
Submitted to PLoP’97

Copyright © 1997 Liping Zhao & Ted Foster. All Rights Reserved. ADDC-10
Permission is granted to copy for the PLoP’97 conference. 15/08/97

Driver Duty Constructor

Liping Zhao
liping@cs.rmit.edu.au

Department of Computer Science, RMIT, Australia

Ted Foster
ted@class-sc.demon.co.uk

Class Software Construction Ltd., U.K.

ABSTRACT

In this paper, we present a Driver Duty Constructor pattern, which is part of our pattern language
of transport systems, PLOTS. This pattern consists in the main of three other transport object
patterns (TOPS): Driver Duty Builder and Driver Duty Director which work together to build all
the basic parts of a Driver Duty and then assemble them into a whole product; the Driver Duty
pattern supports a tree structure for explicitly ordering and layering the components that define a
driver duty. Each component in a driver duty has one corresponding builder. These Driver Duty
Builder objects are represented in perfect symmetry with the Driver Duty objects that they are
responsible for building. Both of them use a Cascade of Composite patterns for this purpose. The
Driver Duty Director pattern is structured as a Strategy pattern and directs the building process.
The interaction of all these contributory patterns defines the overall Driver Duty Constructor
pattern, which in turn forms a part of a larger Driver Duty Scheduler system. The emphasis in this
paper is on pattern interactions rather than individual patterns in isolation.

INTRODUCTION

“Hsiang Sheng : Nothing functions in isolation; everything functions in relationship with everything
else” [Grigg97, preface xxx].

The Driver Duty Constructor pattern consists in the main of three other transport object patterns
(TOPS): Driver Duty Builder and Driver Duty Director which work together to build all the
basic parts of a Driver Duty and then assemble them into a whole product. The Driver Duty
pattern [Zhao+98] supports a tree structure for explicitly ordering and layering the components that
define a driver duty. Each component in a driver duty has one corresponding builder. These Driver
Duty Builder objects are represented in perfect symmetry with the Driver Duty objects that they are
responsible for building. Both use a Cascade of Composite patterns for this purpose. The Driver
Duty Director pattern is structured as a Strategy pattern and directs the building process. The
interaction of all these contributory patterns defines the overall Driver Duty Constructor pattern,
which in turn forms a part of a larger Driver Duty Scheduler system (Figure 1)..

We present our Driver Duty Constructor as a whole using a hybrid pattern form based mainly on
the Gang-of-Four and Coplien forms. In other words, within each section we discuss several more
basic TOPS together. Sometimes a problem can only be solved by the interaction of two or more
closely related patterns. This pattern interaction contributes purpose and behaviour over and above
the sum of the individual patterns of which it is composed. We feel that a complex pattern can not
necessarily be fully described by discussing each of its more basic patterns in isolation. We want to

Submitted to PLoP’97 Page 2

Copyright © 1997 Liping Zhao & Ted Foster. All Rights Reserved. ADDC-10
Permission is granted to copy for the PLoP’97 conference. 15/08/97

balance the indubitable benefits of reducing a large complex system into smaller simpler systems
against the dangers of losing sight of the whole.

Figure 1. Transport Object Patterns for Driver Duty Scheduling.

DRIVER DUTY CONSTRUCTOR

Intent
The Driver Duty Constructor pattern is for building the basic parts of a driver duty and then
assembling them into a whole product to support a variety of scheduling algorithms. It provides
clients with a consistent interface to all driver duty components and their compositions. The
pattern separates the representation of a driver duty from its construction so that the same
construction process can create different duty representations.

Also Known As
Driver Duty also known as Crew Duty or Duty (UK and Europe); Driver Shift, Run or Turn
(USA); Workday (Canada); Duty Scheduling (UK and Europe); Run Cutting (USA).

Problem
How do we construct a driver duty?

Let us consider a simple driver scheduling problem in Figure 2. Three driver duties covering
work across three vehicle blocks have been formed. A vehicle block contains the work of a
vehicle from the time it leaves a parking point until its next return to a parking point. Blocks are
partitioned into units of work, which are bounded by driver relief opportunities where drivers
can be changed. Driver duty 1 covers the work from 4.50am to 8.45am on vehicle block 3,
9.25am to 12 noon on block 2, and 12.22pm to 13.45pm on block 1; this duty contains a meal
break from 8.45am to 9.25am and a join up (a short interval for a driver to transfer between
blocks) from 12 noon to 12.22pm. Driver duty 2 covers the work from 4.35am to 9.25am on
block 2, and 9.55am to 12.22pm on block 1, with a meal break from 9.25am to 9.55am.

Driver
Duty

DriverDuty
Scheduler

Driver
Duty

Director

Driver
Duty

Builder

DriverDuty
Constructor

Other Classes

Submitted to PLoP’97 Page 3

Copyright © 1997 Liping Zhao & Ted Foster. All Rights Reserved. ADDC-10
Permission is granted to copy for the PLoP’97 conference. 15/08/97

Driver duty 3 covers the work from 5am to 9.55am and then 13.45pm to 1552pm on block 1,
with a long break (a period of free time for a driver) from 9.55am to 13.45pm.

vehicle block2

vehicle block3

vehicle block1

0450

0435

0845

0700 0812 0925 1200

0500 0625 0852 0955 1222 1345

meal break join up

driver duty 2

driver duty 2

driver duty 1

driver duty 1

driver duty 1

meal break

driver duty 3driver duty 3

long break in driver duty 3

1552

Figure 2. Three driver duties covering work across three vehicle blocks.

Driver duties are made up of driver duty components at a number of abstraction levels. At the
bottom level, there are driver spells and driver join ups. A driver spell covers one or more
consecutive units of the work on the same vehicle block. For example, in Figure 2, duty 1 has
two spells in its second stretch, one from 9.25am to 12 noon on block 2, and the other from
12.22pm to 13.45pm on block 1, with a join up between 12 noon to 12.22pm.

An ordered sequence of these bottom level components makes up a driver stretch at the next
level up. A driver stretch is a continuous period of work on one or more vehicle blocks without
a driver break (e.g., a meal break). For example, duty 1 in Figure 2 has two driver stretches, one
from 4.50am to 8.45am on block 3 and the other from 9.25am on block 2 to 13.45pm on block
1. The second stretch of duty 1 contains two driver spells, and one join up. Other typical
components at this level are driver break (e.g., meal break), driver sign-on, driver travel time
and driver sign-off.

An ordered sequence of driver stretches and these other components make up driver parts at the
next level up. A driver part is a continuous period during which when a driver is in company
time. A duty part includes driver breaks, but not driver long breaks. Duty 3 in Figure 2 has two
driver parts, one from 5am to 9.55am and the other from 13.45pm to 15.52pm.

An ordered sequence of driver parts (usually two) and driver long breaks (usually only one)
make up a complete driver duty. Straight duties have only one driver part; split duties have at
least two parts. For example, driver duties 1 and 2 are straight duties with only one driver part
made up of two driver stretches and a meal break; whereas duty 3 is a split duty with two driver
parts. Figure 3 illustrates the relationship between driver duty 1 and its components.

Submitted to PLoP’97 Page 4

Copyright © 1997 Liping Zhao & Ted Foster. All Rights Reserved. ADDC-10
Permission is granted to copy for the PLoP’97 conference. 15/08/97

vehicle block 3

vehicle block 1

vehicle block 2

0450 0845

0925 1200

1222 1345

join up

meal break

driver stretch 1

driver spell 1

driver stretch 2

driver spell 2

driver spell 3

driver duty 1

driver part 1

driver sign on

driver sign off

Figure 3. Driver duty 1 and its components.

Because of many differences in labour rules between transport companies, driver duties have
many variations. In some companies, a driver duty may have two meal breaks, whereas in
others, a morning and afternoon tea break is required. How can we cope with many variations
in duties and construct them uniformly?

Solution
– Structure

• Represent driver duty components as a cascade of composites (Figure 4). A driver duty is
composed of driver duty components (driver part components and driver long breaks), driver
part components (driver stretch components, driver sign on times, driver travel times, driver
breaks and driver sign off times), and driver stretch components (driver spells and driver join
up times). At each level, an abstract component class provides an interface to a leaf or
composite class. The composite classes are ordered aggregates of their parent component
class. The three composites are Driver Duty, Driver Part and Driver Stretch. In the special
case where a composite class is instantiated with no children, the composite class is in effect
behaving as a leaf class.

DriverDuty
Component

DriverStretch

DriverDuty
DriverPart

Component

DriverStretch
Component

DriverPart

{o
rd

er
ed

}

{o
rd

er
ed

}

{o
rd

er
ed

}

Driver
LongBreak

Driver
TravelTime

Driver
Break

Driver
SignOn

Driver
SignOff

Driver
JoinUpDriverSpell

 Figure 4. Driver Duty represented as a Cascade of Composites.

• Structure Driver Duty Builder symmetrically with Driver Duty (Figure 5); make each

Submitted to PLoP’97 Page 5

Copyright © 1997 Liping Zhao & Ted Foster. All Rights Reserved. ADDC-10
Permission is granted to copy for the PLoP’97 conference. 15/08/97

builder responsible for building its corresponding duty component in a particular layer within
the duty cascade. (In Figure 5, we only show the major components for both Driver Duty
and Driver Duty Builder for simplicity).

 Figure 5. Driver Duty Builder has the same structure as its Products

• Structure Driver Duty Director as a Strategy pattern (Figure 6); each director is responsible

for assembling duty components for a particular layer.

Figure 6. Driver Duty Director plays a more Strategic role than Builder does.

DriverDuty
Component

DriverStretch
Component

DriverPart
Component

DriverDuty

DriverSpell

DriverPart

DriverStretch

{o
rd

er
ed

}

{o
rd

er
ed

}

{o
rd

er
ed

}

DriverDuty
Component

Builder

DriverStretch
Component

Builder

DriverPart
Component

Builder

DriverDuty
Builder

DriverSpell
Builder

DriverPart
Builder

DriverStretch
Builder

{o
rd

er
ed

}

{o
rd

er
ed

}

{o
rd

er
ed

}

Driver Duty Builder Driver Duty

Driver
Duty

Director

DriverDuty
Component

Builder

DriverStretch
Component

Builder

DriverPart
Component

Builder

DriverDuty
Builder

DriverSpell
Builder

DriverPart
Builder

DriverStretch
Builder

{o
rd

er
ed

}

{o
rd

er
ed

}

{o
rd

er
ed

}

DriverDuty
Component

Director

DriverPart
Component

Director

DriverStretch
Component

Director

DriverDuty
Director

Driver Duty Director

Driver
Duty

Builder

Driver
Duty

DriverDuty
Constructor

Submitted to PLoP’97 Page 6

Copyright © 1997 Liping Zhao & Ted Foster. All Rights Reserved. ADDC-10
Permission is granted to copy for the PLoP’97 conference. 15/08/97

– Example
To illustrate the Driver Duty pattern, let us look at driver duty 1 in Figure 3 and its three main
components, i.e., Driver Part, Driver Stretch, and Driver Spell.
1) A driver duty, which is an ordered sequence of one or more driver parts (e.g., driver duty 1

has only one duty part) or driver part components.
2) A driver part, which is an ordered sequence of one or more driver stretches (e.g., driver duty

part 1 contains driver stretches 1 and 2) or driver stretch components.
3) A driver stretch, which is an ordered sequence of one or more driver spells (e.g., driver

stretch 2 contains driver spells 2 and 3).
Figure 7 shows the object structure of driver duty 1.

driverPart1

driverSpell1

driverStretch1 driverStretch2

driverSpell2

driverDuty1

driverSpell3

Figure 7. The object structure of a driver duty

The other minor components would appear in their appropriate position in the sequence (e.g., a
meal break between the two stretches). Some designers treat these minor components as
attributes of the main components, but this makes the main components less reusable by
complicating their interfaces. Figure 8 shows three further examples of duties, including more of
the minor components (not travel times between different locations), which are all easily catered
for by this generic representation.

Submitted to PLoP’97 Page 7

Copyright © 1997 Liping Zhao & Ted Foster. All Rights Reserved. ADDC-10
Permission is granted to copy for the PLoP’97 conference. 15/08/97

Figure 8. Example of duties and their components

– Participants and Collaborations

Consider one layer at a time from the bottom up.

In the bottom layer, spells (and other leaf objects not shown here) are assembled into a driver
stretch for use in the middle layer.

• Driver Stretch Component
− Declares a uniform interface for Driver Stretch and Driver Spell objects.
− Implements default behaviour for the interface common to these Driver Stretch

Component objects as appropriate.
− Declares an interface for managing the ordered sequence of these Driver Stretch

Component objects.

• Driver Spell

− Defines behaviour for this leaf object.

• Driver Stretch (a composite or leaf if not further subdivided)
− Defines behaviour for Driver Stretches with zero or more Driver Stretch Component

objects.
− Stores an ordered sequence of Driver Stretch Component objects.
− Implements operations for managing this ordered sequence of Driver Stretch

Component objects.

• Driver Spell Builder
− Builds a driver spell under the direction of Driver Stretch Component Director.
− Holds general rules that define a valid driver spell.

Sign-on Spell-1 Spell-2JoinUp-1/2 Spell-3 Sign-offJoinUp-3/4MealBreak Spell-4

Stretch-1 Stretch-2

Sign-on-1 Spell-2 Sign-off-2JoinUp-2/3SplitDutyLongBreak Spell-3

Stretch-1 Stretch-2

Sign-off-1Spell-1 Sign-on-2

Sign-on-1 Spell-2 Sign-off-2MealBreakSplitDutyLongBreak Spell-3

Stretch-1 Stretch-2

Sign-off-1Spell-1 Sign-on-2

Stretch-3

STRAIGHT DUTY

SPLIT DUTY

SPLIT DUTY with MEAL BREAK between STRETCHES 2 & 3

DutyPart-1 (i.e., DutyComposite)

DutyPart-1 (i.e., DutyComposite)

DutyPart-1 (i.e., DutyComposite) DutyPart-2 (i.e., DutyComposite)

DutyPart-2 (i.e., DutyComposite)

Submitted to PLoP’97 Page 8

Copyright © 1997 Liping Zhao & Ted Foster. All Rights Reserved. ADDC-10
Permission is granted to copy for the PLoP’97 conference. 15/08/97

• Driver Stretch Builder

− Builds a driver stretch under the direction of Driver Stretch Component Director.
− Makes a sequence of calls to Driver Spell Builder to build the driver spell(s) that make

up a driver stretch.
− Keeps the order in which in which the above calls to Driver Spell Builder are to be

made.
− Holds general rules that define a valid driver stretch.

• Driver Stretch Component Builder
− Defines an abstract interface for Driver Stretch Component Director to build a driver

stretch and its driver spell(s).
− Allows Driver Stretch Component Director to access and manage the sequencing of

calls to be made to Driver Spell Builder by Driver Stretch Builder. Declared in the root
of the driver stretch component hierarchy for transparency, not safety.

• Driver Stretch Component Director

− Assembles a driver stretch for its client (Driver Part Component Director or Driver
Duty Director) using the Driver Stretch Component Builder interface.

− Hides from its client how driver stretch components are created and assembled into a
driver stretch.

 In the middle layer, driver stretches (and other leaf objects not shown here) are assembled into
a driver part for use in the top layer.

• Driver Part Component

− Declares a uniform interface for Driver Part and Driver Stretch Component objects.
− Implements default behaviour for the interface common to these Driver Part Component

objects as appropriate.
− Declares an interface for managing the ordered sequence of these Driver Part

Component objects.

• Driver Part (a composite or leaf if not further subdivided)
− Defines behaviour for Driver Parts with zero or more Driver Part Component objects.
− Stores an ordered sequence of Driver Part Component objects.
− Implements operations for managing this ordered sequence of Driver Part Component

objects

• Driver Part Builder

− Builds a driver part under the direction of Driver Part Component Director.
− Makes a sequence of calls to Driver Stretch Component Builder to build the driver

stretches that make up a driver part.
− Keeps the order in which in which the above calls to Driver Stretch Component Builder

are to be made.
− Holds general rules that define a valid driver part.

• Driver Part Component Builder

− Defines an abstract interface for Driver Part Component Director to build a driver part
and its driver stretch components.

Submitted to PLoP’97 Page 9

Copyright © 1997 Liping Zhao & Ted Foster. All Rights Reserved. ADDC-10
Permission is granted to copy for the PLoP’97 conference. 15/08/97

− Allows Driver Part Component Director to access and manage the sequencing of calls
to be made to Driver Stretch Component Builder by Driver Part Builder. Declared in
the root of the driver part component hierarchy for transparency, not safety.

• Driver Part Component Director

− Assembles a driver part for its client (Driver Duty Component Director) using the
Driver Part Component Builder interface.

− Hides from its client how driver part components are created and assembled into a
driver part.

 At the top level, driver parts (and other leaf objects not shown here) are assembled into a driver
duty – the final product.

• Driver Duty Component

− Declares a uniform interface for Driver Duty, Driver Long Break, and Driver Part
Component objects.

− Implements default behaviour for the interface common to these Driver Duty
Component objects as appropriate.

− Declares an interface for managing the ordered sequence of these Driver Duty
Component objects.

• Driver Duty (a composite or leaf if not further subdivided)

− Defines behaviour for Driver Duties with zero or more Driver Duty Component objects.
− Stores an ordered sequence of Driver Duty Component objects.
− Implements operations for managing this ordered sequence of Driver Duty Component

objects.

• Driver Duty Builder
− Builds a driver duty under the direction of Driver Duty Component Director.
− Makes a sequence of calls to Driver Part Component Builder to build the driver parts

that make up a driver duty.
− Keeps the order in which in which the above calls to Driver Part Component Builder are

to be made.
− Holds general rules that define a valid driver duty.

• Driver Duty Component Builder
− Defines an abstract interface for Driver Duty Component Director to build a driver duty

and its driver part components.
− Allows Driver Duty Component Director to access and manage the sequencing of calls

to be made to Driver Part Component Builder by Driver Duty Builder. Declared in the
root of the driver duty component hierarchy for transparency, not safety.

• Driver Duty Component Director

− Assembles a driver duty for its client (Driver Duty Scheduler) using the Driver Duty
Component Builder interface.

− Hides from its client how driver duty components are created and assembled into a
driver duty.

 The following classes are not within any one layer.

Submitted to PLoP’97 Page 10

Copyright © 1997 Liping Zhao & Ted Foster. All Rights Reserved. ADDC-10
Permission is granted to copy for the PLoP’97 conference. 15/08/97

• Driver Duty Director

− Defines an abstract interface common to all directors. Driver Duty Constructor uses
this interface to call the algorithm defined by a concrete director.

• Driver Duty Constructor

− Knows which concrete directors are responsible for constructing each layer that is
requested by a client. Constructing an upper layer (e.g., driver duty) implies also the
construction of its lower layers (duty part and duty stretch) after building all their basic
components. Lower layers can be constructed independently of the higher layers.

− Calls a director via the interface of Driver Duty Director.
− May define an interface that lets Driver Duty Director access its data.
− Handles work assigned by a Driver Duty Scheduler, but has no references to this object.

• Driver Duty Scheduler
− Knows about Driver Duty Constructor and other system classes (not described in this

paper) which make up the Driver Duty Scheduler system. Driver Duty Scheduler is a
Facade object and directs client requests to the main system classes.

 Context
 Use the Driver Duty Constructor pattern to get the benefit of its three constituent TOPS and
more control over the construction process by making its structure symmetric with the product
that is under construction.

 Use the Driver Duty pattern to order and layer the components that define a driver duty. Clients
of a duty can ignore the difference between composite and primitive objects and treat all objects
used for duty definition uniformly.

 Use the Driver Duty Builder and Director patterns when the algorithm for creating a driver duty
should be independent of its components and how they are assembled; the building process must
allow different representations for the duty that is constructed.

 Pattern Interactions

• Cascade
 The underlying pattern of Driver Duty and Driver Duty Builder is a Cascade of
Composites; each layer is represented by one Composite [Gamma+95, p. 163].

• Chain of Responsibility
 Driver Duty Component Builder, Driver Part Component Builder, and Driver Stretch
Component Builder form a Chain of Responsibility [Gamma+95, p. 223]. For example,
when Driver Duty Component Builder receives a request from Driver Duty Component
Director for implementing a driver duty, it will pass on the request to Driver Stretch
Component Builder for assembling driver stretches, to Driver Part Component Builder for
making driver parts, and finally back to Driver Duty Component Director for assembling
the final product: a complete driver duty.

• Strategy
 Driver Duty Director is a Strategy pattern [Gamma+95, p. 315]. Driver Duty Director
objects are the clients of the Component Builder objects. Each Director object is ultimately

Submitted to PLoP’97 Page 11

Copyright © 1997 Liping Zhao & Ted Foster. All Rights Reserved. ADDC-10
Permission is granted to copy for the PLoP’97 conference. 15/08/97

responsible for building all the components in its layer of the cascade. This is achieved by
directing all the builders within that layer to build their respective components, which are
then assembled. Some of the responsibility for sequencing the leaf builders in any one layer
is given to the composite builder at that level. For less complex construction processes,
more of this responsibility for sequencing can be retained at Director level (i.e., omit the
child relationship between a composite builder and its parent). The Driver Duty
Constructor class is the context for this Strategy pattern.

• Vehicle Block
 Vehicle Block (to be written) represents blocks of vehicle work in a vehicle schedule.
Vehicle blocks are partitioned into units of work that are assigned to driver spells.

• Driver Duty Scheduler
 Driver Duty Scheduler is the overall system within which Driver Duty Constructor resides
and is the client of Driver Duty Constructor (Figure 9). Driver Duty Constructor is
triggered into action by calls from Driver Duty Scheduler, a Facade object that provides a
front for the entire Driver Duty Scheduler system. The detailed interactions between Driver
Duty Scheduler and all the other subsystem classes to which it has access will be discussed
in another paper (to be written).

DriverDuty
Component

Director

DriverPart
Component

Director

DriverStretch
Component

Director

DriverDuty
Director

Driver Duty Director

DriverDuty
Constructor

Driver
Duty

Builder

ClientA clientB

Other Classes

DriverDuty
Scheduler

Driver
Duty

 Figure 9. Driver Duty Scheduler.

 Forces and Design Rationale

 “Parts explosions are the most compelling examples of aggregation” [Rumbaugh+91, p. 59].
The relationship between a driver duty and its components suggests an aggregation tree, as

Submitted to PLoP’97 Page 12

Copyright © 1997 Liping Zhao & Ted Foster. All Rights Reserved. ADDC-10
Permission is granted to copy for the PLoP’97 conference. 15/08/97

shown in Figure 10. With this part-whole structure, we can represent a variety of different
straight and split duties.

DriverDuty

DriverStretchDriverSignOn DriverBreak DriverSignOff

DriverJoinUpDriverSpell

DriverLongBreak DriverPart

DriverTravelTime

 Figure 10. The part-whole relationship between a driver duty and its components.

 However, this part-whole representation has a problem, i.e., clients have to treat duty
components and their compositions differently. Gamma et al [Gamma+95, p. 163] pointed out
that having to distinguish primitive objects and their compositions makes the application more
complex. They proposed the Composite pattern [Gamma+95, p. 163] to overcome this problem.
With Composite, we can define consistent interfaces for both duty components and their
compositions and treat these objects consistently, as shown in Figure 11.

DriverDuty

Component

DriverDuty

Composite

DriverPart DriverStretch

{o
rd

er
ed

}

DriverLongBreak

DriverTravelTime

DriverBreak

DriverSignOn

DriverSignOff

DriverJoinUp

DriverSpell

DriverDuty

 Figure 11. Driver Duty represented as a Composite.

 So why do we need Cascade?

 In Composite, different types of composite are supported via decomposing or sub-classing the
Composite class; all the primitive objects are treated at the same level. For example, in Figure
11, Driver Duty Composite is decomposed into Driver Duty, Driver Part, and Driver Stretch.
This decomposition introduces a problem; it cannot represent layering and ordering of objects

Submitted to PLoP’97 Page 13

Copyright © 1997 Liping Zhao & Ted Foster. All Rights Reserved. ADDC-10
Permission is granted to copy for the PLoP’97 conference. 15/08/97

and their compositions explicitly. We can represent this layering and ordering information in
code, but in doing so we lose some of the value of using patterns as a language for
communication with others. We want to show this layering and ordering information explicitly,
so we developed the Cascade pattern.

 In Cascade, we can layer different types of composite so they appear at different levels in
different orders (Figure 4). We can express explicitly that a driver duty is made up of driver
parts; a driver part is made up of driver stretches; a driver stretch is made up of driver spells.
Such layering and ordering information is very important in the transport domain.

 Cascade may require additional coding and this is the trade off for a more explicit specification.
However, code is only a small part of the software engineering process. Achieving a clearer
specification for discussions with domain experts and programmers is also a worthwhile goal
for patterns.

 Our Composite within Cascade as applied within Driver Duty differs from the Gang-Of-Four’s
Composite in that for any one layer, our Composite defines an ordered sequence of leaves and
not a tree; one of the leaves is an abstract Component class for the next layer down (e.g., Driver
Part Component and Driver Stretch Component). Our Composite never has another Composite
as a child, except indirectly through an abstract interface with another Composite. In this way
we treat any one Composite layer as a primitive component of its parent layer.

 Why should Driver Duty Builder be another Cascade?

 In our TOPS, we consider it important to focus not only on the process by which our objects
achieve their purpose within themselves, but also on the process by which they interact with
other objects to achieve their combined higher purpose. Organising the process for constructing
a driver duty symmetrically with its structure (Figure 5) can help us to achieve this aim. We can
delegate the responsibilities for controlling and co-ordinating parts of the driver scheduling
process to appropriate objects and still maintain a reasonable view of the overall process. Under
such symmetric structures, each builder is responsible for building each duty component and
builders at higher levels can reuse their lower-level builders. In that way we can build many
variations in duty as represented by the Driver Duty pattern. “A delegated style ideally has
clusters of well defined responsibilities distributed among a number of objects. A hierarchy of
control may be evident … A delegated control architecture feels like object design at its best.”
[Wirfs-Brock95].

 Flexibility and reusability are major concerns in our design as our goal is to build software that
can evolve and adapt like a living system. “Living systems are organised in such a way that
they form multileveled structures, each level consisting of subsystems which are wholes in
regard to their parts, and parts with respect to the larger wholes… All these entities — from
molecules to human beings, and so on to social systems — can be regarded as wholes in the
sense of being integrated structures, and also as parts of larger wholes at higher levels of
complexity. In fact, we shall see that parts and wholes in an absolute sense do not exist at all.”
[Capra82, p. 27]. In Cascade, we can express the relationship between parts and wholes
naturally. Builders create parts (i.e., the leaf objects), but the whole product for a particular
layer is simply a part for the next layer up (Figure 5). Wholes and parts are relative. Driver
Stretch is a whole whose main parts are Driver Spells; Driver Part is a whole whose main parts
are Driver Stretch Components; Driver Duty is a whole whose main parts are Driver Part
Components. The Cascade pattern allows its parts to preserve their individual autonomy and at

Submitted to PLoP’97 Page 14

Copyright © 1997 Liping Zhao & Ted Foster. All Rights Reserved. ADDC-10
Permission is granted to copy for the PLoP’97 conference. 15/08/97

the same time facilitates their togetherness.

 We find patterns and symmetry in patterns beautiful. “The concept of symmetry is a familiar
and important one in daily life. Many human products are deliberately built to be symmetric,
for either aesthetic or practical reasons.” [Davies95, p. 58]. Beauty implies good design. “The
aesthetics of the design itself are good indicators of system maintainability. A system that can’t
easily be understood can’t easily be evolved. Good design appeals to the human aspects of
development” [Coplien96, p. 39].

 Why should Driver Duty, Builder and Director be presented together?

 Driver duty builders and directors are inseparable because they combine to construct a whole
product; they are one. However, they have slightly different responsibilities in that builders
build parts and directors assemble wholes from parts; they are two. Wholes and parts are
inseparable. Directors are responsible for higher level products made up of lower level
products constructed by builders; directors and builders are the top and bottom of a delegation
of responsibility continuum.

 Wholes and parts are relative, and so are the objects responsible for constructing them. Their
roles overlap according to the context. For example, in our Driver Duty Builder and Director
patterns, we have delegated the responsibility for co-ordinating a whole sequence of building
tasks to builders. An object is not a director or a builder; it can be a bit of both. In some cases
where clients want to interact with the system frequently and have a finer control over the
construction process, we can simplify the builders and leave more of the ordering tasks to
directors.

 Similar Patterns and Applications
 The Driver Duty and Driver Duty Builder Patterns are domain applications of the Cascade
pattern [Foster+97]. Cascade has also been used to structure Route [Zhao+96], Point and Links
[Foster+97] and Journey Variant [Foster+97]. Driver Duty Builder and Director work together
as in the Gang-of-Four’s Builder pattern [Gamma+95, p. 97]. Driver Duty Director is
expressed as a Strategy pattern [Gamma+95, p. 315].

FINALE

 Driver Duty Constructor is configured by the client with a concrete Director object; it is the context
object for this Strategy pattern. It is triggered into action by calls from Driver Duty Scheduler, a
Facade object that provides a front for the entire system. Building driver duties is a complex
process. Some clients do not care about the details of duty construction; they simply pass on a
request and leave the system to generate duties automatically. Others, on the other hand, want to
control each step and build duties interactively. Driver Duty Scheduler and other classes are
responsible for these diverse requirements. The detailed interactions between Driver Duty Scheduler
and all the other system classes to which it has access will be discussed in other papers.

ACKNOWLEDGEMENTS

We wish to thank all the people involved in various Science and Engineering Research Council
(UK) and European Union (EU) funded projects and others with whom we have discussed the

Submitted to PLoP’97 Page 15

Copyright © 1997 Liping Zhao & Ted Foster. All Rights Reserved. ADDC-10
Permission is granted to copy for the PLoP’97 conference. 15/08/97

problems of modelling public transport operations; also our two students at RMIT University
(Australia), Lance Dourlay and Bradley Kazazes, for implementing Driver Duty and Driver Duty
Builder during their vacation. Special thanks are due to Linda Rising, our PLoP shepherd, for her
encouraging and insightful comments on the paper.

REFERENCES

[Capra82] F. Capra. The Turning Point. Simon & Schuster, New York, 1982.
[Coplien96] J. O. Coplien. Software Patterns: A White Paper. SIGS Publications,

New York, 1996.
[Davies95] P. Davies. Superforce. Revised Edition. Penguin Books, England, 1995.
[Foster+96] T. Foster and L. Zhao. “Modelling Transport Objects with Patterns”. Presented at

EuroPLoP96, 1996. To appear in Journal of Object-Oriented Programming and Object Expert
respectively, 1997.

[Foster+97] T. Foster and L. Zhao. “Cascade”. To submit to PLoP97, 1997.
[Gamma+95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of

Reusable Object-Oriented Software. Reading, MA: Addison-Wesley, 1995.
[Grigg97] R. Grigg. The Tao of Being. Element, 1997.
[Rumbaugh+91] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object-

Oriented Modeling and Design. Prentice-Hall, 1991.
[Wirfs-Brock95] R. Wirfs-Brock. Responsibility-Driven Design : Characterising Your

Application’s Control Style. SIGS Publications. Report on Object Analysis & Design. Volume 1.
No. 3 September-October 1994.

[Zhao+96] L. Zhao and T. Foster. “A Pattern Language of Transport Systems (Point and Route)”.
Proceedings of PLoP96, 1996. To appear in Pattern Language of Programming Design 3.
Addison-Wesley, 1997.

[Zhao+98] L. Zhao and T. Foster. “A Pattern Language of Transport Systems (Driver Duty)”. To
appear in Journal of Object-Oriented Programming, 1998.

