emerge from these interactions
when the agent society is viewed globally [22]. No model exists for this behavior, although economic
and game theory have been applied successfully. Reactive Agents and agents from Emergent
Societies have reduced Collaboration layers; they merely provide stimuli to neighboring agents.

Known Uses

All Reactive Agent systems [9] rely on the Emergent Society for collaboration [22].

8. THE MOBILITY LAYER

8.1 CONTEXT AND OVERVIEW

The Mobility layer must support real and virtual migration. It consists of a region shared across
several agents and agent societies, and a region that belongs to an individual agent. It is made up of
the following patterns: Clone, Broker [7], Client Proxy, and Remote Configurator.

8.2 THE CLONE

Problem

How can an agent relocate itself and become resident in distant societies ?

Forces
• An agent must be able to bring its capabilities, facilities, and state with it to a new society.
• The agent must be able to travel to a remote location and interact, negotiate, and exchange

information in the new society.

Solution

Make a copy or clone of the original agent, and place the new agent in the distant society. The clone
must have all of the capabilities and facilities of the original agent, along with any state information.

Known Uses

The original use of agent self replication was cooperating mobile WAVE agents [3]. More recent
approaches that utilize cloning include IBM Aglets [13], and the Agent Transfer Protocol (ATP) [14].
An aglet is a Java object that can move from one host on the Internet to another. When the aglet
moves, it takes along its program code as well as its state (data). Bradshaw [5] refers to agent
cloning as teleportation.

8.3 THE REMOTE CONFIGURATOR

Problem

How can an agent be appropriately configured for various destination societies ?

Forces
• For actual migration, an agent has to be cloned in the destination society. Configuration details

are needed for cloning, such as the plan library and the beliefs.
• The configuration details and their format depend on the given society’s requirements. Thus each

agent has to support various kinds of configuration access operations.
• There is a need to represent the configuration accessing functions separately from the agent

structure; otherwise each agent has to support many distinct and unrelated operations in object
structure.

Kendall, Pathak, Murali Krishna, and Suresh, “The Layered Agent Pattern Language” 11

• Each agent has a similar object structure as all of them are created by the same framework

Solution

Figure 8 shows how the Visitor pattern [11] has been utilized to design the Remote Configurator. The
ActualMigration handler transfers the Visitor from a distant society to the migrating agent. The
ClientProxy in the Mobility layer instantiates the Visitor object. This Visitor object is passed to the
corresponding layers, such as Reasoner, by calling Accept(). As shown, the Reasoner object in turn
calls back the Visitor object’s Visit method and passes its reference to the Visitor object. As the object
structure of the layer of an agent is fixed, the Visitor can gather the configuration information by
using the public interface methods, such as GetPlan(), of the Reasoner. Thus there is no need to define
separate methods for transferring the configuration details to another society. Moreover, services can
be added by adding new Visitor subclasses, and no change is needed in the agent structure.

A

Layers

virtual Accept(Visitor)

A

Visitor

virtual VisitReasoner(Reasoner)
virtual VisitBelief(Beliefs)

ClientProxy

Reasoner

Accept(Visitor)
GetPlan()

Beliefs

Accept(Visitor)
GetBeliefs()

SocietyAVisitor

VisitReasoner(Reasoner)
VistBeliefs(Beliefs)

SocietyBVisitor

VisitReaoner(Resoner)
VisitBeliefs(Beliefs)

Broker

Accept(Visitor v)
{
 v.VisitReasoner(this);
}

Accept(Visitor v)
{
 v.VisitBeliefs(this);
}

VistReasoner(Reasoner r)
{ r.GetPlan();
}
VisitBeliefs(Beliefs b)
{ b.GetBeliefs();
}

Figure 8: The Remote Configurator in the Mobility Layer

8.4 THE BROKER

Problem:

How is an agent able to gain access to resources and other agents outside its society without actually
migrating ?

Forces:
• Agents must be able to access each other and other resources across platforms and societies

without having to actually migrate.
• Making every agent responsible for access, security and interactions for a society leads to N- to- N

connections and redundancy.

Solution:

The Broker pattern [7] provides for location transparency for objects that wish to be clients and
servers of one another. With this, the agent (or its Agent Proxy) can become a virtual member of
open societies managed by the Brokers. Bridges between societies are also supported. Agents who
wish to be clients and servers for one another must employ a Broker who is responsible for locating a
server once a client has requested its services. Both the client and the server must register with the
Broker. The Broker pattern provides virtual agent migration. Bradshaw refers to a Broker as a
Matchmaker [5].

8.5 MIGRATION THREAD FACTORY

Problem

How can an agent migrate virtually or in reality, dynamically ?

Forces
• An agent can request a service from another society (virtual migration) or it can migrate

physically.
• The type of the request is only known at runtime, and the behaviour required for each type is very

different.

Kendall, Pathak, Murali Krishna, and Suresh, “The Layered Agent Pattern Language” 12

• Requests occur concurrently, and services should be concurrent.
• There is a need to dynamically create the handler object according to the incoming request.
• New types of migration services may need to be added.

Solution

Figure 9 shows the design of the Migration Thread Factory [11], where the Broker has a
ThreadManager and a HandlerCreator. The abstract class Handler declares the factory method
MakeHandler in its interface and uses this factory method in the Create(Message). The concrete
definition of this factory method is given by the subclasses VirtualMigration and ActualMigration.
The HandlerCreator selects the appropriate subclass according to the client request for migration and
instantiates it. It then calls Create() on this object which then composes itself and creates the object
by using MakeHandler().

Broker

VirtualMigration

void MakeHandler()

ActualMigration

void MakeHandler()

Handler
Creator

Thread
Manager

Message

A

Handler

Handler Create(Message)
virtual void MakeHandler()

Creates

Figure 9: The Migration Thread Factory

9. PATTERNS FOR AGENT CONFIGURATION AND INTEGRATION

9.1 CONTEXT AND OVERVIEW

The process of creating and configuring an agent consists of creating the various layers and then
integrating them. The design for creating the object structure of individual layers and integrating
them uses: Agent Builder and Layer Linker.

9.2 THE AGENT BUILDER

Problem

How can the construction of the complex object structure of the agent be separated from its
representation so that the same construction process can create different representations?

Forces
• Each agent has fundamentally the same structure.
• The creation process of the agent should be isolated so that the same process can be used to

generate different object structures.

Agent
Creator

A

Configurator

BLayer
Configurator

BLayer
ConfigInfo

Client

BLayerObj
Structure

Creates

Stores

Figure 10: The Agent Builder for Creating the Object Structure of Each Agent Layer

Solution

The AgentCreator collects the user configuration details and passes it to the Creator object.
According to the Builder pattern [11], Creator is a director object (Figure 10). It stores the process
used to create an agent. The AgentCreator instantiates the Creator with seven Configurator objects,
and the Configurator objects are the builder objects which actually create the object structure of each

Kendall, Pathak, Murali Krishna, and Suresh, “The Layered Agent Pattern Language” 13

individual layer based on the information in the Configuration. The Configurator declares a virtual
method Configure. The concrete definition of this method is provided by the layer specific subclasses.

9.3 LAYER L INKER

Problem :

How can the various individual layers of the agent be integrated together ?

Forces

• It is necessary to provide an interface to each layer but also to decouple the layers as much as
possible.

Solution

Each Configurator creates the Facade object and other objects which form the structure configured by
an agent application developer. Use of the Facade pattern [11] (Figure 11) provides both a simple
interface and decoupling between the layers. The Facade object implements the unified interface for
the layer, promoting layer independence and portability. For example, layers A and C are
neighbouring layers to layer B. Then, as shown in the figure, INT-CB Interface declares the interface
from layer C to layer B, and, correspondingly, INT-AB Interface declares the interface from layer A to
layer B. The Configurator registers them in the configuration repository object BlayerConfigInfo.
These repositories are used to get the Facade object reference during the integration phase executed by
the Creator object’s integrate().

A

INT-AB
Interface

A

INT-CB
Interface

BFacade
A

Facade

BLayer
ConfigInfo

BLayer
configurator

BLayerObject
Structure

Figure 11: Design for the Layer Linker

10. SOLUTION SUMMARY

Problem Solution Pattern(s)

How can agent behavior be best
organized and structured into
software?

Layered architectures have many benefits. Aspects
of an agent are abstracted into a 7 layer model. Each
layer provides a service to adjacent layers.

Layered Agent

How can an agent simply react to a
stimulus or a request ?

Utilize a stimulus/response type of behavior, without
any symbolic representation.

Reactive
Agent

How can an agent select a plan to
achieve a goal within a given
context ?

The agent reasons about a symbolic model of the
environment and themselves to determine what
capability is pertinent to the present context.

Deliberative
Agent

How can an agent address problems
when no solution is known
beforehand ?

Represent the problem’s constraints, and let the
agent accomplish constraint propagation and
satisfaction to opportunistically solve the problem.

Opportunistic
Agent

How can an agent adapt to the needs
of a human user ?

Provide the agent with parametric user models and
sensors to monitor the user’s actions.

Interface
Agent

How can an agent commit to
behavior ?

An instantiated plan is an Intention that executes in
its own thread of control.

Intention

How can a plan or request be
encapsulated as an object ?

Implement a plan interface for a high level operation
with different subclasses.

Plan as
Command

How can different plans, intentions Provide an interface for creating families of related Plan and

Kendall, Pathak, Murali Krishna, and Suresh, “The Layered Agent Pattern Language” 14

and requests be instantiated at
runtime ?

objects without specifying their concrete classes. Or,
let subclasses determine which class to instantiate.

Intention
Factory

How do you manage different
threads of control for agent actions
and migrations?

Decouple method execution from method invocation
to simplify synchronized access to a shared resource
by methods invoked in different threads of control.

Adaptable
Active Object

How can messages from other agents
be passed to the agent’s reasoning
capability ?

Decouple reasoning execution from invocation to
simplify synchronized access to the agent’s shared
reasoning resource.

Message
Forwarder

How can priority handling and other
forms of behavior be added to an
intention dynamically ?

Decorate or add behavior to the run () method of the
intention thread, where a plan executes.

Priority
Decorator

How can two separate threads, an
intention and a concurrent server,
communicate asynchronously ?

Provide a placeholder for a result. Provide an
observable relationship between the server and the
placeholder.

Future
Observer

How can messaging between agents
occur in sequences ?

Agent messaging can occur within a context
established by previous messages.

Conversation

How can agents collaborate without
direct knowledge of each other ?

Encapsulate agent interaction in a Facilitator that
coordinates agents within a given society.

Facilitator

 How can agents collaborate directly
with one another ?

Provide a Proxy to control access to the agent and to
provide distinct interfaces. Store and retrieve
conversations.

Agent Proxy

How can agent collaboration be
prescribed ?

Establish conversation policies that explicitly
characterize communication sequences.

Protocol

How can agents cooperate to achieve
goals when there is no established
protocol ?

Though stimulus/response behavior, each agent can
stimulate its neighbors. Complex patterns of
behavior emerge when viewed globally..

Emergent
Society

How can an agent become resident
in a distant society ?

Replicate the agent, providing sensors and effectors
for the new environment.

Clone

How can an agent be cloned in a
distant society ?

Define operations for cloning in the destination
society without changing the agent class. Separate
the construction of the agent from its representation.

Remote
Configurator

How is an agent able to gain access
to resources and other agents outside
its society transparently ?

Location transparency is provided by a Broker.
Proxies must be employed for the client and server to
be able to respond to the interface of the Broker.

Broker

 How can an agent migrate virtually
or in reality, dynamically ?

 Provide a Thread Manager and a Handler Creator,
and allow the subclasses for virtual and actual
migration to address thread instantiation.

Migration
Thread
Factory

How can the construction of the
agent be separated from its
representation ?

Delegate layer construction to a Builder and a
Director.

Agent Builder

How can a simple interface between
the layers be provided ?

Implement a unified interface for each layer.
Provide Facades for each layer interface.

Layer Linker

11. REFERENCES

1. Agha, G., A Model of Concurrent Computation in Distributed Systems. 1986: MIT Press.

2. Agre, P. E., and D. Chapman, “Pengi: An Implementation of a Theory of Activity,” Proceedings
of the 6th National Conference of Artificial Intelligence, 1987.

3. Al- Jabir, S., Sapaty, P. S., and Underhill, M., “Integration of Heterogeneous Databases Using
WAVE Cooperative Agents,” Proceedings of the First International Conference on the Practical
Application of Multi Agent Systems, London, 1996.

4. Barbuceanu, M. and M.S. Fox, "COOL: A Language for Describing Coordination in Multi-Agent
Systems", First International Conference on Multi-Agent Systems, 1995.

Kendall, Pathak, Murali Krishna, and Suresh, “The Layered Agent Pattern Language” 15

5. Bradshaw, J. M., S. Dutfield, P. Benoit, J. D. Woolley, “KAoS: Toward an Industrial- Strength
Open Distributed Agent Architecture,” J.M. Bradshaw (Ed.), Software Agents, AAAI/ MIT Press,
1997.

6. Brooks, R.A., "A Robust Layered Control System for Mobile Robot", IEEE Journal of Robotics
and Automation, 1986. RA-2(1).

7. Buschmann, F., R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal, Pattern-Oriented Software
Architecture: A System of Patterns. Wiley and Sons. 1996:

8. Cohen, P. R., and Levesque, H. J., “Intention is Choice with Commitment,” Artificial Intelligence,
42 (3), 1990.

9. Ferber, J., “Simulating with Reactive Agents,” in Many Agent Simulation and Artificial Life,” E.
Hillebrand and J. Stender, Editors, Amsterdam, IOS Press, pp. 8 - 28, 1994.

10. Ferguson, I.A., "Towards an Architecture for Adaptive, Rational, Mobile Agents", Proceedings of
the Third European Workshop on Modelling Autonomous Agents and Multi-Agent Worlds
(MAAMAW-91) , 1991.

11. Gamma, E.R., R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of Reusable
Object-Oriented Software. 1994: Addison-Wesley.

12. Georgeff, M.P. and A.L. Lansky, "Reactive Reasoning and Planning", Proceedings of the Sixth
National Conference on Artificial Intelligence, Seattle, WA, 1993.

13. IBM: Aglets: Programming Mobile Agents in Java, http://www.trl.ibm.co.jp/aglets, 1997.

14. IBM: Agent Transfer Protocol, http://www.trl.ibm.co.jp/aglets/atp/atp.html, 1997.

15. Jennings, N.R., P. Faratin, M. Johnson, P. O'Brien, and M. Wiegand, "Using Intelligent Agents to
Manage Business Processes", First International Conference on the Practical Application of
Intelligent Agents and Multiagent Technology, London, 1996.

16. Kafura, D.G., “A Polymorphic Future and First Class Function type for Concurrent Object
Oriented Programming”, Journal of Object Oriented Systems.

17. Kendall, E.A., M.T. Malkoun, and C.H. Jiang, "A Methodology for Developing Agent Based
Systems for Enterprise Integration", EI '95, IFIP TC5 SIG Working Conference on Models and
Methodologies for Enterprise Integration, Heron Island, Australia, 1995.

18. Lavender, R.G. and D.C. Schmidt, "Active Object: an Object Behavioral Pattern for Concurrent
Programming", Pattern Languages of Programming, Illinois, 1995.

19. Maes, P., “Agents that Reduce Work and Information Overload,” Communications of the ACM,
Vol. 37, No. 7, pp. 31 - 40, 1994.

20. Muller, J.P., M. Pischel, and M. Thiel, "Modelling interacting agents in dynamic environments",
Proceedings of the Eleventh European Conference on Artificial Intelligence (ECAI-94),
Amsterdam, 1994.

21. Nwana, H. S., L. Lee, and N. R. Jennings, “Coordination in Multi- Agent Systems,” in Software
Agents and Soft Computing, Towards Enhancing Machine Intelligence, H. S. Nwana and N.
Azarmi, Editors, Springer, 1997.

22. Nwana, H. S. and D. T. Ndumu, “An Introduction to Agent Technology,” in Software Agents and
Soft Computing, Towards Enhancing Machine Intelligence, H. S. Nwana and N. Azarmi, Editors,
Springer, 1997.

23. Sathi, A., and M. Fox, “Constraint- Directed Negotiation of Resource Allocations,” in Distributed
Artificial Intelligence 2, L. Gasser and M. Huhns, Editors, Morgan Kaufmann, 1989.

24. Schmidt, D.C., "The ACE Object-Oriented Encapsulation of Light Weight Concurrency
Mechanisms", 1995.

25. Tenenbaum, J.M., J.C. Weber, and T.R. Gruber, “Enterprise Integration: Lessons from SHADE
and PACT, in Enterprise Integration Modeling,” Proceedings of the First International
Conference, C.J. Petrie, Editor. 1992, MIT Press.

26. Wooldridge, M.J. and N.R. Jennings, "Agent Theories, Architectures and Languages", ECAI-94
Workshop on Agent Theories, Architectures, and Languages, Amsterdam, ed. J.G. Carbonell and
J. Siekmann, Springer - Verlag, 1994.

