PDC: Persistent Data Collections pattern

Tiago Massoni Vander Alves Sérgio Soares Paulo Borba*
Centro de Informatica
Universidade Federal de Pernambuco

Introduction

The object—oriented applications layer architecture [2, 3] allows the distribution of classes
into well-defined layers, according to each crosscutting concern of an application (busi-
ness, communication, data access, etc.) to obtain separation of concerns. Elements from
different layers communicate only through interfaces. However, we have to refine these
layers by filling them with specific classes. The complete set of these classes, related to
business and data access concerns, was transformed into a design pattern, called PDC
(Persistent Data Collections), which is presented in this paper.

Brief

Provide a set of classes and interfaces in order to separate data access code from business
and user—interface code, promoting modularity.
Context

When developing persistent object—oriented information systems applications using spe-
cific Application Programming Interfaces (APIs) that lead to interwoven code making
maintenance and reuse difficult.

Problem

Obtain better maintenance and reuse levels when using persistence mechanisms to develop
an object—oriented application.

Forces

e Developers should be able to address the business aspects of an application inde-
pendently from persistence operations.

*Supported in part by CNPq, grant 521994/96-9. Electronic mail: {tmasson,vralves}@us.ibm.com,
{scbs,phmb}@cin.ufpe.br. Av. Professor Luis Freire s/n Cidade Universitaria 50740-540 Recife PE
Brazil.

e Ad hoc implementations directly using specific Application Programming Interfaces
(APIs) usually lead to interwoven code that is hard to maintain. For example, a
Java [8] program can use the JDBC API (Java Database Connectivity APT [14]) for
manipulating persistent data within business code.

e The type of persistent storage or vendor may change over the life of an application.
e Business classes may be reused by other applications.

e [t may be non-trivial to deal with some aspects from persistent systems, such as
enabling connections to database platforms and managing transactions efficiently.

e The system performance should not be affected.

Solution

The basic idea of PDC is to avoid mixing data access code with business code from
domain-related objects, leading to extensibility and reusability. For this purpose, we
propose the separation of design classes in two types:

e classes describing business logic objects.
e classes for data manipulation and storage, with specific persistence code.

The communication between these two types of classes is carried out through inter-
faces, which guarantee independence between the business layer and the data access layer.
Business code will be the same, regardless of how data access operations are implemented.

PDC suggests the use of persistent data collections, which contain code for manipu-
lating a group of persistent objects of an application. These collections represent a clear
distinction between the ”data” and the ”data set”, being the core of our solution. Our so-
lution is complemented by ideas taken from other well-defined design patterns, as Facade,
Abstract Factory and Bridge [7]. The goal is to reduce the impact caused by modifications
in the system functional and non—functional requirements.

As in the example in Figure 3, for each important domain object which will be persis-
tent in the application (like Account), we create two other classes: the business collection
(AccountRecord) and the data collection (AccountRepositoryJDBC) classes, represent-
ing business and persistent collections of domain objects, respectively. Furthermore, each
persistent domain class must inherit from the PersistentObject class, indicating that
its objects will be stored persistently.

The Bank class encapsulates all services offered by the application (applying the Facade
pattern [7]). The object from this class calls methods on all business collection objects
of the application (as AccountRecord), in order to implement the services. The business
collection in turn uses persistence-related services from its corresponding persistent data
collection (as the insert and search methods).

The PersistenceMechanismJDBC class is used by Bank and persistent data collections
(as AccountRepositoryJDBC) for performing database platform services, such as connec-
tion and transaction management. These issues are addressed by specific methods in the
persistence mechanism.

In order to request services from the data access layer, the business objects send mes-
sages to data access objects only through interfaces, which provides extensibility for the
design of the application. In the example, the TAccountRepository interface separates
business collections from persistent data collections, and the IPersistenceMechanism
interface isolates specific persistence mechanism services from its business clients, such as
the Bank class.

As in the example above, we can use PDC to structure the application using a set
of specific classes, separating business and user—interface concerns from persistence con-
cerns. Such application is easier to maintain and to extend, since its core functionality
is decoupled from data access code. In addition, classes from the application can also be
reused by other applications.

Structure

Figure 1 details the structure of PDC, using an UML class diagram [4]. The class names
denote the element of the pattern itself, including classes with the ”Interface” stereotype,
which denote interfaces containing only method signatures to be implemented by the
indicated classes.

Facade

system3ervice()

1“*

specificiystemBe rvice)

\L “<lnterface>>
“=Interface>> [Fetzistenceldechanism
[Business-Data

BusinessCollection ‘

insest) beginTransaction)
tetmovel) c-:-nne;t()
update() cothmit()
searchi) &
PersistentDataCollection Persistencelechanism
rn;j:;?eo beginTransaction)
connect)
updatel) commnic
searchi)

i

BusineszsBasic

getClazsData)

Figure 1: Class diagram of PDC.

The participants of the pattern are presented as follows, along with their matching
elements of the example presented in Figure 3:

e Facade. This class provides a simple interface to all services of a complex sys-
tem [7]. A facade offers a simple default view of the system that is useful for most
clients. It keeps references to the several BusinessCollection objects of the ap-
plication, and delegates calls to them. Additionally, it implements the Singleton
pattern, thus exactly one instance of this class will be active during execution. This
element is represented by the Bank class in the example.

e BusinessBasic. This class represents a business basic concept, reflecting clearly
the problem domain (for instance, account, client, investment). If we choose this
class to inherit from an abstract class containing abstract data access methods (see
Implementation Section), the BusinessBasic class has to implement those methods.
Using this approach, although some data access code is placed within a business
class, the business code of the class does not depend on the data access code. Such
code on a business basic class can be easily removed or replaced, with no impact on
business code. In the example, this class is represented by the Account class.

e BusinessCollection. This class represents a grouping of objects from a sig-
nificant business basic class, on the business’ perspective. It contains methods
for inserting, querying, updating, and deleting business objects, with verification
and tests of preconditions related to the object manipulation. Furthermore, the
BusinessCollection class also contains methods directly related to the application
domain. This element is represented by the AccountRecord class in the example.

e PersistentDataCollection. This class contains methods for manipulating per-
sistent objects of a specific business basic class. The code for these methods de-
pends on a specific API for accessing some persistence platform, thus any changes
to this platform will cause direct impact on this class, but absolutely no impact
on business code (since the IBusiness—Data interface isolates these changes). The
PersistentDataCollection class implements methods from a IBusiness-Data in-
terface and depends on services from the PersistenceMechanism class in order
to perform database operations, more specifically for finer granular transactions
and database connections. In the example, the role of this class is played by the
AccountRepositoryJDBC class.

e IBusiness—Data. This interface establishes a communication protocol between
BusinessCollection objects and PersistentDataCollection objects. A business
collection class depends on this interface for storing and retrieving objects from the
database. This approach promotes modularity, since changes to the data access code
do not have impact on business code. In the example, this interface is represented
by IAccountRepository.

e PersistenceMechanism. This class contains methods that implement specific ser-
vices related to a database platform, such as connecting to and disconnecting from
the database, and transaction management. Methods related to connection manage-
ment open and maintain a database connection for a service from the application,
making this connection available to one or more PersistentDataCollection ob-
jects involved in the accomplishment of the service. Methods related to transaction
management open, confirm or abort transactions, in order to provide consistency
among all operations used to accomplish an application service. The code of these

methods depends on a specific persistence API. This class is represented by the
PersistenceMechanismJDBC class in the example.

e IPersistenceMechanism. This interface is defined in order to provide indepen-
dence between the business classes and the PersistenceMechanism class (which
implements this interface). Therefore, if we change the database platform, we have
to replace the old PersistenceMechanism object by a new object, but this modifi-
cation does not have impact on business classes. The Facade class depends on this
interface for invoking transaction methods. The example presents an interface with
the same name.

Dynamics

Figure 2 shows a sequence diagram [4] of a typical scenario for the use of PDC, using the
approach of data access methods encapsulated into a business basic class (see Implementa-
tion Section). The Facade object creates a PersistenceMechanism object, whose services
will be requested during execution. Next, a service on the Facade object is called, which
in turn begins a transaction (invoking a method on the PersistenceMechanism object)
and delegates the call to a BusinessCollection object in order to perform this service
(a querying operation that retrieves data from the database). The BusinessCollection
object performs all validation and tests on the input data, then invokes an operation
to manipulate persistent data on the corresponding PersistentDataCollection ob-
ject (through the corresponding business—data interface). The latter creates an empty
BusinessBasic instance and fills it with database information (calling deepAccess, which
in turn executes queries through services offered by the PersistenceMechanism object,
as the executeQuery method), returning the resulting object to the Facade object. In
the end of the operation, the Facade object confirms the end of a database transaction,
invoking commitTransaction on the PersistenceMechanism object.

Consequences

The use of PDC offers the following benefits:

o Support for independent implementation. PDC’s layer architecture allows to address
the business aspects independently from persistence operations. This abstraction is
promoted by interfaces between the business layer and the data access layer.

o Maintainability. The pattern’s structure increases the system maintainability by
separating business code from data access code. Therefore, changes in the data
access classes should not interfere in the business classes.

o Frtensibility. The pattern makes it easier to seamlessly change the database tech-
nology or vendor, minimizing or even eliminating impact on business code. In-
terfaces between the business layer and the data access layer promote the desired
extensibility for the application.

o Use of several persistence platforms. The resulting code is able to support stor-
ing objects into several persistence platforms, such as files, relational and object—
oriented databases, by creating a number of implementations for the persistence

. Facade . Business . PersistertData

Collection Collection
T T :
I 3 |
B create :Persistence I I
Mechanism I |
T T | I
ol heginT ransaction l I |
| |
I | i
2 | : | |
speclﬂcﬂystemaemcel{quen,rmg) | S I
| :
| create : Basic
| Business
| T
I |
The read husiness I dEEF'AFCESS |
basicobjed is I [
returned by the eecuted uery i
guerying operation . t] .
\\ ! :
I
b | oA !
e L e e L e Hmm e
commitTransaction

Creates the ohject
and fillz it with
information from
the datshaze.

—————]
SR B e
e —

Figure 2: Dynamics of PDC.

mechanism class and for each persistent data collection class; all of these classes
must implement the corresponding interfaces.

Reuse. Due to the structure provided by the pattern, business classes can be easily
reused by another application based on other database technologies. In addition,
changes to data access issues are simpler, since they are restricted to data access
code.

Abstraction. As the pattern abstracts the persistence problem by using interfaces,
persistence implementation may use complex algorithms or APIs to deal with some
non-trivial aspects from persistent systems, such as enabling connections to database
platforms and managing transactions efficiently.

Support for progressive implementation. During early phases of the application
development, functionally complete prototypes are constructed, where business col-
lection classes depend on business—data interfaces, but the latter are implemented
by volatile data collections (storing objects in memory only). Later, data access
code can be added seamlessly, replacing volatile data collections by specific per-
sistent data collection objects, then adding a persistence mechanism object. Such
approach enables addressing the business problems independently from persistence
operations, simpler validation of user requirements, and simplification of tests [9].

The liabilities of the pattern are:

e [ncreased number of classes. For each significant business basic class, we have to
create up to three additional classes and one interface. However, their structure is
simple and their generation can be simply automated by tools.

e [ncreased indirection. In order to introduce the layer architecture we must use dif-
ferent kinds of classes that delegate some calls to others, which may decrease system
performance. In fact, this lost of efficiency is minimal, since these indirections are
locally executed, and the additional execution time is irrelevant when compared
to the overhead of the 10O operations that read from and write to the persistence
mechanism.

Implementation

Here we consider how to implement PDC using JDBC as the data access API for using
relational database services. Consider the following implementation issues:

e Java platform. The pattern elements must be implemented in the Java program-
ming language, since JDBC is part of the Java platform.

e [nheritance in the business basic class. Most code for manipulating objects using
JDBC can be contained in business basic classes, within methods inherited from an
abstract class (PersistentObject in our banking example). It can be considered
a miscellaneous of business and data access code, even though those inherited data
access methods are not invoked by business code (as mentioned earlier). One alter-
native for such situation is to transfer all code for manipulating persistent business
basic objects to the persistent data collection classes. The disadvantage of such ap-
proach is that changes in a business basic class will also reflect in the corresponding
persistent data collection class; it is necessary to implement a new persistent data
collection for each new platform. On the other hand, in this approach changes in
the persistent platform will not affect the business basic classes.

e Transactions. Using JDBC, we can easily implement transactions using database
services. We must use the setAutoCommit, commit and rollback methods on the
Connection class in order to implement a transaction when implementing a sequence
of operations, which must be executed as a single one.

e Business basic subclasses. A business basic class can be specialized in business
basic subclasses, depending on the business rules. In the case of business collection
and persistent data collection classes (including business—data interfaces), we can
choose from two design alternatives: one is to create a class for each business basic
subclass; another is to use only one class, in order to avoid duplicate code. A
detailed discussion about this topic is presented in a related work [15].

e Concurrency control. One concurrency problem arises when using a connection pool
to manage the connections with the persistence mechanism. Each execution flow
(thread) must obtain a connection from the connection pool before communicating

with the persistence mechanism. Usually there is a single connection pool contain-
ing all the connections of the system, and thus this poll is accessed concurrently.
Moreover, we need to apply some concurrency control to the system. Examples of
others situations in which concurrency control should be addressed are interference
by business rules (system policies), unsafe data types, and other race conditions [12].

e Volatile data collections. We can use this type of class for storing objects in a
non—persistent manner, in order to support progressive implementation. Using this
approach, we can abstract from persistence or any other non—functional requirement,
when implementing functional prototypes for the application. These prototypes
can be useful for validating user requirements and simplifying tests. This class
also implements its corresponding business—data interface, but its methods use in—
memory data structures like arrays or lists to manipulate business objects.

e Abstract factories. Variations of PDC can include classes which represent abstract
factories [7], in order to increase extensibility and reusability of business classes.
An abstract persistence factory class can be introduced, containing a method for
creating a persistence mechanism object, and such method can be implemented by
a subclass of the abstract factory, the concrete factory. The facade object can call
this method to instantiate the persistence mechanism, without making a explicit
call to its constructor method. The same idea can be used for creating persistent
data collections, isolating the business classes (facade and business collection classes)
from the instantiation code. In both cases, the information needed by the concrete
factories to instantiate the objects is placed in simple text or XML configuration

files.

Sample Code

We now provide a brief sketch of the implementation of the main elements of PDC using
Java and the JDBC API, in the banking application example introduced in Figure 3.
First, we present a business basic class, Account, which reflects directly the problem
domain. The public modifier in classes and methods is omitted by brevity.

class Account extends PersistentObject {
private Number number;
private double balance;
void credit(double value) { balance = balance + value; 1}

/* Data access operations */
void insert() throws StoringException {
try {
String sql = "insert into account values (";
sql += "ID = "+super.getId(); // get the object id
sql += "NUMBER = "+this.getNumber();
sql += "BALANCE = "+this.getBalance();
super.pm.executeUpdate(sql) ;
} catch (SQLException e) { throw new StoringException(); }

Bank

addd cooutl)
credit)

v

AccourtRecord

addA coounty)
credity)

“=nterface=>
LA ccountREepositony

itisert()
gearchl)

A

&ccoutRepository]DBC

!

“«Interface=>
[Persistericellecharism

beginTransaction)

cotutecti)
B

cotnnit()
|

PersistencellechanismIDEC

insert()
gearch)

!

A coourt

beginTransaction)
cotitect)
ot

PersistentOhject

itz ett)

Tlaccess)

deeplhsert)
deepd coess()

credit])

Figure 3: Example of PDC applied to a banking application.

void deepInsert (IPersistenceMechanism pm)

throws StoringException {

super.pm = pm;

this.number.deepInsert (pm) ;

this.insert();

Two of the attributes and one business operation, credit (containing only business code
and not invoking any data access method), are presented above. In another portion of
the class, there are data access methods inherited from the PersistentObject class,
containing specific code for database operations in this class (as the insert method).
Any exception related to the data access API (SQLException) is replaced by a general
database exception (StoringException).

In addition, this class contains methods with the deep prefix, which are special op-
erations for manipulating attributes which are references to other objects or collection
of objects (as the number attribute). The deepInsert method in the Account class has
an IPersistenceMechanism interface parameter receiving a reference to a persistence
mechanism object in order to perform the corresponding database operation:

Notice that deepInsert is called first for the attribute, before the insert for the Account
object. This order is followed in operations to write data to the database, due to a
restriction of relational databases, which forces the code to insert rows in auxiliary tables
first (number attribute), then insert a row in the main table (Account object). In this
way, the relationships can be established with no errors. This order does not need to be
followed in operations querying the database. Operations deleting data from the database
depend on the referential integrity defined for the tables involved.

Although there is business code along with data access code in the same class, the
business methods do not depend on the data access methods, since the former do not
invoke the latter. Therefore, we can insert and remove data access methods with no
impact on business code (a process easily automated by tools). The PersistentObject
class is presented below:

abstract class PersistentObject {

protected long id;

protected IPersistenceMechanism pm;

abstract void insert() throws StoringException;

abstract void deepInsert(IPersistenceMechanism pm)
throws StoringException;

abstract void access() throws StoringException;

abstract void deepAccess(IPersistenceMechanism pm)
throws StoringException;

}

where the id and the pm attributes denote the object identity of a persistent object
and a persistence mechanism object to perform database operations, respectively. The
abstract data access methods in this class must be implemented by all business basic
classes, which will be made persistent. The StoringException exception is raised when
a problem occurs in any database operation.

In order to represent a set of business basic objects on the business’ vision, we use a
business collection class. We present the class AccountRecord, which represents a set of
bank accounts:

class AccountRecord {
private IAccountRepository accountsRep;
AccountRecord(IAccountRepository accountsRep) {
this.accountsRep = accountsRep;

¥

where the constructor of AccountRecord receives as argument an object which implements
a business—data interface, and two of the business operations for this class, addAccount
and credit, are also presented. The first method inserts an Account object into the
database, raising an exception if an account with the same number already exists.

10

void addAccount(Account account)
throws StoringException, DuplicateAccountException {
if (this.accountsRep.exists(account.getAccountNumber()))
throw new DuplicateAccountException() ;
else this.accountsRep.insert(account);

3

The second method queries the database for a given account. If the query is successful,
a value is added to the account’s balance and the account is updated in the database.
However, if the account does not exist in the database, an exception is raised.

void credit(Number accountNumber, double value)
throws StoringException, UnknownAccountException {
if (accountsRep.exists(accountNumber)) {
Account account = accountsRep.search(accountNumber);
account.credit(value);
this.accountsRep.update(account);

}

else throw new UnknownAccountException() ;

+

The database is represented by the attribute accountsRep, a business—data interface with
data access operations. This interface is as follows:

interface IAccountRepository {
void insert(Account account) throws StoringException;
Account search(Number accountNumber) throws StoringException;
void update(Account account) throws StoringException;
boolean exists(Number accountNumber) throws StoringException;

b

where the update method is important to maintain consistency between in—memory
(volatile) and persistent objects. Other methods on this interface could be complex queries
(for instance, returning a set of objects) and methods for sequential querying.

A class implementing a business—data interface is a persistent data collection class. In
our example, this class implements its methods invoking data access methods defined in
the business basic classes. In our example, the AccountRepositoryJDBC class is presented
as follows:

class AccountRepositoryJDBC implements IAccountRepository {
private PersistenceMechanismJDBC pm;
void insert(Account account) throws StoringException {
account.deepInsert(this.pm);

}

Note that the pm attribute stores a persistence mechanism object, which is passed as an
argument for the database operations on Account objects, as in the search method.

11

Account search(Number accountNumber) throws StoringException {
Account ac = new Account(accountNumber) ;
ac.deepAccess(this.pm);
return ac;

}

On the other hand, if it is desired to develop a functional prototype first, we can
implement a business—data interface using a volatile data collection. In the banking
application, we can create a class which stores and retrieves Account objects from an
array. The objects will be maintained in the array only during the current execution.

The facade class of the pattern is represented by the Bank class in this application:

class Bank {

private IPersistenceMechanism pm;

private AccountRecord accounts;

Bank() throws PersistenceMechanismException {
PersistentFactory factory = PersistentFactory.getFactory();
this.pm = factory.createPersistenceMechanism();
this.accounts = new AccountRecord(

AccountDataFactory.getFactory() .createDataCollection(pm));

}

void addAccount(Account account)

throws StoringException, AccountAlreadyExistsException {
this.pm.beginTransaction();
try { this.accounts.add(account); 1}
catch (Exception e) {
this.pm.cancelTransaction();
throw e;
}
this.pm.commitTransaction();
}
void credit(String accountNumber, double value)
throws StoringException, UnknownAccountException {
this.pm.beginTransaction();
try { this.accounts.credit(accountNumber,value); }

}

This persistence mechanism object is instantiated in the Bank’s constructor, in order to
initialize the system, being stored in an IPersistenceMechanism interface attribute. All
the initialization process is performed using a PersistenceFactory class, which reads a
configuration file and creates the right specific persistence factory object for the applica-
tion. This object will then create the specific persistence mechanism object for the Bank
class, promoting extensibility of the business code (the facade class does not instantiate
the persistence mechanism object directly). See the Implementation section.

12

Bank uses services from its AccountRecord attribute, delegating calls to the latter in
its methods. This attribute is initialized by passing as argument a new persistent data
collection object, which implements a business—data interface and receives a persistence
mechanism object. In order to maintain separation between business and data access
code, this persistent data collection object is instantiated by a specific data factory for
JDBC, which in turn was first instantiated by a static method (getFactory) in an abstract
AccountDataFactory class (see Implementation section). In the addAccount and credit
methods, the Facade class invokes methods on the persistence mechanism object for
beginning and confirming a transaction, or canceling it if some exception occurs.

The IPersistenceMechanism interface, which is used by Bank, is presented as follows:

interface IPersistenceMechanism {
void beginTransaction() throws PersistenceMechanismException;
void commitTransaction() throws PersistenceMechanismException;
void cancelTransaction() throws PersistenceMechanismException;
void connect() throws PersistenceMechanismException;
void disconnect() throws PersistenceMechanismException;

}

where PersistenceMechanismException is the exception raised when some error occurs
in one of those operations. A persistence mechanism class implements this interface using
specific database API operations, as in the following example:

class PersistenceMechanismJDBC implements IPersistenceMechanism {
void beginTransaction() throws PersistenceMechanismException {
try {
// requests a connection from a connection pool
Connection conn = this.requestConnection();
conn.setAutoCommit (false);
}
catch (SQLException e) {
throw new PersistenceMechanismException();

}

¥

This class implements the beginTransaction method using services from the JDBC
API. First, a connection to the database is requested from a connection pool (allowed by
JDBC). If there is not any opened connection, a new one is created. Then a transaction
is initialized in the context of the connection. Any SQLException raised is replaced by a
general exception, in order to guarantee isolation between business and data access code.

Known Uses

Several organizations have been using PDC as a design pattern for many real software
projects. Most of these projects have aimed at developing from simple to complex ap-

13

plications, and satisfactory results have been collected in such situations. Some of these
systems are presented as follows:

e A system to manage clients of a telecommunication company. The system is able
to register mobile telephones and manage client information and telephone services
configuration. The system can be used over the Internet.

e A system for performing online exams. This system has been used to offer differ-
ent kinds of exams, such as simulations based on previous university entry exams,
helping students to evaluate their knowledge before the real exams.

e A complex supermarket system. A system that is responsible for the control of sales
in a supermarket. This system will be used in several supermarkets and is already
been used in other kinds of stores.

e A system for registering health system complaints. The system allows citizens to
complaint about health problems and to retrieve information about the public health
system, such as the location or the specialties of a health unit.

e This pattern is also used in undergraduate and graduate courses on object—oriented
programming at the Center of Computer Science of the Federal University of Per-
nambuco. Several kinds of systems (such as games, academic control systems, and
sales systems) have been developed in these courses.

In addition, the pattern is one of the basic patterns of the Progressive Implementa-
tion Method (Pim) [5]. Pim is a method for the systematic implementation of complex
object—oriented applications in Java. In particular, this method supports a progressive
approach for object—oriented implementation, where persistence, distribution and con-
currency control are not initially considered in the implementation activities, but are
gradually introduced, preserving the application’s functional requirements [1, 9, 11, 15].
Pim relies on the use of specific architectural and design patterns for structuring object—
oriented applications, in order to promote modularity and separation of concerns [10].
PDC is the design pattern applied for dealing with persistence.

Related Patterns

e Crossing Chasms [6]. In their set of patterns for object-relational integration,
Brown and Whitenack deal with the definition of database schemas for relational
databases, supporting the object model. These patterns can be useful in PDC (for
setting up the database tables), since they have distinct objectives (PDC aims at
structuring the application in layers for a seamless introduction of persistence).

e Persistent Layer and other patterns [16]. Yoder’s patterns and PDC have very
similar objectives in obtaining separation of concerns between business and data
access code. Many of the ideas presented in the Yoder’s patterns can be combined
into elements of PDC in a practical way (for instance, Transaction Manager and
Connection Manager can be instantiated as the PDC’s persistence mechanism class).
However, Yoder’s patterns do not separate definitions of “data” and “data set”, as
defined in our persistent data collections, and assuming to be applied specifically

14

to relational databases. We believe that PDC can be applied almost directly to a
number of persistence platforms, including object databases and files.

Abstract Factory [7]. This pattern is applied in PDC to implement a persistence
factory class for creating persistence mechanism objects, which is used by a facade
class. Factories also can be used for creating persistent data collection objects
transparently for the business collection classes (see Implementation section).

Facade [7]. The facade class of PDC is a direct implementation of the Facade
pattern.

Singleton [7]. Usually only one facade object is required in an application. Thus
facade objects are often implemented as Singletons.

Bridge [7]. This pattern is used in PDC as the business-data and persistence
mechanism interfaces, which play the role of a bridge between the business and the
data access layers.

Concurrency Manager [13]. This pattern can be used in PDC to control concurrent
situations, such as interferences by business rules (system policies), unsafe data
types, and other race conditions.

Acknowledgements

We would like to give special thanks to our shepherd in this paper, Rosana Teresinha
Vaccare Braga, from ICMCSC-USP, for making important suggestions for improving this
pattern. We also thanks Jorge L. Ortega Arjona and Gunter Mussbacher for the sugges-
tions made at the conference.

References

1]

Vander Alves. Progressive Development of Distributed Object-Oriented Programs.
Master’s thesis, Centro de Informatica — Universidade Federal de Pernambuco, Febru-
ary 2001.

Scott Ambler. Building Object Applications that Work. Cambridge University Press
and Sigs Books, 1998.

Scott Ambler. The Object Primer. Cambridge University Press, 2001.

Grady Booch et al. The Unified Modeling Language User Guide. Object Technology.
Addison-Wesley, 1999.

Paulo Borba, Saulo Aratjo, Hednilson Bezerra, Marconi Lima, and Sérgio Soares.
Progressive implementation of distributed Java applications. In Engineering Dis-
tributed Objects Workshop, ACM International Conference on Software Engineering,
pages 40-47, Los Angeles, USA, 17th—18th May 1999.

15

[6]

[12]

[13]

K. Brown and B. Whitenack. Crossing Chasms: A Pattern Language for Object-
RDBMS Integration. In J. Vlissides et. al. (eds.), Pattern Languages of Program
Design 2. Addison-Wesley, 1996.

Erich Gamma et al. Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1994.

James Gosgling, Bill Joy, and Guy Steele. The Java Language Specification. Addison-
Wesley, 1996.

Tiago Massoni. A Software Process with Support to Progressive Implementation
(in portuguese). Master’s thesis, CIn — Federal University of Pernambuco, February
2001.

David L. Parnas et al. On the Criteria to be Used in Decomposing Systems into
Modules. Communications of ACM, 15(12):1053-1058, December 1972.

Sérgio Soares. Progressive Development of Concurrent Object-Oriented Programs
(in portuguese). Master’s thesis, Centro de Informética — Universidade Federal de
Pernambuco, February 2001.

Sérgio Soares and Paulo Borba. Concurrency Control with Java and Relational

Databases (in portuguese). In V Brazilian Symposium of Programming Languages,
23th-25th May 2001.

Sérgio Soares and Paulo Borba. Concurrency Manager. Technical report, State
University of Rio de Janeiro—UERJ, Rio de Janeiro, Brazil, 3th-5th October 2001.
To appear.

Sun Microsystems. Java Database Conectivity Specification, 2000. Available at
ftp://ftp.javasoft.com/pub/jdbec.

Euricélia Viana. Integrating Java with Relational Databases (in portuguese). Mas-
ter’s thesis, Centro de Informéatica, UFPE, 2000.

J.W. Yoder, R.E. Johnson, and Q.D. Wilson. Connecting Business Objects to Rela-
tional Databases. In Proceedings of the 5th Conference on the Pattern Languages of
Programs, Monticello-IL-EUA, August 1998.

16

Uma Linguagem de Padroes para o Projeto
Sintatico de Linguagens de Descricao de
Arquitetura

Cidcley Teixeira de Souza, Paulo Roberto Freire Cunha
Universidade Federal de Pernambuco
Centro de Informatica
Av. Prof. Luiz Freire, s/n - Cidade Universitaria
50732-970, Recife, PE, Brasil
{cts,prfc}@cin.ufpe.br

Jerffeson Teixeira de Souza
University of Ottawa
School of Information Technology and Engineering
K1N 6N5, Ottawa, ON, Canada

jsouza@site.uottawa.ca

Resumo

O objetivo das linguagens de descri¢ao de arquitetura (ADLs) é permitir a es-
pecificacdo de arquiteturas de software de forma que seja possivel a realizacao de
andlises estruturais e comportamentais nessas arquiteturas antes de sua implemen-
tagdo. Esse artigo apresenta uma linguagem de padroes que captura as principais
decisGes necessarias a construgao de uma ADL. O enfoque principal desses padroes
é a definigao, organizacao e representagao de elementos sintaticos para essas lingua-
gens.

Keywords: Arquitetura de Software, Linguagens de Descricao de Arquitetura,
Padroes de Projeto.

1 Introducao

De uma forma simplificada, arquitetura de software pode ser definida como sendo a re-
presentagao da “estrutura dos componentes de um programa/sistema, seus inter-relaciona-
mentos, principios e regras que governam seu projeto e evolugao ao longo do tempo” [Gar00].
O desenvolvimento de um projeto arquitetural permite a visualizacao de algumas propri-
edades gerais do software antes que este seja implementado, garantindo que algumas de
suas caracteristicas sejam explicitadas.

Contudo, a construcao de arquiteturas de software para grandes aplicacoes é uma
tarefa complexa. A utilizacao de padroes tem auxiliado nessa tarefa possibilitando uma
abordagem mais precisa na defini¢do dessas arquiteturas. Em Kane [DHKM97], por exem-
plo, sao apresentados padroes que tratam da organizacao e gerenciamento de arquiteturas
de softwares; em Meszaros [Mes97] padrdes sao utilizados para capturar o processo de
definigao de arquiteturas; em Shaw [Sha96] sao apresentados padroes para a organizagao
e defini¢ao de estilos de interacao entre elementos arquiteturais.

Para formalizar a representacao de projetos arquiteturais foram criadas as ADLs (Ar-
chitecture Description Languages). Essas linguagens fornecem um framework sintatico e
um conjunto de ferramentas que possibilitam a especificagao de projetos arquiteturais e a
realizacao de diversos tipos de andlises nessas arquiteturas. Exemplos de ADLs incluem
Darwin [MDEK95], UniCon [SDD95], Meta-H [BV93], Wright [AG97], Acme [GMWO97]
entre outras. O Apéndice A apresenta mais informagoes sobre arquitetura de software e
ADLs.

Entretanto, a ploriferacao de ADLs tem dificultado a decisao de qual linguagem adotar
para realizar um determinado projeto arquitetural. Principalmente se considerado que
cada ADL possui caracteristicas especificas e ferramentas que realizam tarefas também
especificas.

Além do mais, cada projeto exige que tipos diferentes de informacgoes sejam especifica-
das para os diversos elementos arquiteturais que compoem o projeto, e tanto a escolha de
quais informagoes utilizar como a forma com que essas informacoes serao representadas
estao sujeitas as caracteristicas da ADL adotada no projeto.

Essa especificidade das ADLs acaba tornando necessario a adocao de mais de uma
dessas linguagens para a realizacao de um mesmo projeto arquitetural, de modo a se
conseguir atingir todos os objetivos do projeto. Contudo, fatores como tempo e custos
necessarios para se dominar essas linguagens acabam sendo, em alguns casos, proibitivos
no desenvolvimento de alguns projetos arquiteturais com ADLs.

Nesse caso, pode ser razoavel se optar pela construgao de uma nova ADL pela prépria
equipe de desenvolvimento, onde as caracteristica dessa linguagem possam ser definidas
de acordo com o perfil da equipe que vai utiliza-la. Com uma ADL definida pela propria
equipe, os projetos arquiteturais serao desenvolvidos mais rapidamente, visto que nao
haveria a necessidade da adocao de outras ADLs, e até mesmo o tempo de adaptacao da
equipe a nova linguagem seria extremamente reduzido.

Para facilitar o processo de desenvolvimento de uma nova ADL, esse artigo apresenta
uma linguagem de padroes que captura o processo decisorio relativo ao projeto da sintaxe
de ADLs. Esses padroes auxiliam a definir aspectos importantes relativos a forma com
que a sintaxe de uma ADL deve ser projetada, de modo a ser de facil manuseio e flexivel
no que diz respeito a definicao de informagoes sobre arquiteturas de software.

1.1 Motivacao

A consecucao de um bom projeto arquitetural pode ser um fator determinante no sucesso
ou fracasso do desenvolvimento de um software complexo. Entretanto, essa fase do ciclo
de vida do software é normalmente desprezada pela maioria dos projetistas. Isso se
deve principalmente ao fato da expressividade limitada dos diagramas do tipo ”caixas-e-
linhas” que sao normalmente utilizados para representar os projetos arquiteturais.

Uma outra solugao é a utilizagao de uma ADL (Architecture Description Language),
que é uma linguagem especifica para de modelar projetos arquiteturais. Contudo, as
notagoes da maioria dessas linguagens sao dificeis, o que pode afetar os prazos para o
desenvolvimento do software, que sao normalmente apertados.

Nesse sentido, uma solucao viavel para esse problema é a construcao de uma ADL
que seja mais facil de ser manipulada pela equipe de desenvolvimento. Essa solucao trés
resultados bastante satisfatérios, principalmente a médio e longo prazos.

Tendo essa motivacao em mente, e contando com a experiéncia de desenvolvimento
de uma ADL, a linguagem ArchML [SCO01], apresentamos nesse artigo uma linguagem de
padroes que ressalta os principais problemas na realizacao do projeto sintatico de uma
nova ADL.

Essa linguagem de padroes tem como base na sua proposta a dedugao das motivacoes
e do processo de decisoes envolvido na criacao das estruturas sintaticas de diversas ADLs
disponiveis atualmente. Além disso, todo esse processo decisorio foi validado através
de sua aplicacao na construcao de ArchML. O que nos faz concluir que esses padroes
realmente capturam a filosofia embutida nos processos de decisao relativos ao projeto
sintdtico de uma ADL.

1.2 Estrutura da Linguagem de Padroes

Os problemas tratados nessa linguagem de padroes e as solucoes propostas para estes
problemas sao resumidos na Tabela 1. A Figura 1 apresenta as dependéncias entre os
padroes propostos nesse artigo. Nessa figura, estao apresentadas em linhas cheias as
dependeéncias diretas entre os padroes, que indicam a necessidade de se ter concluido o
padrao para se iniciar o seguinte. Por sua vez, a linha tracejada define dependéncias que
nao possuem ordem de precedéncia ou padroes que devem ser desenvolvidos em paralelo.
A ordem com que esses padroes devem ser aplicados é a mesma com que eles sao descritos
ao longo do artigo.

O padrao Projetar ADL, apresentado na se¢ao 2, é o padrao principal da linguagem.
Ele é quem justifica a criagdo de uma nova ADL e identifica os padroes a serem utilizados
para o projeto sintatico dessa ADL. O padrao Elementos Arquiteturais Bdsicos, apresen-
tado na secao 3, identifica quais os tipos de elementos arquiteturais devem ser descrito por
uma ADL. A estruturagao de uma especificacao arquitetural a partir dos elementos que
contituem sua arquitetura é definida no padrao Organizagao das Fspecificagoes, tratado
na secao 4. Na secao 5 é apresentado o padrao Informacoes dos Elementos Arquiteturais,
que descreve como se decidir a forma com que uma ADL deve especificar as informagoes
para cada elemento arquitetural. O padrao Estrutura Hierdrquica de Informacgoes apre-
sentado na segao 6 define a forma de como se organizar a apresentagao das informacoes
sobre os elementos arquiteturais.

Padrao

Problema

Solugao

Projetar ADL

Como minimizar esforco
e custo na especificacao
de arquiteturas de soft-
ware quando ha a necessi-
dade de se utilizar diver-
sas ADLs ?

Desenvolva uma nova
ADL que contemple as
principais necessidades

identificadas pela equipe
de desenvolvimento para
a representacao de seus
projetos arquiteturais.

Elementos Arquitetu-
rais Basicos

Que tipos de elementos
arquiteturais devem ser
representados pela ADL
de forma a se criar es-
pecificagoes arquiteturais
faceis de ser construidas e
mantidas 7

Defina tipos de elemen-
tos basicos para represen-
tar elementos arquitetu-
rais, onde cada tipo de
elemento devera ter uma
funcionalidade especifica
na arquitetura.

Organizacao das Espe-
cificacoes

Como organizar a espe-
cificacao da arquitetura
de um software a par-
tir das especificacoes de
seus elementos arquitetu-
rais constituintes 7

Especifique em apenas
um arquivo tanto os ele-
mentos arquiteturais co-
mo a arquitetura do soft-
ware em si.

Informagoes dos Ele-
mentos Arquiteturais

Quais informacgoes de-
verao estar disponiveis na
ADL para a especificacao
de cada elemento arquite-
tural ?

Desenvolva a ADL de for-
ma a deixar o proje-
tista livre para decidir
quais informacoes repre-
sentar em cada elemen-
to arquitetural. Entre-
tanto, identifique algu-
mas informagoes que de-
vem ser obrigatérias para
cada elemento e torne to-
das as demais opcionais.

Estrutura Hierarquica
de Informacoes

Como a ADL deve re-
presentar as informacoes
dos elementos arquitetu-
rais de forma a facilitar
o entendimento dessas in-
formacoes 7

Crie um conjunto de con-
textos para cada infor-
macao e, dentro de ca-
da contexto, defina de
forma hierarquica as in-
formacgoes pertinentes ao
contexto.

Tabela 1: Problemas e Solu¢oes dos Padroes de Projeto Sintatico de ADLs.

Projetar ADL

Organizacao das Especificacdes

. Informacgdes dos Elementos
Arquiteturais
A

Elementos Arquiteturais
Bésicos

v

Estrutura Hierarquica de
Informacgbes

Figura 1: Dependéncias da Linguagem de Padroes.

2 Projetar ADL

Contexto

Voceé esta trabalhando em um sistema de software complexo no qual um grande niimero de
requisitos devem ser considerados. Além disso, é necessario a realizacao de diversos tipos
de simulacoes e analises nesse sistema. Para suavizar a passagem da fase de elicitacao
e analise dos requisitos para a fase de implementacao deve ser especificada uma arqui-
tetura para o software. Contudo, para se conseguir uma representacao arquitetural que
permita a realizacao das andlises requeridas é necessario a utilizacao de uma ADL. Entre-
tanto, é bastante dificil encontrar uma ADL que sozinha possua todas as caracteristicas
necessarias para representar essa arquitetura e forneca todas as ferramentas necessarias
para a realizacao das analises requeridas. Nesse sentido, surge a necessidade de se utilizar
mais de uma ADL para especificar a arquitetura desse sistema.

Problema
Como minimizar esfor¢o e custo na especificagao de arquiteturas de software quando ha
a necessidade de se utilizar diversas ADLs ?

Forcgas

e Quanto mais complexo é o projeto, mais dificeis sao as andlises a serem realizadas,
o que exige a utilizacdo de ADLs que possuam ferramentas especificas.

e Ao se utilizar ADLs diferentes para realizar tarefas especificas em um projeto arqui-
tetural surge a necessidade de treinar a equipe de desenvolvimento para entender a
sintaxe e as ferramentas de cada nova ADL a ser utilizada, o que aumenta o tempo
de desenvolvimento do projeto.

e Os custos de um projeto aumentam significativamente com o treinamento da equipe
e com a necessidade de adaptacao da arquitetura para cada nova ADL utilizada em
um determinado projeto arquitetural.

e A equipe de desenvolvimento pode optar em adotar uma ADL especifica que mais
se aproxime das caracteristicas do projeto e da formacao dessa equipe. Entretanto,
isso limita a expressividade dos projetos as caracteristicas da ADL escolhida.

Solucao

Desenvolva uma nova ADL que contemple as principais necessidades identificadas pela
equipe de desenvolvimento para a representacao de seus projetos arquiteturais. Essas
caracteristicas devem ser identificadas e refinadas a partir do acimulo de experiéncia
dessa equipe, adquirida com a especificacao de arquiteturas de software utilizando outras
ADLs existentes.

Para se criar uma nova ADL, diversos aspectos devem ser considerados. Dentre eles, o
poder de representacao das informacoes requeridas pela equipe de desenvolvimento para
a especificacao dos elementos arquiteturais é um dos mais importantes. A forma com que
a ADL fragmenta a representagao de arquiteturas complexas em elementos arquiteturais
mais simples tem influéncia direta na manutenibilidade dessa arquitetura.

Contexto Resultante

A aplicagao desse padrao resulta na decisao de se construir uma nova ADL que melhor se
adapte as necessidades especificas dos projetos arquiteturais de uma determinada equipe
de desenvolvimento.

Racionalizacao

Embora seja mais caro se produzir uma nova ADL, o custo de treinamento da equipe pa-
ra entender determinadas ADLs, ou adaptar uma arquitetura para uma ADL especifica,
pode ser muito mais alto. Principalmente se for considerado que cada projeto tem carac-
teristicas diferentes sendo que, normalmente, ha a necessidade de se utilizar uma ADL
que se adapte melhor a cada um dos projetos.

Ao se desenvolver uma nova ADL, a equipe tera a facilidade de adaptéa-la as suas
necessidades sempre que for necessario, sem necessidade de treinamento para entender a
ADL. Com o passar do tempo, e com a acumulo de experiéncia da equipe, a ADL estara
estavel o suficiente para suprir toda a demanda de analise arquitetural necessaria sem
gasto extra. Além disso, as ferramentas poderao ser desenvolvidas pela prépria equipe,
de modo a se conseguir realmente os resultados desejados.

Consequéncias
Algumas das vantagens do padrao Projetar ADL sao as seguintes:

e Uniformidade na representacao arquitetural. Com apenas uma ADL todos
os projetos arquiteturais da equipe terao apenas uma linguagem de representagao,
o que facilita a compreensao dos projetos e cria um vocabuldrio comum entre os
membros da equipe de desenvolvimento.

e Agilizacao do projeto arquitetural. Com a adaptacao da equipe de desenvolvi-
mento a nova ADL, todos os novos projetos que se seguem serao mais rapidamente
realizados.

e Tempo menor de aprendizagem. Se for necessario a mudanca de membros da
equipe, o tempo de treinamento para a incorporacao desses novos membros serd
bastante reduzido.

e Adaptabilidade. Por ser um produto da equipe de desenvolvimento, a ADL podera
ser adaptada facilmente para novas necessidades que surgirem.

Algumas das desvantagens do padrao Projetar ADL sao as seguintes:

e Custo inicial alto. A implementacao de uma nova ADL vai requerer esforco, tempo
e, portanto, um orcamento extra para essa tarefa. Entretanto, futuras atualizacoes
tendem a ter custos bem reduzidos.

e Implementacao de ferramentas. Além da ADL em si, as ferramentas que per-
mitirao a realizacao de andlises nas arquiteturas, também devem ser implementadas.

Padroes Relacionados

Para que a implementacao de uma nova ADL seja viabilizada, varios aspectos devem
ser considerados a priori. Esses aspectos dizem respeito principalmente as caracteristicas
sintaticas da ADL, onde a primeira decisao a ser tomada estd relacionada com a forma
com que os elementos arquiteturais sao identificados pala ADL. O padrao Elementos Ar-
quiteturais Bdsicos (se¢ao 3) trata desse problema.

3 Elementos Arquiteturais Basicos

Contexto

De acordo com o padrao Projetar ADL, vocé decidiu criar uma ADL para especificar a
arquitetura de um software complexo. Essa tarefa é iniciada pela definicao dos tipos de
elementos arquiteturais que a ADL deve possuir.

Problema
Que tipos de elementos arquiteturais devem ser representados pela ADL de forma a se
criar especificagoes arquiteturais faceis de ser construidas e mantidas ?

Forcgas

e A definicao dos tipos de elementos arquiteturais a serem especificados para uma
arquitetura depende muito da experiéncia da equipe de desenvolvimento.

e Os tipos de elementos arquiteturais a serem definidos para a ADL influencia direta-
mente a gerenciabilidade e a clareza das especificagao realizadas por essa linguagem.
Sendo que um aumento exagerado no nimero de tipos de elementos especificados

resulta em uma arquitetura de dificil gerenciamento. Por outro lado, a construcao
de uma especificacao sem a definicao clara dos tipos de elementos arquiteturais
representados pode tornar a arquitetura ilegivel.

e O potencial de reuso de elementos de especificacoes arquiteturais é definido pela
forma com que esses elementos sao descritos pela ADL. Sendo que quanto mais cla-
ra e precisa for a classificacao dos tipos de elementos arquiteturais melhor sera o
reusabilidade dessas especificagoes.

Solucao

Defina tipos de elementos basicos para representar elementos arquiteturais, onde cada
tipo de elemento devera ter uma funcionalidade especifica na arquitetura, de forma a
tornar clara a especificagdo como um todo. Desse modo os seguintes tipos de elementos
arquiteturais podem ser identificados:

e Interfaces - Devem descrever as funcionalidades requeridas e fornecidas pelos ele-
mentos arquiteturais.

e Componentes - Devem descrever as partes da arquitetura que realizam algum tipo
de computagao.

e Conectores - Devem descrever as estruturas de comunicagao entre os componentes.

e Configuragoes Arquiteturais - Devem descrever a forma com que componentes e co-
nectores sao organizados para formar uma arquitetura.

Contexto Resultante

A aplicagao desse padrao identifica os tipos de elementos necessarios a ADL para a cons-
trucao de arquiteturas de software. Dessa forma, cada elemento a ser representado em
uma especificacao de arquitetura esta relacionado a um tipo especifico.

Racionalizacao

A definicao de tipos de elementos arquiteturais em uma especificacao facilita sobrema-
neira o entendimento da mesma. Nesse padrao, também foi adotada a abordagem de
se especificar separadamente as interfaces dos componentes e dos conectores. Essas in-
terfaces descrevem o que cada elemento fornece e utiliza de outros elementos. Com essa
abordagem, existe a possibilidade de reuso de especificagoes de interfaces e de uma melhor
checagem de tipos entre elementos arquiteturais distintos, além de tornar mais intuitiva
a tarefa de particionar a arquitetura.

Usos Conhecidos
ArchML utiliza a solucao completa apresentada nesse padrao para a decomposicao de
elementos arquiteturais. Essa linguagem possui uma sintaxe baseada em XML para re-
presentar os elementos arquiteturais.

A ADL Darwin utiliza os conceitos de componentes e arquiteturas, mas nao repre-
senta conectores explicitamente, podendo esses serem simulados a partir de especificagoes

de componentes. Nessa linguagem as interfaces dos elementos sao descritas dentro dos
proprios elementos arquiteturais.

UniCon representa os elementos arquiteturais através de componentes, conectores
e configuragoes. Entretanto, os conectores de UniCon sao predefinidos como parte da
propria ADL.

Wright também utiliza os conceitos de componentes, conectores e configuragoes. En-
tretanto, nessa ADL os conectores podem ser definidos pelo usuario e sua seméantica é
especificada através de CSP.

Variagao

A abordagem cléssica utilizada na definicao de tipos de elementos arquiteturais em ADLs
sugere a utilizacao dos seguintes elementos apenas: Componentes, Conectores e Configu-
racoes Arquiteturais. Nessa abordagem, as interfaces tanto dos componentes como dos
conectores, sao definidas internamente a esses elementos, nao podendo ser reutilizadas em
outras arquiteturas.

Conseqiiéncias
Algumas das vantagens do padrao Elementos Arquiteturais Bésicos sao as seguintes:

e Reusabilidade. A separacao da especificacao de interfaces dos elementos arquite-
turais permite a reusabilidade dessas interfaces em outros projetos.

e Previsibilidade de comportamento. A definicao de tipos para cada elemento
arquitetural, permite se inferir que comportamento um determinado elemento vai
ter dentro de projeto arquitetural.

Uma desvantagem do padrao Elementos Arquiteturais Basicos é a seguinte:

e Configuracoes mais complexas. Além da definicao das interacoes entre com-
ponentes e conectores, os proprios componentes e conectores devem indicar quais
interfaces devem utilizar, isso pode tornar as arquiteturas um pouco mais complexas.

Padroes Relacionados

Um aspecto importante a ser considerado na especificagdo da sintaxe de uma ADL é a
forma com que os elementos arquiteturais especificados sao organizados para produzir a
especificacao de uma arquitetura. Esse problema é tratado no padrao Organizacao das
FEspecificacoes, apresentado na secao 4.

Um outro aspecto também importante é a representacao das informacoes sobre os
elementos que compoem as arquiteturas. Essas informacoes devem ser de facil compre-
ensao e gerenciamento, e deve ser possivel a inclusao de informacgoes nao previstas sobre
determinados elementos arquiteturais sem ter que reescrever a ADL. Para se determinar
os tipos de informacoes necessarias para representar elementos arquiteturais pela ADL
utilize o padrao Informacgoes dos Elementos Arquiteturais, apresentado na secao 5.

4 Organizacao das Especificacoes

Contexto

Foi definida a necessidade de se criar uma nova ADL, apresentada no padrao Projetar
ADL. Também foram definidos os tipos de elementos arquiteturais basicos que essa ADL
pode representar, relacionados no padrao Elementos Arquiteturais Bdsicos. Esses elemen-
tos arquiteturais devem ser utilizados para se criar a representagao de arquiteturas de
software.

Problema
Como organizar a especificacao da arquitetura de um software a partir das especificagoes
de seus elementos arquiteturais constituintes ?

Forcas

e A organizacao da especificacao da arquitetura de um software realizada em um tinico
arquivo junto com a especificacao de seus elementos arquiteturais constituintes,
garante uma manipulacao mais facil dessa especificagao, entretanto a reusabilidade
dos elementos arquiteturais fica comprometida.

e Dependendo do tamanho da equipe que esta produzindo a especificacao arquitetural
pode ser necessarios desmembrar a especificacao em partes menores. Sendo que
quanto maior a equipe, maior pode ser a fragmentacao necessaria.

e A complexidade da especificacao arquitetural e a estabilidade dos requisitos que a
gerou, pode determinar a forma com que os elementos que compoem a arquitetura
serao organizados. Sendo que quanto mais complexa for a estrutura do software
mais necessario se faz a centralizacao da especificagao.

Solucao

Especifique em apenas um arquivo tanto os elementos arquiteturais como a arquitetura
do software em si. Inicialmente realize a especificacao de todos os elementos arquiteturais
presentes na arquitetura. Em seguida especifique a arquitetura através das conexoes entre
esses elementos.

Contexto Resultante

Tanto os elementos arquiteturais como a configuragao desses elementos formando a arqui-
tetura sao especificados em apenas um documento, cabendo a equipe a tarefa de organizar
o trabalho de seus participantes de forma independente em cima de uma mesma fonte de
informacao.

Racionalizagao

Especificar tanto os elementos arquiteturais como a arquitetura do software em um mesmo
arquivo texto facilita a compreensao da especificacao e a visualizacao de inconsisténcias,
o que pode agilizar a tarefa de especificacao.

Usos Conhecidos

A organizacao de especificagoes arquiteturais em um arquivo tinico é um consenso entre
as ADLs. A ADL UniCon, por exemplo, utiliza essa estrutura para organizar suas es-
pecificacoes. A Figura 2, apresenta uma especificacao arquitetural escrita em UniCon.
Como pode ser observado, tanto os elementos arquiteturais como a configuracao desses
elementos sao definidos em apenas um documento.

COMPONENT Reverser {
INTERFACE IS
TYPE Filter
PLAYER input IS StreamIn
SIGNATURE (‘‘line’’)
PORTBINDING (stdin)
END input
PLAYER output IS StreamQut
SIGNATURE (‘‘line’’)
PORTBINDING (stdout)
END output
PLAYER error IS StreamQut
SIGNATURE (‘‘line’’)
PORTBINDING (stderr)
END error
END INTERFACE

IMPLEMENTATION IS
USES stack INTERFACE Stack
CONNECT reverse.iob TO datause.user

ESTABLISH C-proc-call WITH
reverse.stack init AS caller
stack.stack init AS definer

END C-proc-call

BIND output TO ABSTRACTION
MAPSTO (reverse.fprintf)
END output
END IMPLEMENTATION
END Reverser

Figura 2: Organizagao de Especificagao Arquitetural em UniCon.

Variagao

Elementos Arquiteturais em Arquivos Separados

Uma variacao para esse padrao é a especificacao separada dos elementos arquiteturias.
Isso permite a construgao de especificagoes arquiteturais de forma distribuida, além de
possibilitar o reuso dessas especificacoes. Entretanto, a tarefa de gerenciamento da cons-
trucao da arquitetura torna-se bem mais complexa.

Um exemplo da aplicacao dessa variacao é a linguagem ArchML, onde os elementos
arquiteturais sao especificados em arquivos separados e a arquitetura completa é formada
pela especificacao da configuracao em um outro arquivo especifico. A Figura 3 apresenta
o projeto de uma arquitetura em ArchML. Nessa figura, pode-se observar a definicao de
links entre instancias de componentes e conectores sem a presenca da especificacao dos
mesmos, que sao especificados em arquivos externos, independentes e possivelmente dis-
tribuidos.

<?xml version="1.0"encoding="US-ASCII"?>
<IDOCTYPE System SYSTEM "../dtds/1.2/System.dtds
<System id="System>
<Info>
<Author>Cidcley T. de Souza</Author>
<Version>1.0</Version>
</Info>
<Components>
<Component id="CatFile"xlink:href="CatFile.xml"/>
<Component id="RemoveVowels"xlink:href="RemoveVowels.xml"/>
</Components>
<Connectors>
<Connector id="UnixPipe"xlink:href="Unix-pipe.xml"/>
</Connectors>
<Links>
<Link>
<From><Instance xlink:href="CatFile"PortName="output"/></From>
<To><Instance xlink:href="UnixPipe"PortName="source"/></To>
</Link>
<Link>
<From><Instance xlink:href="UnixPipe"PortName="sink"/></From>
<To><Instance xlink:href="RemoveVowels"PortName="input"/></To>
</Link>
</Links>
</System>

Figura 3: Organizacao de Especificacao Arquitetural em ArchML.

Consequéncias
Algumas das vantagens do padrao Organizacao das Especificacoes sao as seguintes:

e Facil compreensao. Tendo centralizado a especificacao de todos os elementos
em um arquivo tunico, fica mais facil se observar e manipular as caracteristicas da
arquitetura.

e Facilidade de Evolugao. Qualquer modificacdo que seja necessaria, pode ser
melhor planejada se observando as caracteristicas dos elementos arquiteturais indi-
vidualmente.

Algumas das desvantagens do padrao Organizacao das Especificacoes sao as seguintes:

e Baixo reuso. O reuso de elementos arquiteturais fica comprometido com a espe-
cificacao dos mesmos dentro de uma especificacao arquitetural tinica. Sendo que
para que um elemento seja reusado, este deve ser copiado para dentro da nova
especificacao.

e Falta de Independéncia. A construcao da arquitetura devera ser realizada por
apenas uma pessoa por vez, visto que sd existe um unico arquivo onde todos os
elementos arquiteturais sao especificados. Isso compromete a evolucao dos elemen-
tos de forma independente da arquitetura, cabendo a quem for modificar algum
elemento, realizar essa mudanca dentro do codigo da arquitetura.

Padroes Relacionados
Pode-se utilizar o padrao Software Architecture [Mes97] para guiar a defini¢ao de instancias
de elementos arquiteturais para um determinado projeto.

5 Informacoes dos Elementos Arquiteturais

Contexto

Vocé tem que especificar os elementos arquiteturais em uma arquitetura de software.
Cada elemento possui, além de um tipo especifico (identificado no padrao Elementos Ar-
quiteturais Bdsicos), diversos requisitos diferentes a serem representados, sendo que cada
requisito pode necessitar de niveis de detalhamento diferentes.

Problema
Quais informacoes deverao estar disponiveis na ADL para a especificagao de cada elemen-
to arquitetural 7

Forcgas

e Especificar todos os requisitos dos elementos arquiteturais pode tornar a especifi-
cacao complexa demais e desnecessariamente detalhada.

e Especificar poucos requisitos dos elementos arquiteturais pode tornar a especificagao
pouco expressiva.

e A quantidade de requisitos a serem representados é controlada pelas necessidades
de cada projeto. Sendo que quanto mais complexas forem as analises requeridas por
uma determinada arquitetura, maior sera a quantidade de informacoes necessarias
para realizar essas anédlises.

Solucao

Desenvolva a ADL de forma a deixar o projetista livre para decidir quais informacoes
representar em cada elemento arquitetural. Entretanto, identifique algumas informacoes
que devem ser obrigatorias para cada elemento e torne todas as demais opcionais.

As informagoes obrigatdrias sao as necessarias para identificar as caracteristicas basicas
de cada elemento arquitetural. Ja as informacoes opcionais sao as que tém sua utilizacao
definida de acordo com as necessidades de cada projeto.

Para organizar a representacao dessas informacoes de forma a permitir um melhor
entendimento das especificagoes, o padrao Estrutura Hierdrquica de Informacgoes deve ser
utilizado.

Contexto Resultante

Os tipos de informagoes necessarias para capturar os requisitos dos elementos arquitetu-
rais estao definidos, podendo esses serem representadas pela ADL. Entretanto, além de
se definir quais informagoes sao relevantes para se especificar um determinado elemento
arquitetural, essas informagoes devem estar organizadas para que sejam mais facilmente
entendidas e manipuladas.

Exemplo

A equipe de desenvolvimento deseja especificar um componente para uma arquitetura
de software. Os requisitos levantados para esse componente indicam que ele possui as
seguintes caracteristicas:

e Representa um fornecedor de servigos (servidor);
e Aceita um numero limitado de conexoes simultaneas;

Baseado nesses requisitos podem ser observados dois tipos diferentes de informacgoes
a serem representadas pela ADL para se especificar esse componente. O primeiro tipo de
informacao diz respeito a identificacao do componente em si, como por exemplo a utili-
zagao de um identificador tinico para representar o componente. Esse tipo de informacao
¢ considerada uma informacao basica para o componente, e deve ser obrigatéria para
quaisquer outros componentes especificados pela ADL.

Um outro tipo de informacao diz respeito as caracteristicas do componente que podem
variar de acordo com as necessidades de cada projeto. Por exemplo, o niimero méaximo de
conexoes aceito pelo componente pode ser uma restrigao referente as limitagoes do sistema
de comunicacao onde esse componente estd inserido, sendo que essa informagao pode nao
ser relevante se a aplicacao especificada estiver totalmente centralizada em uma maquina
apenas. Desse modo, a ADL deve representar essas informagoes de forma opcional, ou
seja, devem haver elementos sintaticos que possam ser utilizados para representar essa
informacao sem se ter a obrigacao de representa-las.

Usos Conhecidos

Todas as ADLs possuem mecanismos para a identificacao de elementos arquiteturais.
Seja através de um nome, ou por uma representacao simbélica. Contudo, a representagao
de outros tipos de informagoes contextuais sobre os elementos nao é uma caracteristica
comum a essas linguagens.

Entretanto, existem algumas excecoes. A linguagem Acme, por exemplo, permite a
representacao de propriedades através de anotagoes dentro da especificacao do elemento
arquitetural. A Figura 4, apresenta a especificacao de algumas propriedades de um com-
ponente em Acme. Uma peculiaridade de Acme é que essas propriedades sao tratadas
apenas como anotacoes, e sao manipuladas apenas por ferramentas especificas.

Component server = {
Port receive-request;
Properties { idempotence : boolean = true;
max-concurrent-clients : integer = 1 }}

Figura 4: Propriedades em Acme.

A definicao de informacoes em elementos arquiteturais também pode ser observada
na linguagem ArchML. A Figura 5 apresenta a especificagao de um componente onde as
informacoes obrigatorias identificadas sao o nome do componente e a interface que ele
utiliza.

Como informacoes opcionais podem ser definidas: restrigoes de instalacao do compo-
nente, algumas propriedades do componentes, entre outras. Na Figura 5, uma propriedade
Property representa o nome de um arquivo que implementa um determinado componente.

<?xml version="1.0"7>
<!DOCTYPE ComponentType SYSTEM "../dtds/1.2/ComponentType.dtd>
<ComponentType id="CatFilex»
<Info>
<Author>Cidcley T. de Souza</Author>
<Version>1.0</Version>
</Info>
<Properties>
<Property>
<Name>Implementation</Name>
<VarType Value="string></VarType>
<DefaultValue>catfile.java</DefaultValue>
</Property>
</Properties>
<Interfaces>
<Interface xlink:href="FilterItf.xml></Interface>
</Interfaces>
</ComponentType>

Figura 5: Especificagao de informagoes em ArchML.

Uma caracteristica de ArchML é que essa linguagem permite a definicao de quantas
propriedades sejam necessarias, sendo que essas informagoes sao todas utilizadas pelas
ferramentas que utilizam a linguagem.

Conseqiiéncias
Uma das vantagens do padrao Informagoes dos Elementos Arquiteturais é a seguinte:

e Flexibilidade. A quantidade de informacoes a ser utilizada na descricao de ca-
da elemento é definida por quem esta fazendo a especificacao, de acordo com as
necessidades do projeto.

Uma desvantagem do padrao Informagoes dos Elementos Arquiteturais é a seguinte:

e ADL mais complexa. A implementacao da ADL para dar suporte a essa ca-
racteristica ¢ um pouco mais dificil, visto que nao se pode definir a priori quais
elementos devem ser inseridos para a descricao de cada elemento arquitetural.

Padroes Relacionados

Tendo definido a forma com que a ADL deve permitir a especificacao das informacoes dos
elementos arquiteturais, o passo seguinte é se definir como a ADL realizara a organizacao
dessas informacoes de forma a se conseguir um melhor entendimento e manipulacao das
mesmas. Para esse fim o padrao Estrutura Hierdrquica de Informacoes deve ser utilizado.

6 Estrutura Hierarquica de Informacoes

Contexto

Vocé estd especificando um elemento arquitetural para um software complexo. Esse ele-
mento possui uma grande quantidade de informacoes para ser representada. De acordo
com os requisitos do projeto em que esse elemento estd inserido, ha a necessidade de se
representar todas as informagoes levantadas (o padrao Informagées dos Elementos Arqui-
teturais mostra como a ADL deve representar essas informagoes). A especificagao desse
componente deve ser utilizada pelos outros participantes no processo de desenvolvimento
do sistema.

Problema
Como a ADL deve representar as informagoes dos elementos arquiteturais de forma a
facilitar o entendimento dessas informagoes 7

Forcgas

e Um elemento arquitetural sem uma estrutura bem definida para representar suas
informagoes ¢é dificil de ser entendido e, conseqiientemente, dificil de ser mantido.

e A mistura de informacoes dentro da especificacao de um elemento arquitetural difi-
culta bastante a realizacao de analises sobre o elemento. Desse modo, quanto mais
facil for reconhecer as informagoes dentro da especificacao dos elementos, mais facil
sera sua manipulacgao.

e A criacao de hierarquias para representar as informacoes dos elementos arquiteturais
pode facilitar o entendimento da relacao entre as informacoes. Entretando, se a
profundidade dessa hierarquia for muito grande as informagoes nao ficarao claras.

Solucao

Crie um conjunto de contextos para cada informacao e, dentro de cada contexto, defina
de forma hierarquica as informacoes pertinentes ao contexto. Cada contexto deve servir
como um delimitador de informagoes de um determinado tipo. Essas informagoes, por
sua vez, devem ser organizadas de forma hierarquica dentro desses contextos.

Contexto Resultante

Com a aplicacao desse padrao as informacoes necessarias para representar os elementos
arquiteturais sao organizadas contextualmente. Sendo que cada contexto representa um
delimitador para tipos de informagoes diferentes.

Racionalizagao
Com a definigao de contextos para organizar a representacao de informacoes sobre ele-
mentos arquiteturais se diminui a profundidade da hierarquia de um determinado tipo de
informacao. Com isso, conseguimos todas as vantagens da representagao de informacoes
de forma hierarquica minimizando os riscos de tornar a especificagao confusa.

Além disso, os contextos permitem se definir conjuntos de informagoes especificas, o
que ajuda bastante a manutencao e a realizagao de analises sobre a arquitetura.

Exemplo
Suponha que se queira representar as seguintes informagoes sobre um componente de uma
arquitetura de software.

1. Esse componente foi implementado por Cidcley;

2. Esse componente foi implementado no dia X;

3. O componente foi implementado em Java;

4. O arquivo que implementa o componente chama-se Comp.class

5. O PATH onde o arquivo deve ser instalado deve ser /temp/Componentes

6. Esse componente utiliza a Interface Itf1;

Para que todas essas informacoes possam ser mais facilmente representadas na espe-
cificagdo do componente de software através da ADL, elas devem ser separadas por tipos
(como apresentado no padrao Informagoes dos Elementos Arquiteturais. Nessa caso, po-
dem ser identificados trés tipos distintos de informagoes: o primeiro tipo (itens 1 e 2) diz
respeito ao gerenciamento do componente. O segundo tipo (itens 3, 4 e 5) s@o proprieda-
des sobre a implementagao do mesmo. O terceiro tipo (item 6) é uma informacao sobre
as interfaces utilizadas pelo componente.

Desse modo, podemos observar a existéncia de diferentes contextos relacionados as in-
formagoes do componente. Assim, poderiamos definir os contextos Gerencial, Propriedades
e Interfaces, onde cada tipo de informacao, de acordo com esse exemplo, poderia ser
respectivamente especificada.

Usos Conhecidos

A ADL MetaH possui construtores que permitem a definicao de contextos para certas
propriedades da aplicacao. Essas propriedades sao fornecidas através de atributos. En-
tretanto, a definicao de informacgoes sao limitadas a escalonabilidade, confiabilidade e
seguranca. A Figura 6 apresenta a criagao de contextos em MetaH para representar
atributos de processos.

periodic process implementation P1.SIMPLE is attributes
self’SourceTime := 100 us;
self’Period := 1 sec;
self’SourceFile := "pl.a";

end P1.SIMPLE;

periodic process implementation P2.SIMPLE is attributes

self’SourceTime := 50 us;
self’Period := 1 sec;
self’SourceFile := "pl.a";

end P2.SIMPLE;

Figura 6: Contextos em MetaH.

ArchML por sua vez, permite a definicao de diversas propriedades, além de possuir
contextos especificos para definir informagoes gerenciais, de interfaces e de links entre
elementos arquiteturais.

A Figura 7 apresenta trechos de cédigos de especificagao de contextos em ArchML
com suas informacgoes devidas. Nessa figura sao apresentados alguns exemplos de con-
textos e de informagoes sobre esses contextos. Nela podem ser observados os contextos
Info, Properties e Links. Alguns desses contextos podem ter outros contextos mais
especificos, como e o caso de Link, que é um subcontexto de Links. Dentro de cada con-
texto ou subcontexto sao armazenadas as informagoes sobre eles. Por exemplo, Author e
Version sao informacoes sobre o contexto Info.

Conseqiiéncias
Algumas das vantagens do padrao Estrutura Hierarquica de Informagoes sao as seguintes:

e Legibilidade. Os contextos criados permitem uma melhor visualizacao das infor-
magoes representadas.

e Manutenibilidade. A adogao de um esquema hierarquico facilita a representacao
de dependéncias sobre informagoes e possibilita uma melhor manutencao das espe-
cificagoes.

Uma desvantagem do padrao Estrutura Hierdrquica de Informacoes é a seguinte:

e Classificagao de informacgoes. Algumas vezes pode ser bem dificil se definir onde
se colocar uma determinada informacao.

<Info>
<Author>Cidcley T. de Souza</Author>
<Version>1.0</Version>

</Info>

<Properties>
<Property>
<Name>Implementation</Name>
<VarType Value="strings</VarType>
<DefaultValue>remove.java</DefaultValue>
</Property>
</Properties>
<Links>
<Link>
<From><Instance xlink:href="CatFile"PortName="output"/></From>
<To><Instance xlink:href="UnixPipe"PortName="source"/></To>
</Link>
</Links>

Figura 7: Contextos e hierarquias em ArchML.

7 Resumo da Linguagem de Padroes

Os padroes apresentados nesse artigo apoéiam a tomada de decisoes sobre o projeto sintatico
de ADLs. Com eles, os projetistas de ADLs podem construir linguagens mais faceis de
serem manipuladas e, principalmente, sintaticamente faceis de serem utilizadas. Iniciando
com o padrao Projetar ADL, que define a necessidade de se projetar uma nova ADL para
a realizacao de tarefas de projetos arquiteturais especificos de uma equipe de desenvol-
vimento, todos os padroes tratam de como se definir os elementos sintaticos necesséarios
para a representacao de projetos arquiteturais.

Nesse contexto, o padrao Elementos Arquiteturais Bdsicos é apresentado para auxiliar
a definicao dos tipos de elementos arquiteturais a serem especificados por uma ADL de
forma a se conseguir uma melhor reusabilidade desses elementos. J& o padrao Organiza¢ao
das Especificacoes trata da forma com que a ADL deve organizar os elementos arquitetu-
rais de uma arquitetura para gerar especificacoes de facil manutencao e evolucao. Além
disso, o problema da determinacao dos tipos de informagcoes que devem ser representadas
para cada elemento especificado por uma ADL é tratado pelo padrao Informagoes dos
Elementos Arquiteturais, que objetiva a criacao de especificacoes flexiveis, no sentido de
que novas informagoes possam ser facilmente introduzidas sem ter que modificar a ADL.
Por fim, é definido o padrao FEstrutura Hierdrquica de Informagoes que especifica a forma
pela qual as informacoes dos elementos arquiteturais devem ser organizadas pela ADL,
de modo a aumentar tanto a legibilidade das especificagbes como facilitar a manutencao
das mesmas.

Agradecimentos

Os autores gostariam de agradecer a CAPES (Fundag¢ao Coordenagao de Aperfeicoamento
de Pessoal de Nivel Superior) pelo suporte financeiro concedido. Gostarfamos também de
agradecer ao nosso "shepherd”, Alexandre M. Braga, que com seus excelentes comentarios
e sugestoes contribuiu diretamente para o aperfeicoamento desse trabalho, e aos colegas:
Rossana, Jugurta, Flavia, Gibeon e Marcio, pelas valiosas sugestoes e analises realizadas
durante o SugarLoafPloP.

Referéncias

[AG97]

[BCK97]

[BV93]

[DHKM97]

[GAO4]

[Gar00]

[GMW97]

[GP95]

[LAK'95]

[MDEK95]

[Mes97]

R. Allen and D. Garlan, A Formal Basis for Architectural Connections, IEEE
Transactions on Software Engineering (1997).

Bass, Clements, and Kazman, Software Architecture in Practice, Addison-
Wesley, 1997.

P. Binns and S. Vestal, Formal Real-Time Architecture Specification and
Analysis, IEEE Workshop on Real-Time Operating Systems and Software,
1993.

Dikel David, Christy Hermansen, David Kane, and Raphael Malveaux, Or-
ganizational Patterns for Software Architecture, In Proceedings of PloP97,
1997.

D. Garlan, R. Allen, and J. Ockerbloom, FExploiting Style in Architectural
Design Environments, In Proceedings of ACM SIGSOFT: The Second Sym-
posium on Foundations of Software Engineering, 1994.

David Garlan, Software Architecture: a Roadmap, The Future of Software
Engineering. In Proceedings 22nd International Conference on Software En-
gineering (ACM Press, ed.), 2000.

D. Garlan, R. T. Monroe, and D. Wile, Acme: An Architectural Description
Interchange Language, In Proceedings of CASCON’97, 1997.

D. Garlan and D. Perry, Introduction to the Special Issue on Software Archi-
tecture, IEEE Transactions on Software Engineering (1995).

D. C. Luckham, L. M. Augustin, J. J. Kenny, J. Veera, D. Bryan, and
W. Mann, Specification and Analysis of System Architecture Using Rapide,
IEEE Transactions on Software Engineering, 1995.

J. Magee, N. Dulay, S. Eisenbach, and J. Kramer, Specifying Distributed Soft-
ware Architectures, Proceedings of the 5th European Software Engineering
Conference, 1995.

Gerard Meszaros, Archi-Patterns - A Process Pattern Language for Defining
Architectures, In Proceedings of PloP97, 1997.

[MORT96] N. Medvidovic, P. Oreizy, J. E. Robbins, and R. N. Taylor, Using Object-

[MQ94]

[SCO1]

[SDD95]

[Sha96]

Oriented Typing to Support Architectural Design in the C2 Style, In Procee-
dings of ACM SIGSOFT (Symposium on Foundations of Software Enginee-
ring), 1996.

M. Moriconi and X. Qian, Correctness and Composition of Software Architec-
tures, Proceedings of the Second ACM SIGSOFT Symposium on Foundations
of Software Engineering, 1994.

Cidcley T. de Souza and Paulo R. F. Cunha, Especificando Arquiteturas de
Software em XML, XXVII Conferéncia Latinoamericana de Informatica, 2001.

M. Shaw, R. DeLine, and D.V.Klein, Abstractions for Software Architecture
and Tools for Support Them, IEEE Trans on Software Engineering, 1995.

Mary Shaw, Some Patterns for Software Architectures, Pattern Languages of
Program Design 2 (Addison-Wesley, ed.), 1996.

A Arquitetura de Software e ADLs

O termo “Arquitetura de Software” nao possui uma definicdo que seja universalmente
aceita pela comunidade de Engenharia de Software. Na realidade, existem diversas defi-
nigoes para essa disciplina, cada uma salientando alguma caracteristica importante. De
uma forma simplificada, por exemplo, Garlan [GP95] define arquitetura de software como
sendo “a estrutura dos componentes de um programa/sistema, os inter-relacionamentos,
principios e regras que governam seu projeto e evolugao ao longo do tempo”. A definicao
de Bass [BCK97] diz que “a arquitetura de um programa ou sistema de computacao é
a estrutura ou estruturas de sistema que compreendem os componentes de software, as
propriedades externamente visiveis desses componentes, e o relacionamento entre eles”.

A despeito da falta de consenso na definicao do termo arquitetura de software, a
terminologia utilizada nessa drea de pesquisa e a identificacao dos elementos bésicos na
descricao dessas arquiteturas sao bastante aceitas. A definicao encontrada em Moriconi
[MQ94] apresenta os conceitos representados por arquiteturas de software, considerando os
seguintes elementos: Componentes, que representam objetos com existéncia independente;
Interfaces, objetos tipados que sao pontos légicos de interacao entre os componentes e seu
ambiente; Conectores: objetos tipados que relacionam interfaces, componentes ou ambos;
Configuragoes: uma colegao de restricoes que une objetos em uma arquitetura especifica.

Todavia, mesmo com todo o progresso alcancado até agora, a area de arquitetura de
software ainda nao atingiu sua maturidade como uma disciplina de engenharia [Gar00].
Embora seus conceitos basicos ja estejam claros, ainda existem enormes desafios a serem
vencidos. Contudo, é indiscutivel a importancia das arquiteturas de software no contexto
do ciclo de vida de softwares complexos.

A.1 A Importancia do Projeto Arquitetural

O processo de comunicacao entre os participantes de um projeto de software é essencial
para o sucesso do mesmo. Porém, esse processo é bastante dificil de ser coordenado, visto
que diversos interesses devem ser considerados e acomodados de forma consistente. Ge-
rentes, agéncias de financiamento, programadores, entre outros, possuem visoes diferentes
do mesmo sistema. Entretanto, é importante que essas pessoas possam comunicar suas
necessidades, e que essas necessidades possam ser entendidas pelos outros. Um geren-
te financeiro, por exemplo, que possui um grande entendimento sobre o dominio de um
problema a ser implementado, mas nao entende nada de programacao, deve ser capaz de
se comunicar com o desenvolvedor, que entende de programacao, mas pode nao ententer
nada sobre o dominio do problema.

O projeto arquitetural fornece essa ponte entre os requisitos do sistema e a imple-
mentagao [Gar00]. De forma simplificada, um diagrama contendo as partes do software
representadas por caixas e linhas, fornece uma descricao da funcionalidade do sistema,
além de permitir a visualizacao das interconexoes entre essas partes. Essa representacao
fornece uma forma de comunicacao que permite que o gerente possa ver seus requisi-
tos representados e que o programador possa verificar as diferentes formas nas quais as
funcionalidades possam ser implementadas.

A.2 Linguagens de Descricao de Arquitetura

Durante muito tempo, os projetos arquiteturais foram tratados informalmente. Simples
diagramas com descri¢oes em linguagem natural eram utilizados para definir a funcionali-
dade de aplicagoes complexas. Contudo, essas notagoes eram imprecisas e ambiguas, e nao
permitiam a realizacao de andlises mais complexas sobre o comportamento das aplicagoes.

Em resposta a informalidade dos projetos arquiteturais, surgiram as ADLs (Architec-
ture Description Languages). As ADLs sao linguagens utilizadas na descrigao precisa de
arquiteturas de software, possibilitando a realizacao de andlises formais dessas arquite-
turas. Atualmente é possivel se encontrar um grande nimero de ADLs, algumas mais
genéricas e outras desenvolvidas para dominios especificos.

Exemplos de ADLs incluem Aesop [GAO94], Darwin [MDEK95|, C2 [MORT96], Rapi-
de [LAK'95], UniCon [SDD95], Meta-H [BV93], Wright [AG97], entre outras. Cada uma
dessas ADLs, fornece um conjunto de propriedades diferentes. Por exemplo, Aesop supor-
ta a utilizacao de estilos arquiteturais; Meta-H é utilizado para o projeto de softwares de
tempo-real para controle de aviagao; UniCon suporta tipos heterogéneos de componentes
e conectores.

Além de possuirem caracteristica especificas, as ADLs também possuem sintaxes es-
pecificas, normalmente dificeis de serem entendidas pela grande maioria dos participantes
do processo de desenvolvimento de software. Essa dificuldade no entendimento dos ele-
mentos arquiteturais descritos pelas ADLs foi a principal motivacao do desenvolvimento
da linguagem ArchML.

Design Patterns for Components Reuse

Eduardo Kroth Carlos Alberto Heuser
University of Santa Cruz do Sul - UNISC Federd Universty of Rio Grande do Sul —
Department of Computer Science UFRGS
kroth@polarisunisc.br Department of Computer Science
heuser @inf.ufrgsbr
Abstract

This paper addresses the software reuse, specially the problem of developing
applications from preexisting software components. These components have
concrete and template methods, which offer a specific functionality to be used in
the application development. The “ use” contract establishes the rules for the use
of component methods by application methods. The “implementation” contract
establishes the rules for the implementation of abstract methods of a component.
In order to allow the implementation of the contracts, integration architecture is
proposed, formed by components, application classes and integration classes.
The integration classes are specified as design patterns. This paper describes
the development of applications that use components and shows the way the
integration architecture must be constructed.

Keywords: software reuse, components, frameworks, design patterns, reuse contracts
1. Introduction

One of the software reuse techniques concerning a specific problem domain is referred to
the implementation of common functiondity in frameworks [JOH88]. A framework for building
goplications in a specific problem domain is cdled vertica framework in opposte to a horizontal
framework which provides a common infragtructure for lots of problem domains (visud interface,
communicaion, persgence..) [FAY97]. The problem reaed to frameworks use, especidly with
the use of verticd frameworks is that they implement a whole problem doman. Because of this
vertical frameworks are generdly big, complex and difficult to understand and use. To solve
this problem, a variety of solutions has been proposed, as the use of visudization graph tools
[MEU97], the contract use [COD97] or desgn petens use [ODE97]. Framdets ae little
frameworks that resolve smple cases and they have been coded in components [PREQQ].

This paper proposes the framework divison on a st of mini-frameworks as an dternative,
i. e; each framework consgs of a little set of interrdation classes. These frameworks can be
treated as a software component [SZY 98].

Usng a threelayer software architecture (humancomputer inteface problem doman and data
management), this peper is based on the problem doman layer. In its proposd, the doman
problem is divided into three different layers concerning the interests of them [SIL96]. From the
three layers, oneis generic formed by components that offer solutions for little specific problems.

The other layer is composed by whatever component gpplication. The middle layer makes the
relationsthat exist anong components and gpplication classes.

Components

Integration

Application

Human-Combputer Interface Problem Domain Data Manaaoement

Figure1l— ThreelLayer Software Architecture

This paper presents a software architecture that dlows associating the agpplication dasses to a
component st as the one described in Figure 1. Besides that, the work describes a wizard, which

dlowshbuilding integration layer classesin an autometic way.

This paper is organized as it follows Section 2 describes rddions tha there are among
goplication and components. Section 3 presents the reuse contracts notation as components and
goplication representation. In this chapter it is presented two new types of contracts. These
contracts receive properties that increase the generdtion of an integration architecture developed
insection 4.

2. Relations Among Components and Application

The following example describes possble reations among components and gpplication. Figure 2
presents the component and application classes for a travel agency. The components ae based on
a st of andydss patterns described in [COA 97]. The components have abstract, template and
concrete methods. Abstract methods are identified by itdic form Template and concrete methods
ae avalable for the application developer to rdation them with gpplication methods that have
gmilar functiondity. In Fgure 2, components are indde packages and each package name
identifies a component.

The gpplication classes presented in Figure 2 are about a travd agency sysem. The gpplication

developer, actor respongble for the definition of components and gpplication reations, deveops

these dasses An goplication can be built through the combination of a lot of components. The

relation of an gpplication and its components is characterized asit follows

?? an application dass may not need dl cdlass component methods,

?? an gpplication dass can use or implement methods from different components,

?? an abdract component method can be implemented by a concrete gpplication method or by
other concrete component method, and

?? the gpplication methods can have different names from the ones presented in the components.

PlaneExecution PlaneTransition

- Place
Plane PlaneExecution PlaceTransaction
1 0.* * 1
calculatesDuration() " CountTrans ()
: calculatesTransition
calculatesTotalPlane() getStartDateTime() 0 calculatesTrans()
getEndDateTime() sumTrans()

classifyTrans()

TravelPackage PackageRoute
1 0..* 0..% 1 Hotel
howMuchTime()
calculatesincomes () calcRoutelncomeltem
getPackageTime() getDataApproach() 0 sumPackagelncome()
howManyCities() getDataRetirement() selectReservations()
getincomeCost()

LineTransaction

Transaction LineTransaction
countLines() getQuantity()
sumLines() getValue()

calculatesLine()

Figure 2 — Components and application classes example

Usng the object model of Figure 2 some reations can be edtabilised among the components and
the aoplication. The goplication deve oper edablishes that the
TravelPackage.calculatesincome() =~ method has the same functiondity of the

Transaction.addLines() method as the PackageRoute.howMuchTime() method in rdation to
PlaneExecution.calculatesDuration() method. These method rdaions ae cdled use rdaion

i.e, the TravelPackage.calculatesincome() mehod wuses the Transaction.addLines()
method

Abdgract methods referred as template methods that have been chosen by the agpplication
developer need to be implemented. Thus, the gpplication method or the method of other

component that implements each referred method needs to be identified.

The PackageRoute.howMuchTime mehod uses the PlaneExecution.calculatesDuration.
The later is a template method and it invokes two dbdtract methods of the same dass
getStartDateTime and getEndDateTime Therefore, these two abstract methods need to be
implemented if the PlaneExecution.claculatesDuration method is going to be used. This
Stuation defines a component method being implemented by an gpplication method.

Besdes component methods can be used to implement abdract methods. For example

PlaceTransaction.calculatesTransaction is used by a Place dass template method. In the
dudied case, this mehod is implemented by other componet = method:
LineTransaction.calculatesLine.

This reaion among methods is cdled implementation reaion. An gpplication method dass or
other component method can be implemented by an abstract component method.

3. Using reuse contracts to represent the relations

This paper uses the reuse contracts notation to represent the implementation and use relations
established among components and gpplication.

Reuse contracts [MEN96] is a technique for forma representation of components and gpplication
relaion. The Programming Technology Labor research team of Free Bruxdas Universty,
Belgica [DHO98] has been developing it. The notation was crested in 1996 [LUC96], however it
was not based in UML Recent papers [MEN98a, MEN 98b] adgpted the notation to UML.

Reuse contracts use white-box components because they document the component and
goplication dasses rdation. The component and gpplication dases rdaion can be dasdfied in
basc types cdled types of reuse contracts. Origindly the reuse contracts are concrete and
abdraction; extendon and cancdlation; refinement and coarsening [STE96]. In UML notaion a
dereotypeis created for each contract and it isindicated in the dependency association.

This paper presents two new types of contracts. Each contract referred in this chapter is specified
by some properties and by syntax. The syntax describes the writeread contract form. The
properties relate the characteristics of each contract. The referred examples are about Figure 3.

3.1. Types of use contract

The use contract concerns the gpplication methods that refer component methods aming the use
of component method implementation. For thet, the application method functiondity needs to be
the same of the component method. Three properties characterize this contract and differ it of a
ample inheitance (i) posshility of component methods rename when used in gpplication; (i)
patid use of component methods and, (iii) assodation of an goplication dass with many
component dlases. The use contract syntax is asit follows:

Use <component method> used by <gpplication method>

1% Property: Possibility to rename component methods . This property alows an application
method name that is referring a component method, is not the same of the referred method,
giving the application deveoper liberty in choosng ancther method name This property causes
an asodaion among component and goplication i.e, the application method jugt cdls the
component method. For example the PlaneExecution.calculatesDuration() method is used by
PackageRoute.howMuchTime() method and they do not have the same name.

24 Property: Partial use of component methods. This property establishes liberty for the
gopliction developer in choodng the necessry component methods for the gpplication cdlass.
Reuse contracts use the cancel contract to delete the desre method. Differing from the cancel
contrect, the use contract proposes information of the component methods chosen. In Fgure 3,
the Hote gpplication class does not use dl the Place component class methods.

3 Property: Association of an application class with many component classes. In an
goplication dass developing, the goplication developer can have the necessty of choosng more
than one component to associate with an gpplication. This necessty occurs when the gpplication
methods implementation are in different components. So, this property dlows the rdationship of
an goplication dass with many components. Besides, this property is necessary because the class
devdoping <olution is not dored in only one component. The property requires objects
indantiation in the coreponding associaed objects For example the goplication dass
PackageRoute has a rdation with LineTransaction, PlaneExecution and PlaceTransaction
component classes.

3.2. Types of implementation contract

The implementation contract concerns the abdract component methods implementation. This
contract is complicated when a template component method is referred and consequently the
abdract methods of the dependency ligt need to be implemented. The gpplication developer needs
to provide the abstract method implementation that can be in an gpplication method or in another
component method.
The syntax contractis Impl <component method> - <application method>,

read as <component method> isimplemented by <application method>.

The implementation contract presents two properties. (i) reference of an abdtract method to a
concrete method and (i) possibility of different names among concrete and absiract methods.

1% Property: Reference of an abstract method to a concrete method. The implementation of
an abdract component method has two options (i) to use an gpplication method or (i) to use
another component method. The fird propety says that the implementation relaion needs to
indicate which concrete method provides an implementation for abgtract component method. For
example, Fgure 3 shows the PlaneExecution.getStartDateTime() nesding an implementaion
and the application devel oper specifying the PackageRoute.getDateApproach() for that.

2" Property: Possbility of different names among concrete and abstract method. The
property determines that the implementation and component methods do not need to have the
samne names The dove example illugrates this propety. When the gpplication deveoper
chooses ancther component to use in the implementation of a method, it is necessary to obsarve if
the functiondity specifications are enough.

In the example of Fgure 3, the gpplication devdoper defines that the PlaneExecution abstract
methods class uses the PackageRoute goplication dass implementation. The PlaneExecution
abdract methods class is required by the PlaneExecution.calculatesTransaction method and
they are methods that return needed information attributes for the caled method.

PlaneExecution

Plane

> calculates TotalPlane()

1

O“*
PlaneExecution

calculatesDuraction ()
getStartDateTime()
getEndDateTime()

<<use>>
calculatesDuration - howMgchTime ¢
<<impl>>
getStartDateTime - getDataRetirement’
getEndDateTime — getApproach

LineTransaction

LineTransaction

get
get

calculatesLine ()

Transaction
Quantity() ©
Value() countLines()
sumLines()

PlaceTransaction

*, <<impl>> calculatesTransaction -

PlaceTransaction

getValue — getincomeCost

calculatesTransaction(

Place

countTrans ()

calculatesTrans()
sumTrans()

classifyTrans()

<<impl>> getQuantity - howMuch

<<use>>
countLines - howMuchCities
sumLines - calculgtesincome

<<use>> claculatesPlaneTotal - getPackageTime

TravelPackage

calculatesincomes()
getPackageTime()

PackageRoute

<<use>>/calculatesLine -

A

<<use>> sumTrans - sumPackageslncome

classifyTrans - selectResgrvations

Hotel

howMuchTime()
calcRoutelncomeltem()
getDateApproach()
getDateRetirement()
getincomeCost()

sumPackagelncome()
selectReservations()

Figure3 — Application of the contractsin the Travel system

4. Integration Architecture

This chapter presents classes architecture for the reuse contracts implementation proposed in the
last chapter. The integration architecture is important because the Reuse Contracts notation is just
used by the objects diagram i.e not beng directly implemented in programming languages The
new contract implementation is presented in the following chapter as design petterns.

4.1. Use Contract Pattern

Context

The use contract between component and gpplication methods presents properties that require
implementation. The use contract clams that the gpplication class that uses this kind of contract

to edablish a rdaion with component dasses mus provide some implementation functiondity
presented by the kind of contract.

Problems

This functiondity implementation changes the origind gpplication cdass In order not to change
the origind application dass the use contract functiondities need to be implemented in a
specific built dass. This dass needs to be an abdract dass individualy built for each gpplication
class tha has the use contact. The implementaion of the components and application reation
presents the follow requirements:

To ingance and to delete the objects of associated components — dl the instanced applicetion
object needs the ingance of al associated components through the USE reation. When the
goplication object is desroyed, dl the objects of associated components need to be destroyed.
The agpplication objet managers the ‘lifeé of the objects of associated components and
determines its instance and destruction.

In the above example, the ApplicationA agpplication dass has a rdaion with ComponentA
ComponentB and ComponentC classes through the use contract. This implies that every time
that an ApplicationA application cass object is ingtanced, the corresponding objects from the
relating classes of components need to be instanced too.

ComponentA ComponentB ComponentC 0. 1 ComponentD
getAttributeX () getAttributeY() methodC() methodD() [ComponentC.methodC]
methodA() methodB() =

: N A7
v A | -~
h <<use>> metApplicationB : methodB | <<use>zMetApplicationD : methodD
| . . 7z
<<use>> metApplicationA methodA." 1 7
AopplicationA AnplicationB
— B 1] [
metApplicationA() metApplicationD()
metAplplicationB() metApplicationE()

Figure 4 — Object Modd using USE Contract

b) To have reference to the objects of related components — the agpplication object needs to
have a refeence for each indanced object component. For example, the
ApplicationA.metApplicationA must have references to ComponentA, ComponentB and

ComponentC component classes.

c) To invoke the component methods — the goplication method indicated in the USE rddion
needs to be implemented to reference the corresponding method in the component object. For
exanple, the ApplicationA.metApplictionA body method just needs a reference to invoke the
ComponentA.methodA

d) To update the required application references — when a component method references
another component method, the reference needs to be indanced between the dasses If the
referenced class does not have an associated agpplication cdass, then an gpplication class tha
edtablishes ardaion with it needs to be provided, to only instance and destroy its objects.

For example, one of the (ApplicationB.metApplicationD) methods references a component
method (ComponentD.methodD). The referenced method depends on the
ComponeneteC.methodC. The ComponentD.methodD method dependency concerns other
method class, therefore the ComponentC class needs to be inganced and must have rdation to
any gpplication dass Conddering this, the gpplication developer indicates that the AplicationA
gpplication class maekes reference to the ComponentC class to just atend the dependency of the
methods defined above.

Solution

Two other dedgn petens wee used to buld the router cdass solution: Decorator e
Facadef GAM94]. The router class is an abdract class and exists for each gpplication class that
has a reuse contract with component classes. The gpplication class inherits its router propriety
class.

ComponentA ComponentB
getAttributeX () getAttributo Y()
methodA() methodB()

~_ 7

AnpplicationRot

metApplicationA ()
metApplicationB ()

.

Application

metApplicationC()

Figure5— Objects Model using router classes

The router class notation orders is as it follows applicaion dass name followed by the “Rot”
auffix. In Figure 5 the router class crested to attend the associaion of Application (gpplication)
with ComponenteA and ComponentB (components) is caled ApplicationRot.

A router cass must have the indance and dedruction functiondity of the components
implemented in its corresponding methods with the some functiondity. Besdes, the router dass
needs to have references for relaed components by the use contract kind. The methods
edablished by the use contract kind must be in the router dass having the corresponding method
cdl in the component.

4.2 Implementation contract pattern

Context

The implementation contract is used when abdract component methods are cdled by other
component methods. Abdract methods need to be implemented in other specidized dasses to
not change the origind component dructure. The implementation contract indicates the concrete
method for the abdract method implementation. This concrete method can be in an goplication
class dructure or in another component dructure. Therefore, a component related with
goplication dases can have abdract methods implemented in different dasses, not only from the
goplication but dso from other components. This fact needs to be conddered in this problem.
Examplesarein figure 6.

Problems
For theimplementation contract implementation the following specifications are necessary:

a) to have reference to the related objects — when a component has implementation reaion,
the inganced object of this component must refer the objects where the related concrete methods
ae found. For example, the ComponentA object has an implementation relaion with the
ApplicationA object, therefore the component object has a reference for that application object.
In the other example, the ComponentD object has an implementation rdaion with the object of
another component, ComponentF. Therefore the ComponentD object has a reference to
ComponentF object.

b) abstract methods refer the relation concrete methods — each abstract method exigtent in the
implementation relaion needs to be gpeddized. This gpedidization code must contan a
reference to the concrete method defined in the rdation. For example, when the
ComponentA.getAttributeX method is specidized, it needs reference to the
ApplicationA.getAttributeX1 method. In the other example the ComponentD.methodD
method refers to the ConponentF.methodF method.

ComponentA ComponentD
ComponentA ComponentD
methoc_IA() [getAttributeX] methodD()
methodA() [getAttributeX] methodD() getAttributeX()
getAttributeX() . Z}
|
| IComponentAComponentF
<<impl>>} getAttributeX - getAttributeX1 <<impl>aI methodD - methodoF | IComponentAApplication
|
|
— v/ getAttributeX() 222
Application
ComponentF
metApplicationA()
getAttributeX1() methodF()
Application ComponentF
metApplicationA()
getAttributeX1() methodF()

Figure 6 —Implementation relation examples and objects models using implemented classes

Solution

The implementation contract has its implementation based on the Adapter desgn peattern
[GAMY]. For each implementation contract that associates a component class and a dass
rejpongble for the implementation, an implemented dass is generated. The implementation dass
is resultant from this paper and it takes place in the modd of the objects as a subclass of the
component cdass An implementation class name is composed by the suffix | (of implemertation)
added by the conjunction of gpplication and component dasses name. The component dass is
soecidized by the implemented dass i.e the indanced object in the component layer is the
implemented class object.

Usng Fgue 6 a a exanple the implementaion rdaion edablishes tha

ComponentA.getAttributeX is implemented by Application.getAttributeX1 method and
ComponenetD.methodD method isimplemented by ComponentF.methodF.

4.3 Case study using the integration architecture

Usng the case dudy of Figure 3 — travd agency system using some pre-exisent components — an
object modd can be generated usng the integration layer to promote the implementation of use
and rdation implementation. For the use redion the router dasses are built. In FHgure 7, the
implemented and router classes are edged by gray just to differ them from the others classes.

In Fgure 8, the router classes are HotelRot, PackageRouterRot and TravelPackageRot.
Each router class is an abdract class and its dructure is inherited by the corresponding
aoplication class Router clases ae referenced to the components edtablished by the use
relation.

Implementation cdasses correspond to the implementation relation edtablished between
component and application dasses or from other components. Each implemented dlass is built for
eech combination of component dass with its implementation dass. The implemented dasses
built for the cae Study ae ILineTransactionltemPackageRoute,
IPlaceTransactionltemLineTransaction and IPlaneExecutionPackageRoute.

LineTransactionltem
Plane getQuantity()
> getValue()
calculaTotalPlane(] calculatesltem()

1 i

0. LineTransactionltem
- PackageRoute
PlaneExecution
ool 5 on 0 getQuantity()
calculatesDuraction
getStartDateTime() GEEILE

LineTransaction

countTransactions()
ssumTransactions()

PlaceTransaction

Place

getEndDateTime()

IPlaneExecutionTravelPackageRot

getStartDateTime()
getEndDateTime()

countTrans ()

calculatesTransactiono(calculatesTrans()

1

sumTrans()
classifyTrans()

IPlaceTransaction
LineTransactionltem

calculatesTransaction()

PackageRouteRot HotelRot
—1 howMuchTime() sumPackagelncome()
TravelPackageRot calcincomeltemRoute() selectReservations()
calculatesincome() A A
getPackageTime ()
ZP PackageRoute
1 0.. 0..* Hotel
TravelPackage getDataApproach()
getDataRetirement()

Figure 7 — Object model with the integrated ar chitecture

6. Conclusions and Future Works

This paper presents (i) a technique aming the specification of relation between components and
goplication dases udng a grgoh notaion and (i) software architecture to define rdation

implementation.

The technique uses software components as reuse objects The used components are developed
for the doman problem layer. These components must provide internd dructure visudization
and are used as white box components. Therefore components, gpplication classes and integration

layer form the problem domain layer.

When the goplication devdoper ams using component method functiondity as implementation
of an goplication class method, a use rdaion is used. This rddion condders that not al-
component methods must be used by goplication dasses and goplication methods names do not
have to be the same of the component. Besdes that, an gpplication cdass can use lots of
components. Among these dependent methods, it is possble to have dbdtract methods requiring
implementation. The gpplication devdoper is respongble for abdract methods implementation
and it can be done by agpplication methods or by methods of others components. In this reation,
when the abdract method is being implemented by ancther method, it is cdled implementation
relaion.

A notaion is necessry to document the above redions. This paper uses the Reuse Contract as
notetion. The reuse contracts implementation is done through set of dasses forming the

integration layer. For each contract a Specificaly dassis presented.

A router dass is generated for each gpplication dass that has use relaion with components. The
router cass is respongble for the object indantiation and dedtruction of reaion components. The
router class is formed by methods defined in the use rdation. Each method defined in a use
relaion is implemented in the router class and refers to the corresponding component method. An
implemented class is generated for each implementation relaion exiged between the component
and the dass that provides the method implementation. The implemented class is a component
pecidization and it has a reference to the implementation class provider.

For automdic classes generdtion of the integration layer this paper presents a wizard. The
integration layer is generated from the relation edtablished between components and application
clases and it is specified by the reuse contracts. The wizard presents a textud interface alowing
the gpplication developer to specify the use and implementation relaion between the components
and gpplication methods.

Component implementation was not evauated in commecdd tools based on component

devdopment (Microsoft/COM, OMG/Corba, and JavalRMI). Therefore, fuure works can
concern integration and components layers implementation using those architectures.

References

[BOY7] BOSCH, J Adgoting Object-Oriented Components Jyvéskyld Fnland - Ed. Springer
Proceedings of the ... ECOOP97 Workshops, june 1997.

[COA97] COAD, P. et d. Object modds. dtrategies, patterns and applications. New Jersey,
Ed. Prentice Hall, 1997

[COD97] CODIENE, W. e d. From cusom gpplicaions to doman-gpecific frameworks.
Communications of the ACM, 40(10): 71-77.

[DHO98] D'HONDT, T.; e d. Reuse Contracts

[FAY97]

[GAMY]

[JOHSS]

[KRO99]

[LUCY]

[MEI%]

[MENO96]

[MEN984]

[MENS8H]

[MEU97]

[ODEQ7]

[PREOC]

Located in http://progwww.vub.ac.be/prog/poolsresindex.html (18 out 1999)

FAYAD, M., SCHIMIDT, D. Obect-Oriented Application Frameworks
Communications of the ACM. 40(10):71-77

GAMMA, E. @ d. Dedign Patterns. Elements of Reusable Object-Oriented
Softwar e. Massachusetts, Addison Wedey Publishing Company, 1994.

JOHNSON, R.; FOOTE, B. Dedgning Reussble Classes Journal of Object-
Oriented Programming, junhojjulho 1988, val. 1 number 2p32-35

KROTH, E. et d. Software Assgente no Uso de Componentes. Proceedings of the
XII Brazilian Symposum on Software Engineering — Tools Sesson, october, 1999,

LUCAS, C. Documenting Reuse and Evolution with Reuse Contracts. Doctord
Thess, Scence of Computing Depatament, Vrije Universty , Bruxdas, Begium.
199

MEIJER, T. et d. Class Compostion in FACE, a Framework Adgptive Compostion
Environment. Proceedings of the... ECOOP96 Workshop Reeder , july 1996.

MENS, K. e d. Reuse Contracts Managing Evolution in Adaptable Systems.
Proceedings of the.. ECOOP9% Workshop on Adaptability in Object-Oriented
Software Development, 1996

MENS K. & d. Supporting Discplined Reuse and Evolution of UML Modds
Proceedings of the... UML'98 Workshop, Mulhouse, Franga, june 1998.

MENS, K. d&. d. Giving Precise Semantics to Reuse and Evolution in UML.
Proceedings of the.. ICSE98 Internationd Workshop on Principles of Software
Evolution, Kyoto, Jgpan, 1998.

MEUSEL, M. Czarecki; Kopf, W. A modd for dructuring user documention of
object-oriented frameworks usng patterns and hypertext. Proceedings of the ...
ECOOP97 (LNCS 1241), pp.498-510, Sringer-Verlag, 1997.

ODENTHAL, G, Quiebd-Cirkel K. Usng Pdtens for Desgn and Documentetion.
Proceedings of the... ECOOP97 (LNCS 1241), pp. 511-529, Sringer-Verlag, 1997.

PREE, Wolfgang, PASETTI, Alesssndro. Two Novd Concepts for Systemdic
Product Line Devdopment. In: The Frs Software Product Line Conference, 2000,
Denver, Colorado. Proceedings... Located in:
<http:/Mmww.softwareresearch.net/FrameworkMethodologyProjec/>. Acessed a9

jul. 2000.

[SIL9]

[STES6|

[SZY9g]

SILVA, A. R . d. Three-Layered Framework with Separation of Concerns

Proceedings of the.. OOPSLA'% Workshop on Exploration of Framework Desgn
Principles, Cdifdrnia, EUA, october, 1996

Seyaart, P. e d. Reuse Contracts Managing the Evolution of Reusdble Asss.
Proceedings of the.. OOPSLA'9% Conference on Object-Criented Programming,

Sydems, Languages and Applicationss ACM SIGPLAN Notices, val. 31, rf. 10,
october 1996, pp. 263-285

SZYPERSKI, C. Component Software. Halow, Reno Unido, Addison Wedey
Publishing Company,1998

Modelo de Cooperacao para Aprendizagem Baseada em Projetos. Uma
L inguagem de Padr 6es

Flavia Maria Santoro Marcos R. da Silva Borges Neide Santos
flavia@cos.ufrj.br mborges@nce.ufrj.br neide@ime.uerj.br
COPPE-Sistemas/UFRJ NCE/UFRJ IME/UERJ
Caixa Postal 68511 - 21 945 270 Caixa Postal 2324 - 20001-970 CaixaPostal 20550-013
Rio de Janeiro -Brasi Rio de Janeiro - Brasil Rio de Janeiro - Brasil

Abstract: Computer-supported collaborative learning (CSCL) environments arise as one of the
most powerful and important educational applications. Moreover, CSCL holds many-sided
features and building such environments is not an easy task. The developer of applications knows
neither the educational domain, nor the collaborative strategies applied to the teaching-learning
process. Teachers and students need a flexible environment to configure different collaborative
projects. Thus, we understand that the design of CSCL environments should be based on a
conceptual model, which allows the description of explicit collaborative processes. The proposal
of this work is a Cooperation Model for Project-based Learning, described through a Pattern
Language. The Model aims at supporting the development of collaborative environments in the

domain of project-based learning.
Introducéao

A construcdo de ambientes de aprendizagem cooperativa baseada em projetos ndo € uma
tarefatrivial. O desenvolvedor de aplicagdes ndo conhece o dominio da educagdo e as nuances
das estratégias cooperativas aplicadas ao processo ensino-aprendizagem, por outro lado, o
professor/Facilitador e os Aprendizes precisam de um ambiente flexivel, onde tenham apoio
no uso da tecnologia computacional, e onde possam configurar diferentes projetos
cooperativos de acordo com caracteristicas especificas desgjadas (Santoro et al., 2000).

A andlise dos ambientes de aprendizagem cooperativa apresentados na literatura mostra que é
possivel identificar elementos comuns que levam a melhores ou piores resultados em termos
do processo de cooperacdo. Esta linguagem de padrbes visa apresentar alguns destes
elementos e mostrar como utilizé-los para criar tais ambientes. Desta forma, 0 objetivo da
linguagem de padrdes € levantar problemas comuns aos ambientes, apontar solucfes, mostrar
como estas solucdes sdo implementadas em alguns ambientes e como podem ser aplicadas no
desenvolvimento de novos ambientes.

A Linguagem de Padr des

Varios aspectos estdo envolvidos em um Modelo de Cooperacéo para Aprendizagem, e todos
eles se relacionam a tentativa de produzir um processo cooperativo efetivo, traduzido em um
Fluxo Atividades. Um processo cooperativo € definido pelo grau de Interdependéncia
encontrado nas tarefas propostas.

Ao longo do processo, os aprendizes compartilham conhecimento sobre um determinado
dominio. Portanto, é fundamental criar um entendimento comum sobre os objetos de estudo.
Uma forma de garantir este entendimento € a estruturacdo ou Representagdo Conhecimento,
que também irafacilitar a captura e recuperagdo da Memaria do grupo.

A memoéria determina 0 armazenamento ndo sO dos produtos gerados, mas também do
desenrolar das atividades. Com isto, 0 grupo tem a possibilidade de aprender com através de
trabal hos desenvolvidos anteriormente. Porém, surge uma questdo: como e em gue momento
sefard o Uso Meméria.

Mesmo em ambientes de aprendizagem cooperativa, 0s individuos necessitam de espacos para
a sua producdo pessoa e o ambiente deve prover Apoio Trabalho Individual. Porém, os
membros do grupo devem sentir que o resultado faz parte de um todo através da Integracgéo
Produtos Individuais, afinal o resultado final € uma produgdo cooperativa.

Ao longo do processo, e em cada atividade especificamente, os participantes assumem
funcbes ou responsabilidades diferentes. Estas fungdes sGo chamadas de Papéis e definem as
relaces, as formas de interacdo entre o0s participantes e 0 acesso a objetos compartilhados.
Alguns exemplos mais tipicos e genéricos sao Facilitador, Aprendiz € Coordenador. Também
€ necessario definir como estes papéis sdo designados e mantidos através de Critérios
Nomeacéo.

A Coordenagéo estarelacionada ao controle do processo e gjuda ao estudante tanto em termos
de contedo quanto de atuagdo no contexto das atividades propostas no ambiente. A
Coordenacdo também envolve Resolugdo Conflitos € Tomada Decisbes, que no caso destes
ambientes devem ser analisados como processos auxiliares para que os aprendizes tomem
decisbes sobre 0 plangjamento e a execucdo das tarefas que levardo a elaboracdo da solucéo
de um problema proposto, promovendo sua aprendizagem, e mobilizam varios mecanismos
cognitivos e afetivos (logica, inferéncia, deducdo, crenca, duvida, sutileza, envolvimento
emocional).

Presentes em sistemas cooperativos de um modo geral, os mecanismos de percepcdo sdo 0s
responsaveis pelo entendimento e consciéncia do grupo em relagdo aos participantes e as
tarefas desenvolvidas. No caso especifico de ambientes de aprendizagem deve-se prover
Percepcdo Espago Trabalho, Percepgcdo Tarefas, Percepg¢do Interacdo Social € Percepgao
Conceitos.

Qualquer ambiente educacional deve incorporar formas de suporte a avaiacdo da
aprendizagem. Este suporte deve ser feito através da disponibilizacdo de instrumentos
apropriados inseridos no Processo Avaliagdo Educacional. E necessario avaliar Resultados
Individuais € Resultados Grupo.

Relacionamento entre os Padr 6es da L inguagem

Para representar os tipos de relacbes entre os padrdes na linguagem foi utilizado o trabalho de
Gerber e Becker (2000), que propdem o uso de nés tipados para mostrar as diferencas
semanticas dos diversos relacionamentos existentes entre os padrbes e com isso facilitar a
navegacao entre eles. Os relacionamentos sdo classificados em quatro categorias resumidas na
Tabela 1. A Figura 1 descreve o mapa de relacionamento entre os padrdes da linguagem, os
quais sdo apresentados em seguida.

Tabela 1 — Categorias de Relacionamentos entr e Padr 6es

Relacionamento | Descricéo Representacéo Gréfica

€ completado por | Um padréo € completado por outro quando ele divide um problema genérico
em um grupo de sub-problemas resol vidos pelos padrfes que o completam. O/_\A

érequisito para | Um padréo € requisito para outro quando ele tem que ser necessariamente 4
usado antes do outro.

levaa Um padrdo leva a outro quando ele deixa um problema n&o resolvido ou

guando a solucdo aplicada gera um problema que pode ser resolvido pelo /_\D
outro padréo.

é refinado por Um padrdo é refinado por outro quando o Ultimo atende a um problema que é
uma especializacdo do primeiro.

1.FluxoAtividades

13.Facilitador 12.Coordenador
14.Aprendiz 10.UsoMeméria

3.Interdependéncia

15.CritériosNomeagdo
9.Memoria
| 6.ProcessoAvaliagéo |
2.RepresentacdoConheci mento Q
5.Integrag@oProdutosindividuais Zr
8.ResultadosGrupo 7.Resultadoslndividuais
17.PercepcéoConceitos
4.ApoioTrabalholndividual
| 19.PercepcaoEspacoTrabaho |
18.PercepcéoTarefa 16.PercepgéolnteracdoSocial
21.ResolugdoConflitos v epeso G a==oa

& ~
<_<> 20.Coord
TomadaDecisdes oordenagao

Figura 1 - Representacdo Gréfica da Linguagem de Padr des

1. Nome: Fluxo Atividades

Contexto:

Em ambientes cooperativos para aprendizagem baseada em projetos, diversas atividades sdo
propostas a fim de que os alunos chegem ao objetivo educacional, ou sgja, adquirir/construir
conhecimento ao longo do processo. Em um projeto, ha compromisso com a geragcdo de
produtos. Portanto, as atividades ndo séo isoladas e desconectadas, mas compdem um fluxo
necessario a execucdo do projeto. A composicdo deste fluxo vai determinar a caracteristica
pedagdgica e funcional do projeto.

Problema:
Como definir e descrever o fluxo de atividades em ambientes de aprendizagem cooperativa
baseada em projetos?

Forgas:

O primeiro passo para a realizacdo bem sucedida de um projeto € 0 seu plangjamento. Para
descrever um processo de trabalho, é necessario definir o relacionamento entre as diversas
atividades: objetivos especificos, Papéis, Interdependéncia, regras, hierarquia, entradas/saidas,
sub-produtos gerados, e ferramentas de apoio.

A nocdo de projeto (conjunto de atividades) como um todo é fundamental para a organizacdo
e Coordenacéo do trabalho de grupos. Por isso, € importante haver uma definicéo das tarefas
apoiadas pelo ambiente e que estas tarefas levem a aprendizagem.

Solucéo:

Plangje as atividades de forma a levar os aprendizes gradualmente de uma perspectiva
individual (levantamento de idéas, exploracdo) para uma perspectiva coletiva (argumentacéo,
andlise, comparagdo, decisdo). O processo deve mostrar aos aprendizes a necessidade de
interac8o para realizacdo das tarefas. Lembre que nem sempre os individuos tém facilidade de
trabalhar em equipe.

Crie ou permita que 0 grupo crie uma representacao do processo, identificando principalmente
como as interagdes entre os participantes deverdo ocorrer, definindo assm o0 espago
cooperativo. Este espaco deve ter flexibilidade suficiente para ser redefinido sempre que o
grupo avaliar esta necessidade.

O uso de um modelo de Workflow pode ser Util para representar o fluxo de atividades. Van
der Veen et a. (1998) realizaram um estudo experimental sobre a aplicacéo de sistemas de
workflow no contexto educaciona e identificaram as semelhancas e diferencas entre
processos educacionais e de negécios. Os resultados levaram a conclusdo de que o uso de
sistemas de workflow como apoio a aprendizagem baseada em projetos traz ganhos em
relagdo as metas educacionais.

Usos conhecidos:

Estudos de caso redlizados com o ambiente Zebu (Tiessen & Ward, 1999) levaram a
conclusdo da necessidade de prover ao professor mecanismos de suporte ao plangamento e
visualizacdo das atividades a serem propostas, de como devera ocorrer 0 processo cooperativo
e como deverd ser a participacdo dos alunos. Os mecanismos de suporte propostos tém como
objetivo dar apoio ao professor no plangamento de atividades de aprendizagem
interrelacionadas, que devam estimular os estudantes a participarem de um processo de
engajemento progressivo em pesquisas.

Segundo Ferraris e Martel (2000), a regulagdo do espago cooperativo traz 0s seguintes
beneficios. facilita a organizagdo dos participantes; favorece 0 seu comprometimento com a
atividade conjunta; e aumenta a coesdo do grupo. Sua funcéo é definir como cada membro do
grupo devera participar da atividade cooperativa. O Modelo de Participagdo proposto por
Ferraris e Martel (2000) é um modelo conceitual que descreve, formaliza e constréi o
contexto da atividade cooperativa, os relacionamentos de dependéncia e a estrutura de trocas
dentro do grupo.

No ambiente CLARE, a aprendizagem colaborativa sustenta-se em um modelo explicito -
SECAI que “puxa’ os aprendizes da posicdo externa, isolada e individual para a perspectiva
interna, integrada e colaborativa em um artefato (Wan e Johnson, 1994).

O Modelo de Cooperacdo para Ensino/Aprendizagem de Disciplinas de Modelagem de
Becker e Zanella (1998) ¢é voltado para o dominio de conceitos de modelagem de dados
através do desenvolvimento de exercicios, da critica e discussdo de aternativas para
modelagem. O modelo prové um framework, onde estédo definidos: (a) um processo, que
gjuda os professores a definirem e estruturarem as atividades da classe; (b) papéis, a serem
desempenhados por estudantes e pelo professor; e, (c) objetos compartilhados durante o
processo.

Miao et a. (2000) propdem o uso de Protocolos de Aprendizagem, que sdo descritos como
scripts computacionais para definir, guiar e controlar a interacdo social dos processos
cooperativos em ambientes virtuais de aprendizagem.

2. Nome: Representacdo Conhecimento

Contexto:

Atividades cooperativas pressupdem compartilhamento de conhecimento e comunicagao.
Portanto, os objetos de estudo, que sdo as formas concretas através das quais ocorrem trocas,
manipulagdo e producdo de informagdo e conhecimento, sd0 a base de funcionamento de
ambientes de aprendizagem cooperativa.

Objetos compartilhados podem ser divididos em duas categorias. objetos de percepcdo e
objetos de manipulacdo. Objetos de percepcdo sdo relacionados as informagdes necessarias a
execucdo do processo de trabalho (registros de interagdes, visdes sobre andamento das
tarefas), e objetos de manipulagdo sdo relacionados aos produtos das tarefas executadas
(documentos).

Problema:
Quais sdo 0s mecanismos necessarios para fazer a representacdo de conhecimento eficiente
em ambi entes de aprendizagem cooperativa baseada em projetos?

Forgas:

As interacGes em grupo e interpessoais envolvem o uso da linguagem na reorganizacéo e na
modificagdo dos entendimentos e das estruturas de conhecimento individuais, e portanto a
aprendizagem é simultaneamente um fenémeno privado e social.

Para promover a aprendizagem através do compartilhamento é fundamental que se crie um
entendimento comum sobre os objetos de estudo. As pessoas devem ter disponiveis
mecanismos formais, estruturados, para representar um conhecimento, ou questionar uma
colocagdo, de forma que todos os participantes tenham oportunidade de entender o que se esta
querendo comunicar. Representar conhecimento é facilitar a traducéo do pensamento e das
idéias dos participantes de interagdes em ambientes cooperativos.

A forma de representacdo esta diretamente relacionada ao tipo ou érea de conhecimento e ao
uso que se fara desta informacdo. Além disso, deve relacionar umainformacéo ao contexto do
processo cooperativo que esta inserida, facilitando a captura e recuperacdo da Memoria do
grupo e a Coordenacéo do trabal ho.

Em ambientes CSCL, a representacéo de conhecimentos permite também a possibilidade da
existéncia de guias no processo de aquisi¢do de conhecimento, uma vez que o proprio sistema
interpreta as mensagens transmitidas nas interagdes entre os Aprendizes.

Solucéo:

Disponibilize uma linguagem comum para estruturagdo dos objetos de estudo. Esta linguagem
deve conter construtores de trés tipos. (a) dicionario de termos comuns determinados de
acordo com o dominio especifico do projeto, que vai auxiliar na equalizagdo dos contelidos
intercambiados; (b) simbolos gréficos que identifiqguem o tipo de informacdo ou mensagem
gue se desgja transmitir, criando um protocolo de comunicacdo nas interacoes, e (c) elementos
que estabelecam associagfes entre objetos, que permitem a formagcdo de relacionamentos
entre as informagdes, criando uma rede articulada.

Para que o ambiente ndo se torne muito rigido, tolhendo iniciativas particulares e criativas,
flexibilize esta linguagem permitindo a inclusdo de novos construtores nos trés niveis. Desta
forma, os membros do grupo véao desenvolver também um raciocinio sobre alégica contidana
elaboragdo de suas contribuic¢des ao grupo.

Usos conhecidos:

O ambiente CLARE utiliza uma linguagem de representagcdo de conhecimento semi-
estruturada RESRA (Representational Schema of Research Artifacts) que implementa trés
construtores conceituais: primitivas nés, primitivas links, e formas canénicas (Wan e Johnson,
1994). Os estudantes utilizam esta linguagem para representar suas analises e conclusbes
sobre textos estudados. A partir dai, 0 grupo constréi um entendimento coletivo.

No Belvedere, idéias e relacionamentos sdo representados como objetos que podem ser
apontados, ligados a outros objetos e discutidos, permitindo a construcéo de representactes de
relacdes logicas e retdricas dentro de um debate. Sua interface se assemelha a um editor
gréfico, que prové diagramas de argumentacdo disponibilizando formas geométricas para
diferentes tipos e componentes de argumentos com links positivos e negativos, multiplas
formas de ligagOes, e possibilidades de anexos para acomodar argumentos complexos
(Suthers e Weiner, 1995).

O ambiente PIE prové suporte a representacfes textuais e graficas que gjudam estudantes a
articularem suas intuices sobre probabilidade e embas&las no processo de construcdo de
argumentos que reflitam um entendimento padronizado (Enyedy et al., 1997).

Algebra Jam (Singley et al., 1999) usa uma tipologia de mensagens, que tem como objetivo
prover niveis de interpretacdo mais compreensiveis de uma conversa entre os estudantes e
com um tutor. O tipos de mensagens provéem uma forma estruturada que resume as possiveis
intencBes de comunicagdo entre os individuos.

3. Nome: Interdependéncia

Contexto:

Através de vérios estudos e experiéncias realizados com grupos pequenos, pesquisadores da
&rea de educacdo identificaram duas caracteristicas que tornam os grupos bem sucedidos na
situacdo de aprendizagem. Estas caracteristicas sdo chamadas de interdependéncia positiva e
responsabilidade individual (Johnson et al., 1990; Slavin, 1990).

Interdependéncia positiva significa que os membros de um grupo sentem que necessitam
“caminhar juntos’ pararealizar umatarefa, ou sgja, bons resultados e maus resultados obtidos
por um membro da equipe tém o0 mesmo efeito para toda a equipe. Responsabilidade
individual significa que todos os membros de um grupo devem participar ativamente para que
0 grupo venha a ser bem sucedido.

Sendo assim, um processo realmente cooperativo, no sentido de que as pessoas tém um
objetivo comum e necessitam interagir para acanc&lo, é definido pelo grau de
interdependéncia encontrado nas tarefas a serem realizadas.

Problema:

Como definir uma atividade em um ambiente de aprendizagem, garantindo que ela so podera
ser realizada de forma cooperativa, ou sgja, quais sdo 0s elementos ou caracteristicas que
definem interdependéncia positiva na realizagdo de umatarefa?

Forgas:

A estruturacéo de atividades cooperativas visando melhores resultados em termos do trabalho
em grupo também deve ser aplicada no caso de ambientes cooperativos para aprendizagem
apoiados por computadores.

Portanto, a aplicacdo dos fundamentos tedricos dos estudos realizados por educadores pode
ser aplicada na implementacdo de ambientes cooperativos para aprendizagem apoiados por
computadores.

A cooperacdo deve sustentar-se em um modelo explicito de cooperacdo, onde a natureza do
processo cooperativo estgja clara para os participantes. Este modelo deve ser flexivel para
comportar diversas formas de cooperacéo, de coordenacdo e de comunicacao.

Os objetivos e tarefas de um grupo devem ser projetados de forma que os aprendizes
acreditem que formam uma equipe: o esfor¢o de cada membro € importante e indispensavel
para o sucesso do grupo; e cada membro tem sua contribui¢do particular para dar ao grupo, de
acordo com seus recursos, conhecimentos prévios, Papéis, e responsabilidade nas tarefas.

Solucéo:
Analise os elementos de interdependéncia da tarefa proposta, ou sgja questione quais sao as
caracteristicas da atividade indicadoras da necessidade do trabalho em grupo para sua
realizacdo. Uma vez estabelecida a legitimidade da cooperacéo, defina regras de cooperacéo —
um conjunto de normas através da qual a tarefa deve ser desempenhada garantindo a
aplicacdo de trabalho cooperativo. As regras devem ser criadas de forma avincular o trabalho
de um membro de um grupo aos demais, garantindo que o resultado final sb podera ser
atingido, se todos trabalharem de forma cooperativa, compreendendo como serd a Integragcéo
Produtos Individuais.
Johnson et a. (1990) sugerem que as tarefas propostas devem possuir um mais dos seguintes
elementos de interdependéncia positiva:
1. Interdependénciade Objetivo
O grupo deve possuir um objetivo comum.
Exemplo: Um grupo deve ler e criticar uma composiG&o escrita por outro grupo para uma
apresentacao final.
2. Interdependéncia de Papéis
Cada membro tem uma tarefa a cumprir, de forma que o objetivo final sgja alcangcado
somente se cada fizer a sua parte. Neste caso, deve haver interagdo entre os membros do
grupo e pode-se fazer revezamento entre 0s papéis assumidos por cada um.
Exemplo: Um membro do grupo |é uma passagem de um texto, outro deve escrever um
resumo sobre o que foi lido, e outro deve revisar aquilo que foi escrito.
3. Interdependénciade Inimigo Externo
Membros do grupo cooperam para defender-se de um “inimigo” comum. Neste caso,
pode-se criar jogos onde haja competicdo entre grupos, existindo, porém dentro do mesmo
grupo cooperacao para chegar ao final da competicao.
Exemplo: Jogos de perguntas e respostas, onde o progresso de cada membro do grupo é
avaliado e acrescenta ou ndo pontos para toda a sua equipe.
4. Interdependéncia de Recursos
Os membros do grupo possuem recursos diferentes e estes devem ser compartilhados para
realizacéo de umatarefa.
Exemplo: Na dindmica Jigsaw (Aronson,1978), grupos de estudantes possuem
informagdes sobre partes diferentes de um tema. Os membros de cada grupo que possuem
as mesmas partes se relinem, discutem o assunto e pensam qual seria a melhor forma de
explickla para os outros. Feito isto, retornam ao seu grupo original e cada um devera
explicar sua parte para os outros e entédo elaborar um produto final contendo todas as
partes.
5. Interdependénciade Identidade
O grupo cria uma identidade prépria dependendo da atividade na qual esta envolvido.
Exemplo: Estudantes de ciéncias podem dar 0 nome de um grande cientista ao seu grupo.
6. Interdependéncia de Recompensas

O grupo trabalha junto na expectativa de receber algum tipo de recompensa. As
recompensas ndo podem se tornar motivo de sensacéo de injustica dentro do grupo.

Usos conhecidos:

A definico deste padréo esta baseada em estudos com grupos de aprendizagem na area de
educacdo, onde observou-se resultados de sucesso e falha com o0 uso de técnicas e dindmicas
de estruturacdo do trabalho: Aronson, 1978; Johnson et al., 1990; Slavin, 1990.

O ambiente PIE (Gifford e Enyedy, 1999) apresenta regras de interagdo em cada uma das
tarefas. Em estudos sobre o uso do ambiente, concluiu-se que as regras e a divisdo de trabalho
propostas tornaram mais efetiva a organizagdo das atividades e consequentemente 0s
resultados da aprendizagem dos estudantes.

No trabalho desenvolvido por Tiessen e Ward (1999), cabe ao professor apoiar os estudantes
na construcdo coletiva de seu trabalho. Isto é feito através da configuracéo/estruturacdo de
atividades que tornem as contribuic¢des individuais fundamentais para o alcance das metas do
grupo e que estimulem os estudantes a realizarem seu trabalho em conjunto com seus
parceiros.

4. Nome: Apoio Trabalho Individual

Contexto:

Atividades de aprendizagem propostas em ambientes cooperativos sdo realizadas pelos
membros do grupo no decorrer de um processo estabelecido. Estas atividades podem ser
cooperativas ou individuais de acordo com o Fluxo Atividades definido pelo processo. Na
realidade, existemm momentos para trabalho em grupo, e outros para produgdes individuais.
Mesmo nas tarefas cooperativas, deve existir um espago para expressao individual .

Problema:
Que tipo de mecanismos devem ser disponibilizados em ambientes de aprendizagem
cooperativa baseada em projetos para apoiar o trabalho individual ?

Forgas:

A aprendizagem € um processo inerentemente individual, ndo coletivo, que € influenciado por
uma variedade de fatores externos, incluindo as interagdes em grupo e interpessoais. Aprender
cooperativamente implica na troca entre individuos, e assume que, de alguma maneira, o todo
€ maior do que as partes individuais, de modo que a cooperacdo pode produzir ganhos
superiores a aprendizagem solitaria.

Aprendizagem cooperativa ndo significa necessariamente aprender em grupo, mas muitas
Vezes em poder contar com outras pessoas para apoiar sua aprendizagem e dar retorno se e
quando necessario, no contexto de um ambiente ndo competitivo (Kaye, 1991).

Pesquisas na area de CSCW (Computer-Supported Cooperative Work) também apontam a
necessidade de apoio arealizacdo de tarefas individuais em ambientes cooperativos.

Solucéo:

Apresente ferramentas que permitam ao Aprendiz elaborar visdes privadas sobre 0s objetos de
estudo trabalhados no contexto do ambiente, deixando livre a op¢do de mostré-las ou ndo ao
outros membros do grupo, no momento que achar conveniente.

Estas ferramentas podem também estar presentes como funcionalidades das ferramentas
cooperativas, de forma a disponibilizar espagos individuais, por exemplo, para rascunhos,
dentro das tarefas de grupo.

Usos conhecidos:

O ambiente WebGuide (Stahl, 1999), prové funcionalidades que permitem que cada estudante
manipule e analise as idéas discutidas pelo grupo, selecionando, editando, arranjando e
relacionando e resumindo notas livremente de acordo com sua perspectiva pessoal, sem afetar
as visdes das outras pessoas.

O Collaboratory Notebook (O'Neill e Gomez, 1994) implementa blocos de anotacOes
privados, onde os participantes podem fazer seus relatos pessoais sobre a experiéncia coletiva,
sem necessariamente apresentar ao grupo.

Janelas com visdes sobre aspectos identificados individualmente em um texto cientifico sdo
disponibilizadas no ambiente CLARE (Wan e Johnson, 1994) para cada usuario. Outras
janel as apresentam resumos das visdes de outros usuarios do sistema.

5. Nome: Integracdo Produtos Individuais

Contexto:

Em ambientes de aprendizagem cooperativa, muitas vezes, os trabahos reaizados pelos
alunos sdo produtos da uni&o de seus esforcos. A cooperacdo em ambientes educacionais pode
significar divisdo de tarefas em partes controladas por diferentes colaboradores, ou esforco
conjunto pararealizacdo de umatarefa sem divisao de trabal ho.

A divisdo de tarefas entre membros individuais ou entre pequenos grupos pode se traduzir em
maior rapidez na execucdo de uma atividade. Por outro lado, a realizacdo das tarefas sem
divisdo de trabalho pode ampliar o debate, o compartilhamento de idéias e de conhecimento
entre os participantes, bem como acarretar aumento na qualidade do material produzido. De
gualguer forma, a aprendizagem cooperativa nunca deve se resumir ajuntar partes ou recortes
de trabalhos individuais.

Problema:
Como os produtos, ou resultados de atividades individuais devem ser disponibilizados,
apresentados e integrados no trabalho do grupo, de forma que fique clara sua contribui¢do?

Forgas:

Se 0 objetivo de ambientes de aprendizagem cooperativa € o compartilhamento e a interacéo
entre 0s participantes para construcdo coletiva de conhecimento, os esforgos individuais
devem ser integrados, de forma a se complementarem como parte de um todo consistente,
entendido por todo o grupo.

Colaborar implica em objetivos compartilhados e intencédo explicita de ‘somar algo’ , ou sgja,
criar alguma coisa nova ou diferente através da colaboragdo, se contrapondo a uma simples
troca de informagdo ou passagem de instrucdes (Kaye, 1991). Apesar de sempre existir o
Apoio Trabaho Individual em ambientes de aprendizagem cooperativos, os Aprendizes
devem ter nocéo de como integrar os produtos destes esfor¢os quando for necessario.

Uma contribuic¢éo individual pode ter duas fungbes em um trabaho coletivo: (i) servir como
parte ou complementacdo da producado; (ii) esclarecer, explicar ou argumentar sobre algum
conceito discutido pelo grupo. Para que uma contribuicdo individual seja efetiva para o grupo
e possa ser utilizada em outras etapas do trabalho coletivo, ela precisa estar clara paratodos os
membros do grupo. Isto acontece quando se usa uma representagdo comum do conhecimento
comunicado. A solucdo para representacdo comum de conhecimento esta descrita no padréo
Representacdo Conhecimento.

Solucéo:

Deixe claro quais sdo as atividades individuais, quem é o seu responsavel e qual o produto a
ser gerado por ela. Todas estas informagdes devem estar explicitas na representacéo do Fluxo
Atividades. Desta forma, ficard claro para o grupo, antes mesmo do iniciar a execugdo das
tarefas, os momentos onde serdo introduzidas as contribuicdes individuais.

Em cada objeto de estudo deve ser estar representada de alguma forma a contribuicdo dos
membros do grupo. Esta representacdo pode ser feita, por exemplo, através de cores diferentes
associadas a cada membro, ou do nome ou um apelido associado a uma parte do objeto.

Usos Conhecidos:

No ambiente CLARE (Wan e Johnson, 1994), a definicdo do processo mostra claramente a
primeira fase, onde cada membro do grupo trabalha particularmente no resumo de um texto,
para em uma segunda etapa apresentar o materia produzido a0 grupo e promover
comparacles e debate. Desta forma, fica explicita a contibui¢do de cada um e o momento em
que esta € integrada ao trabalho coletivo.

No CSILE (Oshima, 1997) e Collaboratory Notebook (O’'Neill e Gomez, 1994), as
contribuigdes individuais sdo identificadas através dos nomes dos membros do grupo
associados as notas escritas por eles.

6. Nome: Processo Avaliacao

Contexto:

A avaliacdo da aprendizagem € o conjunto de agdes organizadas com a finalidade de obter
informagdes sobre o que foi assimilado pelo estudante, de que forma e em quais condicoes.
Para tanto, € preciso elaborar um conjunto de procedimentos investigativos que possibilitem o
gjuste e a orientacéo adequada. A avaliagdo deve funcionar por um lado como um instrumento
gue possibilite ap avaliador analisar criticamente a sua préatica; e por outro, como instrumento
que apresente ao avaliado a possibilidade de saber sobre seus avancos, dificuldades e
possibilidades. Neste contexto estdo inseridos 0s objetivos educacionais, ou sgja, 0s conceitos
ou habilidades que se pretende ensinar, e as proprias atividades projetadas.

Problema:
Como definir o processo de avaliacdo da aprendizagem, no contexto do desenvolvimento de
um projeto em um ambiente cooperativo apoiado por computador?

Forgas:

O processo de avaliagdo comega pelos objetivos do programa educacional, ou sga, 0 seu
cerne estd em determinar em que medida os objetivos pretendidos estdo sendo realmente
alcancados.

O processo de avaliagdo esta diretamente relacionado ao tipos de atividades educacionais
propostas, e portanto ateoria de aprendizagem na qual estdo baseadas.

Na otica de umateoria socio-cultural e construtivista, ndo € possivel avaliar os conhecimentos
construidos desvinculando-os do processo em que foram constituidos. Por isto, a avaliagcéo
deve ser continua e deve permitir ao professor identificar e criar Zonas de Desenvolvimento
Proximal (Vygostky). A avaliacdo é parte do processo e portanto deve estar definida no
contexto do Fluxo Atividades. Através das diversas formas de avaliagcdo, o professor pode dar
feedback aos Aprendizes ao longo do processo.

No espaco educativo socio-construtivista, 0s processos s8o mais relevantes que os produtos, e

a redidade ndo deve ser reduzida somente a observacdo das concepcdes finais. A avaliagcdo

qualitativa deve ultrapassar a avaliaco quantitativa, sem contudo dispensa-la.

O processo de avaliacéo de aprendizagem pode ser definido em algumas etapas:

1. Andise dos objetivos educacionais que formam um conjunto de especificagbes para
avaliagéo.

2. ldentificacdo de situacdes que dao ao aluno a oportunidade de expressar 0 comportamento
implicado pelos objetivos educacionais.

3. Estabelecimento de instrumentos de avaliacéo.

4. Definicdo dos termos ou unidades de medida que serdo utilizados para apresentar o
resultado que se obteve com a avaliacéo.

Solucdo:

Em um ambiente cooperativo de aprendizagem baseada em projetos, disponibilize meios para
que o avaliador possa especificar 0s momentos nos quais algum tipo de intervencéo com fins
de avdiacdo deverd ser redizada. Estas intervencbes deverdo estar inseridas no
desenvolvimento das atividades propostas, através do Fluxo Atividades. Deve existir a
possibilidade de serem feitas intervengdes diferentes para cada membro do grupo, de forma
que aavaliacdo possa ser individualizada.

As intervencOes podem ser apresentagOes de dados coletados e armazenados no ambiente
(Memoria) sobre o desenvolvimento de cada individuo (Resultados Individuais) e do grupo
como um todo (Resultados Grupo) no processo de aprendizagem, em varios aspectos:
cognitivos, afetivos, que envolvam relagdes sociais, de cooperagao, de participacao, de poder
de argumentacao, critica e criagao.

A partir dai, deve-se examinar instrumentos de avaliacdo disponiveis ou desenvolvé-los
especificamente para servir aos propdsitos determinados em cada intervencao.

Usos Conhecidos:

Pesguisas na area de educacdo (Tyler, 1974; Secretaria Municipal de Educacdo do Rio de
Janeiro, 1996) identificam etapas classicas para um processo de avaliacéo, relacionado-o
diretamente aos objetivos educacionais. Alguns ambientes apoiados por computadores adotam
parte desta proposta e apontam solucdo especificas, tais como formas de representar 0s
objetivos e ferramentas de apoio a algumas das etapas descritas (Leite e Omar, 1999; Tarouco
e Hack, 1999).

7. Nome: Resultados Individuais

Contexto:

Em um ambiente cooperativo de aprendizagem apoiado por computadores, deve ser possivel
fazer avaliagbes acerca do desenvolvimento de cada membro de um grupo. Desta forma,
pode-se ter no¢do do nivel de desenvolvimento acangado por cada um, de acordo com o0s
objetivos pretendidos (que por sua vez podem ser diferentes para cada individuo).

Problema:
Como avaliar o resultado da aprendizagem de cada individuo trabalhando em ambientes
cooperativos de aprendizagem baseada em projetos?

Forgas:

Em ambientes construtivistas, baseados em teorias socio-culturais, a avaliagdo deve ser
baseada na observacdo do progresso individual, ndo sO em relacdo ao ganho de novos
conceitos, mas também em relacdo ao desenvolvimento de habilidades sociais.

O primeiro passo para implantar um Processo Avaliacdo € descrever a correlacdo entre os
objetivos tracados com a definicdo daquilo que devera ser avaliado. Feito isto, o avaliador
deve ter meios para identificar situagbes onde serdo aplicados determinados instrumentos de
avaliagéo.

O ambiente deve prover diversos instrumentos de avaliagdo tanto quantitativa, quanto
qualitativa, para serem utilizados de acordo com a necessidade prevista pelo avaliador. A
prova Unica (igual paratodos) deixa de ser o instrumento principal de avaliagdo. O avaliador
deve ter meios para desenvolver exames individuais, de acordo com caracteristicas de cada
participante do processo. Os exames devem verificar o progresso do aprendiz e ndo somente
uma resposta imediata.

A avaiacdo tradicional € sinbnimo de testes com |4pis e papel. Através deles, pode-se
verificar a capacidade dos estudantes em analisar e tratar varios tipos de problemas verbais,
vocabulério, leitura e outros géneros de habilidade e aptiddes facilmente expressos sob forma
verbal. Porém, avaiacdo € muito mais do que isso. A avaliagdo deve ser reflexiva, critica,
emancipatoria e deve buscar uma coeréncia nateoria e na agdo. O gjustamento pessoal-social
é avaliado com mais facilidade pela observagdo de pessoas em situacfes que envolvam
relacOes sociais.

Solucéo:

Os instrumentos de avaliagdo em um ambiente de aprendizagem cooperativa devem capturar e
apresentar informacdes relativas a observagéo das interagdes nos trabalhos em grupo e ao
éxito na obtencdo de solucgdes partilhada de problemas. Para isto, 0 ambiente deve prover
fontes de informagdes sobre 0 processo de trabalho e os resultados obtidos. Permita que o
avaliador configure que tipo de dados deseja monitorar.

O sistema deve permitir que os avaliadores fagam anotagdes ou comentarios estruturados (que
podem ter algum tipo conceito associado) sobre o desenvolvimento dos alunos. A
estruturacdo facilitara a apresentacdo e consulta de resultados.

Além disto, outros recursos poderdo ser utilizados, tais como questionarios, entrevistas e auto-
avaliacdo. O avaliador deve ter a possibilidade de enviar perguntas adeatOrias em
determinadas situacdes configuradas por ele. O avaliador ou o préprio aluno podem ser
responsaveis pela criacdo da estrutura de topicos a serem avaliados.

Usos Conhecidos:

Trabalhos na area de educacdo apontam para a utilizacdo de alguns instrumentos de avaliacéo
na linha qualitativa e individualizada, de acordo com paradigmas educacionais mais
modernos.

O Virtual Campus fornece meios para comunicacgdo, compartilhamento de conhecimentos e
armazenagem de informacdes em uma sala virtual de aprendizagem cooperativa. A avaliagdo
de participacdo individual no ambiente Virtual Campus (Maher, 1999) pode identificar n&o
somente a quantidade de contribuicdo, mas também o conteldo do que foi apresentado. As
informagdes armazenadas podem fornecer indicadores do tipo de colaboragdo e da extensdo
das interacOes entre os participantes. A avaliacdo € baseada nas informagdes observadas
durante o processo de aprendizagem sobre o nivel de participacéo de cada membro do grupo.

O ambiente de aprendizagem chamado “Virtua School” consiste em um notebook
colaborativo que permite personalizar ou compartilhar espagos de trabalho para planejamento,
organizacdo, desenvolvimento e fazer anotacbes sobre projetos cientificos. Uma Unica
interface integra um conjunto de ferramentas de groupware com varios mecanismos de
comunicagdo sincronos e assincronos (Insenhour et al., 2000). As ferramentas de
comunicacdo construidas no Virtual School incluem féruns de discusséo estruturados, e-mail,
chat em tempo real, e video conferéncia. Um servidor foi implementado com o objetivo de
coordenar 0s Usuarios.

Filosofias de avaliagdo quantitativa e qualitativa séo aplicadas a todos os niveis de métodos e
dados. Os métodos sdo entrevistas, questionérios, observagdes diretas, videos, e sistemas logs.
Além disso, varias informagdes sdo capturadas como anotacdes, conversas de chat,, e-mail,
que serdo muito Uteis para uma posterior avaliacao.

Muhlenbrock e Hoppe (1999) propSem um framework para aprendizagem cooperativa
apoiada por computador que monitora e gerencia as interagcGes entre 0S grupos em cenarios
locais e distantes. Fornece mecanismos adaptaveis para processos de andlise automatizados
assim como para visualizagao e feedback.

8. Nome: Resultados Grupo

Contexto:

Em um ambiente cooperativo de aprendizagem apoiado por computadores, deve ser possivel
fazer avaliagOes acerca do desenvolvimento alcangado pelo grupo como uma entidade Unica.
Desta forma, estara sendo verificado o resultado do trabalho em equipe e como cada
participante se situa neste contexto.

Problema:
Como avaliar o resultado da aprendizagem de um grupo como um todo em ambientes
cooperativos de aprendizagem baseada em projetos?

Forgas:

Em ambientes de aprendizagem baseados em teorias socio-culturais, a avaliacdo deve ser feita
através da observacdo do progresso individual, ndo s6 em relagdo ao ganho de novos
conceitos, mas também em relacéo ao desenvolvimento de habilidades sociais.

As caracteristicas de Interdependéncia presentes neste tipo de ambiente mostram a
importancia de se prover meios para avaliagdo do grupo, umavez que o trabalho realizado foi
resultado de esforcos conjuntos. Para se avaliar os resultados de um grupo, este precisa ser
considerado uma entidade Unica. Neste caso é necess&rio tracar objetivos de aprendizagem
para 0 grupo e prover instrumentos que permitam a avaliacdo destes objetivos. Um dos
objetos a serem avaliados é o préprio produto construido pelo grupo.

Através do Processo Avaliacéo o avaliador deve definir instrumentos de avaliacdo qualitativa
e quantitativa.

Solucéo:

Procure definir relatérios de apresentacdo dos produtos gerados pelo grupo ao longo da
execucdo do projeto, de forma atornar explicita a reflexao dos objetivos do grupo no trabalho
feito. O professor/Facilitador pode pré-definir o formato dos relatérios e com isso gjudar 0s
Aprendizes a entender o proprio Processo Avaliagdo e verificar seu progresso.

As informagoes relativas a observacdo das interagdes nos trabalhos em grupo também podem
ser utilizadas para andlise dos resultados do grupo através de comparagdes de contribui¢do no
produto final e participacdo ao longo do processo.

Permita também que os membros do grupo avaliem, através de questionarios e entrevistas, 0
produto do trabalho realizado e cada um dos membros de seu grupo em relagéo a participagéo
e cooperagao.

Para permitir uma andlise quantitativa, o sistema deve prever a realizacdo de exames em
grupo que devem verificar o progresso de aprendizagem de conceitos/habilidades da equipe.

Usos Conhecidos:

O ambiente Design Discussion Area (DDA) apoia a apresentacéo dos projetos de dispositivos
desenvolvidos por grupos de estudantes. Eles devem mostrar como funcionam seus projetos,
explicar as decisdes de projeto e discutir os préximos passos do desenvolvimento, através de
relatorios pré-definidos. Os relatorios tém como objetivo ensinar aos estudantes como
organizar e articular suas experiéncias. Além disso, o sistema permite que outros estudantes
possam fazer perguntas, dar sugestdes e apontar problemas utilizando formatos estruturados
(Kolodner e Nagel, 1999).

9. Nome: Memoéria

Contexto:

As atividades cooperativas apoiam-se na interagbes entre os pares e geram produtos. O
ambiente de aprendizagem baseada em projetos deve armazenar as diferentes versoes dos
produtos gerados, bem como a historia de sua construcao, atraves do registro das interagdes.
Memdria Organizacional € uma area de pesquisas relacionada a artefatos de cooperacéo que
podem ser apontados como indicadores explicitos do que tem acontecido em uma
organizacdo. Estes artefatos incluem por um lado produtos (documentos e bens fabricados);
por outro, registros de colaboracdo e idéias, particularmente sequéncias de reunides, perguntas
freglientemente solicitadas (FAQ), e listas que registram conhecimento comum em um tépico
particular. Estes tipos de objetos representam o conhecimento armazenado (a memoria) de
uma organizagao, grupo, ou projeto; e eles devem ser armazenados, mantidos e indexados.

Problema:

Como prover suporte a captura, armazenamento e recuperacdo de informagdes sobre a
memoéria do processo de trabalho de um grupo em um ambiente de aprendizagem cooperativa
baseada em projetos?

Forgas:

No caso de ambientes de aprendizagem, a memoria do trabalho do grupo pode ser um
importante repositorio de solucdes identificadas e adotadas, servindo como base de estudo
para outros grupos e podendo trazer novas idéias e perspectivas sobre um determinado
problema. Além disso, a memoria do desenvolvimento dos projetos sera Util para o Processo
Avadiacdo da aprendizagem pelos professores e estudantes, pois pode-se reconstituir o
processo de construcéo do conhecimento coletivo, bem como a participacdo de cada membro
do grupo.

Informac&o coletada automaticamente por um sistema computacional € limitada pelo fato de
que muitas interagdes podem ocorrer fora do sistema. Além disso, ha o risco de que se resulte
em uma quantidade grande de dados registrados ndo gerenciaveis.

Por outro lado, informagéo coletada manua mente, ou sgja, 0s participantes precisam fornecer
a informagdo em determinados momentos e estdo a par disto, nem sempre é suficiente para
entender e avaliar o processo educacional. A observacdo informal se faz necesséria.

Em ambientes de aprendizagem cooperativa apoiados por computadores, a captura de
informacdes de memodria das atividades deve ser manual (os estudantes preenchem
questionarios de avaliagdo sobre 0 andamento do processo), e automatica (0 sistema guarda
estruturas de informacdes sobre as interacdes dos membros do grupo na execucdo de suas
tarefas em formato estruturado). A estrutura deve ser definida de acordo com o dominio do
projeto e com padrdes de Representacéo Conhecimento.

Alguns fatores séo importantes para a captura de informagdes mais seguras e completas. 0s
participantes devem estar preparados para responder questdes sobre o seu processo de
trabalho, por isso devem conhecé-lo bem; e os participantes devem ter um entendimento sobre
a estruturacgao natroca de informacdes e construcéo de bases col etivas de conhecimento.
Segundo Dias (1998), a questdo mais importante no suporte a meméria de grupo em
ambientes cooperativos € a definicdo de uma estrutura através da qual as informagdes seréo
representadas e mantidas.

Solucéo:

Ao final da realizacdo de um projeto, deve-se ter arquivado um conjunto de elementos que

caracterizam e permitem uma discusséo sobre este. Os elementos a serem preservados no caso

de ambientes CSCL séo:

1. Documentos. descrevem os produtos e sub-produtos gerados ao longo e ao fina do
projeto, podem ter versdes que devem ser guardadas como marcos e devem ter
explicacOes associadas a elas que identifiquem os motivos pelos quais foram guardadas.

2. Discussdes. sdo atividades especificas onde os membros do grupo (ou sub-grupos) se
relinem para discutir um determinado assunto de forma sincrona ou assincrona, devem ser
realizadas através de ferramentas apropriadas (do tipo chats, féruns de discussdes ou listas
de mensagens), podem ter resultados associados, por exemplo, a decisdo a respeito de um
problema.

3. Didogos: sdo conversas informais ou trocas de informagdes no contexto da execucdo de
uma atividade no processo de trabalho, devem ser armazenadas como parte da memoria de
execucdo de uma atividade.

Para incluir todos os elementos em uma estrutura formal, que permita representacdo e

relacionamentos entre eles, crie uma unidade basica comum de dados no ambiente. A

met&fora mais apropriada neste caso é a do hipertexto, pois os individuos devem ser

responsaveis pela organizacdo de suas perspectivas sobre o conhecimento. Conklin (1996)

afirma que as caracteristicas de uma tecnologia capaz de de capturar informagdes sobre a

memoria organizacional devem combinar hipertexto e um meétodo retorico que forneca dados

semi-estruturados.

O modelo de estruturacéo das informagdes é derivado da Representagdo Conhecimento, onde

deve-se incluir os construtores apropriados para cada caso. Por exemplo, no caso de

Discussdes, deve-se criar construtores que permitam um modelo de argumentacdo e Tomada

Decisdes.

Usos conhecidos:

Um dos sub-sistemas do ambiente ARCOO, Modelagem do Conhecimento, oferece
instrumentos para criar e manter mapas de conceitos e bases de informagdes que compdem o
conhecimento coletivo, criando a memaoria compartilhada em um grande hipertexto (Barros &
Borges, 1995).

Em WebGuide (Stahl, 1999), os participantes criam uma rede estruturada de perspectivas
onde adicionam livremente links entre suas notas pessoais e as do seu grupo. Esta rede
representa e apoia as dinamicas entre individuos e grupos, definindo o processo de
colaboragéo.

10. Nome: Uso Memoéria

Contexto:
O uso da informacdo de Memdria armazenada e recuperada esta relacionado ao aspecto da
interpretacdo. Ter acesso a dados e documentos sobre de acontecimentos passados ndo é
suficiente, € preciso entender seu significado e saber onde aplica-los, ou segja, transferir o
contexto.

Problema:
Que formas podem ser utilizadas para apresentar dados provenientes de atividades ja
realizadas, de forma que fique explicito o contexto e os participantes desta atividade?

Forgas:

A recuperacdo e apresentacdo de informacfes sobre o desenvolvimento de um projeto em
ambientes de aprendizagem tem como objetivo a avaliacdo do projeto e aprendizagem de
solugdes e conhecimento acumulado. Trazer de volta dados sobre um projeto pode auxiliar
outros grupos de estudantes a desenvolverem seus préprios projetos e trabalhar sobre
informagdes ja coletadas e discutidas de forma a tentar produzir inovagoes.

Porém, a interpretacdo de qualquer coisa depende do contexto dentro do qual é interpretado,
Ou sgja, interpretacdo € um processo altamente |localizado e subjetivo. Da mesma maneira que
uma pessoa interpretara algo diferentemente de outro em uma determinada situagdo, a mesma
pessoa em duas colocagdes diferentes interpretara algo diferentemente. Este é o mesmo
problema da hermenéutica: interpretacéo da escrita por pessoas diferentes do autor original. A
resposta béasi ca desta disciplina € que ainterpretacdo sempre € localizada e subjetiva.

Um dos riscos de qualquer mecanismo gue mostra 0 que outras pessoas estéo fazendo e estéo
sabendo (ou fez e soube) é sobrecarga de informagéo. Se as informagfes sdo capturadas em
um nivel de granularidade alto, estas precisam ser filtradas de aguma manera. As
informagbes relativas a interagdes em ambientes CSCL podem conter muitos dados
irrelevantes aos propositos de quem procura, como por exemplo, conversas informais sem
significado para o projeto.

Solucéo:

Crie associacOes entre as descri¢des das atividades no modelo grafico do Fluxo Atividades e
as discussdes e didogos estruturados segundo modelos de argumentagdo provenientes da
Memodria de grupo. Desta forma, identifica-se 0 objetivo da atividade, os produtos gerados e
as interacOes que os membros do grupo tiveram para conclui-la.

Cada uma das informacdes sera visualizada através de sua ferramenta especifica, se desgado
pelo usuério, e uma ferramenta de buscas e filtragem de informagdes podera ser utilizada para
chegar aum nivel de detalhamento maior sobre o0 estudo.

Usos Conhecidos:
Sistemas de workflow (Marshak, 1995) utilizam representagdes gréficas para facilitar a
visualizacdo dos processos e as informacdes associadas a eles.

11. Nome: Papéis

Contexto:

Papéis representam colegdes de usuarios em sistemas cooperativos e estdo geramente
associados a fungdes |6gicas assumidas por atores (participantes, individuos ou sub-grupos,
agentes ou sistemas computacionais), na execucdo de uma atividade. Papéis podem ser
formais ou informais, permanentes ou temporarios; podem ser assumidos espontaneamente ou
delegados.

Na visdo de alguns autores da area de CSCW (Computer-Supported Cooperative Work),
papéis também podem representar descric¢des dinmicas de usuérios, avaliadas na medida em
gue o sistema cooperativo € utilizado por eles. Além disso, um mesmo participante pode
assumir diferentes papéis ab mesmo tempo, na execugdo da tarefa.

Os sistemas cooperativos podem implementar mecanismos apropriados que criem facilidades
para a execucdo de tarefas especificas relacionadas a determinados papéis. Mesmo os
ambientes de aprendizagem que ndo designam papéis explicitamente aos seus usuarios
apontam a importancia da existéncia de mecanismos de suporte a diferentes papéis. E o caso
de Guzdial et. al. (2000), que afirmam que o ambiente CoWeb pode apoiar papéis especificos,
sem contudo torné-los explicitos no ambiente.

Problema:
Como identificar/definir mecanismos a serem disponibilizados em um ambiente de
aprendizagem cooperativa baseada em projetos para apoiar papéis especificos?

Forgas:

A importancia da definicdo de papéis em sistemas cooperativos em geral esta no fato de que
usudrios diferentes precisam ter acesso a informagdes diferentes baseadas nas tarefas
associadas aos seus papéis. No caso de ambientes de aprendizagem cooperativa, aimportancia
esta no fato de que, ao exercer funcdes e responsabilidades diversas, cada membro do grupo
adquire conhecimento sobre um determinado dominio a partir de diferentes perspectivas, na
medida em que o processo de aprendizagem ocorre.

Os papéis definem as relagdes, as formas de interacdo entre os participantes e 0 acesso a
objetos compartilhados. V arios papéis podem ser assumidos em sistemas cooperativos, porém
em ambientes de aprendizagem, alguns deles sdo considerados fundamentais dependendo do
tipo de tarefa executada, por exemplo, Aprendiz, Facilitador e Coordenador.

Para Guzdial et al. (2000), papéis sdo produto de um processo social, que ocorre independente
do uso do ambiente, somado aos beneficios trazidos pelo ambiente computacional. Portanto,
0s papéis sdo explicitos, naturais, estaveis e diretamente associados as caracteristicas dos
individuos. A tarefa cooperativa desempenhada pelo grupo deve apontar que tipo de
caracteristicas individuai s s80 requeridas para sua execucao.

Solucéo:

Para que o conhecimento segja adquirido sob diferentes éticas, deve-se prever uma progressao
e complementagdo de papéis, ainda que esta ndo deva ser uma obrigatoriedade nos ambientes.
Portanto € preciso estabelecer um conjunto de papéis necessarios a cada uma das tarefas.
Estabel eca os papéis, porém torne o ambiente flexivel para apoiar dinamicamente as possiveis
mudancas nas formas de trabalho e consequentemente nos papéis desempenhados. Ao
identificar um papel tipico no desenvolvimento de uma tarefa, detalhe esta tarefa e defina as
politicas de interacdo dos participantes.

Politicas descrevem um contingente genérico através do qual eventos especificos sdo
avaliados e manipulados, ou sgja, as politicas regem as formas particulares de interacéo entre
usuarios e entre usuarios e aplicacbes. Os objetivos das politicas em ambientes de
aprendizagem cooperativa sGo gerenciar imprevistos e ensinar formas de cooperagéo. Os
ambientes cooperativos devem apoiar diferentes politicas de coordenacdo (controle de acesso
a objetos compartilhados) e de cooperacéo (formas de interagéo).

Em relagcdo as politicas de coordenacdo, defina elementos de interface de utilidade especifica
do papel. Estes elementos ddo acesso a agles que podem ser restritas aos USU&rios que estdo
assumindo o papel em determinado momento, ou podem ser apresentadas a todos 0s usuarios.
Isto deve ser configurével nadefinicdo datarefa.

Em relacéo as politicas de cooperacdo, defina elementos de percepcdo especificos para o
papel. Estes elementos tém como fungdo prover informag&o necessaria sobre o desempenho
de determinado papel e das possibilidades de acesso a0 mesmo por outros usuérios.

O esguema de relacionamentos a seguir resume 0s € ementos rel acionados aos papéis em um
ambiente cooperativo:

PAPEL
Descricéo
Tarefas
. /_ Politicas de Coordenagéo Elementos de
Politcas ~ { ____ (- | Interface

acesso a informagdo

acesso aos individuos

Politicas de Cooperagdo Elementos de
Percepcéo

N

Usos Conhecidos:

Para Singley et a. (2000), a questdo da melhoria da colaboragéo através da designacéo de
papéis e configuracdo de equipes de trabalho ainda ndo esta totalmente explorada. Porém,
observa-se que os trabalhos nesta &rea apontam para o caminho descrito na solugédo
apresentada neste padréo.

A estratégia do ambiente Algebra Jam (Singley et a., 2000) é prover ferramentas no contexto
da interface para diferentes tipos de comportamentos colaborativos e associar 0 uso de
ferramentas especificas, de formas especificas, a papéis especificos. Para isto, foi definida
uma tipologia de papéis relativos a tarefas particulares envolvidas na solucdo de problemas,
identificada através da disponibilizacdo de determinadas acbes na interface do sistema
Segundo a experiéncia destes autores com 0 uso do ambiente, ha um ganho pedagdgico no
processo de aprendizagem pelo fato de ter os participantes assumindo cada um dos pontos de
vista relacionados aos papéis definidos.

O sistema pode funcionar segundo dois modos. NoO primeiro caso, permite que 0s papéis
sejam designados explicitamente (modo prescritivo), e somente um sub-conjunto de actes é
habilitado na interface. No segundo, o0s papéis ndo sdo designados explicitamente (modo néo
prescritivo), ficando ainterface totalmente liberada para todos os participantes.

Nas pesquisas com o0 ambiente CoWeb, Guzdial et al. (2000) identificaram uma série de
papéis atuando sistematicamente no uso do sistema, em diversos contextos educacionais.
Apesar dos papéis ndo serem designados explicitamente, na medida em que foram
identificados, procurou-se prover ferramentas e mecaniSmos para apoiar as suas atividades e
necessidades especificas. Os mecanismos criados sdo fungdes disponivels na interface e
elementos de percepcdo que disponibilizam informagdes particulares, que sdo utilizadas por
usuarios especificos.

No ambiente Kansas (Smith, Hixon e Horan, 1998), ndo h& definicdo explicita de papéis,
porém, os usuérios “véem” e “ouvem” coisas diferentes de acordo com as tarefas designadas a
eles. Isto é feito através do dimensionamento das janelas apresentadas a cada usuério, que
permitem acesso a elementos de interface e percepcdo diferentes em cada caso. Além disso,
implementa um sistema de “capabilities’, que representam funcionalidades do sistema
habilitadas ou ndo nas interfaces de cada usuario. Ao longo das sessdes, 0s papéis poder
evoluir através da ateracdo dindmica das “ capabilities’ associadas ao participante.

12. Nome: Coordenador

Contexto:

Varios papéis podem ser assumidos em sistemas cooperativos, porém em ambientes de
aprendizagem, alguns deles sGo considerados fundamentais dependendo do tipo de tarefa
executada e encontram-se presentes nos ambientes ainda que de forma ndo explicita. Um
exemplo é um coordenador geral para o projeto e/ou coordenadores das atividades a serem
desenvolvidas.

Problema:
Como apoiar as formas de interagcdo do Coordenador em um ambiente de aprendizagem
cooperativa baseada em projetos?

Forgas:

O coordenador é um papel importante em ambientes de aprendizagem cooperativa baseada
em projetos, pois o exercicio da lideranca também faz parte do aprendizado sobre como
trabalhar cooperativamente.

O coordenador estabelece a estratégia para solugdo dos problemas inerentes as atividades do
projeto, determina os recursos disponiveis e necess&rios, designa tarefas a individuos,
gerencia as atividades e avalia seu progresso. O coordenador pode participar a principio de
qualquer atividade dentro do processo. O coordenador se relaciona basicamente com os
Aprendizes.

Solucéo:

As politicas de coordenacéo e de cooperacdo definem as formas de interagéo do coordenador

no contexto do ambiente de aprendizagem:

= Politicas de coordenacéo: O coordenador deve ter acesso de leitura a todos os objetos e
espagos compartilhados pelo grupo em todos os momentos do desenvolvimento do
projeto. Porém, 0 acesso a edicao deve ser restrito a objetos relacionados as suas tarefas
especificas.

» Politicas de cooperagdo: O coordenador identifica 0s recursos para execucdo de uma
atividade e passa para o grupo (por exemplo, textos para uma discusséo). O coordenador
tem acesso direto a execucéo do fluxo de trabalho de cada participante, podendo enviar
mensagens de avaliacdo de progresso para os membros do grupo. O coordenador tem
tarefas especificas de interacdo dependendo da atividade cooperativa que esta sendo
desenvolvida (por exemplo, coordenar uma sessdo de discussdo de um texto, passando a
vez para cada membro do grupo que solicité-1a).

Para apoiar a implementagdo destas politicas defina elementos de interface e de percepcéo

apropriados.

Defina elementos de interface que permitam:

* Envio de mensagens sobre a avaliagéo do processo e os produtos do trabalho realizado
(podem se traduzir em mensagens estruturadas aos participantes de acordo com a
Representacdo Conhecimento).

» Ac0es de intervencdo sobre as atividades em desenvolvimento (por exemplo, inicio,
término, interrupcao).

Defina mecanismos de percepcao que permitam aidentificagdo e conhecimento de:

* Informagéo sobre o Fluxo Atividades.

* Informacdo sobre os participantes (Percepcéo Interacdo Social): dados pessoais e
dados sobre as responsabilidades nas tarefas individuais e de grupo.

Usos conhecidos:

No Ambiente Algebra Jam (Singley et al., 1999), sdo designados explicitamente cinco papéis.
Observador, Aprendiz, Especialista, Lider (Coordenador) e Guia (Facilitador). O Coordenador
estabel ece estratégias para solugdo dos problemas, coordena as acfes e avalia 0 progresso do
trabalho. O coordenador pode, por exemplo, enviar mensagens estruturadas de sugestfes para
0 USO de recursos ou para demonstrar aprovagdo ou reprovacdo quanto a um produto gerado.
Além disso, possui elementos de interface especificos para realizacdo de suas tarefas, tais
como apresentar metas e designar tarefas através de um “quadro-negro” compartilhado.

Em estudos realizados com o ambiente CoWeb, (Guzdial et a., 2000) identificaram o papel
do usuario central ou coordenador. Este usuario normalmente gerencia a estrutura do sistema
e guia as interacbes dos autores de forma a produzir uma melhor definicdo do espaco
compartilhado. Para apoiar este trabaho, € disponibilizada a fungdo de modificacdo dos
titulos das paginas sem a perda de seus links, através dainterface do sistema.

Em uma configuracdo do ambiente Kansas (Smith, Hixon e Horan, 1998) que apoia o
paradigma de aprendizagem DTVI (Distributed Tutored Video Instruction), € proposta a
definicdo explicita de quatro papéis. estudante, facilitador, coordenador e desenvolvedor. Para
cada um deles € apresentada uma interface diferente conforme suas funcdes especificas. O
coordenador possui acesso liberado a todas as fungbes e mecanismos de percepcdo no
ambiente.

13. Nome: Facilitador

Contexto:

Varios papéis podem ser assumidos em sistemas cooperativos, porém, em ambientes de
aprendizagem, alguns deles sdo considerados fundamentais dependendo do tipo de tarefa
executada, e encontram-se presentes nos ambientes ainda que de forma ndo explicita. Um
exemplo € o facilitador.

Em ambientes de aprendizagem socio-construtivistas, como no caso dos cooperativos, 0S
aprendizes sdo considerados sujeitos ativos na busca e construcdo de seu proprio
conhecimento. Neste contexto, ndo cabe mais a figura do professor transmissor de
conhecimento e manipulador de todas as situages, mas sim o facilitador que ird auxiliar os
aprendizes em seu processo de aprendizagem.

Problema:
Como apoiar as formas de interagdo do Facilitador em um ambiente de aprendizagem
cooperativa baseada em projetos?

Forgas:

O facilitador é alguém que entende os processos desenvolvidos pelo grupo (sociais e de
trabalho) e por isso pode gjudar o grupo a entender seus problemas, tanto de ordem social,
quanto pedagdgica, e encontrar solugdes para eles. O facilitador observa e critica as agdes dos
outros participantes, responde a solicitagfes de guda, aconselha o Coordenador do grupo e
guia a atuagdo dos Aprendizes na solucéo dos problemas.

O facilitador esta presente em todas as tarefas em ambientes de aprendizagem cooperativa
baseada em projetos. Porém, com o conhecimento sobre o grupo e o processo de trabalho, ele
pode gjudar a aumentar a coesdo do grupo e o estabelecimento das regras de funcionamento
do grupo. Na medida em que os membros do grupo interagem, a figura do facilitador tende a
se tornar menos importante, pois 0 grupo seguird os seus caminhos, sofrendo eventuais
Intervencdes do facilitador.

Por sua natureza de sujeito central, o facilitador se relaciona com todos 0s outros papéis
presentes no ambiente.

Solucéo:

As politicas de coordenacdo e de cooperacdo definem as formas de interacdo do facilitador no

contexto do ambiente de aprendizagem:

» Politicas de coordenagéo: O facilitador deve ter acesso de leitura a todos os objetos e
espagos compartilhados pelo grupo em todos os momentos do desenvolvimento do
projeto. Porém, 0 acesso a edicdo deve ser restrito a objetos relacionados ao Processo
Avaliagéo.

» Politicas de cooperacéo: O facilitador deve ser capaz de reconhecer quando um problema
pedagdgico ou de relacionamento esta se desenvolvendo dentro do grupo e deve ter
habilidade e conhecimento para gjudar o grupo a lidar com isso. Para isto, o facilitador
deve gerar intervencdes que podem interromper ou N&o 0 Processo paratratar as questoes,
provendo sugestdes sobre aforma de resolver o problema.

Para apoiar a implementacdo destas politicas defina elementos de interface e de percepcao

apropriados.

Defina elementos de interface que permitam:

* Envio de guda (que podem se traduzir em mensagens estruturadas aos participantes
com sugestdes para alguma questdo especifica, ou apoio a uma agdo do participante de
acordo com a Representacéo Conhecimento).

* Criagdo de objetos para auxilio ao trabaho do grupo dependendo da atividade
proposta (por exemplo, listas de referéncias, templates de relatérios).

» Ac0es de intervencdo sobre as atividades em desenvolvimento (por exemplo, inicio,
término, interrupcao).

Defina mecanismos de percepcao que permitam aidentificacdo e conhecimento de:

* Informag&o sobre o Fluxo Atividades.

* Informacdo sobre os participantes (Percepcéo Interacdo Social): dados pessoais e
dados sobre as responsabilidades nas tarefas individuais e de grupo.

Usos conhecidos:

Em estudos realizados com o ambiente CoWeb, (Guzdial et al., 2000) identificaram o papel
do professor ou facilitador, cuja funcdo é gjudar os estudantes a se engajarem nas atividades
propostas. Paraisto, ele pode criar paginas de discussao, de revisao e critica e paginas onde 0s
estudantes depositam seus trabalhos (objetos compartilhados do ambiente). Além disso, foi
implementado um mecanismo especifico de navegacao para o facilitador (interface).

No Ambiente Algebra Jam (Singley et al., 1999), séo designados explicitamente cinco papés.
Observador, Aprendiz, Especidista, Lider (Coordenador) e Guia (Facilitador). O facilitador
observa e acompanha as acfes dos outros participantes, responde a pedidos de gjuda, e guia 0os
aprendizes na solugdo dos problemas propostos. O facilitador pode enviar mensagens
estruturadas respondendo a pedidos de gjuda, fornecendo informagdes rel evantes ao processo
ou dando inicio a uma tarefa. Além disso, possui elementos de interface especificos para
realizacao de suas tarefas.

Em uma configuracdo do ambiente Kansas (Smith, Hixon e Horan, 1998) que apoia o
paradigma de aprendizagem DTVI (Distributed Tutored Video Instruction), € proposta a
definicdo explicita de quatro papéis. estudante, facilitador, coordenador e desenvolvedor. Para
cada um deles é apresentada uma interface diferente conforme suas funcdes especificas. No
caso do facilitador, sdo disponibilizadas acbes para dar inicio e término nas discussdes, salvar
anotacdes dos estudantes em péaginas Web (objeto compartilhado) e controlar os mecanismos
de volume de audio de todos os participantes.

O ambiente Zebu (Tiessen e Ward, 1999) prevé as seguintes fungdes para o facilitador
(professor): criagdo de templates para que 0s estudantes criem suas péginas no contexto das
atividades do projeto, criacdo de listas de recursos a serem utilizados pelos estudantes no
projeto (objetos de auxilio), resposta a questdes levantadas pelos estudantes e coordenacéo
das atividades através da configuracéo e acompanhamento do processo de trabal ho.

14. Nome: Aprendiz

Contexto:

Em ambientes de aprendizagem, o papel principal é o do aprendiz que € o sujeito que interage
com outros sujeitos e com contedidos, com o objetivo de adquirir algum tipo de conhecimento
ou habilidade.

Problema:
Como apoiar as formas de interacdo do Aprendiz em um ambiente de aprendizagem
cooperativa baseada em projetos?

Forgas:

O aprendiz € o papel centra em ambientes de aprendizagem cooperativa baseada em projetos.
O aprendiz tem responsabilidade pela geréncia e execucao das tarefas para alcance das metas
e resolucéo dos problemas definidos no projeto. Tem como objetivo participar na construcao
coletiva de conhecimento tendo como beneficio pessoal seu aprendizado sobre as areas de
pesquisa do projeto.

O aprendiz esta presente em todas as tarefas de projetos em ambientes de aprendizagem
cooperativa e € o sujeito principal do desenvolvimento das tarefas e da geracéo dos produtos.
O aprendiz se relaciona com todos 0s outros papéis presentes no ambiente.

Solucéo:

As politicas de coordenagdo e de cooperacdo definem as formas de interagdo do aprendiz no

contexto do ambiente de aprendizagem:

» Politicas de coordenagdo: O aprendiz deve ter acesso de leitura e escrita a todos objetos
compartilhados nas atividades as quais participa. O ambiente deve estimular 0 maior
nimero possivel de acessos de aporte de informacbes e contribuicdes de todos os
aprendizes.

» Politicas de cooperagdo: Os aprendizes devem ter disponiveis varios meios para
interagirem entre si: troca de mensagens, foruns de discussdes assincronos e conversas
sincronas. Todas as atividades devem permitir estas interagdes, mesmo que cada
participante tenha uma tarefa especifica (por exemplo, escrever uma secdo de um
documento coletivo). O grupo deve definir em todas as situagdes uma politica de troca de
informagdes antes, durante e depois de cada atividade (por exemplo, na construcéo
coletiva de um texto, (i) participantes discutem o tema; (ii) participantes escrevem partes
do texto, consultando os outros membros; (iii) participantes promovem um debate sobre 0
produto final gerado).

Para apoiar a implementacdo destas politicas defina elementos de interface e de percepcao

apropriados.

Defina elementos de interface que permitam:

« Envio de pedido de acesso e guda ao Facilitador e a outros Aprendizes (que podem se
traduzir em mensagens estruturadas de acordo com a Representagdo Conhecimento).

* Acesso individual ao Coordenador da atividade na qual esta participando (se este
papel existir).

Defina mecanismos de percepcao que permitam aidentificagdo e conhecimento de:

* Informag&o sobre o Fluxo Atividades.
* Informacdo sobre os participantes (Percepcéo Interacdo Social): dados pessoais e
dados sobre as responsabilidades nas tarefas individuais e de grupo.

Usos conhecidos:

O papd de aprendiz esta implicito em qualquer ambiente de aprendizagem cooperativa
apoiada por computadores, mesmo que este ndo seja definido formal mente.

No Ambiente Algebra Jam (Singley et al., 1999), sdo designados explicitamente cinco papéis:
Observador, Aprendiz, Especialista, Lider (Coordenador) e Guia (Facilitador). O Aprendiz
assume a responsabilidade pela performance de determinadas tarefas para a solugéo do
problema proposto. O Aprendiz pode enviar mensagens estruturadas de pedidos de gjuda ou
fornecendo informacdes relevantes a0 processo. Além disso, possui elementos de interface
especificos para realizac8o de suas tarefas, tais como, preenchimento de tabelas ou calculo de
meédias.

Em uma configuracdo do ambiente Kansas (Smith, Hixon e Horan, 1998) que apoia o
paradigma de aprendizagem DTVI (Distributed Tutored Video Instruction), € proposta a
definicdo explicita de quatro papéis: estudante, facilitador, coordenador e desenvolvedor. Para
cada um deles é apresentada uma interface diferente conforme suas fungdes especificas. No
caso do estudante ou aprendiz, a disponibilizacdo de acdes se limita a escrita em um editor
cooperativo e controle de seu préprio mecanismo de volume de audio.

15. Nome: Critérios Nomeacéao

Contexto:

Ambientes de aprendizagem cooperativa baseada em projetos tém como caracteristica a
designacdo de Papéis, explicita ou ndo, aos participantes das interacOes na realizacdo das
tarefas. A associagdo de papéis aos participantes (atores) ao longo do processo pode ser feita
de diferentes formas, de acordo com os objetivos do trabalho a ser desenvolvido e com o que
Se desgja observar no grupo.

Smith, Hixon e Horan (1998) definem duas formas de homeag&o de papés. prescritiva, onde
0s papéis sdo designados explicitamente pelo sistema ou por algum outro participante que
desempenhe o papel de coordenador; e ndo prescritiva, onde os papéis ndo sdo designados
explicitamente.

Problema:
Que critérios devem ser adotados na nomeagdo de papéis aos membros de um grupo em um
ambiente de aprendizagem cooperativa baseada em projetos?

Forgas:

A designacéo ou nomeacdo de papéis em ambientes cooperativos contribui para o sucesso do
desenvolvimento de um projeto, ou seja, 0s atores certos para papéis certos influenciam no
cumprimento dos objetivos de um grupo.

Designar papéis a usuarios significa definir quais serdo as suas fungdes no contexto das
atividades do projeto cooperativo. Portanto, a designacdo de papéis a
pessoas/grupos/agentes/programas em ambientes de aprendizagem cooperativa deve ser feita
segundo critérios que demonstrem a coeréncia com os objetivos educacionais desejados.

Em muitos casos, encorgja-se a troca ou alternancia de papéis para minimizar as criticas e
conflitos dentro dos grupos. No caso de ambientes de aprendizagem, esta prética pode trazer
beneficios no sentido do exercicio de responsabilidades.

Solucéo:
Os critérios para a nomeagcdo de papéis devem diretamente relacionados aos objetivos
educacionais das tarefas propostas no contexto do ambiente.
Portanto, utilize aforma prescritiva de nomeagdo nos seguintes casos:
e um dos objetivos do ambiente € o aprendizado do trabalho em equipe, ou sga, 0s
participantes ndo tém experiéncia de trabalho em equipe e formagéo de grupos;
e um dos objetivos do ambiente é explorar as habilidades pessoais dos participantes
envolvidos ja conhecidas anteriormente através da andlise de conhecimentos prévios.
Neste caso, defina restrigoes de interface da ferramenta de acordo com o papel (as interfaces
especificas sdo definidas nos padrdes relativos a cada papel).
Utilize aforma ndo prescritiva de nomeagdo nos seguintes casos:
* quando se desgjaobservar 0 surgimento espontaneo de habilidades no grupo;
e quando as atividades ndo demandam diferentes papéis obrigatoriamente, por exemplo,
uma pesquisa para levantamento de material de apoio para o grupo.
Neste caso, todos os elementos de interface da ferramenta sdo habilitados para todos, ou sgja,
ainterface € amesma paratodos os usuérios, que vao assumir papéis espontaneamente.

Usos conhecidos:

Na experiéncia de Kynigos (1999) com um ambiente cooperativo voltado para o ensino de
matematica, uma vez que desgjava-se reproduzir uma situagaéo de trabalho em sociedade, onde
cada individuo tem sua fungdo, foram adotadas as préticas de nomeagdo explicita de papéis
para todas as atividades previstas no projeto. Ao longo do desenvolvimento do trabalho, esta
nomeacgdo foi revista e modificada. A prética de revezamento e acimulo de papéis gjudou a
minimizar os conflitos na execucéo das tarefas propostas.

No Algebra Jam (Singley et al., 1999), os participantes podem ter os papéis explicitados ou o
exercicio dos papéis pode surgir espontaneamente sendo reconhecido pelo sistema através de
acOes associadas a elementos de interface pré-definidos. Além disso, € encorgado o
revezamento de papéis para que todos os participantes possam vivenciar as responsabilidades
do exercicio de cada funcéo.

Em uma configuracdo do ambiente Kansas (Smith, Hixon e Horan, 1998) que apoia o
paradigma de aprendizagem DTVI (Distributed Tutored Video Instruction), séo realizadas
sessOes de videotape de aulas, onde os alunos se véem através de video-links e fazem
anotagOes col aborativamente utilizando uma ferramenta de edigdo de texto. De acordo com 0
objetivo educacional de aprendizado do tema em questdo, o sistema propde a definicdo
explicita de quatro papéis: estudante, facilitador, coordenador e desenvolvedor. Para cada um
deles é apresentada uma interface diferente conforme suas fungoes especificas.

16. Nome: Percepcéo Interacdo Social

Contexto:

Em um ambiente de aprendizagem cooperativa apoiado por computadores, a interagdo entre
0s membros do grupo € o principal fator para que ocorra cooperacdo. Sem interacdo, ndo se
estabelecerd o nivel de cooperacao desgjavel para estimular o processo de aprendizagem.

Os participantes envolvidos em uma situagdo de aprendizagem que requer interagdo devem
estar conscientes sobre com quem est&o interagindo, e de como se dara a interacdo. Para isto,
€ preciso gque estejam disponiveis informagdes sobre aspectos relacionados a intera¢do social
entre os individuos.

Problema:

Que elementos devem ser disponibilizados em um ambiente de aprendizagem cooperativa
apoiada por computadores para facilitar e estimular a interacdo socia entre os membros do
grupo?

Forgas:

A percepcdo sobre as conecgdes sociais dentro de um grupo induz e facilita as interagOes entre
Seus membros.

O conhecimento e expectativa corretos em relacéo as outras pessoas e seus trabalhos trazem
seguranca para execucao coletiva das tarefas e faz com que fique mais claro o nivel de
contribuicdes de cada um.

De acordo com Araujo (2000), os usuarios de um groupware devem ser capazes de reconhecer
0 grupo no qual estdo inseridos para interagirem. Isto significa obter informagdes sobre seus
participantes capazes de gudar o estabelecimento de conexdes sociais. Araujo (2000)
enumera as seguintes informacbes relativas a percepcdo socid em um groupware:
composi¢do, localizagdo, presenca, proximidade (papéis e responsabilidades), disponibilidade
e emocdo. Em resumo, “as pessoas precisam perceber e ter acesso umas as outras dentro de
um Mesmo contexto”.

Solucéo:

Mantenha um componente de percepcdo social no sistema, que possa ser acessado a qualquer

momento, por qualquer participante e que apresente as seguintes informagdes atualizadas de

forma dinamica

» Dados pessoais de todos os participantes — localizacéo fisica, formacdo, preferéncias,
expectativas, interesses e disponibilidade e recursos para acesso. Estes dados provém do
cadastro de usuérios do sistema.

» Alocacdo de tarefas comuns — sub-grupos dos quais participa (ressaltando aqueles em
comum com 0 usuério que consulta esta informacao). Estes dados provém da definicéo do
Fluxo Atividades.

» Atividade(s) e papéis que estéa alocado no momento. Estes dados provém da consulta ao
status do Fluxo Atividades.

* Presencano ambiente no momento. Este dado provém do registro de login do ambiente.

A forma mais comum de apresentacdo deste tipo de informacfes sdo as listas de usuérios

bastante difundidas em sistemas cooperativos. As listas de usuarios variam de formas bem

simples, contendo apenas informagdes sobre os participantes “logados’ no ambiente em um

determinado momento, até as mais sofisticadas que incluem informagdes em video sobre a

disponibilidade de cada membro do grupo (GroupLab, 2000).

Usos conhecidos:

Entre os exemplos de ambientes que implementam componentes de percepcdo social
encontram-se o Algebra Jam (Singley et a., 1999) onde a disponibilidade dos membros do
grupo é apresentada sob a forma gréafica (fotos) na interface datela principal do ambiente. A
partir desta representacdo, 0 grupo sabe quem esté interagindo em determinado momento e
COMO acessar estas pessoas.

O LINC Virtua Schooal (Isenhour et al., 2000) implementa na tela de abertura do sistema uma
lista de usuarios pertencentes ao grupo, contendo informacdes pessoas, projetos dos quais
participa e Ultimas tarefas realizadas.

A ferramenta de discussédo Lead Line (Farnham et a., 2000) disponibiliza uma lista de
usuérios com informagdes relativas aos papéis desempenhados por cada um deles em uma
sessdo interativa.

O ambiente Zebu (Ward e Tiessen, 1997) permte importar arquivos com informagdes sobre
um usuario em seu cadastro. Além disso, associa cada usuario a projetos especificos,
refletindo as contribuic¢des dos participantes nas paginas de cada projeto, ou seja, consultando
um projeto, informagdes sobre 0s membros de seu grupo sdo automati camente apresentadas.

17. Nome: Percepcéo Tarefa

Contexto:

Em um ambiente computacional para aprendizagem cooperativa, tarefas sdo propostas para
um grupo, que devera realizé&las de forma cooperativa. O entendimento por parte dos
membros do grupo sobre como 0s processos deverdo ocorrer € 0 seu acompanhamento, ou
sgja, informacbes de diversos tipos sobre as atividades, tornara possivel e facilitara seu
desenvolvimento.

Araujo (2000) afirma que a qualidade do produto final de uma interacdo cooperativa depende
do grau de consciéncia de seus participantes sobre 0s objetivos e a estruturagdo do trabalho
queirdo redizar.

Problema:

Que elementos devem ser disponibilizados em um ambiente de aprendizagem cooperativa
baseada em projetos para apresentar as informagdes necessarias sobre uma determinada tarefa
a ser desenvolvida pelo grupo?

Forgas:

A falta de informacdes sobre o0s objetivos e 0s conhecimentos necessarios para realizagéo de
uma tarefa pode levar a erros na sua execucao. O desenvolvimento coletivo de uma atividade
requer integracdo entre os participantes, e para isso, € preciso que 0s participantes estejam
bastante conscientes dos passos a serem dados para 0 cumprimento dos objetivos, e do papel
de cada um dentro deste processo. Cada membro do grupo deve estar atento ao processo como
um todo.

A Coordenacdo serd mais bem realizada se todos estiverem conscientes dos
papéi s/responsabilidades de cada participante.

Araujo (2000) descreve os dois tipos de informacéo relevantes ao entendimento das tarefas
em um groupware: estrutura (formas e procedimentos) e status (passado, presente e futuro).
As pessoas precisam saber 0 que elas tém que fazer, o que os outros tém fazer e como sua
atuacdo estainserida no contexto do projeto.

Solucéo:

Disponibilize um componente de percepcao de tarefa que apresente as seguintes informacoes
para os participantes de um projeto:

e quais 0s conhecimentos prévios necessarios para realizacéo destatarefa;

* qua aestruturadatarefa - passos a serem seguidos pararealizé|a;

* qua otempo necessario ou determinado para sua realizacéo;

e como se dara a participacéo de cada membro do grupo (papéis e especializagtes);

e quais os resultados esperados;

e quaisasferramentas disponiveis para utilizagdo como apoio;

* status de sua execucao.

Estas informagdes provém da defini¢do e do status de execugao do Fluxo Atividades.

Este componente pode ser similar aos utilizados em Sistemas de Workflow, que normamente
apresentam informagdes sobre percepcdo das tarefas a serem desenvolvidas pelos
participantes de um projeto através de visdes graficas do processo, onde se representa a
estrutura e o status das atividades; e listas de trabalho, que mostram aos participantes as
atividades relacionadas a eles e as informagdes pertinenentes a elas (Araujo, 2000).

Usos conhecidos:

Nos sistemas descritos na literatura ndo se encontram componentes de percepcéo de tarefas
especificos, porém, na maioria dos casos as informagdes encontram-se apresentadas nas
préprias intefaces dos ambientes. Desta forma, a validacdo do padréo se refere somente as
informagdes sugeridas na solucéo.

No ambiente PIE (Gifford e Enyedy, 1999), é apresentado um conjunto de botdes que
representam a estrutura (fluxo) da atividade. Para cada atividade, existe uma descricdo textual
dos procedimentos a serem realizados.

No ambiente CLARE (Wan e Johnson, 1994), através de um menu esta indicada a sequéncia
de atividades propostas (estrutura do fluxo), que compdem o processo. No contexto de cada
elemento do menu, encontram-se interfaces com a definicéo de cada tarefa a ser realizada.

18. Nome: Percepcédo Conceitos

Contexto:

Em um ambiente de aprendizagem cooperativa apoiado por computadores, geralmente sdo
propostas aos alunos tarefas que requerem algum tipo de conhecimento prévio e a apropriacéo
de novos conhecimentos para serem cumpridas. Ao rever seus conhecimentos, buscar novos
conceitos e compartilhar com outros membros de um grupo, o auno se encontra em um
processo de aprendizagem ativa. Porém, nem sempre fica claro que conceitos devem ser
revisados para executar atarefa.

Problema:
Como facilitar a percepgdo sobre conhecimentos necessérios a execugdo de uma tarefa em um
ambiente de aprendizagem cooperativa baseada em projetos?

Forgas:

Segundo Gutwin et al. (1995), existem alguns questionamentos que um Aprendiz pode se

fazer a0 deparar-se com umatarefa a ser executada:

 que conhecimento prévio esté relacionado a esta tarefa? (Percepcdo Tarefa)

e 0 (Quemais é preciso ser descoberto sobre este topico?

» épreciso revisar idéias pré-existentes a partir das novas informagdes?

e @possivel criar hipoteses baseadas no conhecimento atual do grupo para prever o resultado
datarefa?

Os distemas apresentam, em geral, estruturas para Representacdo Conhecimentos

compartilhados, que pode ou ndo estar relacionada as tarefas desenvolvidas.

Araujo (2000) afirma que “perceber” uma interacdo com 0 uso de um groupware envolve

compreender 0 que se passa durante esta interacdo e, a partir desta compreensdo, cada usuario

pode estabelecer o contexto e impacto de suas atividades e contribui¢cdes individuais em

relacéo a atividade do grupo.

Solucéo:

Forneca meios para que o Facilitador ou Coordenador possam incluir links de referéncias
relacionados a uma determinada tarefa. Torne explicito os links que apresentam conceitos
basicos e avancados sobre o contetdo.

Além disso, permita que os Aprendizes incluam seus proprios links na medida que tenham
amadurecido o conhecimento sobre o conteldo. Para isto, inclua etapas no Processo
Avaliacdo onde sdo apresentados Resultados Grupo que demonstrem ao grupo a sua evolugéo
Nno processo de construgdo de conhecimento sobre o tema.

Usos conhecidos:

O ambiente Belvedere (Suthers e Weiner, 1995) define uma sequéncia de fases da pesquisa
cientifica (fluxo de atividades proposto) e prové links para informacfes diversas a serem
utilizadas em cada uma destas etapas, tais como fundamentagdo do problema, hipdteses ja
levantadas por cientistas, e sugestdes de experimentos. Além disso, permite o relacionamento
direto de informacdes col etadas pel os alunos ao produto gerado por eles na atividade (no caso,
diagramas de representacéo de teorias cientificas).

Os ambientes CaMILE (Guzdial, 1997) e CSILE (Oshima, 1997) permitem a inclusdo de
links de referéncias na internet para serem consultados pelos usuarios no processo de
construcdo de conhecimento através de discussdo em foruns.

O Zebu (Tiessen e Ward, 1999) prové ao professor a possibilidade de fornecer recursos aos
alunos para execucao de suas tarefas. Isto € feito através da criagdo de links de referéncias nos
templates e paginas disponibilizados por eles, e destaforma, relacionam ainformacéo atarefa
a ser redlizada. A medida que os alunos vao se tornando mais amadurecidos para a busca de
informagdes, o professor pode delegar esta tarefa a eles, que vao usar entdo 0s mesmos
mecani smos utilizados pelo professor.

19. Nome: Percepc¢éo Espago Trabalho

Contexto:

Ambientes de aprendizagem cooperativa permitem que estudantes trabalhem juntos,
compartilhando espacos virtuais. Estes ambientes ndo conseguem reproduzir todas as nuances
gue ocorrem em uma situacéo de interacéo face a face onde os participantes utilizam canais de
comunicacdo explicita, por exemplo, afaa; e implicita, por exemplo, expressdes corporais.
Por isso, os ambientes de aprendizagem cooperativa baseada em projetos devem prover meios
de disponibilizar informagdes que auxiliem os participantes a terem consciéncia do qué estdo
compartilhando, como e com quem.

Problema:

Que elementos devem ser disponibilizados em um ambiente de aprendizagem cooperativa
baseada em projetos para garantir a percepcdo do espaco de trabalho entre os membros do
grupo?

Forgas:

A percepcdo do espaco de trabalho reduz o overhead do trabalho em grupo, permitindo uma
interacdo0 mais natural e efetiva, e facilita o enggjamento dos estudantes em préticas que
levam a aprendizagem cooperativa.

A nocdo do que estd acontecendo no grupo como um todo encerra o verdadeiro conceito de
aprendizagem cooperativa.

Percepcdo € um conceito relacionado a mecanismos que garantem que as pessoas podem
compreender ou tomar consciéncia do préprio processo e da interagdo entre todos os
participantes em um ambiente cooperativo. Elementos de percepcdo sdo essenciais para que
0s estudantes possam aprender e trabalhar em equipe.

Em um ambiente computacional para aprendizagem cooperativa, a percepcdo de cada
participante em relacdo aos outros é um dos elementos chave para propiciar uma interacéo
efetiva (Percepcdo Interacdo Social). O fato de um individuo saber o que o outro esta fazendo
em determinado momento pode levé-lo a buscar um contato e entdo possibilitar trocas.

O acesso a informagdes sobre contribuicdes e tarefas ja completadas (Percepcéo Tarefa)
também é um fator importante, pois pode aproximar pessoas com interesses comuns dentro do
grupo, mesmo gue ndo estejam produzindo alguma coisa juntas.

Prover elementos de percepcdo envolve pelo menos trés aspectos. a prépria informacéo, a
traducéo da informacéo, e apresentacdo da informacdo. Araujo (2000) aponta as seguintes
informacBes como necess&rias para prover percepcdo do espaco de trabalho: status dos
objetos de trabalho (quais séo, como encontré-los e qual o historico de sua evolucéo), acdes e
posi¢ao dos participantes.

Solucéo:
Apresente uma representacdo dos membros do grupo dentro do espaco de trabalho, de forma
gue o grupo todo possater as seguintes informagoes:

* ondeeeestd

* 0 Que estafazendo neste momento;

* 0Quejafez anteriomente.

Esta representacéo pode ser grafica, iconica, através de janelas, ou de realidade virtual. Muitas
vezes é feita simplesmente através da definicdo de diferentes cores para os usuérios, onde
estas vao indicar as contribuicdes nos objetos compartilhados, os objetos que estdo sendo
trabal hados em um determinado momento, a posi¢ao do cursor em uma janela compartilhada,
etc. A seguir € apresentado um esguema representativo do Espaco de Trabal ho:

Espaco de Trabalho em Ambientes de Aprendizagem Cooper ativa

Conceitos Interacéo Tarefas/Conceito

LN !

blabla...

Tarefa

Tarefa I nter aciio

Usos conhecidos:

Os ambientes CSILE (Oshima, 1997), Collaboratory Notebook e CaMILE (Guzdial, 1997)
implementam percepcdo de espaco de trabalho através da nogdo de mensagem estruturada,
onde o autor é representado por suas iniciais, e portanto 0s outros membros conseguem
perceber o que ele esta fazendo ou jafez.

No ambiente NICE (Roussos et a., 1997), os participantes de uma se¢do de trabalho séo
representados por avatars e todos podem visualizar seus movimentos e suas agoes dentro do
espaco de trabalho.

No ambiente CLARE (Wan e Johnson, 1994), o modelo de interac&o é previsto em duas fases
do trabalho, onde deve acontecer interacéo direta entre os participantes. Argumentacdo e
Consolidagdo. Em ambas as fases, as pessoas visualizam o artefato que esta sendo analisado
em uma janela (tarefa), e em outra sdo apresentadas as argumentacdes das pessoas em relacdo
a este artefato. Através desta janela, as pessoas trocam informacdes e podem votar por uma
decisdo final. Os objetos manipulados por cada membro do grupo aparecem relacionados aos
Seus Nomes.

20. Nome: Coordenagéo

Contexto:

Coordenacdo é um termo utilizado para descrever um conjunto de mecanismos disponiveis
em um ambiente compartilhado, que tém como fungdo gerenciar a Interdependéncia entre os
participantes. Os mecanismos de coordenacdo garantem que 0s procedimentos seréo
praticados no ambiente compartilhado de acordo com regras pré-definidas pel os participantes,
ou impostas pelo préprio ambiente.

Em ambientes de aprendizagem cooperativa, que tém como caracteristica um objetivo
educacional, a coordenacéo pode ser traduzida em suporte a definicdo das formas de trabalho,
permitindo que todos tenham acesso ao conhecimento compartilhado e possam desenvolver
habilidades cooperativas.

Problema:
Quais sd0 0S mecaniSmos necessarios para prover suporte a coordenacdo em ambientes de
aprendizagem cooperativa apoiados por computadores?

Forgas:

Coordenacdo esta relacionada ao suporte, a definicdo e execucdo das tarefas do grupo, e
individuais de cada participante. Na definicdo das tarefas, estabelecem-se as regras de
procedimento. Na execucdo das tarefas, necessita-se de assisténcia, tanto em nivel de
instrumentos, quanto de informacdes e conceitos. Muitos sistemas cooperativos provéem
guias para estruturacdo das interagbes sociais no contexto do espaco de trabaho
compartilhado (Farnham et a., 2000).

Os ambientes de aprendizagem cooperativa baseada em projetos possuem a particularidade de
gue o comportamento dos individuos é influenciado pelo grupo como um todo, ou sgja, 0
grupo tem sua identidade prépria. Os A prendizes trabalham juntos para solucionar problemas.
Desta forma, existem dois aspectos envolvidos. 0 processo cooperativo de trabalho e os
conhecimentos compartilhados na busca da solucéo.

O ambiente deve permitir o estabelecimento de regras de cooperacéo e de procedimentos
entre os individuos.

A Interdependéncia entre os participantes, necessaria para configurar e operacionaizar o
ambiente compartilhado ndo deve prejudicar a autonomia individual, pois esta € condicdo
fundamental no processo de aprendizagem.

O ambiente deve fornecer gjuda aos participantes no sentido de que desenvolver uma tarefa
significa também adquirir, compartilhar ou trabalhar na construcdo de algum tipo de
conhecimento.

De acordo com Johnson-Lenz e Johnson-Lenz (1991), outro aspecto da coordenacdo esta
relacionado a formas de manter o grupo estimulado, tais como convidar & participacéo, marcar
os eventos do processo de cooperacdo e definir um ritmo aos trabalhos e encontros. A
coordenagdo, neste sentido, pode ser feita de forma livre, ou seja, ndo h& coordenagdo, 0
grupo se auto-regula; centralizada, ou sgja, existe um individuo gue atua como coordenador,
tendo responsabilidades pela manutencdo do ambiente e gjuda aos participantes; automética,
OuU Sga, 0 Sistema exerce a coordenacdo; ou semi-automatica, 0 sistema possui algumas
funcgGes e um coordenador outras.

Observa-se que na maioria dos ambientes de aprendizagem cooperativos, o professor ou
Facilitador exerce o papel de Coordenador geral do projeto, mesmo ele ndo tenha este papel
atribuido de forma explicita. Informamente, cabe a ele as responsabilidades de manter o
grupo no processo de cooperacdo e gerenciar as negociagoes e Resolucdo Conflitos e Tomada
Decisdes. Percebe-se claramente isto em ambientes como Zebu (Tiessen e Ward, 1999) e
WebGuide (Stahl, 1999).

Os sistemas cooperativos of erecem diversos mecanismos para atribuicdo de direitos de acesso
a objetos compartilhados e associacdo de privilégios aos participantes. Estas acOes estéo
diretamente relacionadas aos procedimentos e responsabilidades estipulados no Fluxo
Atividades.

Barros (1995) afirma que um mecanismo de suporte importante neste sentido é o de
notificacdo de eventos. Por exemplo, 0 sistema avisa aos participantes sobre entrada/saida de
um individuo no ambiente cooperativo ou pedidos de acesso aos objetos, facilitando o
trabal ho de coordenagéo.

Solucéo:

O ambiente devera garantir que todos os participantes compartilhem conhecimento e se

envolvam no processo cooperativo. Para apoiar o trabalho de coordenacgéo realizado pelo

Facilitador, disponibilize Guias aos participantes das interagdes no ambiente cooperativo.

Os guias sdo mecanismos de gjuda que devem observar diretamente a atuacdo dos individuos

e do grupo no contexto do trabalho que estd sendo realizado, relacionando os objetivos

educacionais aos conceitos manipulados, de forma a prover guda sobre os passos a serem

tomados. Os guias podem andlisar as interagdes realizadas, interpretando as mensagens
trocadas de acordo com o nivel de profundidade da Representacdo Conhecimento. Esta poderé
permitir andlise desde a estrutura das mensagens, até seu contetdo.

Destaforma, os guias deverdo atuar com as seguintes responsabilidades:

« Andlise: identificacdo e validagdo do conhecimento que cada estudante ou grupo de
estudantes esta apresentando (contelido); anadlise do caminho que esta sendo percorrido
pelo grupo para busca da solucéo do problema (estrutura das interagoes);

« Retorno ou notificagdo: apresentacéo de realimentacéo individual e ao grupo; sugestéo das
proximas agoes.

Estes guias sdo geramente implementados nos ambientes como tutores inteligentes ou

agentes.

Em relacéo a padronizacéo de procedimentos, 0 ambiente devera apresentar mecanismos de
coordenagdo comuns aos ambientes CSCW: controle de acesso a recursos compartilhados e
controle de tarefas.

O controle de acesso se refere a organizacdo do acesso a recursos compartilhados pelos
usuarios, pararesolver conflitos de concorréncia

Pode ser feito segundo varias abordagens diferentes (Dias, 1998): blogueio simples;
mecanismos de transagdes; protocolos para controle de piso; controle centralizado; deteccéo
de dependéncia; execucdo reversivel; transformacdes de operacdes e mecanismos de check in
e check out.

O ambiente deve prover suporte para 0 controle de tarefas, através da disposicéo de
mecani smos para:

+ especificacdo de como ainteracdo serealizarg;

+ definicdo de regras de conduta, procedimentos e limites;

+ definicdo de papéis e responsabilidades;

+ acompanhamento da execucéo das tarefas.

Usos conhecidos:

No ambiente Belvedere (Suthers e Weiner, 1995), um conselheiro ou guia inteligente gjuda os
estudantes a focalizarem em aspectos particulares das questdes estudadas, sugerindo formas
nas quais um diagrama de argumentac&o pode ser estendido ou melhorado, destacando objetos
que possivelmente precisam de atencdo, e oferecendo dicas baseadas em principios tais como
consisténcia, suporte empirico, maximizacdo da cobertura de uma teoria e consideracéo a
teorias.

No ambiente ARCOO, uma sdla de estudos metafGrica possui entre outros recursos
“auxiliares invisivels’, que gjudam os estudantes a desenvolverem seus projetos (Barros e
Borges, 1995).

No Algebra Jam (Singley et al., 1999), um tutor inteligente modela uma equipe e as interacoes
entre 0s seus membros. Isto é feito através da observacéo de alguns eventos produzidos por
papéis pré-definidos. A observacdo da ocorréncia destes eventos atualiza as crencas do tutor
sobre a proficiéncia dos estudantes no dominio estudado, e sobre seus progressos em
habilidades cooperativas.

21. Nome: Resolugéo Conflitos e Tomada Decisdes

Contexto:

Durante as sessdes de aprendizagem cooperativa, podem surgir conflitos entre os membros do
grupo, acarretando problemas na execugdo das tarefas. Portanto, é necessario que o ambiente
de aprendizagem ofereca formas de apoiar a resolucéo de conflitos.

Problema:
O que representa e como pode ser apoiado 0 processo de negociacdo para a resolucdo de
conflitos e tomada de decisbes em ambientes de aprendizagem cooperativa baseada em
projetos?

Forgas:

Segundo a teoria socio-construtivista, o conflito entre aprendizes é uma extensao do conceito
piagetiano de conflito entre as crengas do aprendiz e e suas agdes no mundo. Quando ocorre
um conflito entre pares, fatores sociais previnem os aprendizes de ignorar o conflito e os forca
a encontrar uma solugdo. Para Dillenbourg e Schneider (1995), mais do que isso, uma simples
desavenca ou mal-entendimento pode ter o0 mesmo efeito que conflitos explicitos, e interactes
verbais desencadeadas para resolver um conflito estéo diretamente relacionadas a resultados
de aprendizagem.

No contexto de ambientes de aprendizagem cooperativa, a negociacdo € um mecanismo
auxiliar relacionado a Coordenacéo, que leva os Aprendizes a tomada de decisdes sobre o0
plangjamento e a execucdo das tarefas, que por sua vez levardo a elaboracdo da solucdo dos
problemas propostos, promovendo a aprendizagem. Negociar significa argumentar e decidir.
Neste tipo de interacéo, as pessoas possuem opinides e desejam que os outros as aceitem. Este
processo envolve varios mecanismos cognitivos e afetivos, tais como, 6gica, inferéncia,
deducdo, crenca, duvida, sutileza e envolvimento emocional com 0 assunto e com 0s
participantes (Barros, 1995).

O processo de tomada de decisdo envolve a definicéo e andlise das diferentes alternativas de
acao propostas pelos membros do grupo, a identificagdo de um conjunto de alternativas
promissoras para a execucdo da tarefa cooperativa, a selecdo e implementagcdo de uma
alternativa e verificagdo do comportamento da alternativa selecionada na execucéo da tarefa
Este processo € importante tanto para o desenvolvimento cognitivo dos alunos quanto para o
aprimoramento das habilidades sociais.

A cooperacdo requer um espaco de compartilhamento de idéas e de negociagcdo de cursos de
acao. Os conflitos s&0 uma parte inerente do processo de cooperacdo. Se bem empregados,
eles podem aumentar a produtividade do grupo e a aprendizagem. No entanto, os conflitos
podem refletir desavencas pessoais e enfraguecer a coesdo do grupo. Além disso, armazenar
informagdes sobre o0 processo de negociacdo é mais um fator importante para a Meméria do

grupo.

Solucéo:

Disponibilize um espaco de negociagdo sincrono ou assincrono, onde os participantes possam
interagir através de um modelo de argumentacao.

Stahl (1999) afirma que colaboragdo requer divergéncia (surgimento de idéias) e convergéncia
(negociacdo, sintese e consenso). Por isso, em um modelo de argumentacdo voltado para a
colaboracdo deve ser flexivel para permitir que uma contribuicdo ou nota possa ser
relacionada a mais de uma outra na hierarquia da estrutura.

No espaco de negociacdo permita a definicdo de um agente humano ou computacional com a
funcdo de mediador de conflitos. Este agente pode ser responsavel pela categorizacdo dos
tépicos da discussao, caso 0 grupo ndo seja experiente para fazer isso.

Usos conhecidos:

Os Sistemas de Suporte a Decisdo em Grupo utilizando modelos estruturados foram umas das
primeiras aplicagdes no dominio de trabalho cooperativo (Barros, 1995).

O ambiente ARCOO (Barros & Borges, 1995) of erece o sub-sistema de Socializagéo, que visa
gerenciar 0s encontros entre os aprendizes através de Reunides, Conferéncias e Conversas,
dando suporte, através de ferramentas que utilizam modelos estruturados de argumentacéo,
para a negociagao e superacao dos conflitos.

Tedesco & Self (2000) desenvolveram um mediador artificial - MArCo, gque detecta os
conflitos meta-cognitivos e sugere cursos de acdo. O mediador opera a partir de um modelo
de conflitos, baseado em uma rede de crencas sobre 0 comportamento dos pares cooperantes.
O framework Habanero oferece The Voting Tool, uma ferramenta de votagdo que visa ajudar
os membros do grupo atomarem decisoes e a superarem conflitos.

No ambiente WebGuide (Stahl, 1999), existe a previsdo de implementacdo de um componente
de negociacdo assincrona para permitir aos estudantes submeterem suas perpectivas pessoais
sobre um determinado topico em discussdo para esta sgja votada. Uma vez tendo recebido um
nimero suficiente de votos, esta proposta passa a ser incorporada, passando a representar um
conhecimento aceito pelo grupo.

O ambiente PENCACOLAS (Gonzdlez et a., 1997) foi desenvolvido para apoiar a
aprendizagem da producédo de documentos de forma colaborativa, dando suporte a todas as
fases que acontecem durante este processo, entre elas a geracdo de idéias (brainstorming).
Nesta etapa, os participantes tém suporte a colocacdo de suas idéias para posteriormente
optarem por aqueles que serdo incorporadas ao produto final do grupo.

Agradecimentos

Os autores agradecem especialmente ao professor Gustavo Rossi por sua contribuicdo como
guiaimprescindivel arealizacéo deste trabalho com sugestdes e comentarios enriquecedores.

Refer éncias Bibliogr aficas

Araujo, R.M. (2000) Ampliando a Cultura de Processos de Software — Um Enfoque Baseado em Groupware e
Workflow. Tese de Doutorado. COPPE/UFRJ Programa de Sistemas e Computagao.

Aronson, E. (1978). “The Jigsaw Classroom”. Bervely Hills, CA: Sage.

Barros, L.A.; Borges, M.R.S. (1995) ARCOO - Sistema de Apoio a Aprendizagem Cooperativa Distribuida”,
Anais do VI Simposio Brasileiro de Informética e Educacao.

Becker, K.; Zanella, A.N. (1998). A Cooperation Model for Teaching/Learning Modeling Disciplines. Anais do
International Workshop on Groupware - CRIWG' 98, Rio de Janeiro, Brasil.

Conklin, J. E. (1996) Capturing Organizational Memory. Group Decision Support Systems, Inc.
http://www.gdss.com

Dias, M.S. (1998) “COPSE - Um Ambientes de Suporte a0 Projeto Cooperativo de Software’. Tese de
Mestrado. COPPE/Sistemas, UFRJ.

Dillenbourg, P., Schneider, D. (1995). Collaborative Learning and the Internet. ICCAI"95.

Enyedy, N., Vahey, P. e Gifford, B.R. (1997). Active and Supportive Computer-Mediated Resources for
Student-to-Student Conversations. Anais da Conferéncia Computer Support for Collaborative Learning’ 97.
Toronto, Canada.

Farnham, S., Chedey, H.R., McGhee, D.E., Kawal, R. (2000). Structured Online Interactions. Improving the

Decison-Making of Small Discussion Groups. Anais da Conferéncia Computer-Supported Cooperative
Work”00. Philadelphia, USA.

Ferraris, C., Martel, C. (2000) ‘Regulation in Groupware: The Example of a Collaborative Drawing Tool for
Young Children’ |IEEE Press. Anais do International Workshop on Groupware — CRIWG'00. Madeira,
Portugal .

Gerber, L.D. e Becker, K., 2000, “Contributions of Pattern Languages to Framework-Based Development in
Layered Architectures’. In: Proceedings of the XXVI Conferencia Latino Americana de Informatica -
CLEI2000, Mexico.

Gonzalez, O.M., Verdd, M.J., Dimitriadis, Y.A., Osuna, C.A., Iglesias, C.A., Lépez, J. (1997) PENCACOLAS:
Groupware for Learning. Anais do 3“.International Workshop on Groupware, Espanha.

Gutwin, C., Stark, G., Greenberg, S. (1995). Support for Workspace Awareness in Educational Groupware.
Anais da Conferéncia Computer Supported Collaborative Learning, USA.

Guzdial, M., Rick, J., Kerimbaev, B. (2000). Recognizing and Supporting Roles in CSCW. Anais da
Conferéncia Computer-Supported Cooperative Work”00. Philadel phia, USA.

Habaner o - http://www.ncsa.uiuc.edu/SD G/Software/Habanero/Tools.

Johnson, D.W., Johnson, R.T. & Holubec, E.J. (1990). “Circles of Learning”. (3“. edition). Edina, MN:
Interaction Book Company.

Johnson-L enz, P e Johnson-Lenz, T. (1991). Post-mechanistic Groupware Primitives. Rhythms, Boundaries and
Containers. Intelligent Journal of Man-Machine Studies 34.

Kaye A. (1991). Learning Together Apart. In: Collaborative Learning through Computer Conferencing. (Ed.) A.
Kaye, Berlin: Springer-Verlag.

Kynigos, C. (1999) Perspectives in Analysing Classroom Interaction Data on Collaborative Computer-Based
Mathematical Projects. Anais da Conferéncia Computer Supported Collaborative Learning. Stanford, USA.

Leite, Aury de S e Omar, Nizam (1999). Representacdo de Conhecimento Pedagdgico e Didético em Sistemas
Educativos Inteligentes. Anais do X Simpdsio Brasileiro de Informética e Educacdo, Curitiba.

Mabher, M.L. (1999). Designing Virtual Campus as a Virtual World. Anais da Conferéncia Computer Supported
Collaborative Learning. Stanford, USA.

Marshak, Ronni T. (1995). “Groupware: Technology and Applications’, Capitulo 3: Workflow: Applying
Automation to Group Processes. David Coleman & Raman Khanna (editors), Prentice Hall, NJ, USA.

Miao, Y., Haake, JM., Steinmetz, R. (2000) * A Rule-based Method to Shift between Learning Protocols' Anais
do Educational Mutimedia, Hypermedia and Telecommunications Conference.

M Uhlenbrock, M., Hoppe, U. (1999). Computer Supported Interaction Analysis of Group Problem Solving.
Anais da Conferéncia Computer Supported Collaborative Learning. Stanford, USA.

O’Nelll, K., Gomez, L.M. (1994) “The Collaboratory Notebook: a Networked Knowledge-Building
Environment for Project Learning”. Anais da Conferéncia Educational Mulimedia and Telecommunications-
ED-Media 94.

Oshima, J. (1997) “Students” Construction of Scientific Explanations in a Collaborative Hyper-Media Learning
Environment”. Anais da Conferéncia Computer Supported on Collaborative Learning. Toronto, Canada.

Roussos, M., Johnson, A.E., Leigh, J., Barnes, C.R., Vasilakis, C.A., Moher, T.G. (1997) “The NICE Project:
Narrative, Immersive, Constructionist/Collaborative Environments for Learning in Virtual Reality”. Anais da
Conferéncia Educational Mulimedia and Telecommunications- ED-Media

Santoro, F.M., Borges, M.R.S,, Santos, N., 2000b, "An Infrastructure to Support the Development of
Collaborative Project-Based Learning Enviroments’. In: IEEE Press Proceedings of International Workshop
on Groupware — CRIWG 00, Madeira, Portugal, pp. 78-85.

Singley, M. K., Singh, M., Fairweather, P., Farrell, R., Swerling, S. (2000). Algebra Jam: Supporting Teamwork
and Managing Roles in a Collaborative Learning Environment. Anais da Conferéncia Computer-Supported
Cooperative Work”00. Philadelphia, USA.

Singley, M.K., Fairweather, P.G., Swerling, S. (1999). Team Tutoring Systems. Reifying Roles in Problem
Solving. Anais da Conferéncia Computer Support for Collaborative Learning’99. Stanford, EUA.

Slavin, R.E. (1990). “Cooperative Learning: Theory, Research and Practice”. Englewood Cliffs, NJ. Prentice-
Hall.

Smith, R.B., Hixon, R., Horan, B. (1998). Supporting Flexible Roles in a Shared Space. Anais da Conferéncia
Computer-Supported Cooperative Work 98. Seattle, USA.

Stahl, G. (1999). Reflections on WebGuide: Seven Issues for the Next Generation of Collaborative Knowledge-
Building Environments. Anais da Conferéncia Computer Support for Collaborative Learning’99. Stanford,
EUA.

Suthers, D., Weiner, A. (1995). Groupware for Developing Critical Discussion. Anais do Computer Supported
for Collaborative Learning’ 95, EUA.

Tarouco, Liane Margarida R. e Hack, Luciano Emilio. A Avaliagdo na Educacdo a Distancia: o Modelo de
Kirkpatrick. Anais do X Simpdésio Brasileiro de Informética e Educacdo, Curitiba.

Tedesco, P.A. and Self JA, MArCO: using conflict mediation strategies to support group planning interactions,
Technical Report 00/4, Computer Based Learning Unit, University of Leeds, 2000.

Tiessen, E.L., Ward, D.R. (1999). Developing a Technology of Use for Collaborative Project-Based Learning.
Anais da Conferéncia Computer Support for Collaborative Learning 99. Stanford, EUA.

Tyler Ralph Winfred, 1902- Principios Bésicos de Curriculo e Ensino; traducdo de Leonel Vallandro, Porto
Alegre, Globo, 1974.

Wan, D., Johnson, P.M. (1994). Computer Supported Collaborative Learning Using CLARE: the Approach and
Experimental Findings. Anais da 1994 ACM Conference on Computer Supported Cooperative Work,Chapel
Hill, North Carolina.

Van der Veen, J, Jones, V., Collis, B. (1998) “Workflow applied to Projects in Higher Education”.
COOPIS'98.

WEB HANDLERS

Gibeon Aquino*e Paulo Borbaf

Centro de Estudos e Sistemas Avangados do Recife (CESAR)
Centro de Informatica, Universidade Federal de Pernambuco

Abstract

With the widespread use of the Internet, more and more web-based information
systems are being developed. Nowadays, many of these are developed in Java be-
cause of the several quality and productvity factors offered by the language and,
mainly, for the amount of developed solutions using it. Java web technologies are
very powerful, but are very new too. For this reason, there isn’t a good number of
design patterns or idioms for Java web-based systems [1]. In order to contribute to
solve this problem, here we describe the Web Handlers pattern, which provides a
way to structure and organize web-based systems to prevent replication of code.

Contexto

Em sistemas Web baseados no modelo de pedido-resposta é comum existirem diferentes
requisicoes (pedidos) gerando dinamicamente a mesma pagina HTML como resposta. Esta
situacao pode ser percebida em um exemplo bem simplificado de sistema bancario que
possui apenas as operacoes de crédito e débito em conta corrente, além de uma operacao
de login no sistema. O funcionamento deste é especificado através do mapa navegacional
da Figura 1, que usa a notacao de Diagrama de Estados de UML [8], onde as operagoes
sao desenhadas como eventos e as paginas HTML (dindmicas ou estéticas) como estados.

De fato, analisando a figura percebe-se que as operacoes Debito, Credito e Login,
apesar de serem operacoes distintas, geram como resposta de sua execugao a mesma pagina
(Menu de Movimentagdes). Este fato, apesar de exemplificado com um menu principal,
ocorre em diversas outras situagoes.

Outra situacao comum em sistemas desta natureza é termos uma mesma requisicao
gerando diferentes respostas, dependendo da origem da requisicao ou do resultado do
de seu processamento. Para exemplificar esta situacao, considere que o cliente, além
de realizar movimentagoes em conta (débito e crédito), pode fazer atualiza¢oes em seu
cadastro. A Figura 2 exemplifica bem a situagao em que a mesma operacao, Login, é
executada a partir de contextos diferentes (Pdgina de Login 1 e Pagina de Login 2)
e deve gerar uma saida especifica (Menu de Atualizagdo e Menu de Movimentagdes)
dependendo da origem da requisicao. Estas duas paginas de login possuem o conteido
bem diferente pois elas estao em contextos distintos e nao possuem relacao direta.

*Email: gibeon@cesar.org.br
tParcialmente financiado pelo CNPq, processo 521994/96-9. Email: phmb@cin.ufpe.br

Links estaticos

Pagina da hienu de
hovimentagies de HTML

Lagin 1

Pagina de
Débita

Debita

Figura 1: Mapa navegacional simples do sistema bancario

Link estatico de HThIL

Opgdo: Aualizagdo de
Cadastra.

hdenu de
Aualizagan

Pagina de Outras
) Login 2 paginas ...

Link estatico de HThL

Opgdo: hdenu de
hdowimentagies .

Figura 2: Mapa navegacional completo do sistema bancério

As situagoes ilustradas pelas Figuras 1 e 2 sao bastante comuns em sistemas Web
nao triviais. FEstas geralmente trazem problemas de implementagao, como duplicagao
e complexidade do cédigo, quando nao é aplicada uma estruturacao de componentes
Web adequada ao problema. Em situagoes onde a mesma pagina pode ser gerada como
resultado da execugao de diferentes requisi¢oes (Ilustrado pela Figura 1) é comum ocorrer
duplicagao de cédido relativo a montagem desta pagina em cada um dos componentes que
tratam as requisicoes. Ja em situagoes onde uma mesma operacao pode gerar diferentes
péginas como resultado de seu processamento (Ilustrado pela Figura 2) é comum haver
um aumento na complexidade de implementacao do componente que executa a requisicao,
ja que este precisa decidir que resposta apresentar, além de possuir o cédigo relativo a

montagem de cada uma das paginas de resposta gerada por ele.

Problema

Evitar a duplicacao de cdédigo e complexidade na estruturacao de sistemas Web com
relacionamento M:N entre a apresentacao e o processamento.

Forcas

Positivas

e A estruturacao orientada a pagina evita a duplicacao do codigo referente a montagem
da apresentacao.

e A estruturacao orientada a operacgao evita a duplicacao do cédigo de processamento
da requisicgao.

Negativas

e A estruturacao orientada a pagina nao pode ser aplicada para impedir a repeticao
do cédigo de processamento da requisicao. Além do mais, esta alternativa pode
fazer com que o seu componente Web fique mais complexo quando a quantidade de
operacoes que geram a mesma pagina de saida aumenta.

e A estruturacao orientada a operacao nao é capaz de impedir que a légica de mon-
tagem das paginas se repita. Esta também apresenta o problema de poder ficar
complexo quando aumenta o nimero de paginas de saida possiveis para a mesma
operacao.

Solucao

A solucao é baseada na construcao de entidades denominadas handlers. Existem dois tipos
destes: Handlers de Apresentacao e Handlers de Processamento. Os primeiros contém
apenas c6digo relativo & montagem das paginas dinamicas e os outros possuem cédigo (ou
chamadas) relativo a execucao da légica de negécio. Com esta estruturagao é necessario
criar um handler de processamento para cada operacao do sistema e um de apresentacao
para cada pagina dinamica.

Cada requisicao Web dispara uma execucao do lado do servidor que dinamicamente
associa um par de handlers (um de apresentagao e um de processamento) para responder
ao cliente. Esta composicao dinamica é determinada por um parametro da requisicao
do cliente. A entidade responsavel pela montagem deste par e delegacao da requisicao
primeiro para o handler de processamento, depois para o de apresentacao é o Contro-
lador de Handlers, que é especificado com mais detalhes nas Secoes Estrutura e Imple-
mentacao.

Os handlers de processamento, além de conterem chamadas as operacoes do sistema,
possuem codigo responsavel pela validagao dos dados vindos do cliente Web, e codigo
responsavel pela preparacao dos dados para seu par de apresentacao.

Os handlers de apresentacao também possuem validacao de dados, além de cddigo
de montagem das péaginas dinamicas. Esta validacao é necessaria porque estes precisam

validar os dados gerados pelo seu pares, ja que eles sao entidades independentes e podem
ser compostos de diferentes formas.

Exemplo da solucgao

Para o sistema bancério, as seguintes entidades deveriam ser criadas com a utilizacao do
padrao:

e Handlers de Apresentacao:

— HA_MenuAtualizacao, responsavel por montar dinamicamente o Menu de Atua
lizagédo;

— HA_MenuMovimentacoes, responsavel por montar dinamicamente o Menu de
Movimentagdes.

e Handlers de Processamento:

— HP_Login, responsavel por executar a operacao Login;
— HP_Credito, responsavel por executar a operacao Crédito;

— HP_Debito, responsavel por executar a operacao Débito.

Estes handlers podem ser compostos de diferentes formas para responder aos diferentes
tipos de requisicoes. A Figura 3 exemplifica algumas composicoes possiveis para o sistema,
bancario com a utilizacao desse tipo de estruturacao. De fato, o uso de handlers é capaz de
resolver os problemas de duplicacao e complexidade de cédigo em casos de relacionamentos
M:N entre a apresentacao e o processamento, podendo assim ser aplicado na maioria das
situagoes comuns a sistemas Web. Na Figura 3 é possivel ver como os handlers podem
ser reusados em diferentes requisicoes, evitando assim a repeticao de codigo.

Aplicabilidade

Use o padrao principalmente em sistemas onde aparecem relacionamentos M:N entre as
partes de processamento e apresentacao.

Desenvolver o sistema ja usando do padrao mesmo quando nao ocorrem estas situagoes
é uma boa pratica, pois desta forma o desenvolvedor jd torna o sistema imune a problemas
de repeticao de codigo antes mesmo de identifica-los.

Uma forma simples de identificar se o seu sistema necessita do uso deste padrao é desen-
hando o mapa navegacional do sistema e verificando a existéncia de ciclos. O aparecimento
de ciclos indica que o seu sistema pode apresentar relacionamento 1:N da apresentacao
para o processamento (como na Figura 1). Para identificar a ocorréncia de relacionamen-
tos 1:N do processamento para a apresentacao é so verificar, no mapa navegacional, se a
mesma operagao aparece em duas transi¢oes diferentes (como na Figura 2).

Estrutura

A estrutura do padrao Web Handlers é especificada através do diagrama de classes de
UML da Figura 4.

<<Handler de Processamento >
HP_Login

<<Handler de Apresentagdor>
HA hMenubdovimentacoes

WprocessanServlet Request, ServletResponse)

VapresentanServlet Request, ServletResponse)

<<Handler de Processamentos:
HP_Lagin

<<Handler de Ppresentagdn s>
HA& hienuAtualizacao

Vprocezsan Serviet Request, SenvletResponse)

Yapresentan Servlet Request, SenvletResponse)

<<Handler de Processamento >
HP_Credito

<<Handler de Apresentagdor:
HA henubdowimentacoes

WprocessanServlet Request, Senlet Response)

Mapresertan Servlet Request, Senvlet Response)

<<Handler de Processamento »>»
HP_Debita

<<Handler de Apresentagdos>
HA Menubdovim entacoes

Vprocezsan Serviet Request, SenvletResponse)

Yapresentan Servlet Request, SenvletResponse)

(D) Execugio da operagio de Db

Figura 3: Composigoes possiveis de handlers de apresentacao e processamento.

Participantes

e ControladorHandlers - Responsavel pelo recebimento das requisicoes e controle da
execucao dos handlers responsaveis pela mesma;

e HandlerApresentacao - Responsavel pela montagem de uma ou mais paginas semel-
hantes;

e HandlerProcessamento - Responsavel pela invocacao dos servicos, e também pela
geragao de dados para os handlers de apresentacao a serem executados em conjunto
com ele;

Os handlers possuem algumas operacoes padroes que devem ser definidas pelo progra-
mador para que eles se comportem da maneira esperada, estas sao:

e iniciar - Inicia o handler e é invocado pelo ambiente;
e finalizar - Finaliza o handler e é invocado pelo ambiente;

e apresentar - Contém a logica referente a montagem das pdginas dinamicas;

Z2lnterfaces>
IHandler
"validarDados(Sen:IetRequest. SenrletResponse)
BinicianSerletCantasdt)

‘finalizar[j
Z2lnterfaces> <ZInterfaces=>
IHandlerProceszamenta IHandlerspresentacac
®processansenletRiaquest, SenetResponse) Fia Serdet BapresentanGenietRequast, Senletesponze)
ﬂ o o)

i

; <<Http_Sendet==
7 ContraladorHandlers

HendlerPmoezsamento QHR Handlerdomezeriacao

.‘ SenietException
ifrom senrlat)

Pl

ApresentacaoException ProceszamentoException

SR

Figura 4: Diagrama de classes do padrao Web Handlers

e processar - Contém a légica referente a chamada dos servicos;

e validarDados - Contém regras de validacao dos dados de entrada.

Os handlers possuem ciclo de vida semelhante aos dos servlets [14]. Assim sao ofere-
cidos os métodos iniciar e finalizar, para que o programador possa definir operagoes
que sao executadas na sua inicializacao e finalizacao, respectivamente. Todo handler
pode implementar o método validarDados, que é executado antes do processar ou do
apresentar. Para os handlers de processamento ele pode ser usado para implementar
regras de validacao dos dados da requisicao Web, enquanto que nos de apresentacao ele
contém a validacao dos dados gerados pelo processamento.

Dinadmica
e Toda requisicao Web é recebida pelo controlador, que interpreta seus parametros,

recupera o processamento e apresentacao necessarios para executar a requisi¢ao
e dinamicamente faz a composicao dos dois, delegando a requisicao para o par.

e O processamento ¢é o primeiro a ser executado através da chamada ao seu método
processar. Nele vao estar a chamadas aos servicos do sistemas, implementados por
objetos que encapsulam toda a regra de negécio da aplicacao (EJBs [13], Facade [5]
etc). Ele também é responsavel por produzir os dados de entrada do handler de
apresentacao que sera associado a ele.

e O handlerapresentacao é executado apds o término com sucesso do processamento
através de uma chamada a seu método apresentar. Nele nao deve haver logica de

clienteiieb controladar : Container de processamento dpresentacao :

ControladorHandlers Handlars HandlarProcessamento HandlerApresentacao

\ requisicac WEB | :
1 v getthandlerProcessamento) '

getthandlerfpresentacaan) R e

E o meio no qual oz dados Ij

processa r(Sen.rIetHequesli, SanrletResponse)

apresenta r(élen.rletﬂequest. Saneth e:rspu:-nsej

:

L
]
'
'

Figura 5: Diagrama de seqiiéncia dos componentes do padrao Web Handlers

processamento da requisicao, apenas codigo referente a montagem da péagina. Este
handler consulta os dados gerados pelo seu par processamento e constréi a pagina
de resposta baseada nestes.

O Container de Handlers é uma entidade que esta neste contexto apenas para que
se tenha um entendimento melhor do processo de acesso e recuperacao dos handlers.
Ele nada mais é do que o ambiente onde os handlers sao executados, em aplicacoes
Web, por exemplo, um servidor Web ou mais especificamente um Container Web.

Conseqiiéncias

Grande flexibilidade na composicao das partes de apresentagao e processamento — Os
handlers de apresentacao e processamento sao independentes um dos outros e podem
ser integrados de forma diferente para responder a diferentes tipos de requisicoes,
desde que eles sejam compativeis em relacao aos dados produzidos e consumidos.

Maior reuso de cddigo - O padrao evita a repeticao desnecessaria de cédigo, pois
permite o compartilhamento de entidades para responder a diferentes requisicoes.

Mudangas nos mecanismos de montagem da apresentacao (JSP [7], FreeMarker [17],
WebMacro [11] ou Velocity [15]) ndo causam efeito algum nas entidades de proces-
samento.

Facilita a implementacao de sistemas que requerem diferentes formatos de saida
(XML [3], HTML, WML [4], XHTML [4], etc.) para a mesma operacao — Com
o uso do Web Handlers o desenvolvedor pode criar handlers de processamento
que serao compostos com diferentes handlers de apresentacao, onde estes ultimos
possuem implementagoes para cada formato de saida possivel.

Facilita a implementacao de componentes (handlers de apresentacao e processa-
mento) que podem ser reusados em outros sistemas — Com o uso do padrao é mais

facil manter uma biblioteca de handlers onde o desenvolvedor pode consultar servicos
ja implementados e compo-los a fim de obter a implementacao de um servigo dese-
jado.

e O padrao ajuda a evitar repeticao de codigo, no entanto ele possui a desvantagem de
aumentar o nimero de classes necessarias para implementar um sistema. Por isso é
preciso ter um certo cuidado em nao tornar o sistema modular demais, pois quanto
mais modular ele for, maior sera o numero de classes que precisam ser criadas;

e A divisao da responsabilidade pelo tratamento da requisicao acrescenta uma com-
plexidade a implementagao dos componentes, pois é necessdrio a passagem de para-
metros do handler de processamento para o de apresentacao a cada requisicao, ja
que eles sao entidades distintas.

Implementacao

Todos os handlers possuem um comportamento bem similar e interfaces bem definidas,
por isso é interessante que existam classes e interfaces que déem apoio ao funcionamento
do padrao, provendo comportamento genérico e especificando a interface das operagoes
dos handlers. Uma estruturacao interessante deste padrao pode ser vista na Figura 6.

<tnterface s
IHandler
(from arquitetura))
ShralidarDados($erviet Request, ServletResponze)
Minician Servlet Context)

inalizan)
<ilnterface s <ilnterface s
IHandlerProcessamenta IHandlerApresentacac
(from arquitetura)) (from arquitetura))
WproceszanServlet Request, Servlet Response) Wapresentan Servlet Request, Servlet Responze)

HanlerPmooe sramendo Hamend preFentacan

o ampuidetra) o ampasitetia)
A £

Figura 6: Diagrama de classes refinado dos componentes do Web Handlers

e THandler — Interface genérica que especifica as funcionalidades que todo handler
deve oferecer.

e IHandlerProcessamento — Interface que define todas as operacoes que devem existir
em um handler de processamento.

e THandlerApresentacao — Interface que define todas as operagoes que devem ser
oferecidas por um handler de apresentacao.

e HandlerProcessamento — Classe abstrata que implementa os métodos definidos na
interface THandlerProcessamento. Ela prové uma implementacao padrao para os
handlers de processamento. Toda entidade de processamento deve estender esta
classe para possuir o comportamento de um handler de processamento.

e HandlerApresentacao — Classe abstrata que implementa as funcionalidades defini-
das na interface IHandlerApresentacao. Toda entidade de apresentacao deve es-
tender esta classe para possuir o comportamento de um handler de apresentacao.

Os tipos ServletRequest, ServletResponse e ServletContext sao classes padroes
da API de servlets [14]. A primeira é o meio pelo qual os parametros da requisi¢do sao
passados. O segundo é usado para enviar resposta para o cliente Web. O tltimo é uma
referéncia para o Servlet Container, através do qual pode-se recuperar parametros de
configuracao do ambiente, comunicar-se com outras entidades que estejam executando
no mesmo contexto, etc. Os componentes aqui apresentados sao especificos para uma
implementagao baseada em servlets, no entanto o padrao é genérico o bastante para que
possa ser implementado em outras tecnologias.

Para tornar o ambiente de handlers ainda mais poderoso é interessante que existam
algumas funcionalidades providas pelo contexto onde eles estao sendo executados:

e Instanciagcao automatica dos handlers - O ambiente é responsavel por localizar
e carregar os handlers necessarios para a execucao da requisi¢ao;

¢ Reload automatico de handlers - As modificacoes feitas em handlers ja carrega-
dos serao enxergadas pelo contexto automaticamente;

e Ciclo de vida bem definido e gerenciado pelo ambiente - Os handlers, assim
como os servlets, possuem um ciclo de vida bem definido e que é controlado pelo
ambiente no qual eles estao executando.

Todas estas caracteristicas precisam ser implementadas no ambiente dos handlers, mas
como o ambiente de serviets (Serviet Container) ja prové todos estes servigos, é uma
boa idéia usa-los para os handlers. Uma forma de usar estes recursos de forma efetiva é
fazendo com que os handlers sejam executados dentro do Servlet Container. Para isso eles
precisam ter a interface de um servlet e se comportar como tal. Uma pequena modificagao
na estrutura apresentada anteriormente pode ser feita de forma a atender estes requisitos
e preservar a semantica dos handlers apresentada até o momento. A Figura 7 d4 uma
idéia da alteracao necessaria no modelo.

As implementacoes genérica HandlerApresentacao e HandlerProcessamento contin-
uam implementando as mesmas interfaces, mas agora estendem a classe HttpServlet
(pertencente a API de servlets) para herdarem o comportamento de servlet e poderem
ser gerenciados pelo Web Container. Outro detalhe é que estas implementacoes genéricas
declaram todos os métodos herdados da classe HttpServlet como “final”, desta forma

<interfacer -
IHandler

<<Interface
IHandlerProcessamento IHandlerfpresentacan

b <

L v

“4nterface

Ha ke e sranme o Hamdlerdpesentacan

Figura 7: Estrutura do padrao no ambiente de servlets

evitam que suas subclasses redefinam estes métodos. Enfim, para as classes que o progra-
mador precisa implementar, esta mudanca na heranca de HttpServlet nao causa nenhum
efeito direto.

Na Figura 8 pode-se ver o diagrama de classes do padrao completo. Foram acrescen-
tadas as classes de excecao ApresentacaoException e ProcessamentoException, ambas
herdando de ServletException, e cada uma destas podem ser lancadas pelos métodos
dos handlers de Apresentacao e Processamento, respectivamente.

A classe ControladorHandlers é um servlet que faz o papel do Controlador de Han-
dlers mostrado na Secao Estrutura. Este é implementado como um servlet porque precisa
receber todas as requisicoes Web, e s6 depois de interpreta-las, repassa-las para os handlers
responsaveis pelo sua execucao.

Uma variacao da implementacao para resolver o problema do aumento do niimero de
classes do sistema é permitir que o desenvolvedor possa agrupar operacoes relacionadas ou
semelhantes em um tnico handler. Com isso seria necessario implementar um mecanismo
de execucao de handlers mais elaborado, onde além de informagoes a respeito dos handlers
a serem executados numa determinada requisicao, deveria haver parametros indicando

que operacao executar em cada um deles. Este mecanismo pode ser implementado com a
utilizacdo da API Reflection [12] de Java.

Cdédigo de exemplo

Para exemplificar o uso do padrao sao mostradas as implementacoes de duas classes
do sistema bancario, um handler de apresentacao e outro de processamento. A Figura
8, mostrada anteriormente, d4 uma idéia geral da estrutura destas classes e como elas
sao compostas para atender as requisicoes do sistema. No trecho abaixo é mostrada a
implementacao concreta destas classes em Java.

A classe HP_Login é um handler de processamento que executa a operagao de login no
sistema. Como pode ser visto na linha 1, este estende a classe HandlerProcessamento,
herdando assim o comportamento de handler de processamento. Na linha 3 é declarada
uma variavel do tipo Sistema, que agrupa todos os servicos do sistema e é uma imple-
mentagao dos padroes Facade e Singleton. Na inicializacao deste handler (chamada ao

<dinterfaces
IHandler

WvalidarDadoz(ServietRequest, ServietResponse)

Winician Servlet Context)
Hinalizan))
<dinterfaces: <dinterfaces:
IHandlerProces=amento IHandlerAprasertacan
Vprocessan Servlet Request, ServletResponse) o Sened RapresentanGervietRequest, ServletResponse)
zﬂ o o) ﬂ
i <<Http_Servlet>» E

) CortroladorHandlers

Handlerfroce srammen Hardke s pe sentacan
.‘ Servlet Exception L

(from servlet)

FN

‘ Aprezentacan Exception | Processamento Exception

Figura 8: Estrutura do padrao refinada e no ambiente de servlets.

método iniciar) é recuperada uma instancia do sistema para que seja usado durante o
processamento (linha 7).

1 public class HP_Login extends HandlerProcessamento {
2

3 private Sistema sistema;

4:

5: public void iniciar(ServletConfig config)

6: throws ProcessamentoException{

7 sistema = Sistema.getInstancia();

8 b

O método validarDados verifica se os parametros da requisicao necessarios para ex-
ecugao estao presentes (linhas 13 e 14), caso nao estejam é lancada uma excecao indicando
que o processamento deve ser interrompido.

9: public void validarDados (HttpServletRequest request,
10: HttpServletResponse response)
11: throws ProcessamentoException{

12:

13: if (request.getParameter("login") == null ||

14: request.getParameter("senha") == null){

15: throw new ProcessamentoException(

"Pardmetros imcompativeis",null);
16: }
17: T

As linhas 24 e 25 sao usadas para recuperar o valor do login e senha, passados como
parametro da requisicao. Estas sao usadas para fazer a validagao do usudrio no sistema
através de uma chamada ao método validarUsuario do objeto Facade (linha 27). Se o
login ocorrer com sucesso, as informacoes do usuario sao recuperadas e armazenadas em
um objeto do tipo Usuario através de uma chamada ao método recuperarUsuario da
Facade (linha 28). Apdés este processo, o objeto é armazenado no request para que possa
ser recuperado pelo handler de apresentacao associado a esta requisicao.

18: public void processar (HttpServletRequest request,

19: HttpServletResponse response)
20: throws ProcessamentoException{

21: String login,senha;

22: Usuario usuario;

23:

24: login = request.getParameter("login");

25: senha = request.getParameter('"senha");

26:

27: if (sistema.validarUsuario(login,senha)){

28: usuario = sistema.recuperarUsuario(login);
29: request.setAttribute("usuario" ,usuario);

30: }

31: else{

32: throw new ProcessamentoException("Login Invdlido",null);
33: }

34: }

35:%}

O HAyenuMovimentacao é um handler de apresentacao, por isso ele estende a classe
HandlerApresentacao. Seu método validarDados verifica a existéncia do parametro
usuario (linha 7).

1: public class HA_MenuMovimentacao extends HandlerApresentacao {
2

3: public void validarDados(HttpServletRequest request,

4: HttpServletResponse response)

5: throws ProcessamentoException{

6 .

7 if (request.getAttribute ("usuario") == null){

8 throw new

9: ApresentacaoException("Pardmetros imcompativeis",null);
10: }

11: }

O método apresentar recupera o objeto do tipo Usuario através do request (linha
23). A légica principal de montagem da pagina estd na linha 26, onde a pagina é montada
através de uma chamada ao método Skin.processaPagina(). Este método recebe com
entrada um array de chaves, outro de valores e um nome de arquivo. Este arquivo é
um template de uma péagina HTML contendo alguns identificadores especiais nos locais

onde

serao inseridas informagoes dinamicas. A tarefa deste método é varrer o arquivo

procurando ocorréncias de algumas das palavras do array de chaves e substitui-las por
palavras do array de valores. Na linha 27 a péagina de resposta é enviada para o cliente

Web.

13:
14
15:
16:
17:
18:
19:
20:
21:
22:
23:
24
25:
26:

27 :
28:
29:
30:
31:
32:
33:%}

public void apresentar(HttpServletRequest request,
HttpServletResponse response)
throws ApresentacaoException{

PrintWriter out;
String pagina;
Usuario u;

out = response.getWriter();
try{
u = (Usuario) request.getAttribute("usuario");
String[] chaves = {"$USUARIOD"};
String[] valores = {u.getName()};
pagina = Skin.processaPagina(chaves,
valores,
"Menu_Movimentacao.html") ;
out.println(pagina);
}
catch(Exception e){
throw new ApresentacaoException("Erro de Apresentacgdo",e);

}
}

Uso conhecido

Portal Encontre & Compre [10] - Sistema de consultas dos anunciantes Listel,
que também permite que o visitante faca transacoes de negdcios on-line com os
anunciantes;

O Sistema de Fomento Lattes [9] - Sistema de informacgao para gestao de progra-
mas de fomento ao desenvolvimento cientifico e tecnoldgico. O moédulo responsavel
pela emissao de parecer de consultor Ad hoc usa o padrao aqui descrito em sua
implementacao;

Prospectar [16] - Sistema de prospec¢ao tecnolégica do Governo Federal;

Web2Billing [18] -~ E uma solucio completa de EBPP (Eletronic Bill Presenta-
tion and Payment), desenvolvida pela Wiser Tecnologies, e que permite a criacao,
geragao, gerenciamento, apresentacao, consulta e pagamento de faturas online;

FiS (Financial Services) — O projeto contempla a migragao dos Médulos de Con-
tabilidade, Crédito, Lojistas e Servicos da HiperCard, para um novo ambiente tec-
nolégico (J2EE). Estes médulos sao integrados ao Sistema de Integrado de Crédito

da HiperCard (SIC), ao R3/SAP e a outros sistemas legados. Também faz parte do
projeto o desenvolvimento de um médulo de Controle de Acesso unico e centralizado
que podera ser utilizado por qualquer aplicacao da HiperCard disponivel neste novo
ambiente;

e Fep (Call Center no FEP) — Desenvolvimento de uma aplica¢ao para a Central
de Atendimento HiperCard que autorizara compras no autorizador FEP (Front End
Processor) e no sistema legado SIC (Sistema de Integrado de Crédito da HiperCard)
via browser;

e Gin (Sistema de Gestao Interna) [6] — Sistema de apoio a gestao interna do
CESAR com cadastros e relatérios gerais, além de englobar os sistemas financeiro e
avaliacao de colaboradores.

Todos os sistemas descritos anteriormente usam o padrao de Web Handlers na con-
strucao de seus servicos Web. A implementacao do padrao proposta neste documento
foi fruto de um trabalho de correcao dos problemas identificados nas implementacoes
anteriores, mas a estrutura do padrao continua a mesma.

Padroes relacionados

e Na construcao dos handlers de apresentacao pode ser usado o padrao Web Compiler
[2] para implementar a l6gica de montagem das paginas dindmicas. O uso do padrao
neste contexto traz uma série de beneficios ao desenvolvimento, pois permite a sep-
aracao entre o cédigo HTML e Java, facilitando o desenvolvimento e a manutencao
do sistema.

e E interessante usar o padrao de projeto Facade [5] para agrupar a lgica de negécio
do sistema em um tunico ponto e fazer com que os handlers de processamento
chamem estas funcionalidades, ao invés de implementarem-na diretamente em seus
COTpOs.

e O Controlador de Handlers (componente da estrutura do Web Handlers) deve im-
plementar o padrao Web Interceptor [2] j& que o Controlador deve ser o tinico ponto
de acesso aos handlers do sistema.

e O padrao Super Component [2] pode ser usado na implementacao dos handlers de
apresentacao e processamento a fim de evitar a duplicacao de cédigo nos métodos
iniciar e finalizar.

Referéncias

[1] Deepak Alur, John Crupi, and Dan Malks. Core J2EE Patterns — Best Practices and
Design Strategies. Prentice Hall, March 2001.

[2] Gibeon Soares de Aquino Jinior. Desenvolvimento de Sistemas Web em Java, 2002.

[3] W3C Architecture Domain. Extensible Markup Language (XML). Disponivel em
http://www.w3.org/XML/.

[10]
[11]
[12]
[13]
[14]
[15]

[16]

Organization for the Advancement of Structured Informations Standard (OA-
SIS). WAP Wireless Markup Language (WML). Disponivel em http://www.oasis-
open.org/cover /wap-wml.html.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object—Oriented Software. Addison—Wesley, 1994.

Gin. Sistema de Gestao Interna. http://www.cesar.org.br.
Marty Hall. Core Servlets and JavaServer Pages. Prentice Hall, 2000.

Ivar Jacobson, Grady Booch, and James Rumbaugh. The Unified Software Develop-
ment Process. Addison—Wesley, 1999.

Lattes. Sistema de Fomento Lattes. Disponivel em
http://www.cnpq.br/servicosrestritos/.

Listel. Portal Encontre e Compre. Disponivel em http://www.listel.com.br.
Web Macro. Web Macro home page. Disponivel em http://www.webmacro.org.

Sun Microsystems. Java Core Reflection Api Documentation.
Disponivel ~ em http://java.sun.com/j2se/1.3/docs/guide/reflection/spec/java-
reflectionTOC.doc.html, 1998.

Sun Microsystems. Enterprise java beans(tm) specification. Version 2.0, Final Re-
lease, 22th August 2001.

Sun Microsystems. Java(tm) Servlet Specification version 2.3. Disponivel em
http://java.sun.com/products/servlets, 17th Setember 2001.

Jakarta Project. Velocity template engine. Disponivel em
http://jakarta.apache.org/velocity/.

Prospectar. Sistema de Prospeccao Tecnoldgica. Disponivel em
http://prospectar.cesar.org.br/admin.

SourceForge.net. Freemarker 1.7 - an open-source html template engine for java
servlets. Disponivel em http://freemarker.sourceforge.net/.

Web-2-Billing. Web 2 Billing Pagamentos online. Disponivel em
http://www.web2billing.com.br.

A Collection of Patterns for Use Case Maps

Gunter Mussbacher and Daniel Amyot'
School of Information Technology and Engineering (SITE), University of Ottawa
161 Louis-Pasteur, PO Box 450, Stn. A, Ottawa (ON), Canada, KI1N 6N5
damyot@site.uottawa.ca

Our gratitude extends to Jim Coplien for his efforts as our shepherd.

Abstract: Use Case Maps (UCMs) are a technique used to capture functional requirements
and high level designs of complex systems composed of many features. Once you have cho-
sen UCMs as part of your software development process, the question arises as how to most
effectively use UCMs. This paper introduces patterns which provide guidance in selecting
one of three major UCM styles depending on your software development context. The “Indi-
vidual Maps” UCM style is most useful for rapidly and independently capturing a few key
features of your system, features being optional or incremental units of functionality. The
“Standard Root Map” UCM style is most appropriate if a small, evolving system consisting of
interacting features needs to be documented. The “Isolation and Integration” UCM style is
best applied to large, evolving systems with many interacting features.

1 Introduction

This document consists of two major parts. Section 2 “Background Information” gives a basic
overview of a) the application domain of the patterns, i.e. capturing functional requirements
and high level designs for complex systems composed of multiple features with a technique
called Use Case Maps (UCMs) and b) the framework used to reason about forces, i.e. the
NFR (Non-Functional Requirements) Framework. Readers familiar with Use Case Maps may
skip the respective sub-section and proceed directly to section 2.2. Readers familiar with the
NFR framework, however, are encouraged to read through section 2.2 since slightly different
notational elements are used than suggested by the NFR Framework.

Sections 3 to 9 contain the actual collection of patterns organized in pattern form. Section 3
gives an overview of the pattern collection whereas sections 4 to 9 describe the patterns.
These patterns provide guidance in selecting one of three UCM styles for various contexts.

2 Background Information

This section introduces the reader to the basic concepts and the notation of Use Case Maps —
the application domain of the patterns presented in sections 3 to 9 — as well as the NFR
framework used to reason about forces. The material in section 2 covers only those aspects of
Use Case Maps and the NFR Framework required for the patterns. For further information on
UCMs and the NFR framework see Section 11 “References” at the end of the document.

" The majority of this work was conducted while the authors were at Mitel Networks, 350 Legget Dr., Kanata
(ON), Canada, K2K 2W7.

2.1 Use Case Maps Concepts and Notation

Use Case Maps (UCMs) [8, 9] are a scenario-based software engineering technique most use-
ful at the early stages of software development. UCMs visually represent the causal relation-
ships of responsibilities of one or more use cases combined with structures in one single view.
The relationships are said to be causal because they involve concurrency and partial orderings
of responsibilities, because they link causes to effects, and because they abstract from compo-
nent interactions expressed by message exchanges. UCMs show related use cases in a map-
like diagram. The map shows the progression of scenarios along use cases.

UCM Notation Notation Explanation
Start End Basic path. The basic path is the most basic, complete unit. The path represents scenario flow.
Point Point Paths connect start points, responsibilities, and end points. A path may have any shape as long

® Path I

as it is continuous (can cross itself). The start points represent preconditions or triggering
causes. The end points represent post-conditions or resulting effects.

Do something

Responsibility point. Represents generic processing (actions, tasks, or functions to be per-

—— formed). Responsibilities may be bound to a component.
> Direction (optional). In general, the positioning of the start and end points of a path indicate
direction. In certain cases, it is useful to show the direction on a complicated map.
Waiting “;,alj:izg
® Path Waiting place. Represents a waiting place along a path. Propagation along the path stops at the
- Condnuation | waiting place until the trigger arrives. Waiting places can be triggered by a trigger path as
rigger

Path

shown or by the environment.

Timeout Path

Waiting Ti/mw
D >

. Path
Continuation

Timer Path
Release
Path

Timer. A special waiting place that expresses the idea that there is a time limit on waiting.
When propagation along the waiting path reaches the timer, the timer is set. Propagation along
the continuation path continues if the timer release arrives. Propagation along the timeout path
continues if the timeout occurs.

—=

AND Fork and AND Join. For concurrent paths (two or more).

[Off hook]
[On hook] : :

OR Fork and OR Join. An OR fork indicates that the path proceeds in only one out of two or
more directions. Labels may identify alternative paths or guarding conditions. An OR Join indi-
cates a common causal segment of two or more paths.

Static stub. Contains only one plug-in (sub UCM), hence enabling hierarchical decomposition
of complex maps.

Dynamic stub. May contain several plug-ins, whose selection can be determined at run-time
according to a selection policy (often described with pre-conditions).

Generic component. Represents an architectural entity.

Slot. Placeholder for dynamic components as operational units. Dynamic responsibilities can
move dynamic components from a path into a slot or out of a slot onto a path.

: *_ : Delete 1 | Move : :
: ! out L !

Create

UCMs have a history of applications to the description of reactive systems of different na-
tures (e.g. [2, 3, 4, 10]), to the avoidance and detection of undesirable interactions between
scenarios or services (e.g. [4, 10, 18]), to early performance analysis (e.g. [20]), and the gen-
eration of more detailed behavioral models (e.g. [17, 19]). The UCM notation is also being
considered by ITU-T for describing functional requirements as part of the upcoming User
Requirements Notation standard [11]. The table above covers only the notational aspects of
UCMs as required for sections 3 to 9. For further information on UCM concepts and the no-
tation, the reader is referred to the virtual library of the UCM User Group [21].

The UCM Navigator tool [16, 17] supports a superset of the notational elements listed
above as well as navigation through UCMs. The tool was used to create the UCMs in this
document.

2.2 NFR Framework for Reasoning about Forces

The technique used to illustrate the forces of the context and the impact of solutions on these
forces is based on the NFR framework [12, 15] and on work on the combination of the NFR
framework and patterns [22]. The OME tool [14], developed at the Knowledge Management
Lab at the University of Toronto, allows the creation of force graphs. The following table
covers only the notational aspects of the framework as instantiated for the pattern domain.

Force @ Solution @

Contribution
Links +
Vol X

Contribution links connect solutions or forces (source) and forces (target). The links

indicate the impact a source has on a target.

v The source impacts the target so that the target is sufficiently balanced.

++ The source balances the target but not sufficiently.

+ The source balances the target but less than + +.

- The source unbalances the target but less than — —.

-= The source unbalances the target but not completely.

X The source impacts the target so that the target is completely unbalanced.

(Note that this notation uses different labels than those in the NFR framework.)

A label positioned next to a force indicates how balanced the force is.
Force/Solution A label positioned next to a solution indicates how much of the solution has been
Labels achieved.

v Balanced/Fully achieved

+ Weakly balanced/achieved

0 Less than weakly balanced/achieved but more than weakly unbalanced/not

achieved

- Weakly unbalanced/not achieved
X Unbalanced/Not achieved
(Note that this notation uses different labels than those in the NFR framework.)

3 A Collection of Patterns for Use Case

Maps ,/_//I\.

Individual Isolation and Integration Standard
. Maps of Features Root Map
This section gives a general introduction to the

collection of patterns including general discus-
sions on the overall context and problem for the ¥
pattern collection and the forces relevant to the Highent Tevel ottraecions
pattern collection.

Explicit Navigation

A\
Context View
of Feature

3.1 Introduction Figure 1: A Collection of Patterns for UCMs

The collection of patterns consists of six patterns

as depicted in Figure 1. The confidence in these patterns is very high because the patterns
have been observed for numerous features in a large and complex call control software sys-
tem for a telephone switch. Different development teams have developed these features over
years. This paper fully describes the three top-level patterns and gives patlets for the remain-
ing three patterns. Four additional patterns have been identified which extend this collection.
These patterns, however, will not be included in this document in consideration of review
time and the length of the document.

3.1.1 Overall Context

The overall context of the pattern collection at the root of Figure 1 is defined as follows. You
are capturing functional requirements and high-level designs of your system. A scenario-
driven software development approach has been chosen for your system. Furthermore, it has
been decided that Use Case Maps (UCMs) will be used to capture functional requirements
and high level designs. The UCM Navigator provides tool support. Thus, any solution has to
consider the constraints of the tool.

UCMs give software engineers a high degree of freedom in how to describe systems. Cur-
rently, three UCM styles are known. Literature often suggests the “Individual Maps” [3, 5]
approach (see 4) and the “Standard Root Map” [6, 13, 17, 18] approach (see 5). This paper
introduces the “Isolation and Integration” approach (see 6). It, however, is not clear whether
these approaches are applicable to all sub-contexts of the overall context and, if not, to which
sub-contexts they are applicable.

3.1.2 General Problem
Find the best UCM style to be used in the given context.

The problem addressed by the discussed patterns does not relate directly to the use of
UCMs for the description of behavioral patterns or design patterns. It relates to how general
scenario descriptions (use cases, features) can be best organized in various contexts with the
help of the UCM notation. The problem is also not related to whether UCMs are an appropri-
ate technique for capturing requirements and high level designs. These issues have been ad-
dressed elsewhere [1, 7, 8, 9].

3.1.3 General Discussion on Forces
Figure 2 shows the hierarchy of forces that have to be considered for the overall context.

a) Evolveability:
An important high-level concern is the evolveability of the system. Several sub-forces
contribute to the evolveability of a large system:
a.1) Understandability of a single feature:

A clear understanding of new and existing features is the basis for evolveability.

The understandability of a feature depends on:

a.1.1) the simplicity of each UCM required for the feature (the simpler, the better),

a.1.2) the number of hierarchical levels of UCMs per feature (the lower, the better),

a.1.3) the number of distributed UCMs, i.e. the UCMs that belong to the same fea-
ture but are disjoint (the lower, the better),

a.1.4) the pollution of the feature description, i.e. whether UCM paths and path
elements from different features can be clearly identified (the less polluted,
the better), and

a.1.5) the ability to detect undesirable feature interactions [23] and specify desir-
able feature interactions (the easier, the better). In general, feature interaction
is a key force for the understandability of features.
a.1.5.1) Connected and consistent feature descriptions are the principal pre-

requisite for feature interaction detection and specification.
a.2) Scaleability:

Another important aspect for the evolveability of the system is the scaleability of

the chosen UCM style to a large system with hundreds of features. The scaleability

depends foremost on connected and consistent feature descriptions (see a.1.5.1))

and to a lesser extent on the distribution and pollution of feature maps (see a.1.3)

and a.1.4), respectively).

a.3) Reuseability:
To a lesser extent, the reuseability of UCMs across a number of features contributes
positively to the evolveability of the system.

a.4) Ability to specify test cases:
To a lesser extent, the ability to use UCMs for the specification of test cases for sin-

feature combinations
contributes posi-
tively to the evolve-
ability of the system.
The ability to specify
test cases for feature
combinations de-
pends on connected
and consistent fea-
ture descriptions (see
a.1.5.1)).

b) Tool dependency: (o
A second issue to keep in

mind is the tool depend-
ency of the chosen UCM

evolve-
ability

gle features and
dependency

FI
detection &
§p ecificatiop

low # of
distributed
aps/Teature

low # of
levels per
feature

Figure 2: Force Hierarchy for Overall Context

style with respect to the distribution of UCMs to non-authors such as reviewers and new
team members. UCMs can be read easily without the tool if it is easy to navigate
through a series of UCMs. The ease of navigation relies on the simplicity of UCMs (in
terms of the UCM path itself and the number of stubs per feature) (see a.1.1)) and the
number of levels of UCMs per feature (see a.1.2)).
In general, most forces are connected with each other in more or less subtle ways. The force
hierarchy shows only the important relationships which impact decisions. Some subtle con-
nections, however, exist in addition to the ones shown and are addressed, if necessary, in the
discussion of forces for each pattern.

3.1.4 Summary of Known Uses and Examples

All examples used in the following sections are taken from a call control software system but
have been simplified and modified to protect confidential material. The changes have been
carefully made as not to distort the occurrences of the discussed patterns. Although this paper
focuses on examples from the telecommunication domain and cites known uses mainly from
the same domain, we know of no reason why the patterns would not apply to other complex
domains as well.

4 Individual Maps

Name of Pattern Individual Maps

Brief Description Independent feature descriptions are the best UCM style to be
used in a context where the understandability of single features
and tool independence are very important and the ability to
specify test cases also has to be considered.

Confidence in Pattern | *** (out of *, ** or ***)

Discovered By Ray Buhr
Authors Gunter Mussbacher, Daniel Amyot
Shepherd Jim Coplien
Other Reviewers Rossana Andrade, Tom Gray, Michael Weiss
Date October 5, 2001
4.1 Context

You are capturing functional requirements and high-level designs of a few key features of
your system in order to get an initial understanding of the system and early feedback from
stakeholders. Since you are creating a prototype rather than a complete specification, you will
not be concerned if features interact with each other (i.e. one feature may impact the behavior
of another feature either in a desirable way or in some unexpected or undesirable way). There
is no need to reuse parts of features or even evolve a whole system efficiently but it must be
possible to change single features rapidly and independently of other features. Often a pen
and paper or a whiteboard rather than a tool are used to quickly create sketches of your pro-
totype.

4.2 Problem

What is the best UCM style to be used in the given context?

4.3 Forces

All forces of the pattern collection have been described in 3.1.3. In the context of the
“Individual Maps” pattern only some of these forces are relevant as indicated in Figure 4 to
Figure 6. Note that the feature distribution, pollution, interaction, reusability, and scalability
forces are not considered in this context because these five forces are not an issue if only a
few features are captured.

If the “Standard Root Map” UCM style is applied in this context, the forces will not be suf-
ficiently balanced (see Figure 4) even though the understandability force is reasonably well
balanced.

e The understandability of a single feature is not as good as it could be because a higher
number of stubs causes the maps to be a little bit more complex and at least one more
level (the root level) is introduced as an additional level for all features.

e More importantly, tool dependency has increased because the stub-rich root map requires
significantly more jumps between maps.

e [t is possible but cumbersome to specify test cases for single features as definitions of
features are buried in the map hierarchy.

If the “Isolation and Integration” UCM style is applied in this context, the forces are even less

sufficiently balanced than with the “Standard Root Map” UCM style (see Figure 5). Both, un-

derstandability of single features and tool independence, are affected by the higher complex-
ity required for the “Isolation and Integration” UCM style.

UCM A Al UCM B B.1
4.4 Solution A.—“@M-I DAY e
. . €2, B.2
The “Individual Maps” UCM UCM A1 ™
: i, int outl,...
style describes each feature in @ —eeereseeeeees —| outl 2L e ‘I G
1nd1V1dually (See Figure 3) A Feature A uses a hierarchy consisting | yen B
: of maps UCM A and UCM A.1.
hlerarchy of one or more Feature B uses a hierarchy consisting int ._ """" . _I outl
UCMs may be used to de- of maps UCM B, UCM B.1, and UCM
' of n -
scribe a feature but each | UcMA and UCM A1 must not be
used for feature B and UCM B, UCM | UCM B.2
UCM bCIOHgS SOlely t.O the B.1, and UCM B.2 must not be used inl . ________________ outl
described feature and is not for feature A. i

reused for any other feature.

4.5 Resulting Context

Figure 3: Generic Example of Structure of “Individual Maps” UCM Style

Figure 6 shows how the solution balances the forces identified in 3.1.3. The “Individual

Maps” UCM style balances well all relevant forces in the context because:

e The simplicity of UCMs and the number of levels of UCMs per feature are well balanced.
This is as good as any approach can get since UCMs always have to trade-off simple

UCMs with additional
levels of UCMs (i.e.
number of stubs and plug-
ins). Thus, the under-
standability of single
features is perfectly bal-
anced.

e Tool dependency is kept
low because reading
UCMs without the tool
requires only the mini-
mum amount of jumps
between different levels
of UCMs due to the op-
timal number of UCM
levels.

e Test cases for single fea-
tures can be specified
quite easily due to the
clear, unpolluted, and
complete description of
each feature.

Although the “Individual

Maps” UCM style balances

well tool dependency and un-

derstandability forces, this
approach does not show the
causal relationship between

user actions (e.g. Figure 7

does not define whether di-

rectory number or end call

can occur before start call).

The pattern “Explicit Causal-

ity of Highest-Level Interac-

tion” in section 8 addresses
this problem.

As a consequence of using
the “Individual Maps” UCM
style, one cannot expect other
concerns relevant in the over-
all context of the pattern lan-
guage but not relevant in the
sub-context of this pattern to
be addressed.

e The style cannot detect

standability
of feature:

avoid tool
dependen:

low # of
levels per
feature

standability
of feature

Figure 6: Impact on Individual Maps Forces by Individual Maps

interactions among features because consistency across features is not enforced. The style
also cannot specify feature interactions because the definitions of different features are not
linked.

e Test cases for feature combinations cannot be specified for the same reasons.

e Per definition of the style, reuse cannot be achieved.

e The approach does not scale well. Feature definitions are not linked thus more and more
inconsistencies will potentially be introduced with each new feature. Although each new
feature by itself requires only a similar effort to document than previous features, the
amount of time eventually spent to work out the inconsistencies greatly increases.

4.6 Known Uses

For further examples of the “Individual Maps” UCM style in addition to the ones shown in
Section 4.7 see [3, 5].

4.7 Examples of “Individual Maps” UCM Style

Examples of two features documented using the “Individual Maps” UCM style are shown in
Figure 7 (Basic Call) and Figure 8 to Figure 10 (Automatic Call Distribution). Both examples
use an underlying call model based on originating and terminating call halves.

4.7.1 Basic Call
The Basic Call feature (Figure 7) starts at the start call start point. The path then waits at the
dialing waiting place until a directory number is entered (directory number start point). If a
wrong number is entered the path takes a left turn and ends at fail. If a correct number is en-
tered, the terminating call half is created (create TCH).

The rest of the scenario depends on the device’s availability. If the device is busy, the ter-
minating call half follows the path

labeled [busy/, ends at idle.t, and in Call HalFOriginating
parallel informs the originating call feil Comnect |
half which applies busy tone and ends dialing
at fail. If the device is not busy, the el
device rings, the terminating call half
follows the path labeled [not busy],
then waits at the wfa.t waiting place,
and in parallel informs the originating
call half which applies ringback tone
and sets the wait for answer timer.
What comes next depends on
whether the callee answers (answer
start point) before the wait for answer
timer expires. If the timer expires, the
originating call half ends at fai/ and in
parallel informs the terminating call
half which follows the [ring timeout] Figure 7: Basic Call (Individual Maps)

path and ends at idle.t. If the callee Call Half Originating
answers, the terminating call half A discannect
follows the [answer] path, connects,
and then waits at the talking.t wait-
ing place. In parallel, the terminating
call half informs the originating call
half which connects and waits at the
. .. Call Half: Terminating

talking waiting place. e TG R v o Sa—

The rest of the scenario depends
on whether the caller or the callee
ends the call. If the caller ends the
call (end call start point), the origi-
nating call half follows the | AgemGop N "\ T
[my _end call] path, disconnects,
ends at idle, and in parallel informs
the terminating call half which fol-
lows the [others end call] path, dis- Figure 8: ACD (Individual Maps)

connects, and ends at idle.t. If the
callee ends the call (end call.t start point), the terminating call half follows the /my end call]
path, disconnects, ends at idle.t, and in parallel informs the originating call half which follows
the [others end call] path, disconnects, and ends at idle.

4.7.2 Automatic Call Distribution (ACD)

ACD distributes incoming calls to a group of agents according to their availabilities. The
ACD feature (Figure 8, Figure 9, and Figure 10) duplicates a lot of the Basic Call feature.
Therefore, only the changes to Basic Call behavior will be described. The biggest difference
is that an agent group has replaced the device. In the case of a busy agent group, the agent
group just informs the terminating call half. If the agent group is not busy, the agent group
additionally queues the call and sets the recall timer.

The behavior of the originating and terminating call half is exactly the same as Basic Call
behavior until the originating and terminating call halves are waiting at the wait for answer
and wfa.t waiting places, respectively. The waiting places have been moved to two plug-in
maps due to space constraints and readability concerns. The in and out labels on the UCMs
show the binding between the parent map (ACD) and the plug-in maps (Wait For Answer,
Wait For Answer.t).

Call Half:Originating Call Half: Terminating
fail talking

talki
start wait for arfswer [answer]a ng

[

[recalk timeout] recall

event

Figure 9: Wait For Answer (Individual Maps — ACD) Figure 10: Wait For Answer.t (Individual Maps—
ACD)

What comes next depends on whether the agent answers (agent answers start point) before
the recall timer or the wait for answer timer expires. If the recall timer expires before the
agent answers, the agent group dequeues the call and informs the terminating call half. This
terminating call half follows the [recall timeout] path (see Figure 10), ends at idle.t, and in
parallel informs the originating call half which follows the [recall timeout] path (see Figure
9) and tries to recall (i.e. the path loops back from the wait for answer stub and a new termi-
nating call half is created (create TCH)). If the agent answers, the agent group dequeues the
call and informs the terminating call half. The terminating and originating call halves then
follow normal Basic Call behavior.

Please note that the wait for answer timer is always set to a longer duration than the recall
timer is. In case the wait for answer timer expires before the agent answers, a fatal error of the
agent group may be assumed and normal Basic Call behavior occurs.

The last variation of Basic Call behavior occurs when either the caller or the agent ends the
call. In addition to Basic Call behavior, the terminating call half informs the agent group after
disconnecting that the agent is now available again.

5 Standard Root Map

Name of Pattern Standard Root Map

Brief Description A combination of a root map, stubs, and plug-in maps is the best
UCM style to be used in a context where evolveability, under-
standability of single features, and the ability to detect, specify,
and understand feature interactions are very important, and re-
useability across various features, the ability to specify test cases,
and tool dependency also have to be considered.

Confidence in Pattern | *** (out of *, ** or **%*)

Discovered By Ray Buhr
Authors Gunter Mussbacher, Daniel Amyot
Shepherd Jim Coplien
Other Reviewers Rossana Andrade, Tom Gray, Michael Weiss
Date October 5, 2001
5.1 Context

You are capturing functional requirements and high-level designs of a small system that will
be evolving over a long time or has been evolving for a long time. The features of the system
may be interacting thereby increasing the system’s complexity. Feature interaction occurs if
one feature impacts the behavior of another feature either in a desirable way or in some unex-
pected or undesirable way. A base feature defining the framework for all other features usu-
ally but not exclusively indicates feature interactions. Most of the time new features are
variations of existing features and build on the base feature and other features.

5.2 Problem

What is the best UCM style to
be used in the given context?
5.3 Forces

All forces of the pattern col-
lection have been described in
3.1.3. In the context of the

The root map describes the base feature
and is used by both features, A and B.

Plug-in map A.1 is bound to stub R.1. The root map and A.1 fully describe feature A.
Feature B uses plug-in map B.1 for stub R.1 and reuses A.1 for stub R.2. The root

B.1 d A.1 fully d ibe feat B.
“Standard Root Map” pattern map, B4, an iy deseribe feattire

only some of these forces are

Figure 11: Generic Example of Structure of “Standard Root Map” UCM Style

relevant as indicated in Figure

12 to Figure 14. Note that the feature distribution, pollution, and scaleability forces are not

considered in this context because these three forces are not an issue if only a small system is

captured.

If the “Individual Maps” UCM style is applied in this context, the forces will not be suffi-
ciently balanced (see Figure 12) even though the tool dependency force is perfectly balanced.
e The style cannot detect interactions among features because consistency across features is

not enforced. The style also cannot specify feature interactions because the definitions of
different features are not linked. Therefore, the understandability force is not balanced
sufficiently although feature maps are simple and the number of levels is low.

e Per definition of the style, reuse cannot be achieved.

e With mediocre understandability of features, no reuse, and test cases only for single fea-
tures, evolveability is not balanced at all.

If the “Isolation and Integration” UCM style is applied in this context, the forces will not be

sufficiently balanced (see Figure 13) even though the evolveability force is reasonably well

balanced.

e The style is more dependent on tool support because of the complexity of the maps and
the frequent use of stubs.

e The increased complexity of feature maps makes it more difficult to understand features
although feature interaction detection and specification is possible and the number of lev-
els per feature is kept low.

e Although consistency is enforced by the integration of features, the reuseability force is
not as well balanced as it could be since more than one reusable unit may exist on a single
UCM.

To summarize, a perfect solution should balance the tool dependency force and sub-forces

a.1.1) and a.1.2) of the understandability force as the “Individual” UCM style does. Further-

more, a perfect solution should balance the feature interaction and specification force as the

“Isolation and Integration” UCM style does but further improve the reusability and map com-

plexity forces.

5.4 Solution

The “Standard Root Map” UCM style describes the base feature on a UCM called the root

map which contains several
stubs (see Figure 11). The
root map and the default set
of plug-in maps for the stubs
define the base feature. Other
features may use one or more
different plug-in maps and
thus vary the behavior of the
base feature. Since stubs may
be used at any level of the
map hierarchy, new features
may introduce variations also
at any level.

5.5 Resulting Context

Figure 14 shows how the so-
lution balances the forces
identified in 3.1.3. All in all,
the “Standard Root Map”
UCM style balances well the
evolveability force at the ex-
pense of a slight increase in
the complexity of UCMs and
thus tool independence. The
evolveability force is suffi-
ciently balanced because:

e Feature interaction detec-
tion and specification is
possible since all features
are connected to each
other even though it is
cumbersome because
feature definitions are
buried in the map hierar-
chy.

e The understandability of
a single feature is suffi-
ciently balanced because
feature interaction detec-
tion and specification is
possible and feature maps
are only slightly more
complex.

aveid tool
dependen:

low # of
levels per
feature

low # of
levels per

evolve-
ability

evolve-
ability

evolve-
ability

Figure 14: Impact on Standard Root Map Forces by Standard Root Map

e Reuseability can be achieved through the use of stubs with each plug-in map being one
potential reusable unit.

Although the “Standard Root Map” UCM style balances well the evolveability force, this ap-
proach is more dependent on tool support than the “Individual Maps” UCM style because the
stub-rich root map requires significantly more jumps between maps. The simplicity of UCMs
is a little worse compared to the “Individual Maps” UCM style because the number of stubs
has increased and the number of levels per feature has also increased by at least one level (the
root level). Tool support and understandability, however, are still balanced better than with
the “Isolation and Integration” UCM style.

This approach also does not show the causal relationship between user actions (e.g. Figure
15 does not define whether directory number or end call can occur before start call). The
pattern “Explicit Causality of Highest-Level Interaction” in section 8 addresses this problem.

As a consequence of using the “Standard Root Map” UCM style, one cannot expect other
concerns relevant in the overall context of the pattern language but not relevant in the sub-
context of this pattern to be addressed.

e Feature maps do get polluted and are distributed which will cause problems if the system
increases in size. Therefore, scaleability is not optimal yet although it has improved com-
pared to the “Individual Maps” UCM style due to a greater degree of consistency.

5.6 Known Uses

For further examples of the “Standard Root Map “ UCM style in addition to the ones shown
in Section 5.7 see [6, 13, 17, 18].

5.7 Examples of “Standard Root Map” UCM Style

Examples of two features documented using the “Standard Root Map” UCM style are shown

Call Half:Originating

fail start j't
busy our? * —
digfing”” it fo i
ialing wait forfanswer talking idle ourl
oz iz OUT!
start call & A= disconnect
» ringback connect Figure 16: Nothing
i .
o (Standard Root Map — Basic Call)
OuTe e
directory nupnber oz end call

Call Half: Terminating_ / / /\l / / Call Half: Terminating

r - - i - |
| create_TCH answer end callt 1 start exit
| : e L
NI
- . Device W \
i talking t77%,
check Gvailability wait forlanswer t, e clean up busy]
Ay SUT!
Wil e I /om
oifT ——Tonnect disconnect * idle.t
. .
timeouts]
husy] . . o
Figure 17: Check Availability

(Standard Root Map — Basic Call)

Figure 15: Basic Call root map (Standard Root Map)

in Figure 15 to Figure 21 (Basic Call) and
Figure 22 to Figure 25 (ACD). Both features
start from the same root map (Figure 15).

5.7.1 Basic Call

The root map (Basic Call — Figure 15) and its

six default plug-in maps (Dialing, Check Avail-

ability, Wait For Answer, Wait For Answer.t,

Talking, Nothing) specify exactly the same be-

havior as explained for the “Individual Maps”

UCM style (see 4.7.1).

Once again, in and out labels specify the
bindings between stubs on the Basic Call map
and their plug-in maps. The following list de-
fines which stubs in Figure 15 contain which
plug-in maps:

e the check availability stub contains the
Check Availability plug-in (see Figure 17),

e the dialing stub contains the Dialing plug-in
(see Figure 18),

e the talking and talking.t stubs contain the
Talking plug-in (see Figure 19), and

e the wait for answer stub contains the Wait
For Answer plug-in (see Figure 20),

e the wait for answer.t stub contains the Wait
For Answer.t plug-in (see Figure 21),

e finally the wait for answer.2 stub in Figure
20, wait for answer.t.2 stub in Figure 21,
and clean up stub in Figure 15 all contain
the Nothing plug-in (see Figure 16).

5.7.2 Automatic Call Distribution (ACD)
The new ACD plug-ins in conjunction with the
Basic Call root map and plug-ins specify the
exact same behavior as explained in the “Indi-
vidual Maps” UCM style (see 4.7.2). The ACD
feature overrides the Basic Call behavior by
using the following four new plug-in maps:
e the clean up stub in Figure 15 contains the
Clean Up.ACD plug-in (see Figure 22),

Call Half:Criginating

ez |fail
[wrong_number]
start dialing

setup

[correct_number]
event

Figure 18: Dialing (Standard Root Map — Basic Call)

Call Half

[others_end_call] outl

start talking

[my_end_call]
end call

event o2

Figure 19: Talking (Standard Root Map — Basic Call)

idle

Call Half: Originating

fail

ring_timeout

start wait for angwer wait for answer.2 talking
A
NI ,» ouTI 1
oo recall
outd

event

Figure 20: Wait For Answer
(Standard Root Map — Basic Call)

Call Half: Terminating

to Call Half:Crig

start wfa.twa't for answept.2

Figure 21: Wait For Answer.t
(Standard Root Map — Basic Call)

e the check availability stub in Figure 15 contains the Check Availability.ACD plug-in (see

Figure 23),

e the wait for answer.2 stub in Figure 20 contains the Wait For Answer.ACD plug-in (see

Figure 25), and

Call Half: Terminating

Call Half: Terminating Agent Group Start exit exit.2
art out1 |idle N T Lowz [T
le Agent GroLp l ’\\

.—l:i agent,availab
T

dequeue

Figure 22: Clean Up.ACD
(Standard Root Map — ACD)

recalh timer
iy

agent answers|

Figure 23: Check Availability. ACD
Call Half: Terminating (Standard Root Map — ACD)

start Call Half-Originating
recall tim:‘c‘:ﬁzt start reclall
ik o]
Figure 24: Wait For Answer.t. ACD Figure 25: Wait For Answer. ACD
(Standard Root Map — ACD) (Standard Root Map — ACD)

e the wait for answer.t.2 stub in Figure 21 contains the Wait For Answer.t. ACD plug-in (see
Figure 24).

6 Isolation and Integration of Features

Name of Pattern Isolation and Integration of Features

Brief Description Isolating features from each other but also linking them in a
well-defined way is the best UCM style to be used in a context
where evolveability, scaleability, understandability of single
features, and the ability to detect, specify, and understand feature
interactions are very important, and reuseability across various
features, the ability to specify test cases, and tool dependency
also have to be considered.

Confidence in Pattern | *** (out of *, ** or **%*)

Discovered By Gunter Mussbacher

Authors Gunter Mussbacher, Daniel Amyot

Shepherd Jim Coplien

Other Reviewers Rossana Andrade, Tom Gray, Michael Weiss
Date October 5, 2001

6.1 Context

You are capturing functional requirements and high-level designs of a /arge system that will
be evolving over a long time or has been evolving for a long time. The system consists of
many interacting features increasing its complexity. Feature interaction occurs if one feature
impacts the behavior of another feature either in a desirable way or in some unexpected or

undesirable way. A Dbase
feature defining the frame-
work for all other features
usually but not exclusively
indicates feature interactions.
Most of the time new features
are variations of existing
features and build on the base
feature and other features.

6.2 Problem

What is the best UCM style
to be used in the given con-
text?

6.3 Forces

All forces of the pattern col-
lection have been described
in 3.1.3. In the context of the
“Isolation and Integration of
Features” pattern all of these
forces are relevant as indi-
cated in Figure 26 to Figure
28.

If the “Individual Maps”
UCM style is applied in this
context, the forces will not be
sufficiently balanced (see
Figure 26) even though the
tool dependency force and
sub-forces a.l.l1), a.l.2),
a.1.3), and a.1.4) of the un-
derstandability force are well
balanced.

e The style cannot support
the detection of interac-
tions among features be-
cause consistency across
features is not enforced.
The style also cannot
specify feature interac-
tions because the defini-
tions of different features

evolve-
ability

avoid tool
dependen: under-_ i +

a
+

scaleabilit
+

test case
specification
VXl s

connected

&
E]

+

+

+
simple low # of Tow # of avoid

‘m: ;’ levels per distributed feature +

P feature aps/featuiye pollution +

+
+

X reusabilit;

Figure 26: Impact on Isolation & Integration Forces by Individual Maps

it l evolve-
avoid too! abilit
dependen: u.nder- + ’
+ _(standability + + I
+
.+
+ +

scaleabilit

+

+
avoid
feature +

pollution +
test case
specification
X +

‘conmected

&
consisten +
p]
\/ reusabilit

Figure 27: Impact on Isolation & Integration Forces by Standard Root Map

id tool - evolve-
avoid too! abilit
dependen under- + ¥
+ (standability + T

of feature

o +

scaleabilit

+

low # of
distributed
aps/Teatuie

+
+
- low # of
S'r::g' le levels per
P feature

++

[
++

+
simple low # of Tow # of avoid
‘m: ;’ levels per distributed feature +
P feature aps/featuiye pollution
test case
\/ specification

+

&
consisten +
reusabilit;
. +

Figure 28: Impact on Isolation & Integration Forces by Isolation &Integration

are not linked. Therefore, the understandability force is only weakly balanced.

Per definition of the style, reuse cannot be achieved.

Test cases for feature interactions cannot be specified.

The approach also does not scale well. Feature definitions are not linked thus more and
more inconsistencies will potentially be introduced with each new feature. Although each
new feature by itself requires only a similar effort to document than previous features, the
amount of time eventually spent to work out inconsistencies greatly increases.

If the “Standard Root Map” UCM style is applied in this context, the forces will not be suffi-
ciently balanced (see Figure 27) even though the reuseability force is perfectly balanced and
the balance of the scaleability and feature interaction and detection forces is improved.

Feature maps do get polluted now since all new features are plug-ins of at least the base
root map. Therefore, variations of the base behavior caused by these new features do
show up in the root map which should only show the base feature. E.g. the loop back from
the wait for answer stub in Figure 15, out-path 2 of the check availability stub in Figure
15, and some out-paths of the wait for answer.2 and wait for answer.t.2 stubs in Figure 20
and Figure 21, respectively, are not required for Basic Call but exist because of ACD.
Considering the large number of features in the system, feature maps get so polluted that
the original description of the feature is effectively lost.

Feature maps are now distributed. E.g. the set of UCMs specific to the ACD feature in-
cludes the UCMs in Figure 22, Figure 23, Figure 24, and Figure 25. These four UCMs are
completely disjoint (one cannot move directly from any UCM to another). In contrast, the
three ACD feature maps from the “Individual Maps” style (Figure 8, Figure 9, and Figure
10) are directly connected to each other. The reason for the distributed feature maps is that
everything has to go through the root map which belongs only to the base feature. Consid-
ering a large number of features, it becomes difficult to find all UCMs that belong to a
given feature. A naming scheme could help but breaks down when UCMs are being re-
used for various features. The UCM Navigator’s functionality to group maps into sets
could be used but navigation through the set still remains difficult. The main starting point
for a feature is also not as apparent as it is in the “Individual Maps” UCM style.
Scaleability improves because consistency is enforced to a greater degree. Scaleability,
however, is not optimal yet because pollution and distribution of features remain a prob-
lem in large systems.

Feature interaction detection and specification is now possible since all features are con-
nected to each other but is cumbersome since complete feature definitions are buried at
various levels in the map hierarchy and the specification of feature interactions further
pollutes the description of features.

The understandability of a single feature suffers considerably since feature maps get pol-
luted, feature maps are distributed, and at least one more level (the root level) has been
introduced as an additional level for all features.

Tool dependency has also increased because the stub-rich root map requires significantly
more jumps between maps.

Overall, this UCM style contributes positively but not sufficiently to evolveability because of
a trade-off of reuseability and moderate amounts of feature interaction detection and specifi-
cation, scaleability, and test case specification against the overall understandability of a single
feature.

To summarize, a perfect solution should balance the tool dependency force and sub-forces
a.1.1), a.1.2), a.1.3), and a.1.4) of the understandability force as the “Individual” UCM style
does. Furthermore, a perfect solution should balance the reuseability force as the “Standard
Root Map” UCM style does but further improve the scaleability and feature interaction de-
tection and specification forces.

6.4 Solution

The “Isolation and Integration” UCM style isolates features from each other but does not keep
these features completely separate. The features are linked to each other in a well-defined
way. First, a root map for each feature provides initial isolation. Second, specific UCM
structures identify locations where a link between two features may exist, thus further isolat-
ing features. The event stub structure is used for locations where the system is ready to deal
with an event that may not be related to the feature. The feature interaction (FI) fork structure
is used for locations where a variation of the feature may occur and this variation is caused by
another feature. Once these two kinds of locations have been isolated, it is possible to inte-
grate features by referencing the isolated locations.

The remainder of this section explains in more detail the event stub structure, the FI fork

structure, and the referencing mechanism.

[fail]
6.4.1 Event Stub Structure E_Name",.-b";n
The event stub structure is inserted at the first kind of oy Isuccess
location (see Figure 29 and Figure 30). Note that the FI | | &=~ 7
fork structure is part of the event stub structure. The

binding between the stub and the plug-in is defined as _ t name
follows: (IN1, start), (IN2, event), (OUTI, success),
(OUT2, fail), and (OUTS3, feature).

Figure 29: Structure of Event Stub

The event stub has two uses. First, if a UCM author

wants to express that the current scenario is at the loca-
tion represented by the event stub, path IN1 is taken.
This positions the scenario at the name waiting place in
the plug-in and the system is now waiting for an event.
Second, if the UCM author wants to express that the
scenario is continued because an event occurred, the

-\fall

[fﬂll]

start name pr. name success

source of the event is connected to the e.name start
point and path IN2 is taken. This allows the scenario to
continue to the FI fork labeled Fl.name. At this point,
the event that occurred is examined. If the event is
known to the feature the event stub belongs to, one of
the success or fail exits will be taken (one or more of
these may be specified as required by the feature). If the
event is unknown to the feature (i.e. another feature is
changing the behavior of this feature — feature interac-
tion!), then the feature exit will be taken. The FI fork is
therefore defined as: “IF ((NOT success) AND (NOT

""['s'liéc'é;s']"
[feature] “"H
event feature

Figure 30: Structure of Plug-in
for Event Stub

name
Fl.name

f.name

Figure 31: Structure of FI fork

fail)) THEN feature”. Note that this definition is only dependent on the feature the event stub
belongs to.

6.4.2 FI Fork Structure

At the second kind of location, only a subset of the event stub structure is required. Just the FI
fork is added possibly followed by an end point connected to a labeled start point (see Figure
31). In this case, the definition of the FI fork explicitly states the reason for taking the feature
exit (fname) (e.g. “IF (ACD) THEN feature”). The FI fork indicates that the behavior of the
feature is altered by another feature which will cause the scenario to exit at the feature exit. A
guard (e.g. [feature]) may be used to label the branch to the feature exit (f.name) but is often
omitted due to space constraints.

6.4.3 Referencing Mechanism
Features are integrated by referencing the isolated locations. The reference mechanism works
as follows.

Each end point representing a feature exit implicitly sets a postcondition (see f.name in
Figure 29 and Figure 31). The referencing feature then defines a start point on its UCM with
an implicit precondition that matches the postcondition from the referenced feature exit. Thus,
the scenario will continue from the referencing start point when the referenced feature exit is
reached. This is achieved by labeling the end and start points the same (preferably with the
feature exit name) and placing a guard right after the start point. The guard shows the actual
precondition in square brackets (see [recall timeout] and [ACD] in Figure 37) and allows
multiplexing multiple scenarios caused by different events/preconditions onto one path.

Similarly, all name start points (see Figure 29 and Figure 31) define implicit preconditions.
The referencing feature then defines an end point on its UCM with an implicit postcondition
that matches the precondition of the name start point. Thus, the scenario will continue from
the referenced start point if the referencing end point is reached. Once again this is achieved
by labeling the end and start points the same (preferably with the name of the start point).

Sometimes, a referencing feature necessitates the insertion of an end point/start point pair
into the map of the referenced feature. This pair consists of an end point connected to a la-
beled start point (see recall in Figure 32). The pair allows the definition of an entry point into
an existing feature. This entry point can be used by another feature to continue a scenario with
an existing feature. The same referencing mechanism is used for start points in end point/start
point pairs as is used for start points in event stub or FI fork structures.

6.5 Resulting Context

Figure 28 shows how the solution balances the forces identified in 3.1.3. All in all, the “Isola-

tion and Integration” UCM style balances well the evolveability force at the expense of the

simplicity of the UCMs and thus tool independence. The evolveability force is sufficiently
balanced because:

e Features are not polluted since the hooks required by other features can be clearly identi-
fied. A reader of the feature maps interested only in the feature itself can simply ignore all
feature exits of event stubs, all FI forks, and all end points connected to start points. Since
all features interacting with the current feature are multiplexed onto the same feature exit

paths, variations of behavior introduced by the interacting features do not require addi-
tional paths to be shown on the current feature’s map (as it was the case with the “Stan-
dard Root Map” UCM style).

e Feature maps are not distributed since all feature maps are connected to and can be ac-
cessed from the feature’s own root map.

e The scaleability force is well balanced because the pollution and distribution problems
have been addressed.

e Feature interaction detection is as possible as with the “Standard Root Map” UCM style
since features are integrated with each other. The specification of feature interactions,
however, does not lead to feature pollution thus slightly improving the balance of the
feature interaction force. The improvement, however, is not enough to affect the force hi-
erarchy.

e Because consistency is enforced by the integration of features, the reuseability force re-
mains relatively well balanced. The force, however, is not as well balanced as compared
to the “Standard Root Map” UCM style since more than one reusable unit may exist on a
single UCM.

e The overall understandability of the feature has been improved significantly from the
“Standard Root Map” UCM style since features are now not polluted, feature maps are
now not distributed, the total number of maps decreases compared to the “Standard Root
Map” UCM style, and the number of levels per feature is kept low since a general root
map is not introduced.

Although the “Isolation and Integration” UCM style balances well the evolveability force,

this approach is more dependent on tool support than others because of the complexity of the

maps and the frequent use of stubs. Furthermore, some problems regarding the navigability of

UCMs and the degree of completeness of feature descriptions have not been addressed.

The complexity of the maps has two reasons. First, the event stub, FI fork, and end
point/start point pair structures introduce a certain amount of complexity due to the number of
required stubs. Second, the integration of features results in a somewhat less intuitive defini-
tion of a feature than the “Individual Maps” UCM style. Paths may be disjoint making it dif-
ficult to follow the causal flow (e.g. see Figure 37). Furthermore, no visual distinction be-
tween referencing start and end points and non-referencing start and end points is given, thus
adding further complexity. In general, a navigation problem exists since the references be-
tween UCMs of different features are implicit and cannot be traversed by the tool and since
the main start point of a feature is not apparent. The pattern “Explicit Navigation” in section 7
addresses these issues.

Moreover, the definitions of features without the referenced maps may not be as complete
as one would want. For instance, the ACD feature in Figure 37 does not give you a clue of
what happens after the s2.7 end point. The reader of the UCMs has to look at the referenced
map (the Basic Call root map) to find out. Therefore, a feature root map by itself does not
quite define complete scenarios, rather only the extensions and variations. The patterns
“Explicit Navigation” in section 7 and “Explicit Causality of Highest-Level Interaction” in
section 8 address this problem.

Another issue is that user actions identified in Figure 7 and Figure 8 of the “Individual
Maps” UCM style and in Figure 15 of the “Standard Root Map” UCM style (such as start
call, directory number, answer, and end call) have been lost by the “Isolation and Integra-

tion” UCM style. In addition to the lost naming, the causal relationship between user actions
is still not shown. This leads to a more complicated map because it is more difficult to under-
stand the feature. The patterns “Explicit Causality of Highest-Level Interaction” in section 8
and “Context View of Feature” in section 9 tackle these issues.

6.6 Known Uses

Further examples of call control features that make use of the event stub structure in addition
to the ones shown in Section 6.7 are Hold and Conference.

6.7 Examples of “Isolation and Integration” UCM Style

Examples of two features documented using the “Isolation and Integration” UCM style are
shown in Figure 32 to Figure 36 (Basic Call) and Figure 37 (Automatic Call Distribution).

Call Half:Originating

6.7.1 Basic Call
The Basic Call root map (Figure 32)
and its four plug-in maps (Dialing,
Wait For Answer, Wait For An-
swer.t, Talking) specify exactly the
same behavior as explained for the
“Individual Maps” style (see 4.7.1).
To understand Basic Call, one can
simply ignore all feature exits, all FI
forks, and all end points connected to
labeled start points. These structures
provide only the hooks for other
features to alter Basic Call behavior.
Once again, in and out labels
specify the bindings between stubs
on the Basic Call map and their plug-
in maps. The naming convention for

Device

H [bysy] —

Figure 32: Basic Call root map (Isolation and Integration)

Call Half:Originating Call Half
fail [ot |
[wrong_numbet] ont? [others_end_call] de
Fldialing Setup Fltalking end call
start talking

start dialing [correct_number]

12
[feature]

[feature] feature feature

event

Figure 33: E.Dialing
(Isolation and Integration — Basic Call)

event

Figure 34: E.Talking
(Isolation and Integration — Basic Call)

Call Half:Qriginating Call Half: Terminating

fail
! talking
[ring_timeout] t' "
fing_timeou [answer answer
out2
Flwfat ring_timeout] idle
start wait fgr answer start , outd
kel
[feature] ~feature
event, event ,
Figure 35: EEWFA Figure 36: E-WFA.t
(Isolation and Integration — Basic Call) (Isolation and Integration — Basic Call)

event stubs is illustrated in Figure 29. The following list defines which stubs in Figure 32
contain which plug-in maps:
e the E.Dialing stub contains the E.Dialing plug-in (see Figure 33),
e the E.Talking and E.Talking.t stubs contain the E.Talking plug-in (see Figure 34),
e the E.WFA stub contains the E. WFA4 plug-in (see Figure 35), and
e the E.WFA.t stub contains the E. WFA.t plug-in (see Figure 36).
The event stub structure was applied five times to the Basic Call feature (E.Dialing, E.WFA,
E.WFA.t, E.-Talking, and E.Talking.t). The FI fork structure was applied twice (F1.s2.t and
F1.¢2.t) and the end point connected to a labeled start point was applied once (recall) as re-
quired by ACD. Note that the dynamic stubs from the “Standard Root Map” UCM style cor-
respond to the FI forks of the “Isolation and Integration” UCM style. The following list shows
the definitions of all FI forks of the Basic Call feature:
e Fls2.tand Fl.t2.t (both see Figure 32):

IF (ACD) THEN feature
e Fldialing (see Figure 33):

IF ((NOT wrong_number) AND (NOT correct number)) THEN feature
o Fltalking (see Figure 34):

IF (NOT my end call) AND

(NOT others_end call)) THEN Call HalfOriginating

feature
e FIwfa (see Figure 35) and M recall timeout] r:na"
Fl.wfa.t (see Figure 36): ewfa

IF ((NOT ring timeout) AND
(NOT answer)) THEN feature

Call Half: Terminating

t2.t

[recall_timeout]

6.7.2 Automatic Call Distribution
(ACD)

The new ACD root map (Figure 37)
references the Basic Call root map to)
specify the same behavior as ex- deatus agert avﬁ

plained in the “Individual Maps”
style (see 4.7.2). The following list
defines which start and end points on
the ACD root map align with which

recallftimer

agent answers

Figure 37: ACD root map (Isolation and Integration)

end and start points on the Basic Call root map:

e the fs2.t, fwfa, fwfa.t, and ft2.t start points on the ACD root map references the end
points with the same name on the Basic Call root map,

e the ewfa, ewfa.t, recall, s2.t, and ¢2.t end points references the start points with the same
name.

The following guards have been added to the feature description as required by the integration

step:

e the /[ACD] guards after the f.s2.¢ and f.12.¢ start points, and

e the [recall timeout] guards after the f.wfa.t and f.-wfa start points.

Therefore, the ACD feature starts at the f.s2.7 start point once the f.s2.f end point on the Basic

Call root map is reached. After performing ACD specific actions, the scenario continues in

Basic Call at start point s2.7. If the agent answers or the recall timer expires, the scenario

reaches the e.wfa.t end point and therefore continues from the e.wfa.t start point in Basic Call.

From the naming conventions, one can deduce that the answer scenario requires normal Basic

Call behavior whereas the recall timeout scenario requires new behavior as shown on the

ACD root map. Note how the path continues from e.wfa.t via the Basic Call root map to

f-wfa.t if the recall timeout scenario occurs. The recall timeout scenario ends at £2.¢ and e.wfa.

on the ACD root map. Therefore, it continues at the 2.7 start point on the Basic Call root map

and at the £ wfa start point (similarly to e.wfa.t and fwfa.t) on the ACD root map. Finally, it

ends at the recall end point which continues at the recall start point on the Basic Call root

map.

7 Explicit Navigation

Disjoint paths and implicit references make it difficult to follow causal flow.

Therefore:

Use pre/postcondition stubs to join paths, navigate explicitly from map to map, and show
complete scenarios.

8 Explicit Causality of Highest-Level Interaction

Ambiguous feature descriptions are often caused by implicit causal relationships of highest-
level user interactions with the system.

Therefore:

Use paths with “at-location” markers to explicitly show highest-level causal relationships.

9 Context View of Feature

Explicit highest-level causal relationships on a single map and lost naming of user actions
make UCMs unnecessarily complex.

Therefore:

Use higher level UCMs for clear “Context View” of features.

10 Conclusion

The characteristics of a system determine the most effective UCM style. If a few key features
need to be captured rapidly and independently, the “Individual Maps” UCM style is most use-
ful. If a small but evolving system consisting of interacting features needs to be specified, the
“Standard Root Map” UCM style is most appropriate. If a large, evolving system with many
interacting features needs to be documented, the “Isolation and Integration” UCM style is best
applied. This paper introduces patterns for each UCM style, each pattern providing guidelines
on how and when to use the style.

Future work includes the extension of this pattern collection with a more detailed descrip-
tion of the three patlets and four additional patterns. Furthermore, the existing patterns need to
be reevaluated regularly since changes to the UCM Navigator tool may impact these patterns.
Finally, the patterns themselves may impact or spur the development of new features for the
UCM Navigator tool and other such tools.

11 References

1. Amyot, D., Use Case Maps as a Feature Description Language, in S. Gilmore and M.
Ryan (Eds), Language Constructs for Designing Features, pp. 27-44, Springer-Verlag,
2000.

2. Amyot, D. and Andrade, R., Description of Wireless Intelligent Network Services with
Use Case Maps, in SBRC'99, 17th Brazilian Symposium on Computer Networks, Salva-
dor, Brazil, May 1999.

3. Amyot, D. and Logrippo, L., Use Case Maps and LOTOS for the Prototyping and Valida-
tion of a Mobile Group Call System, in Computer Communication, 23(8), April 2000.

4. Amyot, D., Buhr, R.J.A., Gray, T., and Logrippo, L., Use Case Maps for the Capture and
Validation of Distributed Systems Requirements, in RE'99, Fourth IEEE International
Symposium on Requirements Engineering, pp. 44-53, Limerick, Ireland, June 1999.

5. Amyot, D., Logrippo, L., and Buhr, R.J.A., Spécification et conception de systemes com-
municants : une approche rigoureuse basée sur des scénarios d’usage, in Colloque Fran-
cophone sur l'Ingénierie des Protocoles (CFIP'97), pp. 159-174, Hermes, Paris, 1997.

6. Andrade, R., Applying Use Case Maps and Formal Methods to the Development of Wire-
less Mobile ATM Networks, in Lfm2000: The Fifth NASA Langley Formal Methods Work-
shop, Williamsburg, Virginia, USA, June 2000.

7. Andrade, R. and Logrippo, L., Reusability at the Early Development Stages of the Mobile
Wireless Communication Systems, in Proceedings of the 4th World Multiconference on
Systemics, Cybernetics and Informatics (SCI 2000), Vol. VII, Computer Science and En-
gineering: Part I, pp. 11-16, Orlando, Florida, July 2000.

8. Buhr, R.J.A., Use Case Maps as Architectural Entities for Complex Systems, in Transac-
tions on Software Engineering, pp. 1131-1155, IEEE, December 1998.

9. Buhr, R.J.A. and Casselman, R.S., Use Case Maps for Object-Oriented Systems, Prentice-
Hall, USA, 1995.

10. Buhr, R.J.A., Amyot, D., Elammari, M., Quesnel, D., Gray, T., and Mankovski, S., High
Level, Multi-agent Prototypes from a Scenario-Path Notation: A Feature-Interaction Ex-

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

23.

ample, in PAAM'9S, 3rd Conference on Practical Application of Intelligent Agents and
Multi-Agents, London, UK, March 1998.

Cameron, D. et al., Draft Specification of the User Requirements Notation, Canadian
contribution CAN COM 10-12 to ITU-T, November 2000.

Chung, L., Nixon, B.A., Yu, E., and Mylopoulos, J., Non-Functional Requirements in
Software Engineering, Kluwer Academic Publishers, 2000.

Elammari, M. and Lalonde, W., An Agent-Oriented Methodology: High-Level and Inter-
mediate Models, in Proceedings of the Ist International Workshop on Agent-Oriented In-
formation Systems (A01S'99), Heidelberg, Germany, June 1999.

Goal-oriented Requirement Language (GRL) Web Site, 2001,
http://www.cs.toronto.edu/km/GRL/.

Gross, D. and Yu, E., From Non-Functional Requirements to Design through Patterns, in
Requirements Engineering, 6:18-36, Springer-Verlag, 2001.

Miga, A., Application of Use Case Maps to System Design with Tool Support, M.Eng.
thesis, Department of Systems and Computer Engineering, Carleton University, Ottawa,
Canada, October 1998, http://www.UseCaseMaps.org/tools/ucmnav/.

Miga, A., Amyot, D., Bordeleau, F., Cameron, D., and Woodside, M., Deriving Message
Sequence Charts from Use Case Maps Scenario Specifications, 10™ SDL Forum, Copen-
hagen, Denmark, June 2001.

Nakamura, M., Kikuno, T., Hassine, J., and Logrippo L., Feature Interaction Filtering
with Use Case Maps at Requirements Stage, in Sixth International Workshop on Feature
Interactions in Telecommunications and Software Systems (FIW'00), Glasgow, Scotland,
UK, May 2000.

Sales, 1. and Probert, R., From High-Level Behaviour to High-Level Design: Use Case
Maps to Specification and Description Language, in SBRC 2000, 18th Brazilian Sympo-
sium on Computer Networks, Belo Horizonte, Brazil, May 2000.

Scratchley, W.C. and Woodside, C.M., Evaluating Concurrency Options in Software
Specifications, in MASCOTS 99, Seventh International Symposium on Modelling, Analy-
sis and Simulation of Computer and Telecommunication Systems, pp. 330-338, College
Park, MD, USA, October 1999.

Use Case Maps Web Site and UCM User Group, 1999, http://www.UseCaseMaps.org.
Weiss, M., Patterns and Non-Functional Requirements, Presentation at CITO Software
Research Review, March 2001, http://fusion.scs.carleton.ca/~weiss/research/nfr/cito.pdf.
Zave, P., Requirements for evolving systems: A telecommunications perspective, in RE'01,
Fifth IEEE International Symposium on Requirements Engineering, pp. 2-9, Toronto,
Canada, August 2001, http://www.research.att.com/~pamela/rel.pdf.

A Pattern Language for Providing Client-Server
Confidential Communication

Jerffeson Teixeira de Souza *
School of Information Technology and Engineering,
University of Ottawa

K1N 6Nb5, Canada
jsouza@site.uottawa.ca

Stan Matwin
School of Information Technology and Engineering,
University of Ottawa
K1N 6N5, Canada
stan@site.uottawa.ca

Abstract

This paper extracts and documents patterns that identify problems and solutions con-
cerning confidentiality in a client-server environment. These patterns are then organized
as a pattern language. The idea is to include a new layer that is responsible for providing
the security framework. This layer is composed by a Client Secure Socket and a Server
Secure Socket. In order to obtain confidentiality, a combination of symmetric and asymmet-
ric (public/private) cryptography techniques is proposed. For data encryption is proposed
the use of the symmetric system with a Session Key. And for exchanging the Session Key,
the public/private key pair model is used. This combination provides a fast and reliable
cryptosystem.

Keywords: Confidentiality, Client-Server Communication, Cryptography, Pattern Lan-
guage.
1 Introduction

The confidentiality of the data exchanged in a business environment has become more and more
important. The design and implementation of a secure communication channel is a hard and
expensive task. The idea of this work is to guide the development of a client-server application

*Sponsored by CAPES (Brazilian Federal Agency for Graduate Studies).

that requires confidential communication. In order to do that, the combination of two cryptogra-
phy approaches: Symmetric and Asymmetric is suggested. The goal is to use the advantages of
each approach and keep the performance of the system high. This paper presents a collection of
patterns that help developers create client-server applications. The focus of this paper is on the
confidentiality of the data exchanged in the client-server communication. It was designed to be
used by developers that need to include security features in their client-sever applications.

The patterns presented in this paper were conceived when I was required to develop a client-
server application that should implement some security features. During my research, I realized
that most of the existing client-server applications used a very similar variation of key exchange.
From this observation, I started extracting the common solutions from this applications and creat-
ing this pattern language to document such solutions so that new developments could be facilitated.

2 Background

Cryptography can be defined as the art or science encompassing the principles and methods of
transforming an intelligible message into one that is unintelligible, and then retransforming that
message back to its original form [4].

2.1 Symmetric Cryptography

In symmetric cryptography, the encryption algorithm requires the same secret key (called Session
Key) to be used for both parts of the communication [4]. Because of the type of the key, this
process is called secret key encryption. With this approach, an original message is encrypted with
a Session Key and sent to the receiver. The receiver decrypts this message with the same Session
Key to retrieve the original message.

The advantage of these algorithms is that they are fast and efficient. However, the problem is
the key exchange, i.e., the mechanism for safely ensuring both parties, the sender and the receiver,
have the secret key. This is one of the weakest areas of symmetric cryptography. How do you
send the key to your partners? You cannot just send it in an e-mail message, because it could be
intercepted and compromise your security. Furthermore, how can you be sure that your partners
will keep your key secure?

A variant of this approach works with two Session Keys, one to each part of the communication.
In each part, one key is used for encryption and the other for decryption. This variant is used in
this work.

2.2 Asymmetric (Public/Private Key) Cryptography

One solution to the problem of symmetric key security is asymmetric cryptography. This uses two
keys that are mathematically related. One key is called the private key and is never revealed, and
the other is called the public key and is freely given out to all potential correspondents [4]. The
complexity of the relationship between the public key and the private key means that, provided
the keys are long enough, it is practically impossible to determine one from the other. The one

problem with asymmetric cryptography is that it is CPU usage is very high and this can cause
potential performance problems when many simultaneous sessions take place.

The almost universal public/private key algorithm is named RSA [5]. A sender uses the receiver’s
public key to encrypt the message. Only the particular receiver has the respective private key to
decrypt the message. In addition, it is important to inform that the patent for the RSA algorithm
(used is this work), that was issued on September 20, 1983, exclusively licensed to RSA Security
Inc. by the Massachusetts Institute of Technology, expired on September 20, 2000. Since then,
RSA Security is making the RSA algorithm publicly available and waiving its rights to enforce
the RSA patent for any development activities including this algorithm occurring since September
2000 [5].

3 Guidelines for the Readers

The patterns used here have a form consisting of eleven sections. The Context section shows the
situations in which the pattern may be applied. The Problem section presents a question that
expresses the problem this pattern solves. The Forces section describes the driving forces behind
possible solutions. The Solution section presents an answer to the question from the problem
section that resolves the forces as well as possible. The Structure section is a detailed specification
of the structural aspects of the pattern. The Dynamics section describes the run-time behavior of
the pattern. The Rationale section explains the rationale behind the solution. The Sample Code
section presents code fragments that illustrate how the pattern can be implemented in Java. The
Resulting Context section describes the context that we find ourselves in after the pattern has
been applied. The Known Uses section describe places where the pattern is used. Finally, The
Related Patterns section describes any related patterns. Examples of these sections can be found
in [3] and [2]. Some sections are not presented in some patterns.

The problem and the solution sections are sufficient to get an overview of the pattern. The
other sections explain the rationale behind the pattern and allow the readers to gain a deeper
insight of it.

4 The Pattern Language

4.1 Overview

The pattern language presented in this paper has five patterns. The relationship among these
patters is showed in Figure 1. As we can see, the Client-Server Secure Communication Pattern is
the main one. All the others are proposed to specialize the solution presented in the first pattern.

The following table shows all patterns summarizing their problems and the respective solutions.

Client-Server Secure Communication

v

v

Public/Private Keys Generation

Session Key Generation

v

v

Session Key Exchange

v

Data Encryption/Decryption

Figure 1: The Pattern Language Structure

Pattern Problem Solution
Client-Server Secure | ¢ How to provide con- | @ Provide an extra layer with two compo-
Communication fidentiality in a client- | nents: Secure Client Socket and Secure Server
server communication? | Socket that encrypts and decrypts the data.
e Use a combination of symmetric and asym-
metric cryptography techniques.
Public/Private Key | @ How to generate a pub- | @ Get the key pair by using the RSA algorithm.
Generation lic/private key pair?
Session Key | @ How to generate a Ses- | @ Set the session key to a random number.
Generation sion Key?
Session Key | @ How to exchange the | @ Use an asymmetric approach to send the
Exchange session keys? Servers Session Key to the Client and vice-versa.
Data Encryption/ | ¢ How to encrypt and | e Produce encrypted data as an exclusive-or of
Decryption decrypt data with the | the original data and the key.
session key?

4.2 The Patterns

4.2.1

Context

Client-Server Secure Communication

e You are developing a Client-Server application where the confidentiality of the exchanged
data in the communication is important.

Problem

e How do you provide confidentiality in a client-server communication?

Forces

e cfficiency - Data encryption must be as fast as possible.
e independence - Users do not have to worry about security.

e security - The more secure the system is, the better.

Solution

e Create a security layer to be included in the communication environment so that this layer
is responsible for guaranteeing the confidentiality of the data exchanged.

e Create two components to this new layer: a Client Secure Socket and a Server Secure Socket.
These components implement all security features. These are responsible for establishing
the communication parameters and for encrypting and decrypting the data, so that both
client and server can work independently of this new layer.

e Then, generate a public/private key pair (Public/Private Key Generation) and a Session
Key (Session Key Generation) to the Client and the Server.

e Use a combination of symmetric and asymmetric (public/private key) cryptography tech-
niques. To encrypt and decrypt data (Data Encryption/Decryption) use a symmetric key
(Session Keys). To exchange the symmetric key (Session Key Exchange) use an asymmetric
algorithm.

Structure

The Client Secure Socket must be placed in the client side. All data received and sent by the
client must pass through by this component. The same happens in the server side. When the
client sends a piece of information to the server, the Client Secure Socket gets it, encrypts it and
sends it to the server.

On the other side, the Server Secure Socket intercepts the message, decrypts it and deliveries
it to the Server so that both client and server can work independently of this new layer. The
structure is showed below:

Client Server

Data Data

Encrypted Data
Client Secure Socket < > Server Secure Socket

Figure 2: New Layer Structure

Dynamics

Before the data exchanging starts, it is necessary that the Client Secure Socket and Server Secure
Socket have some parameters such as Session Keys and Public Keys. These parameters come
from the initialization process that takes place in the beginning of the communication. This
initialization includes the following steps:

1.

2.

10.

The Client Secure Socket generates its Session Key;

The Server Secure Socket generates its Session Key;

The Client Secure Socket generates the Client’s Public/Private key pair;
The Server Secure Socket generates the Server’s Public/Private key pair;
The Client Secure Socket sends the Client’s Public Key to the Server side;
The Server Secure Socket sends the Server’s Public Key to the Client side;

The Client Secure Socket sends to the Server Secure Socket its Session Key encrypted with
Server’s Public Key;

The Server Secure Socket receives and decrypts the Client’s Session Key with Server’s Private
Key;

The Server Secure Socket sends to the Client Secure Socket its Session Key encrypted with
Client’s Public Key;

The Client Secure Socket receives and decrypts the Server’s Session Key with Client’s Private
Key;

In order to exchange data after the initialization, the following steps must be done:
Data from the Client to the Server:

1.
2.
3.
4.

D.

The Client delivers the data to the Client Secure Socket;

The Client Secure Socket receives and encrypts the data with the Server’s Session Key;
The Client Secure Socket sends the data to the Server side;

The Server Secure Socket intercepts and decrypts the data with the its Session Key;

The Server Secure Socket delivers the data to the Server.

Data from the Server to the Client :

1.

2.

The Server delivers the data to the Server Secure Socket;

The Server Secure Socket receives and encrypts the data with the Clients’s Session Key;

Client Secure Socket Server Secure Socket

L 1

:—| Generates Session Key(CSK) Generates Session Key (SSK)|_:
Generates Public/Private Generates Public/Privat
Key Pair (CPuK, CPrK) Key Pair (SPuK, SPrK)

Public Key (CPuK)

g
< Public Key (SPuK)

ECSk=Encrypt(CSk,SPuK)

>

CSk=Decrypt(ECSk,SPrK) |_:

ESSk=Encrypt(SSk,CPuK)

<

:—| SSk=Decrypt(ESSk,CPrK)

Figure 3: Initialization Process

3. The Server Secure Socket sends the data to the Client side;
4. The Client Secure Socket intercepts and decrypts the data with the its Session Key;

5. The Client Secure Socket delivers the data to the Client.

Rationale

The symmetric approach is able to process the encryption of large messages in a very fast way.
However, its security relies on the key exchange. The asymmetric approach is a much more secure
encryption technique, but the problem with such technique is that it requires an intensive CPU
slice and this can cause potential performance problems when many simultaneous sessions take
place.

The combination of symmetric and asymmetric cryptography techniques provides us with a
reliable and fast security framework. The data is exchanged by using a pair of symmetric keys,
one for the client and one for the server, proportioning a really fast solution. The use of two
session keys makes the system more secure. The symmetric keys (session keys), that are small
pieces of information, are exchanged by using the asymmetric approach. As this approach is much
secure, it guarantees the security of the symmetric keys and consequently of the whole system.

Client Client Secure Socket Server Secure Socket Server

Data

>

:—| EData=Encrypt(Data,SSK)

EData

>

Data:Decrypt(SData,SSK)|_:

Data

Figure 4: Data Exchange (from Client to Server)

Note that the security of the session keys exchanged in the initialization process is in fact that,
as the session key is encrypted with the receiver’s public key, only the receiver can decrypt this
message and get the session key, because only the receiver knows the correspondent private key.

Resulting Context

The application of this pattern creates a security framework that enables data encryption in
a reliable and fast basis. However, there are some questions that must be answered before a
real system can be built. These questions concern the generation of the symmetric (Session Key
Generation) and asymmetric (Public/Private Key Generation) keys, the exchange of the symmetric
keys (Session Key Fxchange) and the data exchange (Data Encryption/Decryption).

Know Uses

The combination of symmetric and asymmetric cryptographic approaches is used by the Secure
Socket Layer (SSL) Protocol [6] that runs over TCP/IP to provide security to communication
between clients and servers.

Related Patterns

The Information Secrecy and Cryptographic Metapattern are presented in [1] within a pattern
language for cryptographic software.

4.2.2 Public/Private Keys Generation
Context

e You are developing a Client-Server application and you are applying the Client-Server Secure
Communication Pattern.

Problem

e How do you generate a public/private key pair?

Forces

e efficiency - The generation of the key pair must consume the least possible amount of time.

e security - It must be as hard as possible to discover the Private Key from the Public Key.

Solution

e Follow the algorithm below to generate the key pair :

1. Choose two large prime numbers p and ¢, with 512 bits of length or longer.
2. Calculate n = p * q.

3. Calculate f(n) = (p—1)* (¢ —1).

4

. Find an integer e which is a relative prime to f(n), i.e., a number e that has no common
divisors with f(n).

Calculate d, the inverse of e modulo f(n), i.e., d =€~ mod f(n).
6. Set the Public Key to {e,n}.
7. Set the Private key to {d,n}.

ot

Rationale

The efficiency of the algorithm above is based on hardness of factorization, in the sense that it
is easy to multiply two big prime numbers, but for most very large primes, it is extremely time-
consuming to factor them. This way, the algorithm provides a fast way to generate the key pair
and makes it infeasible to discover p and ¢ from n = p* q. These characteristics guarantee that it
is unfeasible to get the Private Key from the Public Key.

Resulting Context
With theirs public/private key pair, client and server are now able to apply the asymmetric
cryptographic approach for data exchanging in a safe basis (Session Key FEzchange).

Know Uses

The RSA Algorithm [5] uses the procedure described in this pattern to generate the public/private
key pair.

Sample Code

// Primes Generation

public static BigInteger[] generatePrimes() {
BigInteger PrimesTemp[] = new BigInteger[2];
Random Rdn = new Random() ;

// The constructor Biglnteger(int, int, Random) returns a randomly

// selected BigInteger with the specified bitLength that is probably prime.
PrimesTemp[0] = new BigInteger (NumBitsKey,10,Rdn);
Rdn.setSeed(Ln.longValue());

PrimesTemp[1] = new BigInteger (NumBitsKey,10,Rdn);

return PrimesTemp;

// Key Pair Generation
public static KeyPair generateKeys(BigInteger p, BigInteger q) {
BigInteger BIntAux;

//Represents the public/private key pair

KeyPair KPairAux = new KeyPair();

N = p.multiply(q);

FN = (p.subtract(BigInteger.ONE) .multiply(q.subtract(BigInteger.ONE));
Random RdnAux = new Random();

BIntAux = new BigInteger (NumBitsKey,RdnAux) ;

// Find e

while ((FN.gcd(BIntAux)) .compareTo(BigInteger.ONE) != 0) {
RdnAux = new Random();
BIntAux = new BigInteger (NumBitsKey,RdnAux);

}
E = BIntAux;
D = E.modInverse(FN);

KPairAux.PrKey = new PrivateKey(D,N);
KPairAux.PuKey = new PublicKey(E,N);
return KPairAux;

10

4.2.3 Session Key Generation
Context
e You are developing a Client-Server application and you are applying the Client-Server Secure
Communication Pattern.
Problem

e How do you generate a Session Key?

Forces

e cfficiency - The generation of the session key must consume the best possible amount of
time.

e security - The larger the session key is, the more secure the system is.

Solution

e Set the session key to a random generated number, with 128 bits or longer.

Rationale

By setting the session key to a random number, we have a fast method of generation. The size
of the key is an important factor to be considered. A 128-bit key or longer provides a very good
security.

Resulting Context

Now, both client and server have their own Session Keys. However, in order to start the secure
communication, it is necessary that both client and server have the Session Key of each other
(Session Key Exchange).

Know Uses

Most of the symmetric crytosystems, such as DES and IDEA [4], use random generated numbers
as keys.

Sample Code

This Java method generates a random Session Key of Key_Size bytes.

static byte[] generateSessionKey (int Key_Size){
byte[] Skey= new byte[Key_Size];
Random Ran= new Random();
Ran.nextBytes(Skey) ;

11

return Skey;

4.2.4 Session Key Exchange
Context

e You are developing a Client-Server application. You are applying the Client-Server Secure
Communication Pattern and both Client and Server Secure Sockets have its public/private
key pair and the session key. Besides, both client and server know the public key of each
other.

Problem

e How do you exchange the session keys?

Forces

e cfficiency - Data encryption must be as fast as possible.

e security - The more secure the session keys are, the more secure the whole system is.

Solution

e Use an asymmetric approach to send the Server’s Session Key to the Client and vice-versa.

e Let Sk be the sender’s Session Key and PuKey = {e,n} the receiver’s Public Key. Compute
the encrypted session key ESk as ESk = Ck® mod n.

e Send this encrypted key to the receiver.
e To decrypt the session key compute Sk = Esk? mod n. Where d and n are parts of the

receiver’s private key {d,n}.

Rationale

As asymmetric cryptography is very secure, its use in the session key exchange guarantees the
security of the whole system. In addition, as the session keys are small, it makes this a quite fast
approach.

Resulting Context

After this pattern both client and server know the Session Key of each other. At this moment,
they can start the secure communication (Data Encryption/Decryption).

12

Know Uses

The RSA Algorithm [5] uses the procedure described in this pattern not to exchange keys in
particular but to perform data encryption and decryption in general.

Sample Code

protected byte[] cryptSessionKey(byte[] stream, BigInteger e, BigInteger n) {
BigInteger M = new BigInteger(stream);
BigInteger C;
C = M.modPow(e,n);
return C.toByteArray();

protected byte[] decryptSessionKey(byte[] stream, BigInteger d, BigInteger n) {
BigInteger M = new BigInteger(stream);
BigInteger C;
C = M.modPow(d,n);
return C.toByteArray();

4.2.5 Data Encryption/Decryption
Context
e You are developing a Client-Server application. You are applying the Client-Server Secure
Communication Pattern and both client and server have the session key of each other.
Problem

e How do you encrypt and decrypt data?

Forces

e efficiency - Data encryption must be as fast as possible.

e security - The information exchanged in the communication must be as secure as possible.

Solution

e Let T be the data to be encrypted and Sk the receiver’s session key. Compute the encrypted
data C' as C'=T xor Sk.

e In order to decrypt an encrypted data C', compute the original data T as T' = C xor Sk.
Where Sk is the receiver’s session key.

13

Rationale

The use of the zor (exclusive — or) operator provide an efficient encryption method, mainly be-
cause of its speed. As the key used here was exchanged in a secure basis, the confidentiality of the
data is guaranteed.

Other more used encryption techniques such as DES, IDEA, RC5, etc. could be used as solutions
for the problem of encryption/decryption of data based on the exchanged keys. This could bring
to the application an increased level of security really necessary in some situations where security
is the first priority (such as financial applications, etc.). However, the use of such algorithms
would increase the complexity of the system in such a way that the cost-benefit analysis would
be unfavorable. By considering that, it seems that the use of the xor allows a very good level of
security without increasing the complexity of the system.

Sample Code

This Java method crypts an array of bytes M by using a key K. M and K must have the same
length.

static byte[] encrypt/decrypt(bytel] M, bytel] K) {
byte[] D = new byte[M.length];
for (i=0;i<M.length;i++){
D[i] = (byte) (M[i]"K[il);
}

return D;

5 Conclusions

The pattern language presented in this paper provides guidelines for secure client-server application
developers. The five patterns presented here discuss all features that are necessary to build
an efficient security environment. In addition, the composition of symmetric and asymmetric
cryptosystems allows us to build systems in a reliable and fast basis.

The most important advantage in the application of this Pattern Language is in fact that
developers do not need to have a deep knowledge about cryptography to create a very efficient
encryption environment.

6 Acknowledgments

I would like to thank my classmates, my friends Rossana Castro and Igor Sales and my brother
Cidcley Souza, who provided me with many valuable suggestions for improvement. Also, I would
like to thank my shepherd Alexandre Braga for his relevant comments on this paper. Finally, we
acknowledge CAPES for its financial support.

14

References

1]

2]

Braga, A. M.,Rubira, C. M. F. and Dahab, R., Tropic: A Pattern Language for Cryptographic
Software, Proceedings of the Pattern Language of Program (PLoP 1998), USA, 1998.

Buschmann, F., et al., Pattern-Oriented Software Architecture, John Wiley and Sons, New
York, NY., 1996.

Gamma, E., Helm, R., Johnson, R. and Vlissides, J., Design Patterns: FElements of Reusable
Object-Oriented Software, Addison-Wesley, 1995.

Menezes, A.J., Orschot, P.C. and Vanstone, S.A. Handbook of Applied Cryptography, CRC
Press, 1996.

RSA Security Inc. www.rsa.com.

Treese, G. W. and Stewart L. C., Designing Systems for Internet Commerce, Addison-Wesley,
1998.

15

Padrdes de Analise para Aplicacdes de Gestdo Urbana em
Sistemas de Informacgdo Geografica

Jugurta Lisboa Filho
Universidade Federal de Vigcosa
Departamento de Informatica,
36571-000, Vigosa/MG, Brasil

jugurta@dpi.ufv.br

Cirano lochpe
Universidade Federal do Rio Grande do Sul
Instituto de Informatica,
91501-970, Porto Alegre/RS, Brasil
ciochpe@inf.ufrgs.br

Karla A.V. Borges
PRODABEL
31230-000, Belo Horizonte/MG, Brasil
karla@pbh.gov.br

ABSTRACT

An analysis pattern is any part of a requirement analysis specification that can be reused in the
design of other information systems as well. Urban management systems (e.g. Tax Control
Systems, Urban Transportation System) are implemented in a similar way for many
Municipalities. This paper proposes three analysis patterns that make possible the reuse of
geographic database design for urban area planning and management applications, developed
in Geographic Information System (GIS).

Keywords: Analysis Patterns, GIS, Conceptual Model, Reuse.

RESUMO

Um padrdo de analise € qualquer parte de uma especificacdo de requisitos que se origina em
um projeto e pode ser reutilizada em outros projetos de sistema de informagao. Sistemas de
gestdo urbana (ex.: Sistemas de informacdo urbana, parcelamento do solo, Controle de
Tributos Municipais, Sistema de Transporte, Sistema de salde) possuem a caracteristica de
serem implementados de forma muito semelhante em diferentes municipios. O artigo propde
trés padrdes de andlise que ilustram a possibilidade de reutilizacdo de esquemas de banco de
dados em aplicacbes da area de gestdo urbana, desenvolvidos com o uso de Sistemas de
Informacao Geogréfica (SIG).

Palavras-clave:Padrdes de analise, SIG, Modelo conceitual, Reutilizacao.

! Trabalho financiado parcialmente pela FAPEMIG e pelo CNPq.

1 INTRODUCAO

O sucesso do desenvolvimento de grandes sistemas de informag¢do tem como um de
seus pontos chave a representacdo, de forma ndo ambigua, dos resultados da analise de
requisitos e do projeto através do uso de formalismos bem conhecidos. Experiéncias tém
demonstrado que as etapas de analise de requisitos e projeto conceitual do banco de dados séo
atividades complexas e que demandam muito tempo. Segundo Johannesson [13], uma das
razdes para isso é que o conhecimento do dominio da aplicacdo e o levantamento dos
requisitos do sistema sao feitos, quase sempre desde o inicio, para cada novo sistema sendo
desenvolvido.

Aplicacdes baseadas em Sistemas de Informagdo Geografica (SIG), embora
apresentem alguns requisitos especiais (ex.. manipulacdo de dados referenciados
geograficamente), devem ser desenvolvidas utilizando-se técnicas que sdo empregadas com
sucesso no desenvolvimento de qualquer sistema de informacdo. Uma das técnicas que vem
recebendo atencdo especial, principalmente pela comunidade de projetistas de sistemas
orientados a objetos, é o0 emprego de instrumentos que possibilitem a reutilizacdo de
componentes de software através da definicdo de padrdes.

Um padrdo é uma combinacdo recorrente de elementos de modelagem que ocorrem
em algum contexto [6]. Padrbes podem ser aplicados nas diversas etapas do desenvolvimento
de software, recebendo, consequentemente, diferentes denominacfes como padrbes de
andlise, padrbes de projeto, padrées de arquitetura, idiomas (padrées de implementacéo), etc.

A reutilizacdo de componentes de software vem sendo feita, embora informalmente,
desde a implementacdo dos primeiros programas de computador. O uso do conceito de
padrées de projeto na area da Ciéncia da Computacéo €, contudo, bem mais recente [10]. O
emprego de padrdes na area de desenvolvimento de software contribui para aumentar a
reusabilidade e a qualidade de componentes de software. Padrdes de projeto possibilitam a
disseminacé&o do conhecimento e a troca de experiéncias entre projetistas, bem como facilitam
a comunicacao entre diferentes membros de um projeto [20].

Padrbes de analise, tem sido propostos como instrumentos para a reutilizacdo de
solucdes durante as fases de andlise de requisitos e modelagem conceitual do banco de dados
[6]. [9]. [12], [13], [19] e [20].

Um padrdo de andlise é qualquer parte de uma especificacdo de requisitos que se
origina em um projeto e pode ser reutilizada em diversos projetos [20]. Padrdes de analise
possibilitam a reutilizacdo de solu¢des de andlise em diferentes sistemas. Alguns padrbes séo
menos genéricos e podem ser reutilizados em diferentes aplicacdes dentro de um mesmo
dominio, enquanto outros padrbes podem ser aplicados em diferentes dominios. Como
exemplos de padrées de analise, especificos para um dominio, pode-se citar os padrdes para
aplicacGes na area de seguradoras [20] e os padrdes para aplicagbes na area bancéria [17].
Dentre os exemplos de padrbes mais genéricos estdo o padrdo para reservas e locacao de
entidades reutilizaveis (ex.: reserva de quarto de hotel, reserva para aluguel de automovel) [7],
os padrbe®©bservactes Medidas[9] e os padrée€ontratose Documento$12].

Uma comparacgao dos diversos tipos de padrdes existentes pode ser encontrada em [3].
Segundo Fernandez [8], dentre os motivos que diferenciam os padrées de analise dos padrées
de projeto, pode-se citar:

» padrdes de andlise sdo dependentes da aplicacéo, pois sua semantica descreve aspectos
especificos de algum dominio ou aplicacéo;

» padrbes de projeto estdo mais proximos da implementacéo por focar, principalmente,
0S aspectos tipicos de projeto como, por exemplo, interfaces homem-maquina, criagao
de objetos, propriedades estruturais basicas;

e padrbes de projeto podem ser aplicados a um numero maior de aplicacdes. Por
exemplo, a maioria das aplicagbes possui interface homem-maquina.

Uma particularidade das aplicagBes de SIG € que, normalmente, os dados manipulados
por essas aplicacbes possuem um forte relacionamento entre si, devido a esses dados
retratarem fendbmenos geograficos que ocorrem sobre uma mesma regido geogréfica. Por
exemplo, muitos dados espaciais (ex.: dados tematicos) sdo derivados ou utilizam dados
bésicos (ex.: dados topogréficos) para serem representados. O conjunto de tipos de dados que
compde, normalmente, a base cartografica para uma determinada aplicacdo de SIG possui
uma estrutura conceitual muito parecida para a maioria das aplicacées. Essa particularidade
torna as aplicacdes de SIG fortes candidatas a se beneficiarem da reutilizacdo de projetos de
bancos de dados ja existentes [14], como j& vem ocorrendo com o compartilhamento de dados
geo-espaciais em meio digital [21].

O artigo propde trés padrdoes de andlise aplicaveis a etapa de andalise de modelagem
conceitual de banco de dados geograficos na area de gestédo urbana. O restante do artigo esta
organizado como segue. A Secado 2 descreve a abordagem UML-GeoFrame, usada na
modelagem conceitual de aplicacbes de SIG. A Secdo 3 descreve os padrbes de analise
identificados em aplicacdes na area de gestao urbana. A Secao 4 descreve as conclusdes finais
e as perspectivas de trabalhos futuros.

2 MODELO CONCEITUAL PARA BANCO DE DADOS GEOGRAFICOS

A solucdo apresentada por padrbes de andlise para projeto de banco de dados
geograficos deve incluir um esquema conceitual de dados. Aplicacdes de SIG impdem uma
série de requisitos de modelagem (ex.: fendbmenos geograficos x objetos convencionais, Visao
de campo x visdo de objetos, aspectos espaciais, multiplas representacdes, aspectos tematicos,
etc.), 0s quais sao representados através de modelos conceituais proprios para estas aplicacdes
[16].

Em [15], mostrou-se a adequacédo da abordagem UML-GeoFrame para especificacédo
de padrbes de andlise para aplicacbes de SIG. Esta abordagem tem como base o modelo de
classes da Linguagem UMUnified Modeling Languagé§l], sendo que a modelagem dos
requisitos da informacdo geogréfica é feita através de estereétipos definifftasnework
GeoFrame [15].

O GeoFrame é unframeworkconceitual que serve de base para a modelagem de
aplicacdes de SIG, fornecendo um diagrama de classes a partir das quais as classes do
dominio da aplicagdo sdo modeladas (especializadas). Para possibilitar a obtencdo de
esquemas de dados de facil entendimento por parte de usuarios leigos, o GeoFrame fornece
um conjunto de esteredtipos, ilustrado na Figura 1, cuja seméntica é a de substituicdo de
relacionamentos entre as classes da aplicacéo e as classes do GeoFrame.

Na Figura 1, o primeiro conjunto de estereétipos é usado para diferenciar os dois
principais tipos de objetos pertencentes a um banco de dados geogiadicomeno
geograficoé especializado e®bjeto geograficdA] e Campo geogréaficdA], segundo as
duas formas de percepcao dos fendmenos geograficos descritas por Goodchild [11]. Objetos
ndo geograficos, ou convencionais, sdo modelados de forma tradicional, sendo identificados
pelo estereodtipad].

Fenémeno geogréafico e Componente espacial Componente espacial
Objeto convencional de objetos geograficos de campos geograficos
A Objeto geografico E Ponto El Pontos irregulares
A Campo geogréafico Linha Grade de pontos
@ Poligono Poligonos adjacentes

A Objeto ndo geografico Obj. espacial complexo Isolinhas

<< 505 tunca readri @ Grade de células

ungéo ungéo categdrica @ TIN

FIGURA 1 - Estere6tipos doameworkGeoFrame

O segundo e o terceiro conjunto de estereétipos sdo usados para a modelagem do
componente espacial de fenbmenos segundo as visdes de objeto e de campo, respectivamente.
A ocorréncia de multiplas representacdes € especificada combinando-se dois ou mais
esteredtipos. Por exemplo, uma clabiicipio pode ter duas formas de abstracdo de seu
componente espacial, pontual e/ou poligonal, sendo especificadolctahp [

Por ultimo, o esteredtipo <<funcdo>> € usado para caracterizar um tipo especial de
associacdo que ocorre quando da modelagem de fung¢des categoéricas. Segundo Chrisman [4],
numa estrutura de cobertura categorica o espaco é classificado em categorias mutuamente
exclusivas, ou seja, uma variavel possui um valor do tipo categoria em todos os pontos dentro
de uma regiao (ex.: tipos de solos).

A Figura 2 ilustra um extrato de esquema conceitual usando a notacdo UML-
GeoFrame, onde percebe-se diversos temas (ex.: Ativ_Carvao, Uso_Solo), modelados como
pacotes. Cada tema reune classes coesas, que podem ser subclasses de objetos comvencionais
[A] (ex.: EmpresaCarbonifera e TipoUsoSolo), de fenbmenos geograficos percebidos na
visdo de objetos4] (ex.: Municipio, Jazida) e na visdo de campg [ex.: UsoCobSolo,
Topografia). Exemplos de multiplas representacdes aparecem nas classes Minadiaj;ao [
RecursoHidricolfI<]] e TopografialEERa].

ATIV_CARVAO US0O-SOLO |
A
icipi . TipoUsoSolo
Municipio EmpresaCarbonifera UsoCobSolo fungdo P
1 T s
nomeMun : char - ipoUso : int
dataEmancip : date“l nomeE[nplrgsa - char descrTipoUso : char
sreaMun : | producdo : int
z;‘reta} wun ! rﬁa numOperarios : int —|
istorico : char produtividade : real BASE_CART
classFuncional : int
1 ! A
N ImagemsSat RecursoHidrico
A * @ @
MinaCarvéo data : date Permanintermi : boolean
[A
nome : char L 1] Jazida A A
tipoExploragéo : int Topografia Rodovia
ativa : boolean lavrado : boolean “lliz:
jurisdicdo : char

FIGURA 2 — Exemplo de esquema de dados UML-GeoFrame

3 PADROES DE ANALISE EM APLICACOES URBANAS

Sistemas de geoprocessamento, mais especificamente os SIG, sdo usados em diversas
areas como Meio Ambiente, Telecomunicacfes, Negdcios e Marketing, Monitoramento de
Frotas, Administracdo Publica, entre outras. Em cada uma dessas areas de aplicacdo é
necessario criar um modelo de analise especifico para o universo a ser trabalhado, de tal
forma que os objetos observados possam estar relacionados com uma determinada regiao
geogréfica.

Na &rea de gestdo urbana, a regido de interesse corresponde a uma cidade, a qual é
formada pelo ambiente natural e construido, possui tracado viario, construcdes, areas livres,
vegetacao, clima, sua populacao, etc.

A cidade € um organismo vivo, mutante, dinamico onde existem contrastes profundos
gue necessitam ser administrados em prol da qualidade de vida de sua populagéo [2]. Sistemas
tradicionais de representacdo, como 0s mapas, sdo estaticos mesmo que produzidos por meio
de computador (sistemas de CAD), pois representam situacdes existentes no momento em que
foram produzidos. Um SIG possibilita dinamizar os mapas, mantendo o registro da evolucao
da realidade, com base em dados coletados a partir de tarefas administrativas. Para tanto, a
gestdo necessita ver a cidade como um todo. Independentemente das diferentes visdes e
atuacOes sobre a cidade, ela é Unica e sensivel a condicao temporal [2].

A necessidade de gerenciar o municipio de forma integrada e a preocupacdo com a
qualidade de vida urbana tém levado as prefeituras a se interessarem cada vez mais pelo uso
de SIG [2]. No entanto, o primeiro desafio é obter recursos humanos com capacidade para
projetar, implantar e manter os sistemas de gestdo utilizando a tecnologia de SIG. A
dificuldade é ainda maior quando o problema é transferido para prefeituras de porte médio ou
pequeno.

Através da experiéncia adquirida pelos autores no desenvolvimento de aplicacbes de
gestao urbana, a primeira caracteristica que se observa € o grande potencial de reusabilidade
das solu¢cBes adotadas, seja por diferentes 6rgdos de uma mesma administracdo, seja por
diferentes prefeituras. Padrdes de andlise provéem um mecanismo altamente consideravel na
reducdo destas dificuldades, uma vez que: (1) possibilitam que um projetista menos
experiente reutilize conhecimentos ja testados e validados anteriormente; (2) na gestdo
urbana, o ambiente basico que compde a base cartogréafica digital (ex.: ruas, quadras, lotes e
bairros) pode ser reutilizado por diversas aplicacoes.

A seguir, sdo apresentados trés padrdes de analise, identificados a partir da analise de
esquemas conceituais de diversos bancos de dados em aplicacbes de gestdo urbana. Por
guestbes de simplificacdo s&o apresentados apenas os atributos e operagdes essenciais em
cada exemplo.

Para a especificacdo dos padrbes optou-se pela estrutura definida por Meszaros [18],
na qual a descricdo de um padrdo deve conter, no minimo, 0s seguinteBriabliena-
Contexto-Forcas-Solucéo

3.1 Padrao: Malha Viaria Urbana

Problema:
Quais os elementos pertencentes a malha viaria de uma cidade?

Contexto:

No Brasil, praticamente todas as cidades apresentam um mesmo padrao de
organizacdo, no qual sdo estruturadas com base em suas vias de locomocédo (ex.: ruas,
avenidas, travessas). O conjunto de trechos de vias e seus cruzamentos formam uma rede
viaria urbana.

Forcas:
» Cada via de locomocao, considerada uma instancia de logradouro, deve possuir um
cbdigo de identificacdo e um nome, além de estar, normalmente, dividida em diversos
trechos.

* Um trecho de logradouro corresponde ao segmento de via compreendido entre duas
conexdes, em sequéncia, deste com outros logradouros que o cruzam ou interceptam.

* O conjunto formado pelas conexbes (ou pontos terminais) e pelos trechos de
logradouros constituem a malha viaria urbana.

Solucéo:
A Figura 3 mostra o diagrama de classes pertencente ao padréo.
MalhaViaria
MalhaViaria
g
L Trecho A * Cruzamento A
ogradouro Logradouro Logradouro E'
7
codLogr idTrecho
nomeLogr numinic intercepta
numFinal
conecta

FIGURA 3 — Diagrama de classes do padrdo “Malha Viaria Urbana”

Para cada fenbmeno geografico, o padréo especifica apenas as propriedades (atributos
e operacdes) mais genéricas, as quais devem ser estendidas e especializadas para cada
aplicacdo especifica. Consequentemente, sdo especificadas as possiveis abstracfes de seus
componentes espaciais. Por exemplo, 0 componente espacial dar obabex ogradourcé
especificado como sendo linekd][

Participantes:

A classe MalhaViaria € um fenbmeno geografico representado por um objeto espacial
complexo, o que é simbolizado pb][Nesta classe podem ser definidos atributos relativos a
rede como um todo. Logradouro é uma classe convencional implementada, normalmente,
como uma tabela em um SGBD relacional. Cada logradouro € composto de diversos trechos
de logradouros, que correspondem as arestas da rede. Um trecho de logradouro pode estar
conectado a outros trechos de logradouros, mas esta conexao € representada por instancias da
classe CruzamentoLogradouro, que sado os nos da rede. As operacfes de manipulacdo dos
elementos da rede podem ser implementadas como métodos das classes MalhaViaria,
TrechoLogradouro e CruzamentoLogradouro, dependendo de sua funcionalidade.

Padrdes relacionados:

O padrao de andlisdalha Viaria Urbanautiliza o padrao “State Across a Collection”
[5] na modelagem dos fendmenos Logradouro e Trecho de Logradouro. Além disso, pode-se
abstrair um novo padrédo de projeto que modele uma estrutura de uma rede qualquer, com-
posta de arcos e nos, cuja topologia entre seus elementos seja mantida a fim de possibilitar a
realizacdo de operacbes comuns a estruturas de redes como calculo do caminho 6timo
(necessita de pesos para cada arco), havegacao atraveés da rede, distancia entre dois n@s, etc.

3.2 Padrdo: Rede de Circulagéo Viaria Urbana

Problema:
Como modelar os elementos de uma rede de circulagdo viaria urbana?

Contexto:

A circulacao de veiculos em uma cidade é realizada sobre a malha viaria urbana. A
rede de circulacédo viaria fornece o sentido do trafego, enquanto a malha viaria fornece a
estrutura de vias. Algumas vias de locomoc¢ao possuem sentido Unico e outras sentido duplo.
Cada trecho é classificado de acordo com sua importancia para o sistema viario como, por
exemplo, se € uma via coletora, de ligacdo regional ou uma via local (diversas aplicacbes
fazem uso dessas informacdes).

Forcas:

» Cada trecho de circulacéo, que pode compreender varios trechos de logradouro, possui
informacdes sobre o0 sentido permitido para trafego de veiculos.

» Alguns trechos ndo permitem circulacéo de veiculos (ex.: ruas de pedestres).

Solucéo:

A Figura 4 ilustra o diagrama de classes do padrdo. Uma rede de circulacéo viaria
sobrepde a rede da malha viaria, desta forma, o p&bde de Circulacdo Viaria Urbana
estende o padradalha Viaria Urbana descrito na se¢éo anterior.

RedeCirculagéoViaria |
MalhaViaria
Logradoura MalhaViaria
*
* <€r <%*
Trecho A * o | Cruzamento A
Logradouro . Logradouro
[-]
* 1
0,1 0,1
Trecho A * 2 N6 de A
Circulagéo Converséo
s [-]
* *
) . Rede de
Via Coletora Via Arterial Via Lig.Reg. || Via Local Circulagéo
Viaria

FIGURA 4 — Diagrama de classes do padréo “Rede de Circulacao Viaria Urbana”

Participantes:

Da mesma forma que no padrddalha Viaria Urbana a classe RedeDe-
CirculacéoViaria possui representacdo espacial complexa, formada pela representacdo de
trechos e nés de conversao. Operacdes envolvendo toda a rede sdo definidas como métodos
desta classe. Cada trecho de circulacdo pode estar associado a varios trechos de logradouros,
significando a sobreposicdo de uma rede mais compacta sobre uma rede mais completa. Por
outro lado, nem todo trecho de logradouro faz parte de um trecho de circulacdo, como ocorre
com as vias de pedestre. Da mesma forma, h& cruzamentos de logradouros que podem nao
ser, necessariamente, um no de conversdo. De acordo com a aplicacdo, um trecho de
circulagdo pode ser especializado de diferentes formas. No contexto dos sistemas viarios é
comum aparecer a classificacdo dos trechos de circulacdo quanto ao trafego e tamanho da via
(ex.: via arterial, coletora, ligagéo regional e local).

Padrdes relacionados:
O padrdoRede de Circulacao Viaria Urbanam como base o padrétalha Viaria
Urbana

Exemplo:

Um sistema de itinerario de 6nibus necessita da existéncia da circulacdo viaria que,
por sua vez, estd sobre a malha viaria, embora a malha viaria também possa ser usada para
outros fins. A Figura 5, extraida do esquema conceitual do banco de dados do sistema de
transporte urbano da cidade de Belo Horizonte, ilustra o uso do gRed&ode Circulacao
Viaria Urbana.

Observa-se a reutilizacdo de toda a modelagem referente aosMathasViaria e
Rede de Circulagéo Viarid projetista necessita modelar somente a parte do sistema relativa
a sua aplicacdo, ou seja, o sistema de transporte de 6nibus urbano. Outros exemplos de uso
deste padrdo de analise incluem os sistemas de roteamento de veiculos para atendimento de
emergéncia (ex.: ambulancias, policiamento, corpo de bombeiros) e roteamento para entrega
de mercadorias.

3.3 Padrao: Loteamento Urbano

Problema:
Como estruturar os dados de uma base cadastral urbana?

Contexto:

O ponto de partida para qualquer aplicacdo de SIG, que tenha uma cidade como éarea
geografica de interesse, é a elaboracdo da base cartografica digital, integrada a um cadastro
multifinalitario. Estas duas bases de dados sdo utilizadas por aplicacfes diversas como
atendimentos de urgéncia (ex.. ambulancia, bombeiros, seguranca publica), controle de
matricula em escolas publicas, distribuicdo de postos de saude, arrecadacao de tributos, redes
de infra-estrutura (ex.: agua, esgoto, luz, telefonia), etc. Estas aplicacbes necessitam de
informacBes como tracado viario, localizacédo de bairros, quadras, lotes e, em alguns casos, até
mesmo informagdes precisas sobre os limites das construgdes dentro de cada lote.

Forcas:

» O nivel de detalhe da base cadastral depende da existéncia de dados digitais espaciais
para a cidade sendo modelada. Nem sempre € viavel financeiramente obter a base
cadastral na escala pretendida. Quanto maior a escala original, maior os custos de
obtencéo e maior os problemas de manutencéo dos dados.

ItinerarioOnibus

. AL 1 * | Itinerario A
LinhaOnibus Anibus
Pto de A* 1| Trecho A N , | NG A
Parada[] Itinerario Itinerario El
0,1 0,1
RedeCirculagéoViaria |
Rede de A
Circulagédo
Viaria
* *<% <%* 1

0.1 |Trecho NE 2 | N6 de A 0,1

Circulacéo Converséo B
| | | |
Via Coletora Via Arterial via Lllgagao Via Local
Regional
MalhaViaria
Logradouro MalhaViaria A
x | Trecho A* 2 Cruzamento A 1
Logradouro Logradouro |Z|

FIGURA 5 — Exemplo de uso dos padrbes “Malha Viaria Urbana” e
“Rede de Circulacéo Viaria Urbana”

Dependendo do porte do municipio, diferentes tipos de divisdes sdo empregados. Os
tipos mais comuns incluem divisbes administrativas e bairros.

O conceito de bairro ndo € Unico para todas as cidades. Por exemplo, uma quadra pode
ndo pertencer, necessariamente, a um Unico bairro. Em algumas cidades os limites de
um bairro podem cortar até mesmo um lote.

Um lote deve possuir dois tipos de representacdo espacial: a representacdo de seus
limites e a representacdo correspondente a frente do lote, também conhecida por

“testada do lote”. O mesmo pode ocorrer com as quadras na representacdo de “faces
de quadra”.

Solucéo:
A Figura 6 mostra o diagrama de classes que compde o padréo.

Loteamento_Urbano |

MunicipiolgI
1 x| Divisao A
codMunicipio Admin.
nome] MalhaViaria
‘ A A Logradouro MalhaViaria
*
Distrito @ Bairro @
idDistrito idBairro *? *? ?*
nome nome Trecho A N 9 Cruzamento A
* Logradouro Logradouro |Z|
* % 1
Setor é N Quadraé gi;zra
idSetor idQuadra idFaceQuadr

*

A Testada A
@ <> *|lLote =

numDePorta idTestada

Lote

FIGURA 6 — Diagrama de classes do padréo “Loteamento Urbano”

Participantes:

A classe DivisaoAdministrativa pode ser especializada em outras subdivisdes
municipais (ex.: setores censitarios, zonas de coleta de lixo, zonas de policiamento). A cidade,
ou sede municipal, corresponde a um distrito.

A classe Bairro esta associada a classe Quadra, através de uma multiplicidade “um-
para-muitos”, mas esta associacdo deve ser adaptada a cada situacdo especifica. Em alguns
municipios o limite de um bairro pode ndo respeitar os limites das quadras, neste caso, a
multiplicidade seria “muitos-para-muitos”, o que implica em uma situacao nao desejada.

Outra variacdo que pode ocorrer diz respeito a forma de associar o lote ou a quadra
com o trecho de logradouro. Na solugéo apresentada, por exemplo, o trecho de logradouro
estd associado a testada do lote. No entanto, o lote poderia estar associado diretamente ao
trecho de logradouro. Em situa¢des nas quais o maior nivel de detalhe s&o as quadras, o trecho
de logradouro estaria associado a face de quadra.

Padrdes relacionados:
Malha Viaria Urbana

Exemplo:

O uso do padrabdoteamento Urbangode ser visto na Figura 7, a qual ilustra um
sistema de cadastro urbano para fins de tributacdo do Imposto Predial e Territorial Urbano
(IPTU).

Loteamento_Urbano |
Municipioé
1 «|Divisdo A
codMunicipio Admin.
nome @ MalhaViaria
‘ A A Logradouro A MalhaViaria
*
Distrito @ Bairro@
L - . *? *? <f*
idDistrito idBairro
nome nome Trecho A " 9 Cruzamento
1 Logradouro Logradouro B
% * 1
s B QuadraA Face A
5 = e K 7%
idSetor idQuadra idFaceQuadr
* *
Lote A Testada A
@ * | Lote —*
numDePorta idTestada
A
Cadastro_IPTU | ‘
Lote Lote imével /\ + 1 Probrietari
Edificado Territorial IPTU roprietario
1 sitCerca idimével nome
sitLimpeza valorVenal
* sitCalgada
Unidade A dtUltAvaliagdo
Edificacao « | Edificada |~ futilizagao Pessoa Pessoa
) 4 . situagao Juridica | |Fisica
identUE infra-estrutura
tipoEdificagao areaConstr num-cémodos CNPJ CPF
tipoUso

FIGURA 7 — Exemplos de uso do padréo “Loteamento Urbano”

No exemplo, um lote edificado pode possuir diversas edificagdes (ex.: um condominio
com varios edificios, um Shopping Center). Cada edificacdo pode ser composta de diversas
unidades edificadas (ex.: apartamentos, lojas). Tanto as unidades edificadas como os lotes
territoriais (ndo edificados) constituem unidades para fins de tributacdo, modelado pela classe
Imével IPTU, o qual pode estar associado, normalmente, a um proprietario principal. Foram
incluidos apenas os atributos mais comuns, uma vez que a necessidade de atributos depende
dos objetivos do sistema. O padrdo “Party” [9] € empregado na modelagem dos diferentes
tipos de lotes e nos diferentes tipos de proprietarios.

O exemplo também serve para ilustrar a situagcdo em que, embora ndo seja possivel
para uma prefeitura reutilizar dados georreferenciados de outro municipio, com excecao de
dados regionais, é muito provavel que o projeto do banco de dados desenvolvido por uma
prefeitura possa ser reutilizado em grande parte por outras prefeituras. Isso ocorre devido a
semelhanca de legislacdo entre os municipios brasileiros.

4 CONCLUSOES

Como se pode observar, a partir dos padrdes de andlise apresentados neste artigo,
padrées de analise ndo sdo solucbes completas. Padrdes descrevem orientacdes, projetos
iniciais e propostas de solucao para problemas recorrentes. Padrbes de andlise necessitam ser
adaptados em cada caso especifico de reutilizacao.

A abordagem de padrbes de andlise apresenta grande potencial para melhorar a
gualidade das aplicacdes de gestdo municipal usando SIG, bem como para reduzir o tempo e,
consequentemente, os custos das etapas de analise de requisitos e modelagem conceitual do
banco de dados.

Entretanto, para o sucesso desta abordagem é necessario criar a cultura da cooperacao
entre os desenvolvedores de sistema. Por exemplo, muitos usuarios reutilizam dados
georreferenciados obtidos de terceiros, mas ndo disponibilizam seus proprios dados [21].
Reutilizar uma boa solucdo documentada por outro projetista € uma idéia muito atraente, mas
€ necessario que todos contribuam com a abordagem de reutilizagdo, documentando suas
solucdes, por exemplo, na forma de padrdes de analise.

Um padrdo de analise ndo necessita apresentar uma solucéo original. Pelo contrério,
padrées devem documentar solucdes ja testadas e validadas, pois sdo solucfes para problemas
recorrentes. SolugBes para problemas Unicos ndo necessitam ser documentadas na forma de
padrées, pois provavelmente ndo necessitardo ser reutlizadas. Assim, a evolucdo da
documentacdo de um padréo, a partir da contribuicdo de outros projetistas que o tenham
reutilizado, deveria ser decorréncia natural de seu uso. Os padrdes de andlise descritos neste
artigo podem e devem ser melhorados. Contribuicdes, comentarios e criticas sdo bem vindos.

Como continuidade deste trabalho, esta prevista a investigacdo de alternativas para
disponibilizacdo dos padrdes de analise existentes (para banco de dados geogréficos) e,
também, o estudo de aplicacdes de SIG em diferentes dominios (ex.: redes de infra-estrutura,
aplicacdes ambientais), com o objetivo de captura e documentacdo de novos padrdes. O
desenvolvimento de ferramentas para suporte a busca por padrdes existentes tem sido
pesquisado [22]. Encontra-se em desenvolvimento no Departamento de Informética da UFV,
um projeto de pesquisa que visa a implementacdo de uma ferramenta CASE para suporte a
modelagem conceitual de banco de dados geogréafico, com base no modelo UML-GeoFrame,
a qual também dara suporte a reutilizacdo de esquemas de banco de dados por meio de
padrdes de analise.

Agradecimentos
Os autores agradecem as contribuicfes feitas pela ravegahertd Rosana Teresinha
Vaccare Braga, as quais possibilitaram melhorar muito os padrdes de analise aqui descritos.

REFERENCIAS
1. Booch, G.; Jacobson, |.; Rumbaugh, J. The Unified Modeling Language User Guide.
Reading: Addison-Wesley, 1998.

2. Borges, K. A. V. A gestéo urbana e as tecnologias de informacdo e comuriReagaia
IP-Informéatica PublicaBelo Horizonte, Vol.2, No.2, 2000.

3. Buschmann, F. et dPattern-Oriented Software Architectura:system of patterns. New
York: John Wiley & Sons, 1996.

4. Chrisman, NExploring Geographic Information Systerhéy: J. Wiley & Sons, 1997.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Coad, P.Object Models: Strategies, Patterns, and Applications. 2.ed. New Jersey:
Yourdon Press, 1997.

Fernandez, E. B. Building systems using analysis patt®mogs. of Int. Software
Architecture Workshop (ISAW3),998.

Fernandez, E. B.; Yuan, X. An analysis pattern for reservation and use of reusable
entities.Procs. of Workshop in the Conference of Pattern Language of Programs ; Plop
1999. Available at http://st-www.cs.uiuc.edu/~plop/plop99/ proceedings/.

Fernandez, E. B.; Yuan, X. Semantic Analysis Patterns. In: A. H. F. Laender, S. W.
Liddle, V. C. Storey (edsProcs. ofER2000 Conferencé&,NCS 1920, 2000. Springer-
Verlag Berlin Heidelberg, 2000.

Fowler, M.Analysis Patternsreusable object models. Menlo Park, CA: Addison Wesley
Longman, 1997.

Gamma, E. et alDesign Patterns:elements of reusable object-oriented software.
Reading, MA: Addison Wesley, 1994.

Goodchild, M. F., Geographical data modeli@gmputers & Geosciencegol 18, No 4,
1992, pp.401-408.

Hay, D. C.Data Model Patternsconventions of thought. New York: Dorset House
Publishing, 1995.

Johannesson, P.; Wohed, P. The deontic pattern — a framework for domain analysis in
information systems desigBata & Knowledge Engineering/ol.31, 1999.

Lisboa Filho, J.; lochpe, C.; Beard, K. Applying Analysis Patterns in the GIS Domain.
Procs. of Annual Colloquium of the Spatial Information Research Centre -.,SIRC
Dunedin, NZ, 1998.

Lisboa Filho, J.; lochpe, C. Specifying analysis patterns for geographic databases on the
basis of a conceptual framewoRkocs. of ACM Symposium on Advances in Geographic
Information System#ansas City, USA, 1999.

Lisboa Filho, J.; lochpe, C. Um estudo sobre modelos conceituais de dados para projeto
de bancos de dados geografid@svista IP-Informatica PublicaBelo Horizonte, Vol.1,
No.2, 1999a.

Marsura, P.Banking patterns home pagévailable at http://www.joeyoder.com/
marsura/banking/ (03/09/1999).

Meszaros, G.; Doble, JA pattern language for pattern writingAvailable at
http://hillside.net/patterns/Writing/ pattern_index.html (01/12/98).

Rawsthorne, D. A. A patterns language for requirements andyscs. of Workshop in
the Conference of Pattern Language of Programs - PMxhticello-Illinois, 1996.

Robertson, S.; Strunch, K. Reusing the products of analysis. Procs. of Int. Workshop on
Software Reusability, Lucca, ltaly, 1993. Available at http://www.atlsysguild.com/
GuildSite/SQR/reusingAnalysis.html.

Weber, E. J.; Lisboa Filho., J.; lochpe, C.; Hasenack, H. Geospatial metadata in Brazil:
an experience in data documentation of an environmental GIS applidatass. of Int.
Conference. Exhibition on Geographic Information (GISPlareshon, Portugal, 1998.
Wohed, P. Tool support for reuse of analysis patterns — a case study. In: A. H. F.
Laender, S. W. Liddle, V. C. Storey (ed§R2000 Conferencd,NCS 1920, 2000.
Springer-Verlag Berlin Heidelberg, 2000.

A PATTERN LANGUAGE FOR FAILURE DETECTION AND
RECONFIGURATION OF DISTRIBUTED SERVICES*

Marcelo B. d’Amorim Carlos A. G. Ferraz

Universidade Federal de Pernambuco
Centro de Informatica

Caixa Postal 7851, 50640-970, Recife-PE, Brazil
{mbd, cagf}@cin.ufpe.br

Abstract

The trading mechanism enables unprecedented opportunity for dynamic soft-
ware configuration, which is achieved by resolving dependencies among distributed
components. As embedded systems and handheld devices such as PDAs (Personal
Digital Assistants) and cellular telephones are becoming very popular, distributed
adaptability deserves special the attention of designers. In this context, dealing
with failure is a critical issue designers need to tackle in order to preserve reliability.
A component, for example, may stop running until it rediscovers a new service in-
stance that implements the same interface as the failed one. This situation may be
an essential requirement as long as the client is unable to perform its tasks without a
reference to that service, and it is very often referred to as dependence management.

1 Introduction

Configuration is frequently associated with evolutionary change of criticial systems with
long life duration. It attempts to assure reliability and predictability of components
usually under a distributed environment. These systems typically need to evolve along
with human needs. Technology and even the application environment change [15], and
these changes may range from existing functionalities, network partitioning, to host and
service failure.

The main benefits of software configuration are detailed in the following:

e Incremental Evolution - By considering reconfiguration as an issue at design time
applications obtain higher flexibility to adapt to changes during the long run or even
during its development. Critical systems, for example, may require run-time reconfigu-
ration without stopping the entire system. Software prototyping may benefit from the
flexibility of easily changing different application components [20]. Actually, different
software architectures could be tested with reduced effort.

*This paper was workshoped on the First Latin American Conference on Pattern Languages of Pro-
gramming - SugarloafPLoP. October 3-5, 2001 - Rio de Janeiro, Brazil.

e Fault tolerance - Damage caused by a fault in a distributed application can be mini-
mized by reconfiguring the elements comprising an application. Elements running on the
failed node can be re-deployed on new nodes and their cooperating elements instructed
on where to redirect their cooperating requests [20].

In order to enable reactive networks and component self-healing, the trading mecha-
nism [2]| provides a means to dynamically search for components based on its properties
and receive event notifications when these components are not available, however, trading
systems like Jini [7] and CORBA Trader [23] do not provide built-in support to automatic
distributed configuration of systems. In the presence of failures, components have to deal
with this issue programmatically in order to be recovered to a consistent state.

In addition, very often clients are designed to use the trading semantics to search for
services just at startup - configuration time. In this case, components will crash whenever
remote references become invalid, even though alternative implementations are available
on the network.

The Virtual Synchronism model attempts to keep in each member of a multicast
group the consistent view of the group. This is achieved by the implementation of a
membership protocol. Using election protocols, guarantees of message ordering, service
replication, and state transfering this model provides an elegant approach to tame fault
tolerance [1]. This approach deals with fault-tolerance at multicast group level thus
relieving clients from the task of reconfiguring their bindings. However, the middleware
support, like those provided by the Isis and Horus platforms [12, 27], must be reachable
by every node on the system. We believe that in large scale component networks, like
JTrader [2] and Ninja [24], it would be difficult to provide virtual synchronism. In this
case, client nodes would have to keep valid its bindings.

We argue for the need of distributed components to support reconfiguration in a
dynamic environment where new services become available while others fail. Not dealing
with this issue properly may introduce non-determinism since we cannot assure that
remote operations run correctly in the presence of invalid remote references. Actually, it
is very difficult to guarantee full client reliability. Considering that a step before a client
calls a remote operation the service fails, that client will indeed fail. In such situation,
the step time was not enough to reconfigure the system with a new running service.
In critical systems, however, this scenario is unacceptable, so the time frame to system
reconfiguration is likely to be smaller.

2 Pattern Language Overview

The pattern language is a set of related patterns. They deal with aspects related to
reconfiguration and failure detection. The Component Searcher is a high-level pattern
in the sense that it makes use of the other patterns in the language. It represents a
repository of valid service references which a client uses when needs to contact a service.

In order to promote dynamic configuration, the framework must verify service avail-
ability. When verification fails, it must trigger an event that causes the system to search
for a new service instance. There are different approaches to accomplish this task. The
pattern language suggests two alternative approaches for failure detection. The first
one, named Heart-beat, is intended for systems with a dedicate bandwith and hard-
availability constraints. The other is intended for systems with soft constraints, typically

asynchrounous distributed information systems. This one, named the Reverse Lease Sub-
scriber, relieves clients from frequently testing for the validity of service references.

Component Searcher Heart-beat Reverse Lease Subscriber

Leasing

{Heart-beatReverse Lease Subscriber

Figure 1: The pattern language

The diagram of figure 1 associates these patterns. The Component Searcher de-
pends on a failure detector, which has two alternative policies: the Heart-Beat and the
Reverse Lease Subscriber. Note that RLS uses the Leasing pattern. These patterns
are described in the following sections.

2.1 The Component Searcher

Overview

Contrasting with the design of fault-tolerant distributed services [18, 16|, this pattern
does not comply with starting replicas of services on-the-fly in order to assure there will
be a service running in the moment of a call. It monitors service availability and informs
the underlying infrastructure that a new service is required to be bound. It attempts to
detect faults [22, 19, 11] and reconfigure dependencies when they occur but it does not
assure the client will be serviced. We regard it as best-effort. Even though failures due
to service unavailability may not be completely removed with this approach, designing
distributed systems with this issue in mind reduces failure likelihood and eases system
administration.

Different policies to detect failure may be applied by implementing specialised service
monitors. Regardless the policy applied, the presented behavior is preserved. These spe-
cializations will be represented as independant patterns: the Heart-Beat and the Reverse
Lease Pattern (RLS).

Context

Components depending on distributed services that may fail.

Problem

The storage of remote references on the client code causes unpredictable behavior in the
presence of failures in the communication path between the client and service.

Forces

Unless the interaction of program modules with the pattern infrastructure is carefully
delineated, it becomes difficult to reuse the solution. We must then resolve the following

forces:

1. Awailability of dependent services - In order to achieve service reliability, we must
make every effort to continously provide the required service bindings. A good
solution would then increase this force.

2. Management of service references - Considering failures due to network patitioning
and service failure can occur, clients need to decouple the storage of service and
name server references of its representation.

Solution

The infrastructure presents a collection of classes aimed at configuring client-server de-
pendencies. A component, named Searcher mediates the current service configuration.
It is to be called by the AbstractMonitor whenever a change on the configuration state is
perceived!. Neither references nor names to services are stored within the Searcher, but
only service templates that declare general capabilities that an eligible running services
must provide. The properties of a service template are conserved during the long-term
execution of an application and are so more reliable than a service binding.

Whenever a service binding failure occurs, the AbstractMonitor calls back the Searcher
via its IUnavailableService interface in order to locate a replacement.

Instead of storing persistent references to services, clients must look for a reference on
the Searcher when they need to contact a service. This, however, does not assure a client
has a valid binding. If a service binding some client uses fails, it needs to request another
to the Searcher, which returns a valid reference, if one exists. Otherwise, it throws an
exception.

Static Structure

As presented in Figure 2, four components performing distinct and well defined roles are
responsible to provide automatic configuration. Clients interact only with the Searcher
component which is in charge to mediate interactions between the DiscoveryProxy, the
AbstractMonitor, and the ServiceCollection. In the following these components are
detailed:

ILookup - This interface enables the DiscoveryProxy to implement a two-phase discov-
ery protocol. Requests for services are enqueued on the DiscoveryProxy.

IDiscovery - This interface is used to configure the locations where services are hosted.

DiscoveryProxy - The discovery proxy isolates from clients the concept of a name server
to provide location transparency and extend the solution to other distribution platforms
that provide different discovery protocols. For example, when a Jini lookup service joins
on a group or is destroyed, the effects of these events are confined in this component.

! Actually, this pattern only deals with failure detection on component connections. A similar strategy
could be applied to cope with runtime changes of non-functional requirements, like end-to-end quality of
service degradation.

Poso sl il

PIriwad abieS ervic

Wy ruarmad v bR g e w2

S i__ll_ﬂ_l_l
| i e et
“1-;]'_|!r1|,|1_ femplais) ;- sTad
Srpiriman flempinie) et
[
|

i EBaracel ollaciion

| =

Aiu W SETA DA

‘i-.hllll-li!l.ul'.l.ll-_ procey
T

I s B

e Mindilemplate] - void.

Y
Dhsie® pwmiy

".u.'l:lll.lul:gl..u-. wid]

Figure 2: Pattern structural dependencies

It behaves like a federation where all required name servers are reachable?. As a result,
clients do not interact directly with name server instances.

AbstractMonitor - This class provides a means to service availability awareness. A
concrete implementation of this class may refine its behavior, for example, by introducing
active verification of remote references in a different thread of execution.

ISearcher - The interface used by clients to configure the searcher and request transient
service references.

IUnavailableService - This is a listener interface used by the monitor to notify the
searcher of a service failure.

TAvailableService - This is a listener interface used by the DiscoveryProxy to notify
the searcher of an available service.

Searcher - The searcher stores in a ServiceCollection object service templates (a
declarative description of a service) and the location (a semantic category of a name
service) where these services should be found. This information is updated by the client
via the ISearcher interface. The service collection update is also triggered by a listener
event.

ServiceCollection - An object of this type stores mappings between location objects
to service templates, which in turn maps to service proxies.

When a client needs to call a method on a service, it requests the Searcher for a
reference to that service. The Searcher in turn calls the ServiceCollection object for
the proxy that the template supplied maps to. If that service is not available, the searcher
then requests the DiscoveryProxy, through its ILookup interface, to find a service on
the network with the informed template.

2In Jini, a name server joins a group in accordance to the kinds of services it contains. For example,
a name server that joins on a “devices” group is supposed to contain proxies to devices.

Dynamics

A complete description of this pattern dynamics is presented on the RLS pattern.

Consequences

In the following, we present how the forces mentioned above are addressed by this pattern:

e Force 1 - The Searcher is charged of searching for alternative service bindings whenever
a fault occurs. A client requests the Searcher to retrieve a valid reference for the service
template provided.

e Force 2 - The framework behaves as a repository of service and name server references.
The communication between the framework and clients is done via semantic categories
and service properties.

Implementation

The client needs to create a Searcher object and inform what kind of policy it wants
to apply to detect faults, what services it will need in a near future, and where they are
supposed to be located. In the following, we show the initialization process of a client.
The code is implemented in Java and used some Jini classes:

AbstractMonitor monitor = ...; // a concrete monitor
Searcher searcher = new Searcher(monitor);
String group = "bank_systems";

ServicelD id = null;

Class[] types = {Accounts.class};

Entry[] entries = {};

ServiceTemplate template = new ServiceTemplate(id, types, entries);
searcher = searcher.add(group, template);

In a declarative manner, we specified a service by the properties it has, such as its interface.
The ServiceTemplate class of the Jini API represents this feature. We also informed the
Searcher to locate the group where a reference to this service is supposed to be stored.

As we will see, the initialization process is not synchronous. That is, references to
services are not available instantaneously after initialization. At any moment, however,
the client can execute an operation that calls a service. In this case, the client needs to
retrieve from the searcher the intended service. If the service is available the client is
able to proceed, otherwise, it should throw an exception or repeat the operation after a
short-time:

public void some_operation() ... {

Accounts service = (Accounts) searcher.retrieve(template);
service.operation(); ... }

The Searcher add operation requests the DiscoveryProxy to search for name servers
that store references to bank_systems. Prior to locating these name servers, it enqueues a
request to the DiscoveryProxy to find the intended service. Therefore, this operation does
not block waiting for the service. When the DiscoveryProxy finally finds the requested
service, it calls the Searcher via its IAvailableService inteface. The Searcher then

updates the ServiceCollection so that the retrieve operation will work properly when
called.

public class Searcher ... {
ServiceCollection repository;
IDiscovery disco;
ILookup lookup;

Searcher (AbstractMonitor monitor) {
this.monitor = monitor;
repository = new ServiceCollection();
DiscoveryProxy discoverer = new DiscoveryProxy((IAvailableService) this);
disco = (IDiscovery) discoverer;
lookup = (ILookup) discoverer;

public synchronized void add(String group, ServiceTemplate template) {
repository.add(group, template);
disco.addGroups (group) ;
lookup.find(template);

2.2 The Heart-Beat (Patlet)

Intent

To actively verify the availability of resources on the network.

Problem

Services eventually fail, hosts eventually crash, networks eventually partition. Reliable
distributed systems must deal with these kinds of problems.

Context

Distributed systems whose resources may fail need to adapt to changes.

Forces

e Coordination - A client needs to actively (by its own) detect if a server has failed in
order to rearrange its bindings before any operation be performed.

e (Quverhead - In order to achieve an acceptable overall performance, the solution should
minimize overhead.

Solution

In order to deal with a service failure in advance of an operation request, the application
creates a concurrent thread of execution to frequently test if a service and the network
are reachable.

Example

Even though RMI [26] does not provide such support on its public API, programmers can
simulate a method call by using the invoke() method of the RemoteRef instance, which is
retrieved from the stub’s getRef() method. If a ConnectException is thrown in this call,
the test is regarded as failed. Alternatively, it is still possible to construct RMI “ping”
packets, as described on JDK1.3 RMI documentation [25], to verify if the RMI server is
still alive.

2.3 The Reverse Lease Subscriber (RLS)

Overview

The Reverse Lease Subscriber proposes a means to detect failures on distributed services
that a component depends on by requesting these services to renew leases [13] on it.
While leases are properly renewed, a component is aware of dependant services availability,
otherwise, components need to arrange for a replacement of its bindings and must suspend
requests in this between.

Intent

Verify the availability of resources on the network.

Problem

Services eventually fail, host eventually crash, networks eventually partition. Reliable
distributed systems must deal with these kinds of problems.

Context

Distributed systems whose resources may fail need to adapt to changes.

Forces

We must resolve the following forces:

1. Reactivity - A component needs to detect a failure of any kind in the path between
a client and the service.

2. Peformance - The solution should achieve an acceptable overall performance.

Solution

This pattern defines a failure detection policy, which uses the concept of resource leasing
(see the next patlet). To implement the policy we need a service monitor capable of
implementing the leasing strategy. The ConcreteLeaseMonitor represents this monitor.
It extends the AbstractMonitor class, presented on the Component Searcher pattern.

The monitor asks to the service, by means of the IReverseLeaseSubscriber interface,
to renew a lease it supplies. The service then starts to renew the lease through the
Landlord object which the lease is able to contact. This object is hidden within the
ConcreteLeaseMonitor object and it is supposed to be transparent to both the service
and the client programmer. When the lease becomes expired, the ConcreteLeaseMonitor
issues a local event directly to the searcher through the IUnavailableService interface
in order to locate a replacement.

Even though most lease grantors are server-side components, this is not a requirement
at all. In fact, in RLS the service component performs the holder’s role and the client, the
lease grantor’s. This lease pattern of use is here called reverse lease subscriber because,
in contrast to regular leasing, in RLS the lease grantor starts the lease protocol. By
requesting services to renew its leases on the client, such client becomes aware of eventual
failures as long as leases become expired.

Service ' Service Service
_ L\ \ \
IReversel easeSubscriber () O O
Lease
(O Landlord
\
Of Searcher 7@ ConcreteleaseMonitor
|Searcher IUnavailableService

Figure 3: Reverse Lease Subscriber

In the following, we summarize the Reverse Lease Subscriber pattern solution by
delineating the tasks it performs:

1. A client locates a service via the searcher.

2. The monitor tells the registered services to maintain a lease with it. The lease
monitor is responsible for ensuring a service maintains a lease, indicating that it is
available, or else it tells the searcher that the service is no longer available.

3. If a service becomes unavailable, the searcher attempts to locate a replacement.

4. When a client detects a service has failed - this will probably cause a kind of remote
exception to be thrown and catched - it requests the searcher for a new reference.

Static Structure

Now we describe the structure of the RLS pattern by describing its core components.

Lease - This object represents a contract between two entities. If the lease expires the
contract is no longer valid. The lease holder needs to request the grantor for renewall in
order to avoid the lease to become expired.

IReverseLeaseSubscriber - This is the interface which the ConcretelLeaseMonitor
contacts in order to request a service to start the RLS protocol.

Landlord - The interface contacted to renew a lease. An object of this type should also
clean up expired leases in order to maintain a consistent view of resource in use.

IUnavailableService - This is the interface the ConcreteLeaseMonitor contacts to
inform the Searcher that a service previously bound is no longer valid.

ConcretelLeaseMonitor - This type implements a passive and lightweight® policy to
handle service availability by extending the AbstractMonitor class. This component is
a lease grantor and is also responsible to start the lease protocol. When requested for
testing availability of a given service, it contacts the IReverseLeaseSubscriber interface
the service is supposed to expose and then invokes its pleaseRenew() method, passing a
Lease object as parameter. Through the Lease object, the service should call back the
Landlord interface the ConcreteLeaseMonitor exposes before the lease timeout runs.
The ConcreteLeaseMonitor actively verifies expired leases it stores. When an expired
lease is perceived, this component calls the IUnavailableService interface that the
Searcher exposes, informing which template requires reconfiguration.

Dynamics

Figure 4 presents a practical scenario where a client configure the Searcher component
to search for service instances and keep valid their references. This scenario uses RLS
pattern to implement the monitor and introduces a failure event that avoids the service
to renew the lease.

After acquiring a service proxy, the searcher requests the service implementation to
lease the proxy at the client. This is accomplished by calling the pleaseRenew() method
on the TReverseLeaseSubscriber interface. As long as leases become expired due to a
failure in a service, for example, new service references need to be located and old ones
discarded.

Executing under a different thread of control, the ConcreteLeaseMonitor frequently
scans for expired leases. When some is found, a message is sent to the searcher in order
to update the set of available services.

Consequences

The major liability this pattern presents is related to its scalability:

3We regard this approach as lightweight because clients are not required to open a connection to the
server in order to notice that everything is all right; such responsibility is charged to the service, and so
the approach is also passive as the client is relieved from frequently testing the bindings.

aClient : Searcher : ServiceCollection : DiscoveryProxy : Concreteleasemonitor lease : Lease O

IReuerseLe;—EeSuhscliher
H
'

addigroup, temp|ate)

add(group,templat%) this request in enqueued j

until Discowe nP rosy
locates the name server

addGrouplgroup) i '

g

find(te mplate)

'

H
DizeovenProxy locates the
name senver and a service
that conforms with the

informed template

smeee

availablettemnplate, prosad) .-~

updateftemplate, plroxyj

manitonprosy

EnEmEE '

: ;
' pleaseReneweaze) |
: |

H i ren e
] renen) '
'

unavailableitempl dte) j J
) timeout runz.

'
N update(temnplate, nuI,I)

]

FE

Figure 4: Configuration scenario

e This pattern enforces services to implement an interface the monitor must access
in order to start the reverse lease protocol. This is the IReverseLeaseSubscriber
interface. This requirement may not scale well if a client needs to access services
on heterogenous networks, when we cannot enforce which interfaces services should
implement.

In the following, we present how the forces mentioned earlier are addressed by this
pattern:

e Force 1 - The monitor is aware of unavailability of service without requiring any
communication with it. It is a kind of negative acknowledgement.

e Force 3 - RLS defines a tradeoff between reliability and performance. Differently
from mechanisms based on active tests, with reverse leasing the client component
is supposed to suffer lower impact on performance. This occurs because commu-
nication overhead is charged to the service component. An active approach, like
Heart-Beat, that creates a separate thread of control on the client to test for service
availability is likely to consume much more CPU. It also introduces a non-despicable
delay because it opens a connection to the server endpoint just to test if it is alive.

2.4 Leasing (Patlet)

Intent

The leasing pattern simplifies resource management by specifying how resource users can
get access to a resource from a resource provider for a pre-defined period of time.

Author
Prashant Jain & Michael Kircher

Context

Systems where resource usage needs to be controlled to allow timely release of unused
resources.

Forces

o Simplicity - The management of resources should be simple by making it optional
for the user to explicitly release the resources that it no longer needs.

o Awailability - Resources not used by a user should be freed as soon as possible to
make them available to new users.

e Actuality - The system load caused by unused resources must be minimized. More-
over, a user should not use an obsolete version of a resource when a new version
becomes available.

Solution

The concept of leasing is that resource access is valid only for a period of time, which is
negotiable between the entities involved in the lease protocol. The protocol establishes a
contract between parties involved. A lease should be renewed within the agreed time to
avoid the contract from being discarded. This causes the resource to be freed. Therefore, if
the client of a resource crashes, the resource it used will not remain allocated indefinitely
and inconsistently to the client, but only until the lease to that client expires. The
participants in the leasing protocol are the leased resource, the lease grantor, and the
lease holder. A resource is an abstract concept and may be memory, computation, event
notification, among others. A lease grantor is the entity serving the resource, and the lease
holder is the client of such resource. In general, the lease holder is a client component
and the lease grantor is the service.

Example

For example, consider that service registrations are leased on a name server. Requesting
to register the service proxy on the name server causes a lease to be returned. Through
such lease the service should reinforce its interest on being located. We can expect that
when services fail, registration leases are not renewed. As a result, the name server will
clean up offers whenever leases become expired. In this example, the lease resource is

represented by the service offers (proxies) stored on the name server, the lease grantor is
represented by the name server; and lease holders by the service implementation.

3 Applicability

When the distribution platform guarantees the availability of a service through some
mechanism like that specified in fault-tolerant CORBA [11], this approach does not seem
of practical use as the platform introduces a transparent server-side layer to implement
fault-tolerance. On the other hand, the distribution platform may indeed use this ap-
proach under-the-covers to detect failures of its dependants components. Likewise, this
pattern does not seem suitable for services designed in accordance to a group membership
protocol [17, 18] as this protocol assures the atomicity and consistency of service groups
transparently to the user.

We regard this pattern as suitable to monitor and automatically reconfigure distributed
systems that comply with a service trading semantics on large-scale networks such as
computational grids [10, 8], and service federations [3, 24]. On asynchronous and dynamic
environments it is unlikely that clients will know exactly where services are located or
the names they should be referenced. We believe that, in this context, services should be
located by properties and interfaces.

4 Known uses

The pattern aims at failure-detection on highly-distributed software systems like those
supposed to be developed with the support of an Internet service federation. The JTrader
system [2] is an example of such a federation of services that is based on the Jini technology.
Services and clients are able to join this federation with the support of a toolkit [4] which
actually uses this pattern to control availability of the services on the federation.

5 Related patterns

Facade [9, 5] and Proxy [9] - The DiscoveryProxy resembles a facade as long as users
are not able to access directly name servers instances. Note that name servers may also
fail. This component provides a public interface whereby clients can configure which name
servers are likely to be contain the intended service offers. Passing a service template,
clients can issue a lookup operation as if the local DiscoveryProxy were the real name
service. So it also behaves like a proxy [9, 6].

Mediator [9] - The Searcher complies with the mediator pattern as long as it drives the
interaction among dependent components, say DiscoveryProxy and ServiceCollection.

Lease [13] - According to the lease pattern, the ConcreteLeaseMonitor is a lease grantor
and the IReverseLeaseSubscriber the lease holder.

Publisher-Subscriber [9] - According to the Observer pattern, also known as Publisher-
Subscriber, the Searcher performs the role of the subscriber and the AbstractMonitor,
the role of the publisher. This enables asynchronous messaging between these components.

Acceptor-Connector [21] - “The Acceptor-Connector design pattern decouples connec-
tion establishment and service initialization in a distributed system from the processing
performed once a service is initialised. This decoupling is achieved with three components:
acceptors, connectors, and service handlers” [21]. According to this pattern, we can regard
the TReverseLease Subscriber as an instance of an asynchronous acceptor component,
while the ConcreteLease Monitor performs the role of the connector. The Lease is the
service handler used to contact the client handler, represented by the Landlord interface.

Service Configurator [14] and Component Configurer [20] - Similarly to these
patterns the Reverse Lease Subscriber aims at configuring components with their depen-
dencies. However, they also present significant differences. For example, the discussed
pattern does note tackle the problem of starting new instances when a service fails be-
cause we rely on a trading mechanism and thus we expect that a new running service,
which implements the required interface, be available on the system. In addition, Ser-
vice Configurator and Component Configurer assume the existence of a centralized name
server (or manager) where the services are supposed to be registered. In turn this pattern
relies on the trading semantics where services are discovered in accordance to their char-
acteristics, which include the interfaces they implement. Finally, we observed that these
patterns do not aim at supporting adaptability to runtime changes, but just to static or
user-directed changes?, while the Reverse Lease Subscriber deal with fault-detection on
component bindings (connections).

6 Acknowledgments

We would like to thank our colleagues at Universidade Federal de Pernambuco - Paulo
Borba and Vander Alves - who made suggestions about content to improve this paper.
During the PLoP conference Jim O. Coplien and Jerffeson Souza were also very helpful
suggesting us to format this pattern as a pattern language. Thanks to all PloPers.

We are also very grateful to Brian Wallis, the sheperd we were granted during the re-
vision process of the SugarloafPLoP conference, for his comments and careful supervision
throughout the process.

References

[1] K. Birman. Virtual Synchrony Model. Reliable Distributed Computing with the Isis
Toolkit., 1994.

[2] Marcelo B. d’Amorim. Service Trading on the Internet, the JTrader approach, May
2001. Univ. Federal de Pernambuco. M.Sc. dissertation.

[3] Marcelo B. D’Amorim and Carlos A. G. Ferraz. A Design for JTrader: an Internet
Trading Service. In Thomas Bohme and Herwig Unger, editors, Proceedings of the
Innovative Internet Computing Systems, International Workshop IICS 2001, volume

4 A kind of configuration which is triggered by the intervention of the user, probably a system admin-
istrator.

[15]

[16]

[17]

18]

2060 of Lecture Notes in Computer Science, pages 159-166, [Imenau, Germany, 21th-
22th June 2001. Springer.

Marcelo B. D’Amorim and Carlos A. G. Ferraz. Designing Jini distributed services: A
framework to support the development of reliable component networks. In David H.
Lorenz and Vugranam C. Sreedhar, editors, Proceedings of the First OOPSLA Work-
shop on Language Mechanisms for Programming Software Components, pages 60-67,
Tampa Bay, Florida, October 15 2001. Technical Report NU-CCS-01-06, College of
Computer Science, Northeastern University, Boston, MA 02115.

Douglas Schmidt et al. Pattern-Oriented Software Architecture: Patterns for Con-
currency and Networked Objects. John Wiley & Sons, September 2000.

Frank Buschmann et al. Pattern-Oriented Software Architecture: A System of Pat-
terns. John Wiley & Sons, August 1996.

Ken Arnold et al. The Jini Specification. Addison-Wesley, December 1999.

I. Foster and C. Kesselman. Globus: A Metacomputing Infrastructure Toolkit. The
International Journal of Supercomputer Applications and High Performance Com-
puting, 11(2):115-128, Summer 1997.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns.
Elements of Reusable Object Oriented Software. Addison-Wesley, Jan. 1995.

A. Grimshaw, A. Ferrari, F. Knabe, and M. Humphrey. Legion: An Operating
System for Wide-Area Computing. IEEE Computer, 32(5):29-37, May 1999.

Object Management Group. Fault Tolerant CORBA Specification, December 1999.

IONA and Isis. An Introduction to Orbiz+Isis. TONA Technologies Ltd. and Isis
Distributed Systems Inc., 1994.

Prashant Jain and Michael Kircher. Leasing. Pattern Language of Programming -
PLOP’2000. Allerton Park, Monticello, Illinois, USA, 13th—16th Aug. 1996.

Prashant Jain and Douglas C. Schmidt. Service Configurator: A Pattern for Dynamic
Configuration and Reconfiguration of Communication Services. In #rd USENIX An-
nual Pattern Languages of Programming Conference, Allerton Park, Illinois, pages
209-219, 1997.

J. Kramer and J. Mageee. Dynamic configuration for distributed systems. [FEFE
Transactions on Software Engineering, SE-11(4):424-436, 1985.

S. Landis and S. Maffeis. Building Reliable Distributed Systems with CORBA.
Theory and Practice of Object Systems, 3(1):31-43, 1997.

Silvano Maffeis. Electra-Making Distributed Programs Object-Oriented. In Proceed-
ings of the Useniz Symposium on Ezxperiences with Distributed and Multiprocessor
Systems, pages 143-156, San Diego, CA (USA), 1993.

Silvano Maffeis and D. Schmidt. Constructing Reliable Distributed Communications
Systems with CORBA. IEEE Communications Magazine, 35(2):56—61, 1997.

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

Balachandran Natarajan, Aniruddha S. Gokhale, Shalini Yajnik, and Douglas C.
Schmidt. Applying patterns to improve the performance of fault tolerant CORBA.
In HiPC, pages 107-120, 2000.

Francisco Assis Rosa and Antonio Rito Silva. Component Configurer. In Proceedings
of the 2nd European Conference on Pattern Languages of Programming - EuroPLoP
'97, pages 209-219, 1997.

Douglas C. Schmidt. Acceptor-Connector: An Object Creational Pattern for Con-
necting and Initializing Communication Services. In Frank Buschman Robert C. Mar-
tin, Dick Riehle, and John Vlissides, editors, Pattern Languages of Program Design
3. Addison Wesley, 1997.

Anténio Rito Silva, Fiona Hayes, Francisco Mota, Nino Torres, and Pedro Santos.
A pattern language for the perception, design and implementation of distributed
application partitioning. October 1996. Proceedings at OOPSLA’96 Workshop on
Methodologies for Distributed Objects.

OMG Specification. Trader Update Package, 1997. OMG97M CORBA Services
Specification, Trader Update Package, OMG document FORMAL/97-618, Available
at ftp://ftp.omg.org.

Steven D. Gribble et. al. The Ninja Architecture for Robust Internet-Scale Systems
and Services. Special Issue of IEEE Computer Networks on Pervasive Computing (to
appear), 2000.

Sun Microsystems. RMI Wire Protocol, The Acknowledgement Ping Packet. Avail-
able at http://java.sun.com/j2se/1.3/docs/guide/rmi/spec/rmi-protocol3.html.

Sun Microsystems. Java Remote Method Invocation Specification, 1.50 edition, Oc-
tober 1998.

R. van Renesse, K. Birman, B. Glade, K. Guo, M. Hayen, T.M. Hickey, D. Malki,
A. Vaysburd, and W. Vogels. Horus, a Flexible Group Communication System.
Communications of the ACM, 39(4):76-83, April 1996.

Proxy-to-Proxy*

A Design Pattern for Leveraging Security on
Highly distributed Internet Applications

Marcelo B. d’Amorim and Carlos Ferraz

{mbd, cagf}@cin.ufpe.br
Universidade Federal de Pernambuco
Centro de Informatica
Caixa Postal 7851, 50640-970, Recife-PE, Brazil

Abstract

Internet distributed applications often have to deal with security in design and,
depending on the kinds of applications and users they have, different solutions to
tame this issue should be applied. When the application is designed in accordance
to a strict architectural layering and a single remote object provides every system
operation, dealing with security is supposed to be simpler. This is due to the
fact that users firstly access this facade object, which should be quite permanently
registered on the firewall. This arrangement allows the facade to receive incoming
calls through the network and mediate access to other objects. However, when users
need to reference remote objects that appear on the network in a non-deterministic
basis, an approach to dynamically register and access these objects under the firewall
is required. This work defines a pattern to handle security on systems like JTrader,
a Jini-based service federation on the Internet, whereby an unpredictable number
of remote objects are supposed to be registered. In this case, the federation dictates
the way objects are to be made reachable.

Intent

Specify a means to configure distributed services on an application-level gateway [8]. The
Proxy-to-Proxy pattern defines a reference monitor [14] to a service and its creational
mechanism. The monitor extends a service with new capabilities without affecting its
code. It also gives rise for separation of concerns, which are not related to the service
functional aspects, like security in a worldwide service federation.

*This paper was presented on the First Latin American Conference on Pattern Languages of Pro-
gramming - SugarloafPLoP. October 3-5, 2001 - Rio de Janeiro, Brazil.

Motivation

Security is a very important issue to enable distributed computing as it must be resolved
without opening ports for hackers nor imposing barriers to developers and users. A suit-
able approach to handle security in a particular system should consider in what conditions
such system should be used. Internet users, for example, are unlikely to configure proxies
and firewalls in order to access distributed objects. Even applications where security is
considered well handled sometimes face problems when a new component is introduced
or a new user is prevented from accessing the system due to a severe security policy
or improper configuration. In general, when a very strict and specific security policy is
used to enable secure client-server interoperability, users and services may face difficult
configuration problems.

In addition, most solutions introduce some kind of overhead to resolve security. For
example, in order to control access to enterprise resources, system administrators com-
monly define a small set of ports which Internet users are able to contact, thus imposing a
bottleneck in the system. Actually, very often system administrators open only one port
per protocol or maybe none.

In this light, security is very related to two conflicting design issues:

e Scalability- The introduction of new elements, such as a new user trying to access
the system outside the trusted network or a new server-side component on a large-
scale network, may influence security. This issue is especially important concerning
a scenario whereby users require accessing a system without previous configuration,
such as the Internet.

e Performance- Adding new components between clients and servers to tame security
is likely to introduce computational and communication overhead.

Security support for client-server applications is supposed to be better handled than
that for really distributed ones. There are plenty of application-level gateways' [8, 11]
which can monitor remote calls to a server through a firewall. The system administrator
is only charged with configuring the gateway to accept calls on the service facade object,
representing the entry-point of a system [16]. The system administrator could indeed
define, in a declarative manner, which operations are allowed access and to which users.
Note this approach differs from that of [7] as it attempts to declare permissions in a
centralized server, that is the application-level gateway.

However, when there is not a single object to be configured on the gateway but several,
when they become available on a non-deterministic basis, and also when these objects
do not run on the same machine but are distributed on a local area network; static
configuration of an application-level gateway is unlikely to succeed. This work defines a
pattern to deal with this dynamism. In the following sections we define its structure and
behavior. That is, the major classes and its dependencies with the framework and, the
sequence of tasks that objects should perform to automatically register services with the
gateway.

'In contrast to circuit-level, application-level gateway are able to monitor an specific kind of protocol
communicated between peers and thus, they are only allowed to impose constraints/rules with regard to
that protocol.

Forces
The pattern should conform to the following forces:

1. The major concern of this pattern is to enable configuration of remote services on
the firewall in a dynamic way. That is, the binding can occur during the application
execution.

2. It must resolve limitations related to the service runtime platform. In the case of
RMI (Remote Method Invocation) [9], for example, the RMI name server enforces
remote objects to execute on the same host it executes, which is not a desirable
feature in order to conserve scalability. In this case, all system’s objects must have
been running on the same host, that is, the host where the name server was running.

3. In order to ease maintenance, and increase legibility and extensibility; it must be
easy to isolate responsibilities of components based on the separation of its concerns.

Example

Considering the case an RMI proxy is selected as an application-level gateway, it enables
transparent connectivity both in a very restricted configuration where a firewall does not
allow outbound or inbound TCP connections, as in an environment that allows these
connections by a SOCKS server. Naturally, an RMI proxy also supports connections
when there are no firewalls involved, as the case of ISP (Internet Service Provider) POP3
connections. Figure 1 illustrates a configuration where RMI Registry [15, 9] does not
execute on the same host as the RMI proxy. Due to load balancing, this organization is
well suited for proxy servers that need to host several objects.

,_,@ server

@ m\ RMI

[|G G

proxy

lookup
Registry

()

O @ skeleton - server host.1.companyA oo 2compah
N O client - stub

N name server -
O stubs

Figure 1: RMI Proxy organization using multiple hosts

In the light of the diagram legends, we conclude the RMI proxy actually performs
three tasks: it is a name server and also a server to RMI clients, and it is a client to the
actual remote object implementation. This arrangement allows clients to access a single
and secure endpoint - the RMI Proxy - that conveys communication traffic to a local
network endpoint where the remote object is supposed to be running. As a consequence
of being also a name server, Figure 2 presents an organization where the RMI Registry

/ server

client

proxy

host_1.companyA

lookup

Figure 2: RMI Proxy organization

component is discarded and the remote object uses the RMI Proxy to bind a name. This
is only possible because the RMI proxy is also a name server.

As soon as the facade object, representing the service, is exported to the RMI system
and properly bound to the RMI proxy, it can be accessed in remote locations. However,
this is not enough to resolve communication since the facade object should indeed return
other remote object references. If the facade returns to the client a stub to an object
running on some network host, the client would unsuccessfully try to access that remote
object directly. It should be accomplished through the RMI proxy. Therefore, remote
objects returned by the facade should also be registered on the RMI Proxy whenever
they are requested. This causes the gateway (RMI Proxy) to create a skeleton object
on-the-fly (sk2) to receive communication on behalf of the actual server (server), and
then returns a remote stub (st2) that refers to this skeleton, rather than to the actual
skeleton object (sk1). Another problem occurs when the federation does not have access
to remote references in order to register them with the RMI proxy. In fact, this situation
is very common when working with Jini [1] as it very often represents remote objects as
non-remote proxy objects 2. In this case, the actual remote reference is stored within the
proxy object and we do not have access to it.

The Proxy-to-Proxy approach defines another level of indirection in order to access
these objects remotely. The pattern defines a proxy object that stores a reference not to
the actual remote object, but to a new remote one that is to be bound to the application-
level gateway. This new remote object stores in turn a reference to the original (actual)
proxy object, so it delegates operations to it.

Figure 3 sketches the dependency between the additional proxy object and the new
remote object created to provide firewall access to a Jini Lookup Service (on the left-side of
the diagram), and also the dependency between the original Lookup Service and its proxy
(on the right-side of the diagram). Note the JTServiceRegistrar has a dependency
with a ServiceRegistrar type, which is the interface Lookup Service proxies should
implement. ServiceRegistrar is not a remote type, so it is not enforced to throw
RemoteException on its operations. This makes sense as the proxy is a local object, and
therefore this type only throws remote exceptions when it requires to access the remote
object, represented by the actual_ServiceRegistrarImpl.

2The service proxy in Jini is defined as a class that implements the service interface and it is not
required to conform to any distribution platform. It may be locally implemented, use sockets, HT TP
connection, CORBA, RMI, etc. The proxy is supposed to be downloaded to the client’s address space
prior to the client access to the service.

ServiceRegistrar

JT ServiceRegistrarProxy actual_ServiceRegistrarProxy
|ServiceRegistrar l ?
<<Remote>> CP <<Remote>> 9
JT ServiceRegistrar actual_ServiceRegistrarlmpl

Figure 3: Applying the pattern to the Jini Lookup Service

On the other hand, every operation JTServiceRegistrarProxy implements is sup-
posed to call a remote object since it does not store local state due to the need to en-
sure consistency. So, we have a problem. All JTServiceRegistrarProxy operations are
remote but not necessarily all ServiceRegistrar operation are. Java does not allow
overriding operations that throw exceptions not declared in their superclass. This makes
sense as a client cannot catch an unexpected exception from an interface implementation.
Therefore, it means that JTServiceRegistrar cannot implement the ServiceRegistrar
interface directly. Actually, it implements an equivalent interface that throws remote ex-
ceptions in all operations, the IServiceRegistrar interface, which is a Remote interface.
Similarly to the right side of the diagram, the specific protocol that the proxy and the
remote object use is well hidden from their clients.

Solution

In most distribution platforms the concept of a service interface is very often related to
communication. In CORBA [10], for example, the stub component behaves as a proxy to
the service which is located at the client’s address space and so, it must implement the
service interface and contact the actual remote object through the wire. However, the
concept of a service interface may be made independent of the communication platform
selected as Jini [1] suggests. In this context, a proxy is a component that implements the
service interface and nothing more. The stubs used in CORBA or RMI are indeed proxy
instances and therefore they conform to this principle. However, proxies do not need to
be necessarily stubs; they could be any kind of object that simply implements the service
interface. It could be a local implementation, or even contact different remote objects to
implement the interface. In this work we conform to this principle, which recognizes the
difference between a service proxy and a stub.

The pattern extends the service interface by defining a new type - Prozy - that does not
call the service directly but uses a different remote implementation to accomplish it - the
IRemoteProzry. As stated before, the remote proxy implementation - RemoteProryObject
- does not necessarily implement the same interface as the proxy. In the same way as
the Interceptor [13] and Reflection [2] this pattern gives an opportunity to intercept calls
made to the original service implementation.

Figure 4 generalizes the structure of the components from the example presented on

roxy-to-prox:
Proxylnterface - Proxytoproxy ParentObJect

Proxy

Remotelnterface registered;

Proxy(String host, String id, Proxylnterface object);®,

try {
name = host + id;
registered =
(Remotelnterface) Naming.lookup(name);

} catch (NotBoundException e) {
registered = new RemoteProxyObject(object);
Naming.rebind(name, registrar);

}

RemoteProxyObiject

actual proxy

Figure 4: The Proxy-to-Proxy pattern

figure 3.

Applicability

This pattern applies when the number of remote objects managed by the system is rel-
atively large, and therefore static configuration is not well suited because of the non-
determinism in which objects appear on the system. The JTrader system [3] is a federation
of services based on the semantics of trading, which applies this pattern.

Another common application of the pattern is to enable interception of remote calls.
Interception provides, for example, a means to control security, increase fault tolerance
and load balancing. However, as stated before, this is not a particular feature of this
pattern. In the “Related Patterns” section we contrast the differences between Proxy-to-
Proxy and other related patterns.

Static Structure

In the following, we describe classes, their collaborations and responsibilities. The high-
lighted boxes represent types that already exist prior to the pattern be applied and they
play a special role in the pattern behavior.

e ParentObject - This type is usually a facade class providing, through its meth-
ods, access to other remote objects. Although not presented in this diagram, client
components access the ParentObject to retrieve references to ProxyInterface ob-
jects. The parent object in turn should not return references to the actual proxy
implementation but to a Proxy object.

Responsibilities:

— Build Proxy instances enabled to forward messages to the actual prozy’.

3Represented in the association between RemoteProxyObject and ProxyInterface.

Collaborators: Actual Prozy (not depicted in this diagram), Proxy, and ProxyInterface.

e ProxylInterface - This type appears highlighted in figure 4 because it is the com-
mon interface implemented by both the actual proxy and the Proxy. ProxyInterface
is the type clients rely on to program their components and it is also a local type
since the protocol used to contact a service is supposed to be hidden within the
proxy code.

Responsibilities:
— Provide a complete set of operation to clients access an object.

Collaborators: client component (not in the diagram), actual prozy (not in the
diagram), Proxy, ParentObject.

e Proxy - Proxies implement the ProxyInterface.

Responsibilities:

— Hide the specific protocol used to contact the remote proxy-to-proxy object.

— Build an IRemoteProxy instance and bind this object to the proper application-
level gateway.

Collaborators: ProxyInterface and IRemoteProxy.

e IRemoteProxy (optional®) - This is the remote interface of the proxy-to-proxy
remote object. It may declare the same operations as the ProxyInterface, but
throwing remote exceptions; or declare a completely different protocol.

Responsibilities:
— Declare the methods through which a remote object can be called.
Collaborators: Proxy and RemoteProxyObject.

e RemoteProxyObject - This type, also referred to as the proxy-to-proxy remote
object, implements the IRemoteProxy interface.
Responsibilities:

— Add some capability to the service on top of the original (actual) remote object
implementation, which is only supposed to consider the service’s functional
aspects.

— Forward calls to the actual proxy object.

Collaborators: Proxy, IRemoteProxy, and actual prozy (not in the diagram).

4If every ProxyInterface operation is remote or some of its local operation is not supposed to be
called, this type may not be required and, in this case, the RemoteProxy0Object could implement the
ProxyInterface directly.

aClan | P are Db | aCluE_prosy PRy 10 pideny - Prosy | | [T | [= 5 Il

P ey iril et & | Rl el ooy Ol e

| | | Az amesull ol some oporation |
| [[tha PanntObsect parforms. a

] 2 | | e EENCE 10 A mmote thjact
SOMe o :
: | e —{En e mRTd

|

|

|

| mbaes]] o~ I
T I I

|

|

|

< Nigliast, 0 actual ory) == |

L
Iy)
1 oo M iEoueE ey ==

host 15 the machne whare 1 i i -e-l:rﬂ:&;:t‘l!
tiva Bk Praecy 15 nnning, |
and id 15 thie identilcabion for
proy_to prosy | b actual prony

Figure 5: Interaction diagram

Dynamics

The diagram of figure 5 illustrates the interactions between the components mentioned
above and the following steps, providing additional meanings to the invocations repre-
sented on the diagram.

1.

The client invokes an operation, say some_op(), on some remote object, represented
as an ParentObject instance.

During the operation execution, the parent object calls a method which returns a ref-
erence to another remotely accessible object, here represented by the ProxyInterface

type.

Instead of returning that remote object directly to the user, a new proxy object
(Proxy) is to be created, passing as parameter the host in which the application-
level gateway is running, an identification for the object, and a reference to the
actual proxy object (ProxyInterface).

Create the RemoteProxyObject that the Proxy refers to.
Bind the RemoteProxy0Object to the application-level gateway.

Finally, the Proxy object is returned® to the client through the method invoked
on the parentObject. Such object actually stores a reference to a remote object,

5Despite we suggest the reader that the proxy is actually a full-fledged object, it may be just a reference
to the RemoteProxy0Object. By the way, this is how remote objects are passed (IOR) in CORBA remote
invocations. Note that we have stated earlier that stubs are also a special kind of proxies.

registered on the application-level gateway, which behaves like a reference monitor
to the original service.

Consequences

As design is very often an engineering between competing forces, this pattern is not an
exception. We describe in the following negative consequences this pattern brings.

e Garbage Collection. As long as the RemoteProxyObject only forwards messages
to the original remote object, such actual remote object can fail and, in this case,
the RemoteProxyObject instance would remain registered on the application-level
gateway (e.g. RMI Proxy). This situation leads to a more difficult procedure for
garbage collection because of the dependency between these objects.

e Performance. Due to security reasons, an application-level gateway very often uses
a single network port to convey communication to objects registered on it. Besides
the performance overhead a firewall usually introduce for this reason, the proxy-
to-proxy arrangement introduces an additional indirection between a remote object
and its clients.

Even though the proxy-to-proxy strategy introduces overhead related to indirection of
remote calls and also turns far more difficult managing garbage collection on the firewall,
it introduces some relevant benefits:

e Introduce additional capabilities. It is possible to modify the default behavior of an
object as we can intercept calls made to a proxy. Therefore, an operation can be
modified or we can introduce additional capability to the service, such as dealing
with faults on remote references or balancing the system load. Moreover, applying
some security policy based on a version of the access matrix [12] is direct. The
proxy-to-proxy object, for instance, may be in charge to searching for access rights
on the matrix on behalf of the actual remote objects.

e Separation of concerns. As the original service implementation is well decoupled
from the proxy-to-proxy, we can reuse these capabilities in similar applications.

e Locality Freedom to the Service. According to the RMI specification [15], RMI server
objects must run on the same host as the RMI Registry. [t means remote objects
should run on the same machine as the RMI proxy. Actually, this requirement
imposes a hard constraint that mainly affects scalability on distributed systems.
However, the proxy-to-proxy arrangement resolves such limitation. The remote
object registered on RMI Proxy is not the remote object itself, but a second one
that behaves like the original and forwards messages to it. In other words, the
object registered on the RMI proxy is a client of the actual remote object and then,
it relieves the original server (actual prozy) from running on the application-level
gateway. However, the proxy-to-proxy is also a server and so, the object which
creates it (ParentObject) should be running on the same host as the application-
level gateway.

e Enable Activation®. Even if service proxies allow access to remote object references,
the RMI Proxy may not permit to register remote references. This situation happens
when the reference is to an activatable remote object. This special kind of remote
objects is used very often in Jini service to increase fault-tolerance and avoid resource
waste [9], but it is not well supported by current RMI Proxy implementations [11].
When using the proxy-to-proxy approach, this constraint does not apply for the
same reason as the locality freedom is achieved - the RemoteProxy0Object registered
on the RMI Proxy is a client of the actual proxy and it can be implemented as an
UnicastRemoteObject [15], rather than an activatable.

Related patterns

Proxy [5, 2| - This pattern can be considered an application of the Proxy pattern [5, 6]
as the interceptor proxy implements the same interface as the service interface.

Security patterns [16, 7, 4] - Conversely to security patterns; which provide guide-
lines on how to control access to resources, provide user authentication, establish roles
and sessions, and govern the way exceptions are thrown due to lack of privileges; this work
does not cover these aspects at all, but defines an approach to configure remote services
on a network firewall by means of delegation.

Reflection [2] and the Interceptor [13] - As in these patterns, Proxy-to-Proxy requires
an additional indirection between the client and the service provider and thus it has some
similarities with both. These patterns depend on the underlying framework to implement
indirections. For example, according to the Interceptor pattern [13], a concrete framework
must provide a dispatcher with which interceptors are to be registered. Proxy-to-Proxy,
however, does not rely on the underlying framework. Even though it means additional
complexity to services in order to control the registration of the proxies on the application-
level gateway, the solution does not depend on a given framework. In this context, this
pattern could be interpreted as a lightweight version of the Interceptor pattern [13] where
the Proxy would be an Interceptor at the client-side and the RemoteProxyObject an In-
terceptor at the server-side.

Single Access Point [16] - Security applications should not allow users to get through
a back door that allows them to view or edit sensitive data. Single Access Point helps
solve this problem by limiting application entry to one single point [16]. Proxy-to-Proxy
is useful for decentralized component networks, and therefore, it does not rely on any
central manager to control security, as a facade [5, 13] object.

Acknowledgments

We would like to thank our coleagues at Universidade Federal de Pernambuco who made
suggestions about content and format to this work.

6This framework supports persistent remote references, which enable clients to rebind to remote objects
after a failure.

the

We are also very grateful to Eduardo Fernandez, the sheperd we were granted during
conference revision process, for his contributions and careful supervision.

References

[1]

2]

[7]

[9]

[10]

[11]

[12]

[13]

[14]

Ken Arnold, Bryan O’Sullivan, Robert W. Scheifler, Jim Waldo, and Ann Wollrath.
The Jini Specification. Addison-Wesley, December 1999.

Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael
Stal. Pattern-Oriented Software Architecture: A System of Patterns. John Wiley &
Sons, August 1996.

Marcelo B. d’Amorim and Carlos Ferraz. A Design for JTrader - an Internet Trad-
ing Service. In proceedings of the Innovative Internet Computing Systems - I2CS.
Ilmenau, Germany. Springer Verlag, Lecture Notes in Computer Science (LNCS),
21th—22th June 2001.

Eduardo B. Fernandez. Metadata and Authorization Patterns. In TR-CSE-00-16,
May 2000. Dept. of Computer Science and Eng. Florida Atlantic University.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns.
Elements of Reusable Object Oriented Software. Addison-Wesley, Jan. 1995.

M. Grand. Patterns in Java, A Catalog of Reusable Design Patterns Illustrated with
UML, volume 1. John Wiley & Sons, New York, NY, USA, 1998.

Viviane Hays, Marc Loutrel, and Eduardo B. Fernandez. The Object Filter and Ac-
cess Control Framework. In proceedings of the 7th Conference on Pattern Languages
of Programming, Monticello, IL., 2000.

Martin W. Murhammer, Orcun Atakan, Stefan Bretz, Larry R. Pugh, Kazunari
Suzuki, and David H. Wood. TCP/IP Tutorial and Technical Overview. IBM Cor-
poration, International Technical Support Organization, 6th edition, October 1998.

Richard Oberg. Mastering RMI: Developing Enterprise Applications in Java and
EJB. Wiley, 2001.

Object Management Group. CORBA/IIOP Specification, 2.3.1 edition, October
1999.

Esmond Pitt and Neil Belford. The RMI Prozxy. Telekinesis Inc., 2000.

R. S. Sandhu and G. S. Suri. Implementation Considerations for the Typed Access
Matrix Model in a Distributed Environment. In 15th National Computer Security
Conference, pages 221-235, 1992.

Douglas Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann. Pattern-
Oriented Software Architecture: Patterns for Concurrency and Networked Objects.
John Wiley & Sons, September 2000.

Rita C. Summers. Secure Computing: Threats and Safequards. McGraw-Hill, 1997.

[15] Sun Microsystems. Java Remote Method Invocation Specification, 1.50 edition, Oc-
tober 1998.

[16] J. Yoder and J. Barcalow. Architectural Patterns for Enabling Application Secu-

rity. In proceedings of the 4th Conference on Pattern Languages of Programming,
Monticello, IL., September 1997.

Uma Colecdo de Padr 6es para o Gerenciamento de Sessdo em Aplicagoes

Internet
M ARCIODE O LIVEIRA ALEXANDRE L UIS CLAUDIA M ARIA LIMA
BARROS CORREA WERNER

COPPE / UFRJ— Departamento de Engenharia de Sistemas e Computacéo
CaxaPogd: 68511 - CEP 21945970 - Rio de Janeiro — RJ
Tdefone 5521 562-8675 / Fax: 5521 562-8676

{marcio, dexcorr, werner} @cos.ufrj.br

Resumo

Aplicagbes Internet tém caracteridticas particulares que as diferenciam de
aplicagbes convencionais. Dentre edtas caracteristicas encontrase o fato da
comunicagdo entre os cdlientes e os savidores, na maoria das agplicagdes, ocorrer
aravés de um protocolo que ndo posui memdria das interagBes anteriores entre estes
dementos. Assm, tornamse necessaios mecanismos de gerenciamento de sessfo,
que gaantem a pesdéncia das informagbes adquirides entre as diversas pagines
componentes de uma aplicacdo Internet. Neste artigo apresentamos trés padrbes que
tratam do gerenciamento de sessfo em gplicages Internet.

1. Introducédo

O ceximento dos mercados de comércio detrbnico, home-banking e de prestacdo de
sarvicos aravés da Internet fez crescer a demanda peo desenvolvimento de aplicagBes
acessivels dravés desta plataforma Entretanto, as aplicagbes Internet possuem caracteristicas
e limitagbes paticulaes que as diferenciam de eplicagbes convencionais. A Fgura 1
gpresenta os principais € ementos envolvidos em uma gplicacéo Internet.

000

% Eerr
Protocolo HTTPy —— Alpnca;aof'* o 3
¢ ’ nternet]

Cliente

Servidor

Figural — Principais eementos envolvidos em uma gplicagéo Internet

» Cliente representa o lado cliente da aplicacdo Internet. As aplicagdes Internet seguem o
moddo diette-sarvidar, onde diversos computedores (atuando como dlientes)
requistam os sarvigos oferecidos por um ou mas sarvidores. Nas gplicagbes Internet, o
lado diente gerdmente € responsivel apenas pela execucdo do navegador. O navegador
recebe paginas e arquivos complementares (imegens, folhes de edilo, sons, entre
outros) enviadas peo lado servidor, gpresenta as pagines recebides e monitora a
aivacdo de suas ligagbes com outras pégines, requistando as pégines aivadas e
servidor;

» Servidor: representa 0 lado servidor de uma aplicacdo Internet, sendo responsavel pela
trandferéncia das péginas requisitadas peos navegadores. Enquanto os navegadores

somente recebem e tratam as pagines e seus arquivos complementares, uma requisicéo
a0 savidor pode divar uma aplicacdo que rediza um processamento, gerando uma
reposta para 0 navegedor no lado cliente. A resposta gerdmente se conditui de uma
p&gina, que pode s eddica ou condruida dinamicamente aravés da utilizacdo de
outros recursos do lado servidor, como, por exemplo, bases de dados. O servidor pode
ser vido como um cluster de servidores, igo € um conjunto de servidores que atendem

pedidos para uma mesma gplicacéo;

»= Protocolo HTTP [W3C 1999]: é o protocolo de comunicacéo entre o cliente e o
servidor, dravés do qua as requisigbes por pagines S0 redizadas. Uma importante
caracteridica deste protocolo é a fdta de memoria, isto € o protocolo ndo armazena um
hisgtérico das péginas previamente requistadas nem das informagbes contidas nestas
pagines;

= Aplicacdo Internet: representa a aplicacdo executada no lado servidor, responsavel pelo
processamento das informagdes enviadas pelos clientes.

A incgpacidade do protocolo HTTP manter memodria das interagBes ocorrides entre
clientes e sarvidores € uma importante limitacdo a que etéo sujeitas as aplicacbes Internet.
Eda limitacdo exige a criagdo de mecanismos paa 0 amazenamento das informacOes
coletadas a0 longo dedtas interagbes. Tais mecanismos S0 denominados gerenciamento de
sessao.

A sguir gpresentamos trés pedrbes que tratam do gerenciamento de em gplicaghes
Internet. Na condrucdo destes padrbes seguimos a proposta de Meszaros e Doble [Mesz
1997], destrita no padréo Common Problems Highlighted, que sugere que a edtrutura comum
compartilhada por um conjunto de padrfes sga destacada em um padréo separado. Assm, 0
primaro padrdo, Gerenciamento de Sessdo na Internet, contém a estrutura comum aos dois
Gltimos padrdes, Gerenciamento de Sessdo Baseado em Cookies e Gerenciamento de Sessdo
Baseado em Parametros

2. Gerenciamento de Sessao na | nter net

2.1. Contexto

Em um dgtema de compras pea Internet, um usuaio se identifica, fornecendo seu nome e
a senha, sdeciona um conjunto de produtos e rediza a compra, indicando outras
informagBes como, por exemplo, a forma de pagamento e o locd de entrega. Este processo,
com pequenas vaiagies, repete-2 em diversas aplicagfes envolvendo a aquiscéo de
produtos pela Internet, como supermercedos virtuas, livrarias, didribuidores de oftware,
entre autros.

O carinho de compras, que contém os produtos sdecionados e uas respectives
quantidades, é uma informaco ligada a sessfo do usuaio. Uma € definida como o
uso consgente de uma gplicacdo Internet por um periodo de tempo, podendo se estender
pelo acesso a diversas paginas que pertencam a gplicacdo. Por consgente, entendemos que
a 550 tem um objetivo princpd. No exemplo acima, 0 objetivo de uma =50 € a
aguiscio de um conjunto de produtos. A cada nova Ses50, O usu&io terd um novo
carrinho de compras.

2.2. Problema

O problema resde em como garantir a perdgéncia das informagbes contidas em péginas
previamente percorridas pdo usuaio, de forma que edas informacbes possam ser

posteriormente utilizadas pela aplicacéo Internet, mesmo que eda utilize um protocolo sem
memoria, cOmo O HTTP.

2.3. Forgas

- AplicagBes Internet gerdmente utilizam informagfes resdentes em paginas previamente
percorridas peo usuaio. Entretanto, o principd protocolo utilizado nestas aplicagbes —
0 protocolo HTTP — néo possui memoria destas informages,

- As informagbes armazenadas no lado cliente de uma agplicacdo Internet Ndo sB0 seguras,
pois podem ser dteradas pelo navegador ou por uma aplicacéo do diente;

Diversas aplicagbes Internet sB0 executadas dentro de um cluster de servidores HTTP.
Portanto, dentro de uma mesma 80, as requiscies de um usu&io podem s

atendidas por diferentes servidores.

2.4. Solugéo

A pesgéncia das informagbes trocadas nas aplicaches Internet € garantida com a
utilizacdo de mecaniamos de gerenciamento de sessio na Internet. Eles permitem que uma
golicacdo Internet armazene informagbes sobre as pégines percorridas por um usU&io no
contexto de uma sessfo. Edas informagBes podem ser utilizadas, por exemplo, para
armazenar o carrinho de compras.

Os sguintes mecanismos de gearenciamento de =550 SGo audmente utilizados na
Internet: Gerenciamento de SessGo Baseado em Cookies e Gerenciamento de Sessdo
Baseado em Parametros. Estes mecanismos sf0 descritos na Segéo 2 e na Segéo 3,
respectivamente. A Fgura 2 agoresenta a edrutura gerd utilizada pelos mecanismos de
Gerenciamento de Sesséo na Internet.

—)
Aplicagdo no
plicaceo < p| Basede
Servidor Dados
Protocolo HTTP, ——
-l

Cliente Componente
Servidor de Criptografia

Fgura 2 — Estruturageral dasolugdo Gerenciamento de Sessdo na Internet

» Base de Dados um repositdrio de informagbes utilizado para conter a memoria da
sess20. Estes dados poderiam sar armazenados na memdria do servidor, permitindo um
acesD mas rgpido a memdria da sessfo. Entretanto, se a gplicagdo Internet for
executada em um cluster de sarvidores, 0 dgoritmo de digtribuicdo de requiscdes pode
deegar o aendimento das requisgbes de uma sessBo a diferentes sarvidores,
espahando as informagies desta sessfp. Dedta forma, armazenaremos a memoria da
sess50 em uma base de dados, que pode ser um banco de dados relaciond, um servidor
epecidizado em memdria de sess50 ou um digpositivo de memdria compatilhada. A
base de dados deve s acessivel para os servidores do cluster;

» Chave: € a informagdo necessaria para identificar a memdria da sessfo de um usu&io na
base de dados. A chave deve ser tranderida do cliente para 0 servidor a cada solicitagéo
e, em funcdo de trafegar pelarede, esta transferéncia deve ocorrer de forma segura;

= Componente de Criptografia: este componente é responsvel por traar uma limitagdo
na tranderéncia de informagbes entre os lados cliente e servidor: a quet@ de
seguranga. InformagBes provenientes do lado diente mesmo que tenham Sdo
previamente enviadas peo servidor, podem ser dteradas por aplicagbes do usu&rio. Ito
pode provocar problemas na gplicacdo Internet, permitindo que a memdria da sessfo de
um usuaio sga acessada de forma diginta da origindmente plangada. Para que as

informagdes que passam pelo lado diente sgam tratadas de forma segura, elas devem
Ser criptografadas no servidor antes de enviadas e decodificadas quando recebidas.

2.5. Contexto Resultante

Como resultado da egplicacdo deste padrép criou-se uma memoria de sessfo identificada
por uma chave e funciond tanto em um duder de servidores como em um servidor
independente. A chave é criptografada de forma a s transferida para o lado cliente da
gplicagéo Internet com seguranca.

2.6. Padr 6es Relacionados

A golicacdo dos mecanigmos de Gerenciamento de Sessdo na Internet esta relacionada
com a gplicacdo dos seguintes padrbes mais especificos que se diferenciam na forma como
o tratamento da chave de acesso ameméria da sesséo € redlizado:

- Gerenciamento de Sessdo Baseado em Cookies armazena a chave de acesso a memdria
da sessio em cookies no lado diente.

. Gerenciamento de SessGo Baseado em Parémetros armazena a chave de acesso a
memdria da em campos escondidos de formuld&ios e em par@metros embutidos
nas ligagBes estéticas das paginas enviadas para 0 navegador cliente.

2.7. Usos Conhecidos

Assm como no exemplo do carinho de compras citado no contexto, outras aplicagbes
Internet, como portais de home-banking, pégines de busca, webmail e jogos s basdam em
informaches reddentes em pagines previamente percorrides pelo usu&io e portanto,
utilizam mecanismaos de gerenciamento de sessto.

3. Gerenciamento de Sessdo Baseado em Cookies

3.1. Contexto
O contexto deste padréo é resultante da aplicacdo do Gerenciamento de Sessdo na Internet
onde as informagdes da sessio de um usu&rio Ao acessadas através de uma chave.

3.2. Problema

O problema condse em gaattir a pessénca da chave utilizada na gplicacdo do
Gerenciamento de Sessdo na Internet entre os diversos acesos a diferentes péginas sem
ocasonar um aumento no codigo das mesmas.

3.3. Forgas

- AplicagBes Internet gerdmente utilizam informagBes resdentes em paginas previamente
percorridas peo usuaio. Entretanto, o principd protocolo utilizado nestas gplicacfes —
0 protocolo HTTP — néo possui meméria destas informagies,

- Quando o traamento da perssténcia da chave envolve a criagdo de campos escondidos e
parédmetros embutidos nes pégines tranderidas do servidor para o cliente, ocorre uma

insercdo de codigo especifico parata nestas paginas.
3.4. Solucéo

A w0lucdo condse em etender a solucdo do Gerenciamento de Sessdo na Internet,
amazenando a chave criptografada em um cookie no lado diente [Rubin 1998]. A Fgura
3 gpresenta os € ementos ol vidos na solugéo.

. ————Sa e -——
b Aplicagiono % Basede
o | B [e [

< Protocolo HTTP' —

Cliente Componente
Servidor de Criptografia

Figura 3 - Estruturagerd dasoluggo Gerenciamento de Sessao baseado em Cookies

Um cookie é um conjunto de informagbes armazenadas no lado diente de uma gplicacdo
Internet. O cookie contém um pequeno trecho de dados gerdmente limitados a quetro
Kbytes sendo composto por pares de “nome-vaor’, ambos representados por sequéncias
de caacteres Um cookie € associado a um conjunto de pégines Internet: sempre que o
navegador envia uma requiscéo de pagina para 0 servidor, 0 cookie assocdiado a pégina
pedida também é enviado. Da mesma forma, 0 sarvidor pode enviar um cookie junto com
uma pagina tranderida paa um navegador. Um cookie possui uma data de expiracéo,
indicada pdo servidor quando este envia 0 cookie para 0 navegedor diente. O cookie pode
ser programado para expirar no fechamento do navegador ou em uma deta fixa

No primero indante em que o servidor identificar a necessdade de guardar memdria da
do usuario, ee cria uma chave de identificacdo para a sessfo, aplica a criptografia
sobre a chave, enviando-a naforma de um cookie para o cliente.

3.5. Dindmica
A dindmica de colaboracdo entre os componentes paticipantes desta solucdo é ilugtrada
peos diagramas das Fguras 4 e 5. Eda dindmica pode ser dividida em dois indantes
digintos

a) Cliente rediza uma requiscéo que faz com que o servidor identifique a necessdade de
guardar meméria da sessfo (Figura 4):
» Cliente envia uma requiscdo de pagina para o servidor contendo informagdes que
deverdo ser guardadas para as proximas interagoes,
» O svidor identifica a gplicagio Internet que deve s divada, enviando as
informagdes recebidas do cliente para esta aplicacéo;

Cliente

Requisicdo de pagina e
informacéo de sess@

P&gina e cookie

Péagina e c ookie

Obtém chave criptograffada

Figura 4 — Diagrama de seqiiéncia para.a criagdo de memaria da sessfo

» A glicagdo Internet requisita que o banco de dados crie uma nova memdria da

95590, retornando sua chave,

» A glicagdo Internet requidta ao componente de criptografia que codifique a chave

da memoria da sess3o, retornando seu vaor criptografado;

» A glicagdo Internet compde um cookie com a chave criptografada e o envia para o
servidor, junto com a pagina resultante do processamento. A expiracdo do cookie é

programada para o fechamento do navegedor;

» O svidor ewia a pagina e 0 cookie recebidos da gplicacdo Internet para 0

navegador no lado cliente.

Cliente

Servidor

Servidor Aplicacdo Componente de Banco de
Criptografia Dados
Informacdes da sessa
Obtém chave da sesdéo

Requisicdo de pagina
e cookie

Pagina

Figura 5 — Diagrama de seqiéncia para consulta e dteracdo da memdria da sessto

» Cliente envia uma requiscdo de péagina para 0 savidor, acompanhada de um
cookie com a chave criptografada para a memoria da sessfo do usuanio;

Aplicagéo

Componente de

Banco de

Cookie

Pagina

Obtém chave decodifi

cada

L

Obtém dados da ses

]

bao

Altera dados da sesq

b) Requisicies redizadas peo cliente apds a criacdo do cookie (Figurab):

-

= O savidor identifica a gplicacdo Internet que deve ser divada e passa 0 cookie para
estagplicacéo;

» A glicagdo Internet utiliza o componente de criptografia para recuperar o vaor
origind da chave de acesso amemoria da sess2;

» A glicacdo Internet consulta e eventudmente, audiza os dados da memdria da
$ess520 no banco de dados, utilizando a chave de acesso;

» A gilicacdo Internet utiliza a memdria da sessfo para compor a pagina de resposta
parao cliente, enviando-a para o servidor;

» O svidor envia a péagina recebida da aplicacdo Internet para 0 navegador no lado
cliente.

3.6. Consequiéncias

A principd vantagem desta solucdo é que o cddigo das péginas enviadas para 0 navegador
diente ndo precisa ser dterado para 0 amazenamento da memoéria da sessfo. Além disso,
nenhuma légica é necessria no lado diente, uma vez que o tratamento dos cookies é
redlizado autometicamente pelos navegadores.

A principd limitagdo desta solugdo € a posshilidade do navegador diente edar
programado para rejeitar cookies. Neste caso, a gplicagéo Internet ndo recebe a chave para
amemoria da sessfo do usuaio, ficando os dados desassociados da sessfo atud.

3.7. Padr 6es Rdlacionados

Ede paddo é normdmente agplicado para solucionar 0 problema de amazenamento e
tranderéncia da chave que surge quando da gplicacdo do Gerenciamento de Sessdo ha
Internet. Gerenciamento de Sessdo Baseado em Parametros armazena a chave de acesso a
memodria da sessdo em campos escondidos de formuldrios e em pardmetros embutidos nas
ligacOes estéticas das paginas enviadas para 0 navegador cliente,

4. Gerenciamento de Sessao Baseado em Par ametr os

4.1. Contexto
O contexto deste padrdo € resultante da aplicacdo do Gerenciamento de Sessdo na Internet
onde asinformagdes da sessfo de um usU&rio sfo acessadas através de uma chave.

4.2. Problema

O problema condse em gaattir a peddéncia da chave utlizada na gplicacdo do
Gerenciamento de Sessdo na Internet entre os diversos acessos a diferentes péginas de
formaa atingir indiscriminadamente navegadores dientes na Internet.

4.3. Forgas

- Campos escondidos S8o acaitos por quaquer navegedor diente, sendo enviados para o
servidor quando o formul&rio é submetido;
LigacOes edtéicas podem conter par@metros, que séo enviados para 0 servidor quando a
ligagéo é ativada;
Um navegador cliente pode estar programado para ndo acetar cookies enviados pelo
servidor junto com uma p&ging;

4.4. Solugéo

A s0lugdo consge em enviar a chave de acesso a memdria da sess80 para 0 Sservidor na
forma de um parmetro. Este pardmetro deve ser enviado em todas as requisigbes do
navegedor cliente. Assm como nos cookies, 0s parametros também trafegam pea rede,
devendo s criptografados no lado servidor antes de enviados para o lado diente. A Figura
6 gpresenta a edtrutura da solugdo proposta pelo padréo.

Perametros i —., B >
o—) % Apllcaﬁgno e Basede
A Servidor ¢ »

Formulérios Protocolo HTTP. — Dados

|

Cliente (‘_Dmponejte
Servidor de Criptografia

T_l

Fgura 6 — Egtrutura da solugZo de gerenciamento de sessfo baseado em parémetros

» Formularios as p&ginas de uma golicacdo Internet podem conter formulérios, que sfo
preenchidos pdo usuaio e enviados paa o sarvidor. Formuléios congituem o principa
mecanismo de capura de informagdes no lado cliente para podterior processamento no
sarvidor. Cada formul&io € compodo por diversos campos, como linhas de edigéo,
ligas, botbes, entre outros. Um campo especid, chamado de campo escondido, pode
conter uma informacdo programada peo servidor que lhe sxd remetida quando o
formul&rio for submetido;

» Parametros. sfo informagdes que complementam a requiScdo de uma pagina no
savidor. Em quaquer requiscdo, o lado diente pode ewir um conjunto de
parémetros, que podem s utilizados peo servidor na producdo da pagina de resposta
Um par@metro é definido por um par “nome-vaor’, ambos tratados como seqiiéncias de
caacteres. Os dados preenchidos em um formul&io sfo enviados para 0 sarvidor na
formade parémetros.

Um diente pode reguistar uma pégina do sarvidor aravés da aivacdo de uma ligagéo
eddtica ou pea submissdo de formularios. Para tratar as requisicdes aravés de ligacOes
eséticas, a gplicacdo Internet deve incluir a chave criptografada de acesso a memoria da
como um parametro embutido em todas as ligagBes das pégines que enviar para 0
ciente. Assm, sempre que uma ligagdo for divada no navegedor, o parametro (i.e, a
chave de aces0) sera enviado para o servidor.

Para tratar as requisiches através de formul&ios, a gplicacdo Internet deve criar um campo
escondido nos formul&ios das pégines enviadas paa o diente contendo a chave
criptografada de acesso ameméria da sessao.

No primero indante em que o servidor identificar a necessidade de guardar memdria da
do usuaio, e cria uma chave de identificagio para a 520, enviando-a, a partir
deste ingante, nos formuld&ios e nas ligaghes eddicas Quando a informacdo de um
formulaio for submetida paa o sarvidor ou quando uma ligeco ed&@ica for ativada, a
chave da memdria da sessfo também sera enviada

4.5. Dinamica

A dindmica de colaboracdo entre os componentes paticipantes desta solucdo é ilugtrada
peos diagramas das Fguras 7 e 8. Eda dindmica pode ser dividida em dois indantes
didintos:

Cliente Servidor Aplicacio Componente de Banca de

Requisicdo de pagina e
informacdo de sessa

Obtém chave da sesgac

Obtém chave criptografada

Pagina com chave
embutida

Pagina com chave
embutida

T

Figura 7 — Diagrama de seqiiéncia para.a criagdo de memaria da sessfo

a) Cliente rediza uma requiscéo que faz com que o sarvidor identifique a necessdede de
guardar meméria da sessfo (Figura 7):

Cliente envia uma requisc¢éo de pagina para o0 sarvidor contendo informagbes que
deverdo ser guardadas para as proximeas interagoes,

O savidor idetifica a gplicacéo Internet que deve ser divada as informagbes
recebidas do cliente para esta gplicacéo;

A alicacdo Internet requisita que o banco de dados crie uma nova memdria da
Sessa0, retornando sua chave;

A alicacdo Internet requidta a0 componente de criptografia que codifique a chave
da memoaria da sesso, retornando seu vaor criptografado;

A alicacdo Internet cria a pégina de resultado, adicionando um campo escondido
em cada um de seus formulaios e um pardmetro embutido em cada uma de suas
ligaghes edtdticas para conter a chave criptografada. A pagina € enviada para o
servidor;

O savidor envia a pégina recebida da golicacdo Internet para 0 navegedor no lado
cliente.

b) Reqwsc;o&redlzadaspelo cliente gpds a criacdo da memoria da sessfo (Figura 8):

Cliente envia uma requiscdo para 0 savidor, acompanheda dos parametros
advindos de um formul&io ou de umaligacio edtética;

O savidor identifica a gplicacdo Internet que deve sy divada e passa oS
parémetros recebidos para esta aplicacéo;

A chave criptografada de acesso a memoria da sessfo do usua&io se encontra entre
0s parametros, sendo seu nome conhecido pelaaplicacéo Internet;

A glicagdo utiliza o componente de criptografia para recuperar o vaor origind da
chave de acesso ameméria da sesso;

A gilicacdo Internet consulta e, eventudmente, atudiza os dados da meméria da
$ess520 no banco de dados, utilizando a chave de acesso;

Requisi¢éo de pagina
e parametros

Parametros

Obtém chave decodjficada

Obtém dados da sesgéo

Pagina com chave Altera dados da sesgéo \T‘
embutida

P&agina com chave
embutida

T [W

Figura 8 —Diagrama de seqiiéncia para consulta e dteracio da memoria da sessfo

» A glicagdo Internet utiliza a memdria da sessfo para compor a pégina de respoda
A glicacd incdui a chave ciptografada em campos escondidos de seus
formul&ios e em padmetros embutidos de suas ligaghes edtdices A pégina
resultante é enviada para o servidor;

* O savidor envia a pégina recebida da aplicacdo Internet para 0 navegador no lado
cliente.

4.6. Consequiéncias

A principd vantagem desta solugdo € a independéncia do mecanismo de cookies, 0 que
permite que da funcione mesmo que o usu&io desshilite o tratamento de cookies em seu
navegador.

A principd limitacio desta solugdo é o cresiimento do cddigo des péagines devido aos
padmeros embutidos e campos econdidos. A solucdo € intrudva, pois depende de
ateragbes no codigo das pagines.

4.7. Padr 6es Rdlacionados

Ede padrdo é normdmente gplicado para solucionar o problema de amazenamento e
transferéncia da chave que surge quando da agplicacéo do Gerenciamento de Sessdo na
Internet. Gerenciamento de Sessdo Baseado em Cookies armazena a chave de aceso a
memoria da sesso em cookies no lado cliente.

5. Conclusdo

O amazenamento de memodria da sessio em uma gplicacéo Internet ndo depende somente
da naureza das informaches amazenadas, mas também do conhecimento das limitacOes
impodtas pea plaaforma Os padrbes de gearenciamento de sessfo documentam este
conhecimento, oferecendo solugdes para estas limitagoes.

Trés padrdes foram apresentados para a implementagdo de gerenciamento de sessfo. O
Gerenciamento de Sessdo na Internet contém a solucéo genérica para o problema. Os outros
dois padrbes sho utilizados para reolver a questéo do armazenamento da chave de acesso a
memdria da sessfo. O Gerenciamento de Sessdo Baseado em Cookies pode ser aplicado
quando o publico dvo da golicacdo Internet € rdativamente controlado e o administrador da
aplicacdo pode gaantir que 0s navegadores de seus usudios aceitem cookies O

Gerenciamento de Sessio Baseado em Parametros assume um cen&io mais restrito, onde os
limites do servidor sfo explorados em prol de umamaior flexibilidade do lado diente.

Agradecimentos

Os autores gostariam de agradecer a CAPES e a0 CNPg peo gooio financaro a este
trabaho, a nossa shepperd Rossana Maria pela criteriosa revisio do artigo e ao grupo nimero
1 do SugarL oafPLOP pelas criticas que permitiram a sua redacéo find.

Referéncias Bibliogr éficas
[Krigol 1997] Krigo, D.M., “"HTTP Sae Management Mechanign”, 1998. IETF

RFC 2109, 1997.

[Mesz 1997] Meszaros, G.; Doble, J, “A Patern Language for Pattern Writing”, em:
Pattern Languages of Program Desgn 3 (Software Pattern Series),

Addison Wedey Longmen Inc. — 1997. Disponivd em
http://hills de.net/patterns’\Writing/patterns.html.

[Powdl, 2000 Powdl, T.A., “HTML: The Complete Reference’, 2000. McGraw-Hill
Professona Publishing.

[Rubin 1998 Rubin, JH.; “An indegpth andyss of cookies’, 1998. Digponivd em:
http://headcase.syr.edu/NEW/Research/cookies.html

[W3C 1999 W3C Consortium, “Hypertext Transfer Protocol -- HTTP/1.17, 1999.
Digponivel em: ftp://ftp.iS.eduin-notes/rfc2616.txt

Concurrency Manager

Sérgio Soares* and Paulo Borba
Centro de Informética
Universidade Federal de Pernambuco

Intent

Provide an alternative to method synchronization with the aim of increasing system per-
formance. Concurrency Manager uses knowledge about the semantics of the methods
in order to block only conflicting execution flows, allowing the non—conflicting ones to
execute concurrently.

Motivation

The advent of web-based information systems significantly increased the number of con-
current programs. Concurrent programs must control concurrency to guarantee safe im-
plementations, which avoid interference that lead systems to inconsistent states and be-
haviors. To implement some of these controls we need to use programming language
features, such as blocking methods to avoid their concurrent execution in the same ob-
ject. In the Java [6] programming language we can do this synchronizing methods with
the synchronized method modifier, which forbid concurrent execution of methods within
an object.

However, implementation of such features brings performance overhead, serializing
the execution of some operations. There are several approaches concerned about guaran-
teeing performance increasing, removing unnecessary synchronization of Java concurrent
programs [3, 1, 5]. They show the negative impact in efficiency of the Java concurrency
control mechanisms. This negative impact demands alternatives to increase programs’
performance.

Method synchronization guarantees that all concurrent execution of a method within
an object will be serialized. With this approach we can allow or block all concurrent
execution of a method. However, if some execution flows cannot be concurrently executed,
but others can, we need an intermediary approach.

Example

Consider an address book application with a class AddressBook that has a method to
register addresses. The method verifies, before registering an address in the system, if

*Supported by CAPES. Email: scbs@cin.ufpe.br
TPartially supported by CNPq, grant 521994/96-9. Email: phmb@cin.ufpe.br

there is an address with the same email of the address being registered. Two concurrent
executions that try to register addresses with the same email may get the same answer:
there is not an address with the email of the objects being registered. In this case both
execution flows will try to register the objects, which may turn the system to an incon-
sistent state, or raise an unexpected error. We can conclude that this method cannot
be concurrently executed if the objects (addresses) being registered have the same email,
otherwise concurrent execution is allowed. Therefore the address’ email can be used to
decide if an execution flow can or cannot be concurrently executed. Figure 1 shows an
UML [4] class diagram of this application.

<<Interface=>
IConcurrencyhtanagerdB AddressBoak | ! * | Samlet

beginExecution(String) registerjAddress)
endExecution(String) 7

]
v
‘

—
—y

J

| <zusess !
CaoncurrencyManagerAs Strinll; f-‘?ddress .
beginExecution(String) Banale0 sitring ermail
endExecution({String) i string nick

Figure 1: Address Book application’s class diagram.

The class ConcurrencyManager is user to control the AddressBook register method
execution. The method should ask permission to the ConcurrencyManager before exe-
cuting, calling the beginExecution method with the address’s email as the argument.
If another address is being registered with the same email by other execution flow, this
execution is blocked until the executing flow terminates.

The email information is part of the method semantics, as the method’s parameters
and the object’s state. The Concurrency Manager pattern uses such information to block
only the conflicting execution flows.

Either persistent application that uses databases management systems (DBMS) must
make some concurrency controls. So this pattern can be also used in such systems, besides
the idea that persistent systems already make all concurrency controls using the DBMS
features, which is not true [9].

Applicability
Use Concurrency Manager when

e You need to control concurrent access to an object, blocking just some concurrent
execution of a method within the object, allowing others. In the previous example
concurrent addresses registration can be executed since the addresses have not the
same email. Only the registrations of addresses with the same emails must be
serialized (synchronized).

e You need to control concurrency in more than one method; some flows can execute
concurrently in the methods and others cannot. For example, in a banking appli-

cation you can concurrently execute the methods deposit and withdraw, but for
different accounts. The execution of deposit and withdraw for a same account must
be serialized to avoid inconsistencies.

e You need to control methods in different objects. The objects must have the same
instance of the pattern to manage the concurrent execution in the objects. In this
case, one instance of the pattern manages methods execution in several objects.

Structure

The structure of Concurrency Manager is presented in the Figure 2 using an UML [4] class
diagram. This diagram is a generic diagram, if compared with the diagram presented in
Figure 1, which defines a class to encapsulate the information used to decide if an execution
flow should be blocked.

<<|nterfacesx=
[Concurrencyianager ClassControlled Thread

beginExecution{ConcurrencyhanagerData) methodContralled()| . *
endExecution(ConcurrencyManagerData) y

A

1
1
:
1
: walsexr
1
1
1
1

b
ConcurrencyManagerData
matchi]

ConcurrencyManager

beginExecution(ConcurrencyiManagerData)
endExecution{ConcurrencybanagerData)

Figure 2: Concurrency Manager pattern’s class diagram.

Participants

The participants of the pattern are

e ClassControlled. A concrete class with methods that can be concurrently executed
in some cases and cannot in others. The classes must have one or more instances of
the ConcurrencyManager to synchronize its methods.

e Thread. The thread that executes the controlled method(s) of the ClassControlled
objects.

e IConcurrencyManager. An interface responsible to abstract the pattern implemen-
tations and its extensions.

e ConcurrencyManager. A concrete class, which implements the IConcurrency-
Manager interface, and is responsible to control the concurrent execution of the
ClassControlled objects. This control is made based in the operation’s semantics,
which is encapsulated in the ConcurrencyManagerData object.

3

e ConcurrencyManagerData. A concrete class with the information used to forbid a
method execution. The class also has a method match to compare two instances
of the class. This method implementation is responsible to define, based in the
information of their attributes, if a ConcurrencyManagerData object matches any
ConcurrencyManagerData object already inserted in the manager, which means
that the current execution flow may conflict with another one, and hence must be
blocked.

Collaborations

Figure 3 shows a collaboration diagram modeling how a method can use the concurrency
manager to control concurrent execution. After being called by an execution flow (message
1), the controlled method creates a ConcurrencyManagerData object with the relevant
information to decide if an execution flow can execute concurrently (message 1.1). After
that, the manager’s beginExecution method is called with the created data as argument
(1.2). Based in the stored data objects, the manager verifies if there is a data object
that matches the object passed by the controlled method (1.2.1). If the objects match,
the controlled method is blocked (1.2.2); otherwise, the data object is stored in the man-
ager (1.2.3) and the controlled method executes. Just before terminating, the controlled
method calls the manager’s endExecution method with the same data object created in
the beginning (1.3). This method call removes the data from the manager (1.3.1) and
notifies the blocked execution flows (1.3.2), which become ready to execute again.

[answer] 1.2.2; wait()
. Thread [mot answer] 1.2.3: add{data)
1.3.1: remove(data)

1.3.2: notify Al
—

l 1: controllediethod()
1.2: beginExecution{data) {cancurrent}

1.3: endExecution(data) {concurrent}

: . Concurrencybdanager
- ElassControlled 5 Y]
lﬂﬂ s <<create>> 1.2 1: answer = match{data) l{
[
data : ConcurrencyhanagerData [

. ConcurrencyianagerData

Figure 3: Concurrency Manager’s collaboration diagram.

In the collaboration diagram (Figure 3) the constructs { concurrent } (messages 1.2
and 1.3) means that in the presence of multiple flows of control, the operation will be
treated as atomic. Java supports this construct with the synchronized method modifier.

Figure 4 shows a sequence diagrams that specifies an execution of a controlled method
without conflicting flows.

- Thread : Class data . Concurrency . Concurrency set . Concurrency
Controlled ManagerData ManagerAB ManagerDataSet
controllediethod() | , i i
<=creates= ! !

1 1
beginExecution(data) '
: qanswer ;= contains(data)

There isn't . |_|
conflict BAEESE . add(data) !

1 77 nat angwer } U

:

proceed

—1 E i

endExeu:g:Jtinn(data) ! remave(data) !

{'not answer }

Figure 4: Concurrency Manager’s sequence diagram of an execution flow without conflict.

Other scenario is presented in Figure 5, which shows a sequence diagram that specifies

an execution of a conflicting execution flow.

Consequences

The benefits of the pattern are:

e Performance increase. The system performance is increased by the elimination of
unnecessary synchronization. The pattern uses the system operations’ semantics
to block only conflicting concurrent execution. Performance tests made to analyze
the efficiency impact of using this pattern showed that the performance increasing
was about 20%, depending of some aspects, such as the operations workload and
the number of concurrent threads. With high workload, we can see a low syn-
chronization overhead, on the other hand, with high number of concurrent threads
the synchronization overhead will be greater [9]. These aspects variation take the
performance increasing in a range from 5% to 60%.

Reuse. The manager class and the class responsible for the data used by the manager
can be reused in several systems.

Extensibility and maintainability. The pattern uses an interface to abstract differ-
ent implementations of the manager. So, we can have different implementations
of the pattern, for example, an implementation to be used in sequential environ-
ments, which does not make any concurrent control, simplifying its implementation
before migrating the system to the concurrent environment. Note that the pattern’s
structure allows changing the concurrency control without making modifications in
business classes. This is possible because the use of the ConcurrencyManagerData

. Thread Class data . Concurrency . Concurrency set : Concurrency
Controlled ManagerData ManagerAB ManagerDataSet

~ controlledMethod() | opatess | i
I 1

beginExecution(data : . :
4 . (data) Lanswer = contains(data) |
wait() . |_|

Panswer |

notify Al . Conflict was L1

: T ! detected '

Conflict 3 ! I
is over

1
! answer = contains(data) |

There isn't E add(data) |—,|
conflict 1177 - - - not answer) Ll

4 1
. proceed ' '
{ not answer } ! o !

endE}{e&ution(data) (dat)
' rernove(data

Figure 5: Concurrency Manager’'s sequence diagram of a conflicting execution flow.

and ConcurrencyManager classes remove the code responsible for the concurrent
control from the business classes, such as the Address class. This separation of
concerns [7] (business and concurrency control) helps the system extensibility and
maintainability.

The liabilities of the pattern are:

e Increased number of classes. The class hierarchy becomes more complex because
new classes and interfaces are added, decreasing legibility and maintainability.

e Increased indirection. In order to introduce our control technique we must delegate
some calls to methods, which seems to decrease system performance. In fact, this
lost of efficiency is recompensed because only conflicting execution flows are blocked.

e Complezity. The controlled method’s code is more complex than using the synchro—
nized modifier, because to implement the pattern we must add about four new lines
of code. This contributes to decrease the system legibility and maintainability.

e Risk of deadlock. When applying the concurrency control technique to a method,
the programmer may forget to properly call the manager’s endExecution method
allowing execution flows to block indefinitely.

Implementation

To implement the Concurrency Manager we can use several approaches.

e ConcurrencyManagerData set. The simplest approach is the one where the man-
ager keeps a set of ConcurrencyManagerData objects. When a thread asks permis-
sion to execute a method passing a ConcurrencyManagerData object, the man-
ager uses the ConcurrencyManagerData match method to verify if there is an-
other object that matches this ConcurrencyManagerData. If there is not, the
ConcurrencyManagerData object is inserted in the ConcurrencyManagerData set
and the execution may proceed. If there is any, the execution flow is blocked until
the execution that inserted the object matched by the ConcurrencyManagerData
finishes. The ConcurrencyManagerData class may store a simple key, as a string,
or more complex information that is necessary to decide if an execution flow can
execute concurrently with others.

o State machine. We can also implement a state machine in the ConcurrencyManager
class. The manager should have a table to store all the system execution. Probably
the ConcurrencyManagerData class has to store the name of the method to execute
and the object id of the object being executed. With this information, the manager
can decide if this execution can be done at this time, verifying if this execution
sequence is according with the state machine definition.

Sample Code

Consider the application that registers addresses and verifies, before register an address,
if there is an object in the system with the same email of the object to be registered,
see Figure 1. A possible concurrent execution that tries to register two objects with the
same email may turn the system to an inconsistent state. Consider that in a concurrent
execution both threads make the email verification and receive a reply that there is not
an object with the email of the ones being registered, so, the threads will try to insert the
objects. Note that these execution flows cannot execute concurrently, but the flows that
try to insert addresses with different emails can be concurrently executed. Therefore, we
can implement the Concurrency Manager pattern to control these executions.

The following implementation of the Concurrency Manager makes a simplification of
the pattern. The ConcurrencyManager class keeps a keyword set (String set) that is used
to control concurrent execution over then, instead to keep a ConcurrencyManagerData
set. To implement this set we use the java.util.HashSet, a class that implements an
object set without any concurrency control.

public class ConcurrencyManager {
private HashSet keys;
public ConcurrencyManager() {
keys = new HashSet();
+

We need to define a method to receive a String parameter to inform that a thread
will start to execute some operation over this String. If this keyword is already in the
set the execution is blocked, meaning that another thread is executing over this keyword.
The HashSet class has a method to verify if there is an object in the set. We use this
method to find if the keyword is already in the keyword set. We also use the method

wait inherited from Object class, superclass of all Java classes. This method blocks an
execution until being notified to resume it.

public synchronized void beginExecution(String keyword) {

try {
while (!keys.add(keyword)) {
wait) ;
}
}

catch(InterruptedException ex) {
throw new RuntimeException("Unexpected error");
}
}

We also need a method to inform that the execution over a String (keyword) is
finished. This method removes the keyword of the set, using the HashSet remove method,
and releases a thread that is blocked waiting to execute by calling the method notifyAll,
other method inherited from Object.

public synchronized void endExecution(String keyword) {
try {
if (!keys.remove(keyword)) {
throw new RuntimeException("Keyword not found");

}
}
finally {
notifyAll();
}

Now we need programming in the business class the code that negotiates with the
manager. The conflicting executions are the ones that try to register objects with a
same email. So we use the ConcurrencyManager class to synchronize only the conflicting
execution, which are the ones registering addresses with the same email. The keyword
to be used is the object’s email, so if two threads try to register two objects with the
same email, the second one’s execution is blocked until be released by the first one. The
following example shows how the ConcurrentManager class is used in this example.

public class AddressBook {
private AddressCollection addresses;
private ConcurrencyManager manager;

The AddressBook class defines an AddressCollection, which is responsible to store
the Address objects, and a ConcurrencyManager that is responsible to control the con-
currency over the method register.

public void register(Address address) throws EmailException {

1: String email = address.getEmail();
2: try {

3: manager .beginExecution(email) ;
4: if ('addresses.hasEmail(email)) {
5: addresses.insert (address) ;
6: }

7: else {

8: throw new EmailException();
9: }

10: }

11: finally {

12: manager . endExecution(email) ;
13: X

}

As we sad before, this example makes a simplification when do not use a Concurrency—
ManagerData object to send the method information to the Concurrency Manager. In
the register method of the AddressBook class we use the method’s semantics, in this
case the address’ email, to avoid invalid concurrent execution, as described before, calling
the beginExecution method of the ConcurrencyManager class (line 3). This method
call must be done before execute the method in order to ask the manager permission to
continue the execution. Therefore, other thread that tries to register another address with
the same email will be blocked. Just before terminating the execution we must call the
endExecution method (line 12) telling the Concurrency Managerto remove the key added
in the manager’s set and to release the blocked threads, if there are any. This execution
is made inside a finally clause, which guarantees that the command will be executed,
independent of what happen in the method execution, since the method execution may
raise an exception before finishes its execution [6]. If this occurs and programmer forgot
to call the endExecution method inside a finally block, the key will not be removed
from the manager’s set, which allows the executions flows, blocked because of this key, to
block indefinitely.

Known Uses

The Concurrency Manager pattern uses the idea of semantics—based concurrency con-
trol [2]. This approach uses the operations’ semantics to improve performance, decreasing
operations’ serialization. For example, “two operations conflict if they both operate on
the same data item and one of them is a write”. The concurrency pattern differs from
this approach because the programmer must define what is the semantics of conflicting
operations, when implementing the concurrency manager data.

A potential use of the pattern to control the concurrency is in web-based systems with
a software architecture that has a business collection and a data collection for each basic
class. The business collections are classes where the system policies are implemented, for
example, the AdressBook class used in the previous sections. The data collections are
classes responsible for data storage, as the AddressCollection class, and basic classes

are classes that model the system’s basic objects, for example, the Address class. We can
mentioned many real web—based systems that use this architecture:

e A system to manage a telecommunication company’s clients. The system is able to
register mobile telephones and change clients and telephones services configurations.
The system can be used over the Internet.

e A system for performing on-line exams. This system has been used to offer different
kinds of exams, as simulations based on previous university entry exams, which help
students to evaluate their knowledge before the real exams.

e A complex supermarket system. A system responsible to control the sales in a
market. This system has been used in several supermarkets and other kinds of
stores.

e A system for registering health system complaints. The system allows citizens to
complaint about diseases problems and to retrieve information about the public
health system, such the location or the specialties of a health unit.

Our approach can be used in the business collection classes of these systems, where busi-
ness polices may race conditions, as the one in the address book example.

We made performance tests [9] in a toy system that implements the pattern in order
to analyze the efficiency impact. As we say in the Consequences Section, the performance
increasing goes from 5% to 60%, depending on some aspects such as method workload
and the number of concurrent threads.

Related Patterns

A related pattern is the Monitor Object [8] that synchronizes the execution of methods.
This pattern also allows methods to cooperate scheduling their execution sequences by
waiting and notifying each other via monitor conditions. The monitor conditions deter-
mine when a method should suspend, and when resume. In the Monitor Object approach,
the controlled methods has to choose what is the monitor condition to wait or to notify.
In the Concurrency Manager, the manager is the responsible to say when a method can
or cannot execute concurrently. This decision is encapsulated in the manager’s definition.
In fact, the main Concurrency Manager’s goal is to allow as many as possible concurrent
execution, to increase the system efficiency, on the other hand, the main Monitor Object’s
goal is to synchronize objects methods execution. This similarity allows us to classify our
pattern as a Concurrency Pattern [8], like the Monitor Object pattern.

The Concurrency Manager pattern may implement the Singleton design pattern to
guarantee that there is a single instance of the manager. This is necessary if we try to
centralize all concurrency controls in a single manager to control all the system executions.

Acknowledgments

We would like to give special thanks to Jorge L. Ortega Arjona, our shepherd, for his im-
portant comments, helping us to improve our pattern. We also thanks Gunter Mussbacher
for the suggestions made at the conference.

10

References

1]

Ole Agesen, David Detlefs, Alex Garthwaite, Ross Knippel, Y. S. Ramakrishna, and
Derek White. An efficient meta-lock for implementing ubiquitous synchronization. In
Proceedings of the 1999 ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications, pages 207222, November 1999.

B. R. Badrinath and Krithi Ramamritham. Semantics-based concurrency control:
Beyond commutativity. ACM Transactions on Database Systems, 17(1):163-199, 1992.

Jeff Bogda and Urs Holzle. Removing unnecessary synchronization in Java. In Proceed-
ings of the 1999 ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications, pages 35—46, November 1999.

Grady Booch, Ivar Jacobson, and James Rumbaugh. Unified Modeling Language —
User’s Guide. Addison—Wesley, 1999.

Jong-Deok Choi, Manish Gupta, Mauricio Serrano, Vugranam C. Sreedhar, and Sam
Midkiff. Escape analysis for Java. In Proceedings of the 1999 ACM SIGPLAN con-
ference on Object-oriented programming, systems, languages, and applications, pages
1-19. ACM, November 1999.

James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Specifi-
cation. Addison—Wesley, second edition, 2000.

David L. Parnas et al. Using documentation as a software design medium. The Bell
System Technical Journal, 60(8):1941-1977, October 1981.

Douglas Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann. Pattern-
Oriented Software Architecture, Vol. 2: Patterns for Concurrent and Networked Ob-
jects. John Wiley & Sons, 2000.

Sérgio Soares and Paulo Borba. Concurrency Control with Java and Relacional

Databases (in portuguese). In V Brazilian Symposium on Programmig Languages,
pages 252-267, Curitiba, Brazil, 23th—25th May 2001.

11

Distributed Adapters Pattern: A Design
Pattern for Object-Oriented Distributed
Applications

Vander Alves* Paulo Borbal
Centro de Informatica
Universidade Federal de Pernambuco

1 Introduction

We introduce the Distributed Adapters Pattern (DAP) in the context of remote communi-
cation between two components, where it is intended that these components be decoupled
from specific communication Application Programming Interfaces (API).

2 Context

In order to accomplish their tasks, components in a distributed system communicate with
each other by means of an inter-process communication mechanism. When the compo-
nents handle communication themselves we obtain applications where the core functional-
ity of its components is interwoven with communication tasks. Therefore, the application
becomes dependent on a particular communication mechanism, and its components are
hard to reuse and extend.

In order to illustrate the use of DAP, we take a banking example as a concrete context.
The banking service stores entities such as account and customer records, and has opera-
tions for manipulating these entities, such as deposit and addAccount. These operations
are to be provided remotely to clients of the service, and thus its implementation must rely
on a distribution platform. Additionally, it is expected that such implementation follows
an incremental method: a non-distributed version is implemented before the distributed
one. Another assumption is that it may be desirable to change the distribution platform.

3 Problem

Avoiding tangled communication and business code in order to provide reusability and
extensibility.

*Supported in part by CNPq. Electronic mail: vra@cin.ufpe.br.
fSupported in part by CNPq, grant 521994/96-9. WWW: http://www.cin.ufpe.br/ phmb. Elec-
tronic mail: phmb@cin.ufpe.br.

4 Forces

DAP balances the following forces:
e Separation of concerns;
e The components should be independent from the communication API;

e The code modification in components to support communication should be mini-
mized;

e Changing the communication mechanism should be a simple task, minimizing the
impact on business code;

e Adequate communication performance;

e Development productivity must not be significantly affected.

5 Solution

Introduce a pair of object adapters [4] to achieve decoupling of components in distributed
architectures. The adapters basically encapsulate the API that is necessary for allowing
the distributed or remote access of Target objects (hereafter Target object refers to a
business object providing services to other business objects). In this way, Source objects
(hereafter Source object denotes a business object acting as a client of a Target object) of
an application become autonomous with respect to the distribution layer, so that changes
in the latter do not impact the former.

Ksource”> | Source | | o Target | _ KTarget »
User interface Adapter Adapter Facade
Machine A Machine B

Figure 1: An example of DAP.

There are two kinds of adapters: source adapters and target adapters. Roughly, the
latter wraps Target objects in the places where they are located, and the former represents
those objects in remote locations. In a typical interaction, a user interface object (a GUI,
for instance) in one machine would request the services of a source adapter located in the
same machine. The source adapter would then request the services of a corresponding
target adapter residing in a remote machine. Finally, the target adapter would request
the services of a Facade [4] object co-located with the target adapter. Figure 1 illustrates
this example.

Source and target adapters provide a higher level of abstraction than stub and skeletons
do. The adapters isolate user interface and business code from distribution API, whereas

stubs and skeletons isolate user interface and business code from the implementation of
distribution issues, but not from distribution API. Source adapters delegate lower level
distribution issues such as marshalling to stubs, and target adapters delegate such issues
to skeletons.

As another example, the banking application of Section 2 is structured according to
DAP as Figure 2 illustrates.

r-)

<<Facade Interface:: <<Facade > >

{<SoUrce s
— IBank Bank <<Initialize re =
|_ Uszer Intarface [- = _]

Bankinitializer

| depaosit) depaoist()
| & = |
[~~ |
“45ource Adapters: {<{Remaote Interface > » ™ ¢<Target Adapters
| BankRM IS ource Ad apter IBankRMITargetAdapter BankREMITargetAdapter |
— = <
| |deposit(j deposit) de posit) |
[P’__'_,d-o-"
| | —xy Hame service |-
| O st o bo G tory
| | | lookupr)
register() | ,-'1"..
s
Facadefach:-ry_L___________|_J
|_ SpecificDistribution Factory

Figure 2: Class diagram of a banking application according to DAP.

The uncolored elements deal with the business aspects of the application, whose Facade
is the Bank class, which unifies all services of the application. The gray elements denote
the adapters and their collaborators. Essentially, these gray elements hide distribution
API from user interface and business code. In the following section, each element is
described abstractly; their implementation is sketched in Section 8.

5.1 Structure

Figure 3 details the structure of DAP by means of a class diagram. The Source and
Facade classes abstract business components as mentioned previously. The Facade class
is named after the Facade design pattern [4]. The Facade Interface abstracts the be-
havior of the Facade class in a distributed scenario. However, this interface, the Source
and Facade classes have no communication code. These three elements constitute a
distribution-independent layer in the pattern. The remaining elements of the pattern
deal with this aspect.

The core elements of the pattern handling distribution itself are Source Adapter
and Target Adapter. These are tied to a specific distribution API and encapsulate the
communication details. Source Adapter is an adapter [4], isolating the Source class

) Mame service L,—r"’-f

Digtribution factory

look up(l

Facade Interface Facade
| Source {i]— Initializer
| |_ mi m (] |
"

| ~ ‘
I | Sourcep dapter Femaote Interface T Targetadapter ‘
| | mi m(l m i) ‘
| | — -
| v

register) ‘ ;'T\
Facade factory |— I_ — e e _i_ J
5

peacificl istributionF actony

Figure 3: Class diagram of DAP.

from distribution code. It resides on the same machine as the Source and also works as
proxy [4] to Target Adapter. This latter may reside on another machine and is also an
adapter, isolating the Facade class from distribution code. Since Source Adapter and
Target Adapter usually reside in different machines, and thus do not interact directly,
Target Adapter implements Remote Interface, on which Source Adapter depends.

The Name Service class has operations for registering and looking up a remote object;
both adapters use this class, which represents a generic name service and is common to
most distribution platforms. The Initializer class also resides in the same machine as
Target Adapter and Facade, and is responsible for creating Facade and Target Adapter
objects. Its importance lies in the fact that it allows the same Facade object to be
accessed at the same time by different target adapters, representing different distribution
technologies. Concurrency control is orthogonal to distribution and can be studied in
books such as [5]. The factories in the pattern are useful for configuration purposes: they
are used in the creation of Facade and of the adapters. In particular, the factories isolate
business code from the creation of adapters for a specific distribution platform.

5.2 Dynamics

Figure 4 shows the sequence diagram of a typical scenario for DAP. The Initializer
creates a Facade object and a Target Adapter!, passing to the latter a reference to the
former. Target Adapter registers itself as a distributed object in the Name Service by

! Actually, Initializer delegates the creation of this adapter to DistributionFactory. We omit it
here for simplicity.

Source ‘Initializer :aNameService

U :TargetAdapter

create

:SourceAdapter

| lookup

Legend
— invocation

- —> return

Figure 4: Dynamics of DAP.

invoking its register method. During initialization, Source creates a Source Adapter?,
which performs a lookup operation on Name Service to obtain a reference to the re-
mote service offered by Target Adapter. Source then invokes the local m operation on
Source Adapter, which in turn calls the remote m operation of Target Adapter; this
latter delegates the call locally to Facade.

6 Consequences

DAP provides the following benefits:

e Modularity. This pattern separates concerns by structuring distribution aspects
modularly, promoting loose coupling between the different layers of an application’s
architecture: distribution, business, and user interface layers.

e Reuse and extensibility. Due to the modularity provided by the pattern, developers
can reuse the Source and Target components easily in other applications based on
other APIs and middleware technologies. In addition, changes to the middleware
aspects are simpler, since these are restricted to the distribution layer.

%In fact, Source delegates this to FacadeFactory.

e Incremental implementation. The pattern supports incremental implementation.

During the early phases in development, developers construct a functionally com-
plete prototype, where the Source component (a GUI, for example) depends directly
on the Target component (a business Facade, for example). Later, developers add
the distribution layer seamlessly, since this latter implements the same interface as
the Target component.

This pattern has the following drawbacks:

7

o Increased number of classes. A pair of adapters, three factories, and an initializer are

necessary; however, their structure is simple and their generation could be mostly
automated by tools.

Ezxtra indirection. The pair of adapters introduces two additional method calls for
each remote request. However, both of these additional calls are local, which are
much less expensive than the remote one. The work in [1] shows empirical data
analyzing the impact on efficiency caused by the adapters; the analysis reveals that
such impact is minimum.

Implementation

For example, here we consider how to implement the Distributed Adapters Pattern using
RMI [9] as the distribution technology. Consider the following implementation issues:

8

o Serialization of business objects. As RMI supports a value parameter passing mecha-

nism for local objects, the classes of these objects must implement the Serializable
interface [9]. There are no methods in this interface and it simply indicates to the
RMI system that an object may be transformed into a stream of bytes in order to
be transmitted over a network. However, this is not a negative dependence between
the business and the distribution layers since the former calls no method on the
latter; in fact, no change on the latter will affect the former.

Additional non-functional requirements. RMI is a simple distribution platform and
does not offer fault-tolerance and caching. Such extended behavior can be imple-
mented in DAP’s adapters (a detailed implementation is presented in [1]).

Sample Code

We now provide sample code for the core elements in the pattern, using the simple banking
application mentioned in Section 2 as an example (a full implementation is given in [1]).
This application is structured according to DAP as shown by Figure 2. The Bank class is
a Facade, and it keeps references to entities such as account and customer records, and
has operations for manipulating these entities:

class Bank implements IBank {

private AccountRecord accounts;
void deposit(String accountNumber, double value)

throws UnknownAccountException {
accounts.deposit (accountNumber,value) ;

3

where AccountRecord provides services for manipulating a record of accounts (insertion,
updating, querying, deletion, etc.) and also for depositing to or withdrawing from them.
The exception UnknownAccountException is specific to the banking application. The
IBank interface implemented by the banking facade is a Facade Interface. It abstracts
the behavior of the application:

interface IBank {
void deposit(String accountNumber, double value)
throws CommunicationException,
UnknownAccountException;. ..

3

where CommunicationException is a general exception representing failure in the distri-
bution layer. This exception does not depend on any particular distribution technology
and is defined since the application will eventually become distributed.

A User interface object simply creates a BankRMISourceAdapter and forwards client
requests to it. The RMI source adapter implements IBank so that the User interface
class is unaware of the specific middleware technology. The constructor obtains a reference
to the target adapter, by invoking the connect method:

public class BankRMISourceAdapter implements IBank {
private IBankRMITargetAdapter bank;
public BankRMISourceAdapter(String whereServer)
throws CommunicationException {
connect (whereServer) ;

}
public void connect(String server) throws CommunicationException {

try {

bank = (IBankRMITargetAdapter) Naming.lookup(server);
} catch (Exception e) {
throw new CommunicationException (...);
}

}

A User interface object can call the connect method later in case the connection with
the target adapter fails (in fact, the source adapter itself may implement fault-tolerant
behavior as described in [1]). The deposit method forwards User interface deposit
requests to the target adapter:

public void deposit (String accountNumber, double value)
throws CommunicationException,
UnknownAccountException {
try {
bank.deposit (accountNumber,value) ;

} catch (RemoteException e) {
throw new CommunicationException (...);
}

}
} //end of BankRMISourceAdapter

Note that, both in the constructor and in the deposit method, the source adapter
replaces an RMI specific exception with the general CommunicationException. The
IBankRMITargetAdapter interface is the type of the reference to the target adapter and
its methods must also raise RemoteException:

public interface IBankRMITargetAdapter extends Remote {
void deposit(String accountNumber, double value)
throws CommunicationException, UnknownAccountException,
RemoteException;

3

where Remote is an RMI interface used to identify remote object types [9].

The target adapter becomes an RMI remote object by inheriting from the
UnicastRemoteObject [9]. It implements the IBankRMITargetAdapter remote interface,
so that the source adapter can call its methods remotely. The constructor of the target
adapter receives a facade object as an argument and registers the adapter itself in the
name service:

public class BankRMITargetAdapter extends UnicastRemoteObject
implements IBankRMITargetAdapter {
private IBank bank;
public BankRMITargetAdapter (IBank bank)
throws CommunicationException {
try {
this.bank = bank;
Naming.rebind("BankServer", this);
} catch (Exception e){ throw new CommunicationException(...);}

3

The source adapter invokes the deposit method on the target adapter, and this op-
eration forwards the call to the corresponding method in the facade object:

public void deposit(String accountNumber, double value)
throws CommunicationException, RemoteException,
UnknownAccountException {
bank.deposit(accountNumber, value);
b
} // end of BankRMITargetAdapter

Note that the type of the target adapter’s attribute is IBank and not Bank. The
rationale is that, since either a facade or a source adapter implements IBank, the tar-
get adapter, which depends on this interface, may refer either to a facade or to another

IBank
«Source>> a Distribution Distribution
Userinterface [~~~ SA TAr--=
TA
v
(P IBank
KTarget »
Bank

This figure illustrates an application with two levels of distribution. Each distribution component ab-

stracts both adapters. SA and TA denote Source Adapter and Target Adapter, respectively.

Figure 5: Additional levels of distribution.

source adapter. This latter case accounts for flexible configurations where there are addi-
tional levels of distribution. Figure 5 illustrates this situation. As mentioned previously,
the methods of the IBank business facade interface declare CommunicationException.
Therefore, methods in the target adapter and in its remote interface must also declare
this exception.

9 Known Uses

DAP has been used in the implementation of a Web based information system, where
the adapters are used between the web server, in which servlets [10] act as clients of the
source adapter, and the application server, in which the target adapter interacts with the
facade. The facade is not in the web server due to security and performance reasons.

Another use of DAP in Web based information systems employs the adapters between
an applet, in a client Web browser, and a facade, in a remote machine. The adapters hide
the communication details, which use HTTP [12], from the applet and the facade.

The work in [8] and [2] reveals that developers have been using patterns that have
some relation to DAP. In particular, the pattern in the first work is similar to DAP’s
source adapter; the pattern in the second work is similar to the DAP’s target adapter.

10 Related Patterns

e Distributed Proxy Pattern [6]. This pattern and DAP have similar objectives. How-
ever, following to [11], DAP does not attempt to make the incorporation of distri-
bution totally transparent. Indeed, a client of a source adapter in DAP must be
prepared to handle the general CommunicationException. DAP makes transparent
the use of a particular distribution technology, not distribution itself. In order to
achieve it, DAP uses adapters (instead of proxies), which replace specific distribu-
tion code by general code, for example by turning java.rmi.RemoteException into

CommunicationException. Moreover, the adapters in DAP may implement addi-
tional non-functional requirements, such as fault-tolerance and caching, and may
also be used to achieve n levels of distribution (as shown in Figure 5), each of which
may be implemented by a different technology.

e Wrapper-Facade [7] and DAP have the common goal of minimizing platform-specific
variation in application code. However, Wrapper-Facade encapsulates existing lower-
level non-object-oriented APIs (such as operating systems mutex, sockets, and
threads), whereas DAP encapsulates object-oriented distribution APIs, such as RMI
and CORBA.

e Adapter, Facade, and Abstract Factory. DAP is implemented using the Adapter,
the Facade, and the Abstract Factory design patterns [4].

e Broker and Trader. Well known patterns for structuring distributed systems al-
ready exist. The Broker [3] and Trader [3] patterns are examples. These are ar-
chitectural patterns and focus mostly on providing fundamental distribution issues,
such as marshalling and message protocols. Therefore, they are mostly tailored
to the implementation of distributed platforms, such as CORBA. DAP uses these
fundamental patterns and provides a higher level of abstraction: distribution API
transparency to both clients and servers.

e Chain of Responsibility [4] is similar to DAP in the sense that it decouples the sender
of a request from its receiver by giving more than one object the chance to handle
the request. This indirection is similar to the DAP’s adapters; these, however, also
perform interface filtering, isolating the distribution platform’s API, which is not
done by Chain of Responsability.

e Model-View-Controller (MVC) [3] is used in the context of interactive applications
with a flexible human-computer interface. Its goal is to make changes to user inter-
face easy, and even possible at run time. DAP is used in the context of distributed
applications and aims at making changes to the distribution platform a simple task.

Acknowledgements

We would like to thank our shepherd, Eduardo Fernandez, for all the work he put into
commenting on this paper and the great suggestions for improvement he made. During
the writer’s workshop at SugarLoafPLOP’2001, Jorge Ortega Arjona, Gunter Mussbacher
and Sérgio Soares have also made several interesting comments that helped to improve
this paper.

References
[1] Vander Alves. Progressive development of distributed object-oriented applications.

Master’s thesis, Centro de Informética — Universidade Federal de Pernambuco, Feb.
2001.

[10]
[11]

[12]

Dan Becker. Design Networked Applications in RMI Using the Adapter Design
Pattern. Java World, May 1999.

Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael
Stal. Pattern Oriented Software Architecture: A System of Patterns. John Wiley &
Sons, 1996.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1994.

Doug Lea. Concurrent Programming in Java: Design Principles and Patterns.
Addison-Wesley, 1999.

Antonio RitoSilva, Francisco Rosa, and Teresa Goncalves. Distributed proxy: A
design pattern for distributed object communication. In PLoP’97, Monticello, USA,
September 1997. http://jerry.cs.uiuc.edu/ plop/plop97/Proceedings/ritosilva.pdf.

Douglas Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann. Pattern Ori-
ented Software Architecture, volume 2. John Wiley & Sons, 2000.

Gregg Sporar. Retrofit Existing Applications with RMI. Java World, January 2001.

Sun Microsystems. Java Remote Method Invocation Specification, 1.50 edition, Oc-
tober 1998.

Sun Microsystems. Java Servlet Specification, Abril 2000.

J. Waldo, G. Wyant, A. Wollrath, and S. Kendall. A note on distributed computing.
Technical Report TR-94-29, Sun Microsystems, November 1994.

The World Wide Web Consortium. Hypertext Transfer Protocol Specification, 1.1
edition, jun. 1999. http://www.w3.org/Protocols/rfc2616 /rfc2616.html.

