
The	
 Last	
 Two	
 Test-­‐Driven	
 Development	
 Step	
 Patterns:	
 Bug	

Locator	
 and	
 Pause	
 for	
 Housekeeping 	

EDUARDO	
 GUERRA,	
 National	
 Institute	
 for	
 Space	
 Research,	
 Brazil	

JOSEPH	
 YODER,	
 Refactory	
 Inc.,	
 USA	
 	

MAURÍCIO	
 FINAVARO	
 ANICHE,	
 University	
 of	
 São	
 Paulo,	
 Brazil	

MARCO	
 AURÉLIO	
 GEROSA,	
 University	
 of	
 São	
 Paulo,	
 Brazil	

Test-­‐driven	
 development	
 (TDD)	
 is	
 a	
 development	
 technique	
 often	
 used	
 to	
 design	
 classes	
 in	
 a	
 software	
 system	
 by	
 creating	
 tests	
 before	
 their	

actual	
 code.	
 The	
 TDD	
 Steps	
 pattern	
 language	
 is	
 an	
 effort	
 to	
 document	
 the	
 different	
 kinds	
 of	
 actions	
 that	
 a	
 TDD	
 developer	
 can	
 perform	
 to	

drive	
 class	
 behavior	
 and	
 design.	
 In	
 two	
 previous	
 papers,	
 we	
 introduced	
 eight	
 patterns	
 of	
 this	
 language.	
 This	
 paper	
 aims	
 to	
 introduce	
 the	

two	
 remaining	
 patterns.	
 One	
 pattern	
 focuses	
 on	
 the	
 creation	
 of	
 a	
 test	
 to	
 simulate	
 the	
 scenario	
 of	
 a	
 known	
 bug	
 isolating	
 it	
 to	
 a	
 specific	
 area	

of	
 code,	
 and	
 the	
 other	
 one	
 focus	
 on	
 deep	
 refactoring	
 before	
 introducing	
 a	
 new	
 functionality.	

Categories	
 and	
 Subject	
 Descriptors:	
 D.1.5	
 [Programming	
 Techniques]:	
 Object-­‐oriented	
 Programming;	
 D.2.11	
 [Software	
 Architectures]:	

Patterns	

General	
 Terms:	
 Test	
 driven	
 development	

Additional	
 Key	
 Words	
 and	
 Phrases:	
 TDD,	
 software	
 design,	
 patterns	

ACM	
 Reference	
 Format:	
 	

Guerra,	
 E.,	
 Yoder,	
 J.,	
 Aniche,	
 M.	
 and	
 Gerosa,	
 M..	
 2014.	
 The	
 Last	
 Two	
 Test-­‐Driven	
 Development	
 Step	
 Patterns:	
 Bug	
 Locator	
 and	
 Pause	
 for	

Housekeeping.	
 Proceedings	
 of	
 the	
 Latin	
 American	
 Conference	
 on	
 Pattern	
 Languages	
 of	
 Programs	
 (SugarLoafPLoP).	
 November	
 2014,	
 15	

pages.	

1. INTRODUCTION	

Test-­‐driven	
 development	
 (TDD)	
 is	
 a	
 technique	
 in	
 which	
 the	
 tests	
 are	
 written	
 before	
 the	
 production	
 code	
 (Beck	

2002).	
 By	
 using	
 it,	
 the	
 development	
 occurs	
 in	
 cycles,	
 comprised	
 of	
 the	
 creation	
 of	
 an	
 automated	
 test,	
 an	
 update	

on	
 the	
 developed	
 software	
 to	
 make	
 the	
 test	
 pass,	
 and	
 a	
 code	
 refactoring	
 to	
 improve	
 the	
 solution.	
 TDD	
 can	
 be	

used	
 for	
 many	
 different	
 goals:	
 as	
 a	
 testing	
 technique,	
 in	
 which	
 developers	
 expect	
 an	
 improvement	
 in	
 the	

external	
 quality;	
 or	
 as	
 a	
 design	
 technique,	
 in	
 which	
 developers	
 expect	
 to	
 improve	
 class	
 design	
 (Beck,	
 2002;	

Martin,	
 2006;	
 Astels,	
 2003;	
 Freeman,	
 2006).	
 	

The	
 terminology	
 used	
 by	
 the	
 TDD	
 community	
 uses	
 the	
 metaphor	
 “baby	
 steps”	
 (Beck	
 2002).	
 It	
 refers	
 to	
 the	

fact	
 that	
 by	
 using	
 this	
 technique	
 the	
 development	
 advances	
 continuously	
 in	
 small	
 steps.	
 These	
 patterns	
 borrow	

the	
 word	
 “steps”,	
 referring	
 to	
 actions	
 that	
 make	
 the	
 system	
 development	
 and	
 design	
 to	
 move	
 forward.	
 The	
 goal	

is	
 to	
 take	
 small	
 steps	
 towards	
 a	
 desired	
 design	
 and	
 implementation.	
 In	
 most	
 of	
 the	
 patterns,	
 a	
 “step”	
 refers	
 to	
 a	

TDD	
 cycle,	
 however	
 it	
 is	
 not	
 true	
 in	
 all	
 cases.	
 For	
 instance,	
 the	
 patterns	
 Dive	
 Deep	
 and	
 Pause	
 for	

Housekeeping	
 are	
 steps	
 that	
 should	
 happen	
 between	
 TDD	
 cycles.	

Previous	
 papers	
 (Guerra	
 2013;	
 Guerra	
 et	
 al.	
 2014)	
 documented	
 eight	
 patterns	
 of	
 the	
 proposed	
 pattern	

language.	
 The	
 goal	
 of	
 this	
 paper	
 is	
 to	
 present	
 the	
 last	
 two	
 patterns	
 that	
 are	
 presented	
 in	
 the	
 current	
 version	
 of	

this	
 language:	
 Bug	
 Locator	
 and	
 Pause	
 for	
 Housekeeping.	
 The	
 pattern	
 Bug	
 Locator	
 describes	
 the	
 step	
 used	
 to	

locate	
 a	
 new	
 bug	
 by	
 using	
 a	
 test	
 in	
 order	
 to	
 start	
 a	
 TDD	
 session	
 from	
 this	
 point.	
 The	
 Pause	
 for	
 Housekeeping	

describes	
 an	
 approach	
 to	
 be	
 used	
 when	
 the	
 solution	
 adopted	
 by	
 the	
 class	
 is	
 not	
 suitable	
 for	
 the	
 next	

requirements.	
 	

This	
 paper	
 is	
 part	
 of	
 a	
 study	
 that	
 aims	
 to	
 identify	
 recurrent	
 TDD	
 steps	
 and	
 how	
 they	
 can	
 be	
 used	
 in	
 a	
 TDD	

session	
 to	
 drive	
 the	
 developed	
 class	
 design	
 in	
 the	
 desired	
 direction.	
 This	
 study	
 comprehends	
 a	
 pattern	
 mining	

effort	
 that	
 used	
 as	
 a	
 source	
 of	
 research	
 documented	
 TDD	
 sessions	
 in	
 books	
 and	
 information	
 about	
 the	
 usage	
 of	

Permission	
 to	
 make	
 digital	
 or	
 hard	
 copies	
 of	
 all	
 or	
 part	
 of	
 this	
 work	
 for	
 personal	
 or	
 classroom	
 use	
 is	
 granted	
 without	
 fee	
 provided	
 that	

copies	
 are	
 not	
 made	
 or	
 distributed	
 for	
 profit	
 or	
 commercial	
 advantage	
 and	
 that	
 copies	
 bear	
 this	
 notice	
 and	
 the	
 full	
 citation	
 on	
 the	
 first	
 page.	

To	
 copy	
 otherwise,	
 to	
 republish,	
 to	
 post	
 on	
 servers	
 or	
 to	
 redistribute	
 to	
 lists,	
 requires	
 prior	
 specific	
 permission.	
 A	
 preliminary	
 version	
 of	

this	
 paper	
 was	
 presented	
 in	
 a	
 writers'	
 workshop	
 at	
 the	
 10th	
 Latin	
 American	
 Conference	
 on	
 Pattern	
 Languages	
 of	
 Programs	

(SugarLoafPLoP).	
 SugarLoafPLoP'14,	
 November	
 9th	
 -­‐	
 12th,	
 2014,	
 Ihla	
 Bela,	
 São	
 Paulo,	
 Brazil.	
 Copyright	
 2014	
 is	
 held	
 by	
 the	
 author(s).	

HILLSIDE	
 978-­‐1-­‐941652-­‐02-­‐2

The	
 Last	
 Two	
 Test-­‐Driven	
 Development	
 Step	
 Patterns:	
 Bug	
 Locator	
 and	
 Pause	
 for	
 Housekeeping:	
 Page	
 -­‐	
 2	

TDD	
 in	
 real	
 projects	
 where	
 the	
 authors	
 worked	
 on.	
 	
 Next	
 section	
 describes	
 briefly	
 the	
 pattern	
 language	
 and	
 the	

further	
 sections	
 present	
 the	
 patterns.	

2. TDD	
 STEPS	
 PATTERN	
 LANGUAGE	

The	
 goal	
 of	
 this	
 pattern	
 language	
 is	
 to	
 document	
 the	
 steps	
 that	
 the	
 developer	
 can	
 take	
 to	
 move	
 forward	
 in	
 a	

TDD	
 session.	
 In	
 this	
 context,	
 a	
 TDD	
 session	
 can	
 be	
 defined	
 a	
 continue	
 amount	
 of	
 time	
 where	
 some	

implementation	
 is	
 performed	
 by	
 using	
 TDD.	
 Some	
 developers	
 face	
 TDD	
 only	
 as	
 a	
 testing	
 technique,	
 in	
 which	

the	
 functionality	
 is	
 created	
 piece	
 by	
 piece	
 by	
 creating	
 the	
 tests	
 first.	
 A	
 developer	
 who	
 is	
 not	
 used	
 to	
 TDD,	
 does	

not	
 see	
 naturally	
 how	
 these	
 tests	
 can	
 be	
 used	
 as	
 a	
 tool	
 to	
 drive	
 the	
 design	
 in	
 the	
 desired	
 direction.	
 This	
 pattern	

language	
 aims	
 to	
 explicitly	
 present	
 the	
 steps	
 that	
 can	
 be	
 chosen	
 to	
 move	
 forward	
 on	
 the	
 system	
 development.	
 	

The	
 target	
 audience	
 of	
 this	
 pattern	
 language	
 is	
 software	
 developers	
 interested	
 in	
 using	
 TDD	
 to	
 design	
 and	

develop	
 software.	
 It	
 can	
 be	
 used	
 by	
 beginners	
 to	
 understand	
 the	
 mechanics	
 of	
 this	
 design	
 technique	
 and,	
 by	

more	
 advanced	
 practitioners	
 to	
 enable	
 a	
 better	
 understanding	
 of	
 their	
 design	
 choices.	
 The	
 discussions	

presented	
 in	
 each	
 pattern	
 intend	
 to	
 clarify	
 the	
 consequences	
 of	
 each	
 choice	
 of	
 step.	
 The	
 patterns	
 names	
 form	
 a	

terminology	
 to	
 reference	
 the	
 alternative	
 steps	
 that	
 developers	
 can	
 perform.	

Instead	
 of	
 being	
 inflexible	
 about	
 the	
 dynamics	
 of	
 a	
 TDD	
 process,	
 this	
 pattern	
 language	
 prefers	
 to	
 present	

the	
 different	
 existing	
 options,	
 discussing	
 their	
 respective	
 consequences.	
 Some	
 practices	
 documented	
 by	
 these	

patterns	
 may	
 look	
 like	
 as	
 anti-­‐patterns	
 in	
 the	
 first	
 impression.	
 However,	
 if	
 developers	
 are	
 aware	
 of	
 the	

consequences	
 and	
 of	
 the	
 other	
 choices,	
 they	
 can	
 be	
 valid	
 choices.	
 Future	
 evolutions	
 and	
 additions	
 for	
 this	

pattern	
 language	
 may	
 reveal	
 other	
 possible	
 steps	
 that	
 can	
 complement	
 and	
 enhance	
 the	
 traditional	
 TDD	

process.	
 	

Fig.	
 1	
 presents	
 a	
 pattern	
 map	
 with	
 the	
 ones	
 already	
 identified	
 for	
 this	
 pattern	
 language.	
 The	
 idea	
 of	
 this	

map	
 is	
 to	
 show	
 how	
 to	
 navigate	
 through	
 the	
 patterns	
 according	
 to	
 the	
 scenario	
 faced	
 in	
 the	
 TDD	
 session.	
 The	

patterns	
 in	
 grey	
 have	
 already	
 been	
 documented	
 in	
 (Guerra	
 2013)	
 and	
 the	
 ones	
 in	
 black	
 are	
 documented	
 in	

(Guerra	
 et	
 al.	
 2014).	
 The	
 remaining	
 ones,	
 in	
 white,	
 are	
 the	
 ones	
 that	
 are	
 the	
 focus	
 of	
 this	
 paper.	
 	

The	
 arrows	
 in	
 this	
 diagram	
 represent	
 the	
 paths	
 that	
 you	
 can	
 follow	
 to	
 choose	
 a	
 pattern	
 aiming	
 to	
 move	

forward	
 in	
 a	
 TDD	
 session.	
 The	
 patterns	
 with	
 starting	
 arrows	
 are	
 patterns	
 where	
 you	
 usually	
 start	
 a	
 TDD	

session.	
 If	
 TDD	
 were	
 a	
 dance,	
 the	
 Differential	
 Test	
 would	
 be	
 the	
 basic	
 step.	
 From	
 it,	
 you	
 can	
 decide	
 to	
 apply	

some	
 other	
 pattern	
 based	
 on	
 the	
 direction	
 where	
 do	
 you	
 want	
 to	
 drive	
 the	
 design.	
 After	
 applying	
 them,	
 the	

developer	
 should	
 step	
 back	
 to	
 the	
 central	
 pattern	
 and	
 continue	
 the	
 “dance”.	

	

The	
 Last	
 Two	
 Test-­‐Driven	
 Development	
 Step	
 Patterns:	
 Bug	
 Locator	
 and	
 Pause	
 for	
 Housekeeping:	
 Page	
 -­‐	
 3	

	

Fig.	
 1.	
 TDD	
 Step	
 Patterns	
 Map.	

The	
 following	
 describes	
 briefly	
 each	
 pattern	
 in	
 the	
 language:	

• API	
 Definition:	
 When	
 you	
 need	
 to	
 introduce	
 a	
 new	
 programming	
 element,	
 such	
 as	
 a	
 class	
 or	
 a	
 method,	

create	
 a	
 test	
 with	
 the	
 simplest	
 scenario	
 that	
 involves	
 it.	

• Differential	
 Test:	
 When	
 you	
 want	
 to	
 move	
 forward	
 in	
 the	
 TDD	
 session,	
 add	
 a	
 test	
 that	
 increments	
 a	

little	
 the	
 functionality	
 verified	
 by	
 the	
 previous	
 tests.	

• Exceptional	
 Limit:	
 When	
 you	
 have	
 a	
 scenario	
 where	
 the	
 class	
 functionality	
 does	
 not	
 work	
 properly,	

create	
 a	
 test	
 with	
 that	
 scenario	
 verifying	
 if	
 the	
 class	
 is	
 behaving	
 accordingly	
 to	
 these	
 scenarios.	

• Everything	
 Working	
 Together:	
 When	
 you	
 have	
 features	
 in	
 the	
 same	
 class	
 that	
 are	
 tested	
 separately,	

create	
 a	
 more	
 complex	
 test	
 scenario	
 where	
 these	
 features	
 should	
 work	
 together.	

• Bug	
 Locator:	
 When	
 a	
 bug	
 is	
 reported,	
 either	
 by	
 an	
 user	
 or	
 during	
 an	
 exploration	
 test,	
 create	
 a	
 new	
 test	

that	
 fails	
 because	
 of	
 it.	
 By	
 doing	
 that	
 the	
 developer	
 will	
 be	
 able	
 to	
 detect	
 the	
 location	
 of	
 that	
 bug.	
 Then,	

the	
 developer	
 should	
 fix	
 the	
 code	
 in	
 order	
 to	
 make	
 this	
 new	
 test	
 to	
 pass.	

• Diving	
 Deep:	
 When	
 the	
 complexity	
 of	
 an	
 implementation	
 demands	
 the	
 creation	
 of	
 small	
 auxiliary	

methods	
 or	
 classes,	
 ignore	
 temporarily	
 the	
 current	
 test	
 and	
 start	
 an	
 nested	
 TDD	
 session	
 to	
 develop	

this	
 auxiliary	
 code.	

The	
 Last	
 Two	
 Test-­‐Driven	
 Development	
 Step	
 Patterns:	
 Bug	
 Locator	
 and	
 Pause	
 for	
 Housekeeping:	
 Page	
 -­‐	
 4	

• Pause	
 for	
 Housekeeping:	
 When	
 the	
 application	
 class	
 needs	
 a	
 huge	
 change	
 to	
 make	
 the	
 current	
 test	
 to	

pass,	
 ignore	
 temporarily	
 the	
 current	
 test	
 and	
 refactor	
 the	
 production	
 code	
 considering	
 the	
 previous	

tests.	

• Mock	
 Complexity:	
 When	
 a	
 test	
 is	
 complicated	
 to	
 create	
 because	
 it	
 depend	
 on	
 an	
 external	
 resource,	

define	
 an	
 interface	
 that	
 encapsulates	
 the	
 resource	
 interaction	
 and	
 mock	
 it	
 in	
 the	
 test.	

• Dependency	
 Exposure:	
 When	
 you	
 need	
 to	
 define	
 an	
 API	
 from	
 an	
 explicit	
 dependency	
 of	
 the	

application	
 class,	
 create	
 a	
 test	
 that	
 creates	
 a	
 Mock	
 Object	
 and	
 define	
 the	
 expected	
 calls	
 to	
 the	

dependency	
 API.	

• Hide	
 Internal	
 Solution:	
 When	
 there	
 is	
 no	
 need	
 to	
 change	
 an	
 internal	
 dependency	
 implementation	
 and	

it	
 has	
 a	
 simple	
 and	
 well-­‐defined	
 role	
 in	
 the	
 class	
 functionality,	
 encapsulate	
 the	
 implementation	
 within	

the	
 developed	
 class	
 and	
 do	
 not	
 expose	
 the	
 solution	
 to	
 the	
 test	
 class.	

	

3. BUG	
 LOCATOR	

Also	
 Known	
 as	
 Isolate	
 the	
 Problem,	
 Finding	
 the	
 Bug.	

	

	

	

To	
 be	
 able	
 to	
 eliminate	
 a	
 bug	
 from	
 your	
 system,	
 you	
 should	
 create	
 a	
 test	
 that	
 traps	
 it	
 in	
 an	
 isolated	
 place	
 where	
 you	
 can	
 easily	
 find.	
 	
 	

	

Developing	
 an	
 application	
 by	
 using	
 TDD	
 does	
 not	
 make	
 it	
 immune	
 to	
 bugs.	
 So,	
 an	
 exploratory	
 testing	
 might	

detect	
 a	
 bug,	
 or	
 a	
 user	
 can	
 find	
 that	
 something	
 was	
 not	
 working	
 properly	
 on	
 the	
 software.	
 When	
 a	
 bug	
 is	

detected	
 on	
 an	
 application	
 developed	
 using	
 TDD	
 it	
 is	
 probably	
 because	
 that	
 scenario	
 was	
 not	
 covered	
 on	
 the	

developed	
 tests.	
 	

	

The	
 Last	
 Two	
 Test-­‐Driven	
 Development	
 Step	
 Patterns:	
 Bug	
 Locator	
 and	
 Pause	
 for	
 Housekeeping:	
 Page	
 -­‐	
 5	

*	
 	
 	
 *	
 	
 	
 *	

How	
 to	
 handle	
 bug	
 correction	
 by	
 using	
 TDD?	

	

When	
 a	
 problem	
 happens	
 in	
 software,	
 usually	
 there	
 is	
 pressure	
 from	
 users	
 and	
 product	
 owners	
 for	
 a	
 correction	

to	
 be	
 provided	
 as	
 soon	
 as	
 possible.	
 Because	
 of	
 this	
 pressure,	
 teams	
 sometimes	
 bypass	
 their	
 normal	

development	
 process.	

A	
 TDD	
 process	
 leaves	
 a	
 suite	
 of	
 automated	
 tests	
 that	
 can	
 be	
 used	
 as	
 regression	
 tests	
 to	
 verify	
 if	
 the	
 behavior	

verified	
 on	
 them	
 does	
 not	
 change	
 after	
 future	
 changes.	
 The	
 behavior	
 in	
 scenarios	
 that	
 are	
 not	
 covered	
 by	
 these	

tests	
 cannot	
 be	
 verified	
 in	
 future	
 code	
 changes.	

Sometimes,	
 when	
 a	
 developer	
 goes	
 straight	
 to	
 the	
 code	
 to	
 correct	
 the	
 bug,	
 he	
 can	
 change	
 a	
 piece	
 of	
 code	

that	
 is	
 not	
 responsible	
 for	
 the	
 problem.	
 Without	
 being	
 sure	
 about	
 the	
 scenario	
 in	
 which	
 the	
 problem	
 happens,	

there	
 can	
 be	
 a	
 waste	
 of	
 time	
 by	
 working	
 on	
 the	
 wrong	
 part	
 of	
 the	
 system.	

	

Therefore:	

Create	
 an	
 automated	
 test	
 that	
 reproduces	
 the	
 bug.	
 Make	
 sure	
 that	
 test	
 fails,	
 so	
 you	
 known	
 that	
 the	
 bug	

was	
 found.	
 Change	
 the	
 code	
 in	
 order	
 to	
 make	
 this	
 test	
 pass	
 and	
 proceed	
 with	
 the	
 TDD	
 session	
 until	
 the	

problem	
 is	
 completely	
 corrected.	
 	

	

A	
 difficulty	
 that	
 happens	
 when	
 a	
 bug	
 is	
 detected	
 is	
 to	
 locate	
 where	
 it	
 is	
 in	
 the	
 source	
 code.	
 If	
 automated	

tests	
 focus	
 on	
 single	
 classes,	
 when	
 a	
 test	
 with	
 the	
 failed	
 scenario	
 can	
 be	
 introduced	
 in	
 a	
 class	
 tests	
 and	
 fails	

because	
 of	
 the	
 bug,	
 it	
 is	
 clear	
 that,	
 at	
 least,	
 part	
 of	
 the	
 problem	
 is	
 there.	
 If	
 the	
 automated	
 test	
 created	
 has	
 a	

larger	
 scope,	
 the	
 problem	
 will	
 be	
 on	
 one	
 the	
 classes	
 covered	
 by	
 it.	
 By	
 doing	
 that,	
 the	
 bug	
 is	
 localized	
 and	

contained,	
 and	
 now,	
 what	
 the	
 developer	
 needs	
 to	
 do	
 is	
 to	
 follow	
 the	
 TDD	
 process	
 making	
 that	
 test	
 to	
 pass	
 with	

the	
 simplest	
 possible	
 solution.	

After	
 the	
 implementation	
 of	
 the	
 first	
 test,	
 some	
 Differential	
 Tests	
 could	
 also	
 be	
 introduced	
 to	
 explore	

other	
 similar	
 scenarios	
 that	
 could	
 also	
 contain	
 bugs.	
 A	
 unadvisable	
 approach	
 can	
 be	
 to	
 try	
 to	
 handle	
 bug	

scenarios	
 without	
 having	
 a	
 failed	
 test,	
 because	
 the	
 developer	
 can	
 try	
 to	
 correct	
 an	
 error	
 that	
 does	
 not	
 exist	
 in	

the	
 target	
 class.	

To	
 exemplify	
 the	
 usage	
 of	
 this	
 pattern,	
 consider	
 that	
 an	
 user	
 sees	
 a	
 vehicle	
 license	
 plate	
 with	
 a	
 invalid	

character	
 and	
 reports	
 a	
 bug	
 about	
 it.	
 When	
 trying	
 to	
 solve	
 this	
 issue,	
 the	
 first	
 assumption	
 is	
 that	
 the	
 problem	
 is	

in	
 the	
 class	
 that	
 validates	
 license	
 plates.	
 Since	
 there	
 were	
 no	
 tests	
 that	
 focus	
 on	
 this	
 scenario,	
 a	
 new	
 test,	
 such	

as	
 the	
 one	
 presented	
 on	
 Listing	
 1,	
 is	
 added	
 to	
 try	
 to	
 locate	
 the	
 bug	
 on	
 the	
 suspect	
 class.	
 If	
 the	
 test	
 fails,	
 the	

source	
 of	
 the	
 problem	
 is	
 found	
 and	
 the	
 developer	
 just	
 needs	
 to	
 make	
 this	
 test	
 pass.	
 	

If	
 the	
 test	
 passes,	
 that	
 means	
 that	
 the	
 test	
 did	
 not	
 captured	
 the	
 right	
 failed	
 scenario	
 or	
 that	
 the	
 problem	
 is	

somewhere	
 else.	
 If	
 the	
 problem	
 is	
 on	
 the	
 chosen	
 scenario,	
 the	
 test	
 should	
 be	
 changed	
 in	
 order	
 to	
 find	
 the	
 bug.	
 If	

the	
 developer	
 thinks	
 that	
 the	
 problem	
 might	
 be	
 on	
 another	
 class,	
 a	
 new	
 test	
 should	
 be	
 introduced	
 on	
 the	
 test	

suit	
 that	
 covers	
 that	
 other	
 class.	

Listing	
 1.	
 Adding	
 a	
 test	
 to	
 verify	
 a	
 wrong	
 licence	
 plate	
 found	
 by	
 an	
 user	

@Test	

public	
 void	
 licencePlateWithSimbol(){	

	
 	
 	
 LicencePlateValidator	
 v	
 =	
 new	
 LicencePlateValidator()	

	
 	
 	
 assertFalse(v.validate("A#A8934"));	

}	

	

	

The	
 Last	
 Two	
 Test-­‐Driven	
 Development	
 Step	
 Patterns:	
 Bug	
 Locator	
 and	
 Pause	
 for	
 Housekeeping:	
 Page	
 -­‐	
 6	

A	
 good	
 consequence	
 of	
 this	
 pattern	
 is	
 that	
 the	
 developer	
 avoids	
 messing	
 with	
 code	
 that	
 are	
 not	
 related	
 to	
 the	

bug,	
 since	
 the	
 test	
 should	
 be	
 detecting	
 it.	
 Another	
 benefit	
 is	
 that	
 because	
 there	
 is	
 a	
 new	
 automated	
 test	
 that	
 will	

be	
 executed	
 in	
 future	
 regression	
 tests,	
 if	
 the	
 bug	
 returns	
 it	
 will	
 be	
 caught	
 by	
 the	
 test.	
 	

The	
 negative	
 side	
 of	
 this	
 pattern	
 is	
 when	
 the	
 bug	
 happens	
 in	
 a	
 scenario	
 that	
 is	
 hard	
 to	
 represent	
 in	

automated	
 tests.	
 For	
 instance,	
 a	
 bug	
 in	
 the	
 synchronization	
 mechanism	
 of	
 a	
 parallel	
 processing	
 software	
 may	

be	
 hard	
 to	
 provoke	
 in	
 an	
 automated	
 test,	
 and	
 would	
 be	
 easier	
 to	
 fix	
 directly.	
 Other	
 problems	
 related	
 to	
 non-­‐
functional	
 requirements	
 also	
 fall	
 in	
 this	
 scenario.	
 	

For	
 bugs	
 hard	
 to	
 simulate	
 in	
 the	
 current	
 test	
 suite,	
 the	
 developer	
 might	
 explore	
 other	
 testing	
 approaches.	

For	
 instance,	
 a	
 error	
 in	
 a	
 thread	
 synchronization	
 might	
 manifest	
 by	
 performing	
 a	
 load	
 test.	
 It	
 is	
 important	
 to	

state	
 that	
 the	
 testing	
 approach	
 used	
 in	
 these	
 cases	
 may	
 not	
 be	
 fully	
 automated.	
 	

	

*	
 	
 	
 *	
 	
 	
 *	

As	
 with	
 API	
 Definition,	
 this	
 pattern	
 usually	
 is	
 a	
 starting	
 point	
 in	
 a	
 TDD	
 session.	
 After	
 the	
 first	
 test,	
 if	
 there	
 is	

any	
 other	
 scenario	
 to	
 be	
 implemented,	
 a	
 Differential	
 Test	
 should	
 be	
 introduced	
 and	
 a	
 new	
 TDD	
 cycle	
 begins.	
 It	

is	
 pretty	
 common	
 for	
 a	
 Bug	
 Locator	
 to	
 define	
 an	
 Exceptional	
 Limit	
 for	
 a	
 scenario	
 that	
 was	
 not	
 previously	

predicted.	

In	
 a	
 blog	
 post	
 (Sobral	
 2012),	
 the	
 application	
 of	
 this	
 pattern	
 is	
 described.	
 The	
 developer	
 found	
 the	
 bug	

motivated	
 by	
 a	
 piece	
 of	
 data	
 that	
 was	
 not	
 being	
 produced	
 by	
 the	
 software.	
 He	
 described	
 that	
 it	
 uses	
 an	
 automated	

test	
 to	
 reproduce	
 the	
 bug	
 and	
 then	
 find	
 where	
 it	
 is	
 located.	
 	

In	
 Alura	
 (Caelum,	
 2012),	
 an	
 e-­‐learning	
 system,	
 the	
 pattern	
 is	
 always	
 applied.	
 Every	
 time	
 a	
 bug	
 happens	
 in	

production,	
 the	
 team	
 is	
 expected	
 to	
 write	
 an	
 automated	
 test	
 to	
 reproduce	
 the	
 bug,	
 and	
 then	
 fix	
 it.	

On	
 Esfinge	
 QueryBuilder	
 (Guerra	
 2014)	
 a	
 bug	
 was	
 found	
 during	
 integration	
 testing.	
 This	
 bug	
 was	
 about	
 a	

parameter	
 that	
 was	
 not	
 being	
 included	
 on	
 a	
 query.	
 In	
 order	
 to	
 locate	
 the	
 bug,	
 a	
 test	
 was	
 introduced	
 on	
 the	
 unit	

testing	
 of	
 the	
 class	
 that	
 generated	
 the	
 query,	
 however	
 surprisingly	
 the	
 test	
 passed.	
 The	
 next	
 guess	
 was	
 the	
 class	

that	
 generated	
 the	
 parameters,	
 and	
 a	
 new	
 test	
 was	
 introduced	
 in	
 its	
 unit	
 tests.	
 This	
 test	
 failed,	
 revealing	
 that	
 there	

was	
 a	
 collision	
 on	
 the	
 name	
 given	
 to	
 the	
 parameters	
 in	
 that	
 case.	

	

4. PAUSE	
 FOR	
 HOUSEKEEPING	

Also	
 Known	
 as	
 First	
 Refactor,	
 After	
 Add	
 Functionality,	
 Prepare	
 for	
 Changes	

	
 	

	

The	
 Last	
 Two	
 Test-­‐Driven	
 Development	
 Step	
 Patterns:	
 Bug	
 Locator	
 and	
 Pause	
 for	
 Housekeeping:	
 Page	
 -­‐	
 7	

	

Sometimes	
 you	
 need	
 to	
 refactor	
 the	
 current	
 solution	
 because	
 it	
 is	
 not	
 compatible	
 with	
 the	
 next	
 new	
 requirements.	

	
 	
 	

	

The	
 TDD	
 technique	
 states	
 that	
 the	
 simplest	
 solution	
 should	
 always	
 be	
 adopted	
 in	
 order	
 to	
 make	
 the	
 current	

test	
 suite	
 to	
 pass.	
 However,	
 sometimes,	
 the	
 simplest	
 solution	
 for	
 the	
 previous	
 implementations	
 makes	
 it	

impossible	
 to	
 implement	
 the	
 next	
 requirement.	
 This	
 incompatibility	
 is	
 not	
 because	
 of	
 a	
 lack	
 of	
 code	
 quality,	
 but	

because	
 in	
 previous	
 implementation	
 the	
 simplest	
 solution	
 for	
 the	
 current	
 requirements	
 was	
 implemented.	

	

*	
 	
 	
 *	
 	
 	
 *	

How	
 to	
 proceed	
 with	
 the	
 implementation	
 when	
 the	
 current	
 class	
 solution	
 is	
 not	
 suitable	
 for	
 the	
 next	

functionality?	

	

When	
 a	
 developer	
 knows	
 the	
 functionality	
 he	
 needs	
 to	
 implement	
 in	
 a	
 TDD	
 session,	
 it	
 is	
 very	
 improbable	
 that	

he	
 will	
 adopt	
 a	
 solution	
 that	
 is	
 completely	
 incompatible	
 with	
 the	
 next	
 requirements.	
 However,	
 new	
 unexpected	

requirements	
 can	
 arise	
 from	
 customer	
 feedback	
 or	
 in	
 the	
 next	
 iteration	
 that	
 will	
 make	
 the	
 current	
 solution	

unsuitable.	
 An	
 example	
 of	
 this	
 scenario	
 occurs	
 when	
 the	
 current	
 data	
 structure	
 is	
 not	
 enough	
 to	
 store	
 all	
 the	

information	
 needed	
 by	
 the	
 next	
 requirement.	

Searching	
 always	
 for	
 the	
 simplest	
 solution	
 for	
 the	
 current	
 requirements	
 opens	
 the	
 possibility	
 to	
 reach	
 a	

design	
 "dead	
 end",	
 and	
 the	
 need	
 to	
 search	
 for	
 another	
 solution	
 that	
 will	
 be	
 suitable	
 for	
 the	
 next	
 ones.	

If	
 the	
 developer	
 tries	
 to	
 add	
 new	
 functionality	
 that	
 will	
 demand	
 huge	
 changes	
 in	
 the	
 class,	
 he	
 creates	
 risk	
 to	

breaks	
 the	
 previous	
 tests	
 by	
 making	
 the	
 current	
 one	
 to	
 pass.	
 When	
 these	
 changes	
 are	
 big,	
 it	
 is	
 hard	
 to	
 know	

exactly	
 which	
 part	
 was	
 responsible	
 for	
 the	
 failure.	
 	

It	
 is	
 important	
 to	
 state	
 that	
 this	
 problem	
 it	
 is	
 not	
 because	
 of	
 any	
 lack	
 of	
 quality	
 on	
 the	
 source	
 code.	
 The	

incompatibility	
 of	
 the	
 solution	
 it	
 is	
 also	
 not	
 because	
 some	
 developer	
 make	
 a	
 mistake	
 when	
 he	
 chooses	
 this	

solution,	
 because	
 he	
 was	
 adopting	
 the	
 simplest	
 solution	
 for	
 the	
 current	
 requirements,	
 as	
 stated	
 by	
 the	
 TDD	

technique.	
 This	
 scenario	
 is	
 common	
 to	
 happen	
 when	
 using	
 TDD	
 and	
 it	
 is	
 part	
 of	
 its	
 bet	
 that	
 it	
 is	
 better	
 to	
 spend	

time	
 in	
 some	
 refactorings	
 than	
 to	
 add	
 several	
 features	
 on	
 the	
 code	
 expecting	
 uncertain	
 future	
 requirements.	

	

Therefore:	

The	
 Last	
 Two	
 Test-­‐Driven	
 Development	
 Step	
 Patterns:	
 Bug	
 Locator	
 and	
 Pause	
 for	
 Housekeeping:	
 Page	
 -­‐	
 8	

Ignore	
 temporarily	
 the	
 test	
 that	
 represents	
 the	
 new	
 functionality,	
 and	
 refactor	
 the	
 current	
 code	
 to	
 be	

more	
 suitable	
 for	
 its	
 needs.	
 Then,	
 reintroduce	
 the	
 test	
 and	
 follow	
 the	
 TDD	
 cycle	
 based	
 on	
 the	
 most	

suitable	
 step	
 pattern.	
 	
 	
 	

	

This	
 pattern	
 proposes	
 the	
 division	
 between	
 the	
 refactoring	
 task	
 and	
 the	
 introduction	
 of	
 new	
 functionality.	

During	
 the	
 first	
 step,	
 it	
 is	
 advisable	
 to	
 skip	
 the	
 test	
 that	
 introduces	
 the	
 new	
 class	
 scenario	
 to	
 focus	
 only	
 on	

making	
 the	
 previous	
 test	
 suite	
 to	
 work	
 on	
 the	
 refactored	
 solution.	
 For	
 instance,	
 in	
 JUnit	
 that	
 can	
 be	
 done	
 by	

adding	
 the	
 @Ignore	
 annotation	
 on	
 a	
 test.	
 That	
 will	
 avoid	
 the	
 "psychological	
 pressure"	
 of	
 seeing	
 a	
 failing	
 test,	

and	
 sending	
 a	
 message	
 that	
 it	
 is	
 not	
 the	
 focus	
 to	
 make	
 it	
 pass	
 right	
 now.	

The	
 refactoring	
 should	
 be	
 done	
 in	
 small	
 steps	
 in	
 order	
 to	
 make	
 the	
 test	
 suite	
 to	
 pass	
 between	
 their	

implementation.	
 This	
 practice	
 will	
 avoid	
 errors	
 happening	
 after	
 a	
 change	
 that	
 involved	
 several	
 code	
 changes,	

making	
 hard	
 to	
 identify	
 which	
 modification	
 was	
 responsible	
 for	
 it.	
 After	
 the	
 refactoring,	
 the	
 test	
 is	

reintroduced	
 in	
 the	
 test	
 suite	
 and	
 the	
 TDD	
 process	
 will	
 follow	
 its	
 regular	
 path.	
 Since	
 it	
 is	
 not	
 on	
 the	
 scope	
 of	

this	
 pattern	
 to	
 present	
 refactoring	
 best	
 practices,	
 they	
 can	
 be	
 accessed	
 on	
 (Fowler	
 1999).	

This	
 situation	
 often	
 happens	
 when	
 it	
 is	
 necessary	
 to	
 change	
 the	
 data	
 structure	
 used	
 internally	
 by	
 the	
 class.	

For	
 instance,	
 consider	
 the	
 class	
 presented	
 in	
 Listing	
 2,	
 which	
 uses	
 a	
 list	
 to	
 store	
 the	
 items	
 of	
 a	
 shopping	
 cart.	

Imagine	
 that	
 a	
 future	
 requirement	
 to	
 access	
 the	
 items	
 based	
 on	
 their	
 ID	
 make	
 this	
 data	
 structure	
 not	
 suitable	

for	
 the	
 next	
 steps.	
 	

	

Listing	
 2.	
 ShoppingCart	
 using	
 a	
 list	
 as	
 data	
 structure.	

public	
 class	
 ShoppingCart{	

	
 private	
 List<Item>	
 items	
 =	
 …;	

	

	
 public	
 void	
 addItem(Item	
 item){	

	
 	
 	
 	
 	
 items.add(item);	

	
 }	

	
 public	
 double	
 total(){	

	
 	
 	
 	
 	
 double	
 total	
 =	
 0;	

	
 	
 for(Item	
 i	
 :	
 items){	

	
 	
 	
 total	
 +=	
 i.price()	
 *	
 i.qtd();	

	
 }	

	
 return	
 total;	

	
 }	

}	

	

	

To	
 perform	
 a	
 Pause	
 for	
 Housekeeping,	
 the	
 developer	
 should	
 introduce	
 the	
 new	
 data	
 structure	
 in	
 small	
 steps	

in	
 order	
 to	
 make	
 the	
 tests	
 still	
 run	
 between	
 them.	
 The	
 next	
 listings	
 presents	
 a	
 path	
 that	
 can	
 be	
 followed	
 to	

perform	
 this	
 refactoring:	
 [a]	
 introduce	
 the	
 new	
 data	
 structure	
 (Listing	
 3);	
 [b]	
 update	
 the	
 new	
 data	
 structure	

when	
 data	
 is	
 inserted	
 and	
 updated	
 (Listing	
 4);	
 [c]	
 substitute	
 the	
 usage	
 of	
 the	
 old	
 data	
 structure	
 for	
 the	
 new	
 one	

(Listing	
 5);	
 [d]	
 remove	
 the	
 old	
 data	
 structure	
 (Listing	
 6).	

	

Listing	
 3.	
 Refactoring	
 step	
 1:	
 add	
 new	
 data	
 structure.	

public	
 class	
 ShoppingCart{	

	
 private	
 List<Item>	
 items	
 =	
 …;	

	
 private	
 Map<String,	
 Item>	
 itemMap	
 =	
 …;	

	

	
 public	
 void	
 addItem(Item	
 item){	

	
 	
 	
 	
 	
 items.add(item);	

The	
 Last	
 Two	
 Test-­‐Driven	
 Development	
 Step	
 Patterns:	
 Bug	
 Locator	
 and	
 Pause	
 for	
 Housekeeping:	
 Page	
 -­‐	
 9	

	
 }	

	
 public	
 double	
 total(){	

	
 	
 	
 	
 	
 double	
 total	
 =	
 0;	

	
 	
 for(Item	
 i	
 :	
 items){	

	
 	
 	
 total	
 +=	
 i.price()	
 *	
 i.qtd();	

	
 	
 }	

	
 	
 return	
 total;	

	
 }	

}	

	

	

Listing	
 4.	
 Refactoring	
 step	
 2:	
 add	
 logic	
 in	
 data	
 insertion	
 and	
 update.	

public	
 class	
 ShoppingCart{	

	
 private	
 List<Item>	
 items	
 =	
 …;	

	
 private	
 Map<String,	
 Item>	
 itemMap	
 =	
 …;	

	

	
 public	
 void	
 addItem(Item	
 item){	

	
 	
 	
 	
 	
 items.add(item);	

	
 	
 itemMap.put(item.getId(),	
 item);	

	
 }	

	
 public	
 double	
 total(){	

	
 	
 	
 	
 	
 double	
 total	
 =	
 0;	

	
 	
 for(Item	
 i	
 :	
 items){	

	
 	
 	
 total	
 +=	
 i.price()	
 *	
 i.qtd();	

	
 	
 }	

	
 return	
 total;	

	
 }	

}	

	

	

Listing	
 5.	
 Refactoring	
 step	
 3:	
 changing	
 code	
 that	
 uses	
 the	
 data	

public	
 class	
 ShoppingCart{	

	
 private	
 List<Item>	
 items	
 =	
 …;	

	
 private	
 Map<String,	
 Item>	
 itemMap	
 =	
 …;	

	

	
 public	
 void	
 addItem(Item	
 item){	

	
 	
 	
 	
 	
 items.add(item);	

	
 	
 itemMap.put(item.getId(),	
 item);	

	
 }	

	
 public	
 double	
 total(){	

	
 	
 	
 	
 	
 double	
 total	
 =	
 0;	

	
 	
 for(Item	
 i	
 :	
 itemMap.values()){	

	
 	
 	
 total	
 +=	
 i.price()	
 *	
 i.qtd();	

	
 	
 }	

	
 	
 return	
 total;	

	
 }	

}	

	

	

Listing	
 6.	
 Refactoring	
 step	
 4:	
 remove	
 old	
 data	
 structure.	

The	
 Last	
 Two	
 Test-­‐Driven	
 Development	
 Step	
 Patterns:	
 Bug	
 Locator	
 and	
 Pause	
 for	
 Housekeeping:	
 Page	
 -­‐	
 10	

public	
 class	
 ShoppingCart{	

	
 private	
 Map<String,	
 Item>	
 itemMap	
 =	
 …;	

	

	
 public	
 void	
 addItem(Item	
 item){	

	
 	
 itemMap.put(item.getId(),	
 item);	

	
 }	

	
 public	
 double	
 total(){	

	
 	
 	
 	
 	
 double	
 total	
 =	
 0;	

	
 	
 for(Item	
 i	
 :	
 itemMap.values()){	

	
 	
 	
 total	
 +=	
 i.price()	
 *	
 i.qtd();	

	
 	
 }	

	
 	
 return	
 total;	

	
 }	

}	

	

	

To	
 finalize	
 the	
 example,	
 it	
 is	
 important	
 to	
 state	
 that	
 the	
 tests	
 should	
 be	
 executed	
 after	
 every	
 refactoring	
 step.	

This	
 practice	
 will	
 give	
 confidence	
 that	
 the	
 behavior	
 does	
 not	
 change	
 on	
 it	
 and	
 he	
 can	
 proceed	
 to	
 the	
 next	
 one.	
 	

A	
 positive	
 consequence	
 of	
 this	
 pattern	
 is	
 that	
 the	
 class	
 solution	
 evolves	
 to	
 a	
 more	
 suitable	
 internal	

structure,	
 and	
 by	
 running	
 the	
 tests	
 it	
 is	
 possible	
 to	
 make	
 sure	
 that	
 it	
 is	
 compatible	
 to	
 the	
 previous	
 test	

scenarios.	
 By	
 doing	
 that,	
 it	
 is	
 possible	
 to	
 avoid	
 introducing	
 functionality	
 and	
 restructure	
 the	
 code	
 at	
 the	
 same	

time.	

Despite	
 an	
 eventual	
 Pause	
 for	
 Housekeeping	
 is	
 natural	
 on	
 a	
 TDD	
 process,	
 a	
 frequent	
 need	
 of	
 it	
 is	
 a	
 hint	

that	
 something	
 is	
 not	
 right.	
 If	
 you	
 need	
 big	
 refactorings	
 on	
 the	
 same	
 point	
 of	
 the	
 system	
 frequently,	
 may	
 be	
 it	
 is	

a	
 sign	
 that	
 a	
 better	
 understanding	
 of	
 that	
 part	
 of	
 the	
 domain	
 is	
 necessary.	

	

*	
 	
 	
 *	
 	
 	
 *	

When	
 the	
 API	
 Definition	
 pattern	
 is	
 applied,	
 usually	
 a	
 trivial	
 solution	
 is	
 used	
 in	
 order	
 to	
 make	
 the	
 test	
 pass	
 and	

continue	
 the	
 development	
 with	
 a	
 new	
 Differential	
 Test.	
 In	
 the	
 next	
 tests,	
 it	
 is	
 common	
 to	
 change	
 the	
 data	

structure	
 and	
 the	
 previous	
 solutions	
 until	
 having	
 a	
 significant	
 amount	
 of	
 implemented	
 functionality.	
 When	
 the	

amount	
 of	
 functionality	
 is	
 small,	
 is	
 is	
 safe	
 to	
 implement	
 directly	
 the	
 functionality	
 without	
 making	
 a	
 Pause	
 for	

Housekeeping.	

In	
 the	
 development	
 of	
 Esfinge	
 QueryBuilder	
 (Guerra	
 2014),	
 an	
 implementation	
 of	
 the	
 Visitor	
 pattern	

generated	
 a	
 query	
 for	
 the	
 database	
 while	
 it	
 receives	
 the	
 method	
 invocation.	
 The	
 next	
 requirement	
 makes	
 the	

query	
 to	
 be	
 generated	
 dependent	
 on	
 the	
 next	
 call,	
 which	
 makes	
 unsuitable	
 the	
 query	
 generation	
 on	
 the	
 fly.	
 Based	

on	
 that,	
 a	
 Pause	
 for	
 Housekeeping	
 was	
 made	
 to	
 refactor	
 the	
 solution	
 in	
 order	
 to	
 store	
 the	
 information	
 and	
 then	

generate	
 the	
 query	
 in	
 the	
 end.	
 After	
 that,	
 the	
 new	
 functionality	
 was	
 implemented.	

During	
 the	
 development	
 of	
 MetricMiner	
 (Sokol,	
 2013),	
 we	
 needed	
 to	
 implement	
 a	
 highly	
 flexible	
 way	
 to	

calculate	
 different	
 code	
 metrics	
 for	
 the	
 same	
 source	
 code.	
 As	
 soon	
 as	
 we	
 finished	
 it,	
 the	
 next	
 requirement	
 was	
 to	

implement	
 metrics	
 for	
 a	
 group	
 of	
 files.	
 Based	
 on	
 that,	
 we	
 decided	
 to	
 stop	
 the	
 implementation	
 and	
 refactor	
 the	

solution	
 to	
 create	
 two	
 different	
 subsets	
 of	
 metrics.	
 After	
 that,	
 we	
 continue	
 the	
 implementation.	

	

5. CONCLUSION	

This	
 paper	
 finished	
 the	
 documentation	
 of	
 the	
 initial	
 set	
 of	
 patterns	
 of	
 the	
 TDD	
 Steps	
 Pattern	
 Language.	
 This	

pattern	
 language	
 does	
 not	
 intend	
 to	
 be	
 complete,	
 and	
 it	
 is	
 expected	
 that	
 other	
 patterns	
 complements	
 and	

enhance	
 it	
 in	
 the	
 future.	
 However	
 the	
 intent	
 was	
 to	
 capture	
 the	
 current	
 knowledge	
 about	
 designing	
 by	
 using	

TDD.	
 	

The	
 Last	
 Two	
 Test-­‐Driven	
 Development	
 Step	
 Patterns:	
 Bug	
 Locator	
 and	
 Pause	
 for	
 Housekeeping:	
 Page	
 -­‐	
 11	

One	
 of	
 the	
 goals	
 of	
 this	
 pattern	
 language	
 is	
 to	
 document	
 the	
 recurrent	
 solutions	
 used	
 by	
 experienced	
 TDD	

practitioners	
 in	
 order	
 to	
 develop	
 and	
 design	
 a	
 software	
 system	
 by	
 using	
 this	
 technique.	
 Future	
 works	
 can	

explore	
 the	
 use	
 of	
 the	
 patterns	
 to	
 teach	
 TDD	
 and	
 help	
 beginners	
 to	
 start	
 on	
 this	
 technique	
 and	
 practitioners	

that	
 use	
 TDD	
 only	
 for	
 development	
 to	
 perform	
 it	
 also	
 for	
 design	
 purposes.	

	

REFERENCES	

Astels,	
 D.	
 2003.	
 Test-­‐Driven	
 Development:	
 A	
 Practical	
 Guide.	
 Second	
 edition,	
 Prentice	
 Hall.	

Beck,	
 K.	
 2002.	
 Test	
 Driven	
 Development:	
 By	
 Example.	
 Addison-­‐Wesley	
 Professional.	

Caelum.	
 Alura,	
 E-­‐Learning	
 System.	
 http://www.alura.com.br,	
 2012.	

Fowler,	
 M.	
 1999.	
 Refactoring:	
 Improving	
 the	
 Design	
 of	
 Existing	
 Code.	
 Addison-­‐Wesley	
 Longman	
 Publishing	
 Co.,	
 Inc.,	
 Boston,	
 MA,	
 USA.	

Freeman,	
 S.	
 and	
 Pryce,	
 N.	
 2006.	
 Evolving	
 an	
 Embedded	
 Domain-­‐Specific	
 Language	
 in	
 Java.	
 In	
 Proceedings	
 of	
 the	
 Object-­‐Oriented	

Programming,	
 Systems,	
 Languages	
 &	
 Applications	
 (OOPSLA)	
 2006.	

Guerra,	
 E.	
 2012.	
 Fundamental	
 Test	
 Driven	
 Development	
 Step	
 Patterns.	
 Proceedings	
 of	
 the	
 19th	
 Conference	
 on	
 Pattern	
 Languages	
 of	

Programs.	

Guerra,	
 E.,	
 Yoder,	
 J.,	
 Aniche,	
 M.,	
 Gerosa,	
 M.	
 2013.	
 Test-­‐Driven	
 Development	
 Step	
 Patterns	
 For	
 Designing	
 Objects	
 Dependencies.	
 Proceedings	
 of	

the	
 20th	
 Conference	
 on	
 Pattern	
 Languages	
 of	
 Programs.	

Guerra,	
 E.,	
 2014	
 .	
 Designing	
 a	
 Framework	
 with	
 TDD:	
 A	
 Journey.	
 IEEE	
 Software,	
 v.	
 Jan/Fe,	
 p.	
 9-­‐14.	

Martin,	
 R.	
 2006.	
 Agile	
 Principles,	
 Patterns,	
 and	
 Practices	
 in	
 C#.	
 First	
 edition,	
 Prentice	
 Hall.	

Sobral,	
 D.	
 2012.	
 Bugs,	
 TDD	
 and	
 Functional	
 Programming,	
 available	
 at	
 http://dcsobral.blogspot.com.br/2012/09/bugs-­‐tdd-­‐and-­‐functional-­‐
programming.html	

Sokol,	
 F.	
 Z.,	
 Aniche,	
 M.	
 F.,	
 &	
 Gerosa,	
 M.	
 A.	
 (2013,	
 September).	
 MetricMiner:	
 Supporting	
 researchers	
 in	
 mining	
 software	
 repositories.	
 In	
 Source	

Code	
 Analysis	
 and	
 Manipulation	
 (SCAM),	
 2013	
 IEEE	
 13th	
 International	
 Working	
 Conference	
 on	
 (pp.	
 142-­‐146).	
 IEEE.	

