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ABSTRACT

Cascade is a generic pattern for layering and ordering the parts of a complex whole. Each layer is
itsdf a Composite pattern which composes objects into tree structures to represent part-whole
hierarchies. Composite lets clients treat individual objects and compositions of objects uniformly.
Cascade makes the layering and ordering of objects and their compositions explicit. Cascade has the
ability to treat one Composite layer as a primitive Component of its parent layer and hence allows
us to express the relationship between parts and wholes naturally: a whole for one particular layer is
simply a part for the next layer up. In our modeling of transport systems, we have observed
frequent recurrence of the Cascade pattern. We bdieve that many real world problems exhibit the
features of Cascade. In this paper, we illustrate Cascade with more examples from transport
systems.

INTRODUCTION

“Living systems are organised in such a way that they form multileveled structures, each level
consisting of subsystems which are wholes in regard to their parts, and parts with respect to the
larger wholes... All these entities — from molecules to human beings, and so on to social systems
— can be regarded as wholes in the sense of being integrated structures, and also as parts of larger
wholes at higher levels of complexity. In fact, we shall see that parts and wholes in an absolute
sense do not exist at all” [Capra82, p. 27].

In our modelling of transport systems, we have observed many manifestations of such layered
structures. For example, a route [Zhao+96] on a transport network is made up of route components
at different levels; a route component for a particular layer is a part for the next layer up, a whole
for the next layer down. Similarly, a driver duty [Zhao+98] and a driver duty builder [Zhao+97] are
made up of other components that represent either parts or wholes for any one level within its
overall structure.

In this paper, we present Cascade as a generic pattern, which can be used to structure parts and
wholes in complex hierarchies. We ys®nts on a transport network and thieks between points

to illustrate Cascade. A point may appear to be a simple concept in a transport network, the smallest
component corresponding to a point in space. However, it is “amazingly complex” and its contexts
are “astonishingly rich” [Riehle97]. As a whole, a point can play many different roles in a transport
network and we have modelled this wholeness view using our Point pattern [Foster+96, Zhao+96].
However, being a point is much more than just being a 0-dimensional point in space; as our view
expands, the inner structure of our Point pattern reveals another Cascade [Foster+97], a whole of
integrated and layered parts. The concept of a point is uncoupled from its role as a spatial location.
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Similarly, a link is more than just a spatial connection between two points. Here we present a
microscopic view of Point and Link.

Figure 1. Transport Networks are Multileveled
CASCADE

I ntent

The Cascade pattern is used for layering and ordering the parts of a complex whole. Each layer
isitsdf a Composite pattern which composes objects into tree structures to represent part-whole
hierarchies. Composite lets clients treat individual objects and compositions of objects
uniformly. Cascade makes the layering and ordering of objects and their compositions explicit.

Problem
A point on a network can represent a whole town, or place within a town, an individual vehicle
stop, or the bay position at a stop depending on the level of granularity of interest to an
application. A point may be viewed as a complex point or a simple point at any one level of
abstraction. A complex point may be made up of one or more simple points at the next level
down; it may also be a part of an even more complex point at the next level up. Similarly, links
between points on a network can represent the spatial or temporal connection between these
different points. Thus points and links are bound together into a complex multileveled structure
(Figure 1). In both point and link, an object of one type can be viewed as an aggregation of
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more than one other type of object at the next level down; both a point or a link can become a
collection of other links and/or points. Since any one point or link on a network may play many
different roles and may be wholly or partially contained within higher level objects, there is an
amost infinite number of possible ways of viewing them. Areas bounded by links and
containing points ether on or within their boundaries are also layered structures. So too are
solid structures in 3-dimensional models of a transport network. A very flexible structural
pattern is required for modelling them.

The Composite pattern [Gammat95, p. 163] can be used for this purpose, but we have found
that domain experts sometimes fed uncomfortable because the natural layering and ordering of
their world is not made sufficiently explicit by Composite. Furthermore, the structure of the real
world problem can be difficult to communicate to programmers with a single composite.

What can be done to improve the visibility of the many possible hierarchies than exist between
parts making up such aggregate structures?

Solution

— Structure
Represent each layer of an aggregate structure by its own Composite pattern. Replace one of the
leaves of the Composite at the upper level by a complete Composite to represent the whole layer
at the next level down. If required, one of the leaves of this lower layer can then be replaced by
another complete Composite, and so on ad infinitum (or in practice until it accurately models all
the levels of interest).

Figure 2 illustrates a Cascade of three Composites in three layers. The Component class A is an

abstract interface for the Composite object A and Leaf objects Al, A2, ... in which A2 has been
replaced by the Composite pattern B. The Component class B is an abstract interface for the
Composite object B and Leaf objects B1, B2, ... in which B2 has been replaced by the
Composite pattern C. The leaf objects in any one layer can be instances of different classes if
required or multiple instances of the same class but must be type conformant with their parent

Component class.
Component
A

A 5 _
= Composite pattern A
| | S
Component Leaf Composite
i B AL A <>
Composite pattern B A
Composite Leaf Component |g <€
B B1 C
A 5
| S Composite pattern C

Leaf Composite <>
C1 C

Figure 2. Cascade of Three Compositesin Three Layers
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Since each Composite class is an aggregation of its own parent Component objects, it follows
that a Composite object can be a collection of other Composite objects like itself. In other
words, Composite object A can be a collection of other Composite objects A. However, in some
Situations, we may want to restrict this option. A Composite pattern constrained in this way
could also be represented as an aggregation relationship directly from the Composite class to an
abstract Leaf class that provides an interface to all the other Leaf classes within that layer (see
Figure 3). However, by retaining the classic Composite pattern structure, we can avoid
introducing this additional abstract Leaf class. The Component class within the Composite
pattern provides the interface for all the leaf classesin that layer.

Component Component | g ¢
A A
: i
=
| | | =
Leori ot Constaned| | Comporent || Leal || Constraned | <>—
A {Child} P P
Component Leaf
B Al

Figure 3. Two representations of a constrained Composite object.

Two leaves on any one level can be replaced by different Composites providing they are both
type conformant with their parent Component class. In Figure 4, the Leaf objects A2 and A3
have been replaced by the Composite patterns B and C respectively which are both type
conformant with Component A.. In effect more than one Cascade has its root in the Composite
object A.

Component

Composite pattern A

Component Component Leaf Composite
B s Al A T
T A A
< O
< | -
Composite Leaf Leaf Composite
= B B1 C1 Cc

Composite pattern B Composite pattern C

Figure 4. Cascade of Three Composites in Two Layers

Alternatively, the topmost Composite pattern A may be replaced by a simple aggregation
relationship between Composite pattern B and Composite pattern C. There is no longer any
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requirement that Component objects in B and C be type conformant with a common supertype.
Two different representations of part-whole relationships are being used in the same structure.
In Figure 5, the Component objects in the hierarchy rooted at Component B are aggregates of
the Component objects in the hierarchy rooted at Composite X.

{ohild) Component
Component <> -y ,t;(

A

A JAN 5
=
L

Composite Leaf Component Component Leaf Composite
= A Al B Y X1 X

Figure 5. Mixing two different whole-part representations.

The aggregation relationship between a Composite object and its parent abstract Component
class is quite often an ordered sequence within transport network models. This is not however a
requirement of the Cascade pattern and other containing relationships (e.g., sets and bags) may
be more appropriate for the problem at hand..

For this aggregation relationship, we generally favour the precise semantic interpretation

proposed in [Cook+94, p.39]:
“We choose aggregation to mean life-time dependency; in particular, that the life-times of
the ‘parts’ are contained within the life-time of the ‘whole’. The ‘parts’ are permanently
attached to the ‘whole’, and cannot be removed from it without being destroyed.
Conversely, destroying the ‘whole’ destroys the ‘parts’. Aggregation is shown as a diamond
on the association line adjacent to the type whose instances have the containing life-time
(the ‘whole’ or ‘aggregate’)”.

This life-time dependency continues from the top to bottom of a Cascade of Composite patterns.

— Example
In Figure 6, we show a high levd link between two points (Journey Variant) expressed as an
ordered aggregate of other lower leve links (Timing Link On Variant, Commercial Link On
Variant, or Journey Definition Point Link On Variant (JDP Link)).

A Journey Variant describes the way in which one or more journeys operate along routes
through the physical network. It describes a journey passing through either an ordered sequence
of Journey Definition Points, or across JDP Links. In this example, a link-oriented definition of
a Journey Variant is used for the purpose of illustrating a Cascade of Links (compare this with
the structure illustrated in Figure 4). Also in this example, the strict life-time dependency
interpretation of the aggregation relationshipsis enforced.

The closdy related layering of the physical routes that journeys follow is described in
[Zhao+96]. A more detailed example of a Cascade of Links, with more layers and components
within each layer representing subdivisions of the working day of a driver, is described in
[Zhaot97, Zhao+98].

Partitioning a network into separate paralle Cascades is essential for structuring the many
different links in a transport network. If one attempts to define some monoalithic structure
incorporating all the links of interest to different applications, then the links between any two
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adjacent points tend to lose any real world meaning. Partitioning makes it possible to subdivide
links so that the sub-links do not overlap the ends of the link at the next level up. For example,
a Commercial Link On Variant can not necessarily be subdivided into Timing Links On
Variant; nor can a Timing Link On variant be subdivided into Commercial Links On Variant.
They are therefore represented as separate parallel Cascades.

The lifetime dependency interpretation of the aggregation relationship is important for
interpreting these Cascades of Links. For example, a Timing Link On Variant only exists in the
context of one particular Journey Variant; it is not the Link per se and can not be shared.
However, two or more Timing Links On Variant may refer to the same Link object. It is the
Link object, or one of its role objects, that is shared and not the Timing Link On Variant. The
responsibilities assigned to a Timing Link On Variant are those which refer to a Link but are
only meaningful in the context of a particular Journey Variant, for example, journey running
times.

Journey Variant
Component o<

=)
o
1 :
B
I I =
Ci jal Timin, .
Onl,;ima Linkg JD Link Journey
Component Component € On Variant Variant
~ =)
B [ﬁ ﬁl o
= [0}
g B
s I I | g
Commercial JD Link Qn JD Il_in‘k On Tir_ning ~
Link Commercial Timing Link
On Variant Link Link On Variant|

Figure 6. Parallel Link Cascades for parts of a Journey Variant.

In practice, a point-oriented definition of links is often preferred to a link-oriented one,
especialy if some of the links between adjacent points in the Cascade have no real world

interest. Deeply nested links within links are difficult to picture within one’s mind. Separate
parallel cascades overcome the necessity for such deep nesting and make it easier to work with
link-oriented definitions.

Points as well as links can be cascaded. Some of the journey definition points are commercial
points, published places to and from which passengers are offered transport services. They can
be individual stops or collections of stops. For the purposes of this illustration of Cascade, we
shall define a commercial point as a collection of stops. Furthermore, we will assume that each
stop can be further sub-divided into stop bays so that more than one vehicle can park there.
Timing points are used for expressing timing information. Figure 7 shows the sub-division of
commercial point into stop points and stop bays expressed both as a Composite and as a
Cascade.
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Figure 7. A Composite and Cascade of Commercial Point Components.

Thelayering of points and links within the same Cascade can be achieved by defining a common
Network Component supertype to which they both conform. A Network Composite is defined as
an aggregate of these Network Components. However, in practice, people usually find it easier
to separate them and express Link Components as an ordered aggregate of two or more Point
Components. This is illustrated in Figure 8 (compare this with the structure illustrated in
Figure 5). The Point component objects are in fact Point On Link objects and not the Point per
se. In effect, this diagram is adding point-oriented definitions of links to link-oriented
definitions of links. Point-oriented definitions of links support some algorithms better than link-
oriented definitions.

Link {ordered} 2+ ot
in S °
Component A > Component X
) JAN A 5
3 5
5 | | |
Link Link Link Point Point Pomt_
> Composite A| | Leaf Al Component B Component Y Leaf X1 Composite X

Cascade of Links Cascade of Points

Figure 8. Introducing point-oriented definitions of links..

Once again we emphasise the importance of the lifetime dependency interpretation of the
aggregation relationship. The Point Component objects in Figure 8 only exist in the context of
one particular Link; it is not the Point per se and can not be shared. However, two or more Point
On Link objects may refer to the same Point object. It is the Point object, or one of its role
objects, that is shared and not the Point On Link. The responsibilities assigned to a Point On
Link are those which refer to a Point but are only meaningful in the context of a particular Link,
for example, Journey Waiting Times for a Timing Point On Journey Variant.

— Participants and Collaborations
Consider the Cascade in Figure 2.

e Components (Component objects A, B, and C)
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— Declare auniform interface for Component objects in the respective Composite
patterns.
— Implement default behaviour for interfaces common to the respective Component
objects.
— Declare an interface for managing the ordered sequence of the respective Component
objects.
» Composites (Composite abjects A, B, C)
— Define behaviour for compositions of their Component objects.
— Store an ordered sequence of their Component objects.
— Implement operations for managing this ordered sequence of Component objects.
— Make compositions of objects based on client requests.
* Leaves(Leaf objectsAl, B1, C1)
— Define behaviour for leaf objects.
— Handlethe requests from clients.
e Clients
— Manipulate objects in the compositions through Component interfaces.

Context
Use the Cascade pattern when you want to:
* Represent part-whole relationships between objects and express the relationships between
parts and wholes explicitly.
» Ignorethe difference between objects and their compositions, and treat them uniformly.
* Represent the natural layering and ordering of your application world explicitly.

Pattern Interactions
» Composite
Each layer in Cascade is represented by one Composite [Gamma+95, p. 163].

e Chain of Responsibility
Composites in Cascade form a Chain of Responsibility [Gamma+95, p. 223]. For example,
in Figure 2, Component objects are Abstract Handlers and Composite and Leaf objects are
Concrete Handlers. Component C is the successor of Component B, which in turn is the
successor of Component A. When a client issues a request, the request propagates along the
chain until a Concrete Handler can handle it.

* Flyweight
“The Flyweight pattern is often combined with the Composite pattern to implement a
logically hierarchical structure in terms of a directed-acyclic graph with shared leaf nodes”
[GOF p206]. Point On Link and Link On Link objects can be implemented using the
Flyweight pattern, so that logically there will appear to be an object for every Point On Link
and Link On Link in the network, even though physically there will be only one shared
flyweight for each Point and Link (or more accurately one of their role objects). However,
our existing implementations of Cascades define Point On Link and Link On Link objects
explicitly because these concepts exist in many public transport data models. For example,
in data modelling terms, a Point On Link is an intersection entity to resolve a many-many
relationship between a Point and a Link.
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Role Object

In [Foster+96, Zhao+96] we described Point as an aggregation of one or more Point Roles
and Link as an aggregation of one or more Link Roles. The Role Object pattern is
discussed in more detail in [BAumer+97]where the need to provide an abstract interface
for a Component and Component Role is very clearly and rightly stressed. It is also worth
adding that there is also an interesting interaction between Role objects and Part-Whole
hierarchies. In data modeling terms a Link Role is an intersection entity to resolve the
many-many relationship between Link and Link Type. This differs from a Link On Link
which is representing the relationship between a part and its whole. Any one Link object
can be simultaneously playing therole of a Timing Link and a Journey Variant but only if it
isa Timing Link on a different Journey Variant. The placing of an object in a part-whole
relationship with another object is in effect defining the roles of the object. An object’s
place in the world requires that the object play certain roles.

Forces and Design Rationale

Why do we need Cascade?

The forces that drove us to Cascade have been discussed in our Route, Driver Duty, and Driver
Duty Builder patterns [Zhao+96, Zhao+97, Zhao+98]. Here we present these forces in a more
general form.

Cascade provides consistent interfaces to parts and their wholes. The relationship between

parts and wholes was traditionally represented as an aggregate [Rumbaugh+91, p. 59].
However, the problem with this representation is that clients have to treat parts

(Components) and wholes (Compositions) differently. This makes the program more

complex. The Composite pattern [Gamma+95, p. 163] has overcome this problem by

providing an abstract class (Component) that represents both parts and wholes. Since
Cascade builds upon Composite, it also inherits this feature of Composite.

It makes the layering of objects and their compositions explicit. In the Composite pattern,
different types of Composite are supported via decomposing or sub-typing the Composite
classes; but all the primitive objects or leaves are treated at the same level. In Cascade,
primitive objects appear in layers corresponding to their positions in real world multileveled
structures. Composites grow laterally, whereas Cascades grow vertically (Figure 9).
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Figure 9. Composite versus Cascade growth.

* Any ordering of objects can be made explicit with an appropriate parent-child association
between each Composite and Component class within a Cadd¢aslés not usually done
within atraditional aggregation diagram.

» It can represent the parent-child relationship between a Composite and a Component for
each layer differentlySometimes it is useful to have different program structures for
different layers. With Cascade, we can represent the relationship between a Composite and
Component as, for example, alinked list at one level, aset at another.

» It allows its parts to preserve their individual autonomy and at the same time facilitates
their togethernesslhe ahility to treat one Composite layer as a primitive Component of its
parent layer allows us to express the relationship between parts and wholes naturally: a
whole for one particular layer is simply a part for the next layer up. “The whole supports the
parts which themselves constitute the whole” [Davies95, p 221].

* A constraint can be imposed within Cascade that prevents a Composite from having
another Composite of the same type as one of its children. This means that a Composite
object for any one layer is a collection (e.g., ordered sequence) of leaves and not a tree; one
of the leaves is an abstract class (i.e., Component) for the next layer down. For example,
Composite A in Figure 2 need not have another Composite A as a child. However, indirectly
through the abstract interface provided by Component B, it can parent another type of
Composite B. In this way we treat any one Composite layer as a primitive Component of its
parent layer.

» It simplifies the specification of the interface for Component classes. For any one layer,
the Component interface only needs to be able to respond to message calls invoking
operations within that layer and not those that have already been implemented in higher
layers.

» Composites can be dlotted in and out of a Cascade as easily as Leaf objects in a
Composite. Entire layers represented by Composites can be “plugged in” without impacting
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on the rest of the system providing the new component can still respond to the same
message calls as the original.

* The roles played by generic objects can be assigned to diffexats land subsystenia.
other words, Cascade is making explicit the different roles played by parts within the whole
and where the responsibility for playing those roles resides.

» Cascade may require extra codirithis is a trade-off for a more explicit specification. A
clearer specification of patterns can facilitate the communications between domain experts
and software designers; it can also help programmers to correctly implement patterns.

» Cascade focuses on the interaction between one or more Composites and therefore the
discussion of forces in the implementation section of the Composite pattern in
[Gamma+t95, p.166] applies here tooHowever, there is no need to repeat the issues
discussed by the GOF, except perhaps to point out that we have opted for transparency
rather than safety in assigning the responsibilities for the child management interface at the
root of the class hierarchy. This reflects the high priority that we place on achieving
transport software systems that can grow.

e The very strict life-time dependency interpretation of the aggregation relationship may
appear to be too constraining for some real-world situatidius.some applications, the
properties or behaviour of a part may not vary with its presence or position within a whole
at the next level up. For example, it may suffice for some applications to define a default
running time that would apply to all journeys crossing a particular link. A shareable Link or
Timing Link object rather than an unshareable Timing Link On Variant object is enough to
meet this requirement. Several variations in the interpretation of this relationship are
described in [Buschmann+96, p.233-234]

“Part objects all have the same type. Parts are usually not coupled to or dependent on
each other. You can apply this variant when implementing collections such as sets, lists,
maps, and arrays”
[Collection-Membership relationship]
“This variant relaxes the constraint that each Part must be associated with exactly one
Whole by allowing several Wholes to share the same Part. The life-span of a shared
Part is then decoupled from that of its Whole”.
[Shared Parts relationship]
Choosing the appropriate variant or combination of variants is determined by the specific
semantics of the real-world objects in the Cascade and the requirements of the application.

Similar Patternsand Applications
The Cascade pattern recurred over and over again in our modelling of transport systems. For
example, Route [Zhao+96], Driver Duty [Zhao+98], and Driver Duty Builder [Zhao+97] are
Cascades.In this paper, we have given an example of a Cascade for Journey Variant and
Commercial Point components. Points (0-dimensional) and Links (1-dimensional) are the basic
components of a network. We have not yet described areas (2-dimensional) and solids (3-
dimensional), but of course Cascade and other related patterns will be needed even more for
layering these even more complex network objects.

The Whole-Part pattern ifBuschmann+96, p.225] refers to several variations arising from
progressive relaxation of the constraints in the interpretation of the aggregation semantics.
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There is a reference to the GOF Composite as one such variant but no explicit focus on the
Cascading of one or more such Composites.

The Role Object pattern in [BAumer+97] describes a pattern for representing the multiple
concurrent roles that a component can play and provides a good setting for considering the
interaction between part-whole hierarchies and roles. This paper also discusses the recursive
use or cascading of role objects.

FINALE

Through patterns like Cascade we are seeking to balance a “hierarchical reductionist” approach
with a holistic approach. Hierarchical reductionism “explains a complex entity at any particular
level in the hierarchy of organization, in terms only one level down the hierarchy” [Dawkins, p.13].
Holism places a strong emphasis on the functioning of the parts as a whole at the next level up.

“The kinds of explanation which are suitable at high levels in the hierarchy are quite different from
the kinds of explanation which are suitable at lower levels” [Dawkins, p.13] and therefore we like to
make each layer very explicit within our software simulations. We believe that Cascade will be a
useful pattern for modelling many real world problems in other domains as well.
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