
PDC: Persistent Data Collections pattern

Tiago Massoni Vander Alves Sérgio Soares Paulo Borba∗

Centro de Informática

Universidade Federal de Pernambuco

Introduction

The object–oriented applications layer architecture [2, 3] allows the distribution of classes
into well–defined layers, according to each crosscutting concern of an application (busi-
ness, communication, data access, etc.) to obtain separation of concerns. Elements from
different layers communicate only through interfaces. However, we have to refine these
layers by filling them with specific classes. The complete set of these classes, related to
business and data access concerns, was transformed into a design pattern, called PDC
(Persistent Data Collections), which is presented in this paper.

Brief

Provide a set of classes and interfaces in order to separate data access code from business
and user–interface code, promoting modularity.

Context

When developing persistent object–oriented information systems applications using spe-
cific Application Programming Interfaces (APIs) that lead to interwoven code making
maintenance and reuse difficult.

Problem

Obtain better maintenance and reuse levels when using persistence mechanisms to develop
an object–oriented application.

Forces

• Developers should be able to address the business aspects of an application inde-
pendently from persistence operations.

∗Supported in part by CNPq, grant 521994/96–9. Electronic mail: {tmasson,vralves}@us.ibm.com,
{scbs,phmb}@cin.ufpe.br. Av. Professor Luis Freire s/n Cidade Universitária 50740–540 Recife PE
Brazil.

1

• Ad hoc implementations directly using specific Application Programming Interfaces
(APIs) usually lead to interwoven code that is hard to maintain. For example, a
Java [8] program can use the JDBC API (Java Database Connectivity API [14]) for
manipulating persistent data within business code.

• The type of persistent storage or vendor may change over the life of an application.

• Business classes may be reused by other applications.

• It may be non-trivial to deal with some aspects from persistent systems, such as
enabling connections to database platforms and managing transactions efficiently.

• The system performance should not be affected.

Solution

The basic idea of PDC is to avoid mixing data access code with business code from
domain-related objects, leading to extensibility and reusability. For this purpose, we
propose the separation of design classes in two types:

• classes describing business logic objects.

• classes for data manipulation and storage, with specific persistence code.

The communication between these two types of classes is carried out through inter-
faces, which guarantee independence between the business layer and the data access layer.
Business code will be the same, regardless of how data access operations are implemented.

PDC suggests the use of persistent data collections, which contain code for manipu-
lating a group of persistent objects of an application. These collections represent a clear
distinction between the ”data” and the ”data set”, being the core of our solution. Our so-
lution is complemented by ideas taken from other well-defined design patterns, as Facade,
Abstract Factory and Bridge [7]. The goal is to reduce the impact caused by modifications
in the system functional and non–functional requirements.

As in the example in Figure 3, for each important domain object which will be persis-
tent in the application (like Account), we create two other classes: the business collection
(AccountRecord) and the data collection (AccountRepositoryJDBC) classes, represent-
ing business and persistent collections of domain objects, respectively. Furthermore, each
persistent domain class must inherit from the PersistentObject class, indicating that
its objects will be stored persistently.

The Bank class encapsulates all services offered by the application (applying the Facade
pattern [7]). The object from this class calls methods on all business collection objects
of the application (as AccountRecord), in order to implement the services. The business
collection in turn uses persistence-related services from its corresponding persistent data
collection (as the insert and search methods).

The PersistenceMechanismJDBC class is used by Bank and persistent data collections
(as AccountRepositoryJDBC) for performing database platform services, such as connec-
tion and transaction management. These issues are addressed by specific methods in the
persistence mechanism.

2

In order to request services from the data access layer, the business objects send mes-
sages to data access objects only through interfaces, which provides extensibility for the
design of the application. In the example, the IAccountRepository interface separates
business collections from persistent data collections, and the IPersistenceMechanism

interface isolates specific persistence mechanism services from its business clients, such as
the Bank class.

As in the example above, we can use PDC to structure the application using a set
of specific classes, separating business and user–interface concerns from persistence con-
cerns. Such application is easier to maintain and to extend, since its core functionality
is decoupled from data access code. In addition, classes from the application can also be
reused by other applications.

Structure

Figure 1 details the structure of PDC, using an UML class diagram [4]. The class names
denote the element of the pattern itself, including classes with the ”Interface” stereotype,
which denote interfaces containing only method signatures to be implemented by the
indicated classes.

Figure 1: Class diagram of PDC.

The participants of the pattern are presented as follows, along with their matching
elements of the example presented in Figure 3:

3

• Facade. This class provides a simple interface to all services of a complex sys-
tem [7]. A facade offers a simple default view of the system that is useful for most
clients. It keeps references to the several BusinessCollection objects of the ap-
plication, and delegates calls to them. Additionally, it implements the Singleton
pattern, thus exactly one instance of this class will be active during execution. This
element is represented by the Bank class in the example.

• BusinessBasic. This class represents a business basic concept, reflecting clearly
the problem domain (for instance, account, client, investment). If we choose this
class to inherit from an abstract class containing abstract data access methods (see
Implementation Section), the BusinessBasic class has to implement those methods.
Using this approach, although some data access code is placed within a business
class, the business code of the class does not depend on the data access code. Such
code on a business basic class can be easily removed or replaced, with no impact on
business code. In the example, this class is represented by the Account class.

• BusinessCollection. This class represents a grouping of objects from a sig-
nificant business basic class, on the business’ perspective. It contains methods
for inserting, querying, updating, and deleting business objects, with verification
and tests of preconditions related to the object manipulation. Furthermore, the
BusinessCollection class also contains methods directly related to the application
domain. This element is represented by the AccountRecord class in the example.

• PersistentDataCollection. This class contains methods for manipulating per-
sistent objects of a specific business basic class. The code for these methods de-
pends on a specific API for accessing some persistence platform, thus any changes
to this platform will cause direct impact on this class, but absolutely no impact
on business code (since the IBusiness–Data interface isolates these changes). The
PersistentDataCollection class implements methods from a IBusiness–Data in-
terface and depends on services from the PersistenceMechanism class in order
to perform database operations, more specifically for finer granular transactions
and database connections. In the example, the role of this class is played by the
AccountRepositoryJDBC class.

• IBusiness–Data. This interface establishes a communication protocol between
BusinessCollection objects and PersistentDataCollection objects. A business
collection class depends on this interface for storing and retrieving objects from the
database. This approach promotes modularity, since changes to the data access code
do not have impact on business code. In the example, this interface is represented
by IAccountRepository.

• PersistenceMechanism. This class contains methods that implement specific ser-
vices related to a database platform, such as connecting to and disconnecting from
the database, and transaction management. Methods related to connection manage-
ment open and maintain a database connection for a service from the application,
making this connection available to one or more PersistentDataCollection ob-
jects involved in the accomplishment of the service. Methods related to transaction
management open, confirm or abort transactions, in order to provide consistency
among all operations used to accomplish an application service. The code of these

4

methods depends on a specific persistence API. This class is represented by the
PersistenceMechanismJDBC class in the example.

• IPersistenceMechanism. This interface is defined in order to provide indepen-
dence between the business classes and the PersistenceMechanism class (which
implements this interface). Therefore, if we change the database platform, we have
to replace the old PersistenceMechanism object by a new object, but this modifi-
cation does not have impact on business classes. The Facade class depends on this
interface for invoking transaction methods. The example presents an interface with
the same name.

Dynamics

Figure 2 shows a sequence diagram [4] of a typical scenario for the use of PDC, using the
approach of data access methods encapsulated into a business basic class (see Implementa-
tion Section). The Facade object creates a PersistenceMechanism object, whose services
will be requested during execution. Next, a service on the Facade object is called, which
in turn begins a transaction (invoking a method on the PersistenceMechanism object)
and delegates the call to a BusinessCollection object in order to perform this service
(a querying operation that retrieves data from the database). The BusinessCollection

object performs all validation and tests on the input data, then invokes an operation
to manipulate persistent data on the corresponding PersistentDataCollection ob-
ject (through the corresponding business–data interface). The latter creates an empty
BusinessBasic instance and fills it with database information (calling deepAccess, which
in turn executes queries through services offered by the PersistenceMechanism object,
as the executeQuery method), returning the resulting object to the Facade object. In
the end of the operation, the Facade object confirms the end of a database transaction,
invoking commitTransaction on the PersistenceMechanism object.

Consequences

The use of PDC offers the following benefits:

• Support for independent implementation. PDC’s layer architecture allows to address
the business aspects independently from persistence operations. This abstraction is
promoted by interfaces between the business layer and the data access layer.

• Maintainability. The pattern’s structure increases the system maintainability by
separating business code from data access code. Therefore, changes in the data
access classes should not interfere in the business classes.

• Extensibility. The pattern makes it easier to seamlessly change the database tech-
nology or vendor, minimizing or even eliminating impact on business code. In-
terfaces between the business layer and the data access layer promote the desired
extensibility for the application.

• Use of several persistence platforms. The resulting code is able to support stor-
ing objects into several persistence platforms, such as files, relational and object–
oriented databases, by creating a number of implementations for the persistence

5

Figure 2: Dynamics of PDC.

mechanism class and for each persistent data collection class; all of these classes
must implement the corresponding interfaces.

• Reuse. Due to the structure provided by the pattern, business classes can be easily
reused by another application based on other database technologies. In addition,
changes to data access issues are simpler, since they are restricted to data access
code.

• Abstraction. As the pattern abstracts the persistence problem by using interfaces,
persistence implementation may use complex algorithms or APIs to deal with some
non-trivial aspects from persistent systems, such as enabling connections to database
platforms and managing transactions efficiently.

• Support for progressive implementation. During early phases of the application
development, functionally complete prototypes are constructed, where business col-
lection classes depend on business–data interfaces, but the latter are implemented
by volatile data collections (storing objects in memory only). Later, data access
code can be added seamlessly, replacing volatile data collections by specific per-
sistent data collection objects, then adding a persistence mechanism object. Such
approach enables addressing the business problems independently from persistence
operations, simpler validation of user requirements, and simplification of tests [9].

6

The liabilities of the pattern are:

• Increased number of classes. For each significant business basic class, we have to
create up to three additional classes and one interface. However, their structure is
simple and their generation can be simply automated by tools.

• Increased indirection. In order to introduce the layer architecture we must use dif-
ferent kinds of classes that delegate some calls to others, which may decrease system
performance. In fact, this lost of efficiency is minimal, since these indirections are
locally executed, and the additional execution time is irrelevant when compared
to the overhead of the IO operations that read from and write to the persistence
mechanism.

Implementation

Here we consider how to implement PDC using JDBC as the data access API for using
relational database services. Consider the following implementation issues:

• Java platform. The pattern elements must be implemented in the Java program-
ming language, since JDBC is part of the Java platform.

• Inheritance in the business basic class. Most code for manipulating objects using
JDBC can be contained in business basic classes, within methods inherited from an
abstract class (PersistentObject in our banking example). It can be considered
a miscellaneous of business and data access code, even though those inherited data
access methods are not invoked by business code (as mentioned earlier). One alter-
native for such situation is to transfer all code for manipulating persistent business
basic objects to the persistent data collection classes. The disadvantage of such ap-
proach is that changes in a business basic class will also reflect in the corresponding
persistent data collection class; it is necessary to implement a new persistent data
collection for each new platform. On the other hand, in this approach changes in
the persistent platform will not affect the business basic classes.

• Transactions. Using JDBC, we can easily implement transactions using database
services. We must use the setAutoCommit, commit and rollback methods on the
Connection class in order to implement a transaction when implementing a sequence
of operations, which must be executed as a single one.

• Business basic subclasses. A business basic class can be specialized in business
basic subclasses, depending on the business rules. In the case of business collection
and persistent data collection classes (including business–data interfaces), we can
choose from two design alternatives: one is to create a class for each business basic
subclass; another is to use only one class, in order to avoid duplicate code. A
detailed discussion about this topic is presented in a related work [15].

• Concurrency control. One concurrency problem arises when using a connection pool
to manage the connections with the persistence mechanism. Each execution flow
(thread) must obtain a connection from the connection pool before communicating

7

with the persistence mechanism. Usually there is a single connection pool contain-
ing all the connections of the system, and thus this poll is accessed concurrently.
Moreover, we need to apply some concurrency control to the system. Examples of
others situations in which concurrency control should be addressed are interference
by business rules (system policies), unsafe data types, and other race conditions [12].

• Volatile data collections. We can use this type of class for storing objects in a
non–persistent manner, in order to support progressive implementation. Using this
approach, we can abstract from persistence or any other non–functional requirement,
when implementing functional prototypes for the application. These prototypes
can be useful for validating user requirements and simplifying tests. This class
also implements its corresponding business–data interface, but its methods use in–
memory data structures like arrays or lists to manipulate business objects.

• Abstract factories. Variations of PDC can include classes which represent abstract
factories [7], in order to increase extensibility and reusability of business classes.
An abstract persistence factory class can be introduced, containing a method for
creating a persistence mechanism object, and such method can be implemented by
a subclass of the abstract factory, the concrete factory. The facade object can call
this method to instantiate the persistence mechanism, without making a explicit
call to its constructor method. The same idea can be used for creating persistent
data collections, isolating the business classes (facade and business collection classes)
from the instantiation code. In both cases, the information needed by the concrete
factories to instantiate the objects is placed in simple text or XML configuration
files.

Sample Code

We now provide a brief sketch of the implementation of the main elements of PDC using
Java and the JDBC API, in the banking application example introduced in Figure 3.
First, we present a business basic class, Account, which reflects directly the problem
domain. The public modifier in classes and methods is omitted by brevity.

class Account extends PersistentObject {

private Number number;

private double balance;

void credit(double value) { balance = balance + value; }

...

/* Data access operations */

void insert() throws StoringException {

try {

String sql = "insert into account values (";

sql += "ID = "+super.getId(); // get the object id

sql += "NUMBER = "+this.getNumber();

sql += "BALANCE = "+this.getBalance();

super.pm.executeUpdate(sql);

} catch (SQLException e) { throw new StoringException(); }

}

8

Figure 3: Example of PDC applied to a banking application.

Two of the attributes and one business operation, credit (containing only business code
and not invoking any data access method), are presented above. In another portion of
the class, there are data access methods inherited from the PersistentObject class,
containing specific code for database operations in this class (as the insert method).
Any exception related to the data access API (SQLException) is replaced by a general
database exception (StoringException).

In addition, this class contains methods with the deep prefix, which are special op-
erations for manipulating attributes which are references to other objects or collection
of objects (as the number attribute). The deepInsert method in the Account class has
an IPersistenceMechanism interface parameter receiving a reference to a persistence
mechanism object in order to perform the corresponding database operation:

void deepInsert (IPersistenceMechanism pm)

throws StoringException {

super.pm = pm;

this.number.deepInsert(pm);

this.insert();

}

...

}

9

Notice that deepInsert is called first for the attribute, before the insert for the Account
object. This order is followed in operations to write data to the database, due to a
restriction of relational databases, which forces the code to insert rows in auxiliary tables
first (number attribute), then insert a row in the main table (Account object). In this
way, the relationships can be established with no errors. This order does not need to be
followed in operations querying the database. Operations deleting data from the database
depend on the referential integrity defined for the tables involved.

Although there is business code along with data access code in the same class, the
business methods do not depend on the data access methods, since the former do not
invoke the latter. Therefore, we can insert and remove data access methods with no
impact on business code (a process easily automated by tools). The PersistentObject

class is presented below:

abstract class PersistentObject {

protected long id;

protected IPersistenceMechanism pm;

abstract void insert() throws StoringException;

abstract void deepInsert(IPersistenceMechanism pm)

throws StoringException;

abstract void access() throws StoringException;

abstract void deepAccess(IPersistenceMechanism pm)

throws StoringException;

...

}

where the id and the pm attributes denote the object identity of a persistent object
and a persistence mechanism object to perform database operations, respectively. The
abstract data access methods in this class must be implemented by all business basic
classes, which will be made persistent. The StoringException exception is raised when
a problem occurs in any database operation.

In order to represent a set of business basic objects on the business’ vision, we use a
business collection class. We present the class AccountRecord, which represents a set of
bank accounts:

class AccountRecord {

private IAccountRepository accountsRep;

AccountRecord(IAccountRepository accountsRep) {

this.accountsRep = accountsRep;

}

where the constructor of AccountRecord receives as argument an object which implements
a business–data interface, and two of the business operations for this class, addAccount
and credit, are also presented. The first method inserts an Account object into the
database, raising an exception if an account with the same number already exists.

10

void addAccount(Account account)

throws StoringException, DuplicateAccountException {

if (this.accountsRep.exists(account.getAccountNumber()))

throw new DuplicateAccountException();

else this.accountsRep.insert(account);

}

The second method queries the database for a given account. If the query is successful,
a value is added to the account’s balance and the account is updated in the database.
However, if the account does not exist in the database, an exception is raised.

void credit(Number accountNumber, double value)

throws StoringException, UnknownAccountException {

if (accountsRep.exists(accountNumber)) {

Account account = accountsRep.search(accountNumber);

account.credit(value);

this.accountsRep.update(account);

}

else throw new UnknownAccountException();

}

...

}

The database is represented by the attribute accountsRep, a business–data interface with
data access operations. This interface is as follows:

interface IAccountRepository {

void insert(Account account) throws StoringException;

Account search(Number accountNumber) throws StoringException;

void update(Account account) throws StoringException;

boolean exists(Number accountNumber) throws StoringException;

...

}

where the update method is important to maintain consistency between in–memory
(volatile) and persistent objects. Other methods on this interface could be complex queries
(for instance, returning a set of objects) and methods for sequential querying.

A class implementing a business–data interface is a persistent data collection class. In
our example, this class implements its methods invoking data access methods defined in
the business basic classes. In our example, the AccountRepositoryJDBC class is presented
as follows:

class AccountRepositoryJDBC implements IAccountRepository {

private PersistenceMechanismJDBC pm;

void insert(Account account) throws StoringException {

account.deepInsert(this.pm);

}

Note that the pm attribute stores a persistence mechanism object, which is passed as an
argument for the database operations on Account objects, as in the search method.

11

Account search(Number accountNumber) throws StoringException {

Account ac = new Account(accountNumber);

ac.deepAccess(this.pm);

return ac;

}

...

}

On the other hand, if it is desired to develop a functional prototype first, we can
implement a business–data interface using a volatile data collection. In the banking
application, we can create a class which stores and retrieves Account objects from an
array. The objects will be maintained in the array only during the current execution.

The facade class of the pattern is represented by the Bank class in this application:

class Bank {

private IPersistenceMechanism pm;

private AccountRecord accounts;

Bank() throws PersistenceMechanismException {

PersistentFactory factory = PersistentFactory.getFactory();

this.pm = factory.createPersistenceMechanism();

this.accounts = new AccountRecord(

AccountDataFactory.getFactory().createDataCollection(pm));

}

void addAccount(Account account)

throws StoringException, AccountAlreadyExistsException {

this.pm.beginTransaction();

try { this.accounts.add(account); }

catch (Exception e) {

this.pm.cancelTransaction();

throw e;

}

this.pm.commitTransaction();

}

void credit(String accountNumber, double value)

throws StoringException, UnknownAccountException {

this.pm.beginTransaction();

try { this.accounts.credit(accountNumber,value); }

...

}

...

}

This persistence mechanism object is instantiated in the Bank’s constructor, in order to
initialize the system, being stored in an IPersistenceMechanism interface attribute. All
the initialization process is performed using a PersistenceFactory class, which reads a
configuration file and creates the right specific persistence factory object for the applica-
tion. This object will then create the specific persistence mechanism object for the Bank

class, promoting extensibility of the business code (the facade class does not instantiate
the persistence mechanism object directly). See the Implementation section.

12

Bank uses services from its AccountRecord attribute, delegating calls to the latter in
its methods. This attribute is initialized by passing as argument a new persistent data
collection object, which implements a business–data interface and receives a persistence
mechanism object. In order to maintain separation between business and data access
code, this persistent data collection object is instantiated by a specific data factory for
JDBC, which in turn was first instantiated by a static method (getFactory) in an abstract
AccountDataFactory class (see Implementation section). In the addAccount and credit

methods, the Facade class invokes methods on the persistence mechanism object for
beginning and confirming a transaction, or canceling it if some exception occurs.

The IPersistenceMechanism interface, which is used by Bank, is presented as follows:

interface IPersistenceMechanism {

void beginTransaction() throws PersistenceMechanismException;

void commitTransaction() throws PersistenceMechanismException;

void cancelTransaction() throws PersistenceMechanismException;

void connect() throws PersistenceMechanismException;

void disconnect() throws PersistenceMechanismException;

...

}

where PersistenceMechanismException is the exception raised when some error occurs
in one of those operations. A persistence mechanism class implements this interface using
specific database API operations, as in the following example:

class PersistenceMechanismJDBC implements IPersistenceMechanism {

void beginTransaction() throws PersistenceMechanismException {

try {

// requests a connection from a connection pool

Connection conn = this.requestConnection();

conn.setAutoCommit(false);

}

catch (SQLException e) {

throw new PersistenceMechanismException();

}

}

...

}

This class implements the beginTransaction method using services from the JDBC
API. First, a connection to the database is requested from a connection pool (allowed by
JDBC). If there is not any opened connection, a new one is created. Then a transaction
is initialized in the context of the connection. Any SQLException raised is replaced by a
general exception, in order to guarantee isolation between business and data access code.

Known Uses

Several organizations have been using PDC as a design pattern for many real software
projects. Most of these projects have aimed at developing from simple to complex ap-

13

plications, and satisfactory results have been collected in such situations. Some of these
systems are presented as follows:

• A system to manage clients of a telecommunication company. The system is able
to register mobile telephones and manage client information and telephone services
configuration. The system can be used over the Internet.

• A system for performing online exams. This system has been used to offer differ-
ent kinds of exams, such as simulations based on previous university entry exams,
helping students to evaluate their knowledge before the real exams.

• A complex supermarket system. A system that is responsible for the control of sales
in a supermarket. This system will be used in several supermarkets and is already
been used in other kinds of stores.

• A system for registering health system complaints. The system allows citizens to
complaint about health problems and to retrieve information about the public health
system, such as the location or the specialties of a health unit.

• This pattern is also used in undergraduate and graduate courses on object–oriented
programming at the Center of Computer Science of the Federal University of Per-
nambuco. Several kinds of systems (such as games, academic control systems, and
sales systems) have been developed in these courses.

In addition, the pattern is one of the basic patterns of the Progressive Implementa-
tion Method (Pim) [5]. Pim is a method for the systematic implementation of complex
object–oriented applications in Java. In particular, this method supports a progressive
approach for object–oriented implementation, where persistence, distribution and con-
currency control are not initially considered in the implementation activities, but are
gradually introduced, preserving the application’s functional requirements [1, 9, 11, 15].
Pim relies on the use of specific architectural and design patterns for structuring object–
oriented applications, in order to promote modularity and separation of concerns [10].
PDC is the design pattern applied for dealing with persistence.

Related Patterns

• Crossing Chasms [6]. In their set of patterns for object–relational integration,
Brown and Whitenack deal with the definition of database schemas for relational
databases, supporting the object model. These patterns can be useful in PDC (for
setting up the database tables), since they have distinct objectives (PDC aims at
structuring the application in layers for a seamless introduction of persistence).

• Persistent Layer and other patterns [16]. Yoder’s patterns and PDC have very
similar objectives in obtaining separation of concerns between business and data
access code. Many of the ideas presented in the Yoder’s patterns can be combined
into elements of PDC in a practical way (for instance, Transaction Manager and
Connection Manager can be instantiated as the PDC’s persistence mechanism class).
However, Yoder’s patterns do not separate definitions of “data” and “data set”, as
defined in our persistent data collections, and assuming to be applied specifically

14

to relational databases. We believe that PDC can be applied almost directly to a
number of persistence platforms, including object databases and files.

• Abstract Factory [7]. This pattern is applied in PDC to implement a persistence
factory class for creating persistence mechanism objects, which is used by a facade
class. Factories also can be used for creating persistent data collection objects
transparently for the business collection classes (see Implementation section).

• Facade [7]. The facade class of PDC is a direct implementation of the Facade
pattern.

• Singleton [7]. Usually only one facade object is required in an application. Thus
facade objects are often implemented as Singletons.

• Bridge [7]. This pattern is used in PDC as the business–data and persistence
mechanism interfaces, which play the role of a bridge between the business and the
data access layers.

• Concurrency Manager [13]. This pattern can be used in PDC to control concurrent
situations, such as interferences by business rules (system policies), unsafe data
types, and other race conditions.

Acknowledgements

We would like to give special thanks to our shepherd in this paper, Rosana Teresinha
Vaccare Braga, from ICMCSC-USP, for making important suggestions for improving this
pattern. We also thanks Jorge L. Ortega Arjona and Gunter Mussbacher for the sugges-
tions made at the conference.

References

[1] Vander Alves. Progressive Development of Distributed Object-Oriented Programs.
Master’s thesis, Centro de Informática – Universidade Federal de Pernambuco, Febru-
ary 2001.

[2] Scott Ambler. Building Object Applications that Work. Cambridge University Press
and Sigs Books, 1998.

[3] Scott Ambler. The Object Primer. Cambridge University Press, 2001.

[4] Grady Booch et al. The Unified Modeling Language User Guide. Object Technology.
Addison-Wesley, 1999.

[5] Paulo Borba, Saulo Araújo, Hednilson Bezerra, Marconi Lima, and Sérgio Soares.
Progressive implementation of distributed Java applications. In Engineering Dis-
tributed Objects Workshop, ACM International Conference on Software Engineering,
pages 40–47, Los Angeles, USA, 17th–18th May 1999.

15

[6] K. Brown and B. Whitenack. Crossing Chasms: A Pattern Language for Object-
RDBMS Integration. In J. Vlissides et. al. (eds.), Pattern Languages of Program
Design 2. Addison-Wesley, 1996.

[7] Erich Gamma et al. Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1994.

[8] James Gosgling, Bill Joy, and Guy Steele. The Java Language Specification. Addison-
Wesley, 1996.

[9] Tiago Massoni. A Software Process with Support to Progressive Implementation
(in portuguese). Master’s thesis, CIn – Federal University of Pernambuco, February
2001.

[10] David L. Parnas et al. On the Criteria to be Used in Decomposing Systems into
Modules. Communications of ACM, 15(12):1053–1058, December 1972.

[11] Sérgio Soares. Progressive Development of Concurrent Object-Oriented Programs
(in portuguese). Master’s thesis, Centro de Informática – Universidade Federal de
Pernambuco, February 2001.

[12] Sérgio Soares and Paulo Borba. Concurrency Control with Java and Relational
Databases (in portuguese). In V Brazilian Symposium of Programming Languages,
23th–25th May 2001.

[13] Sérgio Soares and Paulo Borba. Concurrency Manager. Technical report, State
University of Rio de Janeiro—UERJ, Rio de Janeiro, Brazil, 3th–5th October 2001.
To appear.

[14] Sun Microsystems. Java Database Conectivity Specification, 2000. Available at
ftp://ftp.javasoft.com/pub/jdbc.

[15] Euricélia Viana. Integrating Java with Relational Databases (in portuguese). Mas-
ter’s thesis, Centro de Informática, UFPE, 2000.

[16] J.W. Yoder, R.E. Johnson, and Q.D. Wilson. Connecting Business Objects to Rela-
tional Databases. In Proceedings of the 5th Conference on the Pattern Languages of
Programs, Monticello-IL-EUA, August 1998.

16

Uma Linguagem de Padrões para o Projeto
Sintático de Linguagens de Descrição de

Arquitetura

Cidcley Teixeira de Souza, Paulo Roberto Freire Cunha
Universidade Federal de Pernambuco

Centro de Informática
Av. Prof. Luiz Freire, s/n - Cidade Universitária

50732-970, Recife, PE, Brasil
{cts,prfc}@cin.ufpe.br

Jerffeson Teixeira de Souza
University of Ottawa

School of Information Technology and Engineering
K1N 6N5, Ottawa, ON, Canada

jsouza@site.uottawa.ca

Resumo

O objetivo das linguagens de descrição de arquitetura (ADLs) é permitir a es-
pecificação de arquiteturas de software de forma que seja posśıvel a realização de
análises estruturais e comportamentais nessas arquiteturas antes de sua implemen-
tação. Esse artigo apresenta uma linguagem de padrões que captura as principais
decisões necessárias à construção de uma ADL. O enfoque principal desses padrões
é a definição, organização e representação de elementos sintáticos para essas lingua-
gens.

Keywords: Arquitetura de Software, Linguagens de Descrição de Arquitetura,
Padrões de Projeto.

1 Introdução

De uma forma simplificada, arquitetura de software pode ser definida como sendo a re-
presentação da “estrutura dos componentes de um programa/sistema, seus inter-relaciona-
mentos, prinćıpios e regras que governam seu projeto e evolução ao longo do tempo”[Gar00].
O desenvolvimento de um projeto arquitetural permite a visualização de algumas propri-
edades gerais do software antes que este seja implementado, garantindo que algumas de
suas caracteŕısticas sejam explicitadas.

Contudo, a construção de arquiteturas de software para grandes aplicações é uma
tarefa complexa. A utilização de padrões tem auxiliado nessa tarefa possibilitando uma
abordagem mais precisa na definição dessas arquiteturas. Em Kane [DHKM97], por exem-
plo, são apresentados padrões que tratam da organização e gerenciamento de arquiteturas
de softwares; em Meszaros [Mes97] padrões são utilizados para capturar o processo de
definição de arquiteturas; em Shaw [Sha96] são apresentados padrões para a organização
e definição de estilos de interação entre elementos arquiteturais.

Para formalizar a representação de projetos arquiteturais foram criadas as ADLs (Ar-
chitecture Description Languages). Essas linguagens fornecem um framework sintático e
um conjunto de ferramentas que possibilitam a especificação de projetos arquiteturais e a
realização de diversos tipos de análises nessas arquiteturas. Exemplos de ADLs incluem
Darwin [MDEK95], UniCon [SDD95], Meta-H [BV93], Wright [AG97], Acme [GMW97]
entre outras. O Apêndice A apresenta mais informações sobre arquitetura de software e
ADLs.

Entretanto, a ploriferação de ADLs tem dificultado a decisão de qual linguagem adotar
para realizar um determinado projeto arquitetural. Principalmente se considerado que
cada ADL possui caracteŕısticas espećıficas e ferramentas que realizam tarefas também
espećıficas.

Além do mais, cada projeto exige que tipos diferentes de informações sejam especifica-
das para os diversos elementos arquiteturais que compõem o projeto, e tanto a escolha de
quais informações utilizar como a forma com que essas informações serão representadas
estão sujeitas às caracteŕısticas da ADL adotada no projeto.

Essa especificidade das ADLs acaba tornando necessário a adoção de mais de uma
dessas linguagens para a realização de um mesmo projeto arquitetural, de modo a se
conseguir atingir todos os objetivos do projeto. Contudo, fatores como tempo e custos
necessários para se dominar essas linguagens acabam sendo, em alguns casos, proibitivos
no desenvolvimento de alguns projetos arquiteturais com ADLs.

Nesse caso, pode ser razoável se optar pela construção de uma nova ADL pela própria
equipe de desenvolvimento, onde as caracteŕıstica dessa linguagem possam ser definidas
de acordo com o perfil da equipe que vai utilizá-la. Com uma ADL definida pela própria
equipe, os projetos arquiteturais serão desenvolvidos mais rapidamente, visto que não
haveria a necessidade da adoção de outras ADLs, e até mesmo o tempo de adaptação da
equipe à nova linguagem seria extremamente reduzido.

Para facilitar o processo de desenvolvimento de uma nova ADL, esse artigo apresenta
uma linguagem de padrões que captura o processo decisório relativo ao projeto da sintaxe
de ADLs. Esses padrões auxiliam a definir aspectos importantes relativos à forma com
que a sintaxe de uma ADL deve ser projetada, de modo a ser de fácil manuseio e flex́ıvel
no que diz respeito à definição de informações sobre arquiteturas de software.

1.1 Motivação

A consecução de um bom projeto arquitetural pode ser um fator determinante no sucesso
ou fracasso do desenvolvimento de um software complexo. Entretanto, essa fase do ciclo
de vida do software é normalmente desprezada pela maioria dos projetistas. Isso se
deve principalmente ao fato da expressividade limitada dos diagramas do tipo ”caixas-e-
linhas”que são normalmente utilizados para representar os projetos arquiteturais.

Uma outra solução é a utilização de uma ADL (Architecture Description Language),
que é uma linguagem espećıfica para de modelar projetos arquiteturais. Contudo, as
notações da maioria dessas linguagens são dif́ıceis, o que pode afetar os prazos para o
desenvolvimento do software, que são normalmente apertados.

Nesse sentido, uma solução viável para esse problema é a construção de uma ADL
que seja mais fácil de ser manipulada pela equipe de desenvolvimento. Essa solução trás
resultados bastante satisfatórios, principalmente a médio e longo prazos.

Tendo essa motivação em mente, e contando com a experiência de desenvolvimento
de uma ADL, a linguagem ArchML [SC01], apresentamos nesse artigo uma linguagem de
padrões que ressalta os principais problemas na realização do projeto sintático de uma
nova ADL.

Essa linguagem de padrões tem como base na sua proposta a dedução das motivações
e do processo de decisões envolvido na criação das estruturas sintáticas de diversas ADLs
dispońıveis atualmente. Além disso, todo esse processo decisório foi validado através
de sua aplicação na construção de ArchML. O que nos faz concluir que esses padrões
realmente capturam a filosofia embutida nos processos de decisão relativos ao projeto
sintático de uma ADL.

1.2 Estrutura da Linguagem de Padrões

Os problemas tratados nessa linguagem de padrões e as soluções propostas para estes
problemas são resumidos na Tabela 1. A Figura 1 apresenta as dependências entre os
padrões propostos nesse artigo. Nessa figura, estão apresentadas em linhas cheias as
dependências diretas entre os padrões, que indicam a necessidade de se ter conclúıdo o
padrão para se iniciar o seguinte. Por sua vez, a linha tracejada define dependências que
não possuem ordem de precedência ou padrões que devem ser desenvolvidos em paralelo.
A ordem com que esses padrões devem ser aplicados é a mesma com que eles são descritos
ao longo do artigo.

O padrão Projetar ADL, apresentado na seção 2, é o padrão principal da linguagem.
Ele é quem justifica a criação de uma nova ADL e identifica os padrões a serem utilizados
para o projeto sintático dessa ADL. O padrão Elementos Arquiteturais Básicos, apresen-
tado na seção 3, identifica quais os tipos de elementos arquiteturais devem ser descrito por
uma ADL. A estruturação de uma especificação arquitetural a partir dos elementos que
contituem sua arquitetura é definida no padrão Organização das Especificações, tratado
na seção 4. Na seção 5 é apresentado o padrão Informações dos Elementos Arquiteturais,
que descreve como se decidir a forma com que uma ADL deve especificar as informações
para cada elemento arquitetural. O padrão Estrutura Hierárquica de Informações apre-
sentado na seção 6 define a forma de como se organizar a apresentação das informações
sobre os elementos arquiteturais.

Padrão Problema Solução
Projetar ADL Como minimizar esforço

e custo na especificação
de arquiteturas de soft-
ware quando há a necessi-
dade de se utilizar diver-
sas ADLs ?

Desenvolva uma nova
ADL que contemple as
principais necessidades
identificadas pela equipe
de desenvolvimento para
a representação de seus
projetos arquiteturais.

Elementos Arquitetu-
rais Básicos

Que tipos de elementos
arquiteturais devem ser
representados pela ADL
de forma a se criar es-
pecificações arquiteturais
fáceis de ser constrúıdas e
mantidas ?

Defina tipos de elemen-
tos básicos para represen-
tar elementos arquitetu-
rais, onde cada tipo de
elemento deverá ter uma
funcionalidade espećıfica
na arquitetura.

Organização das Espe-
cificações

Como organizar a espe-
cificação da arquitetura
de um software a par-
tir das especificações de
seus elementos arquitetu-
rais constituintes ?

Especifique em apenas
um arquivo tanto os ele-
mentos arquiteturais co-
mo a arquitetura do soft-
ware em si.

Informações dos Ele-
mentos Arquiteturais

Quais informações de-
verão estar dispońıveis na
ADL para a especificação
de cada elemento arquite-
tural ?

Desenvolva a ADL de for-
ma a deixar o proje-
tista livre para decidir
quais informações repre-
sentar em cada elemen-
to arquitetural. Entre-
tanto, identifique algu-
mas informações que de-
vem ser obrigatórias para
cada elemento e torne to-
das as demais opcionais.

Estrutura Hierárquica
de Informações

Como a ADL deve re-
presentar as informações
dos elementos arquitetu-
rais de forma a facilitar
o entendimento dessas in-
formações ?

Crie um conjunto de con-
textos para cada infor-
mação e, dentro de ca-
da contexto, defina de
forma hierárquica as in-
formações pertinentes ao
contexto.

Tabela 1: Problemas e Soluções dos Padrões de Projeto Sintático de ADLs.

Projetar ADL

Elementos Arquiteturais

Básicos

Informações dos Elementos

Arquiteturais

Estrutura Hierárquica de

Informações

Organização das Especificações

�

Figura 1: Dependências da Linguagem de Padrões.

2 Projetar ADL

Contexto
Você está trabalhando em um sistema de software complexo no qual um grande número de
requisitos devem ser considerados. Além disso, é necessário a realização de diversos tipos
de simulações e análises nesse sistema. Para suavizar a passagem da fase de elicitação
e análise dos requisitos para a fase de implementação deve ser especificada uma arqui-
tetura para o software. Contudo, para se conseguir uma representação arquitetural que
permita a realização das análises requeridas é necessário a utilização de uma ADL. Entre-
tanto, é bastante dif́ıcil encontrar uma ADL que sozinha possua todas as caracteŕısticas
necessárias para representar essa arquitetura e forneça todas as ferramentas necessárias
para a realização das análises requeridas. Nesse sentido, surge a necessidade de se utilizar
mais de uma ADL para especificar a arquitetura desse sistema.

Problema
Como minimizar esforço e custo na especificação de arquiteturas de software quando há
a necessidade de se utilizar diversas ADLs ?

Forças

• Quanto mais complexo é o projeto, mais dif́ıceis são as análises a serem realizadas,
o que exige a utilização de ADLs que possuam ferramentas espećıficas.

• Ao se utilizar ADLs diferentes para realizar tarefas espećıficas em um projeto arqui-
tetural surge a necessidade de treinar a equipe de desenvolvimento para entender a
sintaxe e as ferramentas de cada nova ADL a ser utilizada, o que aumenta o tempo
de desenvolvimento do projeto.

• Os custos de um projeto aumentam significativamente com o treinamento da equipe
e com a necessidade de adaptação da arquitetura para cada nova ADL utilizada em
um determinado projeto arquitetural.

• A equipe de desenvolvimento pode optar em adotar uma ADL espećıfica que mais
se aproxime das caracteŕısticas do projeto e da formação dessa equipe. Entretanto,
isso limita a expressividade dos projetos às caracteŕısticas da ADL escolhida.

Solução
Desenvolva uma nova ADL que contemple as principais necessidades identificadas pela
equipe de desenvolvimento para a representação de seus projetos arquiteturais. Essas
caracteŕısticas devem ser identificadas e refinadas a partir do acúmulo de experiência
dessa equipe, adquirida com a especificação de arquiteturas de software utilizando outras
ADLs existentes.

Para se criar uma nova ADL, diversos aspectos devem ser considerados. Dentre eles, o
poder de representação das informações requeridas pela equipe de desenvolvimento para
a especificação dos elementos arquiteturais é um dos mais importantes. A forma com que
a ADL fragmenta a representação de arquiteturas complexas em elementos arquiteturais
mais simples tem influência direta na manutenibilidade dessa arquitetura.

Contexto Resultante
A aplicação desse padrão resulta na decisão de se construir uma nova ADL que melhor se
adapte às necessidades espećıficas dos projetos arquiteturais de uma determinada equipe
de desenvolvimento.

Racionalização
Embora seja mais caro se produzir uma nova ADL, o custo de treinamento da equipe pa-
ra entender determinadas ADLs, ou adaptar uma arquitetura para uma ADL espećıfica,
pode ser muito mais alto. Principalmente se for considerado que cada projeto tem carac-
teŕısticas diferentes sendo que, normalmente, há a necessidade de se utilizar uma ADL
que se adapte melhor a cada um dos projetos.

Ao se desenvolver uma nova ADL, a equipe terá a facilidade de adaptá-la às suas
necessidades sempre que for necessário, sem necessidade de treinamento para entender a
ADL. Com o passar do tempo, e com a acúmulo de experiência da equipe, a ADL estará
estável o suficiente para suprir toda a demanda de análise arquitetural necessária sem
gasto extra. Além disso, as ferramentas poderão ser desenvolvidas pela própria equipe,
de modo a se conseguir realmente os resultados desejados.

Consequências
Algumas das vantagens do padrão Projetar ADL são as seguintes:

• Uniformidade na representação arquitetural. Com apenas uma ADL todos
os projetos arquiteturais da equipe terão apenas uma linguagem de representação,
o que facilita a compreensão dos projetos e cria um vocabulário comum entre os
membros da equipe de desenvolvimento.

• Agilização do projeto arquitetural. Com a adaptação da equipe de desenvolvi-
mento à nova ADL, todos os novos projetos que se seguem serão mais rapidamente
realizados.

• Tempo menor de aprendizagem. Se for necessário a mudança de membros da
equipe, o tempo de treinamento para a incorporação desses novos membros será
bastante reduzido.

• Adaptabilidade. Por ser um produto da equipe de desenvolvimento, a ADL poderá
ser adaptada facilmente para novas necessidades que surgirem.

Algumas das desvantagens do padrão Projetar ADL são as seguintes:

• Custo inicial alto. A implementação de uma nova ADL vai requerer esforço, tempo
e, portanto, um orçamento extra para essa tarefa. Entretanto, futuras atualizações
tendem a ter custos bem reduzidos.

• Implementação de ferramentas. Além da ADL em si, as ferramentas que per-
mitirão à realização de análises nas arquiteturas, também devem ser implementadas.

Padrões Relacionados
Para que a implementação de uma nova ADL seja viabilizada, vários aspectos devem
ser considerados a priori. Esses aspectos dizem respeito principalmente às caracteŕısticas
sintáticas da ADL, onde a primeira decisão a ser tomada está relacionada com a forma
com que os elementos arquiteturais são identificados pala ADL. O padrão Elementos Ar-
quiteturais Básicos (seção 3) trata desse problema.

3 Elementos Arquiteturais Básicos

Contexto
De acordo com o padrão Projetar ADL, você decidiu criar uma ADL para especificar a
arquitetura de um software complexo. Essa tarefa é iniciada pela definição dos tipos de
elementos arquiteturais que a ADL deve possuir.

Problema
Que tipos de elementos arquiteturais devem ser representados pela ADL de forma a se
criar especificações arquiteturais fáceis de ser constrúıdas e mantidas ?

Forças

• A definição dos tipos de elementos arquiteturais a serem especificados para uma
arquitetura depende muito da experiência da equipe de desenvolvimento.

• Os tipos de elementos arquiteturais a serem definidos para a ADL influencia direta-
mente a gerenciabilidade e a clareza das especificação realizadas por essa linguagem.
Sendo que um aumento exagerado no número de tipos de elementos especificados

resulta em uma arquitetura de dif́ıcil gerenciamento. Por outro lado, a construção
de uma especificação sem a definição clara dos tipos de elementos arquiteturais
representados pode tornar a arquitetura ileǵıvel.

• O potencial de reuso de elementos de especificações arquiteturais é definido pela
forma com que esses elementos são descritos pela ADL. Sendo que quanto mais cla-
ra e precisa for a classificação dos tipos de elementos arquiteturais melhor será o
reusabilidade dessas especificações.

Solução
Defina tipos de elementos básicos para representar elementos arquiteturais, onde cada
tipo de elemento deverá ter uma funcionalidade espećıfica na arquitetura, de forma a
tornar clara a especificação como um todo. Desse modo os seguintes tipos de elementos
arquiteturais podem ser identificados:

• Interfaces - Devem descrever as funcionalidades requeridas e fornecidas pelos ele-
mentos arquiteturais.

• Componentes - Devem descrever as partes da arquitetura que realizam algum tipo
de computação.

• Conectores - Devem descrever as estruturas de comunicação entre os componentes.

• Configurações Arquiteturais - Devem descrever a forma com que componentes e co-
nectores são organizados para formar uma arquitetura.

Contexto Resultante
A aplicação desse padrão identifica os tipos de elementos necessários à ADL para a cons-
trução de arquiteturas de software. Dessa forma, cada elemento a ser representado em
uma especificação de arquitetura está relacionado a um tipo espećıfico.

Racionalização
A definição de tipos de elementos arquiteturais em uma especificação facilita sobrema-
neira o entendimento da mesma. Nesse padrão, também foi adotada a abordagem de
se especificar separadamente as interfaces dos componentes e dos conectores. Essas in-
terfaces descrevem o que cada elemento fornece e utiliza de outros elementos. Com essa
abordagem, existe a possibilidade de reuso de especificações de interfaces e de uma melhor
checagem de tipos entre elementos arquiteturais distintos, além de tornar mais intuitiva
a tarefa de particionar a arquitetura.

Usos Conhecidos
ArchML utiliza a solução completa apresentada nesse padrão para a decomposição de
elementos arquiteturais. Essa linguagem possui uma sintaxe baseada em XML para re-
presentar os elementos arquiteturais.

A ADL Darwin utiliza os conceitos de componentes e arquiteturas, mas não repre-
senta conectores explicitamente, podendo esses serem simulados a partir de especificações

de componentes. Nessa linguagem as interfaces dos elementos são descritas dentro dos
próprios elementos arquiteturais.

UniCon representa os elementos arquiteturais através de componentes, conectores
e configurações. Entretanto, os conectores de UniCon são predefinidos como parte da
própria ADL.

Wright também utiliza os conceitos de componentes, conectores e configurações. En-
tretanto, nessa ADL os conectores podem ser definidos pelo usuário e sua semântica é
especificada através de CSP.

Variação
A abordagem clássica utilizada na definição de tipos de elementos arquiteturais em ADLs
sugere a utilização dos seguintes elementos apenas: Componentes, Conectores e Configu-
rações Arquiteturais. Nessa abordagem, as interfaces tanto dos componentes como dos
conectores, são definidas internamente a esses elementos, não podendo ser reutilizadas em
outras arquiteturas.

Conseqüências
Algumas das vantagens do padrão Elementos Arquiteturais Básicos são as seguintes:

• Reusabilidade. A separação da especificação de interfaces dos elementos arquite-
turais permite a reusabilidade dessas interfaces em outros projetos.

• Previsibilidade de comportamento. A definição de tipos para cada elemento
arquitetural, permite se inferir que comportamento um determinado elemento vai
ter dentro de projeto arquitetural.

Uma desvantagem do padrão Elementos Arquiteturais Básicos é a seguinte:

• Configurações mais complexas. Além da definição das interações entre com-
ponentes e conectores, os próprios componentes e conectores devem indicar quais
interfaces devem utilizar, isso pode tornar as arquiteturas um pouco mais complexas.

Padrões Relacionados
Um aspecto importante a ser considerado na especificação da sintaxe de uma ADL é a
forma com que os elementos arquiteturais especificados são organizados para produzir a
especificação de uma arquitetura. Esse problema é tratado no padrão Organização das
Especificações, apresentado na seção 4.

Um outro aspecto também importante é a representação das informações sobre os
elementos que compõem as arquiteturas. Essas informações devem ser de fácil compre-
ensão e gerenciamento, e deve ser posśıvel a inclusão de informações não previstas sobre
determinados elementos arquiteturais sem ter que reescrever a ADL. Para se determinar
os tipos de informações necessárias para representar elementos arquiteturais pela ADL
utilize o padrão Informações dos Elementos Arquiteturais, apresentado na seção 5.

4 Organização das Especificações

Contexto
Foi definida a necessidade de se criar uma nova ADL, apresentada no padrão Projetar
ADL. Também foram definidos os tipos de elementos arquiteturais básicos que essa ADL
pode representar, relacionados no padrão Elementos Arquiteturais Básicos. Esses elemen-
tos arquiteturais devem ser utilizados para se criar a representação de arquiteturas de
software.

Problema
Como organizar a especificação da arquitetura de um software a partir das especificações
de seus elementos arquiteturais constituintes ?

Forças

• A organização da especificação da arquitetura de um software realizada em um único
arquivo junto com a especificação de seus elementos arquiteturais constituintes,
garante uma manipulação mais fácil dessa especificação, entretanto a reusabilidade
dos elementos arquiteturais fica comprometida.

• Dependendo do tamanho da equipe que está produzindo a especificação arquitetural
pode ser necessários desmembrar a especificação em partes menores. Sendo que
quanto maior a equipe, maior pode ser a fragmentação necessária.

• A complexidade da especificação arquitetural e a estabilidade dos requisitos que a
gerou, pode determinar a forma com que os elementos que compõem a arquitetura
serão organizados. Sendo que quanto mais complexa for a estrutura do software
mais necessário se faz a centralização da especificação.

Solução
Especifique em apenas um arquivo tanto os elementos arquiteturais como a arquitetura
do software em si. Inicialmente realize a especificação de todos os elementos arquiteturais
presentes na arquitetura. Em seguida especifique a arquitetura através das conexões entre
esses elementos.

Contexto Resultante
Tanto os elementos arquiteturais como a configuração desses elementos formando a arqui-
tetura são especificados em apenas um documento, cabendo à equipe a tarefa de organizar
o trabalho de seus participantes de forma independente em cima de uma mesma fonte de
informação.

Racionalização
Especificar tanto os elementos arquiteturais como a arquitetura do software em um mesmo
arquivo texto facilita a compreensão da especificação e a visualização de inconsistências,
o que pode agilizar a tarefa de especificação.

Usos Conhecidos
A organização de especificações arquiteturais em um arquivo único é um consenso entre
as ADLs. A ADL UniCon, por exemplo, utiliza essa estrutura para organizar suas es-
pecificações. A Figura 2, apresenta uma especificação arquitetural escrita em UniCon.
Como pode ser observado, tanto os elementos arquiteturais como a configuração desses
elementos são definidos em apenas um documento.

COMPONENT Reverser {
INTERFACE IS

TYPE Filter
PLAYER input IS StreamIn

SIGNATURE (‘‘line’’)
PORTBINDING (stdin)

END input
PLAYER output IS StreamOut

SIGNATURE (‘‘line’’)
PORTBINDING (stdout)

END output
PLAYER error IS StreamOut

SIGNATURE (‘‘line’’)
PORTBINDING (stderr)

END error
END INTERFACE

IMPLEMENTATION IS
...
USES stack INTERFACE Stack
...
CONNECT reverse.iob TO datause.user
...
ESTABLISH C-proc-call WITH

reverse.stack init AS caller
stack.stack init AS definer

END C-proc-call
...
BIND output TO ABSTRACTION

MAPSTO (reverse.fprintf)
END output

END IMPLEMENTATION
END Reverser

Figura 2: Organização de Especificação Arquitetural em UniCon.

Variação
Elementos Arquiteturais em Arquivos Separados
Uma variação para esse padrão é a especificação separada dos elementos arquiteturias.
Isso permite a construção de especificações arquiteturais de forma distribúıda, além de
possibilitar o reuso dessas especificações. Entretanto, a tarefa de gerenciamento da cons-
trução da arquitetura torna-se bem mais complexa.

Um exemplo da aplicação dessa variação é a linguagem ArchML, onde os elementos
arquiteturais são especificados em arquivos separados e a arquitetura completa é formada
pela especificação da configuração em um outro arquivo espećıfico. A Figura 3 apresenta
o projeto de uma arquitetura em ArchML. Nessa figura, pode-se observar a definição de
links entre instâncias de componentes e conectores sem a presença da especificação dos
mesmos, que são especificados em arquivos externos, independentes e possivelmente dis-
tribúıdos.

<?xml version="1.0"encoding="US-ASCII"?>
<!DOCTYPE System SYSTEM "../dtds/1.2/System.dtdÀ
<System id="SystemÀ
<Info>

<Author>Cidcley T. de Souza</Author>
<Version>1.0</Version>

</Info>
<Components>

<Component id="CatFile"xlink:href="CatFile.xml"/>
<Component id="RemoveVowels"xlink:href="RemoveVowels.xml"/>

</Components>
<Connectors>

<Connector id="UnixPipe"xlink:href="Unix-pipe.xml"/>
</Connectors>
<Links>

<Link>
<From><Instance xlink:href="CatFile"PortName="output"/></From>
<To><Instance xlink:href="UnixPipe"PortName="source"/></To>

</Link>
<Link>

<From><Instance xlink:href="UnixPipe"PortName="sink"/></From>
<To><Instance xlink:href="RemoveVowels"PortName="input"/></To>

</Link>
</Links>
</System>

Figura 3: Organização de Especificação Arquitetural em ArchML.

Consequências
Algumas das vantagens do padrão Organização das Especificações são as seguintes:

• Fácil compreensão. Tendo centralizado a especificação de todos os elementos
em um arquivo único, fica mais fácil se observar e manipular as caracteŕısticas da
arquitetura.

• Facilidade de Evolução. Qualquer modificação que seja necessária, pode ser
melhor planejada se observando as caracteŕısticas dos elementos arquiteturais indi-
vidualmente.

Algumas das desvantagens do padrão Organização das Especificações são as seguintes:

• Baixo reuso. O reuso de elementos arquiteturais fica comprometido com a espe-
cificação dos mesmos dentro de uma especificação arquitetural única. Sendo que
para que um elemento seja reusado, este deve ser copiado para dentro da nova
especificação.

• Falta de Independência. A construção da arquitetura deverá ser realizada por
apenas uma pessoa por vez, visto que só existe um único arquivo onde todos os
elementos arquiteturais são especificados. Isso compromete a evolução dos elemen-
tos de forma independente da arquitetura, cabendo a quem for modificar algum
elemento, realizar essa mudança dentro do código da arquitetura.

Padrões Relacionados
Pode-se utilizar o padrão Software Architecture [Mes97] para guiar a definição de instâncias
de elementos arquiteturais para um determinado projeto.

5 Informações dos Elementos Arquiteturais

Contexto
Você tem que especificar os elementos arquiteturais em uma arquitetura de software.
Cada elemento possui, além de um tipo espećıfico (identificado no padrão Elementos Ar-
quiteturais Básicos), diversos requisitos diferentes a serem representados, sendo que cada
requisito pode necessitar de ńıveis de detalhamento diferentes.

Problema
Quais informações deverão estar dispońıveis na ADL para a especificação de cada elemen-
to arquitetural ?

Forças

• Especificar todos os requisitos dos elementos arquiteturais pode tornar a especifi-
cação complexa demais e desnecessariamente detalhada.

• Especificar poucos requisitos dos elementos arquiteturais pode tornar a especificação
pouco expressiva.

• A quantidade de requisitos a serem representados é controlada pelas necessidades
de cada projeto. Sendo que quanto mais complexas forem as análises requeridas por
uma determinada arquitetura, maior será a quantidade de informações necessárias
para realizar essas análises.

Solução
Desenvolva a ADL de forma a deixar o projetista livre para decidir quais informações
representar em cada elemento arquitetural. Entretanto, identifique algumas informações
que devem ser obrigatórias para cada elemento e torne todas as demais opcionais.

As informações obrigatórias são as necessárias para identificar as caracteŕısticas básicas
de cada elemento arquitetural. Já as informações opcionais são as que têm sua utilização
definida de acordo com as necessidades de cada projeto.

Para organizar a representação dessas informações de forma a permitir um melhor
entendimento das especificações, o padrão Estrutura Hierárquica de Informações deve ser
utilizado.

Contexto Resultante
Os tipos de informações necessárias para capturar os requisitos dos elementos arquitetu-
rais estão definidos, podendo esses serem representadas pela ADL. Entretanto, além de
se definir quais informações são relevantes para se especificar um determinado elemento
arquitetural, essas informações devem estar organizadas para que sejam mais facilmente
entendidas e manipuladas.

Exemplo
A equipe de desenvolvimento deseja especificar um componente para uma arquitetura
de software. Os requisitos levantados para esse componente indicam que ele possui as
seguintes caracteŕısticas:

• Representa um fornecedor de serviços (servidor);

• Aceita um número limitado de conexões simultâneas;

Baseado nesses requisitos podem ser observados dois tipos diferentes de informações
a serem representadas pela ADL para se especificar esse componente. O primeiro tipo de
informação diz respeito a identificação do componente em si, como por exemplo a utili-
zação de um identificador único para representar o componente. Esse tipo de informação
é considerada uma informação básica para o componente, e deve ser obrigatória para
quaisquer outros componentes especificados pela ADL.

Um outro tipo de informação diz respeito às caracteŕısticas do componente que podem
variar de acordo com as necessidades de cada projeto. Por exemplo, o número máximo de
conexões aceito pelo componente pode ser uma restrição referente às limitações do sistema
de comunicação onde esse componente está inserido, sendo que essa informação pode não
ser relevante se a aplicação especificada estiver totalmente centralizada em uma máquina
apenas. Desse modo, a ADL deve representar essas informações de forma opcional, ou
seja, devem haver elementos sintáticos que possam ser utilizados para representar essa
informação sem se ter a obrigação de representá-las.

Usos Conhecidos
Todas as ADLs possuem mecanismos para a identificação de elementos arquiteturais.
Seja através de um nome, ou por uma representação simbólica. Contudo, a representação
de outros tipos de informações contextuais sobre os elementos não é uma caracteŕıstica
comum a essas linguagens.

Entretanto, existem algumas exceções. A linguagem Acme, por exemplo, permite a
representação de propriedades através de anotações dentro da especificação do elemento
arquitetural. A Figura 4, apresenta a especificação de algumas propriedades de um com-
ponente em Acme. Uma peculiaridade de Acme é que essas propriedades são tratadas
apenas como anotações, e são manipuladas apenas por ferramentas espećıficas.

Component server = {
Port receive-request;
Properties { idempotence : boolean = true;

max-concurrent-clients : integer = 1 }}

Figura 4: Propriedades em Acme.

A definição de informações em elementos arquiteturais também pode ser observada
na linguagem ArchML. A Figura 5 apresenta a especificação de um componente onde as
informações obrigatórias identificadas são o nome do componente e a interface que ele
utiliza.

Como informações opcionais podem ser definidas: restrições de instalação do compo-
nente, algumas propriedades do componentes, entre outras. Na Figura 5, uma propriedade
Property representa o nome de um arquivo que implementa um determinado componente.

<?xml version="1.0"?>
<!DOCTYPE ComponentType SYSTEM "../dtds/1.2/ComponentType.dtdÀ
<ComponentType id="CatFileÀ
<Info>

<Author>Cidcley T. de Souza</Author>
<Version>1.0</Version>

</Info>
<Properties>

<Property>
<Name>Implementation</Name>
<VarType Value="stringÀ</VarType>
<DefaultValue>catfile.java</DefaultValue>

</Property>
</Properties>
<Interfaces>

<Interface xlink:href="FilterItf.xmlÀ</Interface>
</Interfaces>
</ComponentType>

Figura 5: Especificação de informações em ArchML.

Uma caracteŕıstica de ArchML é que essa linguagem permite a definição de quantas
propriedades sejam necessárias, sendo que essas informações são todas utilizadas pelas
ferramentas que utilizam a linguagem.

Conseqüências
Uma das vantagens do padrão Informações dos Elementos Arquiteturais é a seguinte:

• Flexibilidade. A quantidade de informações a ser utilizada na descrição de ca-
da elemento é definida por quem está fazendo a especificação, de acordo com as
necessidades do projeto.

Uma desvantagem do padrão Informações dos Elementos Arquiteturais é a seguinte:

• ADL mais complexa. A implementação da ADL para dar suporte a essa ca-
racteŕıstica é um pouco mais dif́ıcil, visto que não se pode definir a priori quais
elementos devem ser inseridos para a descrição de cada elemento arquitetural.

Padrões Relacionados
Tendo definido a forma com que a ADL deve permitir a especificação das informações dos
elementos arquiteturais, o passo seguinte é se definir como a ADL realizará a organização
dessas informações de forma a se conseguir um melhor entendimento e manipulação das
mesmas. Para esse fim o padrão Estrutura Hierárquica de Informações deve ser utilizado.

6 Estrutura Hierárquica de Informações

Contexto
Você está especificando um elemento arquitetural para um software complexo. Esse ele-
mento possui uma grande quantidade de informações para ser representada. De acordo
com os requisitos do projeto em que esse elemento está inserido, há a necessidade de se
representar todas as informações levantadas (o padrão Informações dos Elementos Arqui-
teturais mostra como a ADL deve representar essas informações). A especificação desse
componente deve ser utilizada pelos outros participantes no processo de desenvolvimento
do sistema.

Problema
Como a ADL deve representar as informações dos elementos arquiteturais de forma a
facilitar o entendimento dessas informações ?

Forças

• Um elemento arquitetural sem uma estrutura bem definida para representar suas
informações é dif́ıcil de ser entendido e, conseqüentemente, dif́ıcil de ser mantido.

• A mistura de informações dentro da especificação de um elemento arquitetural difi-
culta bastante a realização de análises sobre o elemento. Desse modo, quanto mais
fácil for reconhecer as informações dentro da especificação dos elementos, mais fácil
será sua manipulação.

• A criação de hierarquias para representar as informações dos elementos arquiteturais
pode facilitar o entendimento da relação entre as informações. Entretando, se a
profundidade dessa hierarquia for muito grande as informações não ficarão claras.

Solução
Crie um conjunto de contextos para cada informação e, dentro de cada contexto, defina
de forma hierárquica as informações pertinentes ao contexto. Cada contexto deve servir
como um delimitador de informações de um determinado tipo. Essas informações, por
sua vez, devem ser organizadas de forma hierárquica dentro desses contextos.

Contexto Resultante
Com a aplicação desse padrão as informações necessárias para representar os elementos
arquiteturais são organizadas contextualmente. Sendo que cada contexto representa um
delimitador para tipos de informações diferentes.

Racionalização
Com a definição de contextos para organizar a representação de informações sobre ele-
mentos arquiteturais se diminui a profundidade da hierarquia de um determinado tipo de
informação. Com isso, conseguimos todas as vantagens da representação de informações
de forma hierárquica minimizando os riscos de tornar a especificação confusa.

Além disso, os contextos permitem se definir conjuntos de informações espećıficas, o
que ajuda bastante a manutenção e a realização de análises sobre a arquitetura.

Exemplo
Suponha que se queira representar as seguintes informações sobre um componente de uma
arquitetura de software.

1. Esse componente foi implementado por Cidcley;

2. Esse componente foi implementado no dia X;

3. O componente foi implementado em Java;

4. O arquivo que implementa o componente chama-se Comp.class

5. O PATH onde o arquivo deve ser instalado deve ser /temp/Componentes

6. Esse componente utiliza a Interface Itf1;

Para que todas essas informações possam ser mais facilmente representadas na espe-
cificação do componente de software através da ADL, elas devem ser separadas por tipos
(como apresentado no padrão Informações dos Elementos Arquiteturais. Nessa caso, po-
dem ser identificados três tipos distintos de informações: o primeiro tipo (itens 1 e 2) diz
respeito ao gerenciamento do componente. O segundo tipo (itens 3, 4 e 5) são proprieda-
des sobre a implementação do mesmo. O terceiro tipo (item 6) é uma informação sobre
as interfaces utilizadas pelo componente.

Desse modo, podemos observar a existência de diferentes contextos relacionados às in-
formações do componente. Assim, podeŕıamos definir os contextos Gerencial, Propriedades
e Interfaces, onde cada tipo de informação, de acordo com esse exemplo, poderia ser
respectivamente especificada.

Usos Conhecidos
A ADL MetaH possui construtores que permitem a definição de contextos para certas
propriedades da aplicação. Essas propriedades são fornecidas através de atributos. En-
tretanto, a definição de informações são limitadas a escalonabilidade, confiabilidade e
segurança. A Figura 6 apresenta a criação de contextos em MetaH para representar
atributos de processos.

periodic process implementation P1.SIMPLE is attributes
self’SourceTime := 100 µs;
self’Period := 1 sec;
self’SourceFile := "p1.a";

end P1.SIMPLE;
periodic process implementation P2.SIMPLE is attributes

self’SourceTime := 50 µs;
self’Period := 1 sec;
self’SourceFile := "p1.a";

end P2.SIMPLE;

Figura 6: Contextos em MetaH.

ArchML por sua vez, permite a definição de diversas propriedades, além de possuir
contextos espećıficos para definir informações gerenciais, de interfaces e de links entre
elementos arquiteturais.

A Figura 7 apresenta trechos de códigos de especificação de contextos em ArchML
com suas informações devidas. Nessa figura são apresentados alguns exemplos de con-
textos e de informações sobre esses contextos. Nela podem ser observados os contextos
Info, Properties e Links. Alguns desses contextos podem ter outros contextos mais
espećıficos, como e o caso de Link, que é um subcontexto de Links. Dentro de cada con-
texto ou subcontexto são armazenadas as informações sobre eles. Por exemplo, Author e
Version são informações sobre o contexto Info.

Conseqüências
Algumas das vantagens do padrão Estrutura Hierárquica de Informações são as seguintes:

• Legibilidade. Os contextos criados permitem uma melhor visualização das infor-
mações representadas.

• Manutenibilidade. A adoção de um esquema hierárquico facilita a representação
de dependências sobre informações e possibilita uma melhor manutenção das espe-
cificações.

Uma desvantagem do padrão Estrutura Hierárquica de Informações é a seguinte:

• Classificação de informações. Algumas vezes pode ser bem dif́ıcil se definir onde
se colocar uma determinada informação.

<Info>
<Author>Cidcley T. de Souza</Author>
<Version>1.0</Version>

</Info>
...

<Properties>
<Property>

<Name>Implementation</Name>
<VarType Value="stringÀ</VarType>
<DefaultValue>remove.java</DefaultValue>

</Property>
</Properties>

...
<Links>

<Link>
<From><Instance xlink:href="CatFile"PortName="output"/></From>
<To><Instance xlink:href="UnixPipe"PortName="source"/></To>

</Link>
</Links>

Figura 7: Contextos e hierarquias em ArchML.

7 Resumo da Linguagem de Padrões

Os padrões apresentados nesse artigo apóiam a tomada de decisões sobre o projeto sintático
de ADLs. Com eles, os projetistas de ADLs podem construir linguagens mais fáceis de
serem manipuladas e, principalmente, sintaticamente fáceis de serem utilizadas. Iniciando
com o padrão Projetar ADL, que define a necessidade de se projetar uma nova ADL para
a realização de tarefas de projetos arquiteturais espećıficos de uma equipe de desenvol-
vimento, todos os padrões tratam de como se definir os elementos sintáticos necessários
para a representação de projetos arquiteturais.

Nesse contexto, o padrão Elementos Arquiteturais Básicos é apresentado para auxiliar
a definição dos tipos de elementos arquiteturais a serem especificados por uma ADL de
forma a se conseguir uma melhor reusabilidade desses elementos. Já o padrão Organização
das Especificações trata da forma com que a ADL deve organizar os elementos arquitetu-
rais de uma arquitetura para gerar especificações de fácil manutenção e evolução. Além
disso, o problema da determinação dos tipos de informações que devem ser representadas
para cada elemento especificado por uma ADL é tratado pelo padrão Informações dos
Elementos Arquiteturais, que objetiva a criação de especificações flex́ıveis, no sentido de
que novas informações possam ser facilmente introduzidas sem ter que modificar a ADL.
Por fim, é definido o padrão Estrutura Hierárquica de Informações que especifica a forma
pela qual as informações dos elementos arquiteturais devem ser organizadas pela ADL,
de modo a aumentar tanto a legibilidade das especificações como facilitar a manutenção
das mesmas.

Agradecimentos

Os autores gostariam de agradecer à CAPES (Fundação Coordenação de Aperfeiçoamento
de Pessoal de Nı́vel Superior) pelo suporte financeiro concedido. Gostaŕıamos também de
agradecer ao nosso ”shepherd”, Alexandre M. Braga, que com seus excelentes comentários
e sugestões contribuiu diretamente para o aperfeiçoamento desse trabalho, e aos colegas:
Rossana, Jugurta, Flávia, Gibeon e Márcio, pelas valiosas sugestões e análises realizadas
durante o SugarLoafPloP.

Referências

[AG97] R. Allen and D. Garlan, A Formal Basis for Architectural Connections, IEEE
Transactions on Software Engineering (1997).

[BCK97] Bass, Clements, and Kazman, Software Architecture in Practice, Addison-
Wesley, 1997.

[BV93] P. Binns and S. Vestal, Formal Real-Time Architecture Specification and
Analysis, IEEE Workshop on Real-Time Operating Systems and Software,
1993.

[DHKM97] Dikel David, Christy Hermansen, David Kane, and Raphael Malveaux, Or-
ganizational Patterns for Software Architecture, In Proceedings of PloP97,
1997.

[GAO94] D. Garlan, R. Allen, and J. Ockerbloom, Exploiting Style in Architectural
Design Environments, In Proceedings of ACM SIGSOFT: The Second Sym-
posium on Foundations of Software Engineering, 1994.

[Gar00] David Garlan, Software Architecture: a Roadmap, The Future of Software
Engineering. In Proceedings 22nd International Conference on Software En-
gineering (ACM Press, ed.), 2000.

[GMW97] D. Garlan, R. T. Monroe, and D. Wile, Acme: An Architectural Description
Interchange Language, In Proceedings of CASCON’97, 1997.

[GP95] D. Garlan and D. Perry, Introduction to the Special Issue on Software Archi-
tecture, IEEE Transactions on Software Engineering (1995).

[LAK+95] D. C. Luckham, L. M. Augustin, J. J. Kenny, J. Veera, D. Bryan, and
W. Mann, Specification and Analysis of System Architecture Using Rapide,
IEEE Transactions on Software Engineering, 1995.

[MDEK95] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer, Specifying Distributed Soft-
ware Architectures, Proceedings of the 5th European Software Engineering
Conference, 1995.

[Mes97] Gerard Meszaros, Archi-Patterns - A Process Pattern Language for Defining
Architectures, In Proceedings of PloP97, 1997.

[MORT96] N. Medvidovic, P. Oreizy, J. E. Robbins, and R. N. Taylor, Using Object-
Oriented Typing to Support Architectural Design in the C2 Style, In Procee-
dings of ACM SIGSOFT (Symposium on Foundations of Software Enginee-
ring), 1996.

[MQ94] M. Moriconi and X. Qian, Correctness and Composition of Software Architec-
tures, Proceedings of the Second ACM SIGSOFT Symposium on Foundations
of Software Engineering, 1994.

[SC01] Cidcley T. de Souza and Paulo R. F. Cunha, Especificando Arquiteturas de
Software em XML, XXVII Conferência Latinoamericana de Informática, 2001.

[SDD95] M. Shaw, R. DeLine, and D.V.Klein, Abstractions for Software Architecture
and Tools for Support Them, IEEE Trans on Software Engineering, 1995.

[Sha96] Mary Shaw, Some Patterns for Software Architectures, Pattern Languages of
Program Design 2 (Addison-Wesley, ed.), 1996.

A Arquitetura de Software e ADLs

O termo “Arquitetura de Software” não possui uma definição que seja universalmente
aceita pela comunidade de Engenharia de Software. Na realidade, existem diversas defi-
nições para essa disciplina, cada uma salientando alguma caracteŕıstica importante. De
uma forma simplificada, por exemplo, Garlan [GP95] define arquitetura de software como
sendo “a estrutura dos componentes de um programa/sistema, os inter-relacionamentos,
prinćıpios e regras que governam seu projeto e evolução ao longo do tempo”. A definição
de Bass [BCK97] diz que “a arquitetura de um programa ou sistema de computação é
a estrutura ou estruturas de sistema que compreendem os componentes de software, as
propriedades externamente viśıveis desses componentes, e o relacionamento entre eles”.

A despeito da falta de consenso na definição do termo arquitetura de software, a
terminologia utilizada nessa área de pesquisa e a identificação dos elementos básicos na
descrição dessas arquiteturas são bastante aceitas. A definição encontrada em Moriconi
[MQ94] apresenta os conceitos representados por arquiteturas de software, considerando os
seguintes elementos: Componentes, que representam objetos com existência independente;
Interfaces, objetos tipados que são pontos lógicos de interação entre os componentes e seu
ambiente; Conectores: objetos tipados que relacionam interfaces, componentes ou ambos;
Configurações: uma coleção de restrições que une objetos em uma arquitetura espećıfica.

Todavia, mesmo com todo o progresso alcançado até agora, a área de arquitetura de
software ainda não atingiu sua maturidade como uma disciplina de engenharia [Gar00].
Embora seus conceitos básicos já estejam claros, ainda existem enormes desafios a serem
vencidos. Contudo, é indiscut́ıvel a importância das arquiteturas de software no contexto
do ciclo de vida de softwares complexos.

A.1 A Importância do Projeto Arquitetural

O processo de comunicação entre os participantes de um projeto de software é essencial
para o sucesso do mesmo. Porém, esse processo é bastante dif́ıcil de ser coordenado, visto
que diversos interesses devem ser considerados e acomodados de forma consistente. Ge-
rentes, agências de financiamento, programadores, entre outros, possuem visões diferentes
do mesmo sistema. Entretanto, é importante que essas pessoas possam comunicar suas
necessidades, e que essas necessidades possam ser entendidas pelos outros. Um geren-
te financeiro, por exemplo, que possui um grande entendimento sobre o domı́nio de um
problema a ser implementado, mas não entende nada de programação, deve ser capaz de
se comunicar com o desenvolvedor, que entende de programação, mas pode não ententer
nada sobre o domı́nio do problema.

O projeto arquitetural fornece essa ponte entre os requisitos do sistema e a imple-
mentação [Gar00]. De forma simplificada, um diagrama contendo as partes do software
representadas por caixas e linhas, fornece uma descrição da funcionalidade do sistema,
além de permitir a visualização das interconexões entre essas partes. Essa representação
fornece uma forma de comunicação que permite que o gerente possa ver seus requisi-
tos representados e que o programador possa verificar as diferentes formas nas quais as
funcionalidades possam ser implementadas.

A.2 Linguagens de Descrição de Arquitetura

Durante muito tempo, os projetos arquiteturais foram tratados informalmente. Simples
diagramas com descrições em linguagem natural eram utilizados para definir a funcionali-
dade de aplicações complexas. Contudo, essas notações eram imprecisas e amb́ıguas, e não
permitiam a realização de análises mais complexas sobre o comportamento das aplicações.

Em resposta à informalidade dos projetos arquiteturais, surgiram as ADLs (Architec-
ture Description Languages). As ADLs são linguagens utilizadas na descrição precisa de
arquiteturas de software, possibilitando a realização de análises formais dessas arquite-
turas. Atualmente é posśıvel se encontrar um grande número de ADLs, algumas mais
genéricas e outras desenvolvidas para domı́nios espećıficos.

Exemplos de ADLs incluem Aesop [GAO94], Darwin [MDEK95], C2 [MORT96], Rapi-
de [LAK+95], UniCon [SDD95], Meta-H [BV93], Wright [AG97], entre outras. Cada uma
dessas ADLs, fornece um conjunto de propriedades diferentes. Por exemplo, Aesop supor-
ta a utilização de estilos arquiteturais; Meta-H é utilizado para o projeto de softwares de
tempo-real para controle de aviação; UniCon suporta tipos heterogêneos de componentes
e conectores.

Além de possúırem caracteŕıstica espećıficas, as ADLs também possuem sintaxes es-
pećıficas, normalmente dif́ıceis de serem entendidas pela grande maioria dos participantes
do processo de desenvolvimento de software. Essa dificuldade no entendimento dos ele-
mentos arquiteturais descritos pelas ADLs foi a principal motivação do desenvolvimento
da linguagem ArchML.

Design Patterns for Components Reuse

Eduardo Kroth Carlos Alberto Heuser
University of Santa Cruz do Sul - UNISC

Department of Computer Science
kroth@polaris.unisc.br

Federal University of Rio Grande do Sul –
UFRGS

Department of Computer Science
heuser@inf.ufrgs.br

Abstract

This paper addresses the software reuse, specially the problem of developing

applications from pre-existing software components. These components have
concrete and template methods, which offer a specific functionality to be used in
the application development. The “use" contract establishes the rules for the use
of component methods by application methods. The “implementation” contract
establishes the rules for the implementation of abstract methods of a component.
In order to allow the implementation of the contracts, integration architecture is
proposed, formed by components, application classes and integration classes.
The integration classes are specified as design patterns. This paper describes
the development of applications that use components and shows the way the
integration architecture must be constructed.

Keywords : software reuse, components, frameworks, design patterns, reuse contracts

1. Introduction

One of the software reuse techniques concerning a specific problem domain is referred to
the implementation of common functionality in frameworks [JOH88]. A framework for building
applications in a specific problem domain is called vertical framework in opposite to a horizontal
framework which provides a common infrastructure for lots of problem domains (visual interface,
communication, persistence,...) [FAY97]. The problem related to frameworks use, especially with
the use of vertical frameworks is that they implement a whole problem domain. Because of this,
vertical frameworks are generally big, complex and difficult to understand and use. To solve
this problem, a variety of solutions has been proposed, as the use of visualization graph tools
[MEU97], the contract use [COD97] or design patterns use [ODE97]. Framelets are little
frameworks that resolve simple cases and they have been coded in components [PRE00].

This paper proposes the framework division on a set of mini-frameworks as an alternative,

i. e.; each framework consists of a little set of interrelation classes. These frameworks can be
treated as a software component [SZY98].

Using a three-layer software architecture (human-computer interface problem domain and data
management), this paper is based on the problem domain layer. In its proposal, the domain
problem is divided into three different layers concerning the interests of them [SIL96]. From the
three layers, one is generic formed by components that offer solutions for little specific problems.

The other layer is composed by whatever component application. The middle layer makes the
relations that exist among components and application classes.

Figure 1 – Three-Layer Software Architecture

This paper presents a software architecture that allows associating the application classes to a
component set as the one described in Figure 1. Besides that, the work describes a wizard, which
allows building integration layer classes in an automatic way.

This paper is organized as it follows. Section 2 describes relations that there are among
application and components. Section 3 presents the reuse contracts notation as components and
application representation. In this chapter it is presented two new types of contracts. These
contracts receive properties that increase the generation of an integration architecture developed
in section 4.

2. Relations Among Components and Application

The following example describes possible relations among components and application. Figure 2
presents the component and application classes for a travel agency. The components are based on
a set of analysis patterns described in [COA 97]. The components have abstract, template and
concrete methods. Abstract methods are identified by italic form. Template and concrete methods
are available for the application developer to relation them with application methods that have
similar functionality. In Figure 2, components are inside packages and each package name
identifies a component.

The application classes presented in Figure 2 are about a travel agency system. The application
developer, actor responsible for the definition of components and application relations, develops
these classes. An application can be built through the combination of a lot of components. The
relation of an application and its components is characterized as it follows:
?? an application class may not need all class component methods,
?? an application class can use or implement methods from different components,
?? an abstract component method can be implemented by a concrete application method or by

other concrete component method, and
?? the application methods can have different names from the ones presented in the components.

Human-Computer Interface Problem Domain Data Management

Components

Integration

Application

Figure 2 – Components and application classes example

Using the object model of Figure 2 some relations can be estabilished among the components and
the application. The application developer establishes that the
TravelPackage.calculatesIncome() method has the same functionality of the
Transaction.addLines() method as the PackageRoute.howMuchTime() method in relation to
PlaneExecution.calculatesDuration() method. These method relations are called use relation
i.e., the TravelPackage.calculatesIncome() method uses the Transaction.addLines()
method.

Abstract methods referred as template methods that have been chosen by the application
developer need to be implemented. Thus, the application method or the method of other
component that implements each referred method needs to be identified.

The PackageRoute.howMuchTime method uses the PlaneExecution.calculatesDuration.
The latter is a template method and it invokes two abstract methods of the same class:
getStartDateTime and getEndDateTime. Therefore, these two abstract methods need to be
implemented if the PlaneExecution.claculatesDuration method is going to be used. This
situation defines a component method being implemented by an application method.

Besides, component methods can be used to implement abstract methods. For example
PlaceTransaction.calculatesTransaction is used by a Place class template method. In the
studied case, this method is implemented by other component method:
LineTransaction.calculatesLine.

This relation among methods is called implementation relation. An application method class or
other component method can be implemented by an abstract component method.

10..* 0..* 1
TravelPackage

calculatesIncomes ()
getPackageTime()
howManyCities()

PackageRoute

howMuchTime()
calcRouteIncomeItem()
getDataApproach()
getDataRetirement()
getIncomeCost()

Hotel

sumPackageIncome()
selectReservations()

Transaction

countLines()
sumLines()

LineTransaction

getQuantity()
getValue()
calculatesLine()

LineTransaction

0..*1
Plane

calculatesTotalPlane()

PlaneExecution

calculatesDuration()
getStartDateTime()
getEndDateTime()

PlaneExecution

10..*

Place

CountTrans ()
calculatesTrans()
sumTrans()
classifyTrans()

PlaceTransaction

calculatesTransition()

PlaneTransition

3. Using reuse contracts to represent the relations

This paper uses the reuse contracts notation to represent the implementation and use relations
established among components and application.

Reuse contracts [MEN96] is a technique for formal representation of components and application
relation. The Programming Technology Labor research team of Free Bruxelas University,
Belgica [DHO98] has been developing it. The notation was created in 1996 [LUC96], however it
was not based in UML Recent papers [MEN98a, MEN 98b] adapted the notation to UML.

Reuse contracts use white-box components because they document the component and
application classes relation. The component and application classes relation can be classified in
basic types called types of reuse contracts. Originally the reuse contracts are: concrete and
abstraction; extension and cancellation; refinement and coarsening [STE96]. In UML notation a
stereotype is created for each contract and it is indicated in the dependency association.

This paper presents two new types of contracts. Each contract referred in this chapter is specified
by some properties and by syntax. The syntax describes the write/read contract form. The
properties relate the characteristics of each contract. The referred examples are about Figure 3.

3.1. Types of use contract

The use contract concerns the application methods that refer component methods aiming the use
of component method implementation. For that, the application method functionality needs to be
the same of the component method. Three properties characterize this contract and differ it of a
simple inheritance: (i) possibility of component methods rename when used in application; (ii)
partial use of component methods and, (iii) association of an application class with many
component classes. The use contract syntax is as it follows:

Use <component method> used by <application method>

1st Property: Possibility to rename component methods . This property allows an application
method name that is referring a component method, is not the same of the referred method,
giving the application developer liberty in choosing another method name. This property causes
an association among component and application i.e., the application method just calls the
component method. For example the PlaneExecution.calculatesDuration() method is used by
PackageRoute.howMuchTime() method and they do not have the same name.

2nd Property: Partial use of component methods. This property establishes liberty for the
application developer in choosing the necessary component methods for the application class.
Reuse contracts use the cancel contract to delete the desire method. Differing from the cancel
contract, the use contract proposes information of the component methods chosen. In Figure 3,
the Hotel application class does not use all the Place component class methods.

3rd Property: Association of an application class with many component classes. In an
application class developing, the application developer can have the necessity of choosing more
than one component to associate with an application. This necessity occurs when the application
methods implementation are in different components. So, this property allows the relationship of
an application class with many components. Besides, this property is necessary because the class
developing solution is not stored in only one component. The property requires objects
instantiation in the corresponding associated objects. For example, the application class
PackageRoute has a relation with LineTransaction, PlaneExecution and PlaceTransaction
component classes.

3.2. Types of implementation contract

The implementation contract concerns the abstract component methods implementation. This
contract is complicated when a template component method is referred and consequently the
abstract methods of the dependency list need to be implemented. The application developer needs
to provide the abstract method implementation that can be in an application method or in another
component method.
The syntax contract is: Impl <component method> - <application method>,

read as <component method> is implemented by <application method>.

The implementation contract presents two properties: (i) reference of an abstract method to a
concrete method and (ii) possibility of different names among concrete and abstract methods.

1st Property: Reference of an abstract method to a concrete method. The implementation of
an abstract component method has two options: (i) to use an application method or (ii) to use
another component method. The first property says that the implementation relation needs to
indicate which concrete method provides an implementation for abstract component method. For
example, Figure 3 shows the PlaneExecution.getStartDateTime() needing an implementation
and the application developer specifying the PackageRoute.getDateApproach() for that.

2nd Property: Possibility of different names among concrete and abstract method. The
property determines that the implementation and component methods do not need to have the
same names. The above example illustrates this property. When the application developer
chooses another component to use in the implementation of a method, it is necessary to observe if
the functionality specifications are enough.

In the example of Figure 3, the application developer defines that the PlaneExecution abstract
methods class uses the PackageRoute application class implementation. The PlaneExecution
abstract methods class is required by the PlaneExecution.calculatesTransaction method and
they are methods that return needed information attributes for the called method.

Figure 3 – Application of the contracts in the Travel system

4. Integration Architecture

This chapter presents classes architecture for the reuse contracts implementation proposed in the
last chapter. The integration architecture is important because the Reuse Contracts notation is just
used by the objects diagram i.e. not being directly implemented in programming languages. The
new contract implementation is presented in the following chapter as design patterns.

4.1. Use Contract Pattern

Context
The use contract between component and application methods presents properties that require
implementation. The use contract claims that the application class that uses this kind of contract

1 0..* 0..* 1
TravelPackage
e

calculatesIncomes()
getPackageTime()

PackageRoute

howMuchTime()
calcRouteIncomeItem()
getDateApproach()
getDateRetirement()
getIncomeCost()

Hotel

sumPackageIncome()
selectReservations()

Transaction

countLines()
sumLines()

LineTransaction

getQuantity()
getValue()
calculatesLine ()

LineTransaction

10..*
Place

countTrans ()
calculatesTrans()
sumTrans()
classifyTrans()

PlaceTransaction

calculatesTransaction()

PlaceTransaction

0..*

1

Plane

calculatesTotalPlane()

PlaneExecution

calculatesDuraction ()
getStartDateTime()
getEndDateTime()

PlaneExecution

<<use>>
calculatesDuration - howMuchTime
<<impl>>
getStartDateTime - getDataRetirement
getEndDateTime – getApproach

<<use>> calculatesLine -
calcDiariaItemRoteiro

<<use>> sumTrans - sumPackagesIncome
 classifyTrans - selectReservations

<<impl>> calculatesTransaction -
calculaLinha

<<
im

pl
>>

 g
et

Q
ua

nt
ity

 -
 h

ow
M

uc
hT

im
e

 g

et
V

al
ue

 –
 g

et
In

co
m

eC
os

t

<<
us

e>
>

cl
ac

ul
at

es
P

la
ne

To
ta

l -
 g

et
P

ac
ka

ge
Ti

m
e

<<use>>
countLines - howMuchCities
sumLines - calculatesIncome

to establish a relation with component classes must provide some implementation functionality
presented by the kind of contract.

Problems
This functionality implementation changes the original application class. In order not to change
the original application class, the use contract functionalities need to be implemented in a
specific built class. This class needs to be an abstract class individually built for each application
class that has the use contact. The implementation of the components and application relation
presents the follow requirements:

To instance and to delete the objects of associated components – all the instanced application
object needs the instance of all associated components through the USE relation. When the
application object is destroyed, all the objects of associated components need to be destroyed.
The application object managers the ‘life’ of the objects of associated components and
determines its instance and destruction.

In the above example, the ApplicationA application class has a relation with ComponentA,
ComponentB and ComponentC classes through the use contract. This implies that every time
that an ApplicationA application class object is instanced, the corresponding objects from the
relating classes of components need to be instanced too.

Figure 4 – Object Model using USE Contract

b) To have reference to the objects of related components – the application object needs to
have a reference for each instanced object component. For example, the
ApplicationA.metApplicationA must have references to ComponentA, ComponentB and
ComponentC component classes.

c) To invoke the component methods – the application method indicated in the USE relation
needs to be implemented to reference the corresponding method in the component object. For
example, the ApplicationA.metApplictionA body method just needs a reference to invoke the
ComponentA.methodA.

<<use>> metApplicationA : methodA

ComponentA
getAttributeX ()
methodA()

ComponentB
getAttributeY()
methodB()

ApplicationA
metApplicationA()
metAplplicationB()

<<use>> metApplicationB : methodB

ApplicationB
metApplicationD()
metApplicationE()

ComponentC
methodC()

ComponentD
methodD() [ComponentC.methodC]

0..* 1

0..* 1

<<use>> metApplicationD : methodD

d) To update the required application references – when a component method references
another component method, the reference needs to be instanced between the classes. If the
referenced class does not have an associated application class, then an application class that
establishes a relation with it needs to be provided, to only instance and destroy its objects.

For example, one of the (ApplicationB.metApplicationD) methods references a component
method (ComponentD.methodD). The referenced method depends on the
ComponeneteC.methodC. The ComponentD.methodD method dependency concerns other
method class, therefore the ComponentC class needs to be instanced and must have relation to
any application class. Considering this, the application developer indicates that the AplicationA
application class makes reference to the ComponentC class to just attend the dependency of the
methods defined above.

Solution
Two other design patterns were used to build the router class solution: Decorator e
Facade[GAM94]. The router class is an abstract class and exists for each application class that
has a reuse contract with component classes. The application class inherits its router propriety
class.

Figure 5 – Objects Model using router classes

The router class notation orders is as it follows: application class name followed by the “Rot”
suffix. In Figure 5 the router class created to attend the association of Application (application)
with ComponenteA and ComponentB (components) is called ApplicationRot.

A router class must have the instance and destruction functionality of the components
implemented in its corresponding methods with the some functionality. Besides, the router class
needs to have references for related components by the use contract kind. The methods
established by the use contract kind must be in the router class, having the corresponding method
call in the component.

Application

metApplicationC()

ComponentA
getAttributeX ()
methodA()

ComponentB
getAttributo Y()
methodB()

ApplicationRot
metApplicationA ()
metApplicationB ()

4.2 Implementation contract pattern

Context
The implementation contract is used when abstract component methods are called by other
component methods. Abstract methods need to be implemented in other specialized classes to
not change the original component structure. The implementation contract indicates the concrete
method for the abstract method implementation. This concrete method can be in an application
class structure or in another component structure. Therefore, a component related with
application classes can have abstract methods implemented in different classes, not only from the
application but also from other components. This fact needs to be considered in this problem.
Examples are in figure 6.

Problems
For the implementation contract implementation the following specifications are necessary:

a) to have reference to the related objects – when a component has implementation relation,
the instanced object of this component must refer the objects where the related concrete methods
are found. For example, the ComponentA object has an implementation relation with the
ApplicationA object, therefore the component object has a reference for that application object.
In the other example, the ComponentD object has an implementation relation with the object of
another component, ComponentF. Therefore the ComponentD object has a reference to
ComponentF object.

b) abstract methods refer the relation concrete methods – each abstract method existent in the
implementation relation needs to be specialized. This specialization code must contain a
reference to the concrete method defined in the relation. For example, when the
ComponentA.getAttributeX method is specialized, it needs reference to the
ApplicationA.getAttributeX1 method. In the other example, the ComponentD.methodD
method refers to the ConponentF.methodF method.

Figure 6 – Implementation relation examples and objects models using implemented classes

<<impl>> getAttributeX - getAttributeX1

Application

metApplicationA()
getAttributeX1()

ComponentA

methodA() [getAttributeX]
getAttributeX()

ComponentD

methodD()

ComponentF

methodF()

<<impl>> methodD - methodoF

Application

metApplicationA()
getAttributeX1()

ComponentA

methodA() [getAttributeX]
getAttributeX()

IComponentAApplication

getAttributeX()

ComponentD

methodD()

ComponentF

methodF()

IComponentAComponentF

methodD()

Solution

The implementation contract has its implementation based on the Adapter design pattern
[GAM94]. For each implementation contract that associates a component class and a class
responsible for the implementation, an implemented class is generated. The implementation class
is resultant from this paper and it takes place in the model of the objects as a subclass of the
component class. An implementation class name is composed by the suffix I (of implementation)
added by the conjunction of application and component classes name. The component class is
specialized by the implemented class, i.e. the instanced object in the component layer is the
implemented class object.

Using Figure 6 as an example, the implementation relation establishes that
ComponentA.getAttributeX is implemented by Application.getAttributeX1 method and
ComponenetD.methodD method is implemented by ComponentF.methodF.

4.3 Case study using the integration architecture

Using the case study of Figure 3 – travel agency system using some pre-existent components – an
object model can be generated using the integration layer to promote the implementation of use
and relation implementation. For the use relation the router classes are built. In Figure 7, the
implemented and router classes are edged by gray just to differ them from the others classes.

In Figure 8, the router classes are: HotelRot, PackageRouterRot and TravelPackageRot.
Each router class is an abstract class and its structure is inherited by the corresponding
application class. Router classes are referenced to the components established by the use
relation.

Implementation classes correspond to the implementation relation established between
component and application classes or from other components. Each implemented class is built for
each combination of component class with its implementation class. The implemented classes
built for the case study are: ILineTransactionItemPackageRoute,
IPlaceTransactionItemLineTransaction and IPlaneExecutionPackageRoute.

Figure 7 – Object model with the integrated architecture

6. Conclusions and Future Works

This paper presents (i) a technique aiming the specification of relation between components and
application classes using a graph notation and (ii) software architecture to define relation
implementation.

The technique uses software components as reuse objects. The used components are developed
for the domain problem layer. These components must provide internal structure visualization
and are used as white box components. Therefore components, application classes and integration
layer form the problem domain layer.

0..* 1

Place

countTrans ()
calculatesTrans()
sumTrans()
classifyTrans()

PlaceTransaction

calculatesTransactiono()

LineTransaction

countTransactions()
ssumTransactions()

LineTransactionItem

getQuantity()
getValue()
calculatesItem()

10..*0..*1

TravelPackageRot

calculatesIncome()
getPackageTime ()

PackageRoute

getDataApproach()
getDataRetirement()

Hotel

0..*

1

Plane
r

calculaTotalPlane()

PlaneExecution

calculatesDuraction ()
getStartDateTime()
getEndDateTime()

PackageRouteRot

howMuchTime()
calcIncomeItemRoute()

HotelRot

sumPackageIncome()
selectReservations()

IPlaneExecutionTravelPackageRot

getStartDateTime()
getEndDateTime()

IPlaceTransaction
LineTransactionItem

calculatesTransaction()

LineTransactionItem
PackageRoute

getQuantity()
getValue

TravelPackage

When the application developer aims using component method functionality as implementation
of an application class method, a use relation is used. This relation considers that not all-
component methods must be used by application classes and application methods names do not
have to be the same of the component. Besides that, an application class can use lots of
components. Among these dependent methods, it is possible to have abstract methods requiring
implementation. The application developer is responsible for abstract methods implementation
and it can be done by application methods or by methods of others components. In this relation,
when the abstract method is being implemented by another method, it is called implementation
relation.

A notation is necessary to document the above relations. This paper uses the Reuse Contract as
notation. The reuse contracts implementation is done through set of classes forming the
integration layer. For each contract a specifically class is presented.

A router class is generated for each application class that has use relation with components. The
router class is responsible for the object instantiation and destruction of relation components. The
router class is formed by methods defined in the use relation. Each method defined in a use
relation is implemented in the router class and refers to the corresponding component method. An
implemented class is generated for each implementation relation existed between the component
and the class that provides the method implementation. The implemented class is a component
specialization and it has a reference to the implementation class provider.

For automatic classes generation of the integration layer this paper presents a wizard. The
integration layer is generated from the relation established between components and application
classes and it is specified by the reuse contracts. The wizard presents a textual interface allowing
the application developer to specify the use and implementation relation between the components
and application methods.

Component implementation was not evaluated in commercial tools based on component
development (Microsoft/COM, OMG/Corba, and Java/RMI). Therefore, future works can
concern integration and components layers implementation using those architectures.

References

[BOS97] BOSCH, J. Adapting Object-Oriented Components. Jyväskylä, Finland - Ed. Springer

Proceedings of the ... ECOOP'97 Workshops, june 1997.

[COA97] COAD, P. et al. Object models: strategies, patterns and applications . New Jersey,

Ed. Prentice Hall, 1997

[COD97] CODIENE, W. et al. From custom applications to domain-specific frameworks.

Communications of the ACM, 40(10): 71-77.

[DHO98] D'HONDT, T.; et al. Reuse Contracts

Located in http://progwww.vub.ac.be/prog/pools/rcs/index.html (18 out 1999)

[FAY97] FAYAD, M.; SCHIMIDT, D. Object-Oriented Application Frameworks.

Communications of the ACM. 40(10):71-77

[GAM94] GAMMA, E. et al. Design Patterns: Elements of Reusable Object-Oriented

Software . Massachusetts, Addison Wesley Publishing Company, 1994.

[JOH88] JOHNSON, R.; FOOTE, B. Designing Reusable Classes. Journal of Object-

Oriented Programming, junho/julho 1988, vol. 1 number 2.p32-35

[KRO99] KROTH, E. et al. Software Assistente no Uso de Componentes. Proceedings of the

XII Brazilian Symposium on Software Engineering – Tools Session, october, 1999.

[LUC96] LUCAS, C. Documenting Reuse and Evolution with Reuse Contracts . Doctoral

Thesis, Science of Computing Departament, Vrije University , Bruxelas, Belgium.
1996

[MEI96] MEIJER, T. et al. Class Composition in FACE, a Framework Adaptive Composition

Environment. Proceedings of the... ECOOP'96 Workshop Reader , july 1996.

[MEN96] MENS, K. et. al. Reuse Contracts: Managing Evolution in Adaptable Systems.

Proceedings of the... ECOOP'96 Workshop on Adaptability in Object-Oriented
Software Development, 1996

[MEN98a] MENS, K. et. al. Supporting Disciplined Reuse and Evolution of UML Models.

Proceedings of the... UML'98 Workshop, Mulhouse, França, june 1998.

[MEN98b] MENS, K. et. al. Giving Precise Semantics to Reuse and Evolution in UML.

Proceedings of the... ICSE'98 International Workshop on Principles of Software
Evolution, Kyoto, Japan, 1998.

[MEU97] MEUSEL, M. Czarecki; Kopf, W. A model for structuring user documention of

object-oriented frameworks using patterns and hypertext. Proceedings of the ...
ECOOP'97 (LNCS 1241), pp.498-510, Springer-Verlag, 1997.

[ODE97] ODENTHAL, G.; Quiebel-Cirkel,K. Using Patterns for Design and Documentation.

Proceedings of the... ECOOP'97 (LNCS 1241), pp. 511-529, Springer-Verlag, 1997.

[PRE00] PREE, Wolfgang; PASETTI, Alessandro. Two Novel Concepts for Systematic

Product Line Development. In: The First Software Product Line Conference, 2000,
Denver, Colorado. Proceedings… Located in:
<http://www.softwareresearch.net/FrameworkMethodologyProjec/>. Acessed at 09
jul. 2000.

[SIL96] SILVA, A. R. et. al. Three-Layered Framework with Separation of Concerns.
Proceedings of the... OOPSLA'96 Workshop on Exploration of Framework Design
Principles, Califórnia, EUA, october, 1996

[STE96] Steyaert, P. et al. Reuse Contracts: Managing the Evolution of Reusable Assets.

Proceedings of the... OOPSLA'96 Conference on Object-Oriented Programming,
Systems, Languages and Applications, ACM SIGPLAN Notices, vol. 31, nº. 10,
october 1996, pp. 268-285

[SZY98] SZYPERSKI, C. Component Software . Harlow, Reino Unido, Addison Wesley

Publishing Company,1998

Modelo de Cooperação para Aprendizagem Baseada em Projetos: Uma
Linguagem de Padrões

Flávia Maria Santoro

flavia@cos.ufrj.br

Marcos R. da Silva Borges
mborges@nce.ufrj.br

Neide Santos
neide@ime.uerj.br

COPPE-Sistemas/UFRJ

Caixa Postal 68511 - 21 945 270
Rio de Janeiro -Brasil

NCE/UFRJ
Caixa Postal 2324 - 20001-970

Rio de Janeiro - Brasil

IME/UERJ
Caixa Postal 20550-013
Rio de Janeiro - Brasil

Abstract: Computer-supported collaborative learning (CSCL) environments arise as one of the
most powerful and important educational applications. Moreover, CSCL holds many-sided
features and building such environments is not an easy task. The developer of applications knows
neither the educational domain, nor the collaborative strategies applied to the teaching-learning
process. Teachers and students need a flexible environment to configure different collaborative
projects. Thus, we understand that the design of CSCL environments should be based on a
conceptual model, which allows the description of explicit collaborative processes. The proposal
of this work is a Cooperation Model for Project-based Learning, described through a Pattern
Language. The Model aims at supporting the development of collaborative environments in the
domain of project-based learning.

Introdução

A construção de ambientes de aprendizagem cooperativa baseada em projetos não é uma
tarefa trivial. O desenvolvedor de aplicações não conhece o domínio da educação e as nuances
das estratégias cooperativas aplicadas ao processo ensino-aprendizagem, por outro lado, o
professor/Facilitador e os Aprendizes precisam de um ambiente flexível, onde tenham apoio
no uso da tecnologia computacional, e onde possam configurar diferentes projetos
cooperativos de acordo com características específicas desejadas (Santoro et al., 2000).
A análise dos ambientes de aprendizagem cooperativa apresentados na literatura mostra que é
possível identificar elementos comuns que levam a melhores ou piores resultados em termos
do processo de cooperação. Esta linguagem de padrões visa apresentar alguns destes
elementos e mostrar como utilizá-los para criar tais ambientes. Desta forma, o objetivo da
linguagem de padrões é levantar problemas comuns aos ambientes, apontar soluções, mostrar
como estas soluções são implementadas em alguns ambientes e como podem ser aplicadas no
desenvolvimento de novos ambientes.

A Linguagem de Padrões

Vários aspectos estão envolvidos em um Modelo de Cooperação para Aprendizagem, e todos
eles se relacionam à tentativa de produzir um processo cooperativo efetivo, traduzido em um
Fluxo Atividades. Um processo cooperativo é definido pelo grau de Interdependência
encontrado nas tarefas propostas.
Ao longo do processo, os aprendizes compartilham conhecimento sobre um determinado
domínio. Portanto, é fundamental criar um entendimento comum sobre os objetos de estudo.
Uma forma de garantir este entendimento é a estruturação ou Representação Conhecimento,
que também irá facilitar a captura e recuperação da Memória do grupo.
A memória determina o armazenamento não só dos produtos gerados, mas também do
desenrolar das atividades. Com isto, o grupo tem a possibilidade de aprender com através de
trabalhos desenvolvidos anteriormente. Porém, surge uma questão: como e em que momento
se fará o Uso Memória.

Mesmo em ambientes de aprendizagem cooperativa, os indivíduos necessitam de espaços para
a sua produção pessoal e o ambiente deve prover Apoio Trabalho Individual. Porém, os
membros do grupo devem sentir que o resultado faz parte de um todo através da Integração
Produtos Individuais, afinal o resultado final é uma produção cooperativa.
Ao longo do processo, e em cada atividade especificamente, os participantes assumem
funções ou responsabilidades diferentes. Estas funções são chamadas de Papéis e definem as
relações, as formas de interação entre os participantes e o acesso a objetos compartilhados.
Alguns exemplos mais típicos e genéricos são Facilitador, Aprendiz e Coordenador. Também
é necessário definir como estes papéis são designados e mantidos através de Critérios
Nomeação.
A Coordenação está relacionada ao controle do processo e ajuda ao estudante tanto em termos
de conteúdo quanto de atuação no contexto das atividades propostas no ambiente. A
Coordenação também envolve Resolução Conflitos e Tomada Decisões, que no caso destes
ambientes devem ser analisados como processos auxiliares para que os aprendizes tomem
decisões sobre o planejamento e a execução das tarefas que levarão à elaboração da solução
de um problema proposto, promovendo sua aprendizagem, e mobilizam vários mecanismos
cognitivos e afetivos (lógica, inferência, dedução, crença, dúvida, sutileza, envolvimento
emocional).
Presentes em sistemas cooperativos de um modo geral, os mecanismos de percepção são os
responsáveis pelo entendimento e consciência do grupo em relação aos participantes e às
tarefas desenvolvidas. No caso específico de ambientes de aprendizagem deve-se prover
Percepção Espaço Trabalho, Percepção Tarefas, Percepção Interação Social e Percepção
Conceitos.
Qualquer ambiente educacional deve incorporar formas de suporte à avaliação da
aprendizagem. Este suporte deve ser feito através da disponibilização de instrumentos
apropriados inseridos no Processo Avaliação Educacional. É necessário avaliar Resultados
Individuais e Resultados Grupo.

Relacionamento entre os Padrões da Linguagem

Para representar os tipos de relações entre os padrões na linguagem foi utilizado o trabalho de
Gerber e Becker (2000), que propõem o uso de nós tipados para mostrar as diferenças
semânticas dos diversos relacionamentos existentes entre os padrões e com isso facilitar a
navegação entre eles. Os relacionamentos são classificados em quatro categorias resumidas na
Tabela 1. A Figura 1 descreve o mapa de relacionamento entre os padrões da linguagem, os
quais são apresentados em seguida.

Tabela 1 – Categorias de Relacionamentos entre Padrões
Relacionamento Descrição Representação Gráfica
é completado por Um padrão é completado por outro quando ele divide um problema genérico

em um grupo de sub-problemas resolvidos pelos padrões que o completam.

é requisito para Um padrão é requisito para outro quando ele tem que ser necessariamente
usado antes do outro.

leva a Um padrão leva a outro quando ele deixa um problema não resolvido ou
quando a solução aplicada gera um problema que pode ser resolvido pelo
outro padrão.

é refinado por Um padrão é refinado por outro quando o último atende a um problema que é
uma especialização do primeiro.

1. Nome: Fluxo Atividades

Contexto:
Em ambientes cooperativos para aprendizagem baseada em projetos, diversas atividades são
propostas a fim de que os alunos chegem ao objetivo educacional, ou seja, adquirir/construir
conhecimento ao longo do processo. Em um projeto, há compromisso com a geração de
produtos. Portanto, as atividades não são isoladas e desconectadas, mas compõem um fluxo
necessário à execução do projeto. A composição deste fluxo vai determinar a característica
pedagógica e funcional do projeto.

Problema:
Como definir e descrever o fluxo de atividades em ambientes de aprendizagem cooperativa
baseada em projetos?

Forças:
O primeiro passo para a realização bem sucedida de um projeto é o seu planejamento. Para
descrever um processo de trabalho, é necessário definir o relacionamento entre as diversas
atividades: objetivos específicos, Papéis, Interdependência, regras, hierarquia, entradas/saídas,
sub-produtos gerados, e ferramentas de apoio.
A noção de projeto (conjunto de atividades) como um todo é fundamental para a organização
e Coordenação do trabalho de grupos. Por isso, é importante haver uma definição das tarefas
apoiadas pelo ambiente e que estas tarefas levem à aprendizagem.

Figura 1 - Representação Gráfica da Linguagem de Padrões

1.FluxoAtividades

2.RepresentaçãoConhecimento

4.ApoioTrabalhoIndividual

3.Interdependência

5.IntegraçãoProdutosIndividuais

6.ProcessoAvaliação

7.ResultadosIndividuais 8.ResultadosGrupo

9.Memória

10.UsoMemória

11.Papéis

12.Coordenador 13.Facilitador

14.Aprendiz

15.CritériosNomeação

16.PercepçãoInteraçãoSocial 18.PercepçãoTarefa

17.PercepçãoConceitos

19.PercepçãoEspaçoTrabalho

20.Coordenação
21.ResoluçãoConflitos

&
TomadaDecisões

Solução:
Planeje as atividades de forma a levar os aprendizes gradualmente de uma perspectiva
individual (levantamento de idéias, exploração) para uma perspectiva coletiva (argumentação,
análise, comparação, decisão). O processo deve mostrar aos aprendizes a necessidade de
interação para realização das tarefas. Lembre que nem sempre os indivíduos têm facilidade de
trabalhar em equipe.
Crie ou permita que o grupo crie uma representação do processo, identificando principalmente
como as interações entre os participantes deverão ocorrer, definindo assim o espaço
cooperativo. Este espaço deve ter flexibilidade suficiente para ser redefinido sempre que o
grupo avaliar esta necessidade.
O uso de um modelo de Workflow pode ser útil para representar o fluxo de atividades. Van
der Veen et al. (1998) realizaram um estudo experimental sobre a aplicação de sistemas de
workflow no contexto educacional e identificaram as semelhanças e diferenças entre
processos educacionais e de negócios. Os resultados levaram à conclusão de que o uso de
sistemas de workflow como apoio à aprendizagem baseada em projetos traz ganhos em
relação às metas educacionais.

Usos conhecidos:
Estudos de caso realizados com o ambiente Zebu (Tiessen & Ward, 1999) levaram à
conclusão da necessidade de prover ao professor mecanismos de suporte ao planejamento e
visualização das atividades a serem propostas, de como deverá ocorrer o processo cooperativo
e como deverá ser a participação dos alunos. Os mecanismos de suporte propostos têm como
objetivo dar apoio ao professor no planejamento de atividades de aprendizagem
interrelacionadas, que devam estimular os estudantes a participarem de um processo de
engajemento progressivo em pesquisas.
Segundo Ferraris e Martel (2000), a regulação do espaço cooperativo traz os seguintes
benefícios: facilita a organização dos participantes; favorece o seu comprometimento com a
atividade conjunta; e aumenta a coesão do grupo. Sua função é definir como cada membro do
grupo deverá participar da atividade cooperativa. O Modelo de Participação proposto por
Ferraris e Martel (2000) é um modelo conceitual que descreve, formaliza e constrói o
contexto da atividade cooperativa, os relacionamentos de dependência e a estrutura de trocas
dentro do grupo.
No ambiente CLARE, a aprendizagem colaborativa sustenta-se em um modelo explícito -
SECAI que “puxa” os aprendizes da posição externa, isolada e individual para a perspectiva
interna, integrada e colaborativa em um artefato (Wan e Johnson, 1994).
O Modelo de Cooperação para Ensino/Aprendizagem de Disciplinas de Modelagem de
Becker e Zanella (1998) é voltado para o domínio de conceitos de modelagem de dados
através do desenvolvimento de exercícios, da crítica e discussão de alternativas para
modelagem. O modelo provê um framework, onde estão definidos: (a) um processo, que
ajuda os professores a definirem e estruturarem as atividades da classe; (b) papéis, a serem
desempenhados por estudantes e pelo professor; e, (c) objetos compartilhados durante o
processo.
Miao et al. (2000) propõem o uso de Protocolos de Aprendizagem, que são descritos como
scripts computacionais para definir, guiar e controlar a interação social dos processos
cooperativos em ambientes virtuais de aprendizagem.

2. Nome: Representação Conhecimento

Contexto:
Atividades cooperativas pressupõem compartilhamento de conhecimento e comunicação.
Portanto, os objetos de estudo, que são as formas concretas através das quais ocorrem trocas,
manipulação e produção de informação e conhecimento, são a base de funcionamento de
ambientes de aprendizagem cooperativa.
Objetos compartilhados podem ser divididos em duas categorias: objetos de percepção e
objetos de manipulação. Objetos de percepção são relacionados às informações necessárias à
execução do processo de trabalho (registros de interações, visões sobre andamento das
tarefas), e objetos de manipulação são relacionados aos produtos das tarefas executadas
(documentos).

Problema:
Quais são os mecanismos necessários para fazer a representação de conhecimento eficiente
em ambientes de aprendizagem cooperativa baseada em projetos?

Forças:
As interações em grupo e interpessoais envolvem o uso da linguagem na reorganização e na
modificação dos entendimentos e das estruturas de conhecimento individuais, e portanto a
aprendizagem é simultaneamente um fenômeno privado e social.
Para promover a aprendizagem através do compartilhamento é fundamental que se crie um
entendimento comum sobre os objetos de estudo. As pessoas devem ter disponíveis
mecanismos formais, estruturados, para representar um conhecimento, ou questionar uma
colocação, de forma que todos os participantes tenham oportunidade de entender o que se está
querendo comunicar. Representar conhecimento é facilitar a tradução do pensamento e das
idéias dos participantes de interações em ambientes cooperativos.
A forma de representação está diretamente relacionada ao tipo ou área de conhecimento e ao
uso que se fará desta informação. Além disso, deve relacionar uma informação ao contexto do
processo cooperativo que está inserida, facilitando a captura e recuperação da Memória do
grupo e a Coordenação do trabalho.
Em ambientes CSCL, a representação de conhecimentos permite também a possibilidade da
existência de guias no processo de aquisição de conhecimento, uma vez que o próprio sistema
interpreta as mensagens transmitidas nas interações entre os Aprendizes.

Solução:
Disponibilize uma linguagem comum para estruturação dos objetos de estudo. Esta linguagem
deve conter construtores de três tipos: (a) dicionário de termos comuns determinados de
acordo com o domínio específico do projeto, que vai auxiliar na equalização dos conteúdos
intercambiados; (b) símbolos gráficos que identifiquem o tipo de informação ou mensagem
que se deseja transmitir, criando um protocolo de comunicação nas interações, e (c) elementos
que estabeleçam associações entre objetos, que permitem a formação de relacionamentos
entre as informações, criando uma rede articulada.
Para que o ambiente não se torne muito rígido, tolhendo iniciativas particulares e criativas,
flexibilize esta linguagem permitindo a inclusão de novos construtores nos três níveis. Desta
forma, os membros do grupo vão desenvolver também um raciocínio sobre a lógica contida na
elaboração de suas contribuições ao grupo.

Usos conhecidos:
O ambiente CLARE utiliza uma linguagem de representação de conhecimento semi-
estruturada RESRA (Representational Schema of Research Artifacts) que implementa três
construtores conceituais: primitivas nós, primitivas links, e formas canônicas (Wan e Johnson,
1994). Os estudantes utilizam esta linguagem para representar suas análises e conclusões
sobre textos estudados. A partir daí, o grupo constrói um entendimento coletivo.
No Belvedere, idéias e relacionamentos são representados como objetos que podem ser
apontados, ligados a outros objetos e discutidos, permitindo a construção de representações de
relações lógicas e retóricas dentro de um debate. Sua interface se assemelha a um editor
gráfico, que provê diagramas de argumentação disponibilizando formas geométricas para
diferentes tipos e componentes de argumentos com links positivos e negativos, múltiplas
formas de ligações, e possibilidades de anexos para acomodar argumentos complexos
(Suthers e Weiner, 1995).
O ambiente PIE provê suporte a representações textuais e gráficas que ajudam estudantes a
articularem suas intuições sobre probabilidade e embasá-las no processo de construção de
argumentos que reflitam um entendimento padronizado (Enyedy et al., 1997).
Algebra Jam (Singley et al., 1999) usa uma tipologia de mensagens, que tem como objetivo
prover níveis de interpretação mais compreensíveis de uma conversa entre os estudantes e
com um tutor. O tipos de mensagens provêem uma forma estruturada que resume as possíveis
intenções de comunicação entre os indivíduos.

3. Nome: Interdependência

Contexto:
Através de vários estudos e experiências realizados com grupos pequenos, pesquisadores da
área de educação identificaram duas características que tornam os grupos bem sucedidos na
situação de aprendizagem. Estas características são chamadas de interdependência positiva e
responsabilidade individual (Johnson et al., 1990; Slavin, 1990).
Interdependência positiva significa que os membros de um grupo sentem que necessitam
“caminhar juntos” para realizar uma tarefa, ou seja, bons resultados e maus resultados obtidos
por um membro da equipe têm o mesmo efeito para toda a equipe. Responsabilidade
individual significa que todos os membros de um grupo devem participar ativamente para que
o grupo venha a ser bem sucedido.
Sendo assim, um processo realmente cooperativo, no sentido de que as pessoas têm um
objetivo comum e necessitam interagir para alcançá-lo, é definido pelo grau de
interdependência encontrado nas tarefas a serem realizadas.

Problema:
Como definir uma atividade em um ambiente de aprendizagem, garantindo que ela só poderá
ser realizada de forma cooperativa, ou seja, quais são os elementos ou características que
definem interdependência positiva na realização de uma tarefa?

Forças:
A estruturação de atividades cooperativas visando melhores resultados em termos do trabalho
em grupo também deve ser aplicada no caso de ambientes cooperativos para aprendizagem
apoiados por computadores.
Portanto, a aplicação dos fundamentos teóricos dos estudos realizados por educadores pode
ser aplicada na implementação de ambientes cooperativos para aprendizagem apoiados por
computadores.

A cooperação deve sustentar-se em um modelo explícito de cooperação, onde a natureza do
processo cooperativo esteja clara para os participantes. Este modelo deve ser flexível para
comportar diversas formas de cooperação, de coordenação e de comunicação.
Os objetivos e tarefas de um grupo devem ser projetados de forma que os aprendizes
acreditem que formam uma equipe: o esforço de cada membro é importante e indispensável
para o sucesso do grupo; e cada membro tem sua contribuição particular para dar ao grupo, de
acordo com seus recursos, conhecimentos prévios, Papéis, e responsabilidade nas tarefas.

Solução:
Analise os elementos de interdependência da tarefa proposta, ou seja questione quais são as
características da atividade indicadoras da necessidade do trabalho em grupo para sua
realização. Uma vez estabelecida a legitimidade da cooperação, defina regras de cooperação –
um conjunto de normas através da qual a tarefa deve ser desempenhada garantindo a
aplicação de trabalho cooperativo. As regras devem ser criadas de forma a vincular o trabalho
de um membro de um grupo aos demais, garantindo que o resultado final só poderá ser
atingido, se todos trabalharem de forma cooperativa, compreendendo como será a Integração
Produtos Individuais.
Johnson et al. (1990) sugerem que as tarefas propostas devem possuir um mais dos seguintes
elementos de interdependência positiva:
1. Interdependência de Objetivo

O grupo deve possuir um objetivo comum.
Exemplo: Um grupo deve ler e criticar uma composição escrita por outro grupo para uma
apresentação final.

2. Interdependência de Papéis
Cada membro tem uma tarefa a cumprir, de forma que o objetivo final seja alcançado
somente se cada fizer a sua parte. Neste caso, deve haver interação entre os membros do
grupo e pode-se fazer revezamento entre os papéis assumidos por cada um.
Exemplo: Um membro do grupo lê uma passagem de um texto, outro deve escrever um
resumo sobre o que foi lido, e outro deve revisar aquilo que foi escrito.

3. Interdependência de Inimigo Externo
Membros do grupo cooperam para defender-se de um “inimigo” comum. Neste caso,
pode-se criar jogos onde haja competição entre grupos, existindo, porém dentro do mesmo
grupo cooperação para chegar ao final da competição.
Exemplo: Jogos de perguntas e respostas, onde o progresso de cada membro do grupo é
avaliado e acrescenta ou não pontos para toda a sua equipe.

4. Interdependência de Recursos
Os membros do grupo possuem recursos diferentes e estes devem ser compartilhados para
realização de uma tarefa.
Exemplo: Na dinâmica Jigsaw (Aronson,1978), grupos de estudantes possuem
informações sobre partes diferentes de um tema. Os membros de cada grupo que possuem
as mesmas partes se reúnem, discutem o assunto e pensam qual seria a melhor forma de
explicá-la para os outros. Feito isto, retornam ao seu grupo original e cada um deverá
explicar sua parte para os outros e então elaborar um produto final contendo todas as
partes.

5. Interdependência de Identidade
O grupo cria uma identidade própria dependendo da atividade na qual está envolvido.
Exemplo: Estudantes de ciências podem dar o nome de um grande cientista ao seu grupo.

6. Interdependência de Recompensas

O grupo trabalha junto na expectativa de receber algum tipo de recompensa. As
recompensas não podem se tornar motivo de sensação de injustiça dentro do grupo.

Usos conhecidos:
A definição deste padrão está baseada em estudos com grupos de aprendizagem na área de
educação, onde observou-se resultados de sucesso e falha com o uso de técnicas e dinâmicas
de estruturação do trabalho: Aronson, 1978; Johnson et al., 1990; Slavin, 1990.
O ambiente PIE (Gifford e Enyedy, 1999) apresenta regras de interação em cada uma das
tarefas. Em estudos sobre o uso do ambiente, concluiu-se que as regras e a divisão de trabalho
propostas tornaram mais efetiva a organização das atividades e consequentemente os
resultados da aprendizagem dos estudantes.
No trabalho desenvolvido por Tiessen e Ward (1999), cabe ao professor apoiar os estudantes
na construção coletiva de seu trabalho. Isto é feito através da configuração/estruturação de
atividades que tornem as contribuições individuais fundamentais para o alcance das metas do
grupo e que estimulem os estudantes a realizarem seu trabalho em conjunto com seus
parceiros.

4. Nome: Apoio Trabalho Individual

Contexto:
Atividades de aprendizagem propostas em ambientes cooperativos são realizadas pelos
membros do grupo no decorrer de um processo estabelecido. Estas atividades podem ser
cooperativas ou individuais de acordo com o Fluxo Atividades definido pelo processo. Na
realidade, existem momentos para trabalho em grupo, e outros para produções individuais.
Mesmo nas tarefas cooperativas, deve existir um espaço para expressão individual.

Problema:
Que tipo de mecanismos devem ser disponibilizados em ambientes de aprendizagem
cooperativa baseada em projetos para apoiar o trabalho individual?

Forças:
A aprendizagem é um processo inerentemente individual, não coletivo, que é influenciado por
uma variedade de fatores externos, incluindo as interações em grupo e interpessoais. Aprender
cooperativamente implica na troca entre indivíduos, e assume que, de alguma maneira, o todo
é maior do que as partes individuais, de modo que a cooperação pode produzir ganhos
superiores à aprendizagem solitária.
Aprendizagem cooperativa não significa necessariamente aprender em grupo, mas muitas
vezes em poder contar com outras pessoas para apoiar sua aprendizagem e dar retorno se e
quando necessário, no contexto de um ambiente não competitivo (Kaye, 1991).
Pesquisas na área de CSCW (Computer-Supported Cooperative Work) também apontam a
necessidade de apoio à realização de tarefas individuais em ambientes cooperativos.

Solução:
Apresente ferramentas que permitam ao Aprendiz elaborar visões privadas sobre os objetos de
estudo trabalhados no contexto do ambiente, deixando livre a opção de mostrá-las ou não ao
outros membros do grupo, no momento que achar conveniente.
Estas ferramentas podem também estar presentes como funcionalidades das ferramentas
cooperativas, de forma a disponibilizar espaços individuais, por exemplo, para rascunhos,
dentro das tarefas de grupo.

Usos conhecidos:
O ambiente WebGuide (Stahl, 1999), provê funcionalidades que permitem que cada estudante
manipule e analise as idéias discutidas pelo grupo, selecionando, editando, arranjando e
relacionando e resumindo notas livremente de acordo com sua perspectiva pessoal, sem afetar
as visões das outras pessoas.
O Collaboratory Notebook (O’Neill e Gomez, 1994) implementa blocos de anotações
privados, onde os participantes podem fazer seus relatos pessoais sobre a experiência coletiva,
sem necessariamente apresentar ao grupo.
Janelas com visões sobre aspectos identificados individualmente em um texto científico são
disponibilizadas no ambiente CLARE (Wan e Johnson, 1994) para cada usuário. Outras
janelas apresentam resumos das visões de outros usuários do sistema.

5. Nome: Integração Produtos Individuais

Contexto:
Em ambientes de aprendizagem cooperativa, muitas vezes, os trabalhos realizados pelos
alunos são produtos da união de seus esforços. A cooperação em ambientes educacionais pode
significar divisão de tarefas em partes controladas por diferentes colaboradores, ou esforço
conjunto para realização de uma tarefa sem divisão de trabalho.
A divisão de tarefas entre membros individuais ou entre pequenos grupos pode se traduzir em
maior rapidez na execução de uma atividade. Por outro lado, a realização das tarefas sem
divisão de trabalho pode ampliar o debate, o compartilhamento de idéias e de conhecimento
entre os participantes, bem como acarretar aumento na qualidade do material produzido. De
qualquer forma, a aprendizagem cooperativa nunca deve se resumir a juntar partes ou recortes
de trabalhos individuais.

Problema:
Como os produtos, ou resultados de atividades individuais devem ser disponibilizados,
apresentados e integrados no trabalho do grupo, de forma que fique clara sua contribuição?

Forças:
Se o objetivo de ambientes de aprendizagem cooperativa é o compartilhamento e a interação
entre os participantes para construção coletiva de conhecimento, os esforços individuais
devem ser integrados, de forma a se complementarem como parte de um todo consistente,
entendido por todo o grupo.
Colaborar implica em objetivos compartilhados e intenção explícita de ‘somar algo’ , ou seja,
criar alguma coisa nova ou diferente através da colaboração, se contrapondo a uma simples
troca de informação ou passagem de instruções (Kaye, 1991). Apesar de sempre existir o
Apoio Trabalho Individual em ambientes de aprendizagem cooperativos, os Aprendizes
devem ter noção de como integrar os produtos destes esforços quando for necessário.
Uma contribuição individual pode ter duas funções em um trabalho coletivo: (i) servir como
parte ou complementação da produção; (ii) esclarecer, explicar ou argumentar sobre algum
conceito discutido pelo grupo. Para que uma contribuição individual seja efetiva para o grupo
e possa ser utilizada em outras etapas do trabalho coletivo, ela precisa estar clara para todos os
membros do grupo. Isto acontece quando se usa uma representação comum do conhecimento
comunicado. A solução para representação comum de conhecimento está descrita no padrão
Representação Conhecimento.

Solução:
Deixe claro quais são as atividades individuais, quem é o seu responsável e qual o produto a
ser gerado por ela. Todas estas informações devem estar explícitas na representação do Fluxo
Atividades. Desta forma, ficará claro para o grupo, antes mesmo do iniciar a execução das
tarefas, os momentos onde serão introduzidas as contribuições individuais.
Em cada objeto de estudo deve ser estar representada de alguma forma a contribuição dos
membros do grupo. Esta representação pode ser feita, por exemplo, através de cores diferentes
associadas a cada membro, ou do nome ou um apelido associado a uma parte do objeto.

Usos Conhecidos:
No ambiente CLARE (Wan e Johnson, 1994), a definição do processo mostra claramente a
primeira fase, onde cada membro do grupo trabalha particularmente no resumo de um texto,
para em uma segunda etapa apresentar o material produzido ao grupo e promover
comparações e debate. Desta forma, fica explícita a contibuição de cada um e o momento em
que esta é integrada ao trabalho coletivo.
No CSILE (Oshima, 1997) e Collaboratory Notebook (O’Neill e Gomez, 1994), as
contribuições individuais são identificadas através dos nomes dos membros do grupo
associados às notas escritas por eles.

6. Nome: Processo Avaliação

Contexto:
A avaliação da aprendizagem é o conjunto de ações organizadas com a finalidade de obter
informações sobre o que foi assimilado pelo estudante, de que forma e em quais condições.
Para tanto, é preciso elaborar um conjunto de procedimentos investigativos que possibilitem o
ajuste e a orientação adequada. A avaliação deve funcionar por um lado como um instrumento
que possibilite ao avaliador analisar criticamente a sua prática; e por outro, como instrumento
que apresente ao avaliado a possibilidade de saber sobre seus avanços, dificuldades e
possibilidades. Neste contexto estão inseridos os objetivos educacionais, ou seja, os conceitos
ou habilidades que se pretende ensinar, e as próprias atividades projetadas.

Problema:
Como definir o processo de avaliação da aprendizagem, no contexto do desenvolvimento de
um projeto em um ambiente cooperativo apoiado por computador?

Forças:
O processo de avaliação começa pelos objetivos do programa educacional, ou seja, o seu
cerne está em determinar em que medida os objetivos pretendidos estão sendo realmente
alcançados.
O processo de avaliação está diretamente relacionado ao tipos de atividades educacionais
propostas, e portanto à teoria de aprendizagem na qual estão baseadas.
Na ótica de uma teoria sócio-cultural e construtivista, não é possível avaliar os conhecimentos
construídos desvinculando-os do processo em que foram constituídos. Por isto, a avaliação
deve ser contínua e deve permitir ao professor identificar e criar Zonas de Desenvolvimento
Proximal (Vygostky). A avaliação é parte do processo e portanto deve estar definida no
contexto do Fluxo Atividades. Através das diversas formas de avaliação, o professor pode dar
feedback aos Aprendizes ao longo do processo.

No espaço educativo sócio-construtivista, os processos são mais relevantes que os produtos, e
a realidade não deve ser reduzida somente à observação das concepções finais. A avaliação
qualitativa deve ultrapassar a avaliação quantitativa, sem contudo dispensá-la.
O processo de avaliação de aprendizagem pode ser definido em algumas etapas:
1. Análise dos objetivos educacionais que formam um conjunto de especificações para

avaliação.
2. Identificação de situações que dão ao aluno a oportunidade de expressar o comportamento

implicado pelos objetivos educacionais.
3. Estabelecimento de instrumentos de avaliação.
4. Definição dos termos ou unidades de medida que serão utilizados para apresentar o

resultado que se obteve com a avaliação.

Solução:
Em um ambiente cooperativo de aprendizagem baseada em projetos, disponibilize meios para
que o avaliador possa especificar os momentos nos quais algum tipo de intervenção com fins
de avaliação deverá ser realizada. Estas intervenções deverão estar inseridas no
desenvolvimento das atividades propostas, através do Fluxo Atividades. Deve existir a
possibilidade de serem feitas intervenções diferentes para cada membro do grupo, de forma
que a avaliação possa ser individualizada.
As intervenções podem ser apresentações de dados coletados e armazenados no ambiente
(Memória) sobre o desenvolvimento de cada indivíduo (Resultados Individuais) e do grupo
como um todo (Resultados Grupo) no processo de aprendizagem, em vários aspectos:
cognitivos, afetivos, que envolvam relações sociais, de cooperação, de participação, de poder
de argumentação, crítica e criação.
A partir daí, deve-se examinar instrumentos de avaliação disponíveis ou desenvolvê-los
especificamente para servir aos propósitos determinados em cada intervenção.

Usos Conhecidos:
Pesquisas na área de educação (Tyler, 1974; Secretaria Municipal de Educação do Rio de
Janeiro, 1996) identificam etapas clássicas para um processo de avaliação, relacionado-o
diretamente aos objetivos educacionais. Alguns ambientes apoiados por computadores adotam
parte desta proposta e apontam solução específicas, tais como formas de representar os
objetivos e ferramentas de apoio a algumas das etapas descritas (Leite e Omar, 1999; Tarouco
e Hack, 1999).

7. Nome: Resultados Individuais

Contexto:
Em um ambiente cooperativo de aprendizagem apoiado por computadores, deve ser possível
fazer avaliações acerca do desenvolvimento de cada membro de um grupo. Desta forma,
pode-se ter noção do nível de desenvolvimento alcançado por cada um, de acordo com os
objetivos pretendidos (que por sua vez podem ser diferentes para cada indivíduo).

Problema:
Como avaliar o resultado da aprendizagem de cada indivíduo trabalhando em ambientes
cooperativos de aprendizagem baseada em projetos?

Forças:
Em ambientes construtivistas, baseados em teorias sócio-culturais, a avaliação deve ser
baseada na observação do progresso individual, não só em relação ao ganho de novos
conceitos, mas também em relação ao desenvolvimento de habilidades sociais.
O primeiro passo para implantar um Processo Avaliação é descrever a correlação entre os
objetivos traçados com a definição daquilo que deverá ser avaliado. Feito isto, o avaliador
deve ter meios para identificar situações onde serão aplicados determinados instrumentos de
avaliação.
O ambiente deve prover diversos instrumentos de avaliação tanto quantitativa, quanto
qualitativa, para serem utilizados de acordo com a necessidade prevista pelo avaliador. A
prova única (igual para todos) deixa de ser o instrumento principal de avaliação. O avaliador
deve ter meios para desenvolver exames individuais, de acordo com características de cada
participante do processo. Os exames devem verificar o progresso do aprendiz e não somente
uma resposta imediata.
A avaliação tradicional é sinônimo de testes com lápis e papel. Através deles, pode-se
verificar a capacidade dos estudantes em analisar e tratar vários tipos de problemas verbais,
vocabulário, leitura e outros gêneros de habilidade e aptidões facilmente expressos sob forma
verbal. Porém, avaliação é muito mais do que isso. A avaliação deve ser reflexiva, crítica,
emancipatória e deve buscar uma coerência na teoria e na ação. O ajustamento pessoal-social
é avaliado com mais facilidade pela observação de pessoas em situações que envolvam
relações sociais.

Solução:
Os instrumentos de avaliação em um ambiente de aprendizagem cooperativa devem capturar e
apresentar informações relativas à observação das interações nos trabalhos em grupo e ao
êxito na obtenção de soluções partilhada de problemas. Para isto, o ambiente deve prover
fontes de informações sobre o processo de trabalho e os resultados obtidos. Permita que o
avaliador configure que tipo de dados deseja monitorar.
O sistema deve permitir que os avaliadores façam anotações ou comentários estruturados (que
podem ter algum tipo conceito associado) sobre o desenvolvimento dos alunos. A
estruturação facilitará a apresentação e consulta de resultados.
Além disto, outros recursos poderão ser utilizados, tais como questionários, entrevistas e auto-
avaliação. O avaliador deve ter a possibilidade de enviar perguntas aleatórias em
determinadas situações configuradas por ele. O avaliador ou o próprio aluno podem ser
responsáveis pela criação da estrutura de tópicos a serem avaliados.

Usos Conhecidos:
Trabalhos na área de educação apontam para a utilização de alguns instrumentos de avaliação
na linha qualitativa e individualizada, de acordo com paradigmas educacionais mais
modernos.
O Virtual Campus fornece meios para comunicação, compartilhamento de conhecimentos e
armazenagem de informações em uma sala virtual de aprendizagem cooperativa. A avaliação
de participação individual no ambiente Virtual Campus (Maher, 1999) pode identificar não
somente a quantidade de contribuição, mas também o conteúdo do que foi apresentado. As
informações armazenadas podem fornecer indicadores do tipo de colaboração e da extensão
das interações entre os participantes. A avaliação é baseada nas informações observadas
durante o processo de aprendizagem sobre o nível de participação de cada membro do grupo.

O ambiente de aprendizagem chamado “Virtual School” consiste em um notebook
colaborativo que permite personalizar ou compartilhar espaços de trabalho para planejamento,
organização, desenvolvimento e fazer anotações sobre projetos científicos. Uma única
interface integra um conjunto de ferramentas de groupware com vários mecanismos de
comunicação síncronos e assíncronos (Insenhour et al., 2000). As ferramentas de
comunicação construídas no Virtual School incluem fóruns de discussão estruturados, e-mail,
chat em tempo real, e vídeo conferência. Um servidor foi implementado com o objetivo de
coordenar os usuários.
Filosofias de avaliação quantitativa e qualitativa são aplicadas a todos os níveis de métodos e
dados. Os métodos são entrevistas, questionários, observações diretas, vídeos, e sistemas logs.
Além disso, várias informações são capturadas como anotações, conversas de chat,, e-mail,
que serão muito úteis para uma posterior avaliação.
Mühlenbrock e Hoppe (1999) propõem um framework para aprendizagem cooperativa
apoiada por computador que monitora e gerencia as interações entre os grupos em cenários
locais e distantes. Fornece mecanismos adaptáveis para processos de análise automatizados
assim como para visualização e feedback.

8. Nome: Resultados Grupo

Contexto:
Em um ambiente cooperativo de aprendizagem apoiado por computadores, deve ser possível
fazer avaliações acerca do desenvolvimento alcançado pelo grupo como uma entidade única.
Desta forma, estará sendo verificado o resultado do trabalho em equipe e como cada
participante se situa neste contexto.

Problema:
Como avaliar o resultado da aprendizagem de um grupo como um todo em ambientes
cooperativos de aprendizagem baseada em projetos?

Forças:
Em ambientes de aprendizagem baseados em teorias sócio-culturais, a avaliação deve ser feita
através da observação do progresso individual, não só em relação ao ganho de novos
conceitos, mas também em relação ao desenvolvimento de habilidades sociais.
As características de Interdependência presentes neste tipo de ambiente mostram a
importância de se prover meios para avaliação do grupo, uma vez que o trabalho realizado foi
resultado de esforços conjuntos. Para se avaliar os resultados de um grupo, este precisa ser
considerado uma entidade única. Neste caso é necessário traçar objetivos de aprendizagem
para o grupo e prover instrumentos que permitam a avaliação destes objetivos. Um dos
objetos a serem avaliados é o próprio produto construído pelo grupo.
Através do Processo Avaliação o avaliador deve definir instrumentos de avaliação qualitativa
e quantitativa.

Solução:
Procure definir relatórios de apresentação dos produtos gerados pelo grupo ao longo da
execução do projeto, de forma a tornar explícita a reflexão dos objetivos do grupo no trabalho
feito. O professor/Facilitador pode pré-definir o formato dos relatórios e com isso ajudar os
Aprendizes a entender o próprio Processo Avaliação e verificar seu progresso.

As informações relativas à observação das interações nos trabalhos em grupo também podem
ser utilizadas para análise dos resultados do grupo através de comparações de contribuição no
produto final e participação ao longo do processo.
Permita também que os membros do grupo avaliem, através de questionários e entrevistas, o
produto do trabalho realizado e cada um dos membros de seu grupo em relação à participação
e cooperação.
Para permitir uma análise quantitativa, o sistema deve prever a realização de exames em
grupo que devem verificar o progresso de aprendizagem de conceitos/habilidades da equipe.

Usos Conhecidos:
O ambiente Design Discussion Area (DDA) apoia a apresentação dos projetos de dispositivos
desenvolvidos por grupos de estudantes. Eles devem mostrar como funcionam seus projetos,
explicar as decisões de projeto e discutir os próximos passos do desenvolvimento, através de
relatórios pré-definidos. Os relatórios têm como objetivo ensinar aos estudantes como
organizar e articular suas experiências. Além disso, o sistema permite que outros estudantes
possam fazer perguntas, dar sugestões e apontar problemas utilizando formatos estruturados
(Kolodner e Nagel, 1999).

9. Nome: Memória

Contexto:
As atividades cooperativas apoiam-se na interações entre os pares e geram produtos. O
ambiente de aprendizagem baseada em projetos deve armazenar as diferentes versões dos
produtos gerados, bem como a história de sua construção, através do registro das interações.
Memória Organizacional é uma área de pesquisas relacionada a artefatos de cooperação que
podem ser apontados como indicadores explícitos do que tem acontecido em uma
organização. Estes artefatos incluem por um lado produtos (documentos e bens fabricados);
por outro, registros de colaboração e idéias, particularmente sequências de reuniões, perguntas
freqüentemente solicitadas (FAQ), e listas que registram conhecimento comum em um tópico
particular. Estes tipos de objetos representam o conhecimento armazenado (a memória) de
uma organização, grupo, ou projeto; e eles devem ser armazenados, mantidos e indexados.

Problema:
Como prover suporte à captura, armazenamento e recuperação de informações sobre a
memória do processo de trabalho de um grupo em um ambiente de aprendizagem cooperativa
baseada em projetos?

Forças:
No caso de ambientes de aprendizagem, a memória do trabalho do grupo pode ser um
importante repositório de soluções identificadas e adotadas, servindo como base de estudo
para outros grupos e podendo trazer novas idéias e perspectivas sobre um determinado
problema. Além disso, a memória do desenvolvimento dos projetos será útil para o Processo
Avaliação da aprendizagem pelos professores e estudantes, pois pode-se reconstituir o
processo de construção do conhecimento coletivo, bem como a participação de cada membro
do grupo.
Informação coletada automaticamente por um sistema computacional é limitada pelo fato de
que muitas interações podem ocorrer fora do sistema. Além disso, há o risco de que se resulte
em uma quantidade grande de dados registrados não gerenciáveis.

Por outro lado, informação coletada manualmente, ou seja, os participantes precisam fornecer
a informação em determinados momentos e estão a par disto, nem sempre é suficiente para
entender e avaliar o processo educacional. A observação informal se faz necessária.
Em ambientes de aprendizagem cooperativa apoiados por computadores, a captura de
informações de memória das atividades deve ser manual (os estudantes preenchem
questionários de avaliação sobre o andamento do processo), e automática (o sistema guarda
estruturas de informações sobre as interações dos membros do grupo na execução de suas
tarefas em formato estruturado). A estrutura deve ser definida de acordo com o domínio do
projeto e com padrões de Representação Conhecimento.
Alguns fatores são importantes para a captura de informações mais seguras e completas: os
participantes devem estar preparados para responder questões sobre o seu processo de
trabalho, por isso devem conhecê-lo bem; e os participantes devem ter um entendimento sobre
a estruturação na troca de informações e construção de bases coletivas de conhecimento.
Segundo Dias (1998), a questão mais importante no suporte à memória de grupo em
ambientes cooperativos é a definição de uma estrutura através da qual as informações serão
representadas e mantidas.

Solução:
Ao final da realização de um projeto, deve-se ter arquivado um conjunto de elementos que
caracterizam e permitem uma discussão sobre este. Os elementos a serem preservados no caso
de ambientes CSCL são:
1. Documentos: descrevem os produtos e sub-produtos gerados ao longo e ao final do

projeto, podem ter versões que devem ser guardadas como marcos e devem ter
explicações associadas a elas que identifiquem os motivos pelos quais foram guardadas.

2. Discussões: são atividades específicas onde os membros do grupo (ou sub-grupos) se
reúnem para discutir um determinado assunto de forma síncrona ou assíncrona, devem ser
realizadas através de ferramentas apropriadas (do tipo chats, fóruns de discussões ou listas
de mensagens), podem ter resultados associados, por exemplo, a decisão a respeito de um
problema.

3. Diálogos: são conversas informais ou trocas de informações no contexto da execução de
uma atividade no processo de trabalho, devem ser armazenadas como parte da memória de
execução de uma atividade.

Para incluir todos os elementos em uma estrutura formal, que permita representação e
relacionamentos entre eles, crie uma unidade básica comum de dados no ambiente. A
metáfora mais apropriada neste caso é a do hipertexto, pois os indivíduos devem ser
responsáveis pela organização de suas perspectivas sobre o conhecimento. Conklin (1996)
afirma que as características de uma tecnologia capaz de de capturar informações sobre a
memória organizacional devem combinar hipertexto e um método retórico que forneça dados
semi-estruturados.
O modelo de estruturação das informações é derivado da Representação Conhecimento, onde
deve-se incluir os construtores apropriados para cada caso. Por exemplo, no caso de
Discussões, deve-se criar construtores que permitam um modelo de argumentação e Tomada
Decisões.

Usos conhecidos:
Um dos sub-sistemas do ambiente ARCOO, Modelagem do Conhecimento, oferece
instrumentos para criar e manter mapas de conceitos e bases de informações que compõem o
conhecimento coletivo, criando a memória compartilhada em um grande hipertexto (Barros &
Borges, 1995).

Em WebGuide (Stahl, 1999), os participantes criam uma rede estruturada de perspectivas
onde adicionam livremente links entre suas notas pessoais e as do seu grupo. Esta rede
representa e apoia as dinâmicas entre indivíduos e grupos, definindo o processo de
colaboração.

10. Nome: Uso Memória

Contexto:
O uso da informação de Memória armazenada e recuperada está relacionado ao aspecto da
interpretação. Ter acesso a dados e documentos sobre de acontecimentos passados não é
suficiente, é preciso entender seu significado e saber onde aplicá-los, ou seja, transferir o
contexto.

Problema:
Que formas podem ser utilizadas para apresentar dados provenientes de atividades já
realizadas, de forma que fique explícito o contexto e os participantes desta atividade?

Forças:
A recuperação e apresentação de informações sobre o desenvolvimento de um projeto em
ambientes de aprendizagem tem como objetivo a avaliação do projeto e aprendizagem de
soluções e conhecimento acumulado. Trazer de volta dados sobre um projeto pode auxiliar
outros grupos de estudantes a desenvolverem seus próprios projetos e trabalhar sobre
informações já coletadas e discutidas de forma a tentar produzir inovações.
Porém, a interpretação de qualquer coisa depende do contexto dentro do qual é interpretado,
ou seja, interpretação é um processo altamente localizado e subjetivo. Da mesma maneira que
uma pessoa interpretará algo diferentemente de outro em uma determinada situação, a mesma
pessoa em duas colocações diferentes interpretará algo diferentemente. Este é o mesmo
problema da hermenêutica: interpretação da escrita por pessoas diferentes do autor original. A
resposta básica desta disciplina é que a interpretação sempre é localizada e subjetiva.
Um dos riscos de qualquer mecanismo que mostra o que outras pessoas estão fazendo e estão
sabendo (ou fez e soube) é sobrecarga de informação. Se as informações são capturadas em
um nível de granularidade alto, estas precisam ser filtradas de alguma maneira. As
informações relativas a interações em ambientes CSCL podem conter muitos dados
irrelevantes aos propósitos de quem procura, como por exemplo, conversas informais sem
significado para o projeto.

Solução:
Crie associações entre as descrições das atividades no modelo gráfico do Fluxo Atividades e
as discussões e diálogos estruturados segundo modelos de argumentação provenientes da
Memória de grupo. Desta forma, identifica-se o objetivo da atividade, os produtos gerados e
as interações que os membros do grupo tiveram para concluí-la.
Cada uma das informações será visualizada através de sua ferramenta específica, se desejado
pelo usuário, e uma ferramenta de buscas e filtragem de informações poderá ser utilizada para
chegar a um nível de detalhamento maior sobre o estudo.

Usos Conhecidos:
Sistemas de workflow (Marshak, 1995) utilizam representações gráficas para facilitar a
visualização dos processos e as informações associadas a eles.

11. Nome: Papéis

Contexto:
Papéis representam coleções de usuários em sistemas cooperativos e estão geralmente
associados a funções lógicas assumidas por atores (participantes, indivíduos ou sub-grupos,
agentes ou sistemas computacionais), na execução de uma atividade. Papéis podem ser
formais ou informais, permanentes ou temporários; podem ser assumidos espontaneamente ou
delegados.
Na visão de alguns autores da área de CSCW (Computer-Supported Cooperative Work),
papéis também podem representar descrições dinâmicas de usuários, avaliadas na medida em
que o sistema cooperativo é utilizado por eles. Além disso, um mesmo participante pode
assumir diferentes papéis ao mesmo tempo, na execução da tarefa.
Os sistemas cooperativos podem implementar mecanismos apropriados que criem facilidades
para a execução de tarefas específicas relacionadas a determinados papéis. Mesmo os
ambientes de aprendizagem que não designam papéis explicitamente aos seus usuários
apontam a importância da existência de mecanismos de suporte a diferentes papéis. É o caso
de Guzdial et. al. (2000), que afirmam que o ambiente CoWeb pode apoiar papéis específicos,
sem contudo torná-los explícitos no ambiente.

Problema:
Como identificar/definir mecanismos a serem disponibilizados em um ambiente de
aprendizagem cooperativa baseada em projetos para apoiar papéis específicos?

Forças:
A importância da definição de papéis em sistemas cooperativos em geral está no fato de que
usuários diferentes precisam ter acesso a informações diferentes baseadas nas tarefas
associadas aos seus papéis. No caso de ambientes de aprendizagem cooperativa, a importância
está no fato de que, ao exercer funções e responsabilidades diversas, cada membro do grupo
adquire conhecimento sobre um determinado domínio a partir de diferentes perspectivas, na
medida em que o processo de aprendizagem ocorre.
Os papéis definem as relações, as formas de interação entre os participantes e o acesso a
objetos compartilhados. Vários papéis podem ser assumidos em sistemas cooperativos, porém
em ambientes de aprendizagem, alguns deles são considerados fundamentais dependendo do
tipo de tarefa executada, por exemplo, Aprendiz, Facilitador e Coordenador.
Para Guzdial et al. (2000), papéis são produto de um processo social, que ocorre independente
do uso do ambiente, somado aos benefícios trazidos pelo ambiente computacional. Portanto,
os papéis são explícitos, naturais, estáveis e diretamente associados às características dos
indivíduos. A tarefa cooperativa desempenhada pelo grupo deve apontar que tipo de
características individuais são requeridas para sua execução.

Solução:
Para que o conhecimento seja adquirido sob diferentes óticas, deve-se prever uma progressão
e complementação de papéis, ainda que esta não deva ser uma obrigatoriedade nos ambientes.
Portanto é preciso estabelecer um conjunto de papéis necessários a cada uma das tarefas.
Estabeleça os papéis, porém torne o ambiente flexível para apoiar dinamicamente as possíveis
mudanças nas formas de trabalho e consequentemente nos papéis desempenhados. Ao
identificar um papel típico no desenvolvimento de uma tarefa, detalhe esta tarefa e defina as
políticas de interação dos participantes.

Políticas descrevem um contingente genérico através do qual eventos específicos são
avaliados e manipulados, ou seja, as políticas regem as formas particulares de interação entre
usuários e entre usuários e aplicações. Os objetivos das políticas em ambientes de
aprendizagem cooperativa são gerenciar imprevistos e ensinar formas de cooperação. Os
ambientes cooperativos devem apoiar diferentes políticas de coordenação (controle de acesso
a objetos compartilhados) e de cooperação (formas de interação).
Em relação às políticas de coordenação, defina elementos de interface de utilidade específica
do papel. Estes elementos dão acesso a ações que podem ser restritas aos usuários que estão
assumindo o papel em determinado momento, ou podem ser apresentadas a todos os usuários.
Isto deve ser configurável na definição da tarefa.
Em relação às políticas de cooperação, defina elementos de percepção específicos para o
papel. Estes elementos têm como função prover informação necessária sobre o desempenho
de determinado papel e das possibilidades de acesso ao mesmo por outros usuários.

O esquema de relacionamentos a seguir resume os elementos relacionados aos papéis em um
ambiente cooperativo:

Usos Conhecidos:
Para Singley et al. (2000), a questão da melhoria da colaboração através da designação de
papéis e configuração de equipes de trabalho ainda não está totalmente explorada. Porém,
observa-se que os trabalhos nesta área apontam para o caminho descrito na solução
apresentada neste padrão.
A estratégia do ambiente Algebra Jam (Singley et al., 2000) é prover ferramentas no contexto
da interface para diferentes tipos de comportamentos colaborativos e associar o uso de
ferramentas específicas, de formas específicas, a papéis específicos. Para isto, foi definida
uma tipologia de papéis relativos a tarefas particulares envolvidas na solução de problemas,
identificada através da disponibilização de determinadas ações na interface do sistema.
Segundo a experiência destes autores com o uso do ambiente, há um ganho pedagógico no
processo de aprendizagem pelo fato de ter os participantes assumindo cada um dos pontos de
vista relacionados aos papéis definidos.

PAPEL

Descrição
Tarefas

Elementos de
Interface Políticas

acesso à informação

acesso aos indivíduos

interação

Políticas de Coordenação

Políticas de Cooperação Elementos de
Percepção

O sistema pode funcionar segundo dois modos. No primeiro caso, permite que os papéis
sejam designados explicitamente (modo prescritivo), e somente um sub-conjunto de ações é
habilitado na interface. No segundo, os papéis não são designados explicitamente (modo não
prescritivo), ficando a interface totalmente liberada para todos os participantes.
Nas pesquisas com o ambiente CoWeb, Guzdial et al. (2000) identificaram uma série de
papéis atuando sistematicamente no uso do sistema, em diversos contextos educacionais.
Apesar dos papéis não serem designados explicitamente, na medida em que foram
identificados, procurou-se prover ferramentas e mecanismos para apoiar as suas atividades e
necessidades específicas. Os mecanismos criados são funções disponíveis na interface e
elementos de percepção que disponibilizam informações particulares, que são utilizadas por
usuários específicos.
No ambiente Kansas (Smith, Hixon e Horan, 1998), não há definição explícita de papéis,
porém, os usuários “vêem” e “ouvem” coisas diferentes de acordo com as tarefas designadas a
eles. Isto é feito através do dimensionamento das janelas apresentadas a cada usuário, que
permitem acesso a elementos de interface e percepção diferentes em cada caso. Além disso,
implementa um sistema de “capabilities”, que representam funcionalidades do sistema
habilitadas ou não nas interfaces de cada usuário. Ao longo das sessões, os papéis poder
evoluir através da alteração dinâmica das “capabilities” associadas ao participante.

12. Nome: Coordenador

Contexto:
Vários papéis podem ser assumidos em sistemas cooperativos, porém em ambientes de
aprendizagem, alguns deles são considerados fundamentais dependendo do tipo de tarefa
executada e encontram-se presentes nos ambientes ainda que de forma não explícita. Um
exemplo é um coordenador geral para o projeto e/ou coordenadores das atividades a serem
desenvolvidas.

Problema:
Como apoiar as formas de interação do Coordenador em um ambiente de aprendizagem
cooperativa baseada em projetos?

Forças:
O coordenador é um papel importante em ambientes de aprendizagem cooperativa baseada
em projetos, pois o exercício da liderança também faz parte do aprendizado sobre como
trabalhar cooperativamente.
O coordenador estabelece a estratégia para solução dos problemas inerentes às atividades do
projeto, determina os recursos disponíveis e necessários, designa tarefas a indivíduos,
gerencia as atividades e avalia seu progresso. O coordenador pode participar a princípio de
qualquer atividade dentro do processo. O coordenador se relaciona basicamente com os
Aprendizes.

Solução:
As políticas de coordenação e de cooperação definem as formas de interação do coordenador
no contexto do ambiente de aprendizagem:
� Políticas de coordenação: O coordenador deve ter acesso de leitura a todos os objetos e

espaços compartilhados pelo grupo em todos os momentos do desenvolvimento do
projeto. Porém, o acesso à edição deve ser restrito a objetos relacionados às suas tarefas
específicas.

� Políticas de cooperação: O coordenador identifica os recursos para execução de uma
atividade e passa para o grupo (por exemplo, textos para uma discussão). O coordenador
tem acesso direto à execução do fluxo de trabalho de cada participante, podendo enviar
mensagens de avaliação de progresso para os membros do grupo. O coordenador tem
tarefas específicas de interação dependendo da atividade cooperativa que está sendo
desenvolvida (por exemplo, coordenar uma sessão de discussão de um texto, passando a
vez para cada membro do grupo que solicitá-la).

Para apoiar a implementação destas políticas defina elementos de interface e de percepção
apropriados.
Defina elementos de interface que permitam:

• Envio de mensagens sobre a avaliação do processo e os produtos do trabalho realizado
(podem se traduzir em mensagens estruturadas aos participantes de acordo com a
Representação Conhecimento).

• Ações de intervenção sobre as atividades em desenvolvimento (por exemplo, início,
término, interrupção).

Defina mecanismos de percepção que permitam a identificação e conhecimento de:
• Informação sobre o Fluxo Atividades.
• Informação sobre os participantes (Percepção Interação Social): dados pessoais e

dados sobre as responsabilidades nas tarefas individuais e de grupo.

Usos conhecidos:
No Ambiente Algebra Jam (Singley et al., 1999), são designados explicitamente cinco papéis:
Observador, Aprendiz, Especialista, Líder (Coordenador) e Guia (Facilitador). O Coordenador
estabelece estratégias para solução dos problemas, coordena as ações e avalia o progresso do
trabalho. O coordenador pode, por exemplo, enviar mensagens estruturadas de sugestões para
o uso de recursos ou para demonstrar aprovação ou reprovação quanto a um produto gerado.
Além disso, possui elementos de interface específicos para realização de suas tarefas, tais
como apresentar metas e designar tarefas através de um “quadro-negro” compartilhado.
Em estudos realizados com o ambiente CoWeb, (Guzdial et al., 2000) identificaram o papel
do usuário central ou coordenador. Este usuário normalmente gerencia a estrutura do sistema
e guia as interações dos autores de forma a produzir uma melhor definição do espaço
compartilhado. Para apoiar este trabalho, é disponibilizada a função de modificação dos
títulos das páginas sem a perda de seus links, através da interface do sistema.
Em uma configuração do ambiente Kansas (Smith, Hixon e Horan, 1998) que apoia o
paradigma de aprendizagem DTVI (Distributed Tutored Video Instruction), é proposta a
definição explícita de quatro papéis: estudante, facilitador, coordenador e desenvolvedor. Para
cada um deles é apresentada uma interface diferente conforme suas funções específicas. O
coordenador possui acesso liberado a todas as funções e mecanismos de percepção no
ambiente.

13. Nome: Facilitador

Contexto:
Vários papéis podem ser assumidos em sistemas cooperativos, porém, em ambientes de
aprendizagem, alguns deles são considerados fundamentais dependendo do tipo de tarefa
executada, e encontram-se presentes nos ambientes ainda que de forma não explícita. Um
exemplo é o facilitador.

Em ambientes de aprendizagem sócio-construtivistas, como no caso dos cooperativos, os
aprendizes são considerados sujeitos ativos na busca e construção de seu próprio
conhecimento. Neste contexto, não cabe mais a figura do professor transmissor de
conhecimento e manipulador de todas as situações, mas sim o facilitador que irá auxiliar os
aprendizes em seu processo de aprendizagem.

Problema:
Como apoiar as formas de interação do Facilitador em um ambiente de aprendizagem
cooperativa baseada em projetos?

Forças:
O facilitador é alguém que entende os processos desenvolvidos pelo grupo (sociais e de
trabalho) e por isso pode ajudar o grupo a entender seus problemas, tanto de ordem social,
quanto pedagógica, e encontrar soluções para eles. O facilitador observa e critica as ações dos
outros participantes, responde a solicitações de ajuda, aconselha o Coordenador do grupo e
guia a atuação dos Aprendizes na solução dos problemas.
O facilitador está presente em todas as tarefas em ambientes de aprendizagem cooperativa
baseada em projetos. Porém, com o conhecimento sobre o grupo e o processo de trabalho, ele
pode ajudar a aumentar a coesão do grupo e o estabelecimento das regras de funcionamento
do grupo. Na medida em que os membros do grupo interagem, a figura do facilitador tende a
se tornar menos importante, pois o grupo seguirá os seus caminhos, sofrendo eventuais
intervenções do facilitador.
Por sua natureza de sujeito central, o facilitador se relaciona com todos os outros papéis
presentes no ambiente.

Solução:
As políticas de coordenação e de cooperação definem as formas de interação do facilitador no
contexto do ambiente de aprendizagem:
� Políticas de coordenação: O facilitador deve ter acesso de leitura a todos os objetos e

espaços compartilhados pelo grupo em todos os momentos do desenvolvimento do
projeto. Porém, o acesso à edição deve ser restrito a objetos relacionados ao Processo
Avaliação.

� Políticas de cooperação: O facilitador deve ser capaz de reconhecer quando um problema
pedagógico ou de relacionamento está se desenvolvendo dentro do grupo e deve ter
habilidade e conhecimento para ajudar o grupo a lidar com isso. Para isto, o facilitador
deve gerar intervenções que podem interromper ou não o processo para tratar as questões,
provendo sugestões sobre a forma de resolver o problema.

Para apoiar a implementação destas políticas defina elementos de interface e de percepção
apropriados.
Defina elementos de interface que permitam:

• Envio de ajuda (que podem se traduzir em mensagens estruturadas aos participantes
com sugestões para alguma questão específica, ou apoio a uma ação do participante de
acordo com a Representação Conhecimento).

• Criação de objetos para auxílio ao trabalho do grupo dependendo da atividade
proposta (por exemplo, listas de referências, templates de relatórios).

• Ações de intervenção sobre as atividades em desenvolvimento (por exemplo, início,
término, interrupção).

Defina mecanismos de percepção que permitam a identificação e conhecimento de:
• Informação sobre o Fluxo Atividades.

• Informação sobre os participantes (Percepção Interação Social): dados pessoais e
dados sobre as responsabilidades nas tarefas individuais e de grupo.

Usos conhecidos:
Em estudos realizados com o ambiente CoWeb, (Guzdial et al., 2000) identificaram o papel
do professor ou facilitador, cuja função é ajudar os estudantes a se engajarem nas atividades
propostas. Para isto, ele pode criar páginas de discussão, de revisão e crítica e páginas onde os
estudantes depositam seus trabalhos (objetos compartilhados do ambiente). Além disso, foi
implementado um mecanismo específico de navegação para o facilitador (interface).
No Ambiente Algebra Jam (Singley et al., 1999), são designados explicitamente cinco papéis:
Observador, Aprendiz, Especialista, Líder (Coordenador) e Guia (Facilitador). O facilitador
observa e acompanha as ações dos outros participantes, responde a pedidos de ajuda, e guia os
aprendizes na solução dos problemas propostos. O facilitador pode enviar mensagens
estruturadas respondendo a pedidos de ajuda, fornecendo informações relevantes ao processo
ou dando início a uma tarefa. Além disso, possui elementos de interface específicos para
realização de suas tarefas.
Em uma configuração do ambiente Kansas (Smith, Hixon e Horan, 1998) que apoia o
paradigma de aprendizagem DTVI (Distributed Tutored Video Instruction), é proposta a
definição explícita de quatro papéis: estudante, facilitador, coordenador e desenvolvedor. Para
cada um deles é apresentada uma interface diferente conforme suas funções específicas. No
caso do facilitador, são disponibilizadas ações para dar início e término nas discussões, salvar
anotações dos estudantes em páginas Web (objeto compartilhado) e controlar os mecanismos
de volume de áudio de todos os participantes.
O ambiente Zebu (Tiessen e Ward, 1999) prevê as seguintes funções para o facilitador
(professor): criação de templates para que os estudantes criem suas páginas no contexto das
atividades do projeto, criação de listas de recursos a serem utilizados pelos estudantes no
projeto (objetos de auxílio), resposta a questões levantadas pelos estudantes e coordenação
das atividades através da configuração e acompanhamento do processo de trabalho.

14. Nome: Aprendiz

Contexto:
Em ambientes de aprendizagem, o papel principal é o do aprendiz que é o sujeito que interage
com outros sujeitos e com conteúdos, com o objetivo de adquirir algum tipo de conhecimento
ou habilidade.

Problema:
Como apoiar as formas de interação do Aprendiz em um ambiente de aprendizagem
cooperativa baseada em projetos?

Forças:
O aprendiz é o papel central em ambientes de aprendizagem cooperativa baseada em projetos.
O aprendiz tem responsabilidade pela gerência e execução das tarefas para alcance das metas
e resolução dos problemas definidos no projeto. Tem como objetivo participar na construção
coletiva de conhecimento tendo como benefício pessoal seu aprendizado sobre as áreas de
pesquisa do projeto.
O aprendiz está presente em todas as tarefas de projetos em ambientes de aprendizagem
cooperativa e é o sujeito principal do desenvolvimento das tarefas e da geração dos produtos.
O aprendiz se relaciona com todos os outros papéis presentes no ambiente.

Solução:
As políticas de coordenação e de cooperação definem as formas de interação do aprendiz no
contexto do ambiente de aprendizagem:
� Políticas de coordenação: O aprendiz deve ter acesso de leitura e escrita a todos objetos

compartilhados nas atividades às quais participa. O ambiente deve estimular o maior
número possível de acessos de aporte de informações e contribuições de todos os
aprendizes.

� Políticas de cooperação: Os aprendizes devem ter disponíveis vários meios para
interagirem entre si: troca de mensagens, fóruns de discussões assíncronos e conversas
síncronas. Todas as atividades devem permitir estas interações, mesmo que cada
participante tenha uma tarefa específica (por exemplo, escrever uma seção de um
documento coletivo). O grupo deve definir em todas as situações uma política de troca de
informações antes, durante e depois de cada atividade (por exemplo, na construção
coletiva de um texto, (i) participantes discutem o tema; (ii) participantes escrevem partes
do texto, consultando os outros membros; (iii) participantes promovem um debate sobre o
produto final gerado).

Para apoiar a implementação destas políticas defina elementos de interface e de percepção
apropriados.
Defina elementos de interface que permitam:

• Envio de pedido de acesso e ajuda ao Facilitador e a outros Aprendizes (que podem se
traduzir em mensagens estruturadas de acordo com a Representação Conhecimento).

• Acesso individual ao Coordenador da atividade na qual está participando (se este
papel existir).

Defina mecanismos de percepção que permitam a identificação e conhecimento de:
• Informação sobre o Fluxo Atividades.
• Informação sobre os participantes (Percepção Interação Social): dados pessoais e

dados sobre as responsabilidades nas tarefas individuais e de grupo.

Usos conhecidos:
O papel de aprendiz está implícito em qualquer ambiente de aprendizagem cooperativa
apoiada por computadores, mesmo que este não seja definido formalmente.
No Ambiente Algebra Jam (Singley et al., 1999), são designados explicitamente cinco papéis:
Observador, Aprendiz, Especialista, Líder (Coordenador) e Guia (Facilitador). O Aprendiz
assume a responsabilidade pela performance de determinadas tarefas para a solução do
problema proposto. O Aprendiz pode enviar mensagens estruturadas de pedidos de ajuda ou
fornecendo informações relevantes ao processo. Além disso, possui elementos de interface
específicos para realização de suas tarefas, tais como, preenchimento de tabelas ou cálculo de
médias.
Em uma configuração do ambiente Kansas (Smith, Hixon e Horan, 1998) que apoia o
paradigma de aprendizagem DTVI (Distributed Tutored Video Instruction), é proposta a
definição explícita de quatro papéis: estudante, facilitador, coordenador e desenvolvedor. Para
cada um deles é apresentada uma interface diferente conforme suas funções específicas. No
caso do estudante ou aprendiz, a disponibilização de ações se limita à escrita em um editor
cooperativo e controle de seu próprio mecanismo de volume de áudio.

15. Nome: Critérios Nomeação

Contexto:
Ambientes de aprendizagem cooperativa baseada em projetos têm como característica a
designação de Papéis, explícita ou não, aos participantes das interações na realização das
tarefas. A associação de papéis aos participantes (atores) ao longo do processo pode ser feita
de diferentes formas, de acordo com os objetivos do trabalho a ser desenvolvido e com o que
se deseja observar no grupo.
Smith, Hixon e Horan (1998) definem duas formas de nomeação de papéis: prescritiva, onde
os papéis são designados explicitamente pelo sistema ou por algum outro participante que
desempenhe o papel de coordenador; e não prescritiva, onde os papéis não são designados
explicitamente.

Problema:
Que critérios devem ser adotados na nomeação de papéis aos membros de um grupo em um
ambiente de aprendizagem cooperativa baseada em projetos?

Forças:
A designação ou nomeação de papéis em ambientes cooperativos contribui para o sucesso do
desenvolvimento de um projeto, ou seja, os atores certos para papéis certos influenciam no
cumprimento dos objetivos de um grupo.
Designar papéis a usuários significa definir quais serão as suas funções no contexto das
atividades do projeto cooperativo. Portanto, a designação de papéis a
pessoas/grupos/agentes/programas em ambientes de aprendizagem cooperativa deve ser feita
segundo critérios que demonstrem a coerência com os objetivos educacionais desejados.
Em muitos casos, encoraja-se a troca ou alternância de papéis para minimizar as críticas e
conflitos dentro dos grupos. No caso de ambientes de aprendizagem, esta prática pode trazer
benefícios no sentido do exercício de responsabilidades.

Solução:
Os critérios para a nomeação de papéis devem diretamente relacionados aos objetivos
educacionais das tarefas propostas no contexto do ambiente.
Portanto, utilize a forma prescritiva de nomeação nos seguintes casos:

• um dos objetivos do ambiente é o aprendizado do trabalho em equipe, ou seja, os
participantes não têm experiência de trabalho em equipe e formação de grupos;

• um dos objetivos do ambiente é explorar as habilidades pessoais dos participantes
envolvidos já conhecidas anteriormente através da análise de conhecimentos prévios.

Neste caso, defina restrições de interface da ferramenta de acordo com o papel (as interfaces
específicas são definidas nos padrões relativos a cada papel).
Utilize a forma não prescritiva de nomeação nos seguintes casos:

• quando se deseja observar o surgimento espontâneo de habilidades no grupo;
• quando as atividades não demandam diferentes papéis obrigatoriamente, por exemplo,

uma pesquisa para levantamento de material de apoio para o grupo.
Neste caso, todos os elementos de interface da ferramenta são habilitados para todos, ou seja,
a interface é a mesma para todos os usuários, que vão assumir papéis espontaneamente.

Usos conhecidos:
Na experiência de Kynigos (1999) com um ambiente cooperativo voltado para o ensino de
matemática, uma vez que desejava-se reproduzir uma situação de trabalho em sociedade, onde
cada indivíduo tem sua função, foram adotadas as práticas de nomeação explícita de papéis
para todas as atividades previstas no projeto. Ao longo do desenvolvimento do trabalho, esta
nomeação foi revista e modificada. A prática de revezamento e acúmulo de papéis ajudou a
minimizar os conflitos na execução das tarefas propostas.
No Algebra Jam (Singley et al., 1999), os participantes podem ter os papéis explicitados ou o
exercício dos papéis pode surgir espontaneamente sendo reconhecido pelo sistema através de
ações associadas a elementos de interface pré-definidos. Além disso, é encorajado o
revezamento de papéis para que todos os participantes possam vivenciar as responsabilidades
do exercício de cada função.
Em uma configuração do ambiente Kansas (Smith, Hixon e Horan, 1998) que apoia o
paradigma de aprendizagem DTVI (Distributed Tutored Video Instruction), são realizadas
sessões de videotape de aulas, onde os alunos se vêem através de video-links e fazem
anotações colaborativamente utilizando uma ferramenta de edição de texto. De acordo com o
objetivo educacional de aprendizado do tema em questão, o sistema propõe a definição
explícita de quatro papéis: estudante, facilitador, coordenador e desenvolvedor. Para cada um
deles é apresentada uma interface diferente conforme suas funções específicas.

16. Nome: Percepção Interação Social

Contexto:
Em um ambiente de aprendizagem cooperativa apoiado por computadores, a interação entre
os membros do grupo é o principal fator para que ocorra cooperação. Sem interação, não se
estabelecerá o nível de cooperação desejável para estimular o processo de aprendizagem.
Os participantes envolvidos em uma situação de aprendizagem que requer interação devem
estar conscientes sobre com quem estão interagindo, e de como se dará a interação. Para isto,
é preciso que estejam disponíveis informações sobre aspectos relacionados à interação social
entre os indivíduos.

Problema:
Que elementos devem ser disponibilizados em um ambiente de aprendizagem cooperativa
apoiada por computadores para facilitar e estimular a interação social entre os membros do
grupo?

Forças:
A percepção sobre as conecções sociais dentro de um grupo induz e facilita as interações entre
seus membros.
O conhecimento e expectativa corretos em relação às outras pessoas e seus trabalhos trazem
segurança para execução coletiva das tarefas e faz com que fique mais claro o nível de
contribuições de cada um.
De acordo com Araujo (2000), os usuários de um groupware devem ser capazes de reconhecer
o grupo no qual estão inseridos para interagirem. Isto significa obter informações sobre seus
participantes capazes de ajudar o estabelecimento de conexões sociais. Araujo (2000)
enumera as seguintes informações relativas à percepção social em um groupware:
composição, localização, presença, proximidade (papéis e responsabilidades), disponibilidade
e emoção. Em resumo, “as pessoas precisam perceber e ter acesso umas às outras dentro de
um mesmo contexto”.

Solução:
Mantenha um componente de percepção social no sistema, que possa ser acessado a qualquer
momento, por qualquer participante e que apresente as seguintes informações atualizadas de
forma dinâmica:
• Dados pessoais de todos os participantes – localização física, formação, preferências,

expectativas, interesses e disponibilidade e recursos para acesso. Estes dados provêm do
cadastro de usuários do sistema.

• Alocação de tarefas comuns – sub-grupos dos quais participa (ressaltando aqueles em
comum com o usuário que consulta esta informação). Estes dados provêm da definição do
Fluxo Atividades.

• Atividade(s) e papéis que está alocado no momento. Estes dados provêm da consulta ao
status do Fluxo Atividades.

• Presença no ambiente no momento. Este dado provém do registro de login do ambiente.
A forma mais comum de apresentação deste tipo de informações são as listas de usuários
bastante difundidas em sistemas cooperativos. As listas de usuários variam de formas bem
simples, contendo apenas informações sobre os participantes “logados” no ambiente em um
determinado momento, até as mais sofisticadas que incluem informações em vídeo sobre a
disponibilidade de cada membro do grupo (GroupLab, 2000).

Usos conhecidos:
Entre os exemplos de ambientes que implementam componentes de percepção social
encontram-se o Algebra Jam (Singley et al., 1999) onde a disponibilidade dos membros do
grupo é apresentada sob a forma gráfica (fotos) na interface da tela principal do ambiente. A
partir desta representação, o grupo sabe quem está interagindo em determinado momento e
como acessar estas pessoas.
O LiNC Virtual School (Isenhour et al., 2000) implementa na tela de abertura do sistema uma
lista de usuários pertencentes ao grupo, contendo informações pessoais, projetos dos quais
participa e últimas tarefas realizadas.
A ferramenta de discussão Lead Line (Farnham et al., 2000) disponibiliza uma lista de
usuários com informações relativas aos papéis desempenhados por cada um deles em uma
sessão interativa.
O ambiente Zebu (Ward e Tiessen, 1997) permte importar arquivos com informações sobre
um usuário em seu cadastro. Além disso, associa cada usuário a projetos específicos,
refletindo as contribuições dos participantes nas páginas de cada projeto, ou seja, consultando
um projeto, informações sobre os membros de seu grupo são automaticamente apresentadas.

17. Nome: Percepção Tarefa

Contexto:
Em um ambiente computacional para aprendizagem cooperativa, tarefas são propostas para
um grupo, que deverá realizá-las de forma cooperativa. O entendimento por parte dos
membros do grupo sobre como os processos deverão ocorrer e o seu acompanhamento, ou
seja, informações de diversos tipos sobre as atividades, tornará possível e facilitará seu
desenvolvimento.
Araujo (2000) afirma que a qualidade do produto final de uma interação cooperativa depende
do grau de consciência de seus participantes sobre os objetivos e a estruturação do trabalho
que irão realizar.

Problema:
Que elementos devem ser disponibilizados em um ambiente de aprendizagem cooperativa
baseada em projetos para apresentar as informações necessárias sobre uma determinada tarefa
a ser desenvolvida pelo grupo?

Forças:
A falta de informações sobre os objetivos e os conhecimentos necessários para realização de
uma tarefa pode levar a erros na sua execução. O desenvolvimento coletivo de uma atividade
requer integração entre os participantes, e para isso, é preciso que os participantes estejam
bastante conscientes dos passos a serem dados para o cumprimento dos objetivos, e do papel
de cada um dentro deste processo. Cada membro do grupo deve estar atento ao processo como
um todo.
A Coordenação será mais bem realizada se todos estiverem conscientes dos
papéis/responsabilidades de cada participante.
Araujo (2000) descreve os dois tipos de informação relevantes ao entendimento das tarefas
em um groupware: estrutura (formas e procedimentos) e status (passado, presente e futuro).
As pessoas precisam saber o que elas têm que fazer, o que os outros têm fazer e como sua
atuação está inserida no contexto do projeto.

Solução:
Disponibilize um componente de percepção de tarefa que apresente as seguintes informações
para os participantes de um projeto:
• quais os conhecimentos prévios necessários para realização desta tarefa;
• qual a estrutura da tarefa - passos a serem seguidos para realizá-la;
• qual o tempo necessário ou determinado para sua realização;
• como se dará a participação de cada membro do grupo (papéis e especializações);
• quais os resultados esperados;
• quais as ferramentas disponíveis para utilização como apoio;
• status de sua execução.
Estas informações provêm da definição e do status de execução do Fluxo Atividades.
Este componente pode ser similar aos utilizados em Sistemas de Workflow, que normamente
apresentam informações sobre percepção das tarefas a serem desenvolvidas pelos
participantes de um projeto através de visões gráficas do processo, onde se representa a
estrutura e o status das atividades; e listas de trabalho, que mostram aos participantes as
atividades relacionadas a eles e as informações pertinenentes a elas (Araujo, 2000).

Usos conhecidos:
Nos sistemas descritos na literatura não se encontram componentes de percepção de tarefas
específicos, porém, na maioria dos casos as informações encontram-se apresentadas nas
próprias intefaces dos ambientes. Desta forma, a validação do padrão se refere somente às
informações sugeridas na solução.
No ambiente PIE (Gifford e Enyedy, 1999), é apresentado um conjunto de botões que
representam a estrutura (fluxo) da atividade. Para cada atividade, existe uma descrição textual
dos procedimentos a serem realizados.
No ambiente CLARE (Wan e Johnson, 1994), através de um menu está indicada a sequência
de atividades propostas (estrutura do fluxo), que compõem o processo. No contexto de cada
elemento do menu, encontram-se interfaces com a definição de cada tarefa a ser realizada.

18. Nome: Percepção Conceitos

Contexto:
Em um ambiente de aprendizagem cooperativa apoiado por computadores, geralmente são
propostas aos alunos tarefas que requerem algum tipo de conhecimento prévio e a apropriação
de novos conhecimentos para serem cumpridas. Ao rever seus conhecimentos, buscar novos
conceitos e compartilhar com outros membros de um grupo, o aluno se encontra em um
processo de aprendizagem ativa. Porém, nem sempre fica claro que conceitos devem ser
revisados para executar a tarefa.

Problema:
Como facilitar a percepção sobre conhecimentos necessários à execução de uma tarefa em um
ambiente de aprendizagem cooperativa baseada em projetos?

Forças:
Segundo Gutwin et al. (1995), existem alguns questionamentos que um Aprendiz pode se
fazer ao deparar-se com uma tarefa a ser executada:
• que conhecimento prévio está relacionado a esta tarefa? (Percepção Tarefa)
• o que mais é preciso ser descoberto sobre este tópico?
• é preciso revisar idéias pré-existentes a partir das novas informações?
• é possível criar hipóteses baseadas no conhecimento atual do grupo para prever o resultado

da tarefa?
Os sistemas apresentam, em geral, estruturas para Representação Conhecimentos
compartilhados, que pode ou não estar relacionada às tarefas desenvolvidas.
Araujo (2000) afirma que “perceber” uma interação com o uso de um groupware envolve
compreender o que se passa durante esta interação e, a partir desta compreensão, cada usuário
pode estabelecer o contexto e impacto de suas atividades e contribuições individuais em
relação à atividade do grupo.

Solução:
Forneça meios para que o Facilitador ou Coordenador possam incluir links de referências
relacionados a uma determinada tarefa. Torne explícito os links que apresentam conceitos
básicos e avançados sobre o conteúdo.
Além disso, permita que os Aprendizes incluam seus próprios links na medida que tenham
amadurecido o conhecimento sobre o conteúdo. Para isto, inclua etapas no Processo
Avaliação onde são apresentados Resultados Grupo que demonstrem ao grupo a sua evolução
no processo de construção de conhecimento sobre o tema.

Usos conhecidos:
O ambiente Belvedere (Suthers e Weiner, 1995) define uma sequência de fases da pesquisa
científica (fluxo de atividades proposto) e provê links para informações diversas a serem
utilizadas em cada uma destas etapas, tais como fundamentação do problema, hipóteses já
levantadas por cientistas, e sugestões de experimentos. Além disso, permite o relacionamento
direto de informações coletadas pelos alunos ao produto gerado por eles na atividade (no caso,
diagramas de representação de teorias científicas).
Os ambientes CaMILE (Guzdial, 1997) e CSILE (Oshima, 1997) permitem a inclusão de
links de referências na internet para serem consultados pelos usuários no processo de
construção de conhecimento através de discussão em fóruns.

O Zebu (Tiessen e Ward, 1999) provê ao professor a possibilidade de fornecer recursos aos
alunos para execução de suas tarefas. Isto é feito através da criação de links de referências nos
templates e páginas disponibilizados por eles, e desta forma, relacionam a informação à tarefa
a ser realizada. A medida que os alunos vão se tornando mais amadurecidos para a busca de
informações, o professor pode delegar esta tarefa a eles, que vão usar então os mesmos
mecanismos utilizados pelo professor.

19. Nome: Percepção Espaço Trabalho

Contexto:
Ambientes de aprendizagem cooperativa permitem que estudantes trabalhem juntos,
compartilhando espaços virtuais. Estes ambientes não conseguem reproduzir todas as nuances
que ocorrem em uma situação de interação face a face onde os participantes utilizam canais de
comunicação explícita, por exemplo, a fala; e implícita, por exemplo, expressões corporais.
Por isso, os ambientes de aprendizagem cooperativa baseada em projetos devem prover meios
de disponibilizar informações que auxiliem os participantes a terem consciência do quê estão
compartilhando, como e com quem.

Problema:
Que elementos devem ser disponibilizados em um ambiente de aprendizagem cooperativa
baseada em projetos para garantir a percepção do espaço de trabalho entre os membros do
grupo?

Forças:
A percepção do espaço de trabalho reduz o overhead do trabalho em grupo, permitindo uma
interação mais natural e efetiva, e facilita o engajamento dos estudantes em práticas que
levam à aprendizagem cooperativa.
A noção do que está acontecendo no grupo como um todo encerra o verdadeiro conceito de
aprendizagem cooperativa.
Percepção é um conceito relacionado a mecanismos que garantem que as pessoas podem
compreender ou tomar consciência do próprio processo e da interação entre todos os
participantes em um ambiente cooperativo. Elementos de percepção são essenciais para que
os estudantes possam aprender e trabalhar em equipe.
Em um ambiente computacional para aprendizagem cooperativa, a percepção de cada
participante em relação aos outros é um dos elementos chave para propiciar uma interação
efetiva (Percepção Interação Social). O fato de um indivíduo saber o que o outro está fazendo
em determinado momento pode levá-lo a buscar um contato e então possibilitar trocas.
O acesso a informações sobre contribuições e tarefas já completadas (Percepção Tarefa)
também é um fator importante, pois pode aproximar pessoas com interesses comuns dentro do
grupo, mesmo que não estejam produzindo alguma coisa juntas.
Prover elementos de percepção envolve pelo menos três aspectos: a própria informação, a
tradução da informação, e apresentação da informação. Araujo (2000) aponta as seguintes
informações como necessárias para prover percepção do espaço de trabalho: status dos
objetos de trabalho (quais são, como encontrá-los e qual o histórico de sua evolução), ações e
posição dos participantes.

Solução:
Apresente uma representação dos membros do grupo dentro do espaço de trabalho, de forma
que o grupo todo possa ter as seguintes informações:

• onde ele está;
• o que está fazendo neste momento;
• o que já fez anteriomente.
Esta representação pode ser gráfica, icônica, através de janelas, ou de realidade virtual. Muitas
vezes é feita simplesmente através da definição de diferentes cores para os usuários, onde
estas vão indicar as contribuições nos objetos compartilhados, os objetos que estão sendo
trabalhados em um determinado momento, a posição do cursor em uma janela compartilhada,
etc. A seguir é apresentado um esquema representativo do Espaço de Trabalho:

Usos conhecidos:
Os ambientes CSILE (Oshima, 1997), Collaboratory Notebook e CaMILE (Guzdial, 1997)
implementam percepção de espaço de trabalho através da noção de mensagem estruturada,
onde o autor é representado por suas iniciais, e portanto os outros membros conseguem
perceber o que ele está fazendo ou já fez.
No ambiente NICE (Roussos et al., 1997), os participantes de uma seção de trabalho são
representados por avatars e todos podem visualizar seus movimentos e suas ações dentro do
espaço de trabalho.
No ambiente CLARE (Wan e Johnson, 1994), o modelo de interação é previsto em duas fases
do trabalho, onde deve acontecer interação direta entre os participantes: Argumentação e
Consolidação. Em ambas as fases, as pessoas visualizam o artefato que está sendo analisado
em uma janela (tarefa), e em outra são apresentadas as argumentações das pessoas em relação
a este artefato. Através desta janela, as pessoas trocam informações e podem votar por uma
decisão final. Os objetos manipulados por cada membro do grupo aparecem relacionados aos
seus nomes.

20. Nome: Coordenação

Contexto:
Coordenação é um termo utilizado para descrever um conjunto de mecanismos disponíveis
em um ambiente compartilhado, que têm como função gerenciar a Interdependência entre os
participantes. Os mecanismos de coordenação garantem que os procedimentos serão
praticados no ambiente compartilhado de acordo com regras pré-definidas pelos participantes,
ou impostas pelo próprio ambiente.

Bla bla

bla bla...

Conceitos Interação Tarefas/Conceito

Espaço de Trabalho em Ambientes de Aprendizagem Cooperativa

Tarefa
Interação

a

Tarefa

Em ambientes de aprendizagem cooperativa, que têm como característica um objetivo
educacional, a coordenação pode ser traduzida em suporte à definição das formas de trabalho,
permitindo que todos tenham acesso ao conhecimento compartilhado e possam desenvolver
habilidades cooperativas.

Problema:
Quais são os mecanismos necessários para prover suporte à coordenação em ambientes de
aprendizagem cooperativa apoiados por computadores?

Forças:
Coordenação está relacionada ao suporte, à definição e execução das tarefas do grupo, e
individuais de cada participante. Na definição das tarefas, estabelecem-se as regras de
procedimento. Na execução das tarefas, necessita-se de assistência, tanto em nível de
instrumentos, quanto de informações e conceitos. Muitos sistemas cooperativos provêem
guias para estruturação das interações sociais no contexto do espaço de trabalho
compartilhado (Farnham et al., 2000).
Os ambientes de aprendizagem cooperativa baseada em projetos possuem a particularidade de
que o comportamento dos indivíduos é influenciado pelo grupo como um todo, ou seja, o
grupo tem sua identidade própria. Os Aprendizes trabalham juntos para solucionar problemas.
Desta forma, existem dois aspectos envolvidos: o processo cooperativo de trabalho e os
conhecimentos compartilhados na busca da solução.
O ambiente deve permitir o estabelecimento de regras de cooperação e de procedimentos
entre os indivíduos.
A Interdependência entre os participantes, necessária para configurar e operacionalizar o
ambiente compartilhado não deve prejudicar a autonomia individual, pois esta é condição
fundamental no processo de aprendizagem.
O ambiente deve fornecer ajuda aos participantes no sentido de que desenvolver uma tarefa
significa também adquirir, compartilhar ou trabalhar na construção de algum tipo de
conhecimento.
De acordo com Johnson-Lenz e Johnson-Lenz (1991), outro aspecto da coordenação está
relacionado a formas de manter o grupo estimulado, tais como convidar à participação, marcar
os eventos do processo de cooperação e definir um ritmo aos trabalhos e encontros. A
coordenação, neste sentido, pode ser feita de forma livre, ou seja, não há coordenação, o
grupo se auto-regula; centralizada, ou seja, existe um indivíduo que atua como coordenador,
tendo responsabilidades pela manutenção do ambiente e ajuda aos participantes; automática,
ou seja, o sistema exerce a coordenação; ou semi-automática, o sistema possui algumas
funções e um coordenador outras.
Observa-se que na maioria dos ambientes de aprendizagem cooperativos, o professor ou
Facilitador exerce o papel de Coordenador geral do projeto, mesmo ele não tenha este papel
atribuído de forma explícita. Informalmente, cabe a ele as responsabilidades de manter o
grupo no processo de cooperação e gerenciar as negociações e Resolução Conflitos e Tomada
Decisões. Percebe-se claramente isto em ambientes como Zebu (Tiessen e Ward, 1999) e
WebGuide (Stahl, 1999).
Os sistemas cooperativos oferecem diversos mecanismos para atribuição de direitos de acesso
a objetos compartilhados e associação de privilégios aos participantes. Estas ações estão
diretamente relacionadas aos procedimentos e responsabilidades estipulados no Fluxo
Atividades.

Barros (1995) afirma que um mecanismo de suporte importante neste sentido é o de
notificação de eventos. Por exemplo, o sistema avisa aos participantes sobre entrada/saída de
um indivíduo no ambiente cooperativo ou pedidos de acesso aos objetos, facilitando o
trabalho de coordenação.

Solução:
O ambiente deverá garantir que todos os participantes compartilhem conhecimento e se
envolvam no processo cooperativo. Para apoiar o trabalho de coordenação realizado pelo
Facilitador, disponibilize Guias aos participantes das interações no ambiente cooperativo.
Os guias são mecanismos de ajuda que devem observar diretamente a atuação dos indivíduos
e do grupo no contexto do trabalho que está sendo realizado, relacionando os objetivos
educacionais aos conceitos manipulados, de forma a prover ajuda sobre os passos a serem
tomados. Os guias podem analisar as interações realizadas, interpretando as mensagens
trocadas de acordo com o nível de profundidade da Representação Conhecimento. Esta poderá
permitir análise desde a estrutura das mensagens, até seu conteúdo.
Desta forma, os guias deverão atuar com as seguintes responsabilidades:
• Análise: identificação e validação do conhecimento que cada estudante ou grupo de

estudantes está apresentando (conteúdo); análise do caminho que está sendo percorrido
pelo grupo para busca da solução do problema (estrutura das interações);

• Retorno ou notificação: apresentação de realimentação individual e ao grupo; sugestão das
próximas ações.

Estes guias são geralmente implementados nos ambientes como tutores inteligentes ou
agentes.

Em relação à padronização de procedimentos, o ambiente deverá apresentar mecanismos de
coordenação comuns aos ambientes CSCW: controle de acesso a recursos compartilhados e
controle de tarefas.
O controle de acesso se refere à organização do acesso a recursos compartilhados pelos
usuários, para resolver conflitos de concorrência.
Pode ser feito segundo várias abordagens diferentes (Dias, 1998): bloqueio simples;
mecanismos de transações; protocolos para controle de piso; controle centralizado; detecção
de dependência; execução reversível; transformações de operações e mecanismos de check in
e check out.
O ambiente deve prover suporte para o controle de tarefas, através da disposição de
mecanismos para:
• especificação de como a interação se realizará;
• definição de regras de conduta, procedimentos e limites;
• definição de papéis e responsabilidades;
• acompanhamento da execução das tarefas.

Usos conhecidos:
No ambiente Belvedere (Suthers e Weiner, 1995), um conselheiro ou guia inteligente ajuda os
estudantes a focalizarem em aspectos particulares das questões estudadas, sugerindo formas
nas quais um diagrama de argumentação pode ser estendido ou melhorado, destacando objetos
que possivelmente precisam de atenção, e oferecendo dicas baseadas em princípios tais como
consistência, suporte empírico, maximização da cobertura de uma teoria e consideração a
teorias.

No ambiente ARCOO, uma sala de estudos metafórica possui entre outros recursos
“auxiliares invisíveis”, que ajudam os estudantes a desenvolverem seus projetos (Barros e
Borges, 1995).
No Algebra Jam (Singley et al., 1999), um tutor inteligente modela uma equipe e as interações
entre os seus membros. Isto é feito através da observação de alguns eventos produzidos por
papéis pré-definidos. A observação da ocorrência destes eventos atualiza as crenças do tutor
sobre a proficiência dos estudantes no domínio estudado, e sobre seus progressos em
habilidades cooperativas.

21. Nome: Resolução Conflitos e Tomada Decisões

Contexto:
Durante as sessões de aprendizagem cooperativa, podem surgir conflitos entre os membros do
grupo, acarretando problemas na execução das tarefas. Portanto, é necessário que o ambiente
de aprendizagem ofereça formas de apoiar a resolução de conflitos.

Problema:
O que representa e como pode ser apoiado o processo de negociação para a resolução de
conflitos e tomada de decisões em ambientes de aprendizagem cooperativa baseada em
projetos?

Forças:
Segundo a teoria socio-construtivista, o conflito entre aprendizes é uma extensão do conceito
piagetiano de conflito entre as crenças do aprendiz e e suas ações no mundo. Quando ocorre
um conflito entre pares, fatores sociais previnem os aprendizes de ignorar o conflito e os força
a encontrar uma solução. Para Dillenbourg e Schneider (1995), mais do que isso, uma simples
desavença ou mal-entendimento pode ter o mesmo efeito que conflitos explícitos, e interações
verbais desencadeadas para resolver um conflito estão diretamente relacionadas a resultados
de aprendizagem.
No contexto de ambientes de aprendizagem cooperativa, a negociação é um mecanismo
auxiliar relacionado à Coordenação, que leva os Aprendizes à tomada de decisões sobre o
planejamento e a execução das tarefas, que por sua vez levarão à elaboração da solução dos
problemas propostos, promovendo a aprendizagem. Negociar significa argumentar e decidir.
Neste tipo de interação, as pessoas possuem opiniões e desejam que os outros as aceitem. Este
processo envolve vários mecanismos cognitivos e afetivos, tais como, lógica, inferência,
dedução, crença, dúvida, sutileza e envolvimento emocional com o assunto e com os
participantes (Barros, 1995).
O processo de tomada de decisão envolve a definição e análise das diferentes alternativas de
ação propostas pelos membros do grupo, a identificação de um conjunto de alternativas
promissoras para a execução da tarefa cooperativa, a seleção e implementação de uma
alternativa e verificação do comportamento da alternativa selecionada na execução da tarefa.
Este processo é importante tanto para o desenvolvimento cognitivo dos alunos quanto para o
aprimoramento das habilidades sociais.
A cooperação requer um espaço de compartilhamento de idéias e de negociação de cursos de
ação. Os conflitos são uma parte inerente do processo de cooperação. Se bem empregados,
eles podem aumentar a produtividade do grupo e a aprendizagem. No entanto, os conflitos
podem refletir desavenças pessoais e enfraquecer a coesão do grupo. Além disso, armazenar
informações sobre o processo de negociação é mais um fator importante para a Memória do
grupo.

Solução:
Disponibilize um espaço de negociação síncrono ou assíncrono, onde os participantes possam
interagir através de um modelo de argumentação.
Stahl (1999) afirma que colaboração requer divergência (surgimento de idéias) e convergência
(negociação, síntese e consenso). Por isso, em um modelo de argumentação voltado para a
colaboração deve ser flexível para permitir que uma contribuição ou nota possa ser
relacionada a mais de uma outra na hierarquia da estrutura.
No espaço de negociação permita a definição de um agente humano ou computacional com a
função de mediador de conflitos. Este agente pode ser responsável pela categorização dos
tópicos da discussão, caso o grupo não seja experiente para fazer isso.

Usos conhecidos:
Os Sistemas de Suporte à Decisão em Grupo utilizando modelos estruturados foram umas das
primeiras aplicações no domínio de trabalho cooperativo (Barros, 1995).
O ambiente ARCOO (Barros & Borges, 1995) oferece o sub-sistema de Socialização, que visa
gerenciar os encontros entre os aprendizes através de Reuniões, Conferências e Conversas,
dando suporte, através de ferramentas que utilizam modelos estruturados de argumentação,
para a negociação e superação dos conflitos.
Tedesco & Self (2000) desenvolveram um mediador artificial - MArCo, que detecta os
conflitos meta-cognitivos e sugere cursos de ação. O mediador opera a partir de um modelo
de conflitos, baseado em uma rede de crenças sobre o comportamento dos pares cooperantes.
O framework Habanero oferece The Voting Tool, uma ferramenta de votação que visa ajudar
os membros do grupo a tomarem decisões e a superarem conflitos.
No ambiente WebGuide (Stahl, 1999), existe a previsão de implementação de um componente
de negociação assíncrona para permitir aos estudantes submeterem suas perpectivas pessoais
sobre um determinado tópico em discussão para esta seja votada. Uma vez tendo recebido um
número suficiente de votos, esta proposta passa a ser incorporada, passando a representar um
conhecimento aceito pelo grupo.
O ambiente PENCACOLAS (González et al., 1997) foi desenvolvido para apoiar a
aprendizagem da produção de documentos de forma colaborativa, dando suporte a todas as
fases que acontecem durante este processo, entre elas a geração de idéias (brainstorming).
Nesta etapa, os participantes têm suporte à colocação de suas idéias para posteriormente
optarem por aqueles que serão incorporadas ao produto final do grupo.

Agradecimentos

Os autores agradecem especialmente ao professor Gustavo Rossi por sua contribuição como
guia imprescindível à realização deste trabalho com sugestões e comentários enriquecedores.

Referências Bibliográficas

Araujo, R.M. (2000) Ampliando a Cultura de Processos de Software – Um Enfoque Baseado em Groupware e

Workflow. Tese de Doutorado. COPPE/UFRJ Programa de Sistemas e Computação.
Aronson, E. (1978). “The Jigsaw Classroom”. Bervely Hills, CA: Sage.
Barros, L.A.; Borges, M.R.S. (1995) ARCOO - Sistema de Apoio à Aprendizagem Cooperativa Distribuída”,

Anais do VI Simpósio Brasileiro de Informática e Educação.
Becker, K.; Zanella, A.N. (1998). A Cooperation Model for Teaching/Learning Modeling Disciplines. Anais do

International Workshop on Groupware - CRIWG’98, Rio de Janeiro, Brasil.
Conklin, J. E. (1996) Capturing Organizational Memory. Group Decision Support Systems, Inc.

http://www.gdss.com

Dias, M.S. (1998) “COPSE - Um Ambientes de Suporte ao Projeto Cooperativo de Software”. Tese de
Mestrado. COPPE/Sistemas, UFRJ.

Dillenbourg, P., Schneider, D. (1995). Collaborative Learning and the Internet. ICCAI´95.
Enyedy, N., Vahey, P. e Gifford, B.R. (1997). Active and Supportive Computer-Mediated Resources for

Student-to-Student Conversations. Anais da Conferência Computer Support for Collaborative Learning’97.
Toronto, Canadá.

Farnham, S., Chesley, H.R., McGhee, D.E., Kawal, R. (2000). Structured Online Interactions: Improving the
Decision-Making of Small Discussion Groups. Anais da Conferência Computer-Supported Cooperative
Work´00. Philadelphia, USA.

Ferraris, C., Martel, C. (2000) ‘Regulation in Groupware: The Example of a Collaborative Drawing Tool for
Young Children’ IEEE Press: Anais do International Workshop on Groupware – CRIWG´00. Madeira,
Portugal.

Gerber, L.D. e Becker, K., 2000, “Contributions of Pattern Languages to Framework-Based Development in
Layered Architectures”. In: Proceedings of the XXVI Conferencia Latino Americana de Informática -
CLEI2000, Mexico.

González, O.M., Verdú, M.J., Dimitriadis, Y.A., Osuna, C.A., Iglesias, C.A., López, J. (1997) PENCACOLAS:
Groupware for Learning. Anais do 3rd.International Workshop on Groupware, Espanha.

Gutwin, C., Stark, G., Greenberg, S. (1995). Support for Workspace Awareness in Educational Groupware.
Anais da Conferência Computer Supported Collaborative Learning, USA.

Guzdial, M., Rick, J., Kerimbaev, B. (2000). Recognizing and Supporting Roles in CSCW. Anais da
Conferência Computer-Supported Cooperative Work´00. Philadelphia, USA.

Habanero - http://www.ncsa.uiuc.edu/SDG/Software/Habanero/Tools.
Johnson, D.W., Johnson, R.T. & Holubec, E.J. (1990). “Circles of Learning”. (3rd. edition). Edina, MN:

Interaction Book Company.
Johnson-Lenz, P e Johnson-Lenz, T. (1991). Post-mechanistic Groupware Primitives: Rhythms, Boundaries and

Containers. Intelligent Journal of Man-Machine Studies 34.
Kaye A. (1991). Learning Together Apart. In: Collaborative Learning through Computer Conferencing. (Ed.) A.

Kaye, Berlin: Springer-Verlag.
Kynigos, C. (1999) Perspectives in Analysing Classroom Interaction Data on Collaborative Computer-Based

Mathematical Projects. Anais da Conferência Computer Supported Collaborative Learning. Stanford, USA.
Leite, Aury de Sá e Omar, Nizam (1999). Representação de Conhecimento Pedagógico e Didático em Sistemas

Educativos Inteligentes. Anais do X Simpósio Brasileiro de Informática e Educação, Curitiba.
Maher, M.L. (1999). Designing Virtual Campus as a Virtual World. Anais da Conferência Computer Supported

Collaborative Learning. Stanford, USA.
Marshak, Ronni T. (1995). “Groupware: Technology and Applications”, Capítulo 3: Workflow: Applying

Automation to Group Processes. David Coleman & Raman Khanna (editors), Prentice Hall, NJ, USA.
Miao, Y., Haake, J.M., Steinmetz, R. (2000) ‘ A Rule-based Method to Shift between Learning Protocols’ Anais

do Educational Mutimedia, Hypermedia and Telecommunications Conference.
Mühlenbrock, M., Hoppe, U. (1999). Computer Supported Interaction Analysis of Group Problem Solving.

Anais da Conferência Computer Supported Collaborative Learning. Stanford, USA.
O’Neill, K., Gomez, L.M. (1994) “The Collaboratory Notebook: a Networked Knowledge-Building

Environment for Project Learning”. Anais da Conferência Educational Mulimedia and Telecommunications-
ED-Media’94.

Oshima, J. (1997) “Students´ Construction of Scientific Explanations in a Collaborative Hyper-Media Learning
Environment”. Anais da Conferência Computer Supported on Collaborative Learning. Toronto, Canadá.

Roussos, M., Johnson, A.E., Leigh, J., Barnes, C.R., Vasilakis, C.A., Moher, T.G. (1997) “The NICE Project:
Narrative, Immersive, Constructionist/Collaborative Environments for Learning in Virtual Reality”. Anais da
Conferência Educational Mulimedia and Telecommunications- ED-Media.

Santoro, F.M., Borges, M.R.S., Santos, N., 2000b, ”An Infrastructure to Support the Development of
Collaborative Project-Based Learning Enviroments”. In: IEEE Press Proceedings of International Workshop
on Groupware – CRIWG´00, Madeira, Portugal, pp. 78-85.

Singley, M. K., Singh, M., Fairweather, P., Farrell, R., Swerling, S. (2000). Algebra Jam: Supporting Teamwork
and Managing Roles in a Collaborative Learning Environment. Anais da Conferência Computer-Supported
Cooperative Work´00. Philadelphia, USA.

Singley, M.K., Fairweather, P.G., Swerling, S. (1999). Team Tutoring Systems: Reifying Roles in Problem
Solving. Anais da Conferência Computer Support for Collaborative Learning´99. Stanford, EUA.

Slavin, R.E. (1990). “Cooperative Learning: Theory, Research and Practice”. Englewood Cliffs, NJ: Prentice-
Hall.

Smith, R.B., Hixon, R., Horan, B. (1998). Supporting Flexible Roles in a Shared Space. Anais da Conferência
Computer-Supported Cooperative Work´98. Seattle, USA.

Stahl, G. (1999). Reflections on WebGuide: Seven Issues for the Next Generation of Collaborative Knowledge-
Building Environments. Anais da Conferência Computer Support for Collaborative Learning´99. Stanford,
EUA.

Suthers, D., Weiner, A. (1995). Groupware for Developing Critical Discussion. Anais do Computer Supported
for Collaborative Learning’95, EUA.

Tarouco, Liane Margarida R. e Hack, Luciano Emílio. A Avaliação na Educação à Distância: o Modelo de
Kirkpatrick. Anais do X Simpósio Brasileiro de Informática e Educação, Curitiba.

Tedesco, P.A. and Self J.A, MArCO: using conflict mediation strategies to support group planning interactions,
Technical Report 00/4, Computer Based Learning Unit, University of Leeds, 2000.

Tiessen, E.L., Ward, D.R. (1999). Developing a Technology of Use for Collaborative Project-Based Learning.
Anais da Conferência Computer Support for Collaborative Learning´99. Stanford, EUA.

Tyler Ralph Winfred, 1902- Princípios Básicos de Currículo e Ensino; tradução de Leonel Vallandro, Porto
Alegre, Globo, 1974.

Wan, D., Johnson, P.M. (1994). Computer Supported Collaborative Learning Using CLARE: the Approach and
Experimental Findings. Anais da 1994 ACM Conference on Computer Supported Cooperative Work,Chapel
Hill, North Carolina.

Van der Veen, J., Jones, V., Collis, B. (1998) “Workflow applied to Projects in Higher Education”.
COOPIS´98.

WEB HANDLERS

Gibeon Aquino�e Paulo Borbay

Centro de Estudos e Sistemas Avan�cados do Recife (CESAR)
Centro de Inform�atica, Universidade Federal de Pernambuco

Abstract

With the widespread use of the Internet, more and more web-based information

systems are being developed. Nowadays, many of these are developed in Java be-

cause of the several quality and productvity factors o�ered by the language and,

mainly, for the amount of developed solutions using it. Java web technologies are

very powerful, but are very new too. For this reason, there isn't a good number of

design patterns or idioms for Java web-based systems [1]. In order to contribute to

solve this problem, here we describe the Web Handlers pattern, which provides a

way to structure and organize web-based systems to prevent replication of code.

Contexto

Em sistemas Web baseados no modelo de pedido-resposta �e comum existirem diferentes
requisi�c~oes (pedidos) gerando dinamicamente a mesma p�agina HTML como resposta. Esta
situa�c~ao pode ser percebida em um exemplo bem simpli�cado de sistema banc�ario que
possui apenas as opera�c~oes de cr�edito e d�ebito em conta corrente, al�em de uma opera�c~ao
de login no sistema. O funcionamento deste �e especi�cado atrav�es do mapa navegacional
da Figura 1, que usa a nota�c~ao de Diagrama de Estados de UML [8], onde as opera�c~oes
s~ao desenhadas como eventos e as p�aginas HTML (dinâmicas ou est�aticas) como estados.

De fato, analisando a �gura percebe-se que as opera�c~oes Debito, Credito e Login,
apesar de serem opera�c~oes distintas, geram como resposta de sua execu�c~ao a mesma p�agina
(Menu de Movimenta�c~oes). Este fato, apesar de exempli�cado com um menu principal,
ocorre em diversas outras situa�c~oes.

Outra situa�c~ao comum em sistemas desta natureza �e termos uma mesma requisi�c~ao
gerando diferentes respostas, dependendo da origem da requisi�c~ao ou do resultado do
de seu processamento. Para exempli�car esta situa�c~ao, considere que o cliente, al�em
de realizar movimenta�c~oes em conta (d�ebito e cr�edito), pode fazer atualiza�c~oes em seu
cadastro. A Figura 2 exempli�ca bem a situa�c~ao em que a mesma opera�c~ao, Login, �e
executada a partir de contextos diferentes (P�agina de Login 1 e P�agina de Login 2)
e deve gerar uma sa��da espec���ca (Menu de Atualiza�c~ao e Menu de Movimenta�c~oes)
dependendo da origem da requisi�c~ao. Estas duas p�aginas de login possuem o conte�udo
bem diferente pois elas est~ao em contextos distintos e n~ao possuem rela�c~ao direta.

�Email: gibeon@cesar.org.br
yParcialmente �nanciado pelo CNPq, processo 521994/96{9. Email: phmb@cin.ufpe.br

Figura 1: Mapa navegacional simples do sistema banc�ario

Figura 2: Mapa navegacional completo do sistema banc�ario

As situa�c~oes ilustradas pelas Figuras 1 e 2 s~ao bastante comuns em sistemas Web

n~ao triviais. Estas geralmente trazem problemas de implementa�c~ao, como duplica�c~ao
e complexidade do c�odigo, quando n~ao �e aplicada uma estrutura�c~ao de componentes
Web adequada ao problema. Em situa�c~oes onde a mesma p�agina pode ser gerada como
resultado da execu�c~ao de diferentes requisi�c~oes (Ilustrado pela Figura 1) �e comum ocorrer
duplica�c~ao de c�odido relativo �a montagem desta p�agina em cada um dos componentes que
tratam as requisi�c~oes. J�a em situa�c~oes onde uma mesma opera�c~ao pode gerar diferentes
p�aginas como resultado de seu processamento (Ilustrado pela Figura 2) �e comum haver
um aumento na complexidade de implementa�c~ao do componente que executa a requisi�c~ao,
j�a que este precisa decidir que resposta apresentar, al�em de possuir o c�odigo relativo a
montagem de cada uma das p�aginas de resposta gerada por ele.

Problema

Evitar a duplica�c~ao de c�odigo e complexidade na estrutura�c~ao de sistemas Web com
relacionamento M:N entre a apresenta�c~ao e o processamento.

For�cas

Positivas

� A estrutura�c~ao orientada a p�agina evita a duplica�c~ao do c�odigo referente �a montagem
da apresenta�c~ao.

� A estrutura�c~ao orientada a opera�c~ao evita a duplica�c~ao do c�odigo de processamento
da requisi�c~ao.

Negativas

� A estrutura�c~ao orientada a p�agina n~ao pode ser aplicada para impedir a repeti�c~ao
do c�odigo de processamento da requisi�c~ao. Al�em do mais, esta alternativa pode
fazer com que o seu componente Web �que mais complexo quando a quantidade de
opera�c~oes que geram a mesma p�agina de sa��da aumenta.

� A estrutura�c~ao orientada a opera�c~ao n~ao �e capaz de impedir que a l�ogica de mon-
tagem das p�aginas se repita. Esta tamb�em apresenta o problema de poder �car
complexo quando aumenta o n�umero de p�aginas de sa��da poss��veis para a mesma
opera�c~ao.

Solu�c~ao

A solu�c~ao �e baseada na constru�c~ao de entidades denominadas handlers. Existem dois tipos
destes: Handlers de Apresenta�c~ao e Handlers de Processamento. Os primeiros contêm
apenas c�odigo relativo �a montagem das p�aginas dinâmicas e os outros possuem c�odigo (ou
chamadas) relativo �a execu�c~ao da l�ogica de neg�ocio. Com esta estrutura�c~ao �e necess�ario
criar um handler de processamento para cada opera�c~ao do sistema e um de apresenta�c~ao
para cada p�agina dinâmica.

Cada requisi�c~ao Web dispara uma execu�c~ao do lado do servidor que dinamicamente
associa um par de handlers (um de apresenta�c~ao e um de processamento) para responder
ao cliente. Esta composi�c~ao dinâmica �e determinada por um parâmetro da requisi�c~ao
do cliente. A entidade respons�avel pela montagem deste par e delega�c~ao da requisi�c~ao
primeiro para o handler de processamento, depois para o de apresenta�c~ao �e o Contro-
lador de Handlers, que �e especi�cado com mais detalhes nas Se�c~oes Estrutura e Imple-
menta�c~ao.

Os handlers de processamento, al�em de conterem chamadas �as opera�c~oes do sistema,
possuem c�odigo respons�avel pela valida�c~ao dos dados vindos do cliente Web, e c�odigo
respons�avel pela prepara�c~ao dos dados para seu par de apresenta�c~ao.

Os handlers de apresenta�c~ao tamb�em possuem valida�c~ao de dados, al�em de c�odigo
de montagem das p�aginas dinâmicas. Esta valida�c~ao �e necess�aria porque estes precisam

validar os dados gerados pelo seu pares, j�a que eles s~ao entidades independentes e podem
ser compostos de diferentes formas.

Exemplo da solu�c~ao

Para o sistema banc�ario, as seguintes entidades deveriam ser criadas com a utiliza�c~ao do
padr~ao:

� Handlers de Apresenta�c~ao:

{ HA MenuAtualizacao, respons�avel por montar dinamicamente o Menu de Atua

liza�c~ao;

{ HA MenuMovimentacoes, respons�avel por montar dinamicamente o Menu de

Movimenta�c~oes.

� Handlers de Processamento:

{ HP Login, respons�avel por executar a opera�c~ao Login;

{ HP Credito, respons�avel por executar a opera�c~ao Cr�edito;

{ HP Debito, respons�avel por executar a opera�c~ao D�ebito.

Estes handlers podem ser compostos de diferentes formas para responder aos diferentes
tipos de requisi�c~oes. A Figura 3 exempli�ca algumas composi�c~oes poss��veis para o sistema
banc�ario com a utiliza�c~ao desse tipo de estrutura�c~ao. De fato, o uso de handlers �e capaz de
resolver os problemas de duplica�c~ao e complexidade de c�odigo em casos de relacionamentos
M:N entre a apresenta�c~ao e o processamento, podendo assim ser aplicado na maioria das
situa�c~oes comuns a sistemas Web. Na Figura 3 �e poss��vel ver como os handlers podem
ser reusados em diferentes requisi�c~oes, evitando assim a repeti�c~ao de c�odigo.

Aplicabilidade

Use o padr~ao principalmente em sistemas onde aparecem relacionamentos M:N entre as
partes de processamento e apresenta�c~ao.

Desenvolver o sistema j�a usando do padr~ao mesmo quando n~ao ocorrem estas situa�c~oes
�e uma boa pr�atica, pois desta forma o desenvolvedor j�a torna o sistema imune �a problemas
de repeti�c~ao de c�odigo antes mesmo de identi�c�a-los.

Uma forma simples de identi�car se o seu sistema necessita do uso deste padr~ao �e desen-
hando o mapa navegacional do sistema e veri�cando a existência de ciclos. O aparecimento
de ciclos indica que o seu sistema pode apresentar relacionamento 1:N da apresenta�c~ao
para o processamento (como na Figura 1). Para identi�car a ocorrência de relacionamen-
tos 1:N do processamento para a apresenta�c~ao �e s�o veri�car, no mapa navegacional, se a
mesma opera�c~ao aparece em duas transi�c~oes diferentes (como na Figura 2).

Estrutura

A estrutura do padr~ao Web Handlers �e especi�cada atrav�es do diagrama de classes de
UML da Figura 4.

Figura 3: Composi�c~oes poss��veis de handlers de apresenta�c~ao e processamento.

Participantes

� ControladorHandlers - Respons�avel pelo recebimento das requisi�c~oes e controle da
execu�c~ao dos handlers respons�aveis pela mesma;

� HandlerApresentacao - Respons�avel pela montagem de uma ou mais p�aginas semel-
hantes;

� HandlerProcessamento - Respons�avel pela invoca�c~ao dos servi�cos, e tamb�em pela
gera�c~ao de dados para os handlers de apresenta�c~ao a serem executados em conjunto
com ele;

Os handlers possuem algumas opera�c~oes padr~oes que devem ser de�nidas pelo progra-
mador para que eles se comportem da maneira esperada, estas s~ao:

� iniciar - Inicia o handler e �e invocado pelo ambiente;

� finalizar - Finaliza o handler e �e invocado pelo ambiente;

� apresentar - Cont�em a l�ogica referente �a montagem das p�aginas dinâmicas;

Figura 4: Diagrama de classes do padr~ao Web Handlers

� processar - Cont�em a l�ogica referente �a chamada dos servi�cos;

� validarDados - Cont�em regras de valida�c~ao dos dados de entrada.

Os handlers possuem ciclo de vida semelhante aos dos servlets [14]. Assim s~ao ofere-
cidos os m�etodos iniciar e finalizar, para que o programador possa de�nir opera�c~oes
que s~ao executadas na sua inicializa�c~ao e �naliza�c~ao, respectivamente. Todo handler

pode implementar o m�etodo validarDados, que �e executado antes do processar ou do
apresentar. Para os handlers de processamento ele pode ser usado para implementar
regras de valida�c~ao dos dados da requisi�c~ao Web, enquanto que nos de apresenta�c~ao ele
cont�em a valida�c~ao dos dados gerados pelo processamento.

Dinâmica

� Toda requisi�c~ao Web �e recebida pelo controlador, que interpreta seus parâmetros,
recupera o processamento e apresentacao necess�arios para executar a requisi�c~ao
e dinamicamente faz a composi�c~ao dos dois, delegando a requisi�c~ao para o par.

� O processamento �e o primeiro a ser executado atrav�es da chamada ao seu m�etodo
processar. Nele v~ao estar a chamadas aos servi�cos do sistemas, implementados por
objetos que encapsulam toda a regra de neg�ocio da aplica�c~ao (EJBs [13], Facade [5]
etc). Ele tamb�em �e respons�avel por produzir os dados de entrada do handler de
apresenta�c~ao que ser�a associado a ele.

� O handler apresentacao �e executado ap�os o t�ermino com sucesso do processamento
atrav�es de uma chamada a seu m�etodo apresentar. Nele n~ao deve haver l�ogica de

Figura 5: Diagrama de seq�uência dos componentes do padr~ao Web Handlers

processamento da requisi�c~ao, apenas c�odigo referente �a montagem da p�agina. Este
handler consulta os dados gerados pelo seu par processamento e constr�oi a p�agina
de resposta baseada nestes.

� O Container de Handlers �e uma entidade que est�a neste contexto apenas para que
se tenha um entendimento melhor do processo de acesso e recupera�c~ao dos handlers.
Ele nada mais �e do que o ambiente onde os handlers s~ao executados, em aplica�c~oes
Web, por exemplo, um servidor Web ou mais especi�camente um Container Web.

Conseq�uências

� Grande
exibilidade na composi�c~ao das partes de apresenta�c~ao e processamento { Os
handlers de apresenta�c~ao e processamento s~ao independentes um dos outros e podem
ser integrados de forma diferente para responder a diferentes tipos de requisi�c~oes,
desde que eles sejam compat��veis em rela�c~ao aos dados produzidos e consumidos.

� Maior reuso de c�odigo - O padr~ao evita a repeti�c~ao desnecess�aria de c�odigo, pois
permite o compartilhamento de entidades para responder a diferentes requisi�c~oes.

� Mudan�cas nos mecanismos de montagem da apresenta�c~ao (JSP [7], FreeMarker [17],
WebMacro [11] ou Velocity [15]) n~ao causam efeito algum nas entidades de proces-
samento.

� Facilita a implementa�c~ao de sistemas que requerem diferentes formatos de sa��da
(XML [3], HTML, WML [4], XHTML [4], etc.) para a mesma opera�c~ao { Com
o uso do Web Handlers o desenvolvedor pode criar handlers de processamento
que ser~ao compostos com diferentes handlers de apresenta�c~ao, onde estes �ultimos
possuem implementa�c~oes para cada formato de sa��da poss��vel.

� Facilita a implementa�c~ao de componentes (handlers de apresenta�c~ao e processa-
mento) que podem ser reusados em outros sistemas { Com o uso do padr~ao �e mais

f�acil manter uma biblioteca de handlers onde o desenvolvedor pode consultar servi�cos
j�a implementados e compô-los a �m de obter a implementa�c~ao de um servi�co dese-
jado.

� O padr~ao ajuda a evitar repeti�c~ao de c�odigo, no entanto ele possui a desvantagem de
aumentar o n�umero de classes necess�arias para implementar um sistema. Por isso �e
preciso ter um certo cuidado em n~ao tornar o sistema modular demais, pois quanto
mais modular ele for, maior ser�a o n�umero de classes que precisam ser criadas;

� A divis~ao da responsabilidade pelo tratamento da requisi�c~ao acrescenta uma com-
plexidade �a implementa�c~ao dos componentes, pois �e necess�ario a passagem de parâ-
metros do handler de processamento para o de apresenta�c~ao a cada requisi�c~ao, j�a
que eles s~ao entidades distintas.

Implementa�c~ao

Todos os handlers possuem um comportamento bem similar e interfaces bem de�nidas,
por isso �e interessante que existam classes e interfaces que dêem apoio ao funcionamento
do padr~ao, provendo comportamento gen�erico e especi�cando a interface das opera�c~oes
dos handlers. Uma estrutura�c~ao interessante deste padr~ao pode ser vista na Figura 6.

Figura 6: Diagrama de classes re�nado dos componentes do Web Handlers

� IHandler { Interface gen�erica que especi�ca as funcionalidades que todo handler

deve oferecer.

� IHandlerProcessamento { Interface que de�ne todas as opera�c~oes que devem existir
em um handler de processamento.

� IHandlerApresentacao { Interface que de�ne todas as opera�c~oes que devem ser
oferecidas por um handler de apresenta�c~ao.

� HandlerProcessamento { Classe abstrata que implementa os m�etodos de�nidos na
interface IHandlerProcessamento. Ela provê uma implementa�c~ao padr~ao para os
handlers de processamento. Toda entidade de processamento deve estender esta
classe para possuir o comportamento de um handler de processamento.

� HandlerApresentacao { Classe abstrata que implementa as funcionalidades de�ni-
das na interface IHandlerApresentacao. Toda entidade de apresenta�c~ao deve es-
tender esta classe para possuir o comportamento de um handler de apresenta�c~ao.

Os tipos ServletRequest, ServletResponse e ServletContext s~ao classes padr~oes
da API de servlets [14]. A primeira �e o meio pelo qual os parâmetros da requisi�c~ao s~ao
passados. O segundo �e usado para enviar resposta para o cliente Web. O �ultimo �e uma
referência para o Servlet Container, atrav�es do qual pode-se recuperar parâmetros de
con�gura�c~ao do ambiente, comunicar-se com outras entidades que estejam executando
no mesmo contexto, etc. Os componentes aqui apresentados s~ao espec���cos para uma
implementa�c~ao baseada em servlets, no entanto o padr~ao �e gen�erico o bastante para que
possa ser implementado em outras tecnologias.

Para tornar o ambiente de handlers ainda mais poderoso �e interessante que existam
algumas funcionalidades providas pelo contexto onde eles est~ao sendo executados:

� Instancia�c~ao autom�atica dos handlers - O ambiente �e respons�avel por localizar
e carregar os handlers necess�arios para a execu�c~ao da requisi�c~ao;

� Reload autom�atico de handlers - As modi�ca�c~oes feitas em handlers j�a carrega-
dos ser~ao enxergadas pelo contexto automaticamente;

� Ciclo de vida bem de�nido e gerenciado pelo ambiente - Os handlers, assim
como os servlets, possuem um ciclo de vida bem de�nido e que �e controlado pelo
ambiente no qual eles est~ao executando.

Todas estas caracter��sticas precisam ser implementadas no ambiente dos handlers, mas
como o ambiente de servlets (Servlet Container) j�a provê todos estes servi�cos, �e uma
boa id�eia us�a-los para os handlers. Uma forma de usar estes recursos de forma efetiva �e
fazendo com que os handlers sejam executados dentro do Servlet Container. Para isso eles
precisam ter a interface de um servlet e se comportar como tal. Uma pequena modi�ca�c~ao
na estrutura apresentada anteriormente pode ser feita de forma a atender estes requisitos
e preservar a semântica dos handlers apresentada at�e o momento. A Figura 7 d�a uma
id�eia da altera�c~ao necess�aria no modelo.

As implementa�c~oes gen�erica HandlerApresentacao e HandlerProcessamento contin-
uam implementando as mesmas interfaces, mas agora estendem a classe HttpServlet

(pertencente a API de servlets) para herdarem o comportamento de servlet e poderem
ser gerenciados pelo Web Container. Outro detalhe �e que estas implementa�c~oes gen�ericas
declaram todos os m�etodos herdados da classe HttpServlet como \�nal", desta forma

Figura 7: Estrutura do padr~ao no ambiente de servlets

evitam que suas subclasses rede�nam estes m�etodos. En�m, para as classes que o progra-
mador precisa implementar, esta mudan�ca na heran�ca de HttpServlet n~ao causa nenhum
efeito direto.

Na Figura 8 pode-se ver o diagrama de classes do padr~ao completo. Foram acrescen-
tadas as classes de exce�c~ao ApresentacaoException e ProcessamentoException, ambas
herdando de ServletException, e cada uma destas podem ser lan�cadas pelos m�etodos
dos handlers de Apresenta�c~ao e Processamento, respectivamente.

A classe ControladorHandlers �e um servlet que faz o papel do Controlador de Han-
dlers mostrado na Se�c~ao Estrutura. Este �e implementado como um servlet porque precisa
receber todas as requisi�c~oesWeb, e s�o depois de interpret�a-las, repass�a-las para os handlers
respons�aveis pelo sua execu�c~ao.

Uma varia�c~ao da implementa�c~ao para resolver o problema do aumento do n�umero de
classes do sistema �e permitir que o desenvolvedor possa agrupar opera�c~oes relacionadas ou
semelhantes em um �unico handler. Com isso seria necess�ario implementar um mecanismo
de execu�c~ao de handlersmais elaborado, onde al�em de informa�c~oes a respeito dos handlers
a serem executados numa determinada requisi�c~ao, deveria haver parâmetros indicando
que opera�c~ao executar em cada um deles. Este mecanismo pode ser implementado com a
utiliza�c~ao da API Re
ection [12] de Java.

C�odigo de exemplo

Para exempli�car o uso do padr~ao s~ao mostradas as implementa�c~oes de duas classes
do sistema banc�ario, um handler de apresenta�c~ao e outro de processamento. A Figura
8, mostrada anteriormente, d�a uma id�eia geral da estrutura destas classes e como elas
s~ao compostas para atender as requisi�c~oes do sistema. No trecho abaixo �e mostrada a
implementa�c~ao concreta destas classes em Java.

A classe HP Login �e um handler de processamento que executa a opera�c~ao de login no
sistema. Como pode ser visto na linha 1, este estende a classe HandlerProcessamento,
herdando assim o comportamento de handler de processamento. Na linha 3 �e declarada
uma vari�avel do tipo Sistema, que agrupa todos os servi�cos do sistema e �e uma imple-
menta�c~ao dos padr~oes Facade e Singleton. Na inicializa�c~ao deste handler (chamada ao

Figura 8: Estrutura do padr~ao re�nada e no ambiente de servlets.

m�etodo iniciar) �e recuperada uma instância do sistema para que seja usado durante o
processamento (linha 7).

1: public class HP_Login extends HandlerProcessamento {

2:

3: private Sistema sistema;

4:

5: public void iniciar(ServletConfig config)

6: throws ProcessamentoException{

7: sistema = Sistema.getInstancia();

8: }

O m�etodo validarDados veri�ca se os parâmetros da requisi�c~ao necess�arios para ex-
ecu�c~ao est~ao presentes (linhas 13 e 14), caso n~ao estejam �e lan�cada uma exce�c~ao indicando
que o processamento deve ser interrompido.

9: public void validarDados(HttpServletRequest request,

10: HttpServletResponse response)

11: throws ProcessamentoException{

12:

13: if(request.getParameter("login") == null ||

14: request.getParameter("senha") == null){

15: throw new ProcessamentoException(

"Parâmetros imcompat��veis",null);

16: }

17: }

As linhas 24 e 25 s~ao usadas para recuperar o valor do login e senha, passados como
parâmetro da requisi�c~ao. Estas s~ao usadas para fazer a valida�c~ao do usu�ario no sistema
atrav�es de uma chamada ao m�etodo validarUsuario do objeto Facade (linha 27). Se o
login ocorrer com sucesso, as informa�c~oes do usu�ario s~ao recuperadas e armazenadas em
um objeto do tipo Usuario atrav�es de uma chamada ao m�etodo recuperarUsuario da
Facade (linha 28). Ap�os este processo, o objeto �e armazenado no request para que possa
ser recuperado pelo handler de apresenta�c~ao associado a esta requisi�c~ao.

18: public void processar(HttpServletRequest request,

19: HttpServletResponse response)

20: throws ProcessamentoException{

21: String login,senha;

22: Usuario usuario;

23:

24: login = request.getParameter("login");

25: senha = request.getParameter("senha");

26:

27: if(sistema.validarUsuario(login,senha)){

28: usuario = sistema.recuperarUsuario(login);

29: request.setAttribute("usuario",usuario);

30: }

31: else{

32: throw new ProcessamentoException("Login Inv�alido",null);

33: }

34: }

35:}

O HAMenuMovimentacao �e um handler de apresenta�c~ao, por isso ele estende a classe
HandlerApresentacao. Seu m�etodo validarDados veri�ca a existência do parâmetro
usuario (linha 7).

1: public class HA_MenuMovimentacao extends HandlerApresentacao {

2:

3: public void validarDados(HttpServletRequest request,

4: HttpServletResponse response)

5: throws ProcessamentoException{

6:

7: if(request.getAttribute("usuario") == null){

8: throw new

9: ApresentacaoException("Parâmetros imcompat��veis",null);

10: }

11: }

O m�etodo apresentar recupera o objeto do tipo Usuario atrav�es do request (linha
23). A l�ogica principal de montagem da p�agina est�a na linha 26, onde a p�agina �e montada
atrav�es de uma chamada ao m�etodo Skin:processaPagina(). Este m�etodo recebe com
entrada um array de chaves, outro de valores e um nome de arquivo. Este arquivo �e
um template de uma p�agina HTML contendo alguns identi�cadores especiais nos locais

onde ser~ao inseridas informa�c~oes dinâmicas. A tarefa deste m�etodo �e varrer o arquivo
procurando ocorrências de algumas das palavras do array de chaves e substitu��-las por
palavras do array de valores. Na linha 27 a p�agina de resposta �e enviada para o cliente
Web.

13: public void apresentar(HttpServletRequest request,

14: HttpServletResponse response)

15: throws ApresentacaoException{

16:

17: PrintWriter out;

18: String pagina;

19: Usuario u;

20:

21: out = response.getWriter();

22: try{

23: u = (Usuario) request.getAttribute("usuario");

24: String[] chaves = {"$USUARIO"};

25: String[] valores = {u.getName()};

26: pagina = Skin.processaPagina(chaves,

valores,

"Menu_Movimentacao.html");

27: out.println(pagina);

28: }

29: catch(Exception e){

30: throw new ApresentacaoException("Erro de Apresenta�c~ao",e);

31: }

32: }

33:}

Uso conhecido

� Portal Encontre & Compre [10] - Sistema de consultas dos anunciantes Listel,
que tamb�em permite que o visitante fa�ca transa�c~oes de neg�ocios on-line com os
anunciantes;

� O Sistema de Fomento Lattes [9] - Sistema de informa�c~ao para gest~ao de progra-
mas de fomento ao desenvolvimento cient���co e tecnol�ogico. O m�odulo respons�avel
pela emiss~ao de parecer de consultor Ad hoc usa o padr~ao aqui descrito em sua
implementa�c~ao;

� Prospectar [16] - Sistema de prospec�c~ao tecnol�ogica do Governo Federal;

� Web2Billing [18] { �E uma solu�c~ao completa de EBPP (Eletronic Bill Presenta-

tion and Payment), desenvolvida pela Wiser Tecnologies, e que permite a cria�c~ao,
gera�c~ao, gerenciamento, apresenta�c~ao, consulta e pagamento de faturas online;

� FiS (Financial Services) { O projeto contempla a migra�c~ao dos M�odulos de Con-
tabilidade, Cr�edito, Lojistas e Servi�cos da HiperCard, para um novo ambiente tec-
nol�ogico (J2EE). Estes m�odulos s~ao integrados ao Sistema de Integrado de Cr�edito

da HiperCard (SIC), ao R3/SAP e a outros sistemas legados. Tamb�em faz parte do
projeto o desenvolvimento de um m�odulo de Controle de Acesso �unico e centralizado
que poder�a ser utilizado por qualquer aplica�c~ao da HiperCard dispon��vel neste novo
ambiente;

� Fep (Call Center no FEP) { Desenvolvimento de uma aplica�c~ao para a Central
de Atendimento HiperCard que autorizar�a compras no autorizador FEP (Front End
Processor) e no sistema legado SIC (Sistema de Integrado de Cr�edito da HiperCard)
via browser;

� Gin (Sistema de Gest~ao Interna) [6] { Sistema de apoio a gest~ao interna do
CESAR com cadastros e relat�orios gerais, al�em de englobar os sistemas �nanceiro e
avalia�c~ao de colaboradores.

Todos os sistemas descritos anteriormente usam o padr~ao de Web Handlers na con-
stru�c~ao de seus servi�cos Web. A implementa�c~ao do padr~ao proposta neste documento
foi fruto de um trabalho de corre�c~ao dos problemas identi�cados nas implementa�c~oes
anteriores, mas a estrutura do padr~ao continua a mesma.

Padr~oes relacionados

� Na constru�c~ao dos handlers de apresenta�c~ao pode ser usado o padr~ao Web Compiler
[2] para implementar a l�ogica de montagem das p�aginas dinâmicas. O uso do padr~ao
neste contexto traz uma s�erie de benef��cios ao desenvolvimento, pois permite a sep-
ara�c~ao entre o c�odigo HTML e Java, facilitando o desenvolvimento e a manuten�c~ao
do sistema.

�
�E interessante usar o padr~ao de projeto Facade [5] para agrupar a l�ogica de neg�ocio
do sistema em um �unico ponto e fazer com que os handlers de processamento
chamem estas funcionalidades, ao inv�es de implementarem-na diretamente em seus
corpos.

� O Controlador de Handlers (componente da estrutura do Web Handlers) deve im-
plementar o padr~ao Web Interceptor [2] j�a que o Controlador deve ser o �unico ponto
de acesso aos handlers do sistema.

� O padr~ao Super Component [2] pode ser usado na implementa�c~ao dos handlers de
apresenta�c~ao e processamento a �m de evitar a duplica�c~ao de c�odigo nos m�etodos
iniciar e finalizar.

Referências

[1] Deepak Alur, John Crupi, and Dan Malks. Core J2EE Patterns { Best Practices and

Design Strategies. Prentice Hall, March 2001.

[2] Gibeon Soares de Aquino J�unior. Desenvolvimento de Sistemas Web em Java, 2002.

[3] W3C Architecture Domain. Extensible Markup Language (XML). Dispon��vel em
http://www.w3.org/XML/.

[4] Organization for the Advancement of Structured Informations Standard (OA-
SIS). WAP Wireless Markup Language (WML). Dispon��vel em http://www.oasis-
open.org/cover/wap-wml.html.

[5] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:

Elements of Reusable Object{Oriented Software. Addison{Wesley, 1994.

[6] Gin. Sistema de Gest~ao Interna. http://www.cesar.org.br.

[7] Marty Hall. Core Servlets and JavaServer Pages. Prentice Hall, 2000.

[8] Ivar Jacobson, Grady Booch, and James Rumbaugh. The Uni�ed Software Develop-

ment Process. Addison{Wesley, 1999.

[9] Lattes. Sistema de Fomento Lattes. Dispon��vel em
http://www.cnpq.br/servicosrestritos/.

[10] Listel. Portal Encontre e Compre. Dispon��vel em http://www.listel.com.br.

[11] Web Macro. Web Macro home page. Dispon��vel em http://www.webmacro.org.

[12] Sun Microsystems. Java Core Re
ection Api Documentation.
Dispon��vel em http://java.sun.com/j2se/1.3/docs/guide/re
ection/spec/java-
re
ectionTOC.doc.html, 1998.

[13] Sun Microsystems. Enterprise java beans(tm) speci�cation. Version 2.0, Final Re-
lease, 22th August 2001.

[14] Sun Microsystems. Java(tm) Servlet Speci�cation version 2.3. Dispon��vel em
http://java.sun.com/products/servlets, 17th Setember 2001.

[15] Jakarta Project. Velocity template engine. Dispon��vel em
http://jakarta.apache.org/velocity/.

[16] Prospectar. Sistema de Prospec�c~ao Tecnol�ogica. Dispon��vel em
http://prospectar.cesar.org.br/admin.

[17] SourceForge.net. Freemarker 1.7 - an open-source html template engine for java
servlets. Dispon��vel em http://freemarker.sourceforge.net/.

[18] Web-2-Billing. Web 2 Billing Pagamentos online. Dispon��vel em
http://www.web2billing.com.br.

A Collection of Patterns for Use Case Maps

Gunter Mussbacher and Daniel Amyot1

School of Information Technology and Engineering (SITE), University of Ottawa
161 Louis-Pasteur, PO Box 450, Stn. A, Ottawa (ON), Canada, K1N 6N5

damyot@site.uottawa.ca

Our gratitude extends to Jim Coplien for his efforts as our shepherd.

Abstract: Use Case Maps (UCMs) are a technique used to capture functional requirements
and high level designs of complex systems composed of many features. Once you have cho-
sen UCMs as part of your software development process, the question arises as how to most
effectively use UCMs. This paper introduces patterns which provide guidance in selecting
one of three major UCM styles depending on your software development context. The �Indi-
vidual Maps� UCM style is most useful for rapidly and independently capturing a few key
features of your system, features being optional or incremental units of functionality. The
�Standard Root Map� UCM style is most appropriate if a small, evolving system consisting of
interacting features needs to be documented. The �Isolation and Integration� UCM style is
best applied to large, evolving systems with many interacting features.

1 Introduction

This document consists of two major parts. Section 2 �Background Information� gives a basic
overview of a) the application domain of the patterns, i.e. capturing functional requirements
and high level designs for complex systems composed of multiple features with a technique
called Use Case Maps (UCMs) and b) the framework used to reason about forces, i.e. the
NFR (Non-Functional Requirements) Framework. Readers familiar with Use Case Maps may
skip the respective sub-section and proceed directly to section 2.2. Readers familiar with the
NFR framework, however, are encouraged to read through section 2.2 since slightly different
notational elements are used than suggested by the NFR Framework.

Sections 3 to 9 contain the actual collection of patterns organized in pattern form. Section 3
gives an overview of the pattern collection whereas sections 4 to 9 describe the patterns.
These patterns provide guidance in selecting one of three UCM styles for various contexts.

2 Background Information

This section introduces the reader to the basic concepts and the notation of Use Case Maps �
the application domain of the patterns presented in sections 3 to 9 � as well as the NFR
framework used to reason about forces. The material in section 2 covers only those aspects of
Use Case Maps and the NFR Framework required for the patterns. For further information on
UCMs and the NFR framework see Section 11 �References� at the end of the document.

1 The majority of this work was conducted while the authors were at Mitel Networks, 350 Legget Dr., Kanata

(ON), Canada, K2K 2W7.

2.1 Use Case Maps Concepts and Notation

Use Case Maps (UCMs) [8, 9] are a scenario-based software engineering technique most use-
ful at the early stages of software development. UCMs visually represent the causal relation-
ships of responsibilities of one or more use cases combined with structures in one single view.
The relationships are said to be causal because they involve concurrency and partial orderings
of responsibilities, because they link causes to effects, and because they abstract from compo-
nent interactions expressed by message exchanges. UCMs show related use cases in a map-
like diagram. The map shows the progression of scenarios along use cases.

UCM Notation Notation Explanation
Basic path. The basic path is the most basic, complete unit. The path represents scenario flow.
Paths connect start points, responsibilities, and end points. A path may have any shape as long
as it is continuous (can cross itself). The start points represent preconditions or triggering
causes. The end points represent post-conditions or resulting effects.

Responsibility point. Represents generic processing (actions, tasks, or functions to be per-
formed). Responsibilities may be bound to a component.

Direction (optional). In general, the positioning of the start and end points of a path indicate
direction. In certain cases, it is useful to show the direction on a complicated map.

Waiting place. Represents a waiting place along a path. Propagation along the path stops at the
waiting place until the trigger arrives. Waiting places can be triggered by a trigger path as
shown or by the environment.

Timer. A special waiting place that expresses the idea that there is a time limit on waiting.
When propagation along the waiting path reaches the timer, the timer is set. Propagation along
the continuation path continues if the timer release arrives. Propagation along the timeout path
continues if the timeout occurs.

AND Fork and AND Join. For concurrent paths (two or more).

OR Fork and OR Join. An OR fork indicates that the path proceeds in only one out of two or
more directions. Labels may identify alternative paths or guarding conditions. An OR Join indi-
cates a common causal segment of two or more paths.

Static stub. Contains only one plug-in (sub UCM), hence enabling hierarchical decomposition
of complex maps.

Dynamic stub. May contain several plug-ins, whose selection can be determined at run-time
according to a selection policy (often described with pre-conditions).

Generic component. Represents an architectural entity.

Slot. Placeholder for dynamic components as operational units. Dynamic responsibilities can
move dynamic components from a path into a slot or out of a slot onto a path.

Create Delete
Move

out
Move
into

Do something

X

Waiting
Place

Trigger
Path

Waiting
Path

Continuation
Path

Timer

Timer
Release
Path

Waiting
Path

Continuation
Path

Timeout Path

[Off hook]

[On hook]

Start End
Point Point

Path

UCMs have a history of applications to the description of reactive systems of different na-
tures (e.g. [2, 3, 4, 10]), to the avoidance and detection of undesirable interactions between
scenarios or services (e.g. [4, 10, 18]), to early performance analysis (e.g. [20]), and the gen-
eration of more detailed behavioral models (e.g. [17, 19]). The UCM notation is also being
considered by ITU-T for describing functional requirements as part of the upcoming User
Requirements Notation standard [11]. The table above covers only the notational aspects of
UCMs as required for sections 3 to 9. For further information on UCM concepts and the no-
tation, the reader is referred to the virtual library of the UCM User Group [21].

The UCM Navigator tool [16, 17] supports a superset of the notational elements listed
above as well as navigation through UCMs. The tool was used to create the UCMs in this
document.

2.2 NFR Framework for Reasoning about Forces

The technique used to illustrate the forces of the context and the impact of solutions on these
forces is based on the NFR framework [12, 15] and on work on the combination of the NFR
framework and patterns [22]. The OME tool [14], developed at the Knowledge Management
Lab at the University of Toronto, allows the creation of force graphs. The following table
covers only the notational aspects of the framework as instantiated for the pattern domain.

Force Solution

Contribution
Links

Contribution links connect solutions or forces (source) and forces (target). The links
indicate the impact a source has on a target.
� The source impacts the target so that the target is sufficiently balanced.
++++ ++++ The source balances the target but not sufficiently.
++++ The source balances the target but less than ++++ ++++.
− The source unbalances the target but less than −−−− −−−−.
−−−− −−−− The source unbalances the target but not completely.
!!!! The source impacts the target so that the target is completely unbalanced.
(Note that this notation uses different labels than those in the NFR framework.)

Force/Solution
Labels

A label positioned next to a force indicates how balanced the force is.
A label positioned next to a solution indicates how much of the solution has been
achieved.
� Balanced/Fully achieved
++++ Weakly balanced/achieved
0 Less than weakly balanced/achieved but more than weakly unbalanced/not

achieved
− Weakly unbalanced/not achieved
!!!! Unbalanced/Not achieved
(Note that this notation uses different labels than those in the NFR framework.)

3 A Collection of Patterns for Use Case
Maps

This section gives a general introduction to the
collection of patterns including general discus-
sions on the overall context and problem for the
pattern collection and the forces relevant to the
pattern collection.

3.1 Introduction

The collection of patterns consists of six patterns
as depicted in Figure 1. The confidence in these patterns is very high because the patterns
have been observed for numerous features in a large and complex call control software sys-
tem for a telephone switch. Different development teams have developed these features over
years. This paper fully describes the three top-level patterns and gives patlets for the remain-
ing three patterns. Four additional patterns have been identified which extend this collection.
These patterns, however, will not be included in this document in consideration of review
time and the length of the document.

3.1.1 Overall Context
The overall context of the pattern collection at the root of Figure 1 is defined as follows. You
are capturing functional requirements and high-level designs of your system. A scenario-
driven software development approach has been chosen for your system. Furthermore, it has
been decided that Use Case Maps (UCMs) will be used to capture functional requirements
and high level designs. The UCM Navigator provides tool support. Thus, any solution has to
consider the constraints of the tool.

UCMs give software engineers a high degree of freedom in how to describe systems. Cur-
rently, three UCM styles are known. Literature often suggests the �Individual Maps� [3, 5]
approach (see 4) and the �Standard Root Map� [6, 13, 17, 18] approach (see 5). This paper
introduces the �Isolation and Integration� approach (see 6). It, however, is not clear whether
these approaches are applicable to all sub-contexts of the overall context and, if not, to which
sub-contexts they are applicable.

3.1.2 General Problem
Find the best UCM style to be used in the given context.

The problem addressed by the discussed patterns does not relate directly to the use of
UCMs for the description of behavioral patterns or design patterns. It relates to how general
scenario descriptions (use cases, features) can be best organized in various contexts with the
help of the UCM notation. The problem is also not related to whether UCMs are an appropri-
ate technique for capturing requirements and high level designs. These issues have been ad-
dressed elsewhere [1, 7, 8, 9].

3.1.3 General Discussion on Forces
Figure 2 shows the hierarchy of forces that have to be considered for the overall context.

Figure 1: A Collection of Patterns for UCMs

a) Evolveability:
An important high-level concern is the evolveability of the system. Several sub-forces
contribute to the evolveability of a large system:
a.1) Understandability of a single feature:

A clear understanding of new and existing features is the basis for evolveability.
The understandability of a feature depends on:
a.1.1) the simplicity of each UCM required for the feature (the simpler, the better),
a.1.2) the number of hierarchical levels of UCMs per feature (the lower, the better),
a.1.3) the number of distributed UCMs, i.e. the UCMs that belong to the same fea-

ture but are disjoint (the lower, the better),
a.1.4) the pollution of the feature description, i.e. whether UCM paths and path

elements from different features can be clearly identified (the less polluted,
the better), and

a.1.5) the ability to detect undesirable feature interactions [23] and specify desir-
able feature interactions (the easier, the better). In general, feature interaction
is a key force for the understandability of features.
a.1.5.1) Connected and consistent feature descriptions are the principal pre-

requisite for feature interaction detection and specification.
a.2) Scaleability:

Another important aspect for the evolveability of the system is the scaleability of
the chosen UCM style to a large system with hundreds of features. The scaleability
depends foremost on connected and consistent feature descriptions (see a.1.5.1))
and to a lesser extent on the distribution and pollution of feature maps (see a.1.3)
and a.1.4), respectively).

a.3) Reuseability:
To a lesser extent, the reuseability of UCMs across a number of features contributes
positively to the evolveability of the system.

a.4) Ability to specify test cases:
To a lesser extent, the ability to use UCMs for the specification of test cases for sin-
gle features and
feature combinations
contributes posi-
tively to the evolve-
ability of the system.
The ability to specify
test cases for feature
combinations de-
pends on connected
and consistent fea-
ture descriptions (see
a.1.5.1)).

b) Tool dependency:
A second issue to keep in
mind is the tool depend-
ency of the chosen UCM

Figure 2: Force Hierarchy for Overall Context

style with respect to the distribution of UCMs to non-authors such as reviewers and new
team members. UCMs can be read easily without the tool if it is easy to navigate
through a series of UCMs. The ease of navigation relies on the simplicity of UCMs (in
terms of the UCM path itself and the number of stubs per feature) (see a.1.1)) and the
number of levels of UCMs per feature (see a.1.2)).

In general, most forces are connected with each other in more or less subtle ways. The force
hierarchy shows only the important relationships which impact decisions. Some subtle con-
nections, however, exist in addition to the ones shown and are addressed, if necessary, in the
discussion of forces for each pattern.

3.1.4 Summary of Known Uses and Examples
All examples used in the following sections are taken from a call control software system but
have been simplified and modified to protect confidential material. The changes have been
carefully made as not to distort the occurrences of the discussed patterns. Although this paper
focuses on examples from the telecommunication domain and cites known uses mainly from
the same domain, we know of no reason why the patterns would not apply to other complex
domains as well.

4 Individual Maps

Name of Pattern Individual Maps
Brief Description Independent feature descriptions are the best UCM style to be

used in a context where the understandability of single features
and tool independence are very important and the ability to
specify test cases also has to be considered.

Confidence in Pattern *** (out of *, **, or ***)
Discovered By Ray Buhr
Authors Gunter Mussbacher, Daniel Amyot
Shepherd Jim Coplien
Other Reviewers Rossana Andrade, Tom Gray, Michael Weiss
Date October 5, 2001

4.1 Context

You are capturing functional requirements and high-level designs of a few key features of
your system in order to get an initial understanding of the system and early feedback from
stakeholders. Since you are creating a prototype rather than a complete specification, you will
not be concerned if features interact with each other (i.e. one feature may impact the behavior
of another feature either in a desirable way or in some unexpected or undesirable way). There
is no need to reuse parts of features or even evolve a whole system efficiently but it must be
possible to change single features rapidly and independently of other features. Often a pen
and paper or a whiteboard rather than a tool are used to quickly create sketches of your pro-
totype.

4.2 Problem

What is the best UCM style to be used in the given context?

4.3 Forces

All forces of the pattern collection have been described in 3.1.3. In the context of the
�Individual Maps� pattern only some of these forces are relevant as indicated in Figure 4 to
Figure 6. Note that the feature distribution, pollution, interaction, reusability, and scalability
forces are not considered in this context because these five forces are not an issue if only a
few features are captured.

If the �Standard Root Map� UCM style is applied in this context, the forces will not be suf-
ficiently balanced (see Figure 4) even though the understandability force is reasonably well
balanced.
• The understandability of a single feature is not as good as it could be because a higher

number of stubs causes the maps to be a little bit more complex and at least one more
level (the root level) is introduced as an additional level for all features.

• More importantly, tool dependency has increased because the stub-rich root map requires
significantly more jumps between maps.

• It is possible but cumbersome to specify test cases for single features as definitions of
features are buried in the map hierarchy.

If the �Isolation and Integration� UCM style is applied in this context, the forces are even less
sufficiently balanced than with the �Standard Root Map� UCM style (see Figure 5). Both, un-
derstandability of single features and tool independence, are affected by the higher complex-
ity required for the �Isolation and Integration� UCM style.

4.4 Solution

The �Individual Maps� UCM
style describes each feature
individually (see Figure 3). A
hierarchy of one or more
UCMs may be used to de-
scribe a feature but each
UCM belongs solely to the
described feature and is not
reused for any other feature.

4.5 Resulting Context

Figure 6 shows how the solution balances the forces identified in 3.1.3. The �Individual
Maps� UCM style balances well all relevant forces in the context because:
• The simplicity of UCMs and the number of levels of UCMs per feature are well balanced.

This is as good as any approach can get since UCMs always have to trade-off simple

Figure 3: Generic Example of Structure of �Individual Maps� UCM Style

UCMs with additional
levels of UCMs (i.e.
number of stubs and plug-
ins). Thus, the under-
standability of single
features is perfectly bal-
anced.

• Tool dependency is kept
low because reading
UCMs without the tool
requires only the mini-
mum amount of jumps
between different levels
of UCMs due to the op-
timal number of UCM
levels.

• Test cases for single fea-
tures can be specified
quite easily due to the
clear, unpolluted, and
complete description of
each feature.

Although the �Individual
Maps� UCM style balances
well tool dependency and un-
derstandability forces, this
approach does not show the
causal relationship between
user actions (e.g. Figure 7
does not define whether di-
rectory number or end call
can occur before start call).
The pattern �Explicit Causal-
ity of Highest-Level Interac-
tion� in section 8 addresses
this problem.

As a consequence of using
the �Individual Maps� UCM
style, one cannot expect other
concerns relevant in the over-
all context of the pattern lan-
guage but not relevant in the
sub-context of this pattern to
be addressed.
• The style cannot detect

Figure 4: Impact on Individual Maps Forces by Standard Root Map

Figure 5: Impact on Individual Maps Forces by Isolation & Integration

Figure 6: Impact on Individual Maps Forces by Individual Maps

interactions among features because consistency across features is not enforced. The style
also cannot specify feature interactions because the definitions of different features are not
linked.

• Test cases for feature combinations cannot be specified for the same reasons.
• Per definition of the style, reuse cannot be achieved.
• The approach does not scale well. Feature definitions are not linked thus more and more

inconsistencies will potentially be introduced with each new feature. Although each new
feature by itself requires only a similar effort to document than previous features, the
amount of time eventually spent to work out the inconsistencies greatly increases.

4.6 Known Uses

For further examples of the �Individual Maps� UCM style in addition to the ones shown in
Section 4.7 see [3, 5].

4.7 Examples of �Individual Maps� UCM Style

Examples of two features documented using the �Individual Maps� UCM style are shown in
Figure 7 (Basic Call) and Figure 8 to Figure 10 (Automatic Call Distribution). Both examples
use an underlying call model based on originating and terminating call halves.

4.7.1 Basic Call
The Basic Call feature (Figure 7) starts at the start call start point. The path then waits at the
dialing waiting place until a directory number is entered (directory number start point). If a
wrong number is entered the path takes a left turn and ends at fail. If a correct number is en-
tered, the terminating call half is created (create_TCH).

The rest of the scenario depends on the device�s availability. If the device is busy, the ter-
minating call half follows the path
labeled [busy], ends at idle.t, and in
parallel informs the originating call
half which applies busy tone and ends
at fail. If the device is not busy, the
device rings, the terminating call half
follows the path labeled [not_busy],
then waits at the wfa.t waiting place,
and in parallel informs the originating
call half which applies ringback tone
and sets the wait for answer timer.

What comes next depends on
whether the callee answers (answer
start point) before the wait for answer
timer expires. If the timer expires, the
originating call half ends at fail and in
parallel informs the terminating call
half which follows the [ring_timeout] Figure 7: Basic Call (Individual Maps)

path and ends at idle.t. If the callee
answers, the terminating call half
follows the [answer] path, connects,
and then waits at the talking.t wait-
ing place. In parallel, the terminating
call half informs the originating call
half which connects and waits at the
talking waiting place.

The rest of the scenario depends
on whether the caller or the callee
ends the call. If the caller ends the
call (end call start point), the origi-
nating call half follows the
[my_end_call] path, disconnects,
ends at idle, and in parallel informs
the terminating call half which fol-
lows the [others_end_call] path, dis-
connects, and ends at idle.t. If the
callee ends the call (end call.t start point), the terminating call half follows the [my_end_call]
path, disconnects, ends at idle.t, and in parallel informs the originating call half which follows
the [others_end_call] path, disconnects, and ends at idle.

4.7.2 Automatic Call Distribution (ACD)
ACD distributes incoming calls to a group of agents according to their availabilities. The
ACD feature (Figure 8, Figure 9, and Figure 10) duplicates a lot of the Basic Call feature.
Therefore, only the changes to Basic Call behavior will be described. The biggest difference
is that an agent group has replaced the device. In the case of a busy agent group, the agent
group just informs the terminating call half. If the agent group is not busy, the agent group
additionally queues the call and sets the recall timer.

The behavior of the originating and terminating call half is exactly the same as Basic Call
behavior until the originating and terminating call halves are waiting at the wait for answer
and wfa.t waiting places, respectively. The waiting places have been moved to two plug-in
maps due to space constraints and readability concerns. The in and out labels on the UCMs
show the binding between the parent map (ACD) and the plug-in maps (Wait For Answer,
Wait For Answer.t).

Figure 8: ACD (Individual Maps)

Figure 9: Wait For Answer (Individual Maps � ACD) Figure 10: Wait For Answer.t (Individual Maps�
ACD)

What comes next depends on whether the agent answers (agent answers start point) before
the recall timer or the wait for answer timer expires. If the recall timer expires before the
agent answers, the agent group dequeues the call and informs the terminating call half. This
terminating call half follows the [recall_timeout] path (see Figure 10), ends at idle.t, and in
parallel informs the originating call half which follows the [recall_timeout] path (see Figure
9) and tries to recall (i.e. the path loops back from the wait for answer stub and a new termi-
nating call half is created (create_TCH)). If the agent answers, the agent group dequeues the
call and informs the terminating call half. The terminating and originating call halves then
follow normal Basic Call behavior.

Please note that the wait for answer timer is always set to a longer duration than the recall
timer is. In case the wait for answer timer expires before the agent answers, a fatal error of the
agent group may be assumed and normal Basic Call behavior occurs.

The last variation of Basic Call behavior occurs when either the caller or the agent ends the
call. In addition to Basic Call behavior, the terminating call half informs the agent group after
disconnecting that the agent is now available again.

5 Standard Root Map

Name of Pattern Standard Root Map
Brief Description A combination of a root map, stubs, and plug-in maps is the best

UCM style to be used in a context where evolveability, under-
standability of single features, and the ability to detect, specify,
and understand feature interactions are very important, and re-
useability across various features, the ability to specify test cases,
and tool dependency also have to be considered.

Confidence in Pattern *** (out of *, **, or ***)
Discovered By Ray Buhr
Authors Gunter Mussbacher, Daniel Amyot
Shepherd Jim Coplien
Other Reviewers Rossana Andrade, Tom Gray, Michael Weiss
Date October 5, 2001

5.1 Context

You are capturing functional requirements and high-level designs of a small system that will
be evolving over a long time or has been evolving for a long time. The features of the system
may be interacting thereby increasing the system�s complexity. Feature interaction occurs if
one feature impacts the behavior of another feature either in a desirable way or in some unex-
pected or undesirable way. A base feature defining the framework for all other features usu-
ally but not exclusively indicates feature interactions. Most of the time new features are
variations of existing features and build on the base feature and other features.

5.2 Problem

What is the best UCM style to
be used in the given context?

5.3 Forces

All forces of the pattern col-
lection have been described in
3.1.3. In the context of the
�Standard Root Map� pattern
only some of these forces are
relevant as indicated in Figure
12 to Figure 14. Note that the feature distribution, pollution, and scaleability forces are not
considered in this context because these three forces are not an issue if only a small system is
captured.

If the �Individual Maps� UCM style is applied in this context, the forces will not be suffi-
ciently balanced (see Figure 12) even though the tool dependency force is perfectly balanced.
• The style cannot detect interactions among features because consistency across features is

not enforced. The style also cannot specify feature interactions because the definitions of
different features are not linked. Therefore, the understandability force is not balanced
sufficiently although feature maps are simple and the number of levels is low.

• Per definition of the style, reuse cannot be achieved.
• With mediocre understandability of features, no reuse, and test cases only for single fea-

tures, evolveability is not balanced at all.
If the �Isolation and Integration� UCM style is applied in this context, the forces will not be
sufficiently balanced (see Figure 13) even though the evolveability force is reasonably well
balanced.
• The style is more dependent on tool support because of the complexity of the maps and

the frequent use of stubs.
• The increased complexity of feature maps makes it more difficult to understand features

although feature interaction detection and specification is possible and the number of lev-
els per feature is kept low.

• Although consistency is enforced by the integration of features, the reuseability force is
not as well balanced as it could be since more than one reusable unit may exist on a single
UCM.

To summarize, a perfect solution should balance the tool dependency force and sub-forces
a.1.1) and a.1.2) of the understandability force as the �Individual� UCM style does. Further-
more, a perfect solution should balance the feature interaction and specification force as the
�Isolation and Integration� UCM style does but further improve the reusability and map com-
plexity forces.

5.4 Solution

The �Standard Root Map� UCM style describes the base feature on a UCM called the root

Figure 11: Generic Example of Structure of �Standard Root Map� UCM Style

map which contains several
stubs (see Figure 11). The
root map and the default set
of plug-in maps for the stubs
define the base feature. Other
features may use one or more
different plug-in maps and
thus vary the behavior of the
base feature. Since stubs may
be used at any level of the
map hierarchy, new features
may introduce variations also
at any level.

5.5 Resulting Context

Figure 14 shows how the so-
lution balances the forces
identified in 3.1.3. All in all,
the �Standard Root Map�
UCM style balances well the
evolveability force at the ex-
pense of a slight increase in
the complexity of UCMs and
thus tool independence. The
evolveability force is suffi-
ciently balanced because:
• Feature interaction detec-

tion and specification is
possible since all features
are connected to each
other even though it is
cumbersome because
feature definitions are
buried in the map hierar-
chy.

• The understandability of
a single feature is suffi-
ciently balanced because
feature interaction detec-
tion and specification is
possible and feature maps
are only slightly more
complex.

Figure 12: Impact on Standard Root Map Forces by Individual Maps

Figure 13: Impact on Standard Root Map Forces by Isolation & Integration

Figure 14: Impact on Standard Root Map Forces by Standard Root Map

• Reuseability can be achieved through the use of stubs with each plug-in map being one
potential reusable unit.

Although the �Standard Root Map� UCM style balances well the evolveability force, this ap-
proach is more dependent on tool support than the �Individual Maps� UCM style because the
stub-rich root map requires significantly more jumps between maps. The simplicity of UCMs
is a little worse compared to the �Individual Maps� UCM style because the number of stubs
has increased and the number of levels per feature has also increased by at least one level (the
root level). Tool support and understandability, however, are still balanced better than with
the �Isolation and Integration� UCM style.

This approach also does not show the causal relationship between user actions (e.g. Figure
15 does not define whether directory number or end call can occur before start call). The
pattern �Explicit Causality of Highest-Level Interaction� in section 8 addresses this problem.

As a consequence of using the �Standard Root Map� UCM style, one cannot expect other
concerns relevant in the overall context of the pattern language but not relevant in the sub-
context of this pattern to be addressed.
• Feature maps do get polluted and are distributed which will cause problems if the system

increases in size. Therefore, scaleability is not optimal yet although it has improved com-
pared to the �Individual Maps� UCM style due to a greater degree of consistency.

5.6 Known Uses

For further examples of the �Standard Root Map � UCM style in addition to the ones shown
in Section 5.7 see [6, 13, 17, 18].

5.7 Examples of �Standard Root Map� UCM Style

Examples of two features documented using the �Standard Root Map� UCM style are shown

Figure 15: Basic Call root map (Standard Root Map)

Figure 16: Nothing
(Standard Root Map � Basic Call)

Figure 17: Check Availability
(Standard Root Map � Basic Call)

in Figure 15 to Figure 21 (Basic Call) and
Figure 22 to Figure 25 (ACD). Both features
start from the same root map (Figure 15).

5.7.1 Basic Call
The root map (Basic Call � Figure 15) and its
six default plug-in maps (Dialing, Check Avail-
ability, Wait For Answer, Wait For Answer.t,
Talking, Nothing) specify exactly the same be-
havior as explained for the �Individual Maps�
UCM style (see 4.7.1).

Once again, in and out labels specify the
bindings between stubs on the Basic Call map
and their plug-in maps. The following list de-
fines which stubs in Figure 15 contain which
plug-in maps:
• the check availability stub contains the

Check Availability plug-in (see Figure 17),
• the dialing stub contains the Dialing plug-in

(see Figure 18),
• the talking and talking.t stubs contain the

Talking plug-in (see Figure 19), and
• the wait for answer stub contains the Wait

For Answer plug-in (see Figure 20),
• the wait for answer.t stub contains the Wait

For Answer.t plug-in (see Figure 21),
• finally the wait for answer.2 stub in Figure

20, wait for answer.t.2 stub in Figure 21,
and clean up stub in Figure 15 all contain
the Nothing plug-in (see Figure 16).

5.7.2 Automatic Call Distribution (ACD)
The new ACD plug-ins in conjunction with the
Basic Call root map and plug-ins specify the
exact same behavior as explained in the �Indi-
vidual Maps� UCM style (see 4.7.2). The ACD
feature overrides the Basic Call behavior by
using the following four new plug-in maps:
• the clean up stub in Figure 15 contains the

Clean Up.ACD plug-in (see Figure 22),
• the check availability stub in Figure 15 contains the Check Availability.ACD plug-in (see

Figure 23),
• the wait for answer.2 stub in Figure 20 contains the Wait For Answer.ACD plug-in (see

Figure 25), and

Figure 18: Dialing (Standard Root Map � Basic Call)

Figure 19: Talking (Standard Root Map � Basic Call)

Figure 20: Wait For Answer
(Standard Root Map � Basic Call)

Figure 21: Wait For Answer.t
(Standard Root Map � Basic Call)

• the wait for answer.t.2 stub in Figure 21 contains the Wait For Answer.t.ACD plug-in (see
Figure 24).

6 Isolation and Integration of Features

Name of Pattern Isolation and Integration of Features
Brief Description Isolating features from each other but also linking them in a

well-defined way is the best UCM style to be used in a context
where evolveability, scaleability, understandability of single
features, and the ability to detect, specify, and understand feature
interactions are very important, and reuseability across various
features, the ability to specify test cases, and tool dependency
also have to be considered.

Confidence in Pattern *** (out of *, **, or ***)
Discovered By Gunter Mussbacher
Authors Gunter Mussbacher, Daniel Amyot
Shepherd Jim Coplien
Other Reviewers Rossana Andrade, Tom Gray, Michael Weiss
Date October 5, 2001

6.1 Context

You are capturing functional requirements and high-level designs of a large system that will
be evolving over a long time or has been evolving for a long time. The system consists of
many interacting features increasing its complexity. Feature interaction occurs if one feature
impacts the behavior of another feature either in a desirable way or in some unexpected or

Figure 22: Clean Up.ACD
(Standard Root Map � ACD)

Figure 23: Check Availability.ACD
(Standard Root Map � ACD)

Figure 24: Wait For Answer.t.ACD
(Standard Root Map � ACD)

Figure 25: Wait For Answer.ACD
(Standard Root Map � ACD)

undesirable way. A base
feature defining the frame-
work for all other features
usually but not exclusively
indicates feature interactions.
Most of the time new features
are variations of existing
features and build on the base
feature and other features.

6.2 Problem

What is the best UCM style
to be used in the given con-
text?

6.3 Forces

All forces of the pattern col-
lection have been described
in 3.1.3. In the context of the
�Isolation and Integration of
Features� pattern all of these
forces are relevant as indi-
cated in Figure 26 to Figure
28.

If the �Individual Maps�
UCM style is applied in this
context, the forces will not be
sufficiently balanced (see
Figure 26) even though the
tool dependency force and
sub-forces a.1.1), a.1.2),
a.1.3), and a.1.4) of the un-
derstandability force are well
balanced.
• The style cannot support

the detection of interac-
tions among features be-
cause consistency across
features is not enforced.
The style also cannot
specify feature interac-
tions because the defini-
tions of different features

Figure 26: Impact on Isolation & Integration Forces by Individual Maps

Figure 27: Impact on Isolation & Integration Forces by Standard Root Map

Figure 28: Impact on Isolation & Integration Forces by Isolation &Integration

are not linked. Therefore, the understandability force is only weakly balanced.
• Per definition of the style, reuse cannot be achieved.
• Test cases for feature interactions cannot be specified.
• The approach also does not scale well. Feature definitions are not linked thus more and

more inconsistencies will potentially be introduced with each new feature. Although each
new feature by itself requires only a similar effort to document than previous features, the
amount of time eventually spent to work out inconsistencies greatly increases.

If the �Standard Root Map� UCM style is applied in this context, the forces will not be suffi-
ciently balanced (see Figure 27) even though the reuseability force is perfectly balanced and
the balance of the scaleability and feature interaction and detection forces is improved.
• Feature maps do get polluted now since all new features are plug-ins of at least the base

root map. Therefore, variations of the base behavior caused by these new features do
show up in the root map which should only show the base feature. E.g. the loop back from
the wait for answer stub in Figure 15, out-path 2 of the check availability stub in Figure
15, and some out-paths of the wait for answer.2 and wait for answer.t.2 stubs in Figure 20
and Figure 21, respectively, are not required for Basic Call but exist because of ACD.
Considering the large number of features in the system, feature maps get so polluted that
the original description of the feature is effectively lost.

• Feature maps are now distributed. E.g. the set of UCMs specific to the ACD feature in-
cludes the UCMs in Figure 22, Figure 23, Figure 24, and Figure 25. These four UCMs are
completely disjoint (one cannot move directly from any UCM to another). In contrast, the
three ACD feature maps from the �Individual Maps� style (Figure 8, Figure 9, and Figure
10) are directly connected to each other. The reason for the distributed feature maps is that
everything has to go through the root map which belongs only to the base feature. Consid-
ering a large number of features, it becomes difficult to find all UCMs that belong to a
given feature. A naming scheme could help but breaks down when UCMs are being re-
used for various features. The UCM Navigator�s functionality to group maps into sets
could be used but navigation through the set still remains difficult. The main starting point
for a feature is also not as apparent as it is in the �Individual Maps� UCM style.

• Scaleability improves because consistency is enforced to a greater degree. Scaleability,
however, is not optimal yet because pollution and distribution of features remain a prob-
lem in large systems.

• Feature interaction detection and specification is now possible since all features are con-
nected to each other but is cumbersome since complete feature definitions are buried at
various levels in the map hierarchy and the specification of feature interactions further
pollutes the description of features.

• The understandability of a single feature suffers considerably since feature maps get pol-
luted, feature maps are distributed, and at least one more level (the root level) has been
introduced as an additional level for all features.

• Tool dependency has also increased because the stub-rich root map requires significantly
more jumps between maps.

Overall, this UCM style contributes positively but not sufficiently to evolveability because of
a trade-off of reuseability and moderate amounts of feature interaction detection and specifi-
cation, scaleability, and test case specification against the overall understandability of a single
feature.

To summarize, a perfect solution should balance the tool dependency force and sub-forces
a.1.1), a.1.2), a.1.3), and a.1.4) of the understandability force as the �Individual� UCM style
does. Furthermore, a perfect solution should balance the reuseability force as the �Standard
Root Map� UCM style does but further improve the scaleability and feature interaction de-
tection and specification forces.

6.4 Solution

The �Isolation and Integration� UCM style isolates features from each other but does not keep
these features completely separate. The features are linked to each other in a well-defined
way. First, a root map for each feature provides initial isolation. Second, specific UCM
structures identify locations where a link between two features may exist, thus further isolat-
ing features. The event stub structure is used for locations where the system is ready to deal
with an event that may not be related to the feature. The feature interaction (FI) fork structure
is used for locations where a variation of the feature may occur and this variation is caused by
another feature. Once these two kinds of locations have been isolated, it is possible to inte-
grate features by referencing the isolated locations.

The remainder of this section explains in more detail the event stub structure, the FI fork
structure, and the referencing mechanism.

6.4.1 Event Stub Structure
The event stub structure is inserted at the first kind of
location (see Figure 29 and Figure 30). Note that the FI
fork structure is part of the event stub structure. The
binding between the stub and the plug-in is defined as
follows: (IN1, start), (IN2, event), (OUT1, success),
(OUT2, fail), and (OUT3, feature).

The event stub has two uses. First, if a UCM author
wants to express that the current scenario is at the loca-
tion represented by the event stub, path IN1 is taken.
This positions the scenario at the name waiting place in
the plug-in and the system is now waiting for an event.
Second, if the UCM author wants to express that the
scenario is continued because an event occurred, the
source of the event is connected to the e.name start
point and path IN2 is taken. This allows the scenario to
continue to the FI fork labeled FI.name. At this point,
the event that occurred is examined. If the event is
known to the feature the event stub belongs to, one of
the success or fail exits will be taken (one or more of
these may be specified as required by the feature). If the
event is unknown to the feature (i.e. another feature is
changing the behavior of this feature � feature interac-
tion!), then the feature exit will be taken. The FI fork is
therefore defined as: �IF ((NOT success) AND (NOT

Figure 29: Structure of Event Stub

Figure 30: Structure of Plug-in
for Event Stub

Figure 31: Structure of FI fork

fail)) THEN feature�. Note that this definition is only dependent on the feature the event stub
belongs to.

6.4.2 FI Fork Structure
At the second kind of location, only a subset of the event stub structure is required. Just the FI
fork is added possibly followed by an end point connected to a labeled start point (see Figure
31). In this case, the definition of the FI fork explicitly states the reason for taking the feature
exit (f.name) (e.g. �IF (ACD) THEN feature�). The FI fork indicates that the behavior of the
feature is altered by another feature which will cause the scenario to exit at the feature exit. A
guard (e.g. [feature]) may be used to label the branch to the feature exit (f.name) but is often
omitted due to space constraints.

6.4.3 Referencing Mechanism
Features are integrated by referencing the isolated locations. The reference mechanism works
as follows.

Each end point representing a feature exit implicitly sets a postcondition (see f.name in
Figure 29 and Figure 31). The referencing feature then defines a start point on its UCM with
an implicit precondition that matches the postcondition from the referenced feature exit. Thus,
the scenario will continue from the referencing start point when the referenced feature exit is
reached. This is achieved by labeling the end and start points the same (preferably with the
feature exit name) and placing a guard right after the start point. The guard shows the actual
precondition in square brackets (see [recall_timeout] and [ACD] in Figure 37) and allows
multiplexing multiple scenarios caused by different events/preconditions onto one path.

Similarly, all name start points (see Figure 29 and Figure 31) define implicit preconditions.
The referencing feature then defines an end point on its UCM with an implicit postcondition
that matches the precondition of the name start point. Thus, the scenario will continue from
the referenced start point if the referencing end point is reached. Once again this is achieved
by labeling the end and start points the same (preferably with the name of the start point).

Sometimes, a referencing feature necessitates the insertion of an end point/start point pair
into the map of the referenced feature. This pair consists of an end point connected to a la-
beled start point (see recall in Figure 32). The pair allows the definition of an entry point into
an existing feature. This entry point can be used by another feature to continue a scenario with
an existing feature. The same referencing mechanism is used for start points in end point/start
point pairs as is used for start points in event stub or FI fork structures.

6.5 Resulting Context

Figure 28 shows how the solution balances the forces identified in 3.1.3. All in all, the �Isola-
tion and Integration� UCM style balances well the evolveability force at the expense of the
simplicity of the UCMs and thus tool independence. The evolveability force is sufficiently
balanced because:
• Features are not polluted since the hooks required by other features can be clearly identi-

fied. A reader of the feature maps interested only in the feature itself can simply ignore all
feature exits of event stubs, all FI forks, and all end points connected to start points. Since
all features interacting with the current feature are multiplexed onto the same feature exit

paths, variations of behavior introduced by the interacting features do not require addi-
tional paths to be shown on the current feature�s map (as it was the case with the �Stan-
dard Root Map� UCM style).

• Feature maps are not distributed since all feature maps are connected to and can be ac-
cessed from the feature�s own root map.

• The scaleability force is well balanced because the pollution and distribution problems
have been addressed.

• Feature interaction detection is as possible as with the �Standard Root Map� UCM style
since features are integrated with each other. The specification of feature interactions,
however, does not lead to feature pollution thus slightly improving the balance of the
feature interaction force. The improvement, however, is not enough to affect the force hi-
erarchy.

• Because consistency is enforced by the integration of features, the reuseability force re-
mains relatively well balanced. The force, however, is not as well balanced as compared
to the �Standard Root Map� UCM style since more than one reusable unit may exist on a
single UCM.

• The overall understandability of the feature has been improved significantly from the
�Standard Root Map� UCM style since features are now not polluted, feature maps are
now not distributed, the total number of maps decreases compared to the �Standard Root
Map� UCM style, and the number of levels per feature is kept low since a general root
map is not introduced.

Although the �Isolation and Integration� UCM style balances well the evolveability force,
this approach is more dependent on tool support than others because of the complexity of the
maps and the frequent use of stubs. Furthermore, some problems regarding the navigability of
UCMs and the degree of completeness of feature descriptions have not been addressed.

The complexity of the maps has two reasons. First, the event stub, FI fork, and end
point/start point pair structures introduce a certain amount of complexity due to the number of
required stubs. Second, the integration of features results in a somewhat less intuitive defini-
tion of a feature than the �Individual Maps� UCM style. Paths may be disjoint making it dif-
ficult to follow the causal flow (e.g. see Figure 37). Furthermore, no visual distinction be-
tween referencing start and end points and non-referencing start and end points is given, thus
adding further complexity. In general, a navigation problem exists since the references be-
tween UCMs of different features are implicit and cannot be traversed by the tool and since
the main start point of a feature is not apparent. The pattern �Explicit Navigation� in section 7
addresses these issues.

Moreover, the definitions of features without the referenced maps may not be as complete
as one would want. For instance, the ACD feature in Figure 37 does not give you a clue of
what happens after the s2.t end point. The reader of the UCMs has to look at the referenced
map (the Basic Call root map) to find out. Therefore, a feature root map by itself does not
quite define complete scenarios, rather only the extensions and variations. The patterns
�Explicit Navigation� in section 7 and �Explicit Causality of Highest-Level Interaction� in
section 8 address this problem.

Another issue is that user actions identified in Figure 7 and Figure 8 of the �Individual
Maps� UCM style and in Figure 15 of the �Standard Root Map� UCM style (such as start
call, directory number, answer, and end call) have been lost by the �Isolation and Integra-

tion� UCM style. In addition to the lost naming, the causal relationship between user actions
is still not shown. This leads to a more complicated map because it is more difficult to under-
stand the feature. The patterns �Explicit Causality of Highest-Level Interaction� in section 8
and �Context View of Feature� in section 9 tackle these issues.

6.6 Known Uses

Further examples of call control features that make use of the event stub structure in addition
to the ones shown in Section 6.7 are Hold and Conference.

6.7 Examples of �Isolation and Integration� UCM Style

Examples of two features documented using the �Isolation and Integration� UCM style are
shown in Figure 32 to Figure 36 (Basic Call) and Figure 37 (Automatic Call Distribution).

6.7.1 Basic Call
The Basic Call root map (Figure 32)
and its four plug-in maps (Dialing,
Wait For Answer, Wait For An-
swer.t, Talking) specify exactly the
same behavior as explained for the
�Individual Maps� style (see 4.7.1).
To understand Basic Call, one can
simply ignore all feature exits, all FI
forks, and all end points connected to
labeled start points. These structures
provide only the hooks for other
features to alter Basic Call behavior.

Once again, in and out labels
specify the bindings between stubs
on the Basic Call map and their plug-
in maps. The naming convention for

Figure 32: Basic Call root map (Isolation and Integration)

Figure 33: E.Dialing
(Isolation and Integration � Basic Call)

Figure 34: E.Talking
(Isolation and Integration � Basic Call)

event stubs is illustrated in Figure 29. The following list defines which stubs in Figure 32
contain which plug-in maps:
• the E.Dialing stub contains the E.Dialing plug-in (see Figure 33),
• the E.Talking and E.Talking.t stubs contain the E.Talking plug-in (see Figure 34),
• the E.WFA stub contains the E.WFA plug-in (see Figure 35), and
• the E.WFA.t stub contains the E.WFA.t plug-in (see Figure 36).
The event stub structure was applied five times to the Basic Call feature (E.Dialing, E.WFA,
E.WFA.t, E.Talking, and E.Talking.t). The FI fork structure was applied twice (FI.s2.t and
FI.t2.t) and the end point connected to a labeled start point was applied once (recall) as re-
quired by ACD. Note that the dynamic stubs from the �Standard Root Map� UCM style cor-
respond to the FI forks of the �Isolation and Integration� UCM style. The following list shows
the definitions of all FI forks of the Basic Call feature:
• FI.s2.t and FI.t2.t (both see Figure 32):

IF (ACD) THEN feature
• FI.dialing (see Figure 33):

IF ((NOT wrong_number) AND (NOT correct_number)) THEN feature
• FI.talking (see Figure 34):

IF ((NOT my_end_call) AND
(NOT others_end_call)) THEN
feature

• FI.wfa (see Figure 35) and
FI.wfa.t (see Figure 36):
IF ((NOT ring_timeout) AND
(NOT answer)) THEN feature

6.7.2 Automatic Call Distribution
(ACD)

The new ACD root map (Figure 37)
references the Basic Call root map to
specify the same behavior as ex-
plained in the �Individual Maps�
style (see 4.7.2). The following list
defines which start and end points on
the ACD root map align with which

Figure 35: E.WFA
(Isolation and Integration � Basic Call)

Figure 36: E.WFA.t
(Isolation and Integration � Basic Call)

Figure 37: ACD root map (Isolation and Integration)

end and start points on the Basic Call root map:
• the f.s2.t, f.wfa, f.wfa.t, and f.t2.t start points on the ACD root map references the end

points with the same name on the Basic Call root map,
• the e.wfa, e.wfa.t, recall, s2.t, and t2.t end points references the start points with the same

name.
The following guards have been added to the feature description as required by the integration
step:
• the [ACD] guards after the f.s2.t and f.t2.t start points, and
• the [recall_timeout] guards after the f.wfa.t and f.wfa start points.
Therefore, the ACD feature starts at the f.s2.t start point once the f.s2.t end point on the Basic
Call root map is reached. After performing ACD specific actions, the scenario continues in
Basic Call at start point s2.t. If the agent answers or the recall timer expires, the scenario
reaches the e.wfa.t end point and therefore continues from the e.wfa.t start point in Basic Call.
From the naming conventions, one can deduce that the answer scenario requires normal Basic
Call behavior whereas the recall timeout scenario requires new behavior as shown on the
ACD root map. Note how the path continues from e.wfa.t via the Basic Call root map to
f.wfa.t if the recall timeout scenario occurs. The recall timeout scenario ends at t2.t and e.wfa.
on the ACD root map. Therefore, it continues at the t2.t start point on the Basic Call root map
and at the f.wfa start point (similarly to e.wfa.t and f.wfa.t) on the ACD root map. Finally, it
ends at the recall end point which continues at the recall start point on the Basic Call root
map.

7 Explicit Navigation

Disjoint paths and implicit references make it difficult to follow causal flow.
Therefore:
Use pre/postcondition stubs to join paths, navigate explicitly from map to map, and show
complete scenarios.

8 Explicit Causality of Highest-Level Interaction

Ambiguous feature descriptions are often caused by implicit causal relationships of highest-
level user interactions with the system.
Therefore:
Use paths with �at-location� markers to explicitly show highest-level causal relationships.

9 Context View of Feature

Explicit highest-level causal relationships on a single map and lost naming of user actions
make UCMs unnecessarily complex.
Therefore:
Use higher level UCMs for clear �Context View� of features.

10 Conclusion

The characteristics of a system determine the most effective UCM style. If a few key features
need to be captured rapidly and independently, the �Individual Maps� UCM style is most use-
ful. If a small but evolving system consisting of interacting features needs to be specified, the
�Standard Root Map� UCM style is most appropriate. If a large, evolving system with many
interacting features needs to be documented, the �Isolation and Integration� UCM style is best
applied. This paper introduces patterns for each UCM style, each pattern providing guidelines
on how and when to use the style.

Future work includes the extension of this pattern collection with a more detailed descrip-
tion of the three patlets and four additional patterns. Furthermore, the existing patterns need to
be reevaluated regularly since changes to the UCM Navigator tool may impact these patterns.
Finally, the patterns themselves may impact or spur the development of new features for the
UCM Navigator tool and other such tools.

11 References

1. Amyot, D., Use Case Maps as a Feature Description Language, in S. Gilmore and M.
Ryan (Eds), Language Constructs for Designing Features, pp. 27-44, Springer-Verlag,
2000.

2. Amyot, D. and Andrade, R., Description of Wireless Intelligent Network Services with
Use Case Maps, in SBRC'99, 17th Brazilian Symposium on Computer Networks, Salva-
dor, Brazil, May 1999.

3. Amyot, D. and Logrippo, L., Use Case Maps and LOTOS for the Prototyping and Valida-
tion of a Mobile Group Call System, in Computer Communication, 23(8), April 2000.

4. Amyot, D., Buhr, R.J.A., Gray, T., and Logrippo, L., Use Case Maps for the Capture and
Validation of Distributed Systems Requirements, in RE'99, Fourth IEEE International
Symposium on Requirements Engineering, pp. 44-53, Limerick, Ireland, June 1999.

5. Amyot, D., Logrippo, L., and Buhr, R.J.A., Spécification et conception de systèmes com-
municants : une approche rigoureuse basée sur des scénarios d�usage, in Colloque Fran-
cophone sur l'Ingénierie des Protocoles (CFIP'97), pp. 159-174, Hermes, Paris, 1997.

6. Andrade, R., Applying Use Case Maps and Formal Methods to the Development of Wire-
less Mobile ATM Networks, in Lfm2000: The Fifth NASA Langley Formal Methods Work-
shop, Williamsburg, Virginia, USA, June 2000.

7. Andrade, R. and Logrippo, L., Reusability at the Early Development Stages of the Mobile
Wireless Communication Systems, in Proceedings of the 4th World Multiconference on
Systemics, Cybernetics and Informatics (SCI 2000), Vol. VII, Computer Science and En-
gineering: Part I, pp. 11-16, Orlando, Florida, July 2000.

8. Buhr, R.J.A., Use Case Maps as Architectural Entities for Complex Systems, in Transac-
tions on Software Engineering, pp. 1131-1155, IEEE, December 1998.

9. Buhr, R.J.A. and Casselman, R.S., Use Case Maps for Object-Oriented Systems, Prentice-
Hall, USA, 1995.

10. Buhr, R.J.A., Amyot, D., Elammari, M., Quesnel, D., Gray, T., and Mankovski, S., High
Level, Multi-agent Prototypes from a Scenario-Path Notation: A Feature-Interaction Ex-

ample, in PAAM'98, 3rd Conference on Practical Application of Intelligent Agents and
Multi-Agents, London, UK, March 1998.

11. Cameron, D. et al., Draft Specification of the User Requirements Notation, Canadian
contribution CAN COM 10-12 to ITU-T, November 2000.

12. Chung, L., Nixon, B.A., Yu, E., and Mylopoulos, J., Non-Functional Requirements in
Software Engineering, Kluwer Academic Publishers, 2000.

13. Elammari, M. and Lalonde, W., An Agent-Oriented Methodology: High-Level and Inter-
mediate Models, in Proceedings of the 1st International Workshop on Agent-Oriented In-
formation Systems (AOIS'99), Heidelberg, Germany, June 1999.

14. Goal-oriented Requirement Language (GRL) Web Site, 2001,
http://www.cs.toronto.edu/km/GRL/.

15. Gross, D. and Yu, E., From Non-Functional Requirements to Design through Patterns, in
Requirements Engineering, 6:18-36, Springer-Verlag, 2001.

16. Miga, A., Application of Use Case Maps to System Design with Tool Support, M.Eng.
thesis, Department of Systems and Computer Engineering, Carleton University, Ottawa,
Canada, October 1998, http://www.UseCaseMaps.org/tools/ucmnav/.

17. Miga, A., Amyot, D., Bordeleau, F., Cameron, D., and Woodside, M., Deriving Message
Sequence Charts from Use Case Maps Scenario Specifications, 10th SDL Forum, Copen-
hagen, Denmark, June 2001.

18. Nakamura, M., Kikuno, T., Hassine, J., and Logrippo L., Feature Interaction Filtering
with Use Case Maps at Requirements Stage, in Sixth International Workshop on Feature
Interactions in Telecommunications and Software Systems (FIW'00), Glasgow, Scotland,
UK, May 2000.

19. Sales, I. and Probert, R., From High-Level Behaviour to High-Level Design: Use Case
Maps to Specification and Description Language, in SBRC 2000, 18th Brazilian Sympo-
sium on Computer Networks, Belo Horizonte, Brazil, May 2000.

20. Scratchley, W.C. and Woodside, C.M., Evaluating Concurrency Options in Software
Specifications, in MASCOTS�99, Seventh International Symposium on Modelling, Analy-
sis and Simulation of Computer and Telecommunication Systems, pp. 330-338, College
Park, MD, USA, October 1999.

21. Use Case Maps Web Site and UCM User Group, 1999, http://www.UseCaseMaps.org.
22. Weiss, M., Patterns and Non-Functional Requirements, Presentation at CITO Software

Research Review, March 2001, http://fusion.scs.carleton.ca/~weiss/research/nfr/cito.pdf.
23. Zave, P., Requirements for evolving systems: A telecommunications perspective, in RE'01,

Fifth IEEE International Symposium on Requirements Engineering, pp. 2-9, Toronto,
Canada, August 2001, http://www.research.att.com/~pamela/re1.pdf.

A Pattern Language for Providing Client-Server

Confidential Communication

Jerffeson Teixeira de Souza ∗

School of Information Technology and Engineering,
University of Ottawa
K1N 6N5, Canada

jsouza@site.uottawa.ca

Stan Matwin
School of Information Technology and Engineering,

University of Ottawa
K1N 6N5, Canada

stan@site.uottawa.ca

Abstract

This paper extracts and documents patterns that identify problems and solutions con-
cerning confidentiality in a client-server environment. These patterns are then organized
as a pattern language. The idea is to include a new layer that is responsible for providing
the security framework. This layer is composed by a Client Secure Socket and a Server
Secure Socket. In order to obtain confidentiality, a combination of symmetric and asymmet-
ric (public/private) cryptography techniques is proposed. For data encryption is proposed
the use of the symmetric system with a Session Key. And for exchanging the Session Key,
the public/private key pair model is used. This combination provides a fast and reliable
cryptosystem.

Keywords: Confidentiality, Client-Server Communication, Cryptography, Pattern Lan-
guage.

1 Introduction

The confidentiality of the data exchanged in a business environment has become more and more
important. The design and implementation of a secure communication channel is a hard and
expensive task. The idea of this work is to guide the development of a client-server application

∗Sponsored by CAPES (Brazilian Federal Agency for Graduate Studies).

1

that requires confidential communication. In order to do that, the combination of two cryptogra-
phy approaches: Symmetric and Asymmetric is suggested. The goal is to use the advantages of
each approach and keep the performance of the system high. This paper presents a collection of
patterns that help developers create client-server applications. The focus of this paper is on the
confidentiality of the data exchanged in the client-server communication. It was designed to be
used by developers that need to include security features in their client-sever applications.

The patterns presented in this paper were conceived when I was required to develop a client-
server application that should implement some security features. During my research, I realized
that most of the existing client-server applications used a very similar variation of key exchange.
From this observation, I started extracting the common solutions from this applications and creat-
ing this pattern language to document such solutions so that new developments could be facilitated.

2 Background

Cryptography can be defined as the art or science encompassing the principles and methods of
transforming an intelligible message into one that is unintelligible, and then retransforming that
message back to its original form [4].

2.1 Symmetric Cryptography

In symmetric cryptography, the encryption algorithm requires the same secret key (called Session
Key) to be used for both parts of the communication [4]. Because of the type of the key, this
process is called secret key encryption. With this approach, an original message is encrypted with
a Session Key and sent to the receiver. The receiver decrypts this message with the same Session
Key to retrieve the original message.

The advantage of these algorithms is that they are fast and efficient. However, the problem is
the key exchange, i.e., the mechanism for safely ensuring both parties, the sender and the receiver,
have the secret key. This is one of the weakest areas of symmetric cryptography. How do you
send the key to your partners? You cannot just send it in an e-mail message, because it could be
intercepted and compromise your security. Furthermore, how can you be sure that your partners
will keep your key secure?

A variant of this approach works with two Session Keys, one to each part of the communication.
In each part, one key is used for encryption and the other for decryption. This variant is used in
this work.

2.2 Asymmetric (Public/Private Key) Cryptography

One solution to the problem of symmetric key security is asymmetric cryptography. This uses two
keys that are mathematically related. One key is called the private key and is never revealed, and
the other is called the public key and is freely given out to all potential correspondents [4]. The
complexity of the relationship between the public key and the private key means that, provided
the keys are long enough, it is practically impossible to determine one from the other. The one

2

problem with asymmetric cryptography is that it is CPU usage is very high and this can cause
potential performance problems when many simultaneous sessions take place.

The almost universal public/private key algorithm is named RSA [5]. A sender uses the receiver’s
public key to encrypt the message. Only the particular receiver has the respective private key to
decrypt the message. In addition, it is important to inform that the patent for the RSA algorithm
(used is this work), that was issued on September 20, 1983, exclusively licensed to RSA Security
Inc. by the Massachusetts Institute of Technology, expired on September 20, 2000. Since then,
RSA Security is making the RSA algorithm publicly available and waiving its rights to enforce
the RSA patent for any development activities including this algorithm occurring since September
2000 [5].

3 Guidelines for the Readers

The patterns used here have a form consisting of eleven sections. The Context section shows the
situations in which the pattern may be applied. The Problem section presents a question that
expresses the problem this pattern solves. The Forces section describes the driving forces behind
possible solutions. The Solution section presents an answer to the question from the problem
section that resolves the forces as well as possible. The Structure section is a detailed specification
of the structural aspects of the pattern. The Dynamics section describes the run-time behavior of
the pattern. The Rationale section explains the rationale behind the solution. The Sample Code
section presents code fragments that illustrate how the pattern can be implemented in Java. The
Resulting Context section describes the context that we find ourselves in after the pattern has
been applied. The Known Uses section describe places where the pattern is used. Finally, The
Related Patterns section describes any related patterns. Examples of these sections can be found
in [3] and [2]. Some sections are not presented in some patterns.

The problem and the solution sections are sufficient to get an overview of the pattern. The
other sections explain the rationale behind the pattern and allow the readers to gain a deeper
insight of it.

4 The Pattern Language

4.1 Overview

The pattern language presented in this paper has five patterns. The relationship among these
patters is showed in Figure 1. As we can see, the Client-Server Secure Communication Pattern is
the main one. All the others are proposed to specialize the solution presented in the first pattern.

The following table shows all patterns summarizing their problems and the respective solutions.

3

Data Encryption/Decryption

Session Key Exchange

Public/Private Keys Generation Session Key Generation

Client-Server Secure Communication

Figure 1: The Pattern Language Structure

Pattern Problem Solution
Client-Server Secure
Communication

• How to provide con-
fidentiality in a client-
server communication?

• Provide an extra layer with two compo-
nents: Secure Client Socket and Secure Server
Socket that encrypts and decrypts the data.
• Use a combination of symmetric and asym-
metric cryptography techniques.

Public/Private Key
Generation

• How to generate a pub-
lic/private key pair?

• Get the key pair by using the RSA algorithm.

Session Key
Generation

• How to generate a Ses-
sion Key?

• Set the session key to a random number.

Session Key
Exchange

• How to exchange the
session keys?

• Use an asymmetric approach to send the
Servers Session Key to the Client and vice-versa.

Data Encryption/
Decryption

• How to encrypt and
decrypt data with the
session key?

• Produce encrypted data as an exclusive-or of
the original data and the key.

4.2 The Patterns

4.2.1 Client-Server Secure Communication

Context

• You are developing a Client-Server application where the confidentiality of the exchanged
data in the communication is important.

Problem

• How do you provide confidentiality in a client-server communication?

4

Forces

• efficiency - Data encryption must be as fast as possible.

• independence - Users do not have to worry about security.

• security - The more secure the system is, the better.

Solution

• Create a security layer to be included in the communication environment so that this layer
is responsible for guaranteeing the confidentiality of the data exchanged.

• Create two components to this new layer: a Client Secure Socket and a Server Secure Socket.
These components implement all security features. These are responsible for establishing
the communication parameters and for encrypting and decrypting the data, so that both
client and server can work independently of this new layer.

• Then, generate a public/private key pair (Public/Private Key Generation) and a Session
Key (Session Key Generation) to the Client and the Server.

• Use a combination of symmetric and asymmetric (public/private key) cryptography tech-
niques. To encrypt and decrypt data (Data Encryption/Decryption) use a symmetric key
(Session Keys). To exchange the symmetric key (Session Key Exchange) use an asymmetric
algorithm.

Structure

The Client Secure Socket must be placed in the client side. All data received and sent by the
client must pass through by this component. The same happens in the server side. When the
client sends a piece of information to the server, the Client Secure Socket gets it, encrypts it and
sends it to the server.

On the other side, the Server Secure Socket intercepts the message, decrypts it and deliveries
it to the Server so that both client and server can work independently of this new layer. The
structure is showed below:

Client Secure Socket

Client

Data

Server Secure Socket

Data

Encrypted Data

Server

Figure 2: New Layer Structure

5

Dynamics

Before the data exchanging starts, it is necessary that the Client Secure Socket and Server Secure
Socket have some parameters such as Session Keys and Public Keys. These parameters come
from the initialization process that takes place in the beginning of the communication. This
initialization includes the following steps:

1. The Client Secure Socket generates its Session Key;

2. The Server Secure Socket generates its Session Key;

3. The Client Secure Socket generates the Client’s Public/Private key pair;

4. The Server Secure Socket generates the Server’s Public/Private key pair;

5. The Client Secure Socket sends the Client’s Public Key to the Server side;

6. The Server Secure Socket sends the Server’s Public Key to the Client side;

7. The Client Secure Socket sends to the Server Secure Socket its Session Key encrypted with
Server’s Public Key;

8. The Server Secure Socket receives and decrypts the Client’s Session Key with Server’s Private
Key;

9. The Server Secure Socket sends to the Client Secure Socket its Session Key encrypted with
Client’s Public Key;

10. The Client Secure Socket receives and decrypts the Server’s Session Key with Client’s Private
Key;

In order to exchange data after the initialization, the following steps must be done:
Data from the Client to the Server:

1. The Client delivers the data to the Client Secure Socket;

2. The Client Secure Socket receives and encrypts the data with the Server’s Session Key;

3. The Client Secure Socket sends the data to the Server side;

4. The Server Secure Socket intercepts and decrypts the data with the its Session Key;

5. The Server Secure Socket delivers the data to the Server.

Data from the Server to the Client :

1. The Server delivers the data to the Server Secure Socket;

2. The Server Secure Socket receives and encrypts the data with the Clients’s Session Key;

6

Client Secure Socket

Generates Session Key(CSK)

Server Secure Socket

Generates Public/Private
Key Pair (CPuK, CPrK)

Generates Public/Private
Key Pair (SPuK, SPrK)

Public Key (CPuK)

ECSk=Encrypt(CSk,SPuK)

SSk=Decrypt(ESSk,CPrK)

Generates Session Key (SSK)

CSk=Decrypt(ECSk,SPrK)

ESSk=Encrypt(SSk,CPuK)

Public Key (SPuK)

Figure 3: Initialization Process

3. The Server Secure Socket sends the data to the Client side;

4. The Client Secure Socket intercepts and decrypts the data with the its Session Key;

5. The Client Secure Socket delivers the data to the Client.

Rationale

The symmetric approach is able to process the encryption of large messages in a very fast way.
However, its security relies on the key exchange. The asymmetric approach is a much more secure
encryption technique, but the problem with such technique is that it requires an intensive CPU
slice and this can cause potential performance problems when many simultaneous sessions take
place.

The combination of symmetric and asymmetric cryptography techniques provides us with a
reliable and fast security framework. The data is exchanged by using a pair of symmetric keys,
one for the client and one for the server, proportioning a really fast solution. The use of two
session keys makes the system more secure. The symmetric keys (session keys), that are small
pieces of information, are exchanged by using the asymmetric approach. As this approach is much
secure, it guarantees the security of the symmetric keys and consequently of the whole system.

7

Client Client Secure Socket Server Secure Socket Server

Data

Data

EData

EData=Encrypt(Data,SSK)

Data=Decrypt(SData,SSK)

Figure 4: Data Exchange (from Client to Server)

Note that the security of the session keys exchanged in the initialization process is in fact that,
as the session key is encrypted with the receiver’s public key, only the receiver can decrypt this
message and get the session key, because only the receiver knows the correspondent private key.

Resulting Context

The application of this pattern creates a security framework that enables data encryption in
a reliable and fast basis. However, there are some questions that must be answered before a
real system can be built. These questions concern the generation of the symmetric (Session Key
Generation) and asymmetric (Public/Private Key Generation) keys, the exchange of the symmetric
keys (Session Key Exchange) and the data exchange (Data Encryption/Decryption).

Know Uses

The combination of symmetric and asymmetric cryptographic approaches is used by the Secure
Socket Layer (SSL) Protocol [6] that runs over TCP/IP to provide security to communication
between clients and servers.

Related Patterns

The Information Secrecy and Cryptographic Metapattern are presented in [1] within a pattern
language for cryptographic software.

4.2.2 Public/Private Keys Generation

Context

• You are developing a Client-Server application and you are applying the Client-Server Secure
Communication Pattern.

8

Problem

• How do you generate a public/private key pair?

Forces

• efficiency - The generation of the key pair must consume the least possible amount of time.

• security - It must be as hard as possible to discover the Private Key from the Public Key.

Solution

• Follow the algorithm below to generate the key pair :

1. Choose two large prime numbers p and q, with 512 bits of length or longer.

2. Calculate n = p ∗ q.

3. Calculate f(n) = (p− 1) ∗ (q − 1).

4. Find an integer e which is a relative prime to f(n), i.e., a number e that has no common
divisors with f(n).

5. Calculate d, the inverse of e modulo f(n), i.e., d = e−1 mod f(n).

6. Set the Public Key to {e, n}.
7. Set the Private key to {d, n}.

Rationale

The efficiency of the algorithm above is based on hardness of factorization, in the sense that it
is easy to multiply two big prime numbers, but for most very large primes, it is extremely time-
consuming to factor them. This way, the algorithm provides a fast way to generate the key pair
and makes it infeasible to discover p and q from n = p ∗ q. These characteristics guarantee that it
is unfeasible to get the Private Key from the Public Key.

Resulting Context

With theirs public/private key pair, client and server are now able to apply the asymmetric
cryptographic approach for data exchanging in a safe basis (Session Key Exchange).

Know Uses

The RSA Algorithm [5] uses the procedure described in this pattern to generate the public/private
key pair.

9

Sample Code

// Primes Generation

public static BigInteger[] generatePrimes() {

BigInteger PrimesTemp[] = new BigInteger[2];

Random Rdn = new Random();

// The constructor BigInteger(int, int, Random) returns a randomly

// selected BigInteger with the specified bitLength that is probably prime.

PrimesTemp[0] = new BigInteger(NumBitsKey,10,Rdn);

Rdn.setSeed(Ln.longValue());

PrimesTemp[1] = new BigInteger(NumBitsKey,10,Rdn);

return PrimesTemp;

}

// Key Pair Generation

public static KeyPair generateKeys(BigInteger p, BigInteger q) {

BigInteger BIntAux;

//Represents the public/private key pair

KeyPair KPairAux = new KeyPair();

N = p.multiply(q);

FN = (p.subtract(BigInteger.ONE).multiply(q.subtract(BigInteger.ONE));

Random RdnAux = new Random();

BIntAux = new BigInteger(NumBitsKey,RdnAux);

// Find e

while ((FN.gcd(BIntAux)).compareTo(BigInteger.ONE) != 0) {

RdnAux = new Random();

BIntAux = new BigInteger(NumBitsKey,RdnAux);

}

E = BIntAux;

D = E.modInverse(FN);

KPairAux.PrKey = new PrivateKey(D,N);

KPairAux.PuKey = new PublicKey(E,N);

return KPairAux;

}

10

4.2.3 Session Key Generation

Context

• You are developing a Client-Server application and you are applying the Client-Server Secure
Communication Pattern.

Problem

• How do you generate a Session Key?

Forces

• efficiency - The generation of the session key must consume the best possible amount of
time.

• security - The larger the session key is, the more secure the system is.

Solution

• Set the session key to a random generated number, with 128 bits or longer.

Rationale

By setting the session key to a random number, we have a fast method of generation. The size
of the key is an important factor to be considered. A 128-bit key or longer provides a very good
security.

Resulting Context

Now, both client and server have their own Session Keys. However, in order to start the secure
communication, it is necessary that both client and server have the Session Key of each other
(Session Key Exchange).

Know Uses

Most of the symmetric crytosystems, such as DES and IDEA [4], use random generated numbers
as keys.

Sample Code

This Java method generates a random Session Key of Key Size bytes.

static byte[] generateSessionKey (int Key_Size){

byte[] Skey= new byte[Key_Size];

Random Ran= new Random();

Ran.nextBytes(Skey);

11

return Skey;

}

4.2.4 Session Key Exchange

Context

• You are developing a Client-Server application. You are applying the Client-Server Secure
Communication Pattern and both Client and Server Secure Sockets have its public/private
key pair and the session key. Besides, both client and server know the public key of each
other.

Problem

• How do you exchange the session keys?

Forces

• efficiency - Data encryption must be as fast as possible.

• security - The more secure the session keys are, the more secure the whole system is.

Solution

• Use an asymmetric approach to send the Server’s Session Key to the Client and vice-versa.

• Let Sk be the sender’s Session Key and PuKey = {e, n} the receiver’s Public Key. Compute
the encrypted session key ESk as ESk = Cke mod n.

• Send this encrypted key to the receiver.

• To decrypt the session key compute Sk = Eskd mod n. Where d and n are parts of the
receiver’s private key {d, n}.

Rationale

As asymmetric cryptography is very secure, its use in the session key exchange guarantees the
security of the whole system. In addition, as the session keys are small, it makes this a quite fast
approach.

Resulting Context

After this pattern both client and server know the Session Key of each other. At this moment,
they can start the secure communication (Data Encryption/Decryption).

12

Know Uses

The RSA Algorithm [5] uses the procedure described in this pattern not to exchange keys in
particular but to perform data encryption and decryption in general.

Sample Code

protected byte[] cryptSessionKey(byte[] stream, BigInteger e, BigInteger n) {

BigInteger M = new BigInteger(stream);

BigInteger C;

C = M.modPow(e,n);

return C.toByteArray();

}

protected byte[] decryptSessionKey(byte[] stream, BigInteger d, BigInteger n) {

BigInteger M = new BigInteger(stream);

BigInteger C;

C = M.modPow(d,n);

return C.toByteArray();

}

4.2.5 Data Encryption/Decryption

Context

• You are developing a Client-Server application. You are applying the Client-Server Secure
Communication Pattern and both client and server have the session key of each other.

Problem

• How do you encrypt and decrypt data?

Forces

• efficiency - Data encryption must be as fast as possible.

• security - The information exchanged in the communication must be as secure as possible.

Solution

• Let T be the data to be encrypted and Sk the receiver’s session key. Compute the encrypted
data C as C = T xor Sk.

• In order to decrypt an encrypted data C, compute the original data T as T = C xor Sk.
Where Sk is the receiver’s session key.

13

Rationale

The use of the xor (exclusive − or) operator provide an efficient encryption method, mainly be-
cause of its speed. As the key used here was exchanged in a secure basis, the confidentiality of the
data is guaranteed.

Other more used encryption techniques such as DES, IDEA, RC5, etc. could be used as solutions
for the problem of encryption/decryption of data based on the exchanged keys. This could bring
to the application an increased level of security really necessary in some situations where security
is the first priority (such as financial applications, etc.). However, the use of such algorithms
would increase the complexity of the system in such a way that the cost-benefit analysis would
be unfavorable. By considering that, it seems that the use of the xor allows a very good level of
security without increasing the complexity of the system.

Sample Code

This Java method crypts an array of bytes M by using a key K. M and K must have the same
length.

static byte[] encrypt/decrypt(byte[] M, byte[] K) {

byte[] D = new byte[M.length];

for (i=0;i<M.length;i++){

D[i] = (byte)(M[i]^K[i]);

}

return D;

}

5 Conclusions

The pattern language presented in this paper provides guidelines for secure client-server application
developers. The five patterns presented here discuss all features that are necessary to build
an efficient security environment. In addition, the composition of symmetric and asymmetric
cryptosystems allows us to build systems in a reliable and fast basis.

The most important advantage in the application of this Pattern Language is in fact that
developers do not need to have a deep knowledge about cryptography to create a very efficient
encryption environment.

6 Acknowledgments

I would like to thank my classmates, my friends Rossana Castro and Igor Sales and my brother
Cidcley Souza, who provided me with many valuable suggestions for improvement. Also, I would
like to thank my shepherd Alexandre Braga for his relevant comments on this paper. Finally, we
acknowledge CAPES for its financial support.

14

References

[1] Braga, A. M.,Rubira, C. M. F. and Dahab, R., Tropic: A Pattern Language for Cryptographic
Software, Proceedings of the Pattern Language of Program (PLoP 1998), USA, 1998.

[2] Buschmann, F., et al., Pattern-Oriented Software Architecture, John Wiley and Sons, New
York, NY., 1996.

[3] Gamma, E., Helm, R., Johnson, R. and Vlissides, J., Design Patterns: Elements of Reusable
Object-Oriented Software, Addison-Wesley, 1995.

[4] Menezes, A.J., Orschot, P.C. and Vanstone, S.A. Handbook of Applied Cryptography, CRC
Press, 1996.

[5] RSA Security Inc. www.rsa.com.

[6] Treese, G. W. and Stewart L. C., Designing Systems for Internet Commerce, Addison-Wesley,
1998.

15

Padrões de Análise para Aplicações de Gestão Urbana em
Sistemas de Informação Geográfica1

Jugurta Lisboa Filho
Universidade Federal de Viçosa
Departamento de Informática,
36571-000, Viçosa/MG, Brasil

jugurta@dpi.ufv.br

Cirano Iochpe
Universidade Federal do Rio Grande do Sul

Instituto de Informática,
91501-970, Porto Alegre/RS, Brasil

ciochpe@inf.ufrgs.br

Karla A.V. Borges
PRODABEL

31230-000, Belo Horizonte/MG, Brasil
karla@pbh.gov.br

ABSTRACT

An analysis pattern is any part of a requirement analysis specification that can be reused in the
design of other information systems as well. Urban management systems (e.g. Tax Control
Systems, Urban Transportation System) are implemented in a similar way for many
Municipalities. This paper proposes three analysis patterns that make possible the reuse of
geographic database design for urban area planning and management applications, developed
in Geographic Information System (GIS).

Keywords: Analysis Patterns, GIS, Conceptual Model, Reuse.

RESUMO

Um padrão de análise é qualquer parte de uma especificação de requisitos que se origina em
um projeto e pode ser reutilizada em outros projetos de sistema de informação. Sistemas de
gestão urbana (ex.: Sistemas de informação urbana, parcelamento do solo, Controle de
Tributos Municipais, Sistema de Transporte, Sistema de saúde) possuem a característica de
serem implementados de forma muito semelhante em diferentes municípios. O artigo propõe
três padrões de análise que ilustram a possibilidade de reutilização de esquemas de banco de
dados em aplicações da área de gestão urbana, desenvolvidos com o uso de Sistemas de
Informação Geográfica (SIG).

Palavras-clave: Padrões de análise, SIG, Modelo conceitual, Reutilização.

1 Trabalho financiado parcialmente pela FAPEMIG e pelo CNPq.

1 INTRODUÇÃO

O sucesso do desenvolvimento de grandes sistemas de informação tem como um de
seus pontos chave a representação, de forma não ambígua, dos resultados da análise de
requisitos e do projeto através do uso de formalismos bem conhecidos. Experiências têm
demonstrado que as etapas de análise de requisitos e projeto conceitual do banco de dados são
atividades complexas e que demandam muito tempo. Segundo Johannesson [13], uma das
razões para isso é que o conhecimento do domínio da aplicação e o levantamento dos
requisitos do sistema são feitos, quase sempre desde o início, para cada novo sistema sendo
desenvolvido.

Aplicações baseadas em Sistemas de Informação Geográfica (SIG), embora
apresentem alguns requisitos especiais (ex.: manipulação de dados referenciados
geograficamente), devem ser desenvolvidas utilizando-se técnicas que são empregadas com
sucesso no desenvolvimento de qualquer sistema de informação. Uma das técnicas que vem
recebendo atenção especial, principalmente pela comunidade de projetistas de sistemas
orientados a objetos, é o emprego de instrumentos que possibilitem a reutilização de
componentes de software através da definição de padrões.

Um padrão é uma combinação recorrente de elementos de modelagem que ocorrem
em algum contexto [6]. Padrões podem ser aplicados nas diversas etapas do desenvolvimento
de software, recebendo, consequentemente, diferentes denominações como padrões de
análise, padrões de projeto, padrões de arquitetura, idiomas (padrões de implementação), etc.

A reutilização de componentes de software vem sendo feita, embora informalmente,
desde a implementação dos primeiros programas de computador. O uso do conceito de
padrões de projeto na área da Ciência da Computação é, contudo, bem mais recente [10]. O
emprego de padrões na área de desenvolvimento de software contribui para aumentar a
reusabilidade e a qualidade de componentes de software. Padrões de projeto possibilitam a
disseminação do conhecimento e a troca de experiências entre projetistas, bem como facilitam
a comunicação entre diferentes membros de um projeto [20].

Padrões de análise, tem sido propostos como instrumentos para a reutilização de
soluções durante as fases de análise de requisitos e modelagem conceitual do banco de dados
[6], [9], [12], [13], [19] e [20].

Um padrão de análise é qualquer parte de uma especificação de requisitos que se
origina em um projeto e pode ser reutilizada em diversos projetos [20]. Padrões de análise
possibilitam a reutilização de soluções de análise em diferentes sistemas. Alguns padrões são
menos genéricos e podem ser reutilizados em diferentes aplicações dentro de um mesmo
domínio, enquanto outros padrões podem ser aplicados em diferentes domínios. Como
exemplos de padrões de análise, específicos para um domínio, pode-se citar os padrões para
aplicações na área de seguradoras [20] e os padrões para aplicações na área bancária [17].
Dentre os exemplos de padrões mais genéricos estão o padrão para reservas e locação de
entidades reutilizáveis (ex.: reserva de quarto de hotel, reserva para aluguel de automóvel) [7],
os padrões Observações e Medidas [9] e os padrões Contratos e Documentos [12].

Uma comparação dos diversos tipos de padrões existentes pode ser encontrada em [3].
Segundo Fernandez [8], dentre os motivos que diferenciam os padrões de análise dos padrões
de projeto, pode-se citar:

• padrões de análise são dependentes da aplicação, pois sua semântica descreve aspectos
específicos de algum domínio ou aplicação;

• padrões de projeto estão mais próximos da implementação por focar, principalmente,
os aspectos típicos de projeto como, por exemplo, interfaces homem-máquina, criação
de objetos, propriedades estruturais básicas;

• padrões de projeto podem ser aplicados a um número maior de aplicações. Por
exemplo, a maioria das aplicações possui interface homem-máquina.

Uma particularidade das aplicações de SIG é que, normalmente, os dados manipulados
por essas aplicações possuem um forte relacionamento entre si, devido a esses dados
retratarem fenômenos geográficos que ocorrem sobre uma mesma região geográfica. Por
exemplo, muitos dados espaciais (ex.: dados temáticos) são derivados ou utilizam dados
básicos (ex.: dados topográficos) para serem representados. O conjunto de tipos de dados que
compõe, normalmente, a base cartográfica para uma determinada aplicação de SIG possui
uma estrutura conceitual muito parecida para a maioria das aplicações. Essa particularidade
torna as aplicações de SIG fortes candidatas a se beneficiarem da reutilização de projetos de
bancos de dados já existentes [14], como já vem ocorrendo com o compartilhamento de dados
geo-espaciais em meio digital [21].

O artigo propõe três padrões de análise aplicáveis à etapa de análise de modelagem
conceitual de banco de dados geográficos na área de gestão urbana. O restante do artigo está
organizado como segue. A Seção 2 descreve a abordagem UML-GeoFrame, usada na
modelagem conceitual de aplicações de SIG. A Seção 3 descreve os padrões de análise
identificados em aplicações na área de gestão urbana. A Seção 4 descreve as conclusões finais
e as perspectivas de trabalhos futuros.

2 MODELO CONCEITUAL PARA BANCO DE DADOS GEOGRÁFICOS

A solução apresentada por padrões de análise para projeto de banco de dados
geográficos deve incluir um esquema conceitual de dados. Aplicações de SIG impõem uma
série de requisitos de modelagem (ex.: fenômenos geográficos x objetos convencionais, visão
de campo x visão de objetos, aspectos espaciais, múltiplas representações, aspectos temáticos,
etc.), os quais são representados através de modelos conceituais próprios para estas aplicações
[16].

Em [15], mostrou-se a adequação da abordagem UML-GeoFrame para especificação
de padrões de análise para aplicações de SIG. Esta abordagem tem como base o modelo de
classes da Linguagem UML-Unified Modeling Language [1], sendo que a modelagem dos
requisitos da informação geográfica é feita através de estereótipos definidos no framework
GeoFrame [15].

O GeoFrame é um framework conceitual que serve de base para a modelagem de
aplicações de SIG, fornecendo um diagrama de classes a partir das quais as classes do
domínio da aplicação são modeladas (especializadas). Para possibilitar a obtenção de
esquemas de dados de fácil entendimento por parte de usuários leigos, o GeoFrame fornece
um conjunto de estereótipos, ilustrado na Figura 1, cuja semântica é a de substituição de
relacionamentos entre as classes da aplicação e as classes do GeoFrame.

Na Figura 1, o primeiro conjunto de estereótipos é usado para diferenciar os dois
principais tipos de objetos pertencentes a um banco de dados geográficos. Fenômeno
geográfico é especializado em Objeto geográfico [3] e Campo geográfico [=], segundo as
duas formas de percepção dos fenômenos geográficos descritas por Goodchild [11]. Objetos
não geográficos, ou convencionais, são modelados de forma tradicional, sendo identificados
pelo estereótipo [4].

Componente espacia l
de campos geográf icos

Componente espacia l
de objetos geográf icos

Fenômeno geográf ico e
Objeto convencional

�

�

� Ponto

Linha

Pol ígono

Obj. espacial complexo

3
=

4

Campo geográf ico

Objeto não geográf ico

Objeto geográf ico

9

8

1

:
<
;

Pontos i r regulares

Grade de pontos

TIN

Pol ígonos adjacentes

Isol inhas

Grade de célu las
<<função>> função categór ica

FIGURA 1 - Estereótipos do framework GeoFrame

O segundo e o terceiro conjunto de estereótipos são usados para a modelagem do
componente espacial de fenômenos segundo as visões de objeto e de campo, respectivamente.
A ocorrência de múltiplas representações é especificada combinando-se dois ou mais
estereótipos. Por exemplo, uma classe Município pode ter duas formas de abstração de seu
componente espacial, pontual e/ou poligonal, sendo especificado como [�
�].

Por último, o estereótipo <<função>> é usado para caracterizar um tipo especial de
associação que ocorre quando da modelagem de funções categóricas. Segundo Chrisman [4],
numa estrutura de cobertura categórica o espaço é classificado em categorias mutuamente
exclusivas, ou seja, uma variável possui um valor do tipo categoria em todos os pontos dentro
de uma região (ex.: tipos de solos).

A Figura 2 ilustra um extrato de esquema conceitual usando a notação UML-
GeoFrame, onde percebe-se diversos temas (ex.: Ativ_Carvão, Uso_Solo), modelados como
pacotes. Cada tema reúne classes coesas, que podem ser subclasses de objetos comvencionais
[4] (ex.: EmpresaCarbonífera e TipoUsoSolo), de fenômenos geográficos percebidos na
visão de objetos [3] (ex.: Município, Jazida) e na visão de campo [=] (ex.: UsoCobSolo,
Topografia). Exemplos de múltiplas representações aparecem nas classes MinaCarvão [�
�],
RecursoHidrico [�
�] e Topografia [89:�].

ATIV_CARV Ã O

BASE_CART

USO-SOLO

1

*

1*

1

*

Município

 nomeMun : char
 dataEmancip : date
 áreaMun : real
 histórico : char
 classFuncional : int

3

EmpresaCarbonífera

 nomeEmpresa : char
 produção : int
 numOperár ios : int
 produtividade : real

4

Jazida

 lavrado : boolean

3
MinaCarvão

 nome : char
 t ipoExploração : int
 at iva : boolean

�

3

UsoCobSolo
=

1

TipoUsoSolo

 t ipoUso : int
 descrTipoUso : char

4

Topografia
=

89;
Rodovia

 jur isdição : char

3

�

ImagemSat

 data : date

=

<
RecursoHídrico

 PermanIntermi : boolean
�

31

*

função

FIGURA 2 – Exemplo de esquema de dados UML-GeoFrame

3 PADRÕES DE ANÁLISE EM APLICAÇÕES URBANAS

Sistemas de geoprocessamento, mais especificamente os SIG, são usados em diversas
áreas como Meio Ambiente, Telecomunicações, Negócios e Marketing, Monitoramento de
Frotas, Administração Pública, entre outras. Em cada uma dessas áreas de aplicação é
necessário criar um modelo de análise específico para o universo a ser trabalhado, de tal
forma que os objetos observados possam estar relacionados com uma determinada região
geográfica.

Na área de gestão urbana, a região de interesse corresponde a uma cidade, a qual é
formada pelo ambiente natural e construído, possui traçado viário, construções, áreas livres,
vegetação, clima, sua população, etc.

A cidade é um organismo vivo, mutante, dinâmico onde existem contrastes profundos
que necessitam ser administrados em prol da qualidade de vida de sua população [2]. Sistemas
tradicionais de representação, como os mapas, são estáticos mesmo que produzidos por meio
de computador (sistemas de CAD), pois representam situações existentes no momento em que
foram produzidos. Um SIG possibilita dinamizar os mapas, mantendo o registro da evolução
da realidade, com base em dados coletados a partir de tarefas administrativas. Para tanto, a
gestão necessita ver a cidade como um todo. Independentemente das diferentes visões e
atuações sobre a cidade, ela é única e sensível à condição temporal [2].

A necessidade de gerenciar o município de forma integrada e a preocupação com a
qualidade de vida urbana têm levado as prefeituras a se interessarem cada vez mais pelo uso
de SIG [2]. No entanto, o primeiro desafio é obter recursos humanos com capacidade para
projetar, implantar e manter os sistemas de gestão utilizando a tecnologia de SIG. A
dificuldade é ainda maior quando o problema é transferido para prefeituras de porte médio ou
pequeno.

Através da experiência adquirida pelos autores no desenvolvimento de aplicações de
gestão urbana, a primeira característica que se observa é o grande potencial de reusabilidade
das soluções adotadas, seja por diferentes órgãos de uma mesma administração, seja por
diferentes prefeituras. Padrões de análise provêem um mecanismo altamente considerável na
redução destas dificuldades, uma vez que: (1) possibilitam que um projetista menos
experiente reutilize conhecimentos já testados e validados anteriormente; (2) na gestão
urbana, o ambiente básico que compõe a base cartográfica digital (ex.: ruas, quadras, lotes e
bairros) pode ser reutilizado por diversas aplicações.

A seguir, são apresentados três padrões de análise, identificados a partir da análise de
esquemas conceituais de diversos bancos de dados em aplicações de gestão urbana. Por
questões de simplificação são apresentados apenas os atributos e operações essenciais em
cada exemplo.

Para a especificação dos padrões optou-se pela estrutura definida por Meszaros [18],
na qual a descrição de um padrão deve conter, no mínimo, os seguintes itens: Problema-
Contexto-Forças-Solução.

3.1 Padrão: Malha Viária Urbana

Problema:
Quais os elementos pertencentes à malha viária de uma cidade?

Contexto:
No Brasil, praticamente todas as cidades apresentam um mesmo padrão de

organização, no qual são estruturadas com base em suas vias de locomoção (ex.: ruas,
avenidas, travessas). O conjunto de trechos de vias e seus cruzamentos formam uma rede
viária urbana.

Forças:
• Cada via de locomoção, considerada uma instância de logradouro, deve possuir um

código de identificação e um nome, além de estar, normalmente, dividida em diversos
trechos.

• Um trecho de logradouro corresponde ao segmento de via compreendido entre duas
conexões, em seqüência, deste com outros logradouros que o cruzam ou interceptam.

• O conjunto formado pelas conexões (ou pontos terminais) e pelos trechos de
logradouros constituem a malha viária urbana.

Solução:
A Figura 3 mostra o diagrama de classes pertencente ao padrão.

MalhaViár ia

* 2

*

* *

MalhaViar ia
3

�

Cruzamento
Logradouro

3

�

Trecho
Logradouro

3

�
idTrecho
numInic
numFinal

Logradouro 4

codLogr
nomeLogr

conecta

intercepta

FIGURA 3 – Diagrama de classes do padrão “Malha Viária Urbana”

Para cada fenômeno geográfico, o padrão especifica apenas as propriedades (atributos
e operações) mais genéricas, as quais devem ser estendidas e especializadas para cada
aplicação específica. Consequentemente, são especificadas as possíveis abstrações de seus
componentes espaciais. Por exemplo, o componente espacial da classe TrechoLogradouro é
especificado como sendo linear [�].

Participantes:
A classe MalhaViária é um fenômeno geográfico representado por um objeto espacial

complexo, o que é simbolizado por [�]. Nesta classe podem ser definidos atributos relativos à
rede como um todo. Logradouro é uma classe convencional implementada, normalmente,
como uma tabela em um SGBD relacional. Cada logradouro é composto de diversos trechos
de logradouros, que correspondem às arestas da rede. Um trecho de logradouro pode estar
conectado a outros trechos de logradouros, mas esta conexão é representada por instâncias da
classe CruzamentoLogradouro, que são os nós da rede. As operações de manipulação dos
elementos da rede podem ser implementadas como métodos das classes MalhaViária,
TrechoLogradouro e CruzamentoLogradouro, dependendo de sua funcionalidade.

Padrões relacionados:
O padrão de análise Malha Viária Urbana utiliza o padrão “State Across a Collection”

[5] na modelagem dos fenômenos Logradouro e Trecho de Logradouro. Além disso, pode-se
abstrair um novo padrão de projeto que modele uma estrutura de uma rede qualquer, com-
posta de arcos e nós, cuja topologia entre seus elementos seja mantida a fim de possibilitar a
realização de operações comuns a estruturas de redes como cálculo do caminho ótimo
(necessita de pesos para cada arco), navegação através da rede, distância entre dois nós, etc.

3.2 Padrão: Rede de Circulação Viária Urbana

Problema:
Como modelar os elementos de uma rede de circulação viária urbana?

Contexto:
A circulação de veículos em uma cidade é realizada sobre a malha viária urbana. A

rede de circulação viária fornece o sentido do tráfego, enquanto a malha viária fornece a
estrutura de vias. Algumas vias de locomoção possuem sentido único e outras sentido duplo.
Cada trecho é classificado de acordo com sua importância para o sistema viário como, por
exemplo, se é uma via coletora, de ligação regional ou uma via local (diversas aplicações
fazem uso dessas informações).

Forças:
• Cada trecho de circulação, que pode compreender vários trechos de logradouro, possui

informações sobre o sentido permitido para tráfego de veículos.

• Alguns trechos não permitem circulação de veículos (ex.: ruas de pedestres).

Solução:
A Figura 4 ilustra o diagrama de classes do padrão. Uma rede de circulação viária

sobrepõe a rede da malha viária, desta forma, o padrão Rede de Circulação Viária Urbana
estende o padrão Malha Viária Urbana, descrito na seção anterior.

RedeCirculaçãoViária

MalhaViária

* 2

Rede de
Circulação
Viária

3

�

* *

* 2

* * *

MalhaViaria
3

�

Nó de
Conversão

3

�

Trecho
Circulação

3

��

* 1

0,10,1

Via Arterial Via Lig.Reg. Via Local

Cruzamento
Logradouro

3

�

Trecho
Logradouro

3

�

Logradouro
4

Via Coletora

FIGURA 4 – Diagrama de classes do padrão “Rede de Circulação Viária Urbana”

Participantes:
Da mesma forma que no padrão Malha Viária Urbana, a classe RedeDe-

CirculaçãoViária possui representação espacial complexa, formada pela representação de
trechos e nós de conversão. Operações envolvendo toda a rede são definidas como métodos
desta classe. Cada trecho de circulação pode estar associado a vários trechos de logradouros,
significando a sobreposição de uma rede mais compacta sobre uma rede mais completa. Por
outro lado, nem todo trecho de logradouro faz parte de um trecho de circulação, como ocorre
com as vias de pedestre. Da mesma forma, há cruzamentos de logradouros que podem não
ser, necessariamente, um nó de conversão. De acordo com a aplicação, um trecho de
circulação pode ser especializado de diferentes formas. No contexto dos sistemas viários é
comum aparecer a classificação dos trechos de circulação quanto ao tráfego e tamanho da via
(ex.: via arterial, coletora, ligação regional e local).

Padrões relacionados:
O padrão Rede de Circulação Viária Urbana tem como base o padrão Malha Viária

Urbana.

Exemplo:
Um sistema de itinerário de ônibus necessita da existência da circulação viária que,

por sua vez, está sobre a malha viária, embora a malha viária também possa ser usada para
outros fins. A Figura 5, extraída do esquema conceitual do banco de dados do sistema de
transporte urbano da cidade de Belo Horizonte, ilustra o uso do padrão Rede de Circulação
Viária Urbana.

Observa-se a reutilização de toda a modelagem referente aos temas Malha Viária e
Rede de Circulação Viária. O projetista necessita modelar somente a parte do sistema relativa
à sua aplicação, ou seja, o sistema de transporte de ônibus urbano. Outros exemplos de uso
deste padrão de análise incluem os sistemas de roteamento de veículos para atendimento de
emergência (ex.: ambulâncias, policiamento, corpo de bombeiros) e roteamento para entrega
de mercadorias.

3.3 Padrão: Loteamento Urbano

Problema:
Como estruturar os dados de uma base cadastral urbana?

Contexto:
O ponto de partida para qualquer aplicação de SIG, que tenha uma cidade como área

geográfica de interesse, é a elaboração da base cartográfica digital, integrada a um cadastro
multifinalitário. Estas duas bases de dados são utilizadas por aplicações diversas como
atendimentos de urgência (ex.: ambulância, bombeiros, segurança pública), controle de
matrícula em escolas públicas, distribuição de postos de saúde, arrecadação de tributos, redes
de infra-estrutura (ex.: água, esgoto, luz, telefonia), etc. Estas aplicações necessitam de
informações como traçado viário, localização de bairros, quadras, lotes e, em alguns casos, até
mesmo informações precisas sobre os limites das construções dentro de cada lote.

Forças:
• O nível de detalhe da base cadastral depende da existência de dados digitais espaciais

para a cidade sendo modelada. Nem sempre é viável financeiramente obter a base
cadastral na escala pretendida. Quanto maior a escala original, maior os custos de
obtenção e maior os problemas de manutenção dos dados.

I t inerárioÔnibus

RedeCirculaçãoViár ia

MalhaViária

* 2

* *

Itinerário
Ônibus

3
�

Nó
Itinerário

3
�

Trecho
Itinerário

3
�

LinhaÔnibus *1

**

Rede de
Circulação
Viária

3

�

* 2 Nó de
Conversão

3
�

Trecho
Circulação

3
��

Via Coletora Via Arterial Via Local
Via Ligação

Regional

* 2

* * *

MalhaViaria
3

�

Cruzamento
Logradouro

3
�

Trecho
Logradouro

3
�

Logradouro 4

Pto de
Parada

*

0,1
0,1

1

3
�

* 1

0,1

*

0,1

1

4

FIGURA 5 – Exemplo de uso dos padrões “Malha Viária Urbana” e
“Rede de Circulação Viária Urbana”

• Dependendo do porte do município, diferentes tipos de divisões são empregados. Os
tipos mais comuns incluem divisões administrativas e bairros.

• O conceito de bairro não é único para todas as cidades. Por exemplo, uma quadra pode
não pertencer, necessariamente, a um único bairro. Em algumas cidades os limites de
um bairro podem cortar até mesmo um lote.

• Um lote deve possuir dois tipos de representação espacial: a representação de seus
limites e a representação correspondente à frente do lote, também conhecida por
“testada do lote”. O mesmo pode ocorrer com as quadras na representação de “faces
de quadra”.

Solução:
A Figura 6 mostra o diagrama de classes que compõe o padrão.

Loteamento_Urbano

Quadra
3

idQuadra

*

*

Bairro
3

idBairro
nome

Distri to
3

idDistrito
nome

Setor
3

idSetor

Face
Quadra

3

�
idFaceQuadr

Testada
Lote

3

�
idTestada

 Lote
3

numDePorta

*

*

*

*

*

*

MalhaViár ia

* 2

* * *

MalhaViar ia
3

�

Cruzamento
Logradouro

3
�

Trecho
Logradouro

3
�

Logradouro 4

*

1

Municíp io
3

codMunicípio
nome

Div isão
Admin.

3

*1

FIGURA 6 – Diagrama de classes do padrão “Loteamento Urbano”

Participantes:
A classe DivisãoAdministrativa pode ser especializada em outras subdivisões

municipais (ex.: setores censitários, zonas de coleta de lixo, zonas de policiamento). A cidade,
ou sede municipal, corresponde a um distrito.

A classe Bairro está associada à classe Quadra, através de uma multiplicidade “um-
para-muitos”, mas esta associação deve ser adaptada a cada situação específica. Em alguns
municípios o limite de um bairro pode não respeitar os limites das quadras, neste caso, a
multiplicidade seria “muitos-para-muitos”, o que implica em uma situação não desejada.

Outra variação que pode ocorrer diz respeito à forma de associar o lote ou a quadra
com o trecho de logradouro. Na solução apresentada, por exemplo, o trecho de logradouro
está associado à testada do lote. No entanto, o lote poderia estar associado diretamente ao
trecho de logradouro. Em situações nas quais o maior nível de detalhe são as quadras, o trecho
de logradouro estaria associado à face de quadra.

Padrões relacionados:
Malha Viária Urbana.

Exemplo:

O uso do padrão Loteamento Urbano pode ser visto na Figura 7, a qual ilustra um
sistema de cadastro urbano para fins de tributação do Imposto Predial e Territorial Urbano
(IPTU).

Loteamento_Urbano

Cadast ro_ IPTU

Imóvel
IPTU

4

idImóvel
valorVenal
si tCalçada
dtUltAval iação
uti l ização
situação
infra-estrutura
num-cômodos

sitCerca
si tLimpeza

*

*

Lote
Territorial Proprietár io

4

Unidade
Edif icada

4
Edif icação

3

Pessoa
Física

Pessoa
Jurídica

tipoEdif icação
t ipoUso

identUE
áreaConstr CPFCNPJ

nome1

Lote
Edif icado

* 1

Quadra
3

idQuadra

*

*

Bairro
3

idBairro
nome

Distrito
3

idDistrito
nome

Setor
3

idSetor

Face
Quadra

3

�
idFaceQuadr

Testada
Lote

3

�
idTestada

 Lote
3

numDePorta

*

1

*

*

*

*

MalhaViár ia

* 2

* * *

MalhaViar ia
3

�

Cruzamento
Logradouro

3
�

Trecho
Logradouro

3
�

Logradouro 4

*

1

Municíp io
3

codMunicípio
nome

Div isão
Admin.

3

*1

FIGURA 7 – Exemplos de uso do padrão “Loteamento Urbano”

No exemplo, um lote edificado pode possuir diversas edificações (ex.: um condomínio
com vários edifícios, um Shopping Center). Cada edificação pode ser composta de diversas
unidades edificadas (ex.: apartamentos, lojas). Tanto as unidades edificadas como os lotes
territoriais (não edificados) constituem unidades para fins de tributação, modelado pela classe
Imóvel IPTU, o qual pode estar associado, normalmente, a um proprietário principal. Foram
incluídos apenas os atributos mais comuns, uma vez que a necessidade de atributos depende
dos objetivos do sistema. O padrão “Party” [9] é empregado na modelagem dos diferentes
tipos de lotes e nos diferentes tipos de proprietários.

O exemplo também serve para ilustrar a situação em que, embora não seja possível
para uma prefeitura reutilizar dados georreferenciados de outro município, com exceção de
dados regionais, é muito provável que o projeto do banco de dados desenvolvido por uma
prefeitura possa ser reutilizado em grande parte por outras prefeituras. Isso ocorre devido à
semelhança de legislação entre os municípios brasileiros.

4 CONCLUSÕES

Como se pode observar, a partir dos padrões de análise apresentados neste artigo,
padrões de análise não são soluções completas. Padrões descrevem orientações, projetos
iniciais e propostas de solução para problemas recorrentes. Padrões de análise necessitam ser
adaptados em cada caso específico de reutilização.

A abordagem de padrões de análise apresenta grande potencial para melhorar a
qualidade das aplicações de gestão municipal usando SIG, bem como para reduzir o tempo e,
consequentemente, os custos das etapas de análise de requisitos e modelagem conceitual do
banco de dados.

Entretanto, para o sucesso desta abordagem é necessário criar a cultura da cooperação
entre os desenvolvedores de sistema. Por exemplo, muitos usuários reutilizam dados
georreferenciados obtidos de terceiros, mas não disponibilizam seus próprios dados [21].
Reutilizar uma boa solução documentada por outro projetista é uma idéia muito atraente, mas
é necessário que todos contribuam com a abordagem de reutilização, documentando suas
soluções, por exemplo, na forma de padrões de análise.

Um padrão de análise não necessita apresentar uma solução original. Pelo contrário,
padrões devem documentar soluções já testadas e validadas, pois são soluções para problemas
recorrentes. Soluções para problemas únicos não necessitam ser documentadas na forma de
padrões, pois provavelmente não necessitarão ser reutilizadas. Assim, a evolução da
documentação de um padrão, a partir da contribuição de outros projetistas que o tenham
reutilizado, deveria ser decorrência natural de seu uso. Os padrões de análise descritos neste
artigo podem e devem ser melhorados. Contribuições, comentários e críticas são bem vindos.

Como continuidade deste trabalho, está prevista a investigação de alternativas para
disponibilização dos padrões de análise existentes (para banco de dados geográficos) e,
também, o estudo de aplicações de SIG em diferentes domínios (ex.: redes de infra-estrutura,
aplicações ambientais), com o objetivo de captura e documentação de novos padrões. O
desenvolvimento de ferramentas para suporte à busca por padrões existentes tem sido
pesquisado [22]. Encontra-se em desenvolvimento no Departamento de Informática da UFV,
um projeto de pesquisa que visa a implementação de uma ferramenta CASE para suporte à
modelagem conceitual de banco de dados geográfico, com base no modelo UML-GeoFrame,
a qual também dará suporte a reutilização de esquemas de banco de dados por meio de
padrões de análise.

Agradecimentos
Os autores agradecem as contribuições feitas pela nossa “shepherd” Rosana Teresinha

Vaccare Braga, as quais possibilitaram melhorar muito os padrões de análise aqui descritos.

REFERÊNCIAS

1. Booch, G.; Jacobson, I.; Rumbaugh, J. The Unified Modeling Language User Guide.
Reading: Addison-Wesley, 1998.

2. Borges, K. A. V. A gestão urbana e as tecnologias de informação e comunicação. Revista
IP-Informática Pública, Belo Horizonte, Vol.2, No.2, 2000.

3. Buschmann, F. et al. Pattern-Oriented Software Architecture: a system of patterns. New
York: John Wiley & Sons, 1996.

4. Chrisman, N. Exploring Geographic Information Systems. NY: J. Wiley & Sons, 1997.

5. Coad, P. Object Models: Strategies, Patterns, and Applications. 2.ed. New Jersey:
Yourdon Press, 1997.

6. Fernandez, E. B. Building systems using analysis patterns. Procs. of Int. Software
Architecture Workshop (ISAW3), 1998.

7. Fernandez, E. B.; Yuan, X. An analysis pattern for reservation and use of reusable
entities. Procs. of Workshop in the Conference of Pattern Language of Programs - Plop,
1999. Available at http://st-www.cs.uiuc.edu/~plop/plop99/ proceedings/.

8. Fernandez, E. B.; Yuan, X. Semantic Analysis Patterns. In: A. H. F. Laender, S. W.
Liddle, V. C. Storey (eds): Procs. of ER2000 Conference, LNCS 1920, 2000. Springer-
Verlag Berlin Heidelberg, 2000.

9. Fowler, M. Analysis Patterns: reusable object models. Menlo Park, CA: Addison Wesley
Longman, 1997.

10. Gamma, E. et al. Design Patterns: elements of reusable object-oriented software.
Reading, MA: Addison Wesley, 1994.

11. Goodchild, M. F., Geographical data modeling. Computers & Geosciences, Vol 18, No 4,
1992, pp.401-408.

12. Hay, D. C. Data Model Patterns: conventions of thought. New York: Dorset House
Publishing, 1995.

13. Johannesson, P.; Wohed, P. The deontic pattern – a framework for domain analysis in
information systems design. Data & Knowledge Engineering, Vol.31, 1999.

14. Lisboa Filho, J.; Iochpe, C.; Beard, K. Applying Analysis Patterns in the GIS Domain.
Procs. of Annual Colloquium of the Spatial Information Research Centre - SIRC.,
Dunedin, NZ, 1998.

15. Lisboa Filho, J.; Iochpe, C. Specifying analysis patterns for geographic databases on the
basis of a conceptual framework. Procs. of ACM Symposium on Advances in Geographic
Information Systems, Kansas City, USA, 1999.

16. Lisboa Filho, J.; Iochpe, C. Um estudo sobre modelos conceituais de dados para projeto
de bancos de dados geográficos. Revista IP-Informática Pública, Belo Horizonte, Vol.1,
No.2, 1999a.

17. Marsura, P. Banking patterns home page. Available at http://www.joeyoder.com/
marsura/banking/ (03/09/1999).

18. Meszaros, G.; Doble, J. A pattern language for pattern writing. Available at
http://hillside.net/patterns/Writing/ pattern_index.html (01/12/98).

19. Rawsthorne, D. A. A patterns language for requirements analysis. Procs. of Workshop in
the Conference of Pattern Language of Programs - PLoP, Monticello-Illinois, 1996.

20. Robertson, S.; Strunch, K. Reusing the products of analysis. Procs. of Int. Workshop on
Software Reusability, Lucca, Italy, 1993. Available at http://www.atlsysguild.com/
GuildSite/SQR/reusingAnalysis.html.

21. Weber, E. J.; Lisboa Filho., J.; Iochpe, C.; Hasenack, H. Geospatial metadata in Brazil:
an experience in data documentation of an environmental GIS application. Procs. of Int.
Conference. Exhibition on Geographic Information (GISPlanet), Lisbon, Portugal, 1998.

22. Wohed, P. Tool support for reuse of analysis patterns – a case study. In: A. H. F.
Laender, S. W. Liddle, V. C. Storey (eds): ER2000 Conference, LNCS 1920, 2000.
Springer-Verlag Berlin Heidelberg, 2000.

A PATTERN LANGUAGE FOR FAILURE DETECTION AND

RECONFIGURATION OF DISTRIBUTED SERVICES�

Marcelo B. d'Amorim Carlos A. G. Ferraz

Universidade Federal de Pernambuco

Centro de Inform�atica

Caixa Postal 7851, 50640-970, Recife-PE, Brazil

fmbd,cagfg@cin.ufpe.br

Abstract

The trading mechanism enables unprecedented opportunity for dynamic soft-

ware con�guration, which is achieved by resolving dependencies among distributed

components. As embedded systems and handheld devices such as PDAs (Personal

Digital Assistants) and cellular telephones are becoming very popular, distributed

adaptability deserves special the attention of designers. In this context, dealing

with failure is a critical issue designers need to tackle in order to preserve reliability.

A component, for example, may stop running until it rediscovers a new service in-

stance that implements the same interface as the failed one. This situation may be

an essential requirement as long as the client is unable to perform its tasks without a

reference to that service, and it is very often referred to as dependence management.

1 Introduction

Con�guration is frequently associated with evolutionary change of criticial systems with
long life duration. It attempts to assure reliability and predictability of components

usually under a distributed environment. These systems typically need to evolve along
with human needs. Technology and even the application environment change [15], and

these changes may range from existing functionalities, network partitioning, to host and
service failure.

The main bene�ts of software con�guration are detailed in the following:

� Incremental Evolution - By considering recon�guration as an issue at design time

applications obtain higher
exibility to adapt to changes during the long run or even
during its development. Critical systems, for example, may require run-time recon�gu-

ration without stopping the entire system. Software prototyping may bene�t from the

exibility of easily changing di�erent application components [20]. Actually, di�erent

software architectures could be tested with reduced e�ort.

�This paper was workshoped on the First Latin American Conference on Pattern Languages of Pro-

gramming - SugarloafPLoP. October 3-5, 2001 - Rio de Janeiro, Brazil.

� Fault tolerance - Damage caused by a fault in a distributed application can be mini-

mized by recon�guring the elements comprising an application. Elements running on the

failed node can be re-deployed on new nodes and their cooperating elements instructed

on where to redirect their cooperating requests [20].

In order to enable reactive networks and component self-healing, the trading mecha-

nism [2] provides a means to dynamically search for components based on its properties

and receive event noti�cations when these components are not available, however, trading

systems like Jini [7] and CORBA Trader [23] do not provide built-in support to automatic

distributed con�guration of systems. In the presence of failures, components have to deal

with this issue programmatically in order to be recovered to a consistent state.

In addition, very often clients are designed to use the trading semantics to search for

services just at startup - con�guration time. In this case, components will crash whenever

remote references become invalid, even though alternative implementations are available

on the network.

The Virtual Synchronism model attempts to keep in each member of a multicast

group the consistent view of the group. This is achieved by the implementation of a

membership protocol. Using election protocols, guarantees of message ordering, service
replication, and state transfering this model provides an elegant approach to tame fault
tolerance [1]. This approach deals with fault-tolerance at multicast group level thus

relieving clients from the task of recon�guring their bindings. However, the middleware
support, like those provided by the Isis and Horus platforms [12, 27], must be reachable
by every node on the system. We believe that in large scale component networks, like

JTrader [2] and Ninja [24], it would be diÆcult to provide virtual synchronism. In this
case, client nodes would have to keep valid its bindings.

We argue for the need of distributed components to support recon�guration in a
dynamic environment where new services become available while others fail. Not dealing
with this issue properly may introduce non-determinism since we cannot assure that

remote operations run correctly in the presence of invalid remote references. Actually, it
is very diÆcult to guarantee full client reliability. Considering that a step before a client

calls a remote operation the service fails, that client will indeed fail. In such situation,
the step time was not enough to recon�gure the system with a new running service.
In critical systems, however, this scenario is unacceptable, so the time frame to system

recon�guration is likely to be smaller.

2 Pattern Language Overview

The pattern language is a set of related patterns. They deal with aspects related to

recon�guration and failure detection. The Component Searcher is a high-level pattern

in the sense that it makes use of the other patterns in the language. It represents a

repository of valid service references which a client uses when needs to contact a service.
In order to promote dynamic con�guration, the framework must verify service avail-

ability. When veri�cation fails, it must trigger an event that causes the system to search

for a new service instance. There are di�erent approaches to accomplish this task. The

pattern language suggests two alternative approaches for failure detection. The �rst

one, named Heart-beat, is intended for systems with a dedicate bandwith and hard-

availability constraints. The other is intended for systems with soft constraints, typically

asynchrounous distributed information systems. This one, named the Reverse Lease Sub-

scriber, relieves clients from frequently testing for the validity of service references.

Component Searcher

{ Heart−beat, Reverse Lease Subscriber}

Heart−beat Reverse Lease Subscriber

Leasing

Figure 1: The pattern language

The diagram of �gure 1 associates these patterns. The Component Searcher de-

pends on a failure detector, which has two alternative policies: the Heart-Beat and the

Reverse Lease Subscriber. Note that RLS uses the Leasing pattern. These patterns

are described in the following sections.

2.1 The Component Searcher

Overview

Contrasting with the design of fault-tolerant distributed services [18, 16], this pattern
does not comply with starting replicas of services on-the-
y in order to assure there will

be a service running in the moment of a call. It monitors service availability and informs
the underlying infrastructure that a new service is required to be bound. It attempts to
detect faults [22, 19, 11] and recon�gure dependencies when they occur but it does not

assure the client will be serviced. We regard it as best-e�ort. Even though failures due
to service unavailability may not be completely removed with this approach, designing

distributed systems with this issue in mind reduces failure likelihood and eases system
administration.

Di�erent policies to detect failure may be applied by implementing specialised service

monitors. Regardless the policy applied, the presented behavior is preserved. These spe-
cializations will be represented as independant patterns: the Heart-Beat and the Reverse
Lease Pattern (RLS).

Context

Components depending on distributed services that may fail.

Problem

The storage of remote references on the client code causes unpredictable behavior in the

presence of failures in the communication path between the client and service.

Forces

Unless the interaction of program modules with the pattern infrastructure is carefully

delineated, it becomes diÆcult to reuse the solution. We must then resolve the following

forces:

1. Availability of dependent services - In order to achieve service reliability, we must

make every e�ort to continously provide the required service bindings. A good

solution would then increase this force.

2. Management of service references - Considering failures due to network patitioning

and service failure can occur, clients need to decouple the storage of service and

name server references of its representation.

Solution

The infrastructure presents a collection of classes aimed at con�guring client-server de-

pendencies. A component, named Searcher mediates the current service con�guration.

It is to be called by the AbstractMonitor whenever a change on the con�guration state is

perceived1. Neither references nor names to services are stored within the Searcher, but

only service templates that declare general capabilities that an eligible running services
must provide. The properties of a service template are conserved during the long-term

execution of an application and are so more reliable than a service binding.
Whenever a service binding failure occurs, the AbstractMonitor calls back the Searcher

via its IUnavailableService interface in order to locate a replacement.

Instead of storing persistent references to services, clients must look for a reference on
the Searcher when they need to contact a service. This, however, does not assure a client

has a valid binding. If a service binding some client uses fails, it needs to request another
to the Searcher, which returns a valid reference, if one exists. Otherwise, it throws an
exception.

Static Structure

As presented in Figure 2, four components performing distinct and well de�ned roles are
responsible to provide automatic con�guration. Clients interact only with the Searcher

component which is in charge to mediate interactions between the DiscoveryProxy, the
AbstractMonitor, and the ServiceCollection. In the following these components are
detailed:

� ILookup - This interface enables the DiscoveryProxy to implement a two-phase discov-
ery protocol. Requests for services are enqueued on the DiscoveryProxy.

� IDiscovery - This interface is used to con�gure the locations where services are hosted.

� DiscoveryProxy - The discovery proxy isolates from clients the concept of a name server
to provide location transparency and extend the solution to other distribution platforms

that provide di�erent discovery protocols. For example, when a Jini lookup service joins

on a group or is destroyed, the e�ects of these events are con�ned in this component.

1Actually, this pattern only deals with failure detection on component connections. A similar strategy

could be applied to cope with runtime changes of non-functional requirements, like end-to-end quality of

service degradation.

Figure 2: Pattern structural dependencies

It behaves like a federation where all required name servers are reachable2. As a result,

clients do not interact directly with name server instances.

� AbstractMonitor - This class provides a means to service availability awareness. A

concrete implementation of this class may re�ne its behavior, for example, by introducing
active veri�cation of remote references in a di�erent thread of execution.

� ISearcher - The interface used by clients to con�gure the searcher and request transient
service references.

� IUnavailableService - This is a listener interface used by the monitor to notify the

searcher of a service failure.

� IAvailableService - This is a listener interface used by the DiscoveryProxy to notify

the searcher of an available service.

� Searcher - The searcher stores in a ServiceCollection object service templates (a
declarative description of a service) and the location (a semantic category of a name

service) where these services should be found. This information is updated by the client

via the ISearcher interface. The service collection update is also triggered by a listener
event.

� ServiceCollection - An object of this type stores mappings between location objects
to service templates, which in turn maps to service proxies.

When a client needs to call a method on a service, it requests the Searcher for a

reference to that service. The Searcher in turn calls the ServiceCollection object for

the proxy that the template supplied maps to. If that service is not available, the searcher

then requests the DiscoveryProxy, through its ILookup interface, to �nd a service on
the network with the informed template.

2In Jini, a name server joins a group in accordance to the kinds of services it contains. For example,

a name server that joins on a \devices" group is supposed to contain proxies to devices.

Dynamics

A complete description of this pattern dynamics is presented on the RLS pattern.

Consequences

In the following, we present how the forces mentioned above are addressed by this pattern:

� Force 1 - The Searcher is charged of searching for alternative service bindings whenever

a fault occurs. A client requests the Searcher to retrieve a valid reference for the service

template provided.

� Force 2 - The framework behaves as a repository of service and name server references.

The communication between the framework and clients is done via semantic categories

and service properties.

Implementation

The client needs to create a Searcher object and inform what kind of policy it wants
to apply to detect faults, what services it will need in a near future, and where they are
supposed to be located. In the following, we show the initialization process of a client.
The code is implemented in Java and used some Jini classes:

AbstractMonitor monitor = ...; // a concrete monitor

Searcher searcher = new Searcher(monitor);

String group = "bank_systems";

ServiceID id = null;

Class[] types = {Accounts.class};

Entry[] entries = {};

ServiceTemplate template = new ServiceTemplate(id, types, entries);

searcher = searcher.add(group, template);

In a declarative manner, we speci�ed a service by the properties it has, such as its interface.
The ServiceTemplate class of the Jini API represents this feature. We also informed the
Searcher to locate the group where a reference to this service is supposed to be stored.

As we will see, the initialization process is not synchronous. That is, references to
services are not available instantaneously after initialization. At any moment, however,
the client can execute an operation that calls a service. In this case, the client needs to
retrieve from the searcher the intended service. If the service is available the client is
able to proceed, otherwise, it should throw an exception or repeat the operation after a
short-time:

public void some_operation() ... {

Accounts service = (Accounts) searcher.retrieve(template);

service.operation(); ... }

The Searcher add operation requests the DiscoveryProxy to search for name servers
that store references to bank systems. Prior to locating these name servers, it enqueues a
request to the DiscoveryProxy to �nd the intended service. Therefore, this operation does
not block waiting for the service. When the DiscoveryProxy �nally �nds the requested
service, it calls the Searcher via its IAvailableService inteface. The Searcher then

updates the ServiceCollection so that the retrieve operation will work properly when
called.

public class Searcher ... {

ServiceCollection repository;

IDiscovery disco;

ILookup lookup;

...

Searcher(AbstractMonitor monitor) {

this.monitor = monitor;

repository = new ServiceCollection();

DiscoveryProxy discoverer = new DiscoveryProxy((IAvailableService) this);

disco = (IDiscovery) discoverer;

lookup = (ILookup) discoverer;

}

public synchronized void add(String group, ServiceTemplate template) {

repository.add(group, template);

disco.addGroups(group);

lookup.find(template);

}

}

2.2 The Heart-Beat (Patlet)

Intent

To actively verify the availability of resources on the network.

Problem

Services eventually fail, hosts eventually crash, networks eventually partition. Reliable
distributed systems must deal with these kinds of problems.

Context

Distributed systems whose resources may fail need to adapt to changes.

Forces

� Coordination - A client needs to actively (by its own) detect if a server has failed in

order to rearrange its bindings before any operation be performed.

� Overhead - In order to achieve an acceptable overall performance, the solution should

minimize overhead.

Solution

In order to deal with a service failure in advance of an operation request, the application

creates a concurrent thread of execution to frequently test if a service and the network

are reachable.

Example

Even though RMI [26] does not provide such support on its public API, programmers can

simulate a method call by using the invoke() method of the RemoteRef instance, which is

retrieved from the stub's getRef() method. If a ConnectException is thrown in this call,

the test is regarded as failed. Alternatively, it is still possible to construct RMI \ping"

packets, as described on JDK1.3 RMI documentation [25], to verify if the RMI server is

still alive.

2.3 The Reverse Lease Subscriber (RLS)

Overview

The Reverse Lease Subscriber proposes a means to detect failures on distributed services
that a component depends on by requesting these services to renew leases [13] on it.

While leases are properly renewed, a component is aware of dependant services availability,
otherwise, components need to arrange for a replacement of its bindings and must suspend
requests in this between.

Intent

Verify the availability of resources on the network.

Problem

Services eventually fail, host eventually crash, networks eventually partition. Reliable
distributed systems must deal with these kinds of problems.

Context

Distributed systems whose resources may fail need to adapt to changes.

Forces

We must resolve the following forces:

1. Reactivity - A component needs to detect a failure of any kind in the path between

a client and the service.

2. Peformance - The solution should achieve an acceptable overall performance.

Solution

This pattern de�nes a failure detection policy, which uses the concept of resource leasing

(see the next patlet). To implement the policy we need a service monitor capable of

implementing the leasing strategy. The ConcreteLeaseMonitor represents this monitor.

It extends the AbstractMonitor class, presented on the Component Searcher pattern.

The monitor asks to the service, by means of the IReverseLeaseSubscriber interface,

to renew a lease it supplies. The service then starts to renew the lease through the

Landlord object which the lease is able to contact. This object is hidden within the

ConcreteLeaseMonitor object and it is supposed to be transparent to both the service

and the client programmer. When the lease becomes expired, the ConcreteLeaseMonitor

issues a local event directly to the searcher through the IUnavailableService interface

in order to locate a replacement.

Even though most lease grantors are server-side components, this is not a requirement

at all. In fact, in RLS the service component performs the holder's role and the client, the

lease grantor's. This lease pattern of use is here called reverse lease subscriber because,

in contrast to regular leasing, in RLS the lease grantor starts the lease protocol. By
requesting services to renew its leases on the client, such client becomes aware of eventual
failures as long as leases become expired.

Service Service Service

Lease

Landlord

...
IReverseLeaseSubscriber

IUnavailableServiceISearcher
Searcher ConcreteLeaseMonitor

Figure 3: Reverse Lease Subscriber

In the following, we summarize the Reverse Lease Subscriber pattern solution by

delineating the tasks it performs:

1. A client locates a service via the searcher.

2. The monitor tells the registered services to maintain a lease with it. The lease

monitor is responsible for ensuring a service maintains a lease, indicating that it is

available, or else it tells the searcher that the service is no longer available.

3. If a service becomes unavailable, the searcher attempts to locate a replacement.

4. When a client detects a service has failed - this will probably cause a kind of remote

exception to be thrown and catched - it requests the searcher for a new reference.

Static Structure

Now we describe the structure of the RLS pattern by describing its core components.

� Lease - This object represents a contract between two entities. If the lease expires the

contract is no longer valid. The lease holder needs to request the grantor for renewall in

order to avoid the lease to become expired.

� IReverseLeaseSubscriber - This is the interface which the ConcreteLeaseMonitor

contacts in order to request a service to start the RLS protocol.

� Landlord - The interface contacted to renew a lease. An object of this type should also

clean up expired leases in order to maintain a consistent view of resource in use.

� IUnavailableService - This is the interface the ConcreteLeaseMonitor contacts to

inform the Searcher that a service previously bound is no longer valid.

� ConcreteLeaseMonitor - This type implements a passive and lightweight3 policy to
handle service availability by extending the AbstractMonitor class. This component is

a lease grantor and is also responsible to start the lease protocol. When requested for
testing availability of a given service, it contacts the IReverseLeaseSubscriber interface

the service is supposed to expose and then invokes its pleaseRenew() method, passing a
Lease object as parameter. Through the Lease object, the service should call back the
Landlord interface the ConcreteLeaseMonitor exposes before the lease timeout runs.

The ConcreteLeaseMonitor actively veri�es expired leases it stores. When an expired
lease is perceived, this component calls the IUnavailableService interface that the

Searcher exposes, informing which template requires recon�guration.

Dynamics

Figure 4 presents a practical scenario where a client con�gure the Searcher component
to search for service instances and keep valid their references. This scenario uses RLS

pattern to implement the monitor and introduces a failure event that avoids the service
to renew the lease.

After acquiring a service proxy, the searcher requests the service implementation to
lease the proxy at the client. This is accomplished by calling the pleaseRenew() method
on the IReverseLeaseSubscriber interface. As long as leases become expired due to a

failure in a service, for example, new service references need to be located and old ones

discarded.

Executing under a di�erent thread of control, the ConcreteLeaseMonitor frequently
scans for expired leases. When some is found, a message is sent to the searcher in order
to update the set of available services.

Consequences

The major liability this pattern presents is related to its scalability:

3We regard this approach as lightweight because clients are not required to open a connection to the

server in order to notice that everything is all right; such responsibility is charged to the service, and so

the approach is also passive as the client is relieved from frequently testing the bindings.

Figure 4: Con�guration scenario

� This pattern enforces services to implement an interface the monitor must access

in order to start the reverse lease protocol. This is the IReverseLeaseSubscriber
interface. This requirement may not scale well if a client needs to access services
on heterogenous networks, when we cannot enforce which interfaces services should

implement.

In the following, we present how the forces mentioned earlier are addressed by this

pattern:

� Force 1 - The monitor is aware of unavailability of service without requiring any

communication with it. It is a kind of negative acknowledgement.

� Force 3 - RLS de�nes a tradeo� between reliability and performance. Di�erently

from mechanisms based on active tests, with reverse leasing the client component

is supposed to su�er lower impact on performance. This occurs because commu-

nication overhead is charged to the service component. An active approach, like
Heart-Beat, that creates a separate thread of control on the client to test for service

availability is likely to consume much more CPU. It also introduces a non-despicable

delay because it opens a connection to the server endpoint just to test if it is alive.

2.4 Leasing (Patlet)

Intent

The leasing pattern simpli�es resource management by specifying how resource users can

get access to a resource from a resource provider for a pre-de�ned period of time.

Author

Prashant Jain & Michael Kircher

Context

Systems where resource usage needs to be controlled to allow timely release of unused

resources.

Forces

� Simplicity - The management of resources should be simple by making it optional
for the user to explicitly release the resources that it no longer needs.

� Availability - Resources not used by a user should be freed as soon as possible to

make them available to new users.

� Actuality - The system load caused by unused resources must be minimized. More-
over, a user should not use an obsolete version of a resource when a new version

becomes available.

Solution

The concept of leasing is that resource access is valid only for a period of time, which is

negotiable between the entities involved in the lease protocol. The protocol establishes a
contract between parties involved. A lease should be renewed within the agreed time to

avoid the contract from being discarded. This causes the resource to be freed. Therefore, if
the client of a resource crashes, the resource it used will not remain allocated inde�nitely

and inconsistently to the client, but only until the lease to that client expires. The

participants in the leasing protocol are the leased resource, the lease grantor, and the
lease holder. A resource is an abstract concept and may be memory, computation, event

noti�cation, among others. A lease grantor is the entity serving the resource, and the lease

holder is the client of such resource. In general, the lease holder is a client component

and the lease grantor is the service.

Example

For example, consider that service registrations are leased on a name server. Requesting
to register the service proxy on the name server causes a lease to be returned. Through

such lease the service should reinforce its interest on being located. We can expect that

when services fail, registration leases are not renewed. As a result, the name server will
clean up o�ers whenever leases become expired. In this example, the lease resource is

represented by the service o�ers (proxies) stored on the name server, the lease grantor is

represented by the name server; and lease holders by the service implementation.

3 Applicability

When the distribution platform guarantees the availability of a service through some

mechanism like that speci�ed in fault-tolerant CORBA [11], this approach does not seem

of practical use as the platform introduces a transparent server-side layer to implement

fault-tolerance. On the other hand, the distribution platform may indeed use this ap-

proach under-the-covers to detect failures of its dependants components. Likewise, this

pattern does not seem suitable for services designed in accordance to a group membership

protocol [17, 18] as this protocol assures the atomicity and consistency of service groups

transparently to the user.

We regard this pattern as suitable to monitor and automatically recon�gure distributed

systems that comply with a service trading semantics on large-scale networks such as

computational grids [10, 8], and service federations [3, 24]. On asynchronous and dynamic
environments it is unlikely that clients will know exactly where services are located or

the names they should be referenced. We believe that, in this context, services should be
located by properties and interfaces.

4 Known uses

The pattern aims at failure-detection on highly-distributed software systems like those
supposed to be developed with the support of an Internet service federation. The JTrader

system [2] is an example of such a federation of services that is based on the Jini technology.
Services and clients are able to join this federation with the support of a toolkit [4] which

actually uses this pattern to control availability of the services on the federation.

5 Related patterns

Facade [9, 5] and Proxy [9] - The DiscoveryProxy resembles a facade as long as users
are not able to access directly name servers instances. Note that name servers may also

fail. This component provides a public interface whereby clients can con�gure which name

servers are likely to be contain the intended service o�ers. Passing a service template,

clients can issue a lookup operation as if the local DiscoveryProxy were the real name

service. So it also behaves like a proxy [9, 6].

Mediator [9] - The Searcher complies with the mediator pattern as long as it drives the

interaction among dependent components, say DiscoveryProxy and ServiceCollection.

Lease [13] - According to the lease pattern, the ConcreteLeaseMonitor is a lease grantor
and the IReverseLeaseSubscriber the lease holder.

Publisher-Subscriber [9] - According to the Observer pattern, also known as Publisher-
Subscriber, the Searcher performs the role of the subscriber and the AbstractMonitor,

the role of the publisher. This enables asynchronous messaging between these components.

Acceptor-Connector [21] - \The Acceptor-Connector design pattern decouples connec-

tion establishment and service initialization in a distributed system from the processing

performed once a service is initialised. This decoupling is achieved with three components:

acceptors, connectors, and service handlers" [21]. According to this pattern, we can regard

the IReverseLease Subscriber as an instance of an asynchronous acceptor component,

while the ConcreteLease Monitor performs the role of the connector. The Lease is the

service handler used to contact the client handler, represented by the Landlord interface.

Service Con�gurator [14] and Component Con�gurer [20] - Similarly to these

patterns the Reverse Lease Subscriber aims at con�guring components with their depen-

dencies. However, they also present signi�cant di�erences. For example, the discussed

pattern does note tackle the problem of starting new instances when a service fails be-

cause we rely on a trading mechanism and thus we expect that a new running service,

which implements the required interface, be available on the system. In addition, Ser-

vice Con�gurator and Component Con�gurer assume the existence of a centralized name

server (or manager) where the services are supposed to be registered. In turn this pattern
relies on the trading semantics where services are discovered in accordance to their char-
acteristics, which include the interfaces they implement. Finally, we observed that these

patterns do not aim at supporting adaptability to runtime changes, but just to static or
user-directed changes4, while the Reverse Lease Subscriber deal with fault-detection on

component bindings (connections).

6 Acknowledgments

We would like to thank our colleagues at Universidade Federal de Pernambuco - Paulo

Borba and Vander Alves - who made suggestions about content to improve this paper.
During the PLoP conference Jim O. Coplien and Jer�eson Souza were also very helpful

suggesting us to format this pattern as a pattern language. Thanks to all PloPers.
We are also very grateful to Brian Wallis, the sheperd we were granted during the re-

vision process of the SugarloafPLoP conference, for his comments and careful supervision

throughout the process.

References

[1] K. Birman. Virtual Synchrony Model. Reliable Distributed Computing with the Isis

Toolkit., 1994.

[2] Marcelo B. d'Amorim. Service Trading on the Internet, the JTrader approach, May

2001. Univ. Federal de Pernambuco. M.Sc. dissertation.

[3] Marcelo B. D'Amorim and Carlos A. G. Ferraz. A Design for JTrader: an Internet

Trading Service. In Thomas B�ohme and Herwig Unger, editors, Proceedings of the

Innovative Internet Computing Systems, International Workshop IICS 2001, volume

4A kind of con�guration which is triggered by the intervention of the user, probably a system admin-

istrator.

2060 of Lecture Notes in Computer Science, pages 159{166, Ilmenau, Germany, 21th-

22th June 2001. Springer.

[4] Marcelo B. D'Amorim and Carlos A. G. Ferraz. Designing Jini distributed services: A

framework to support the development of reliable component networks. In David H.

Lorenz and Vugranam C. Sreedhar, editors, Proceedings of the First OOPSLA Work-

shop on Language Mechanisms for Programming Software Components, pages 60{67,

Tampa Bay, Florida, October 15 2001. Technical Report NU-CCS-01-06, College of

Computer Science, Northeastern University, Boston, MA 02115.

[5] Douglas Schmidt et al. Pattern-Oriented Software Architecture: Patterns for Con-

currency and Networked Objects. John Wiley & Sons, September 2000.

[6] Frank Buschmann et al. Pattern-Oriented Software Architecture: A System of Pat-

terns. John Wiley & Sons, August 1996.

[7] Ken Arnold et al. The Jini Speci�cation. Addison-Wesley, December 1999.

[8] I. Foster and C. Kesselman. Globus: A Metacomputing Infrastructure Toolkit. The
International Journal of Supercomputer Applications and High Performance Com-

puting, 11(2):115{128, Summer 1997.

[9] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns.

Elements of Reusable Object Oriented Software. Addison-Wesley, Jan. 1995.

[10] A. Grimshaw, A. Ferrari, F. Knabe, and M. Humphrey. Legion: An Operating
System for Wide-Area Computing. IEEE Computer, 32(5):29{37, May 1999.

[11] Object Management Group. Fault Tolerant CORBA Speci�cation, December 1999.

[12] IONA and Isis. An Introduction to Orbix+Isis. IONA Technologies Ltd. and Isis

Distributed Systems Inc., 1994.

[13] Prashant Jain and Michael Kircher. Leasing. Pattern Language of Programming -

PLOP'2000. Allerton Park, Monticello, Illinois, USA, 13th{16th Aug. 1996.

[14] Prashant Jain and Douglas C. Schmidt. Service Con�gurator: A Pattern for Dynamic
Con�guration and Recon�guration of Communication Services. In 3rd USENIX An-

nual Pattern Languages of Programming Conference, Allerton Park, Illinois, pages
209{219, 1997.

[15] J. Kramer and J. Mageee. Dynamic con�guration for distributed systems. IEEE

Transactions on Software Engineering, SE-11(4):424{436, 1985.

[16] S. Landis and S. Ma�eis. Building Reliable Distributed Systems with CORBA.

Theory and Practice of Object Systems, 3(1):31{43, 1997.

[17] Silvano Ma�eis. Electra-Making Distributed Programs Object-Oriented. In Proceed-

ings of the Usenix Symposium on Experiences with Distributed and Multiprocessor

Systems, pages 143{156, San Diego, CA (USA), 1993.

[18] Silvano Ma�eis and D. Schmidt. Constructing Reliable Distributed Communications
Systems with CORBA. IEEE Communications Magazine, 35(2):56{61, 1997.

[19] Balachandran Natarajan, Aniruddha S. Gokhale, Shalini Yajnik, and Douglas C.

Schmidt. Applying patterns to improve the performance of fault tolerant CORBA.

In HiPC, pages 107{120, 2000.

[20] Francisco Assis Rosa and Antonio Rito Silva. Component Con�gurer. In Proceedings

of the 2nd European Conference on Pattern Languages of Programming - EuroPLoP

'97, pages 209{219, 1997.

[21] Douglas C. Schmidt. Acceptor-Connector: An Object Creational Pattern for Con-

necting and Initializing Communication Services. In Frank Buschman Robert C. Mar-

tin, Dick Riehle, and John Vlissides, editors, Pattern Languages of Program Design

3. Addison Wesley, 1997.

[22] Ant�onio Rito Silva, Fiona Hayes, Francisco Mota, Nino Torres, and Pedro Santos.

A pattern language for the perception, design and implementation of distributed

application partitioning. October 1996. Proceedings at OOPSLA'96 Workshop on

Methodologies for Distributed Objects.

[23] OMG Speci�cation. Trader Update Package, 1997. OMG97M CORBA Services
Speci�cation, Trader Update Package, OMG document FORMAL/97-618, Available

at ftp://ftp.omg.org.

[24] Steven D. Gribble et. al. The Ninja Architecture for Robust Internet-Scale Systems

and Services. Special Issue of IEEE Computer Networks on Pervasive Computing (to

appear), 2000.

[25] Sun Microsystems. RMI Wire Protocol, The Acknowledgement Ping Packet. Avail-

able at http://java.sun.com/j2se/1.3/docs/guide/rmi/spec/rmi-protocol3.html.

[26] Sun Microsystems. Java Remote Method Invocation Speci�cation, 1.50 edition, Oc-
tober 1998.

[27] R. van Renesse, K. Birman, B. Glade, K. Guo, M. Hayen, T.M. Hickey, D. Malki,
A. Vaysburd, and W. Vogels. Horus, a Flexible Group Communication System.

Communications of the ACM, 39(4):76{83, April 1996.

Proxy-to-Proxy�

A Design Pattern for Leveraging Security on

Highly distributed Internet Applications

Marcelo B. d'Amorim and Carlos Ferraz

fmbd,cagfg@cin.ufpe.br
Universidade Federal de Pernambuco

Centro de Inform�atica

Caixa Postal 7851, 50640-970, Recife-PE, Brazil

Abstract

Internet distributed applications often have to deal with security in design and,

depending on the kinds of applications and users they have, di�erent solutions to

tame this issue should be applied. When the application is designed in accordance

to a strict architectural layering and a single remote object provides every system

operation, dealing with security is supposed to be simpler. This is due to the

fact that users �rstly access this facade object, which should be quite permanently

registered on the �rewall. This arrangement allows the facade to receive incoming

calls through the network and mediate access to other objects. However, when users

need to reference remote objects that appear on the network in a non-deterministic

basis, an approach to dynamically register and access these objects under the �rewall

is required. This work de�nes a pattern to handle security on systems like JTrader,

a Jini-based service federation on the Internet, whereby an unpredictable number

of remote objects are supposed to be registered. In this case, the federation dictates

the way objects are to be made reachable.

Intent

Specify a means to con�gure distributed services on an application-level gateway [8]. The

Proxy-to-Proxy pattern de�nes a reference monitor [14] to a service and its creational

mechanism. The monitor extends a service with new capabilities without a�ecting its

code. It also gives rise for separation of concerns, which are not related to the service

functional aspects, like security in a worldwide service federation.

�This paper was presented on the First Latin American Conference on Pattern Languages of Pro-

gramming - SugarloafPLoP. October 3-5, 2001 - Rio de Janeiro, Brazil.

Motivation

Security is a very important issue to enable distributed computing as it must be resolved

without opening ports for hackers nor imposing barriers to developers and users. A suit-

able approach to handle security in a particular system should consider in what conditions

such system should be used. Internet users, for example, are unlikely to con�gure proxies

and �rewalls in order to access distributed objects. Even applications where security is

considered well handled sometimes face problems when a new component is introduced

or a new user is prevented from accessing the system due to a severe security policy

or improper con�guration. In general, when a very strict and speci�c security policy is

used to enable secure client-server interoperability, users and services may face diÆcult

con�guration problems.

In addition, most solutions introduce some kind of overhead to resolve security. For

example, in order to control access to enterprise resources, system administrators com-

monly de�ne a small set of ports which Internet users are able to contact, thus imposing a

bottleneck in the system. Actually, very often system administrators open only one port

per protocol or maybe none.
In this light, security is very related to two con
icting design issues:

� Scalability- The introduction of new elements, such as a new user trying to access
the system outside the trusted network or a new server-side component on a large-
scale network, may in
uence security. This issue is especially important concerning

a scenario whereby users require accessing a system without previous con�guration,
such as the Internet.

� Performance- Adding new components between clients and servers to tame security
is likely to introduce computational and communication overhead.

Security support for client-server applications is supposed to be better handled than

that for really distributed ones. There are plenty of application-level gateways1 [8, 11]
which can monitor remote calls to a server through a �rewall. The system administrator
is only charged with con�guring the gateway to accept calls on the service facade object,

representing the entry-point of a system [16]. The system administrator could indeed

de�ne, in a declarative manner, which operations are allowed access and to which users.

Note this approach di�ers from that of [7] as it attempts to declare permissions in a
centralized server, that is the application-level gateway.

However, when there is not a single object to be con�gured on the gateway but several,

when they become available on a non-deterministic basis, and also when these objects
do not run on the same machine but are distributed on a local area network; static

con�guration of an application-level gateway is unlikely to succeed. This work de�nes a

pattern to deal with this dynamism. In the following sections we de�ne its structure and

behavior. That is, the major classes and its dependencies with the framework and, the

sequence of tasks that objects should perform to automatically register services with the
gateway.

1In contrast to circuit-level, application-level gateway are able to monitor an speci�c kind of protocol

communicated between peers and thus, they are only allowed to impose constraints/rules with regard to

that protocol.

Forces

The pattern should conform to the following forces:

1. The major concern of this pattern is to enable con�guration of remote services on

the �rewall in a dynamic way. That is, the binding can occur during the application

execution.

2. It must resolve limitations related to the service runtime platform. In the case of

RMI (Remote Method Invocation) [9], for example, the RMI name server enforces

remote objects to execute on the same host it executes, which is not a desirable

feature in order to conserve scalability. In this case, all system's objects must have

been running on the same host, that is, the host where the name server was running.

3. In order to ease maintenance, and increase legibility and extensibility; it must be

easy to isolate responsibilities of components based on the separation of its concerns.

Example

Considering the case an RMI proxy is selected as an application-level gateway, it enables

transparent connectivity both in a very restricted con�guration where a �rewall does not
allow outbound or inbound TCP connections, as in an environment that allows these
connections by a SOCKS server. Naturally, an RMI proxy also supports connections

when there are no �rewalls involved, as the case of ISP (Internet Service Provider) POP3
connections. Figure 1 illustrates a con�guration where RMI Registry [15, 9] does not
execute on the same host as the RMI proxy. Due to load balancing, this organization is

well suited for proxy servers that need to host several objects.

���
���
���

���
���
���

name server −
stubs

���
���
���

���
���
���

���
���
���

���
���
���

skeleton − server

client − stub

client
st2 sk2 st1

st2

server

st1

sk1

RMI
proxy

Registry
RMI

host_1.companyA host_2.companyA

lookup
lookup

Figure 1: RMI Proxy organization using multiple hosts

In the light of the diagram legends, we conclude the RMI proxy actually performs

three tasks: it is a name server and also a server to RMI clients, and it is a client to the

actual remote object implementation. This arrangement allows clients to access a single

and secure endpoint - the RMI Proxy - that conveys communication traÆc to a local

network endpoint where the remote object is supposed to be running. As a consequence

of being also a name server, Figure 2 presents an organization where the RMI Registry

client
st2 sk2 st1

st2 st1

serversk1

RMI
proxy

host_1.companyA

lookup

Figure 2: RMI Proxy organization

component is discarded and the remote object uses the RMI Proxy to bind a name. This

is only possible because the RMI proxy is also a name server.

As soon as the facade object, representing the service, is exported to the RMI system

and properly bound to the RMI proxy, it can be accessed in remote locations. However,

this is not enough to resolve communication since the facade object should indeed return
other remote object references. If the facade returns to the client a stub to an object

running on some network host, the client would unsuccessfully try to access that remote
object directly. It should be accomplished through the RMI proxy. Therefore, remote
objects returned by the facade should also be registered on the RMI Proxy whenever

they are requested. This causes the gateway (RMI Proxy) to create a skeleton object
on-the-
y (sk2) to receive communication on behalf of the actual server (server), and

then returns a remote stub (st2) that refers to this skeleton, rather than to the actual
skeleton object (sk1). Another problem occurs when the federation does not have access
to remote references in order to register them with the RMI proxy. In fact, this situation

is very common when working with Jini [1] as it very often represents remote objects as
non-remote proxy objects 2. In this case, the actual remote reference is stored within the
proxy object and we do not have access to it.

The Proxy-to-Proxy approach de�nes another level of indirection in order to access
these objects remotely. The pattern de�nes a proxy object that stores a reference not to

the actual remote object, but to a new remote one that is to be bound to the application-
level gateway. This new remote object stores in turn a reference to the original (actual)
proxy object, so it delegates operations to it.

Figure 3 sketches the dependency between the additional proxy object and the new

remote object created to provide �rewall access to a Jini Lookup Service (on the left-side of

the diagram), and also the dependency between the original Lookup Service and its proxy
(on the right-side of the diagram). Note the JTServiceRegistrar has a dependency
with a ServiceRegistrar type, which is the interface Lookup Service proxies should

implement. ServiceRegistrar is not a remote type, so it is not enforced to throw

RemoteException on its operations. This makes sense as the proxy is a local object, and
therefore this type only throws remote exceptions when it requires to access the remote

object, represented by the actual ServiceRegistrarImpl.

2The service proxy in Jini is de�ned as a class that implements the service interface and it is not

required to conform to any distribution platform. It may be locally implemented, use sockets, HTTP

connection, CORBA, RMI, etc. The proxy is supposed to be downloaded to the client's address space

prior to the client access to the service.

ServiceRegistrar

JTServiceRegistrarProxy actual_ServiceRegistrarProxy

actual_ServiceRegistrarImpl

<<Remote>>

JTServiceRegistrar

IServiceRegistrar ?
<<Remote>>

Figure 3: Applying the pattern to the Jini Lookup Service

On the other hand, every operation JTServiceRegistrarProxy implements is sup-

posed to call a remote object since it does not store local state due to the need to en-

sure consistency. So, we have a problem. All JTServiceRegistrarProxy operations are
remote but not necessarily all ServiceRegistrar operation are. Java does not allow

overriding operations that throw exceptions not declared in their superclass. This makes
sense as a client cannot catch an unexpected exception from an interface implementation.

Therefore, it means that JTServiceRegistrar cannot implement the ServiceRegistrar
interface directly. Actually, it implements an equivalent interface that throws remote ex-
ceptions in all operations, the IServiceRegistrar interface, which is a Remote interface.

Similarly to the right side of the diagram, the speci�c protocol that the proxy and the
remote object use is well hidden from their clients.

Solution

In most distribution platforms the concept of a service interface is very often related to
communication. In CORBA [10], for example, the stub component behaves as a proxy to

the service which is located at the client's address space and so, it must implement the
service interface and contact the actual remote object through the wire. However, the

concept of a service interface may be made independent of the communication platform
selected as Jini [1] suggests. In this context, a proxy is a component that implements the

service interface and nothing more. The stubs used in CORBA or RMI are indeed proxy

instances and therefore they conform to this principle. However, proxies do not need to
be necessarily stubs; they could be any kind of object that simply implements the service

interface. It could be a local implementation, or even contact di�erent remote objects to

implement the interface. In this work we conform to this principle, which recognizes the

di�erence between a service proxy and a stub.

The pattern extends the service interface by de�ning a new type - Proxy - that does not
call the service directly but uses a di�erent remote implementation to accomplish it - the

IRemoteProxy. As stated before, the remote proxy implementation - RemoteProxyObject

- does not necessarily implement the same interface as the proxy. In the same way as

the Interceptor [13] and Re
ection [2] this pattern gives an opportunity to intercept calls

made to the original service implementation.

Figure 4 generalizes the structure of the components from the example presented on

Proxy(String host, String id, ProxyInterface object);

RemoteInterface registered;

Proxy

 (RemoteInterface) Naming.lookup(name);
registered =
name = host + id;

try {

} catch (NotBoundException e) {

 Naming.rebind(name, registrar);

 registered = new RemoteProxyObject(object);

}

ProxyInterface ParentObject

RemoteProxyObject

proxy-to-proxy

actual proxy

Figure 4: The Proxy-to-Proxy pattern

�gure 3.

Applicability

This pattern applies when the number of remote objects managed by the system is rel-

atively large, and therefore static con�guration is not well suited because of the non-
determinism in which objects appear on the system. The JTrader system [3] is a federation
of services based on the semantics of trading, which applies this pattern.

Another common application of the pattern is to enable interception of remote calls.
Interception provides, for example, a means to control security, increase fault tolerance
and load balancing. However, as stated before, this is not a particular feature of this

pattern. In the \Related Patterns" section we contrast the di�erences between Proxy-to-
Proxy and other related patterns.

Static Structure

In the following, we describe classes, their collaborations and responsibilities. The high-
lighted boxes represent types that already exist prior to the pattern be applied and they

play a special role in the pattern behavior.

� ParentObject - This type is usually a facade class providing, through its meth-

ods, access to other remote objects. Although not presented in this diagram, client

components access the ParentObject to retrieve references to ProxyInterface ob-
jects. The parent object in turn should not return references to the actual proxy

implementation but to a Proxy object.

Responsibilities:

{ Build Proxy instances enabled to forward messages to the actual proxy3.

3Represented in the association between RemoteProxyObject and ProxyInterface.

Collaborators: Actual Proxy (not depicted in this diagram), Proxy, and ProxyInterface.

� ProxyInterface - This type appears highlighted in �gure 4 because it is the com-

mon interface implemented by both the actual proxy and the Proxy. ProxyInterface

is the type clients rely on to program their components and it is also a local type

since the protocol used to contact a service is supposed to be hidden within the

proxy code.

Responsibilities:

{ Provide a complete set of operation to clients access an object.

Collaborators: client component (not in the diagram), actual proxy (not in the

diagram), Proxy, ParentObject.

� Proxy - Proxies implement the ProxyInterface.

Responsibilities:

{ Hide the speci�c protocol used to contact the remote proxy-to-proxy object.

{ Build an IRemoteProxy instance and bind this object to the proper application-
level gateway.

Collaborators: ProxyInterface and IRemoteProxy.

� IRemoteProxy (optional4) - This is the remote interface of the proxy-to-proxy
remote object. It may declare the same operations as the ProxyInterface, but

throwing remote exceptions; or declare a completely di�erent protocol.

Responsibilities:

{ Declare the methods through which a remote object can be called.

Collaborators: Proxy and RemoteProxyObject.

� RemoteProxyObject - This type, also referred to as the proxy-to-proxy remote
object, implements the IRemoteProxy interface.

Responsibilities:

{ Add some capability to the service on top of the original (actual) remote object

implementation, which is only supposed to consider the service's functional
aspects.

{ Forward calls to the actual proxy object.

Collaborators: Proxy, IRemoteProxy, and actual proxy (not in the diagram).

4If every ProxyInterface operation is remote or some of its local operation is not supposed to be

called, this type may not be required and, in this case, the RemoteProxyObject could implement the

ProxyInterface directly.

Figure 5: Interaction diagram

Dynamics

The diagram of �gure 5 illustrates the interactions between the components mentioned

above and the following steps, providing additional meanings to the invocations repre-
sented on the diagram.

1. The client invokes an operation, say some op(), on some remote object, represented

as an ParentObject instance.

2. During the operation execution, the parent object calls a method which returns a ref-
erence to another remotely accessible object, here represented by the ProxyInterface

type.

3. Instead of returning that remote object directly to the user, a new proxy object

(Proxy) is to be created, passing as parameter the host in which the application-
level gateway is running, an identi�cation for the object, and a reference to the
actual proxy object (ProxyInterface).

4. Create the RemoteProxyObject that the Proxy refers to.

5. Bind the RemoteProxyObject to the application-level gateway.

6. Finally, the Proxy object is returned5 to the client through the method invoked

on the parentObject. Such object actually stores a reference to a remote object,

5Despite we suggest the reader that the proxy is actually a full-
edged object, it may be just a reference

to the RemoteProxyObject. By the way, this is how remote objects are passed (IOR) in CORBA remote

invocations. Note that we have stated earlier that stubs are also a special kind of proxies.

registered on the application-level gateway, which behaves like a reference monitor

to the original service.

Consequences

As design is very often an engineering between competing forces, this pattern is not an

exception. We describe in the following negative consequences this pattern brings.

� Garbage Collection. As long as the RemoteProxyObject only forwards messages

to the original remote object, such actual remote object can fail and, in this case,

the RemoteProxyObject instance would remain registered on the application-level

gateway (e.g. RMI Proxy). This situation leads to a more diÆcult procedure for

garbage collection because of the dependency between these objects.

� Performance. Due to security reasons, an application-level gateway very often uses

a single network port to convey communication to objects registered on it. Besides
the performance overhead a �rewall usually introduce for this reason, the proxy-
to-proxy arrangement introduces an additional indirection between a remote object

and its clients.

Even though the proxy-to-proxy strategy introduces overhead related to indirection of

remote calls and also turns far more diÆcult managing garbage collection on the �rewall,
it introduces some relevant bene�ts:

� Introduce additional capabilities. It is possible to modify the default behavior of an

object as we can intercept calls made to a proxy. Therefore, an operation can be
modi�ed or we can introduce additional capability to the service, such as dealing
with faults on remote references or balancing the system load. Moreover, applying

some security policy based on a version of the access matrix [12] is direct. The
proxy-to-proxy object, for instance, may be in charge to searching for access rights

on the matrix on behalf of the actual remote objects.

� Separation of concerns. As the original service implementation is well decoupled
from the proxy-to-proxy, we can reuse these capabilities in similar applications.

� Locality Freedom to the Service. According to the RMI speci�cation [15], RMI server

objects must run on the same host as the RMI Registry. It means remote objects

should run on the same machine as the RMI proxy. Actually, this requirement
imposes a hard constraint that mainly a�ects scalability on distributed systems.
However, the proxy-to-proxy arrangement resolves such limitation. The remote

object registered on RMI Proxy is not the remote object itself, but a second one

that behaves like the original and forwards messages to it. In other words, the
object registered on the RMI proxy is a client of the actual remote object and then,

it relieves the original server (actual proxy) from running on the application-level

gateway. However, the proxy-to-proxy is also a server and so, the object which

creates it (ParentObject) should be running on the same host as the application-

level gateway.

� Enable Activation6. Even if service proxies allow access to remote object references,

the RMI Proxy may not permit to register remote references. This situation happens

when the reference is to an activatable remote object. This special kind of remote

objects is used very often in Jini service to increase fault-tolerance and avoid resource

waste [9], but it is not well supported by current RMI Proxy implementations [11].

When using the proxy-to-proxy approach, this constraint does not apply for the

same reason as the locality freedom is achieved - the RemoteProxyObject registered

on the RMI Proxy is a client of the actual proxy and it can be implemented as an

UnicastRemoteObject [15], rather than an activatable.

Related patterns

Proxy [5, 2] - This pattern can be considered an application of the Proxy pattern [5, 6]

as the interceptor proxy implements the same interface as the service interface.

Security patterns [16, 7, 4] - Conversely to security patterns; which provide guide-
lines on how to control access to resources, provide user authentication, establish roles
and sessions, and govern the way exceptions are thrown due to lack of privileges; this work

does not cover these aspects at all, but de�nes an approach to con�gure remote services
on a network �rewall by means of delegation.

Re
ection [2] and the Interceptor [13] - As in these patterns, Proxy-to-Proxy requires
an additional indirection between the client and the service provider and thus it has some

similarities with both. These patterns depend on the underlying framework to implement
indirections. For example, according to the Interceptor pattern [13], a concrete framework
must provide a dispatcher with which interceptors are to be registered. Proxy-to-Proxy,

however, does not rely on the underlying framework. Even though it means additional
complexity to services in order to control the registration of the proxies on the application-

level gateway, the solution does not depend on a given framework. In this context, this
pattern could be interpreted as a lightweight version of the Interceptor pattern [13] where
the Proxy would be an Interceptor at the client-side and the RemoteProxyObject an In-

terceptor at the server-side.

Single Access Point [16] - Security applications should not allow users to get through

a back door that allows them to view or edit sensitive data. Single Access Point helps

solve this problem by limiting application entry to one single point [16]. Proxy-to-Proxy

is useful for decentralized component networks, and therefore, it does not rely on any
central manager to control security, as a facade [5, 13] object.

Acknowledgments

We would like to thank our coleagues at Universidade Federal de Pernambuco who made

suggestions about content and format to this work.

6This framework supports persistent remote references, which enable clients to rebind to remote objects

after a failure.

We are also very grateful to Eduardo Fernandez, the sheperd we were granted during

the conference revision process, for his contributions and careful supervision.

References

[1] Ken Arnold, Bryan O'Sullivan, Robert W. Schei
er, Jim Waldo, and Ann Wollrath.

The Jini Speci�cation. Addison-Wesley, December 1999.

[2] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael

Stal. Pattern-Oriented Software Architecture: A System of Patterns. John Wiley &

Sons, August 1996.

[3] Marcelo B. d'Amorim and Carlos Ferraz. A Design for JTrader - an Internet Trad-

ing Service. In proceedings of the Innovative Internet Computing Systems - I2CS.

Ilmenau, Germany. Springer Verlag, Lecture Notes in Computer Science (LNCS),

21th{22th June 2001.

[4] Eduardo B. Fernandez. Metadata and Authorization Patterns. In TR-CSE-00-16,

May 2000. Dept. of Computer Science and Eng. Florida Atlantic University.

[5] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns.

Elements of Reusable Object Oriented Software. Addison-Wesley, Jan. 1995.

[6] M. Grand. Patterns in Java, A Catalog of Reusable Design Patterns Illustrated with

UML, volume 1. John Wiley & Sons, New York, NY, USA, 1998.

[7] Viviane Hays, Marc Loutrel, and Eduardo B. Fernandez. The Object Filter and Ac-
cess Control Framework. In proceedings of the 7th Conference on Pattern Languages

of Programming, Monticello, IL., 2000.

[8] Martin W. Murhammer, Orcun Atakan, Stefan Bretz, Larry R. Pugh, Kazunari
Suzuki, and David H. Wood. TCP/IP Tutorial and Technical Overview. IBM Cor-

poration, International Technical Support Organization, 6th edition, October 1998.

[9] Richard Oberg. Mastering RMI: Developing Enterprise Applications in Java and

EJB. Wiley, 2001.

[10] Object Management Group. CORBA/IIOP Speci�cation, 2.3.1 edition, October
1999.

[11] Esmond Pitt and Neil Belford. The RMI Proxy. Telekinesis Inc., 2000.

[12] R. S. Sandhu and G. S. Suri. Implementation Considerations for the Typed Access
Matrix Model in a Distributed Environment. In 15th National Computer Security

Conference, pages 221{235, 1992.

[13] Douglas Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann. Pattern-

Oriented Software Architecture: Patterns for Concurrency and Networked Objects.

John Wiley & Sons, September 2000.

[14] Rita C. Summers. Secure Computing: Threats and Safeguards. McGraw-Hill, 1997.

[15] Sun Microsystems. Java Remote Method Invocation Speci�cation, 1.50 edition, Oc-

tober 1998.

[16] J. Yoder and J. Barcalow. Architectural Patterns for Enabling Application Secu-

rity. In proceedings of the 4th Conference on Pattern Languages of Programming,

Monticello, IL., September 1997.

Uma Coleção de Padrões para o Gerenciamento de Sessão em Aplicações
Internet

MÁRCIO DE OLIVEIRA

BARROS
ALEXANDRE LUIS

CORREA
CLÁUDIA MARIA LIMA

WERNER

COPPE / UFRJ – Departamento de Engenharia de Sistemas e Computação
Caixa Postal: 68511 - CEP 21945-970 - Rio de Janeiro – RJ

Telefone: 5521 562-8675 / Fax: 5521 562-8676
{marcio, alexcorr, werner}@cos.ufrj.br

Resumo

Aplicações Internet têm características particulares que as diferenciam de
aplicações convencionais. Dentre estas características encontra-se o fato da
comunicação entre os clientes e os servidores, na maioria das aplicações, ocorrer
através de um protocolo que não possui memória das interações anteriores entre estes
elementos. Assim, tornam-se necessários mecanismos de gerenciamento de sessão,
que garantem a persistência das informações adquiridas entre as diversas páginas
componentes de uma aplicação Internet. Neste artigo apresentamos três padrões que
tratam do gerenciamento de sessão em aplicações Internet.

1. Introdução

O crescimento dos mercados de comércio eletrônico, home-banking e de prestação de
serviços através da Internet fez crescer a demanda pelo desenvolvimento de aplicações
acessíveis através desta plataforma. Entretanto, as aplicações Internet possuem características
e limitações particulares que as diferenciam de aplicações convencionais. A Figura 1
apresenta os principais elementos envolvidos em uma aplicação Internet.

§ Cliente: representa o lado cliente da aplicação Internet. As aplicações Internet seguem o
modelo cliente-servidor, onde diversos computadores (atuando como clientes)
requisitam os serviços oferecidos por um ou mais servidores. Nas aplicações Internet, o
lado cliente geralmente é responsável apenas pela execução do navegador. O navegador
recebe páginas e arquivos complementares (imagens, folhas de estilo, sons, entre
outros) enviadas pelo lado servidor, apresenta as páginas recebidas e monitora a
ativação de suas ligações com outras páginas, requisitando as páginas ativadas ao
servidor;

§ Servidor: representa o lado servidor de uma aplicação Internet, sendo responsável pela
transferência das páginas requisitadas pelos navegadores. Enquanto os navegadores

Figura 1 – Principais elementos envolvidos em uma aplicação Internet

Servidor

Protocolo HTTP

Cliente

Aplicação
Internet

somente recebem e tratam as páginas e seus arquivos complementares, uma requisição
ao servidor pode ativar uma aplicação que realiza um processamento, gerando uma
resposta para o navegador no lado cliente. A resposta geralmente se constitui de uma
página, que pode ser estática ou construída dinamicamente através da utilização de
outros recursos do lado servidor, como, por exemplo, bases de dados. O servidor pode
ser visto como um cluster de servidores, isto é, um conjunto de servidores que atendem
pedidos para uma mesma aplicação;

§ Protocolo HTTP [W3C 1999]: é o protocolo de comunicação entre o cliente e o
servidor, através do qual as requisições por páginas são realizadas. Uma importante
característica deste protocolo é a falta de memória, isto é, o protocolo não armazena um
histórico das páginas previamente requisitadas nem das informações contidas nestas
páginas;

§ Aplicação Internet: representa a aplicação executada no lado servidor, responsável pelo
processamento das informações enviadas pelos clientes.

A incapacidade do protocolo HTTP manter memória das interações ocorridas entre
clientes e servidores é uma importante limitação a que estão sujeitas as aplicações Internet.
Esta limitação exige a criação de mecanismos para o armazenamento das informações
coletadas ao longo destas interações. Tais mecanismos são denominados gerenciamento de
sessão.

A seguir apresentamos três padrões que tratam do gerenciamento de sessão em aplicações
Internet. Na construção destes padrões seguimos a proposta de Meszaros e Doble [Mesz
1997], descrita no padrão Common Problems Highlighted, que sugere que a estrutura comum
compartilhada por um conjunto de padrões seja destacada em um padrão separado. Assim, o
primeiro padrão, Gerenciamento de Sessão na Internet, contém a estrutura comum aos dois
últimos padrões, Gerenciamento de Sessão Baseado em Cookies e Gerenciamento de Sessão
Baseado em Parâmetros.

2. Gerenciamento de Sessão na Internet

2.1. Contexto

Em um sistema de compras pela Internet, um usuário se identifica, fornecendo seu nome e
sua senha, seleciona um conjunto de produtos e realiza a compra, indicando outras
informações como, por exemplo, a forma de pagamento e o local de entrega. Este processo,
com pequenas variações, repete-se em diversas aplicações envolvendo a aquisição de
produtos pela Internet, como supermercados virtuais, livrarias, distribuidores de software,
entre outros.
O carrinho de compras, que contém os produtos selecionados e suas respectivas
quantidades, é uma informação ligada à sessão do usuário. Uma sessão é definida como o
uso consistente de uma aplicação Internet por um período de tempo, podendo se estender
pelo acesso a diversas páginas que pertençam à aplicação. Por consistente, entendemos que
a sessão tem um objetivo principal. No exemplo acima, o objetivo de uma sessão é a
aquisição de um conjunto de produtos. A cada nova sessão, o usuário terá um novo
carrinho de compras.

2.2. Problema

O problema reside em como garantir a persistência das informações contidas em páginas
previamente percorridas pelo usuário, de forma que estas informações possam ser

posteriormente utilizadas pela aplicação Internet, mesmo que esta utilize um protocolo sem
memória, como o HTTP.

2.3. Forças

• Aplicações Internet geralmente utilizam informações residentes em páginas previamente
percorridas pelo usuário. Entretanto, o principal protocolo utilizado nestas aplicações –
o protocolo HTTP – não possui memória destas informações;

• As informações armazenadas no lado cliente de uma aplicação Internet não são seguras,
pois podem ser alteradas pelo navegador ou por uma aplicação do cliente;

• Diversas aplicações Internet são executadas dentro de um cluster de servidores HTTP.
Portanto, dentro de uma mesma sessão, as requisições de um usuário podem ser
atendidas por diferentes servidores.

2.4. Solução

A persistência das informações trocadas nas aplicações Internet é garantida com a
utilização de mecanismos de gerenciamento de sessão na Internet. Eles permitem que uma
aplicação Internet armazene informações sobre as páginas percorridas por um usuário no
contexto de uma sessão. Estas informações podem ser utilizadas, por exemplo, para
armazenar o carrinho de compras.
Os seguintes mecanismos de gerenciamento de sessão são atualmente utilizados na
Internet: Gerenciamento de Sessão Baseado em Cookies e Gerenciamento de Sessão
Baseado em Parâmetros. Estes mecanismos são descritos na Seção 2 e na Seção 3,
respectivamente. A Figura 2 apresenta a estrutura geral utilizada pelos mecanismos de
Gerenciamento de Sessão na Internet.

§ Base de Dados: um repositório de informações utilizado para conter a memória da
sessão. Estes dados poderiam ser armazenados na memória do servidor, permitindo um
acesso mais rápido à memória da sessão. Entretanto, se a aplicação Internet for
executada em um cluster de servidores, o algoritmo de distribuição de requisições pode
delegar o atendimento das requisições de uma sessão a diferentes servidores,
espalhando as informações desta sessão. Desta forma, armazenaremos a memória da
sessão em uma base de dados, que pode ser um banco de dados relacional, um servidor
especializado em memória de sessão ou um dispositivo de memória compartilhada. A
base de dados deve ser acessível para os servidores do cluster;

§ Chave: é a informação necessária para identificar a memória da sessão de um usuário na
base de dados. A chave deve ser transferida do cliente para o servidor a cada solicitação
e, em função de trafegar pela rede, esta transferência deve ocorrer de forma segura;

Cliente
Servidor

Protocolo HTTP

Base de
Dados

Aplicação no
Servidor

Componente
de Criptografia

Chave

Figura 2 – Estrutura geral da solução Gerenciamento de Sessão na Internet

§ Componente de Criptografia: este componente é responsável por tratar uma limitação
na transferência de informações entre os lados cliente e servidor: a questão de
segurança. Informações provenientes do lado cliente, mesmo que tenham sido
previamente enviadas pelo servidor, podem ser alteradas por aplicações do usuário. Isto
pode provocar problemas na aplicação Internet, permitindo que a memória da sessão de
um usuário seja acessada de forma distinta da originalmente planejada. Para que as
informações que passam pelo lado cliente sejam tratadas de forma segura, elas devem
ser criptografadas no servidor antes de enviadas e decodificadas quando recebidas.

2.5. Contexto Resultante

Como resultado da aplicação deste padrão criou-se uma memória de sessão identificada
por uma chave e funcional tanto em um cluster de servidores como em um servidor
independente. A chave é criptografada de forma a ser transferida para o lado cliente da
aplicação Internet com segurança.

2.6. Padrões Relacionados

A aplicação dos mecanismos de Gerenciamento de Sessão na Internet está relacionada
com a aplicação dos seguintes padrões mais específicos que se diferenciam na forma como
o tratamento da chave de acesso à memória da sessão é realizado:

• Gerenciamento de Sessão Baseado em Cookies armazena a chave de acesso à memória
da sessão em cookies no lado cliente.

• Gerenciamento de Sessão Baseado em Parâmetros armazena a chave de acesso à
memória da sessão em campos escondidos de formulários e em parâmetros embutidos
nas ligações estáticas das páginas enviadas para o navegador cliente.

2.7. Usos Conhecidos

Assim como no exemplo do carrinho de compras citado no contexto, outras aplicações
Internet, como portais de home-banking, páginas de busca, webmail e jogos, se baseiam em
informações residentes em páginas previamente percorridas pelo usuário e, portanto,
utilizam mecanismos de gerenciamento de sessão.

3. Gerenciamento de Sessão Baseado em Cookies

3.1. Contexto

O contexto deste padrão é resultante da aplicação do Gerenciamento de Sessão na Internet
onde as informações da sessão de um usuário são acessadas através de uma chave.

3.2. Problema

 O problema consiste em garantir a persistência da chave utilizada na aplicação do
Gerenciamento de Sessão na Internet entre os diversos acessos a diferentes páginas sem
ocasionar um aumento no código das mesmas.

3.3. Forças

• Aplicações Internet geralmente utilizam informações residentes em páginas previamente
percorridas pelo usuário. Entretanto, o principal protocolo utilizado nestas aplicações –
o protocolo HTTP – não possui memória destas informações;

• Quando o tratamento da persistência da chave envolve a criação de campos escondidos e
parâmetros embutidos nas páginas transferidas do servidor para o cliente, ocorre uma
inserção de código específico para tal nestas páginas.

3.4. Solução

A solução consiste em estender a solução do Gerenciamento de Sessão na Internet,
armazenando a chave criptografada em um cookie no lado cliente [Rubin 1998]. A Figura
3 apresenta os elementos envolvidos na solução.

Um cookie é um conjunto de informações armazenadas no lado cliente de uma aplicação
Internet. O cookie contém um pequeno trecho de dados, geralmente limitados a quatro
Kbytes, sendo composto por pares de “nome-valor”, ambos representados por seqüências
de caracteres. Um cookie é associado a um conjunto de páginas Internet: sempre que o
navegador envia uma requisição de página para o servidor, o cookie associado à página
pedida também é enviado. Da mesma forma, o servidor pode enviar um cookie junto com
uma página transferida para um navegador. Um cookie possui uma data de expiração,
indicada pelo servidor quando este envia o cookie para o navegador cliente. O cookie pode
ser programado para expirar no fechamento do navegador ou em uma data fixa.
No primeiro instante em que o servidor identificar a necessidade de guardar memória da
sessão do usuário, ele cria uma chave de identificação para a sessão, aplica a criptografia
sobre a chave, enviando-a na forma de um cookie para o cliente.

3.5. Dinâmica

A dinâmica de colaboração entre os componentes participantes desta solução é ilustrada
pelos diagramas das Figuras 4 e 5. Esta dinâmica pode ser dividida em dois instantes
distintos:

a) Cliente realiza uma requisição que faz com que o servidor identifique a necessidade de
guardar memória da sessão (Figura 4):
§ Cliente envia uma requisição de página para o servidor contendo informações que

deverão ser guardadas para as próximas interações;
§ O servidor identifica a aplicação Internet que deve ser ativada, enviando as

informações recebidas do cliente para esta aplicação;

Cliente
Servidor

Cookies
Protocolo HTTP

Base de
Dados

Aplicação no
Servidor

Componente
de Criptografia

Chave

Figura 3 - Estrutura geral da solução Gerenciamento de Sessão baseado em Cookies

§ A aplicação Internet requisita que o banco de dados crie uma nova memória da
sessão, retornando sua chave;

§ A aplicação Internet requisita ao componente de criptografia que codifique a chave
da memória da sessão, retornando seu valor criptografado;

§ A aplicação Internet compõe um cookie com a chave criptografada e o envia para o
servidor, junto com a página resultante do processamento. A expiração do cookie é
programada para o fechamento do navegador;

§ O servidor envia a página e o cookie recebidos da aplicação Internet para o
navegador no lado cliente.

b) Requisições realizadas pelo cliente após a criação do cookie (Figura 5):

§ Cliente envia uma requisição de página para o servidor, acompanhada de um
cookie com a chave criptografada para a memória da sessão do usuário;

Cliente Servidor Aplicação Componente de
Criptografia

Banco de
Dados

Requisição de página
e cookie

Página

Cookie

Página

Obtém chave decodificada

Obtém dados da sessão

Altera dados da sessão

Figura 5 – Diagrama de seqüência para consulta e alteração da memória da sessão

Cliente Servidor Aplicação Componente de
Criptografia

Banco de
Dados

Requisição de página e
informação de sessão

Informações da sessão
Obtém chave da sessão

Obtém chave criptografada

Página e c ookie

Página e cookie

Figura 4 – Diagrama de seqüência para a criação de memória da sessão

§ O servidor identifica a aplicação Internet que deve ser ativada e passa o cookie para
esta aplicação;

§ A aplicação Internet utiliza o componente de criptografia para recuperar o valor
original da chave de acesso à memória da sessão;

§ A aplicação Internet consulta e, eventualmente, atualiza os dados da memória da
sessão no banco de dados, utilizando a chave de acesso;

§ A aplicação Internet utiliza a memória da sessão para compor a página de resposta
para o cliente, enviando-a para o servidor;

§ O servidor envia a página recebida da aplicação Internet para o navegador no lado
cliente.

3.6. Conseqüências

A principal vantagem desta solução é que o código das páginas enviadas para o navegador
cliente não precisa ser alterado para o armazenamento da memória da sessão. Além disso,
nenhuma lógica é necessária no lado cliente, uma vez que o tratamento dos cookies é
realizado automaticamente pelos navegadores.
A principal limitação desta solução é a possibilidade do navegador cliente estar
programado para rejeitar cookies. Neste caso, a aplicação Internet não recebe a chave para
a memória da sessão do usuário, ficando os dados desassociados da sessão atual.

3.7. Padrões Relacionados

Este padrão é normalmente aplicado para solucionar o problema de armazenamento e
transferência da chave que surge quando da aplicação do Gerenciamento de Sessão na
Internet. Gerenciamento de Sessão Baseado em Parâmetros armazena a chave de acesso à
memória da sessão em campos escondidos de formulários e em parâmetros embutidos nas
ligações estáticas das páginas enviadas para o navegador cliente.

4. Gerenciamento de Sessão Baseado em Parâmetros

4.1. Contexto

O contexto deste padrão é resultante da aplicação do Gerenciamento de Sessão na Internet
onde as informações da sessão de um usuário são acessadas através de uma chave.

4.2. Problema

O problema consiste em garantir a persistência da chave utilizada na aplicação do
Gerenciamento de Sessão na Internet entre os diversos acessos a diferentes páginas de
forma a atingir indiscriminadamente navegadores clientes na Internet.

4.3. Forças

• Campos escondidos são aceitos por qualquer navegador cliente, sendo enviados para o
servidor quando o formulário é submetido;

• Ligações estáticas podem conter parâmetros, que são enviados para o servidor quando a
ligação é ativada;

• Um navegador cliente pode estar programado para não aceitar cookies enviados pelo
servidor junto com uma página;

4.4. Solução

A solução consiste em enviar a chave de acesso à memória da sessão para o servidor na
forma de um parâmetro. Este parâmetro deve ser enviado em todas as requisições do
navegador cliente. Assim como nos cookies, os parâmetros também trafegam pela rede,
devendo ser criptografados no lado servidor antes de enviados para o lado cliente. A Figura
6 apresenta a estrutura da solução proposta pelo padrão.

§ Formulários: as páginas de uma aplicação Internet podem conter formulários, que são
preenchidos pelo usuário e enviados para o servidor. Formulários constituem o principal
mecanismo de captura de informações no lado cliente para posterior processamento no
servidor. Cada formulário é composto por diversos campos, como linhas de edição,
listas, botões, entre outros. Um campo especial, chamado de campo escondido, pode
conter uma informação programada pelo servidor que lhe será remetida quando o
formulário for submetido;

§ Parâmetros: são informações que complementam a requisição de uma página no
servidor. Em qualquer requisição, o lado cliente pode enviar um conjunto de
parâmetros, que podem ser utilizados pelo servidor na produção da página de resposta.
Um parâmetro é definido por um par “nome-valor”, ambos tratados como seqüências de
caracteres. Os dados preenchidos em um formulário são enviados para o servidor na
forma de parâmetros.

Um cliente pode requisitar uma página do servidor através da ativação de uma ligação
estática ou pela submissão de formulários. Para tratar as requisições através de ligações
estáticas, a aplicação Internet deve incluir a chave criptografada de acesso à memória da
sessão como um parâmetro embutido em todas as ligações das páginas que enviar para o
cliente. Assim, sempre que uma ligação for ativada no navegador, o parâmetro (i.e., a
chave de acesso) será enviado para o servidor.
Para tratar as requisições através de formulários, a aplicação Internet deve criar um campo
escondido nos formulários das páginas enviadas para o cliente, contendo a chave
criptografada de acesso à memória da sessão.
No primeiro instante em que o servidor identificar a necessidade de guardar memória da
sessão do usuário, ele cria uma chave de identificação para a sessão, enviando-a, a partir
deste instante, nos formulários e nas ligações estáticas. Quando a informação de um
formulário for submetida para o servidor ou quando uma ligação estática for ativada, a
chave da memória da sessão também será enviada.

Figura 6 – Estrutura da solução de gerenciamento de sessão baseado em parâmetros

Cliente
Servidor

Formulários
Protocolo HTTP

Base de
Dados

Aplicação no
Servidor

Componente
de Criptografia

Parâmetros

Chave

4.5. Dinâmica

A dinâmica de colaboração entre os componentes participantes desta solução é ilustrada
pelos diagramas das Figuras 7 e 8. Esta dinâmica pode ser dividida em dois instantes
distintos:

a) Cliente realiza uma requisição que faz com que o servidor identifique a necessidade de

guardar memória da sessão (Figura 7):
§ Cliente envia uma requisição de página para o servidor contendo informações que

deverão ser guardadas para as próximas interações;
§ O servidor identifica a aplicação Internet que deve ser ativada as informações

recebidas do cliente para esta aplicação;
§ A aplicação Internet requisita que o banco de dados crie uma nova memória da

sessão, retornando sua chave;
§ A aplicação Internet requisita ao componente de criptografia que codifique a chave

da memória da sessão, retornando seu valor criptografado;
§ A aplicação Internet cria a página de resultado, adicionando um campo escondido

em cada um de seus formulários e um parâmetro embutido em cada uma de suas
ligações estáticas para conter a chave criptografada. A página é enviada para o
servidor;

§ O servidor envia a página recebida da aplicação Internet para o navegador no lado
cliente.

b) Requisições realizadas pelo cliente após a criação da memória da sessão (Figura 8):

§ Cliente envia uma requisição para o servidor, acompanhada dos parâmetros
advindos de um formulário ou de uma ligação estática;

§ O servidor identifica a aplicação Internet que deve ser ativada e passa os
parâmetros recebidos para esta aplicação;

§ A chave criptografada de acesso à memória da sessão do usuário se encontra entre
os parâmetros, sendo seu nome conhecido pela aplicação Internet;

§ A aplicação utiliza o componente de criptografia para recuperar o valor original da
chave de acesso à memória da sessão;

§ A aplicação Internet consulta e, eventualmente, atualiza os dados da memória da
sessão no banco de dados, utilizando a chave de acesso;

Cliente Servidor Aplicação Componente de
Criptografia

Banco de
Dados

Requisição de página e
informação de sessão

Informações da sessão
Obtém chave da sessão

Obtém chave criptografada

Página com chave
embutida

Página com chave
embutida

Figura 7 – Diagrama de seqüência para a criação de memória da sessão

§ A aplicação Internet utiliza a memória da sessão para compor a página de resposta.
A aplicação inclui a chave criptografada em campos escondidos de seus
formulários e em parâmetros embutidos de suas ligações estáticas. A página
resultante é enviada para o servidor;

§ O servidor envia a página recebida da aplicação Internet para o navegador no lado
cliente.

4.6. Conseqüências

A principal vantagem desta solução é a independência do mecanismo de cookies, o que
permite que ela funcione mesmo que o usuário desabilite o tratamento de cookies em seu
navegador.
A principal limitação desta solução é o crescimento do código das páginas devido aos
parâmetros embutidos e campos escondidos. A solução é intrusiva, pois depende de
alterações no código das páginas.

4.7. Padrões Relacionados

Este padrão é normalmente aplicado para solucionar o problema de armazenamento e
transferência da chave que surge quando da aplicação do Gerenciamento de Sessão na
Internet. Gerenciamento de Sessão Baseado em Cookies armazena a chave de acesso à
memória da sessão em cookies no lado cliente.

5. Conclusão

O armazenamento de memória da sessão em uma aplicação Internet não depende somente
da natureza das informações armazenadas, mas também do conhecimento das limitações
impostas pela plataforma. Os padrões de gerenciamento de sessão documentam este
conhecimento, oferecendo soluções para estas limitações.

Três padrões foram apresentados para a implementação de gerenciamento de sessão. O
Gerenciamento de Sessão na Internet contém a solução genérica para o problema. Os outros
dois padrões são utilizados para resolver a questão do armazenamento da chave de acesso à
memória da sessão. O Gerenciamento de Sessão Baseado em Cookies pode ser aplicado
quando o público alvo da aplicação Internet é relativamente controlado e o administrador da
aplicação pode garantir que os navegadores de seus usuários aceitem cookies. O

Cliente Servidor Aplicação Componente de
Criptografia

Banco de
Dados

Requisição de página
e parâmetros

Parâmetros

Página com chave
embutida

Obtém chave decodificada

Obtém dados da sessão

Altera dados da sessão

Página com chave
embutida

Figura 8 – Diagrama de seqüência para consulta e alteração da memória da sessão

Gerenciamento de Sessão Baseado em Parâmetros assume um cenário mais restrito, onde os
limites do servidor são explorados em prol de uma maior flexibilidade do lado cliente.

Agradecimentos

Os autores gostariam de agradecer a CAPES e ao CNPq pelo apoio financeiro a este
trabalho, a nossa shepperd Rossana Maria pela criteriosa revisão do artigo e ao grupo número
1 do SugarLoafPLOP pelas críticas que permitiram a sua redação final.

Referências Bibliográficas

[Kristol 1997] Kristol, D.M., “HTTP State Management Mechanism”, 1998. IETF
RFC 2109, 1997.

[Mesz 1997]

Meszaros, G.; Doble, J., “A Pattern Language for Pattern Writing”, em:
Pattern Languages of Program Design 3 (Software Pattern Series),
Addison Wesley Longman Inc. – 1997. Disponível em
http://hillside.net/patterns/Writing/patterns.html.

[Powell, 2000] Powell, T.A., “HTML: The Complete Reference”, 2000. McGraw-Hill
Professional Publishing.

[Rubin 1998] Rubin, J.H.; “An in-depth analysis of cookies”, 1998. Disponível em:
http://headcase.syr.edu/NEW/Research/cookies.html

[W3C 1999] W3C Consortium, “Hypertext Transfer Protocol -- HTTP/1.1”, 1999.
Disponível em: ftp://ftp.isi.edu/in-notes/rfc2616.txt

Concurrency Manager

S�ergio Soares� and Paulo Borbay

Centro de Inform�atica

Universidade Federal de Pernambuco

Intent

Provide an alternative to method synchronization with the aim of increasing system per-
formance. Concurrency Manager uses knowledge about the semantics of the methods
in order to block only con
icting execution
ows, allowing the non{con
icting ones to
execute concurrently.

Motivation

The advent of web{based information systems signi�cantly increased the number of con-
current programs. Concurrent programs must control concurrency to guarantee safe im-
plementations, which avoid interference that lead systems to inconsistent states and be-
haviors. To implement some of these controls we need to use programming language
features, such as blocking methods to avoid their concurrent execution in the same ob-
ject. In the Java [6] programming language we can do this synchronizing methods with
the synchronized method modi�er, which forbid concurrent execution of methods within
an object.

However, implementation of such features brings performance overhead, serializing
the execution of some operations. There are several approaches concerned about guaran-
teeing performance increasing, removing unnecessary synchronization of Java concurrent
programs [3, 1, 5]. They show the negative impact in eÆciency of the Java concurrency
control mechanisms. This negative impact demands alternatives to increase programs'
performance.

Method synchronization guarantees that all concurrent execution of a method within
an object will be serialized. With this approach we can allow or block all concurrent
execution of a method. However, if some execution
ows cannot be concurrently executed,
but others can, we need an intermediary approach.

Example

Consider an address book application with a class AddressBook that has a method to
register addresses. The method veri�es, before registering an address in the system, if

�Supported by CAPES. Email: scbs@cin.ufpe.br
yPartially supported by CNPq, grant 521994/96{9. Email: phmb@cin.ufpe.br

1

there is an address with the same email of the address being registered. Two concurrent
executions that try to register addresses with the same email may get the same answer:
there is not an address with the email of the objects being registered. In this case both
execution
ows will try to register the objects, which may turn the system to an incon-
sistent state, or raise an unexpected error. We can conclude that this method cannot
be concurrently executed if the objects (addresses) being registered have the same email,
otherwise concurrent execution is allowed. Therefore the address' email can be used to
decide if an execution
ow can or cannot be concurrently executed. Figure 1 shows an
UML [4] class diagram of this application.

Figure 1: Address Book application's class diagram.

The class ConcurrencyManager is user to control the AddressBook register method
execution. The method should ask permission to the ConcurrencyManager before exe-
cuting, calling the beginExecution method with the address's email as the argument.
If another address is being registered with the same email by other execution
ow, this
execution is blocked until the executing
ow terminates.

The email information is part of the method semantics, as the method's parameters
and the object's state. The Concurrency Manager pattern uses such information to block
only the con
icting execution
ows.

Either persistent application that uses databases management systems (DBMS) must
make some concurrency controls. So this pattern can be also used in such systems, besides
the idea that persistent systems already make all concurrency controls using the DBMS
features, which is not true [9].

Applicability

Use Concurrency Manager when

� You need to control concurrent access to an object, blocking just some concurrent
execution of a method within the object, allowing others. In the previous example
concurrent addresses registration can be executed since the addresses have not the
same email. Only the registrations of addresses with the same emails must be
serialized (synchronized).

� You need to control concurrency in more than one method; some
ows can execute
concurrently in the methods and others cannot. For example, in a banking appli-

2

cation you can concurrently execute the methods deposit and withdraw, but for
di�erent accounts. The execution of deposit and withdraw for a same account must
be serialized to avoid inconsistencies.

� You need to control methods in di�erent objects. The objects must have the same
instance of the pattern to manage the concurrent execution in the objects. In this
case, one instance of the pattern manages methods execution in several objects.

Structure

The structure of Concurrency Manager is presented in the Figure 2 using an UML [4] class
diagram. This diagram is a generic diagram, if compared with the diagram presented in
Figure 1, which de�nes a class to encapsulate the information used to decide if an execution

ow should be blocked.

Figure 2: Concurrency Manager pattern's class diagram.

Participants

The participants of the pattern are

� ClassControlled. A concrete class with methods that can be concurrently executed
in some cases and cannot in others. The classes must have one or more instances of
the ConcurrencyManager to synchronize its methods.

� Thread. The thread that executes the controlled method(s) of the ClassControlled
objects.

� IConcurrencyManager. An interface responsible to abstract the pattern implemen-
tations and its extensions.

� ConcurrencyManager. A concrete class, which implements the IConcurrency-
Manager interface, and is responsible to control the concurrent execution of the
ClassControlled objects. This control is made based in the operation's semantics,
which is encapsulated in the ConcurrencyManagerData object.

3

� ConcurrencyManagerData. A concrete class with the information used to forbid a
method execution. The class also has a method match to compare two instances
of the class. This method implementation is responsible to de�ne, based in the
information of their attributes, if a ConcurrencyManagerData object matches any
ConcurrencyManagerData object already inserted in the manager, which means
that the current execution
ow may con
ict with another one, and hence must be
blocked.

Collaborations

Figure 3 shows a collaboration diagram modeling how a method can use the concurrency
manager to control concurrent execution. After being called by an execution
ow (message
1), the controlled method creates a ConcurrencyManagerData object with the relevant
information to decide if an execution
ow can execute concurrently (message 1.1). After
that, the manager's beginExecution method is called with the created data as argument
(1.2). Based in the stored data objects, the manager veri�es if there is a data object
that matches the object passed by the controlled method (1.2.1). If the objects match,
the controlled method is blocked (1.2.2); otherwise, the data object is stored in the man-
ager (1.2.3) and the controlled method executes. Just before terminating, the controlled
method calls the manager's endExecution method with the same data object created in
the beginning (1.3). This method call removes the data from the manager (1.3.1) and
noti�es the blocked execution
ows (1.3.2), which become ready to execute again.

Figure 3: Concurrency Manager's collaboration diagram.

In the collaboration diagram (Figure 3) the constructs f concurrent g (messages 1.2
and 1.3) means that in the presence of multiple
ows of control, the operation will be
treated as atomic. Java supports this construct with the synchronized method modi�er.

Figure 4 shows a sequence diagrams that speci�es an execution of a controlled method
without con
icting
ows.

4

Figure 4: Concurrency Manager's sequence diagram of an execution
ow without con
ict.

Other scenario is presented in Figure 5, which shows a sequence diagram that speci�es
an execution of a con
icting execution
ow.

Consequences

The bene�ts of the pattern are:

� Performance increase. The system performance is increased by the elimination of
unnecessary synchronization. The pattern uses the system operations' semantics
to block only con
icting concurrent execution. Performance tests made to analyze
the eÆciency impact of using this pattern showed that the performance increasing
was about 20%, depending of some aspects, such as the operations workload and
the number of concurrent threads. With high workload, we can see a low syn-
chronization overhead, on the other hand, with high number of concurrent threads
the synchronization overhead will be greater [9]. These aspects variation take the
performance increasing in a range from 5% to 60%.

� Reuse. The manager class and the class responsible for the data used by the manager
can be reused in several systems.

� Extensibility and maintainability. The pattern uses an interface to abstract di�er-
ent implementations of the manager. So, we can have di�erent implementations
of the pattern, for example, an implementation to be used in sequential environ-
ments, which does not make any concurrent control, simplifying its implementation
before migrating the system to the concurrent environment. Note that the pattern's
structure allows changing the concurrency control without making modi�cations in
business classes. This is possible because the use of the ConcurrencyManagerData

5

Figure 5: Concurrency Manager's sequence diagram of a con
icting execution
ow.

and ConcurrencyManager classes remove the code responsible for the concurrent
control from the business classes, such as the Address class. This separation of
concerns [7] (business and concurrency control) helps the system extensibility and
maintainability.

The liabilities of the pattern are:

� Increased number of classes. The class hierarchy becomes more complex because
new classes and interfaces are added, decreasing legibility and maintainability.

� Increased indirection. In order to introduce our control technique we must delegate
some calls to methods, which seems to decrease system performance. In fact, this
lost of eÆciency is recompensed because only con
icting execution
ows are blocked.

� Complexity. The controlled method's code is more complex than using the synchro�
nized modi�er, because to implement the pattern we must add about four new lines
of code. This contributes to decrease the system legibility and maintainability.

� Risk of deadlock. When applying the concurrency control technique to a method,
the programmer may forget to properly call the manager's endExecution method
allowing execution
ows to block inde�nitely.

Implementation

To implement the Concurrency Manager we can use several approaches.

6

� ConcurrencyManagerData set. The simplest approach is the one where the man-
ager keeps a set of ConcurrencyManagerData objects. When a thread asks permis-
sion to execute a method passing a ConcurrencyManagerData object, the man-
ager uses the ConcurrencyManagerData match method to verify if there is an-
other object that matches this ConcurrencyManagerData. If there is not, the
ConcurrencyManagerData object is inserted in the ConcurrencyManagerData set
and the execution may proceed. If there is any, the execution
ow is blocked until
the execution that inserted the object matched by the ConcurrencyManagerData

�nishes. The ConcurrencyManagerData class may store a simple key, as a string,
or more complex information that is necessary to decide if an execution
ow can
execute concurrently with others.

� State machine. We can also implement a state machine in the ConcurrencyManager
class. The manager should have a table to store all the system execution. Probably
the ConcurrencyManagerData class has to store the name of the method to execute
and the object id of the object being executed. With this information, the manager
can decide if this execution can be done at this time, verifying if this execution
sequence is according with the state machine de�nition.

Sample Code

Consider the application that registers addresses and veri�es, before register an address,
if there is an object in the system with the same email of the object to be registered,
see Figure 1. A possible concurrent execution that tries to register two objects with the
same email may turn the system to an inconsistent state. Consider that in a concurrent
execution both threads make the email veri�cation and receive a reply that there is not
an object with the email of the ones being registered, so, the threads will try to insert the
objects. Note that these execution
ows cannot execute concurrently, but the
ows that
try to insert addresses with di�erent emails can be concurrently executed. Therefore, we
can implement the Concurrency Manager pattern to control these executions.

The following implementation of the Concurrency Manager makes a simpli�cation of
the pattern. The ConcurrencyManager class keeps a keyword set (String set) that is used
to control concurrent execution over then, instead to keep a ConcurrencyManagerData

set. To implement this set we use the java:util:HashSet, a class that implements an
object set without any concurrency control.

public class ConcurrencyManager {

private HashSet keys;

public ConcurrencyManager() {

keys = new HashSet();

}

We need to de�ne a method to receive a String parameter to inform that a thread
will start to execute some operation over this String. If this keyword is already in the
set the execution is blocked, meaning that another thread is executing over this keyword.
The HashSet class has a method to verify if there is an object in the set. We use this
method to �nd if the keyword is already in the keyword set. We also use the method

7

wait inherited from Object class, superclass of all Java classes. This method blocks an
execution until being noti�ed to resume it.

public synchronized void beginExecution(String keyword) {

try {

while (!keys.add(keyword)) {

wait();

}

}

catch(InterruptedException ex) {

throw new RuntimeException("Unexpected error");

}

}

We also need a method to inform that the execution over a String (keyword) is
�nished. This method removes the keyword of the set, using the HashSet remove method,
and releases a thread that is blocked waiting to execute by calling the method notifyAll,
other method inherited from Object.

public synchronized void endExecution(String keyword) {

try {

if (!keys.remove(keyword)) {

throw new RuntimeException("Keyword not found");

}

}

finally {

notifyAll();

}

}

}

Now we need programming in the business class the code that negotiates with the
manager. The con
icting executions are the ones that try to register objects with a
same email. So we use the ConcurrencyManager class to synchronize only the con
icting
execution, which are the ones registering addresses with the same email. The keyword
to be used is the object's email, so if two threads try to register two objects with the
same email, the second one's execution is blocked until be released by the �rst one. The
following example shows how the ConcurrentManager class is used in this example.

public class AddressBook {

private AddressCollection addresses;

private ConcurrencyManager manager;

...

The AddressBook class de�nes an AddressCollection, which is responsible to store
the Address objects, and a ConcurrencyManager that is responsible to control the con-
currency over the method register.

8

public void register(Address address) throws EmailException {

1: String email = address.getEmail();

2: try {

3: manager.beginExecution(email);

4: if (!addresses.hasEmail(email)) {

5: addresses.insert(address);

6: }

7: else {

8: throw new EmailException();

9: }

10: }

11: finally {

12: manager.endExecution(email);

13: }

}

}

As we sad before, this example makes a simpli�cation when do not use a Concurrency�
ManagerData object to send the method information to the Concurrency Manager. In
the register method of the AddressBook class we use the method's semantics, in this
case the address' email, to avoid invalid concurrent execution, as described before, calling
the beginExecution method of the ConcurrencyManager class (line 3). This method
call must be done before execute the method in order to ask the manager permission to
continue the execution. Therefore, other thread that tries to register another address with
the same email will be blocked. Just before terminating the execution we must call the
endExecution method (line 12) telling the Concurrency Manager to remove the key added
in the manager's set and to release the blocked threads, if there are any. This execution
is made inside a finally clause, which guarantees that the command will be executed,
independent of what happen in the method execution, since the method execution may
raise an exception before �nishes its execution [6]. If this occurs and programmer forgot
to call the endExecution method inside a finally block, the key will not be removed
from the manager's set, which allows the executions
ows, blocked because of this key, to
block inde�nitely.

Known Uses

The Concurrency Manager pattern uses the idea of semantics{based concurrency con-
trol [2]. This approach uses the operations' semantics to improve performance, decreasing
operations' serialization. For example, \two operations con
ict if they both operate on
the same data item and one of them is a write". The concurrency pattern di�ers from
this approach because the programmer must de�ne what is the semantics of con
icting
operations, when implementing the concurrency manager data.

A potential use of the pattern to control the concurrency is in web{based systems with
a software architecture that has a business collection and a data collection for each basic
class. The business collections are classes where the system policies are implemented, for
example, the AdressBook class used in the previous sections. The data collections are
classes responsible for data storage, as the AddressCollection class, and basic classes

9

are classes that model the system's basic objects, for example, the Address class. We can
mentioned many real web{based systems that use this architecture:

� A system to manage a telecommunication company's clients. The system is able to
register mobile telephones and change clients and telephones services con�gurations.
The system can be used over the Internet.

� A system for performing on{line exams. This system has been used to o�er di�erent
kinds of exams, as simulations based on previous university entry exams, which help
students to evaluate their knowledge before the real exams.

� A complex supermarket system. A system responsible to control the sales in a
market. This system has been used in several supermarkets and other kinds of
stores.

� A system for registering health system complaints. The system allows citizens to
complaint about diseases problems and to retrieve information about the public
health system, such the location or the specialties of a health unit.

Our approach can be used in the business collection classes of these systems, where busi-
ness polices may race conditions, as the one in the address book example.

We made performance tests [9] in a toy system that implements the pattern in order
to analyze the eÆciency impact. As we say in the Consequences Section, the performance
increasing goes from 5% to 60%, depending on some aspects such as method workload
and the number of concurrent threads.

Related Patterns

A related pattern is the Monitor Object [8] that synchronizes the execution of methods.
This pattern also allows methods to cooperate scheduling their execution sequences by
waiting and notifying each other via monitor conditions. The monitor conditions deter-
mine when a method should suspend, and when resume. In the Monitor Object approach,
the controlled methods has to choose what is the monitor condition to wait or to notify.
In the Concurrency Manager, the manager is the responsible to say when a method can
or cannot execute concurrently. This decision is encapsulated in the manager's de�nition.
In fact, the main Concurrency Manager's goal is to allow as many as possible concurrent
execution, to increase the system eÆciency, on the other hand, the main Monitor Object's
goal is to synchronize objects methods execution. This similarity allows us to classify our
pattern as a Concurrency Pattern [8], like the Monitor Object pattern.

The Concurrency Manager pattern may implement the Singleton design pattern to
guarantee that there is a single instance of the manager. This is necessary if we try to
centralize all concurrency controls in a single manager to control all the system executions.

Acknowledgments

We would like to give special thanks to Jorge L. Ortega Arjona, our shepherd, for his im-
portant comments, helping us to improve our pattern. We also thanks Gunter Mussbacher
for the suggestions made at the conference.

10

References

[1] Ole Agesen, David Detlefs, Alex Garthwaite, Ross Knippel, Y. S. Ramakrishna, and
Derek White. An eÆcient meta-lock for implementing ubiquitous synchronization. In
Proceedings of the 1999 ACM SIGPLAN conference on Object-oriented programming,

systems, languages, and applications, pages 207{222, November 1999.

[2] B. R. Badrinath and Krithi Ramamritham. Semantics-based concurrency control:
Beyond commutativity. ACM Transactions on Database Systems, 17(1):163{199, 1992.

[3] Je� Bogda and Urs H�olzle. Removing unnecessary synchronization in Java. In Proceed-
ings of the 1999 ACM SIGPLAN conference on Object-oriented programming, systems,

languages, and applications, pages 35{46, November 1999.

[4] Grady Booch, Ivar Jacobson, and James Rumbaugh. Uni�ed Modeling Language {

User's Guide. Addison{Wesley, 1999.

[5] Jong-Deok Choi, Manish Gupta, Mauricio Serrano, Vugranam C. Sreedhar, and Sam
Midki�. Escape analysis for Java. In Proceedings of the 1999 ACM SIGPLAN con-

ference on Object-oriented programming, systems, languages, and applications, pages
1{19. ACM, November 1999.

[6] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Speci�-

cation. Addison{Wesley, second edition, 2000.

[7] David L. Parnas et al. Using documentation as a software design medium. The Bell

System Technical Journal, 60(8):1941{1977, October 1981.

[8] Douglas Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann. Pattern-

Oriented Software Architecture, Vol. 2: Patterns for Concurrent and Networked Ob-

jects. John Wiley & Sons, 2000.

[9] S�ergio Soares and Paulo Borba. Concurrency Control with Java and Relacional
Databases (in portuguese). In V Brazilian Symposium on Programmig Languages,
pages 252{267, Curitiba, Brazil, 23th{25th May 2001.

11

Distributed Adapters Pattern: A Design
Pattern for Object-Oriented Distributed

Applications

Vander Alves∗ Paulo Borba†

Centro de Informática
Universidade Federal de Pernambuco

1 Introduction

We introduce the Distributed Adapters Pattern (DAP) in the context of remote communi-
cation between two components, where it is intended that these components be decoupled
from specific communication Application Programming Interfaces (API).

2 Context

In order to accomplish their tasks, components in a distributed system communicate with
each other by means of an inter-process communication mechanism. When the compo-
nents handle communication themselves we obtain applications where the core functional-
ity of its components is interwoven with communication tasks. Therefore, the application
becomes dependent on a particular communication mechanism, and its components are
hard to reuse and extend.

In order to illustrate the use of DAP, we take a banking example as a concrete context.
The banking service stores entities such as account and customer records, and has opera-
tions for manipulating these entities, such as deposit and addAccount. These operations
are to be provided remotely to clients of the service, and thus its implementation must rely
on a distribution platform. Additionally, it is expected that such implementation follows
an incremental method: a non-distributed version is implemented before the distributed
one. Another assumption is that it may be desirable to change the distribution platform.

3 Problem

Avoiding tangled communication and business code in order to provide reusability and
extensibility.

∗Supported in part by CNPq. Electronic mail: vra@cin.ufpe.br.
†Supported in part by CNPq, grant 521994/96–9. WWW: http://www.cin.ufpe.br/~phmb. Elec-

tronic mail: phmb@cin.ufpe.br.

4 Forces

DAP balances the following forces:

• Separation of concerns;

• The components should be independent from the communication API;

• The code modification in components to support communication should be mini-
mized;

• Changing the communication mechanism should be a simple task, minimizing the
impact on business code;

• Adequate communication performance;

• Development productivity must not be significantly affected.

5 Solution

Introduce a pair of object adapters [4] to achieve decoupling of components in distributed
architectures. The adapters basically encapsulate the API that is necessary for allowing
the distributed or remote access of Target objects (hereafter Target object refers to a
business object providing services to other business objects). In this way, Source objects
(hereafter Source object denotes a business object acting as a client of a Target object) of
an application become autonomous with respect to the distribution layer, so that changes
in the latter do not impact the former.

Source
Adapter Adapter

TargetSource Target

Machine A Machine B

User interface Facade

Figure 1: An example of DAP.

There are two kinds of adapters: source adapters and target adapters. Roughly, the
latter wraps Target objects in the places where they are located, and the former represents
those objects in remote locations. In a typical interaction, a user interface object (a GUI,
for instance) in one machine would request the services of a source adapter located in the
same machine. The source adapter would then request the services of a corresponding
target adapter residing in a remote machine. Finally, the target adapter would request
the services of a Facade [4] object co-located with the target adapter. Figure 1 illustrates
this example.

Source and target adapters provide a higher level of abstraction than stub and skeletons
do. The adapters isolate user interface and business code from distribution API, whereas

stubs and skeletons isolate user interface and business code from the implementation of
distribution issues, but not from distribution API. Source adapters delegate lower level
distribution issues such as marshalling to stubs, and target adapters delegate such issues
to skeletons.

As another example, the banking application of Section 2 is structured according to
DAP as Figure 2 illustrates.

Figure 2: Class diagram of a banking application according to DAP.

The uncolored elements deal with the business aspects of the application, whose Facade
is the Bank class, which unifies all services of the application. The gray elements denote
the adapters and their collaborators. Essentially, these gray elements hide distribution
API from user interface and business code. In the following section, each element is
described abstractly; their implementation is sketched in Section 8.

5.1 Structure

Figure 3 details the structure of DAP by means of a class diagram. The Source and
Facade classes abstract business components as mentioned previously. The Facade class
is named after the Facade design pattern [4]. The Facade Interface abstracts the be-
havior of the Facade class in a distributed scenario. However, this interface, the Source

and Facade classes have no communication code. These three elements constitute a
distribution-independent layer in the pattern. The remaining elements of the pattern
deal with this aspect.

The core elements of the pattern handling distribution itself are Source Adapter

and Target Adapter. These are tied to a specific distribution API and encapsulate the
communication details. Source Adapter is an adapter [4], isolating the Source class

Figure 3: Class diagram of DAP.

from distribution code. It resides on the same machine as the Source and also works as
proxy [4] to Target Adapter. This latter may reside on another machine and is also an
adapter, isolating the Facade class from distribution code. Since Source Adapter and
Target Adapter usually reside in different machines, and thus do not interact directly,
Target Adapter implements Remote Interface, on which Source Adapter depends.

The Name Service class has operations for registering and looking up a remote object;
both adapters use this class, which represents a generic name service and is common to
most distribution platforms. The Initializer class also resides in the same machine as
Target Adapter and Facade, and is responsible for creating Facade and Target Adapter

objects. Its importance lies in the fact that it allows the same Facade object to be
accessed at the same time by different target adapters, representing different distribution
technologies. Concurrency control is orthogonal to distribution and can be studied in
books such as [5]. The factories in the pattern are useful for configuration purposes: they
are used in the creation of Facade and of the adapters. In particular, the factories isolate
business code from the creation of adapters for a specific distribution platform.

5.2 Dynamics

Figure 4 shows the sequence diagram of a typical scenario for DAP. The Initializer

creates a Facade object and a Target Adapter1, passing to the latter a reference to the
former. Target Adapter registers itself as a distributed object in the Name Service by

1Actually, Initializer delegates the creation of this adapter to DistributionFactory. We omit it
here for simplicity.

:aNameService

Legend

invocation

return

create

create

lookup

register

create
:SourceAdapter

:Initializer

:TargetAdapter

Facade

m

m
m

Source

Figure 4: Dynamics of DAP.

invoking its register method. During initialization, Source creates a Source Adapter2,
which performs a lookup operation on Name Service to obtain a reference to the re-
mote service offered by Target Adapter. Source then invokes the local m operation on
Source Adapter, which in turn calls the remote m operation of Target Adapter; this
latter delegates the call locally to Facade.

6 Consequences

DAP provides the following benefits:

• Modularity. This pattern separates concerns by structuring distribution aspects
modularly, promoting loose coupling between the different layers of an application’s
architecture: distribution, business, and user interface layers.

• Reuse and extensibility. Due to the modularity provided by the pattern, developers
can reuse the Source and Target components easily in other applications based on
other APIs and middleware technologies. In addition, changes to the middleware
aspects are simpler, since these are restricted to the distribution layer.

2In fact, Source delegates this to FacadeFactory.

• Incremental implementation. The pattern supports incremental implementation.
During the early phases in development, developers construct a functionally com-
plete prototype, where the Source component (a GUI, for example) depends directly
on the Target component (a business Facade, for example). Later, developers add
the distribution layer seamlessly, since this latter implements the same interface as
the Target component.

This pattern has the following drawbacks:

• Increased number of classes. A pair of adapters, three factories, and an initializer are
necessary; however, their structure is simple and their generation could be mostly
automated by tools.

• Extra indirection. The pair of adapters introduces two additional method calls for
each remote request. However, both of these additional calls are local, which are
much less expensive than the remote one. The work in [1] shows empirical data
analyzing the impact on efficiency caused by the adapters; the analysis reveals that
such impact is minimum.

7 Implementation

For example, here we consider how to implement the Distributed Adapters Pattern using
RMI [9] as the distribution technology. Consider the following implementation issues:

• Serialization of business objects. As RMI supports a value parameter passing mecha-
nism for local objects, the classes of these objects must implement the Serializable
interface [9]. There are no methods in this interface and it simply indicates to the
RMI system that an object may be transformed into a stream of bytes in order to
be transmitted over a network. However, this is not a negative dependence between
the business and the distribution layers since the former calls no method on the
latter; in fact, no change on the latter will affect the former.

• Additional non-functional requirements. RMI is a simple distribution platform and
does not offer fault-tolerance and caching. Such extended behavior can be imple-
mented in DAP’s adapters (a detailed implementation is presented in [1]).

8 Sample Code

We now provide sample code for the core elements in the pattern, using the simple banking
application mentioned in Section 2 as an example (a full implementation is given in [1]).
This application is structured according to DAP as shown by Figure 2. The Bank class is
a Facade, and it keeps references to entities such as account and customer records, and
has operations for manipulating these entities:

class Bank implements IBank {

private AccountRecord accounts;

void deposit(String accountNumber, double value)

throws UnknownAccountException {

accounts.deposit(accountNumber,value);

} ...

}

where AccountRecord provides services for manipulating a record of accounts (insertion,
updating, querying, deletion, etc.) and also for depositing to or withdrawing from them.
The exception UnknownAccountException is specific to the banking application. The
IBank interface implemented by the banking facade is a Facade Interface. It abstracts
the behavior of the application:

interface IBank {

void deposit(String accountNumber, double value)

throws CommunicationException,

UnknownAccountException;...

}

where CommunicationException is a general exception representing failure in the distri-
bution layer. This exception does not depend on any particular distribution technology
and is defined since the application will eventually become distributed.

A User interface object simply creates a BankRMISourceAdapter and forwards client
requests to it. The RMI source adapter implements IBank so that the User interface

class is unaware of the specific middleware technology. The constructor obtains a reference
to the target adapter, by invoking the connect method:

public class BankRMISourceAdapter implements IBank {

private IBankRMITargetAdapter bank;

public BankRMISourceAdapter(String whereServer)

throws CommunicationException {

connect(whereServer);

}

public void connect(String server) throws CommunicationException {

try {

bank = (IBankRMITargetAdapter) Naming.lookup(server);

} catch (Exception e) {

throw new CommunicationException (...);

}

}

A User interface object can call the connect method later in case the connection with
the target adapter fails (in fact, the source adapter itself may implement fault-tolerant
behavior as described in [1]). The deposit method forwards User interface deposit
requests to the target adapter:

public void deposit (String accountNumber, double value)

throws CommunicationException,

UnknownAccountException {

try {

bank.deposit(accountNumber,value);

} catch (RemoteException e) {

throw new CommunicationException (...);

}

}

} //end of BankRMISourceAdapter

Note that, both in the constructor and in the deposit method, the source adapter
replaces an RMI specific exception with the general CommunicationException. The
IBankRMITargetAdapter interface is the type of the reference to the target adapter and
its methods must also raise RemoteException:

public interface IBankRMITargetAdapter extends Remote {

void deposit(String accountNumber, double value)

throws CommunicationException, UnknownAccountException,

RemoteException;

}

where Remote is an RMI interface used to identify remote object types [9].
The target adapter becomes an RMI remote object by inheriting from the

UnicastRemoteObject [9]. It implements the IBankRMITargetAdapter remote interface,
so that the source adapter can call its methods remotely. The constructor of the target
adapter receives a facade object as an argument and registers the adapter itself in the
name service:

public class BankRMITargetAdapter extends UnicastRemoteObject

implements IBankRMITargetAdapter {

private IBank bank;

public BankRMITargetAdapter(IBank bank)

throws CommunicationException {

try {

this.bank = bank;

Naming.rebind("BankServer", this);

} catch (Exception e){ throw new CommunicationException(...);}

}

The source adapter invokes the deposit method on the target adapter, and this op-
eration forwards the call to the corresponding method in the facade object:

public void deposit(String accountNumber, double value)

throws CommunicationException, RemoteException,

UnknownAccountException {

bank.deposit(accountNumber, value);

}

} // end of BankRMITargetAdapter

Note that the type of the target adapter’s attribute is IBank and not Bank. The
rationale is that, since either a facade or a source adapter implements IBank, the tar-
get adapter, which depends on this interface, may refer either to a facade or to another

Source

User interface

Target

IBank IBank

IBank

Bank

DistributionDistribution

TA

SATASA

This figure illustrates an application with two levels of distribution. Each distribution component ab-
stracts both adapters. SA and TA denote Source Adapter and Target Adapter, respectively.

Figure 5: Additional levels of distribution.

source adapter. This latter case accounts for flexible configurations where there are addi-
tional levels of distribution. Figure 5 illustrates this situation. As mentioned previously,
the methods of the IBank business facade interface declare CommunicationException.
Therefore, methods in the target adapter and in its remote interface must also declare
this exception.

9 Known Uses

DAP has been used in the implementation of a Web based information system, where
the adapters are used between the web server, in which servlets [10] act as clients of the
source adapter, and the application server, in which the target adapter interacts with the
facade. The facade is not in the web server due to security and performance reasons.

Another use of DAP in Web based information systems employs the adapters between
an applet, in a client Web browser, and a facade, in a remote machine. The adapters hide
the communication details, which use HTTP [12], from the applet and the facade.

The work in [8] and [2] reveals that developers have been using patterns that have
some relation to DAP. In particular, the pattern in the first work is similar to DAP’s
source adapter; the pattern in the second work is similar to the DAP’s target adapter.

10 Related Patterns

• Distributed Proxy Pattern [6]. This pattern and DAP have similar objectives. How-
ever, following to [11], DAP does not attempt to make the incorporation of distri-
bution totally transparent. Indeed, a client of a source adapter in DAP must be
prepared to handle the general CommunicationException. DAP makes transparent
the use of a particular distribution technology, not distribution itself. In order to
achieve it, DAP uses adapters (instead of proxies), which replace specific distribu-
tion code by general code, for example by turning java.rmi.RemoteException into

CommunicationException. Moreover, the adapters in DAP may implement addi-
tional non-functional requirements, such as fault-tolerance and caching, and may
also be used to achieve n levels of distribution (as shown in Figure 5), each of which
may be implemented by a different technology.

• Wrapper-Facade [7] and DAP have the common goal of minimizing platform-specific
variation in application code. However, Wrapper-Facade encapsulates existing lower-
level non-object-oriented APIs (such as operating systems mutex, sockets, and
threads), whereas DAP encapsulates object-oriented distribution APIs, such as RMI
and CORBA.

• Adapter, Facade, and Abstract Factory. DAP is implemented using the Adapter,
the Facade, and the Abstract Factory design patterns [4].

• Broker and Trader. Well known patterns for structuring distributed systems al-
ready exist. The Broker [3] and Trader [3] patterns are examples. These are ar-
chitectural patterns and focus mostly on providing fundamental distribution issues,
such as marshalling and message protocols. Therefore, they are mostly tailored
to the implementation of distributed platforms, such as CORBA. DAP uses these
fundamental patterns and provides a higher level of abstraction: distribution API
transparency to both clients and servers.

• Chain of Responsibility [4] is similar to DAP in the sense that it decouples the sender
of a request from its receiver by giving more than one object the chance to handle
the request. This indirection is similar to the DAP’s adapters; these, however, also
perform interface filtering, isolating the distribution platform’s API, which is not
done by Chain of Responsability.

• Model-View-Controller (MVC) [3] is used in the context of interactive applications
with a flexible human-computer interface. Its goal is to make changes to user inter-
face easy, and even possible at run time. DAP is used in the context of distributed
applications and aims at making changes to the distribution platform a simple task.

Acknowledgements

We would like to thank our shepherd, Eduardo Fernández, for all the work he put into
commenting on this paper and the great suggestions for improvement he made. During
the writer’s workshop at SugarLoafPLOP’2001, Jorge Ortega Arjona, Gunter Mussbacher
and Sérgio Soares have also made several interesting comments that helped to improve
this paper.

References

[1] Vander Alves. Progressive development of distributed object-oriented applications.
Master’s thesis, Centro de Informática – Universidade Federal de Pernambuco, Feb.
2001.

[2] Dan Becker. Design Networked Applications in RMI Using the Adapter Design
Pattern. Java World, May 1999.

[3] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael
Stal. Pattern Oriented Software Architecture: A System of Patterns. John Wiley &
Sons, 1996.

[4] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1994.

[5] Doug Lea. Concurrent Programming in Java: Design Principles and Patterns.
Addison-Wesley, 1999.

[6] Antonio RitoSilva, Francisco Rosa, and Teresa Goncalves. Distributed proxy: A
design pattern for distributed object communication. In PLoP’97, Monticello, USA,
September 1997. http://jerry.cs.uiuc.edu/˜plop/plop97/Proceedings/ritosilva.pdf.

[7] Douglas Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann. Pattern Ori-
ented Software Architecture, volume 2. John Wiley & Sons, 2000.

[8] Gregg Sporar. Retrofit Existing Applications with RMI. Java World, January 2001.

[9] Sun Microsystems. Java Remote Method Invocation Specification, 1.50 edition, Oc-
tober 1998.

[10] Sun Microsystems. Java Servlet Specification, Abril 2000.

[11] J. Waldo, G. Wyant, A. Wollrath, and S. Kendall. A note on distributed computing.
Technical Report TR-94-29, Sun Microsystems, November 1994.

[12] The World Wide Web Consortium. Hypertext Transfer Protocol Specification, 1.1
edition, jun. 1999. http://www.w3.org/Protocols/rfc2616/rfc2616.html.

