The Second Latin American Conference on
Pattern Languages of Programming

SugarloafPLoP 2002
ALGUST 5 - 7, 2007 - [tapava, Rio o Taneivo, Brazil

http://ww cos. ufrj. br/~sugar!| oaf pl op/

SugarLoafPLoP 2002
Proceedings

Editors
Rosana T. Vaccare Braga
Joseph W. Yoder

Organized by:
COPPE/UFRJ - Brazil
ICMC/USP - Brazil
UFC - Brazil
UIUC - USA

Underwritten by the Hillside Group
Supported by SBC (Brazilian Computer Society)

b IC&C
TSP

LG

Publisher: ICMC/USP
Editors Rosana T. V. Braga and Joseph W. Y oder
Copyright & 2002 by ICMC. All rights reserved.

Latin American Conference on Pattern Languages of
Programming SugarLoafPLoP 2002 (2.: 2002 : Itaipava, RJ)
Proceedings... / Editors Rosana T. Vaccare Braga,

Joseph W. Y oder. -- S0 Carlos, SP: ICMC/USP, 2002.

326 p.
ISBN 85-87837-07-9

1. PadrBes de Software. 2. Linguagens de Padrdes. |. Braga, Rosana
T. Veccare, ed. I1. Yoder, Joseph W., ed. I11. Titulo.

SugarloafPLoP 2002 Proceedings

Program Comittee

Conference Co-Chairs

Claudia M. L. Werner (COPPE / UFRJ, BR)
Rossana M. Castro Andrade (DC/UFC, BR)

Program Co-Chairs

Rosana T. Vaccare Braga (ICMC-USP, BR)
Joseph W. Yoder (University of lllinois/The Refactory, Inc., US)

Loca Organization

Leonardo G. P. Murta (COPPE/UFRJ, BR)
Marcio de Oliveira Barros (COPPE/UFRJ, BR)

Shepherds

Federico Balaguer - University of lllinois at Urbana-Champaign, USA

Ferndo Stella de Rodrigues Germano - ICMC/Universidade de S&o Paulo, Brasil
Gustavo Rossi - Universidad Nacional de La Plata, Argentina

Jerffeson Teixeira de Souza - University of Ottawa, Canada

Jorge Ortega Arjona - University College London, UK

Jugurta Lisboa Filho - Universidade Federal de Vigosa-MG, Brasil

Marcio de Oliveira Barros - COPPE/Universidade Federal do Rio de Janeiro , Brasil
Robert Hanmer - Software Technology Center - Bell Labs, USA

Rossana Maria de Castro Andrade - DC/Universidade Federal do Ceara - Brasil

Referees

Adenilso da Silva Simao - ICMC/Universidade de Séo Paulo

Antonio Castelo Filho- ICMC/ Universidade de Sao Paulo

Antonio Valerio Netto - ICMC/ Universidade de Sao Paulo

Claudia Lima Werner - COPPE/ Universidade Federal do Rio de Janeiro
Ernesto Massaroppi - DEM/Universidade de S&o Paulo

Fernando de Carvalho Gomes - DC/ Universidade Federal do Ceara
Fernao Stella de Rodrigues Germano- ICMC/ Universidade de Sao Paulo
Julio Wilson Ribeiro - DC/ Universidade Federal do Ceara

Maria Istela Cagnin- ICMC/ Universidade de S&o Paulo

Paulo César Masiero- ICMC/ Universidade de Séo Paulo

Rosana T. Vaccare Braga- ICMC/ Universidade de Séao Paulo

Rosangela A. D. Penteado - DC/Universidade Federal de S&o Carlos
Rossana Maria de Castro Andrade - DC/ Universidade Federal do Ceara
Willie Dresler Leiva- ICMC/Universidade de Sao Paulo

SugarloafPLoP 2002 Proceedings

SugarloafPLoP 2002 Proceedings

Tableof Contents

0] <1170] o [T

WILEIS' WOIKSNOPS oot ssssssses s ssssssss s sssssss s ssssssss s

DORS : Database Query Optimizer with Rule Based Search Engine, by Carlo Giovano S. Pires,
and Javam C. MACNATOcceueerriirieee et sans

The AbstractOptimizer, by Savitha MUthANNa.c.ccerrncee e

Um Design Pattern para Configuracéo de Arquiteturas de Software, by Jonivan Coutinho Lisboa,
Sérgio Teixeira de Carvalho, and Orlando Gomes Logques Filho ...,

Padrbes de Projeto para Estruturacdo de Aplicagdes Distribuidas Enterprise JavaBeans, by
Klissiomara Dias and Paulo BOIDa ..ot sssssenns

PaDA: A pattern for distribution aspects, by Sergio Soares and Paulo Borbacccccoceiiennne

FaPRE/OO: Uma Familia de Padrdes para Reengenharia Orientada a Objetos de Sistemas
Legados Procedimentais, by Edson Luiz Recchia and Rosangela Penteadoccccoccveieiniienene

DCDP: A Distributed Component Development Pattern, by Eduardo Santana de Almeida, Calebe

de Paula Bianchini, Antonio Francisco do Prado, and Luis Carlos Trevelincccocecevvevveeeeerennen.

O Uso de Padrdes na Integracgéo de Visbes Modeladas com UML, by Véania M. P. Vidal and
Fabiana G. MAINNOcccoviiieie st es saebebesesebete bt s s s s s e s s e s s s s aeaeans

Special Session: Software Pattern APpliCatioNScccccccwemeeeeeemmeeeemreeeeseeeeeseseeeeeee

Atool and a formalism to design and apply patterns, by Agnes Conte, José-Celso Freire Junior,
Jean-Pierre Giraudin, Ibtissem Hassine, and DomiNIQUE RIBUccoorveieirerineeenneneieneeeeeseseeneens

Avaliacéo da Aplicabilidade da Linguagem de Padrées de Engenharia Reversa de Demeyer a
Sistemas Legados Procedimentais, by Edson Luiz Recchia and Rosangela Penteado

Analyzability and Changeability in Design Patterns, by Javier Garzas and Mario Piattini

Designing Websites by Using Patterns, by Francisco Montero, Maria Lozano, Pascual Gonzalez,
AN ISIAIO RBIMOS ...ttt bbbt bbbt b bttt

Software Decisions with Pattern Relations, by Martin Auer, Wolfgang Zuser, and Valter Camargo
Aplicabilidade da Familia de Padrdes de Reengenharia FaPRE/OO na Engenharia Reversa

Orientada a Objetos de Sistemas Legados COBOL, by Valter Vieira de Camargo, Edson Luiz
Recchia, and ROSANGEla PENTEATDc.cocieurirriccrrcce sttt

Special Session: Wting Patterns ... sssessssssssssssssssnns

Um Padrao Arquitetural para Sistemas Computacionais de Controle Supervisionario, by Jean
Marcelo Siméo, Marcos Antonio Quinaia, and Paulo Cézar StadziSzccceceeeeeeeeerereereveeercvenennes

A Queue-based Algorithmic Pattern, by Marcos Cordeiro d' Ornellasccccocovvviveieeessessnenns
FEM Simulator Skeleton, by Maria Lencastre, Felix C. G. Santos, and Isledna Rodrigues

APPENDIX: PDC: Persistent Data Collections Pattern, by Tiago Massoni, Vander Alves,
Sérgio Soares, and PauUl0 BOIDA@cccvureeriririerieensiseseseseseesessesessesesesssssesesesssssssssssesssssssssssssns

Page

21

37

55
87

101

133
145

165

167
183
199

209

225

237

253

255

279

293

309

SugarloafPLoP 2002 Proceedings

SugarloafPLoP 2002 Proceedings

Foreword

Software devel opers have long observed that certain themes recur and endure across different
goplications and systems. The emerging interest in patterns represents an effort to catalog and
communicate these themes and matives to provide handbooks of proven solutions to common
problems.

SugarL oafPLoP brings together researchers and practitionerswhose interests span aremarkably
broad range of topics, who share an interest in exploring the power of the pattern form.
SugarLoafPLOP invites you to add your expertise to the growing corpus of petterns.

SugarL oafPLoP focuses on improving the expression of paiterns. Here you have the opportunity
to refine and extend your patterns with help from knowledgegble and sympathetic felow patterns
enthusiasts.

PLoP Conferences usudly redtrict pgper submissions to works that propose petterns. However, for
some of them, like Chilli PLoP, hat topics involving petterns are acceptable. Following thistrend,
this year SugarloafPLoP has introduced two specid sessions. " Software Peattern Applications’
(SPA) and "Writing Petterns' (WP).

These proceedings are the result of the Conference. Besidesimproving their pgpers during the
shepherding process, authors have gained indghts and condructive criticism during the workshops
s0 that, after the Conference, they have evolved their papers to the version presented in these
proceadings. AsthisisaLatin American Conference, we alow papers to be written in English,
Spanish, or Portuguese. In these proceedings we have even English papers and seven Portuguese

papers.

The efforts of many people contributed to the Sugarl oafPLoP Conference. We thank dl authors
that submitted papers, making possible the redization of this event. We thank the shepherds that
have dedicated their time to hep us, aswdll asthe referees that revised the specid session papers.
We specidly thank the Conference co-chairs Claudiaand Rossanafor their excellent and hard
work in the organization of this event. We thank Leonardo and Marcio that helped in the local
arrangements and in the Web ste maintenance. Findly, we thank the cooperation of the Brazilian
Computer Society (SBC) and the sponsorship of CNPg, FAPERJ, and the Hillsde Group.

Rosana T. Vaccare Braga (rtvb@icmc.usp.br)
Joseph W. Y oder (joeyoder@joeyoder.com)

Program co-chairs

November, 2002

SugarloafPLoP 2002 Proceedings

SugarloafPLoP 2002 Proceedings

Writers' Workshops

Each workshop session was about 1 hour and 15 minutes in length. There was a special 30
minute session at the beginning of the conference so that each workshop group could be
introduced and work out logistics, such as how much they wanted non authors to participate and
in which order the papers would be presented.

The Workshop Process

The writers workshop format has proven to be useful in past PLoP conferences, so it was
followed by each group. Although this format may seem unfamiliar, it has shown to be useful for
developing an environment where patterns authors can share their ideas.

Introduction/Reading: Moderator introduces the Author and the Author reads a selection
from the paper. This is the last we hear of the author til the end. (allow 5 minutes)

Summary: One of the workshop participants summarizes the paper.(5 minutes)

Positive Feedback: Moderator asks for things people liked about the patterns. The
comments can be about presentation or content, and at the discretion of the moderator
comments about presentation and content can be intermingled, or done separately.
(Allow 15 minutes)

Constructive Criticism:Moderator asks for ways in which the paper can be improved, both
in content and presentation. (Allow 20-40 minutes)

Positive Closure: Moderator asks particpants for a final closure, in which they reinforce the
positive aspects of the pattern. (Allow 5 minutes)

Author Feedback: The author asks for clarification on comments made during the session.
The Author should pick a few of the most important points. (or ones which were made by

the most people.) Further clarification can be had during off line discussions. (Allow 10
minutes)

Closing: The workshop participants thank the author.

SugarloafPLoP 2002 Proceedings

SugarloafPLoP 2002 Proceedings

DORS: Database Query Optimizer with Rule Based Search Engine

Carlo Giovano S. Pires' Javam C. Machado
cgiovano@atlantico.com.br javam@ufc.br
Indtituto Atlantico Federd University of Ceara
Abstract

The database query optimizer is a very important and complex module in database management systems. It
receives a query optimization request with a query tree as a parameter and return an optimized execution plan.
The query optimization problem is NP-Hard; therefore, there are many proposals of heuristics and techniques
for optimization strategies. There are also several data models (e.g object-oriented, relational, object-relational
and semi-structured/XML) suitable to store information for different kinds of applications. Several optimization
frameworks were proposed with the aim of making easier to build optimizers and reuse design decisions.
However, they are tied to some specific language and hard to integrate with other database modules. We
propose a design pattern to help the design and construction of a database optimizer. So far, we do not have
knowledge about similar work.

1. Context

Different types of applications should use a suitable data modd. For ingtance, commercia
sysems work wel with relationd data modds, CAD/CAM systems need a more expressve
data modd as the object-oriented, and the Internet with XML gpplications work well with
semi-gructured data models. Different data models and different kinds of gpplications require
specific implementation of the query optimizer. The database developer should design
optimizers able to support different kinds of databases, data modes and applications. Some
examples of database and application kinds are object-oriented databases, multidatabases, and
paralel databases. Object-oriented databases use a modd that requires the optimizer to
support different data types, use of indexes for class hierarquies and method execution.
Multidatabase is a front-end application that integrates different kinds of database. A
multidatabase optimizer should support different data models, digtributed data and data
transfer issues.

The large adoption of Web-based applications in the Internet has increased the number of
users and the number of database query requests. Thus, scaability is important for a database
sarver. Padld database achitecture is a good dternative for improving scaability and
regponse time. However, padld query optimization is a very complex problem. The
optimizer for padld databases should baance the trade-offs of memory use, data
partitioning, data transfer, synchronization of operations and a very large search space.
Different kinds of parallel database architectures must dso be andyzed.

A daabase query processng module (Figure 1) provides the retrievd of information using
a highlevd query language such SQL [ISO96] or OQL [CB97]. The query processing
module is usudly composed of three other modules. The fird module is the query parser. The
parser converts a query, submitted by a database user and written in a high-leve language,
into an agebraic operators expresson. Next, the optimization module receives the expresson
and builds a good execution plan. The plan determines the order of execution of the operators
and sHect suitable dgorithms for implementation of the operators. The plan is built with the

! The presentation of this work was sponsored by Instituto Atlantico (www.atlantico.com.br)

Copyright O 2002, Carlo Giovano S. Pires and Javam C. Machado. Permission is granted to copy for
the Sugarloaf PLoP 2002 Conference. All other rights reserved.

SugarloafPLoP 2002 Proceedings

am of retrieving the result of the query with high performance. Findly, the query plan is
executed by the execution engine module that ddiver the result for the user. The query
optimization module, or optimizer, is the key module for query processing design.

Query] .
processor Algebrqlc Execution
expression plan
' 2 '
Query v v
defined » Query — Query Query » Query
by the Parser optimization execution result
user

Figure 1 — Database query processor

The optimization process is usudly broken into different phases. This gpproach smplifies
the optimization problem usng eech phase to optimize a specific aspect of the query. The
aspects may be, for ingance, the logical optimization and the order of operations, the
agorithms for implementation of the operations and the dlocation of them into the nodes of a
pardld or didributed sysem. Each aspect requires specific agebrac operations,
transformations and specific optimization agorithms.

Database developers and researchers of optimization techniques may use the DORS
(Database Query Optimizer with Rule Based Search Engine) pattern to help them to build
extensble optimizers.

2. Problem

How to design an extenshble database query optimizer that supports different data models,
new agebra proposas and search Strategies?

3. Forces

Maintainability and Prototyping: The optimizer should support different data models.
The database developer should be able to change the specific implementation related
to a specific data mode transparently to other aspects (e.g, optimization agorithms
and design of optimization phases and their ordering). For instance, the developer may
change the transformation of operators related to a data modd and add transformations
of operators of a new data model without changing the optimization. The developer
may even add new operations and tranformations for a data mode and keep the other
components implementation.

Flexibility: The database developer should be ale to change the optimization
agorithm, configure optmization adgorithms for each phase, add and experiment new
proposds without changing the other components. The optimizer may be configured
according to a query context or according to a database user configuration. For
ingtance, a database may support queries written in object query language, or semi-

SugarloafPLoP 2002 Proceedings

tructured languages and, in run time, choose the specific dgebraic transformations.
Some databases alows the user to sdect the type of optimization dgorithms, as cost-
basad or heuristics-based agorithms.

Scalability. The optimizer should be scdable to support a large number of
smultaneous requests. In the last years, the growth of Internet applications has opened
the access of information for millions of smultaneous users.

4. Solution

Decouple the optimization process/procedure from esch of its phases by cregsting a
hierarchy of search drategies (SearchStrategy). It dso decouples each phase from the set of
transformation rules (Rule) that a search srategy can apply. Instances of SearchStrategy are
parameterized with a given set of instances of Rule that it can apply over a query expression.

A Rule is composed of a header, a promise vaue, an agpplicability condition and a
transformation code. The header defines a pattern matching description of the target
expresson. The gpplicability condition uses properties of the expresson and the optimization
context to determine if the transformation code is executed or not. The transformation code
rewrites the expresson, modifies the optimization context and edimates vaues for the
properties of the new expresson (eg. ordering of the result and execution cost of the
expresson). The promiseis used to order the gpplication of the rules.

An instance of Optimizer can have more than one optimization phase. Each phase is implemented
as an instance of SearchStrategy. The configuration of one Optimizer and itsSearchStrategies can be
changed at run-time. When an optimizer gives a query expresson to a SearchStrategy, the
SearchStrategy applies the appropriate set of rules to the expression and stores the results on a
repository of optimized expresson (SearchSpace). Findly the optimizer compose the optimal plan
retrieving optimized expressions from the repository.

Optimizer RuleFactory
S createRule()
optimize() getlnstance()
cr:ea-te—sfrat-egywiﬂl 4
] ‘\\
1 ~
\:/ ConcreteOptimizer ConcreteRuleFactory
SearchStrategyFactory setect-antcreate
optimize() createRule()
createStrategy() cache a rul¢ set
getinstance() phases |are composed get tules
T Rule
. 1l..n
seleC “amd-create SearchStrategy verifyPatternMatching()
= , promise() 1..n
search yd condition()
_________ .=7|apply()
cache expressions < 7 7
'_——’ ,,/ "’f
W S execlte 4
SearchSpace i - ConcreteRule
ConcreteSearchStrategy condition()
getinstance() romise()
addExpression() search() p |
getExpression() apply()

verifyPatternMatching()

Figure 2 — Structure of DORS Pattern

SugarloafPLoP 2002 Proceedings

5. Structure

Figure 2 presents the structure of DORS pattern using an UML class diagram. A detailed
description of each component is presented in section Participants.

6. Participants
Optimizer

- provides a smple inteface for the optimization subsysem of the query
processor.

- Odfines the method optimize that receive, as input, a query expresson (usudly
represented as a tree). The output of the optimize method is an expression that
represents an execution plan. The execution plan determines the order,
processor dlocation and agorithms for the query operations.

ConcreteOptimizer

- implementsthe Optimizer interface.

- coordinates the optimization process. The ConcreteOptimizer defines the
optimization phases, coordinates rule sets and search drategies. It crestes and
uses one or severa types of SearchStrategy and apply them in some order,
according to the optimization phases adopted in the optimization modd.

- ddegates the implementation of the search agorithm for optimization to some
ConcreteStrategy. The ConcreteOptimizer may work with more than one
Srategy and rule factory for different optimization phases.

- combines dynamicdly different types of rule sets, search drategies and cost
models.

SearchStrategyFactory

- encapsulates the cregtion of search Strategies.
- has a mehod named createSearchStrategy that receives a parameter
identifying the phase/order/task of optimization.

SearchStrategy

- defines an interface for expanding the search space and searching for good
expressions.

- has a method named search that receives the target expression and the factory
of rules as parameters.

- hides one or more specifics types of search drategies within an optimizer for
one or more phases.

SugarloafPLoP 2002 Proceedings

ConcreteSearchStrategy

implements the services for query optimization search drategies as dynamic
programming, exhaustive search, bottom-up search, or some strategy else.
collaborates with rules to execute transformation in the query expresson,
expanding the search space and exploiting optimization possihilities.

usesthe RuleFactory to create alist of rules.

process each rule received from the factory againgt the expression.

adds the expressions generated by the rules to the search space.

determines how to apply the rules to each term in the expression.

SearchSpace

provides a data dructure for storage of the expressons generated by the
optimization process.
provides methods to store and find a expression in the search space.

encapsulates a transformation of aterm within an expresson.

provides a mechanisn based on patern maching for veifying if it is
goplicableto agiven term.

provides a method named promise to return a vaue to help the search drategy
to give priority to the gpplication of rules.

provides a method to verify some condition of gpplication. After the Pattern
Matching and before the execution of the rule, this method is verified. The rule
isexecuted only if the method returns true.

ConcreteRule

implements a specific transformation rule for some agebraic operator under
some condition.

defines a pattern description of the expresson it should be gpplied.

may usudly work as a logicd rule (mapping logica agebraic operators into
logicd dgebraic operators and reordering them), a physicd rule (mapping a
logical operator into a physical operator), or an enforcer rule (use to enforce
required properties, as the order of the query result, or the partition across
processing nodes in aparale system).

eslimates the expresson cost. The cost is estimated using database datistics.
Physcd rules are tied to physca operators, therefore they are suitable for
defining cogt functions and applying them.

SugarloafPLoP 2002 Proceedings

RuleFactory

- definesthe abdtract interface for a ConcreteRuleFactory.

- represents a rule st (or rule module). A rule set groups rules that should be
applied in a specific context or optimization phase. A rule s&t may be defined
for a logicd agebra, a physcd dgebra, or different proposd for logicd and
physica agebras.

ConcreteRuleFactory

- crestesthe rule objects for some algebra according to the expression.

- usss the patern maching mechanism to sdect the rule for the target
expresson.

- uses a geneic pattern matching mechanism tha dlows a ConcreteRuleFactory
compare an expresson with the rules and discover which are applicable to the
expresson. This mechanism uses the information about the top node in the
expresson to execute compare the expresson with the pattern description in
the rule. The node information may be the agebraic operator in the node and
details about the parameters of the operator.

Query anOptimizer aSearchStrategyFactory aSearchStrategy aRuleFactory aRule
Processor

optimize(expr)

createSearchStrat:egy(phase)

1

search(expr, aRuleFactory)

createRule(expr)
-~ l verifyPatternMatching(expr)

————— g

-

Returns a list of L
applicable rules

Returns a new
Expression

For each rule
returned for the . \\
expression | 7T S S apply ™\

condition
—

addToSearchSpace(aNewExpr)

P—

getBestPlan

executionPlan % T

e
.____________i

Figure 3 — Dynamics of DORS

10

SugarloafPLoP 2002 Proceedings

7. Dynamics

Figure 3 shows, usng a sequence diagran [FMSKOQ], a typica scenario of query
optimization with the DORS pattern. The query processor darts the optimization sending an
optimize message to the optimizer. Then, the optimizer uses a factory to creste a concrete
search drategy according to the optimization phase. The optimizer uses the search method of
the concrete search drategy to Start the tranformations of the target expresson. The search
method recieves the expresson as a parameter and it is configured with some rule factory.
The method uses the rule factory to create rules (caling the createRule method with the
query expresson as a parameter). The createRule method iterates over a pool of rules,
according to the order of promise, and chooses a rule usng the verifyPatternMatching
method. All rules that matches the pattern for the expresson in the optimization context are
added, in order of promise, to a ligt. This lig is returned to the search drategy. The search
Srategy iterates over the returned list and runs each rule using the apply method. This method
verifies the condition of execution before trandforming the expresson. If the condition
method returns true, then the rule is executed and a new expression is generated. The cost of
the new expresson is estimated and the expression is findly returned to the search Strategy.
The search drategy adds each new expresson generated from each rule to the search space.
The trandformations are done for one term of the expresson. Each specific search drategy has
its own way of exploring the other terms and sub-expressions. The search drategy type aso
defines the criteria to add the generated expressons to the search space. After the
transformation process is finished, the optimizer gets the best plan from the search space and
returnsit to the database execution engine as the sdected execution plan.

8. Consequences

Maintainability and Prototyping. The rule abgtraction alows the easy adoption of new
algebraic operations. New operators may be used due to the adoption of a new data
model or due to the support for new characterigtics in a database. The search engine
abdraction dlows the adoption of new optimization dgorithms or prototyping of new
techniques.

Flexibility. The daadbase sytem has the flexibility to use different implementations of
the optimizer. The implementations may differ according to query contexts and
languages, or according to different architecture of the database server (a pardld
saver for ingtance). Rule and RuleFactory abdractions dlows the optimizer to work
with several data model (eg. object-oriented, reationd, semi-structured) and
arcchitectures (eg. sequentid, pardld, didributed). Supporting new data modes
requires defining and adding new rule sets.

Scalability. The Flyweight pattern used for rue factories and rule objects provides the
management of the large number of rule objects necessary to support the processing of
a huge number of query requests, improving the scdability of database servers. The
multi-phased implementation provided by the SearchStrategy and
SearchStrategyFactory, and the cos modd encgpsulation into rules provides
flexibility for use of pardled machines as datdbase sarvers Padld daa sever
provides high degree of scdability. The pipdining of SearchEngine tasks alows the
use of pardleism within the optimization phases.

11

SugarloafPLoP 2002 Proceedings

Encapsulation. The rule based approach with RuleFactory, ConcreteRuleFactory,
Rule and ConcreteRule classes provides the encagpsulation of data model/agebra and
cost estimation.

Dynamically combines phases, search strategies and rule sets. Usudly database
optimization dgorithms divides the problem in different phases to decrease the
problem complexity. For indance, an optimizer may execute a logicd optimization
phase to execute structura transformations in the query expression, and then, execute
a phydcd optimizaion phase to choose dgorithms suiteble to implement the
operators in the expressons generated in the first phase. The DORS pattern dlows
each phase to be modelled with a search strategy absiraction, so one may even use
different drategies to each phase. The optimizer configure SearchStrategy with a
RuleFactory. The RuleFactory interface lets a SearchStrategy to use a rule st
transparently. The SearchStrategy works with Rules returned from the RuleFactory
and gpply them without being tied to the algebraic transformation.

Performance. The execution time of a query is the criticadl component to response
time. However, the optimization time is dso important for the find result. The
complete search space for a query expresson is huge. The optimizer uses heuristics
and pruning techniques in the search drategies and rules to reduce the search space.
The rationd pruning of the search space is the key point to keep optimization time
smdl. However, decoupling optimizer components to gan flexibility may introduce
some overhead in the optimization process. This overhead may be in memory use due
to extra clases as factories or may be in execution time due to the indirection
introduced with abstract classes and polimorphism. In standart database servers, these
issues may not be critica to due the availability of memory and processor resources,
but in low-resource devices as PDA'’s, the issues might be critical. In this case, the
database developer may consder the trade-offs between flexibility and performance as
dated in the Variants section.

9. Implementation

The query processng module may pass a lig of search drategies types in the
congructor of the Optimizer to configure the dgorithms for different optimization
phases, or even, pass a search dtrategy factory that creates a strategy according to a
phase parameter.

A RuleFactory implements the Flyweight pattern [GHIV95], cregting an ingtance of
each rule type and adding it to a pool in order of promise (the promise method of the
Rule type). When the search drategy ask for a rule, the factory iterates over the pool
(in the promise order) and applies the verifiesPatternMatching method agangt the
expression passed as parameter of the factory method. If the method returns true, the
ingtance is added to a return list. After the process had waked through the entire pooal,
theligt isreturned. Actudly, the RuleFactory returns a subset of the pool.

The SearchSpace supports a fixed number of instances (greater than one). The pool of
ingances is used to organize the expressons into groups. It dso may be implemented

12

SugarloafPLoP 2002 Proceedings

as a MEMO dructure, usng the Memoization technique [Gra95]. This technique lets
the optimizer ask to a MEMO structure if an expresson was generated for a given rule
(trandformation). Thus, it avoids a rule being applied two times for the same
expression.

A common way of implementing optimizers is to divide the optimization tasks in
phases. Usudly, one phase runs a complete set o rules and after generating al possible
expressons, it darts the next phase using the expressons produced. Another
interesting technique is to build a pipeine of tasks where as soon as one expresson is
produced it is passed to the next tasks. This may be implemented just passng a
SearchStrategy indance to its predecessor search drategy. The firs one cdls the
second as soon as a rule produces a list of expressons. This process should use just
abstract interfaces for the search drategies, letting the optimizer configure the order of
them.

The Expression class should be a tree data Structure that stores in each node a
representation of a database query operation. These operations may be, for instance, a
data read from the disk, a join of two data sreams, the formatting of data for the find
result. Besdes the operation description, each node dtores attributes for the sub-
expresson delimited from the node to the leafs of the tree. These attributes may be, for
example, the cost of execution of the sub-expresson or the order of the ddivered
intermediate, or find, result. The result of the optimization process is dso an
expresson named plan. The plan is evaduaed by the execution engine by executing
the operations from the leafs towards the root node.

10. Related Patterns

Strategy [GHIV95]:

- The Strategy pattern is used to let the ConcreteOptimizer (the client) to
configure the SearchStrategy with some type of RuleFactory. Thus, the
SearchStrategy may execute transformations (execution of a Rule) according to
the ConcreteOptimizer choice.

Facade [GHIV95]:

- ConcreteOptimizer WOrks as a Fagade to coordinate the optimization phases,
search gtrategies and rule factories.

Abstract Factory [GHIV95]:

- SearchStrategyFactory and RuleFactory are Abstract Factories. They use
concrete implementations to build families of search strategies and rules.

Singleton [GHIV95]:
- SearchSpace is a sngleton. It provides a single point of access to store and
retrieve generated expressions in amemory cache.
- Rule isasngleton. It provides a single instance of each rule type.

13

SugarloafPLoP 2002 Proceedings

Flyweight [GHIV95]:
- The RuleFactory uses this pattern to improve performance in the management
of saverd fine-grained rule objects during the optimization process.

11. Sample Code

The Fortaleza XML Data Server (FOX) is a project with the am of providing fast storing
and retrieva operations for XML [W3C] data. One key area of the project is to build a
flexible optimizer to evaduae techniques of optimization for this new data type. The project
bascdly investigates two dternatives. The fird one uses an object-oriented data modd to
store XML over Lambda-DB [FSRMOQ]. This implies that the database query parser should
convert a XQuery [W3C] query into an object-query tree and pass it to the optimizer. The
second dternative stores the XML data using the GOA data manager [MS94] and uses an
agebra suitable for XQuery. In both solutions, the project adopt a two-phase optimization
model with a Top-Down search dtrategy for the two- phases.

Figure 4 presents the dtructure of the first approach (object-oriented data-modd). This
solution uses the object-oriented monoid agebra [Feg97]. It has the
LogicalMonoidRuleFactory ~ for the logicd and firda phase ad the
PhysicalMonoidRuleFactory for the physca phase. The solution uses a configuretion file to
declare the dgebra used.

FoXDBOptimizer | ____em===""""" Togieal________
~~~~~~~~ N FoXRuleFactory
optimize()  [TTvs——l__ =T ;
~~~~~ physical™ ™~ ____,-———” createRule()
FoXDBXMLOptimizer | Z% |
addToPlans() PhysicalMonoidRuleFactory LogicalMonoidRuleFactory
getBestPlan()
FoXSearchStrategy X\ j
s FoxRule
search() - g
,/' condition()
4 i promise()
< apply()
TopDownSearchStrategy verifyPatternMatching()
subsumes()
rewrite()
merge() A
NestToNESTFreeGroupRule joinTOMERGE_JOINRule PathExpressionToPointerJoinRule

Figure 4 — Design of the database query optimizer of the FoX project

The diagran shows just three rules (thee ae more than twenty). The rule
PathExpressionToPointerJoin isfrom the logica set and the other two are physicd rules.

The cdass FoXDBXMLOptimizer uses the FoxSearchStrategyFactory to create search
engines for each phase. The optimizer stores one ingtance of a search engine for each phase

14

SugarloafPLoP 2002 Proceedings

into a private variable named strategies. In this implementation, the optimizer uses only one
search drategy type for the two phases and two rule sas. However, the
FoxSearchStrategyFactory reads a configuration file that determines a drategy for each
phase. The FoXDBXMLOptimizer does not apply a pipdined processing, rather, it process the
entire logicd rule set for the Monoid dgebra and, for each new generated expression, it
process the second phase to select physical operators. The physical operators are agorithms
sdected to efficently implement the logicd operators. Each new physca expresson
generated in the second phase is added to the list of execution plans. In the end of the method,
the optimizer executes the getBestPlan method that, based on the cost of expressions, chooses
the best one. This plan is returned to the execution engine of FoX Database.

public class FOXDBXM.Opti m zer extends FoXDBOpti mizer {

private List strategies;

publ i c FOXDBXMLOpti m zer () {
strategi es = new ArraylList();
FoXSear chStrat egyFactory sFac = FoXSearchStrategyFactory. getlnstance();
strat egi es. add(sFac. creat eStrat egy(“phasel”));
strategi es. add(sFac. creat eStrat egy(“phase2”));
}

publ i c Expression optim ze(Expression expr){
Li st pl ans;
FoXSear chStrat egy searchl = (FoXSearchStrategy) strategies.get(0);
FoXSearchStrategy search2 = (FoXSearchStrategy) strategies.get(1);

FoxRul eFact ory | ogi cal Monoi dRul eFactory = new Logi cal Monoi dRul eFactory();
FoxRul eFact ory physi cal Monoi dRul eFact ory = new Physi cal Monoi dRul eFact ory();

Li st | ogical Exprs = searchl. search(expr, |ogi cal Monoi dRul eFactory);

for(int i=0; i < logical Exprs.size(); i++){
Expressi on | ogi cal Expr = (Expression)l ogi cal Exprs.get(i);
Li st phyExpr
= search2. search(I ogi cal Expr, physi cal Monoi dRul eFact ory);
addToPI ans(pl ans, phyExpr);

}

return getBestPl an(pl ans);

The TopDownSearchStrategy extends the FoXSearchStrategy abstract class and provides
an implementation for its methods. It receives in the constructor a FoXRuleFactory and stores
the indance into a private variable named ruleFactory. This implementation uses an auxiliar
method named rewrite in the TopDownSearchStrategy class. The rewrite method does not
belong to the pattern and it is used in this specific implementation to provide the recursve
cdls necessary to implement a top-down search dtrategy The search method cdls the rewrite
method. This kind of drategy optimize firg the parameters of a term in the expresson and
then, with the optimized sub-expressons, optimize the term. During this process, the srategy
passes attributes that represents required properties that helps the lower levels of recursive
optimization to provide new expresson according to a context. This context may be, for

15

SugarloafPLoP 2002 Proceedings

example, some specific order, a required data partition for parallel a database, or even, lower
and upper costs for pruning plans.

public class TopDownSear chStrat egy extends FoxSearchStrat egy{
protected Rul eFactory rul eFactory;

publ i ¢ TopDownSear chEngi ne(FoxRul eFactory rf){
rul eFactory = rf;
}

public void search(Expression expr){
Attributes atrbs = new Attributes();

rewite(expr, atrbs, rul eFactory);

The firg action of the rewrite method from the TopDownSearchStrategy dass is to verify
if the expresson being optimized is not dready stored in the search space. If the expression is
dready optimized, the SearchSpace returns a lig of expressons. This ligt stores dl the plans
generated for the expresson. The search drategy uses the list to get the plans stored in the
search space and abort the rest of the rewrite process.

If there is no expression lig for the expresson, the rewrite method starts the generation of
new optimized expressons. The fird action is to ask to the ruleFactory, that may be a
LogicalMonoidRuleFactory or PhysicalMonoidRuleFactory, to cregte a list of rules gpplicable
to the expresson. For each rule in the returned list, the method gets the parameter of the
expresson and optimize them first, goplying recursvely the rewrite method. Before caling
the method recursively, it asks the rule for expected dtributes. If the rule needs some
properties to be produced in the lower levels of optimization, it returns a vaid ingance of
atributes. The expected attributes are passed in the recursive cal. Note that the recursve cdls
end when the method reaches the leafs terms because they do not have parameters. Each list
returned in the recursive cdls is added to a list of optimized parameters. For smplicity of the
presentation of the method, the examples shows a method named combine tha builds a list of
lists of parameters, representing al the combinations of optimized parameters,

Each rule is gpplied to every combinaion of optimized parameter and the result of the
apply method of the rule is merged with the list of rewrote expressons. This process builds a
lig with the union of the results of the gpplication of the rules for the expresson. Findly,
these expressons are added to the search space and returned as the result of the method
rewrite from the TopDownSearchStrategy class.

public class TopDownSear chStrat egy extends FoxSearchStrat egy{

public Expression rewite(Expression expr, Attributes atrbs){

Li st rew ot eExpr essi ons;
Li st optim zedExpressi ons = SeachSpace. get | nst ance() . get Expr essi on(expr, atrbs);

i f(optimzedExpressions != null){
return optim zedExpressi ons;
}

16

SugarloafPLoP 2002 Proceedings

List rules = rul eFactory. creat eRul e(expr);

for(int i =0; i < rules.size(); i++){
Rule rule = (Rule) rules.get(i);
Attributes expectedAttrbs = rul e. get ExpectedAttribs();
i f(expectedAttrbs !=null) attribs = expectedAttrbs;

Li st optim zedParans = new ArrayList();
Li st parans = expression. get Parans();
for(int p=0; p<parans.size(); p++){
opti m zedPar ans. add(rew it e((Expressi on) parans. get(p), attribs));
}

Li st conbi nedParans = conbi ne(opti m zedPar ans) ;

for(int p=0; p < conbinedParans.size(); p ++){
Li st opti m zedConbi nedParans = (List) conbi nedParans. get(p);
Li st transformedExprs = rul e. appl y(opti m zedConbi nedPar ans)
mer ge(r ew ot eExpr essi ons, transfornedExprs);

}
SeachSpace. get | nst ance() . addExpr essi on(r ew ot eExpr essi ons) ;

return rew ot eExpr essi ons;

}

The condition method of the joinToMERGE JOINRule class receives, as its argument, the
liss of parameters tha bedong to the expresson being optimized. The method uses the
parameters to verify if the rule should be agpplied to the expresson. The method gets the
second, the third and the forth parameters, that corresponds, respectively, to the left
expresson (X), right expresson (y) and predicate of the join operation. The MERGE-JOIN
agorithm expects the data sream in the left expresson to be ordered according to the
atributes of the join predicate. Thus, the condition method uses another auxiliar method,
named subsumes, t0 verify this condition. If the left expresson is ordered according to the
predicate, then the MERGE-JOIN dgorithm may be used and the method returns true.
Otherwisg, it returnsfalse.

public class joinToMERGE JOINRule extends FoxRul e{

private bool ean condition(List parans){
Li st params = expr. get Parans()
Expressi on x = (Expression)parans. get(1);
Expressi on pred = (Expression)parans. get(3);

i f (subsunes(pred, x)){
return true

el se{
return fal se
}

17

SugarloafPLoP 2002 Proceedings

The apply method of the dass joinToMERGE JOINRule transorms (rewrite) the logica
term dencting a join operator into a physica term denoting a MERGE JOIN dgorithm to
implement the join of two dreams Fird, the method verifies the condition of the applicability
of the rule. If the condition method returns true, then the transformation begins. The method
gets the second and third parameters of the expression, that corresponds, respectively, to the
left plan (X) and right plan (y) of the join operation and use them to estimates the cost of the
new expresson. It crestes an instance of the Attribute class. This class is a smple data
structure used to store properties of the plan. The properties are the adering, Size and cost of
the plan. The cost of the new expression is estimated according to a cost modd that states that
the cost of a MERGE-JOIN dgorithm is the sum of the gze of the left and right plan. This
vaue is doubled to accumulate the cost of the sub-expressons. Findly a new expresson is
crested identifying a MERGE_JOIN term with the parameters and the new dtributes. The
expresson is added to the return list and the list is returned as the result of the apply method.
Thereturn vaueisalist because arule may create aternate planswith aloop.

public class joinToMERGE JOINRule extends FoxRul e{

public List apply(List parans){
Li st returnList = new ArraylList();
i f(condition(parans)){

Expressi on x = (Expression)parans. get(1);
Expression y = (Expression) parans. get(2);

Attributes atts = new Attributes();
atts.setSize(x.getAttributes().size() * y.getAttributes().size());
atts.setCost(2*(x.getAttributes().size()

* y.getAttributes().size()));
atts.setOrder(x.getAttributes().order());

Expr essi on newExpr = new Expressi on(Expressi on. MERGE_JO N, pararns,

atts);
ret urnLi st. add(newExpr) ;

}

return returnList;
}
}
12. Variants

A Factory class may be introduced to create the concrete types of RuleFactory according
to some sysem configuration. This implementation dlows the use one sngle optimizer
implementation for different data models.

Changes in optimizers usudly occurs in data and cos modds, forcing changes in rules
and rule factories. Thus, providing interfaces for ConcreteRule and ConcreteRuleFactory

18

SugarloafPLoP 2002 Proceedings

is very important for optimizer flexibility. For optimizers with controlled and established
search drategies and phases, the database devdoper may avoid usng
SearchStrategyFactory and SearchStrategy. In this case, one may use the optimizer
bound to specific types of ConcreteSearchStrategy.

13. Known uses

In the following exarples, the FoX project uses the complete DORS pattern. The
frameworks Cascades [Gra95], Columbia [SMB01] and OPTGEN [Feg97] use the main
abgtractions (Rule, RuleFactory, SearchStrategy, and SearchSpace) in their implementations
with smilar structure and behavior. See bellow more details of each one of them.

Cascades [Gra95] and Columbia EMBO01] are frameworks with top-down search engine
that provides a set of classes to build optimizers. The framework uses the DBI-Optimizer
interface hiding the concrete implementation of the optimizer. It provides a Rule class
with methods that perform transformations, ordering of rules and conditions of use. The
phases are implemented by the Task class, but the framework provides only the top-down
approach for search drategies. The Task objects may use pipeining of processng. It uses
the MEMO gpproach to implement the search space. The pattern matching mechanism is
provided with the Binding class. Guidance objects are used to divide rulesinto rule sets.

The OPTGEN [Feg97] framework provides a rule language (OPTL [Feg97]) for optimizer
goecification. The language is an extenson of C++. With the OPTL language, the
developer may declare rules with pattern matching, conditions (named guards) and the
transformation of expressons. The language provides the declaration of rule modules
(rule factories). The rules are processed in each module in the order they are declared. The
language dlows the declaration of severd logicad modules and one physcd module. The
framework uses top-down search engine with MEMO search space. The result of the
OPTL program compilation is the C++ source code of the optimizer. The source code uses
C++ classes to implement the specification declared in the OPTL program.

In [PMO1] and [Pir01] the OPTGEN framework wad modified to add the support for
optimizetion for pardld object-oriented databases. The modified framework used a three-
phase optimization modd with top-down search engine for the first two phases and a
ample subdtitution search engine for the third phase. It dso used in the firg phase a
sequential logicd dgebra, and in the second and third phases it used two different
physca padld dgebras. The rules for pardld agebras were built according to an
andyss pattern.

The FoX Daa Server Project in development at Federd University of Ceara uses the
DORS pattern to design and build aflexible optimizer for XML data.

Acknowledgements: We would like to thank our shepherd Federico Balaguer and our writers
workshop group (F. Montero, Joe Y oder, Marcos D" Ornellas, Savitha Muthanna) for their valuable
suggestions and comments on this paper.

19

SugarloafPLoP 2002 Proceedings

References

[CB97] R. Cattel, D. Barry, editors. The Object Database Standard: ODMG 93. Morgan Kaufman,
1997.

[Feg97] L. Fegaras. The OPTGEN Optimizer Generator. Department of Computer Science and
Engineering. The University of Texas at Arlington, http://ranger.uta.edu/~fegaras/optimizer, 1997.

[FSRMOQ] L. Fegaras, C. Srinivasan, A. Ragjendran, D. Maier. Lambda-DB: An ODMG-Based Object-
Oriented DBMS. ACM SIGMOD International Conference on Management of Data, Dallas, Texas,
2000.

[GHIVI5] E. Gamma, R. HElm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software, Addison-Wedey, 1995.

[Grags] G. Graefe. The Cascades Framework for Query Optimization. Bulletin of the |EEE Technica
Committee on Data Engineering, 18(3), Pages 19-29, September 1995

[1S096] ISO/IEC JTCL/SC21 N10489, ISO//IEC 9075, Part 2, Committee Draft (CD), Database
Language SQL - Part 2: SOQL/Foundation, ftp://speckle.ncd.nist.gov/isowg3/dbl/BASEdocs/cd-
found.pdf, July, 1996.

[MS94] M.L.Q. Mattoso, JM. Souza, GOA: Um Servidor de Objetos Persistentes para Sistemas de
Banco de Dados Orientados a Objetos (in portuguese), XX Conferéncia Latinoamericana de
Informética, Mexico City, Mexico, September 1994.

[Fir01] C. G. Pires. Optimizer Development with Query Rewrite for Parallel Object-Oriented
Database Management Systems (in portuguese). Master's thesis, Federa University of Ceard,
September, 2001.

[PMO1] C. G. Pires, J. C. Machado. Applying Rules for Partitioned Parallelism in OODBMS within an
Optimizer Generator Framework. XVI Brazilian Symposium of Database, SBC, Rio de Janeiro, 2001.

[SMBO1] L. Shapiro, D. Maier, P. Benninghoff, K. Billings, Y. Fan, K. Hatwa, Q. Wang, Y. Zhang,

H. Wu, B. Vance. Exploiting Upper and Lower Bounds In Top-Down Query Optimization, IDEAS
2001, Grenoble, Francg 2001.

20

SugarloafPLoP 2002 Proceedings

The AbstractOptimizer'

Savitha Muthanna,
savitha muthanna@agilent.com
Agilent Technologies Inc.
24001 E. Mission Avenue,
Liberty Lake WA 95019-9599
U.S.A

Abstract
Several times there is the need to further optimize aspects of a design that might result in better
performance for the program or application. In the realm of real-time embedded systems, optimizing the
number of tasks executing in the system would be a major optimization. This paper presents a design
pattern, the AbstractOptimizer, which provides a way to achieve this optimization in a simple and elegant
manner.

1. Motivation

Test and Measurement instrument boxes, present useful measurement results to
the user, after performing a series of measurements on a device under test. Examples are
embedded real-time instruments that test the Radio Frequency (RF) performance of a
cellular phone. These are devices that can be extremely complicated and can use a
complicated combination of hardware and firmware to simulate a real-time cellular
network.

Consider the User Interface of such an instrument, illustrated in Figure 1. This
will have a CRT displaying several measurements. In Figure 1, ‘Waveform Quality
Measurement’ is a viewing area or a Screen. ‘Rho’, ‘Frequency Error’, ‘TimeError’,
‘Continuous’ etc. give the user different pieces of information that are useful to her.
‘Rho’, ‘Frequency Error’ and ‘Time Error’ describe the results of measurements.
‘Continuous’, for example, describes a setting that applies to the ‘“Waveform Quality’
measurement.

! Copyright © 2002, Agilent Technologies Inc. Permission is granted to copy for the Sugarloaf PLOP 2002
Conference. All other rights reserved.

21

SugarloafPLoP 2002 Proceedings

Wawveform Quality

Rho Frequency Error
0.983 —-30.2Hz

Time Error; 0.15 usec

Carrier Feedthrouah: -30.1 dB

Phase Errar: 9.1 2

Maanitude Error: 10,19 %

EWM 11.22 %

Measurement Tirmeaut Continuous

Figure 1: Instrument User Interface

Figure 2 illustrates an object-oriented design of such a system.

Screen Display DisplayField

®Display() SDisplay()

for all Display Field{ ﬁ Z>

DisplayField->Display()} ‘

MeasDispField
Virtuallnstrument | PostMeasResult SettingDispField
®Display()
MMeasure() ¥MeasurementDisplayLoop() ®Display()
¥PostMeasResult()

Figure 2: Classes and relationships.

The Screen is a class containing one or more DisplayFields. Each DisplayField
will display one measurement result (MeasDispField), e.g.: ‘Frequency Error’ in Figure
1. A DisplayField can also represent a setting that the instrument is set to
(SettingDispField), e.g.: ‘Continuous’.

Each MeasDispField is connected to a Virtuallnstrument(VI) which is an
abstraction of a small piece of functionality, one of the mini instruments in this box. A VI
computes a set of measurements results. Each MeasDispField represents one
measurement result sent by a VI. Also, each MeasDispField is executed by an
independent thread and encapsulates a fairly complicated measurement display loop that
continually looks for the most recent measurement result posted by the VI and displays
this result at a given display rate. The MeasDispField is pivotal to this problem context.
The VI periodically posts measurement results at a much higher rate than the
MeasDispField can display it.

Applying this design to implement the Screen described in Figure 1, we will have
the following: The Screen will be represented by a Screen instance. The “Rho”,
“Frequency Error” etc. will be represented by MeasDispField instances. Each one of
these MeasDispFields is associated with a measurement result associated with a VI
instance.

22

SugarloafPLoP 2002 Proceedings

So, here’s the problem: Of the MeasDispFields displayed on a Screen, some of
them could be results associated with the same VI. Also, each MeasDispField has one
task associated with it. The purpose of this task is to allow the MeasDispField to display
one real-time measurement result. The problem that needs to be solved in this case is, to
optimize the design of the Screen and DisplayFields to reduce the number of tasks
running to display results on a single screen.

Also, if this test and measurement box is a platform then it will be capable of
supporting various incarnations. E.g., it needs to be capable of supporting various
wireless protocols in each incarnation to test various types of cellular phones. Therefore,
once the Screen and DisplayFields classes have been designed, multiple instances of
Screen and DisplayField objects will need to be instantiated for the several measurements
for each incarnation of this box, for each wireless protocol. This pattern must allow
several Screen and DisplayField objects to be configured and instantiated without any
knowledge of the details of this optimization.

The AbstractOptimizer pattern in this context allows the number of tasks
associated with a Screen to be optimized, with a clean design and prevents any
redundancy of critical code.

This paper introduces the concept of the “application developer” to further
highlight the advantages of using this pattern (The Consequences section discusses the
advantages in more detail). The term “application developer” refers to the individual(s)
responsible for creating the DisplayField and Screen objects. The application developer
may or may not be the same person as the designer of the DisplayField and Screen
classes. The idea here is that, once the DisplayField and Screen classes are designed, they
would reside in a library and the “application developer” would create any number of
DisplayField and Screen objects to fit their application.

2. Context

You are building real-time embedded systems, and are doing a major optimization
of the number of tasks executing in the system.

3. Problem

How can we design a set of reusable classes for real-time embedded systems that
improve performance by optimizing the number of tasks associated with the system and
protect the application developer from knowledge about the optimization details?

4. Forces

* Improved performance: It is critical that optimization of a real-time embedded
systems result in better performance.

23

SugarloafPLoP 2002 Proceedings

Design Abstraction: The application developer needs to be shielded from any
knowledge of this optimization. In other words, this design should allow various
instances of Screens and DisplayFields to be created for every application,
without having to know about the existence of the AbstractOptimizer or having to
create instances of the Abstract Optimizer. The application developer is therefore
completely shielded from any knowledge or use of the AbstractOptimizer.
Reusability: Design Reusability across various incarnations of the test instrument
is a necessity. Allowing optimization code to be re-used in a library-like manner
and be untouched for various incarnations of the test instrument can provide for
this reusability.

Eliminate redundancy: This may be obvious, but in redesigning to optimize
areas of the design and move functionality around, ensure that the code is not
redundant.

5. Solution

In the context of the problem described above, the solution of this problem is to

introduce a set of classes to that allow the DisplayFields to be grouped based on whether
they are associated with the same Virtuallnstrument or not. This will allow all the
DisplayFields associated with the same Virtuallnstrument to be executed by one task and
still have a real-time display of the associated measurement result. Figure 3 describes the
solution.

6. Structure

Compound AbstractOptimizer Element
? :

AbstractOptimizerTypeA
SHEcl P s AbstractOptimizerTypeB ElementTypeA ElementTypeB

SoperationTypeA()

Figure 3: Classes and relationships in the solution

7. Participants

Compound: The Compound class contains one or more instances of the
AbstractOptimizer. The Compound, in its constructor, actually creates one or
more instances of the AbstractOptimizer. It is passed the list of Elements (which
have already been created) into its constructor. It then maps the Elements to each
AbstractOptimizer by using properties of Elements that allow them to be grouped
into exclusive sets. Before this pattern is applied or used, the Compound contains
one or more instances of the Elements instead of one or more instances of the
AbstractOptimizer. In problem context described earlier, the ‘Screen’ class is the
Compound.

24

SugarloafPLoP 2002 Proceedings

* AbstractOptimizer: The AbstractOptimizer is an abstract base class, that
represents common functionality shared by all optimizers. It will contain one or
more instances of Elements. It provides an interface to not only encapsulate
functionality common among Elements but also offers significant optimization. It
allows mutually exclusive groupings of Elements, with optimization in mind.

* AbstractOptimizerTypeA: The AbstractOptimizerTypeA is a type of
AbstractOptimizer that encapsulates functionality, previously (before applying
this pattern) encapsulated by ElementTypeA. Therefore, the behaviors exhibited
by one or more Elements (which existed as part of ElementTypeA) will now be
encapsulated inside AbstractOptimizerTypeA, Similarly for
AbstractOptimizerTypeB. For e.g., ‘operationTypeA()’ is a method belonging to
the ‘AbstractOptimizerTypeA’ class. Before the application of this pattern it
would have been part of the ElementTypeA class. It further specializes in
encapsulating behaviors that are common to one or more Elements.

* Element: Every AbstractOptimizer contains one or more Element classes. The
Elements are generally groupable into exclusive sets of common
attributes/behaviors. In the problem context described earlier, the ‘DisplayField’
is the Element.

8. Collaborations

Figure 4 below, describes one set of collaborations, between the different classes
in this pattern. The Compound class requests that “OperationTypeA” be performed on all
its constituent AbstractOptimizers. Each AbstractOptimizer, executed by one task,
requests its constituent Element classes to perform “Operation TypeA”.

Compound AbstractOptimizer(Task 1) Element 1 Element 2

|

Operation TypeA

< |
Operati
< |

| |

| |
D Operation TypeA Operation TypeA

o]

|

|

|

|

|
|
|
|
TypeA ﬁ Operation Type A
|
|

Figure 4: Dynamic interactions of the pattern objects

25

SugarloafPLoP 2002 Proceedings

Please see the section on implementation, for depth and detail on the

collaborations that are introduced upon application of this pattern on the problem
described in the motivation section.

9. Consequences

This pattern will cause a definite improvement in performance of the system that
is being optimized, by reducing the number of tasks associated with the system.
An added cost in terms of memory consumption however, is that a few more
instances of a class are added to the system if that is a consideration.

It completely shields the application developer from the knowledge of its
existence, because it is the Compound’s responsibility to actually create the
AbstractOptimizer. Say, that once designed, the set of classes described above
reside in a library and it is now the responsibility of the application developer to
instantiate Compounds and Elements, that are required for their application and
configure them correctly. The application developer will not know of the
existence of the AbstractOptimizer hierarchy of classes, since it is the
Compound’s responsibility to create the AbstractOptimizer and map its
constituent Elements to each AbstractOptimizer by gleaning the required
information from the Elements.

This pattern is very useful where the Element and Compound classes need to be
designed and then reside in a library. The application developer only needs to
instantiate the Compound and the Element classes based on the requirements of
her system. This will make automatic optimization most desirable. This is
especially true, if there are a large number of Compound and Element classes to
create, which makes the task of manually grouping together Elements forbidding.
However, it is easily applicable and useful in situations where a library is not used
to house the Compounds and Elements. The objective of optimization by using
this pattern is achievable whether a library-model is used or not.

Optimization is the primary purpose of using this pattern. There is always a cost if
a design is over-optimized. Therefore the designer needs to evaluate the need for
optimization before applying this pattern to their context. For example, at one end
of the spectrum, if it happened in the above example that, every MeasDispField
was associated with a different VI, there may not be any need for optimization
and the Compound may as well contain a list of Elements. On the other end of the
spectrum, every MeasDispField on the Screen could be associated with the same
VL. If we then employ our pattern, we have one Compound that includes one
AbstractOptimizer which in turn contains all the Elements.

10. Implementation

An important aspect in the implementation of this pattern, is the identification and
definition of the AbstractOptimizer and the determination of its constituent Element
classes. The following points are meant to serve as a guideline in going about this task:

Identify what the “common functionality” is that will allow objects to be grouped
together and optimized. Let us call this “groupable property”.
Next, design the AbstractOptimizer hierarchy for your context.

26

SugarloafPLoP 2002 Proceedings

* Instantiate the AbstractOptimizer during the construction of the Compound class.
The construction of the AbstractOptimizer will utilize this “groupable property”
to know how to group various Elements and associate them with one
AbstractOptimizer.

* Redesign the old Element classes to move the common behavior of these objects
to the Abstract Optimizer, which will now apply this behavior on a group of
Elements rather than one Element.

Applying this pattern to the context previously discussed (in the Motivation section),
the solution will look like the set of classes in Figure 5.

S Displa DisplayField
ereen pay CompoundDisplayField - 1Splayrie
\
Display() Display()
/\ .
for all CompoundD\spIayFleId{ T
CompounlespIayFleId ->Display()}
PacedCDF NonPaced MeasDispField SettingDispField
Virtuallnstrument | PostMeasResult) | CDF | .
:Dlsplay() _ ‘7 VDisplay() Display()
®Measure() MeasurementDisplayLoop() M

¥PostMeasResult()

Figure 5: Design Pattern applied on the example problem

The Screen class (Compound) now contains one or more CompoundDisplayFields
(AbstractOptimizers). The CompoundDisplayField provides an abstract interface to not
only encapsulate functionality common among DisplayFields (Elements) but also offers
significant optimization. It allows for mutually exclusive groupings of DisplayFields and
its purpose is to achieve optimization.

Each CompoundDisplayField object is associated with or more DisplayFields.
Each CompoundDisplayField can be of two types, Paced CompoundDisplayField
(PacedCDF) and Non-Paced CompoundDisplayField (NonPacedCDF), to accommodate
the optimizations associated with the two variations of DisplayFields. The PacedCDF
will now contain the ‘MeasurementDisplayLoop()’ operation, which paces every so often
looking for posted measurement results sent by a Virtual Instrument. This operation was
previously contained by the MeasDispField class. The PacedCDF therefore contains one
or more MeasDispField objects. The NonPacedCDFs on the other hand contains the
SettingDispField objects.

Let us examine the collaborations introduced by this re-designed set of classes,
upon application of this pattern. The collaborations between the different classes work as
described in Figure 6 below. The Screen class requests all its constituent PacedCDFs to
display themselves. Each PacedCDF, associated with one task, wakes up, subscribes to a
measurement result from the VI and waits for a measurement result. When it receives a

27

SugarloafPLoP 2002 Proceedings

measurement result, it then asks its constituent MeasDispFields to display themselves.
Each MeasDispField then extracts the relevant portion of the measurement result and
writes the pixels on the physical display.

Virtuallnstrume Screen PacedCDF MeasDispField MeasDispField
nt (Task 1) 1 2
‘ ‘ display() ‘
——>—wake up ‘

subscribe to mslsurement result | <«]

p—

otify and store new measurement result . ‘
display

H write result on screen
\

[write result on screen
\

|

wait for new res+lt ‘

—

|
. | |
\ \

Figure 6: Dynamic interactions of the classes in the solution after application of the
pattern.

Figure 7 illustrates how the collaborations worked before application of the
pattern, highlighting the performance boost introduced by the pattern. The Screen class
requests that all its constituent MeasDispFields, each of them associated with its own
individual task to display itself. Each task wakes up, subscribes to results from a VI,
waits for a measurement result to be sent by the VI. The VI then notifies the
MeasDispField of the new measurement result and also stores this result. The
MeasDispField then displays the measurement result on the physical display.

28

SugarloafPLoP 2002 Proceedings

Virtuallnstrument Screen MeasDispField1 MeasDispField2
(Task 1) (Task 2)
‘ display ‘

wakeup

|

subscribe to new measurement result ‘
m wait for result ‘

!

notify and store new result

isplay new result

|

di%play
I

‘ wake up

|

wait for result

!

notify and store new re:JuIt

display new result

ﬂ

[F subscribe to new measuremqnt result
\

|

| l
T | |
| | | |
| | |

Figure 7: Dynamic interactions of the classes before the application of the pattern

11. Sample Code:

Here is some sample code, in C++, that illustrates the creation of the
CompoundDisplayField objects inside the Screen constructor.

CompoundDisplayField objects (PacedCDF and NonPacedCDF objects) are
created as follows: Each DisplayField is examined by determining if it is a
MeasDispField and if so, all MeasDispFields associated with the same VI will be
associated with one PacedCDF. Each DisplayField that is not a MeasDispField (perhaps a
‘SettingDispField’) will be associated with a Non-PacedCDF.

The list of DisplayFields associated with a Screen is passed to Screen at

construction time. Each DisplayField will contain attributes that are all programmed into
it (during its construction) that determine whether the DisplayField is a MeasDispField or

29

SugarloafPLoP 2002 Proceedings

not. It will also contain a pointer to the VI that it is associated with. Obviously the
DisplayFields are created before the Screens are constructed.

/'l Screen class interface
Cl ass Screen{
Publ i c:
Screen(Di splayField *);
~Screen();
void Display();

Privat e:
AddDi spl ayFi el dToCDF(Di spl ayField *);
AddDi spl ayFi el dToNonPacedCDF(D spl ayFi el d *);

CompoundDi spl ayFi el d *conpound_df [MAX_NUM ;
}

/! The Screen class Constructor.

Screen:: Screen(DisplayField *list_of_displayFi el d)
{
Di splayField *tenp = |ist_of _displayField,
I nt 32 num of _ConpoundDi spl ayFi el ds;

/1l Construct the associ ated ConpoundDi spl ayFi el d obj ects.

/-k

NOTE: Before applying this pattern, the list of DisplayField
poi nters would sinply have been stored away.

*/

while (tenp !'= NULL)

{
if (tenp->typeQ) == MEASDI SPFI ELD)
{

/{1 1f a ConpoundDi spl ayField that is associated
/! with this VI does not exist, then create a new
/| PacedCDF.
i f (! ConmpoundD spl ayFi el dExi sts(tenp))

{

/1 Create new PacedCDF

compound_df [num_of _ConpoundDi spl ayFi el ds] =

new PacedCDF();

num_of _ConpoundDi spl ayFi el ds++;
}

el se

{

/1l Add this DisplayField to the |ist of

/1 DisplayFields associated with an existing
/1 ConpoundDi spl ayFi el d.

AddDi spl ayFi el dToCDF(t enp) ;

30

SugarloafPLoP 2002 Proceedings

}
el se
/1 Add this D splayField to the |ist of NonPacedCDFs.

{
AddDi spl ayFi el dToNonPacedCDF(t enp)
}

/'l Get the next DisplayField.
t enp++;
}

Next, sample code has been included below to illustrate a simplified version of
the “MeasurementDisplayLoop()” mechanism of the PacedCDF, after application of this
pattern.

The Screen class can be asked to “display” the Screen. Upon receiving the request
to display, Screen will request all its associated CompoundDisplayFields to display
themselves in turn.

Voi d Screen: :display()

1£or (index = 0; index < MAX_NUM index ++)
{i f (conmpound_df[index] != NULL)
E;orrpound_df ->di splay();
} }
}

When the CompoundDisplayField is asked to display, if the
CompoundDisplayField is a PacedCDF, it will have a task associated with it, that is
blocked pending a message that will be woken up if asked to display. Before applying
this pattern, the MeasDisplayLoop was executed by one task associated with each
MeasDispField. After applying the pattern, only the PacedCDF has one task that executes
the MeasDisplayLoop and simply asks its constituent MeasDisplayFields to display
themselves.

The following piece of code illustrates the definition of the PacedCDF class and
the mechanism of displaying the PacedCDF and while doing so, all the MeasDispFields
associated with this PacedCDF.

/| PacedCDF inherits from ConpoundDi spl ayFi el d.
Cl ass PacedCDF: : publ i ¢ CompoundDi spl ayFi el d
{
publi c:
PacedCDF() ;
~PacedCDF() ;

31

SugarloafPLoP 2002 Proceedings

virtual void display();

private:
const int MAX_NUM OF_DI SPLAY_FI ELDS = 10;
voi d executeMeasDi spl ayLoop();
voi d neasDi spl ayLoop();
void initializeLoop();
void startTinmer();
voi d wai t For Event (semaphore);
voi d noti fyResult(Measurenent Result *);

/1l A pointer to the associated VI.
Virtual I nstrunment *VI;
MeasDi spl ayFi el d
*|ist_of _display_fields[MAX_NUM OF_DI SPLAY_FI ELDS] ;

/! To contain the results fromthe VI.
Measur ement Result *result;

[/l The state of the PacedCDF, i.e., whether displayed
/] or not.
Di spl ayState state;

/! The task associated with this Paced CDF, uses this
/1 queue to //communicate new di splay requests.
MsgFi f oQueue nesg_queue;

/1 This semaphore indicates the presence of a new
[/l measurenent //result posted by the VI.
Semaphore vi _result_arrived_senmaphore;

The following piece of code illustrates the workings of the critical
“measurementDisplayLoop”. First, the ‘display()’ function of the ‘PacedCDEF’ class
wakes up the task, by sending a message indicating that the PacedCDF now needs to be
displayed. The ‘executeMeasDisplayLoop()’ function is then executed. This function
receives the message on the queue, and kicks off the execution of the
‘measurementDisplayLoop()’ function by the task.

voi d PacedCDF: : di spl ay()

{
/'l Set the state of this PacedCDF to “di spl ayed”.

State = DI SPLAYED,

/1 Send a message on a queue to wake up the task associ ated
/1 with this PacedCDF.

nmegFi f oQSend(nsg_queue, this, OSI_WAI T_FOREVER);

}

/1l The PacedCDF task is waiting for a nessage to arrive.

32

SugarloafPLoP 2002 Proceedings

/1 When it does, it calls the ‘nmeasDi splayLoop’ function.
voi d PacedCDF: : execut eMeasDi spl ayLoop()

{
nmegFi f oQRecei ve(nsg_queue, this, OSI _WAl T_FOREVER);

t hi s- >measur enent Di spl ayLoop();

}

The ‘measurementDisplayLoop()’ function does some initialization, starts a timer
to control the display rate of the measurement result. It then subscribes to the VI for a
new measurement result and waits for the result. The VI then executes the
‘notifyResult()’ function to notify of the arrival of a new result and stores this result. The
PacedCDF now requests all its constituent MeasDispFields to extract their portion of the
measurement result and display it on the Screen.

/1 The critical “MeasurenentD splayLoop” function that subscribes
/[l to the neasurenent result of interest and waits for the result
/[l fromthe VI.

voi d PacedCDF: : neasur enment Di spl ayLoop()

{

/1 do sonme initial setup
initializeLoop();
whi l e (state == DI SPLAYED)

/1 kick off a timer, to ensure that display happens
/1 every so often.
startTinmer();

/! Subscribe to the nmeasurenment result fromthe VI.
VI - >subscri beToMeasur enent () ;

/1 Wait for the result fromthe VI.
wai t For Event (vi _result _arrived_semaphore);

/[l At this point we have the result fromthe VI. The VI is
/la concurrent task that has deposited the results, in a
/1 menber variable of this class and then has rel eased
/[l the “vi_result_arrived_semaphore”. Now request all the
/] associated MeasDi spFields to display the result.
for(index=0; index < NUMOF_DI SPLAY_FI ELDS; i ndex++)

{

list_of _display_fields->display();

}

33

SugarloafPLoP 2002 Proceedings

The following piece of code describes the ‘notifyResult()’ function which is
executed by the VI, to notify the task executing the ‘measurementDisplayLoop()’ that
there is a new result available and to store this result.

voi d PacedCDF: : notifyResul t (Measurenment Result *result)
{

storeResult(result);
si gnal Event (vi _result_arrived_semaphore);

}

The following piece of code describes the ‘display()’ function of the
MeasDisplayField class that simply writes the measurement result on the physical
display.

voi d MeasDi spl ayFi el d: : di spl ay(Measurenent Result *result)

vi deoDi spl ay(resul t[this_neasurenent _i ndex]);

}

12. Related Patterns:

Observer: The PacedCDF can obtain periodic measurement results to display from the
VI, using the Observer pattern. It can use a subcriber-notify model to susbscribe to
measurement results and periodically obtain results that need to be displayed by the task
associated with the PacedCDFs.

State: The State pattern can be associated with the PacedCDFs. The behavior of the
PacedCDF object is dependent whether it is displayed or not.

AbstractFactory: Creation of the DisplayFields and Screens associated with each
incarnation of a test and instrument box, can use the AbstractFactory pattern to create
instances of it.

13. Known Uses:

Used in the design of one of the sub-systems inside the User Interface of the
Agilent 8960 Series 10 for Wireless Manufacturing.

14. Acknowledgements:

Many thanks are due to my shepherd Robert Hanmer for his thought-provoking
comments that helped to refine this paper. I am also deeply grateful to Agilent
Technologies for providing the time and resources required to author and present this
paper at the SugarLoaf PLOP 2002. I would like to thank Joseph Yoder, Program Co-
chair, SugarLoaf PLOP 2002, who repeatedly reviewed and helped revamp this paper. I
would also like to thank the participants of my Writer’s workshop group “hushy” at
SugarLoafPLOP 2002, Carlo Giovano S. Pires, Francisco Montero and Marcos Cordeiro

34

SugarloafPLoP 2002 Proceedings

d’Ornellas for their comments and criticisms that have helped get this paper into a much
better shape. Finally I would like to thank the organizers of the SugarLoaf PLOP 2002
for making this a fun and rewarding experience for me.

15. References:

[1] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns: Elements of Reusable Object-
Oriented Software, Reading MA:Addison-Wesley, 1995.

[2] James O. Coplien and Douglas C. Schmidt(Editors). Pattern Languages of Program Design.
Addison-Wesley (Software Patterns Series), 1995.

[3] Martin Fowler, Scott Kendall. UML Distilled: A brief guide to the standard Object Modelling
language, Second Edition, Addison-Wesley, 2000.

[4] The Agilent 8960 Series 10 for Wireless Manufacturing. http://we.home.agilent.com/cgi-
bin/bvpub/agilent/Product/cp_Product.jsp?NAV_ID=-
11874.536881883.00& LANGUAGE_CODE=eng&COUNTRY CODE=ZZ

[5] David Stepner, Nagarajan Rajan, David Hui . Embedded Application Design Using a Real-
Time OS. Proceedings of the 38" ACM/IEEE conference on Design automation conference. June
1999.

35

SugarloafPLoP 2002 Proceedings

36

SugarloafPLoP 2002 Proceedings

Um Design Pattern para Configuracio de Arquiteturas de Software

Jonivan Coutinho Ligha (jlishoa@ic.uff.br)
Sérgio Teixeira de Carvaho (sergiotc@ic.uff.br)
Orlando Gomes Loques Filho (logues@ic.uff.br)

Universdade Federd Huminense— Indituto de Computac@o
Rua Passo da Pétria 156 — Bloco E— 3. Andar
BoaViagem 24210-240 Niter6-RJ - Breasl

Resumo

Este trabalho apresenta a descricdo de um design pattern, chamado Architecture Configurator,
que modela o processo de implantagido da configuragio de um sistema de software. Os patterns
sdo meios utilizados para documentar situagdes recorrentes em desenvolvimento de sofiware. Sua
utilizacdo no estudo de implantagcdo de arquiteturas visa facilitar o estudo comportamental de um
sistema, sem que o projetista precise ater-se a detalhes de implementagdo. Além disso, o uso de
patterns possibilita obter alguns requisitos desejados na implementagdo de arquiteturas, como
separagdo de interesses, reutilizagio de componentes, facilidade de manutengdo e extensdo do
sistema, entre outros.

Palavras-chave : design patterns arquiteturas de software, configuragdo de software.

Abstract

This work presents the description of a design pattern called Architecture Configurator, that
models the establishment of sofiware system configuration. Patterns are used to document
recurrent situations in software development. The use of patterns for studying architecture
establishment aims to make easy the catch of system behavior with no need by the designer to rely
on implementation details. Moreover, using patterns makes possible to acquire some desired
features in architecture implementation, like separation of interests, component reuse,
maintenance and extension easiness, and more.

Keywords : design patterns, software architecture, software configuration.

1. Introducio

A concepcdo de um dstema de software parte da definicdo de uma arquitetura,
gue 0 descreve em termos dos componentes que o integram — os médulos e conectores — e das
ligacOes feitas entre ees, através de portos de interacdo especificos— as portas.

A descricdo de uma arquitetura pode ser redizada de manegra formd, aravés de
uma linguagem de dexricio arquiteturd (ADL — Architecture Description Language). O
produto da descricdo arquiteturd de um Sdema € a sua configuragio, ou Sga, a edrutura
topologica da aplicacdo. Na configuracdo, esdo definidos os pontos de interacdo de cada
maodulo e cada conector, e também a maneira como 0s componentes irdo interagir entre § — as

Copyright & 2002, Jonivan Coutinho Lisbda, Sérgio Teixeira de Carvalho, Orlando Gomes Loques Filho.
Permission is granted to copy for the SugarloafPLop 2002 Conference. All other rights reserved.

37

SugarloafPLoP 2002 Proceedings

ligaghes entre des. A configuragdio é abdraa, e deve ser implementada mediante a criagdo
das inst&ncias dos componentes, e a redizacéo das ligagdes epecificadas.

Quando bem definido, 0 projeto de uma aquitetura pode fornecer um nive de
abdracdo que permite a andise do comportamento do Ssema como um todo, sEm a
necessdade de se conhecer detdhes de implementacdo. Para conseguir isso, pode ser (til o
regproveitamento de experiéncias anteriores na implantagdo de arquiteturas de software. 1s0
€ possivd aravés da utilizacdo de patterns, que B0 meios de se documentar Situagtes
recorrentes em desenvolvimento de software.

Edte atigo goresenta uma decricBo do design pattern Architecture Configurator,
gue fornece uma base paa a implementacdo de configuragbes arquiteturais. Para 1S,
fundamentase nos mecanismos de interceptacdo, encaminhamento e manipulacdo de
requiscdes redizadas entre 0s componentes do Sstema, e também na interligacdo entre ees
[Car01].

Em linhes geaas 0 Architecture Configurator privilegia a reutlizacdo de
software, aravés da separacdo de interesses (requidtos funcionas e ndo-funcionas). Podem
sr entendidos como requistos funcionals agudes que descrevem a funciondidade do
sdema ou sga representam oS sarvicos oferecidos pdo mesmo. Ja oS requisitos néo
funcionais envolvem propriedades desgades para 0 ddema (por exemplo, confiabilidade,
tempo de regpoda, capacidade de sncronizagdo) [SomO00]. Na configuragdo, 0s requistos
funcionais podem s encapsulados nos modulos (chamados também de médulos funcionas),
enquanto que os requistos ndo-funcionais podem ser encapsulados pel os conectores.

O Architecture Configurator foi proposto quando se observaram aguns paordes
de recorréncia encontrados tanto na implementacdo de arquiteturas quanto na inplementacéo
dos conectores [Car01]. Independentemente de sua funciondidade, os conectores interceptam
a requisgies de savigos e respodas, examinam e manipulam tas requiscdes, e
encaminhamnas a seus respectivos destinos. Por sua vez, a configuragdo arquitetural possui
como pontos de recorréncia os seguintes fatos mddulos e conectores possuem portes, as
portas utilizadas na interacdo entre dois modulos devem ter 0 mesmo tipo; um maédulo
interage com outro aravés de um ou mas conectores, um conector pode s conectado
diretamente a outro conector.

Na configuracdo, os conectores podem ser encadeedos, formando uma rede, com
0 objetivo bésico de interceptar as requisigdes e respodas vindas de modulos funcionais. A
caracterigtica de interceptacdo dos conectores e 0 encadeamento dos mesmos, feito durante a
implantacdo da configuracdo, formam a base para a implementacdo de aquiteturas, e, por
conseguinte, do Architecture Configurator .

2. Descricao

A destricio de patterns deve seguir o formao Contexto-Problema- Solucéo,
goresentando o contexto no qua o problema deve ser tratado, descrevendo o problema em g,
e goresentando a lucdo empregada. Existem véaios formatos padronizedos de descricdo, nos
quais podem ocorrer diferencas quanto aos dementos gpresantados. Segundo OS patterns
Mandatory Elements Present € Optional Elements When Helpful [MRB97], exigem aguns
edementos condderados obrigatdrios, enquanto outros SBo opcionals. Os obrigatdrios sao:
Nome, Contexto, Problema, Forcas e Solucdo. Alguns opconas : Consequéncias, Patterns
Rdacionados, Usos Conhecidos, dentre outros.

Para a descricdo a seguir, foi utilizada uma combinacdo de dementos de dois
formaos o formato canbnico, ou formato de Alexander [AppO0] e o padréo GoF, de Gang of

38

SugarloafPLoP 2002 Proceedings

Four, referéncia aos autores do primeiro cadogo a ter acdtagd como uma forma
padronizada para descricdo de patterns [GHX5]. Do primero foram tomedos os dementos
Problema, Contexto, Forcas, Solucdo e Exemplo, e do segundo, os dementos Objeivo (ou
Intento), Estrutura e Participantes, Colaboracbes e Conseguéncias. Os dementos Name,
Patterns Reladionados e Usos Conhecidos S8 comuns aos dois formatos de descricao.

2.1. Nome

Architecture Configurator .

2.2. Objetivo

O Architecture Configurator modea o processo de implantagdo da configuracéo
de um Sstema, obtida mediante a descrigéo arquitetural do mesmo.

2.3. Contexto

A aquitetura de uma gplicacdo envolve médulos e um ou mas conectores. Os
maédulos interagem uns com os outros, requerendo elou fornecendo senvigos, e os conectores
intermediam interacdo. A interacdo entre modulos e conectores ocorre aravés de pontos
especificos as portas. Esses trés dementos (modulos, conectores e portas) formam a base de
uma arquitetura de software.

Nese contexto, um nmodulo refere-se a um processo, objeto, procedure, ou
qualquer pedaco de codigo ou dados identificivd. Um conector possui semelhanca com um
maédulo, pois também possui interfaces e sarvicos definidos, e sua funciondidede também é
representada por classes, méodos e procedimentos, porém, funcdiondmente comporta-se
como um interceptador e encaminhador de requisigdes, pois seus méodos o especificos
para tas fins As portas podem ser de dois tipos portas de entrada, que representam Servigos
oferecidos, e portas de saida, que representam invocagdes de métodos.

Gengricamente, um Sgema de software pode s composto por modulos que
oferecem dgum tipo de servico (sarvidores) e médulos que utilizan servicos oferecidos
(clientes). Entéo, os Sdemas podem s destritos como uma gplicagdo diente-servidor, com
clientes invocando méodos dos sarvidores, para redizar dguma tarefa. A figura 1 ilustra uma
possivd arquitetura para uma aplicacdo diente-servidor smples, na quad os modulos diente e
servidor tém ainteracdo entre S intermediada por um conector.

t id
Cliente [}T TJES__ _ - _p E\i |e: > Servidor

Figural Arquitetura de um sistema cliente-servidor simples. Os mddulos Cliente e Servidor tém sua interagdo
intermediada pelo conector C-S. Observemse as portas request e provide que indicam,
respectivamente, uma invocacdo de método (porta de entrada) e um servico oferecido (porta de
saida).

A glicagcdo de uma arquitetura de software a um sstema supde que a topologia
do mesmo possa s dexrita de manera formd, aravés de uma linguagem de descricéo
arquitetura (ADL — Architectural Description Language). Na dexricdo arquiteturd do
sdema estéo presentes a descricdo de cada modulo e cada conector, com Suas respectivas

39

SugarloafPLoP 2002 Proceedings

portas. Cada demento da arquitetura (modulos, conectores e portas) € definido como um tipo,
e S0 criadas ingéncias de modulos e conectores. As ligagbes entre as ingancias também
€80 definidas de modo gpropriado.

O cddigo 1 modra a definicdo da arquitetura ilustrada na figura 1, feta na ADL
Babd [Mad96]. Nas linhas 2 e 3 s definidas as portas presentes na gplicacéo. Nas linhas de
5 a 11 o definidos os tipos para os modulos Servidor e Cliente, sendo dedarada uma
ingéncia para cada um, nas linhas 7 e 11. Nas linhas de 13 a 16 € definido o conector, com
sua ingdncia Na linha 18 as ingéncias S0 criadas, € na linha 19 é epecificada a ligacdo
entre 0s modulos,

1 nodul e CienteServidor {

2 port Request;

3 port Provide;

4

5 nmodul e Servidor {

6 i nport Provide;
7 } servidor;

8

9 nmodul e Ciente {

10 out port Request;
11 } cliente;

12

13 connector C S {

14 i nport Request;
15 out port Provide;
16 } cs;

17

18 instantiate servidor, cliente, cs;
19 link cliente to servidor by cs;
20

21 } cliente_servidor;

22

23 start cliente_servidor;

Cadigo 1 Descrigdo da arquitetura do sistema cliente-servidor simples em Babel.

A definicdo da arquitetura é abdrata, e torna-se concreta N0 momento em que S0
criadas as ingéncias de modulos e conectores, e s0 redizadas as ligagbes apropriadas aravés
de suas portes. A forma concreta da descricdo arquitetural € chamada de configuragido do
sgema, e nada mais é do que a Stuacdo topologica do mesmo em reacdo acs objetos que o
compdem. O processo de implantacdo de uma arquitetura é chamado de programacéo da
configuragao.

A utlizacdo de uma descricdo arquiteturd posshilita a0 desenvolvedor um certo
nivel de absracdo, dém de fornecer a0 projeto do Ssema a propriedade de separacéo de
interesses funcionais de interesses néofuncionas Como conseguéncia disso, SGo obtidas
maores fadlidades na reutilizacdo de médulos, extensio e manutengdo do Stema Além
disso, a propria arquitetura traz consgo dgumas propriedades reaivas a interacdo entre os
componentes do Sstema, feita através de conectores.

2.4. Problema

Na implantacédo da configuragdo, 0 mecanismo que concretiza a troca de
mensagens entre as ingdncias de modulos e conectores deve ser estabelecido, conforme

40

SugarloafPLoP 2002 Proceedings

definido na descricdo arquiteturd do Sstema Contudo, as propriedades da arquitetura em
questdo devem permanecer indteradas, independentemente da topologia edtabelecida para o
ssemaao qud aarquitetura € gplicada

2.5. Forcas

Uma solucdo para o problema da implementagdo de arquiteturas deve consderar o
Seguinte:

1) As propriedades da arquitetura, como reutilizacdo de componentes e conectores,
separaco de requisitos e abstraco, devemn ser preservadas na sua implementacéo.

2) Os componentes e conectores devem ser independentes quanto a sua definicdo. Esta
ortogondidade permite que modificagbes em componentes néo afetem conectores, e
viceversa, facilitando a separacéo de interesses,

3 Os mbdulos de um sSgema ndo devem ter suas intefaces e comportamentos
modificados com o0 objetivo de adicionar reguistos néofuncionas a0 mesmo; £ ndo
for assm, fica comprometida a facilidade de reutilizacdo de modulos com mesma
funciondidade para aplicactes diferentes,

4) Os modulos e conectores devem preferenciamente ser coesos quanto aos Seus
requistos, isso torna possived que o projetisa de oftware se desporenda dos detdhes
de implementac&o, podendo ter uma visio aodtrata do comportamento do Ssema;

5 A execificacdo da interface dos modulos deve tratar prefaencidmente dos requistos
funcionais dos mesmos e deve ser cdaramente definide; com isso, ficam bagtante claros
quais sarvigos sfo oferecidos por modulos servidores, € quais servigos s requisitados
por médulos dlientes,

6) Os conectores podem s utilizados para edender a aquitetura quanto a novos
sarvigos néofuncionas

2.6. Exemplo

Condgderese um sgema diente-sarvidor smples, como, por exemplo, a golicacéo
Produtor-Consumidor com buffer limitado (PCB). Ela € compoda de dois modulos dientes
(Produt or e Consuni dor) e um médulo servidor (Buf f er). Os médulos possuem, cada
um, sua funciondidade intrinseca (requistos funcionds), e interagem entre S da seguinte
fooma o Produt or produz itens requerendo 0 servico especifico para armazenar itens no
Buf fer (put), o Buffer amazenarecupera itens, fornecendo 0s respectivos servigos
(putlget); o Consum dor consome itens, requerendo O servico especifico para retirar itens
doBuf fer (get).

A alicacdo de uma arquitetura de software a ese Ssema poderia ser feta da
seguinte mangira cada modulo diente (Produt or e Consuni dor) seria representado
contendo uma porta de saida, que representa a invocagdo de um savico (put peo
Produtor e get pdo Consum dor). O médulo servidor (Buf fer) seria representado
contendo portas de entrada, indicando os sarvigos fornecidos (put, get € estado). Além
disn, poderia exidir um conector (Quar da) para intermediar a interacdo entre os maodulos,
tratando da sincronizacdo de acesso ao Buf fer por Produt or e Consum dor. Quarda
refarda a execugdo de Consum dor se Buffer ediver vazio e retarda a execugéo de
Produt or se Buffer ediver chedo. A cgpacidade de sincronizagdo pode ser condderado
um requisto néo-funciond. A figura 2 ilustra essa possivel arquitetura.

41

Figura 2 Arquitetura da aplicagdo Produtor-Consumidor com buffer limitado. Os componentes Produt or,

SugarloafPLoP 2002 Proceedings

portas

Consome ltem

Consuni dor e Buf f er agem como se o conector Guar da ndo existisse.

O conector intercepta, andisa e encaminha as requisicles fetas por Produt or e
Consum dor através de pontos de acesso especificos — as portas definidas nos médulos e
nos proprios conectores. As portas representam servicos que poderdo s interceptados para o
respectivo tratamento ndo-funciond. Td interceptacdo € redizada de forma trangparente em
rdacdo aos modulos envolvidos. 1o € o0s moédulos ignoram quasquer mecanismos de

Buffer

intermediacéo existentes entre ees.
2.7. Solugiao
A implementacido de uma aquitetura cliente-servidor pode ser feita segundo o
diagrama gpresentado nafigura 3.
InterfaceServidor Servidor
Cliente '-_ﬁservicol() '-*servicol()
'-_’servicoz() '-*servicoZ()
Configurador ‘/
Configuracao Handler
MgetLink() Morward()
Bsetlink() Whandle()
Porta
ConectorHandler ServidorHandler
handle() ®handle()
pre()
®pos()
Figura 3 Diagrama de classes de uma possivel solucdo para a arquitetura cliente-servidor utilizando

Architecture Configurator

42

SugarloafPLoP 2002 Proceedings

Asclasses A iente e Servidor representam os modulos funcionas e a classe
Conect or Handl er representa 0 conector da arquitetura A programacdo da configuragéo
estarepresentada pdaclasse Conf i gur acao.

Conf i gur ador é uma dase que define de um modo gerd, um mecanismo que
interpreta as ingstrucbes de uma ADL, e a partir da descricdo interpretada, define os tipos para
componentes, conectores e portas presentes na gplicacdo, e também procede com a
indanciacd e intdigacdo dos mesmos, paa pemitir a execucdo da aglicacdo. Paa a
redlizac20 de tais coisas, S0 invocados 0s sarvigos daclasseConf i gur acao.

Configuracao recebe as solicitagdbes de Confi gurador para redizar a
configuracdo de componentes e conectores, e inicid-os. Ela mantém duas categorias de
informacfes. de descricdo e de execucdo da arquitetura. InformacBes de descricdo referemse
a aquitetura descrita através de uma ADL (@digo 1), enquanto as informagBes de execucéo
relacionamse as ingéncias — referéncias — dos componentes e conectores durante 0 Proceso
de execucéo da aplicacéo.

A classe abgrata Handl er € responsivel pelo encadeamento entre conectores e
componentes, conforme a dexricdo arquiteturd diponibilizada por Confi gur acao.
Handl er utilizase também das informacbes de execucdo da mesma classe, uma vez que
necessta das referéncias aos objetos que representam componentes e conectores no espaco de
execucdo da aplicacdp. No modeo, as classes ConectorHandl er e Buffer sdo
encadeadas por Handl er. Servi dorHandl er representa a classe Servidor no
encadeamento e possui umareferénciaaesta ltima.

As requisgbes invocadas por diente S0 interceptadas pela clase
InterfaceServidor, que possii a mesma inteaface de Servidor.
InterfaceServidor busxa em Configuracao a referéncia ao conector
Conect or Handl er einvocaaoperagédo handle () do mesmo.

Conforme a porta de entrada configurada no conector Conect or Handl er ,
handle () invoca a opeacdo adequada Cada operacdo descrita no conector invoca
forward (), reponsavel por dar seqiéncia a0 encadeamento controlado por Handl er. Na
sequéncia, Servi dor Handl er tem sua operagd handle () lictada, a qua encaminha
arequiscdo origind para Ser vi dor , findizando o encadeamento.

No exemplo de gplicagdo citado anteriormente (PCB), as classes Produtor e
Consumdor ttm o0 papd de diente, a clase BufferReal tem o papd de
Servi dor, aclasse InterfaceBuffer tem o pad de I nterfaceServidor, aclase
Quarda tem o papd de ConectorHandler e a classe Buffer tem o papd de
Ser vi dor Handl er.

A w0lucio destrita gpresenta dgumas propriedades importantes, que conseguem
absorver as forgas gpresentadas da seguinte maneira:

a) As fundondidades de mobdulos e conectores estdo separadas dos processos de
interceptacd0 e encaminhamento (redizados pelas clases | nterfaceServi dor e
Handl er, respectivamente), posshilitando a reutilizacdo de componentes 1s0
resolve parte daforga 1.

b) A separacéo de requisitos éatendida, pois modificagdes funcionais ou de interface nos
modulos ndo afetam os conectores, e viceversa 1sso acontece porque sdo definidas
classes digintas para mddulos e conectores, nas quais as funciondidades de cada
médulo e conector sfo implementadas de forma bem definida e coesa — cabe a0
conector, por exemplo, roter as mensagens para 0S outros conectores e modulos

43

)

€)

SugarloafPLoP 2002 Proceedings

interligados. Além diso, a dasse Porta mantém o mgpeamento entre os pontos de
interacdo dos componentes — as portas de entrada e saida — e as operacles definidas
nas classes e invocagdes a operagdes, independentemente das interfaces. Esses fatos
resolvem parte daforca 1, aforca2 eaforca4.

Os procesos de interceptacdo e encaminhamento das requisi¢des ocorrem de forma
transparerte, sem que o0s modulos do dSgema tomem conhecimento disso.
I nt erfaceServi dor possui a mesma interface de Servi dor, 0 que permite que
diente utlize saus sarvigos como e edivessam lidando diretamente com de. A
olugdo, portanto, € independente da arquitetura gpresentada. Td independéncia pode
ser edendida a quaquer tipo de arquitetura, oferecendo a0 desenvolvedor um nivel de
abstracéo bagtante devado. A parte de abstraco daforca 1 € resolvida

A definicdo de novos conectores, e sua inclusio gpropriada no encadeamento mantido
por Handl er, torna possivd a obtencdo de novos requisitos ndo-funcionals, sem que
sga preciso dterar a inteface ou 0 comportamento dos médulos funcionais. Td fao
contribui para a extensio do sgema de uma manera indeperdente de sua topologia
corrente. S&o atendidas asforgas 3 e 6.

A cdase Configuracao mantém informacbes de descricio e execucdo da
aquitetura configurada. A descricdo € composta basicamente pela definicio das
interfaces dos modulos e conectores e as ligagbes redizadas entre des, enquanto que
as informagbes de execucdo traam de referéncias as ingé@ncias dos objetos
configurados. Nessa informacdo estd contida a definicdo cdaa da inteface dos
maédulos, e de como des interagem entre S. 1s0 satisfaz aforgas.

2.8. Participantes

A figura 4 goresenta uma tabela, na qud é feito um resumo de todes as dasses

participantesno Architecture Configurator, Suas responsabilidades e colaboradores.

Classes Responsabilidades Colaboradores

diente - Utliza a inteface fornecida por|l nt erfaceServi dor
Interface Servidor para requistar um
savico particular;

Ser vi dor - Implementa um ou mas Ssavigos -
particulares,

I nterfaceServidor |- Fornece a interface do servidor aos| Ser vi dor
clientes, Confi gur ador

- Recupera a referéncia do conector| Conect or Handl er
inerliggdo a0 diente no nivd da
configuragdo, ou do préprio servidor,
ca0 nédo hga nenhum conector
envolvido;

- Repassa a olicitacdo do dliente ao
conector recuperado, ou ao servidor,
no caso de néo haver conectores,

- Retorna a0 diente resposta oriunda
do servidor;

44

SugarloafPLoP 2002 Proceedings

Handl er - Serve como classe abdrata base para | Conf i gur acao
0 servidor e para os conectores,

- Rediza o encadeamento de
conectores e componentes a partir da
configurac@o estabelecida;

Conect or Handl er - Implamenta servigos relacionados & Conf i gur acao
funciondidade de um conector;

- Invoca uma de suas operagOes
correspondente & porta de entradg
requisitada;

- Requigta, junto a0 proximo conector
ou componente configurado, &
operacdo correspondente a uma de
Suas portas de saida. Essa requisicéo
é feta aravés da operacdo forward()

daclase Handler.

Ser vi dor Handl er - Encaminha a0 savidor a requiscéo| Ser vi dor
vinda originariamente do diente;

Confi gur ador - Define a arquitetura da aplicacdo a| Confi gur acao
partir de uma ADL;

- Recebe indrucbes a patir de uma
determinada ADL e invoca servigos
da cdasse Configuracdo para executé

s,

Confi gur acao - Fornece a configuracdo estabelecidal Port a
entre componentes e conectores,

- Digponibiliza SEVigos paral
configurar componentes e conectores
einiciar agplicagéo;

- Mantém a descricdo da arquitetura,
bem como informagBes quanto 3§
exXecucao damesma;

Porta - Fornece as portas configuradas de -
conectores e componentes com suas
respectivas assnaturas,

Figura 4 Tabela que resume as Classes, Responsabilidades e Colaboradores.

A figura 5 gpresenta um possivel diagrama de ingéncias em tempo de execucéo
para aimplementacdo de Architecture Configurator.

45

SugarloafPLoP 2002 Proceedings

diente
lconect or
I nt er f aceSer vi dor 3 Conect or Handl er
lcf g cfg sucessor
A 4
Conf i gur acao <T Ser vi dor Hand! er
l A 4
Porta Ser vi dor
Figura 5 Um possivel diagrama de objetos de Architecture Configurator.

2.9. Colaboracgoes

Uma vez descritos tipos para portas, componentes e conectores dravés de uma
ADL, tornase necessrio estabelecer, anda no nivel de descricdo arquitetura, a edtrutura do
dstema de software. E a partir da descricio das interligacdes entre componentes e conectores
gueinida-se a colaboragéo entre os participantes de Architecture Configurator.

A colaboragdo € composta bascamente de duas fases (i) estabdecimento da
configuracdo arquiteturd; (ii) implementagdo da configuragcao arquiteturd.

A primera fase é iniciada pedo Conf i gur ador e descreve as interligagbes entre
componentes e conectores. Conf i gur ador interpreta a descricdo arquiteturd, identificando
as ingdncias de componentes e conectores, e procedendo com sua indanciagdo. A referéncia
& ingdncias fica armazenada na cdasse Confi guracao. Ap6s iso, Confi gurador
identifica as ligagbes previdas entre componentes e/ou conectores, e a cada instrucéo
referente a uma ligagdo, € invocada na cdasse Confi guracao a operacdo para redizar td
ligagdn. Ainda nedta fase, as ingténcias de componentes e conectores a0 iniciados, atraves de
instrucdo apropriada

A sgunda fase tratla do mecanismo de interceptacdo e encaminhamento de
requisigdes oriundas de componentes clientes. Este mecanismo compreende bascamente a
organizacd dos componentes e conectores, redizada pea classe Handl er, conforme a
configuragéo estabelecida na primeira fase.

A primera fase eda retratada na figura 6. O diagrama de seqiéncia ilustra a
interligac®0 de diente a ServidorHandl er aravés de ConectorHandler e a
iniciacd dos mesmos. Ingéncias de componentes e conectores S0 mantides pela dasse
Confi gur acao.

Note-s2 que Servi dor ndo gparece no diagrama de seqiiéncia da primera fase,
uma vez gue é inidado peo objeto correspondente a dasse Ser vi dor Handl er . Para cada
clase que oferece sarvicos (Servidor) ha uma casse respectiva associada
(Servi dor Handl er), fadlitando 0 processo de encadeamento de objetos redizado pea
classe Handl er. Eda solucdo é beseada no pattern Object Recursion apresentado em
[HFR99].

46

SugarloafPLoP 2002 Proceedings

: Conector : Servidor : Configuracio
: Configurador : Cliente Handler Handler (Desc/Exec)
J] Conector Servidor
Cliente Handler Handler setlink (L 1
<«c—— - ol
Servidor
Handler start (),]
=) U EN U ——
Conector
Handler start (.
< __
Cliente start I
<
run ()
run () —;
run (), ED

Figura 6 Diagrama de Seqiiéncia (Colaboracéo). Primeira fase.

A inidacdo de d i ente dard principio a segunda fase da colaborac@o, retratada
na figura 7. A seqiéncia de colaborac@o inicia-se a partir da invocacdo, por parte da ingéncia
de diente, a un savigo (servicol (), na figura) oferecido por um Servi dor . Todas
as invocagdes a patr do Cdiente <So inteceptadas por um objeto
I nterfaceServi dor. Ese encaminha a invocagdo aravés da cadea de conectores e
componentes, representados por ingéncias de Conect or Handl er e Servi dor Handl er .
Cada uma das ingéncias de Conect or Handl er representa, preferencidmente, um aspecto
néo-funciond, implementado por um conector. Ou sga a cada conector corfigurado, deve
estar associada umaingtdnciade Conect or Handl er .

47

SugarloafPLoP 2002 Proceedings

: Cliente

—

: Interface

Servidor

conector '

: Conector

Handler

sucessor

servicol (aras)
.

aetlink(portaSaj’
»

Configuracéo

handle (portaEnt.rea)

.

pre ()

forward (portaSai, req)

: Servidor
Handler

Figura 7

: Servidor

servicol(args)* >

= ———— —— —

* a informacdo

de qual
operacdo
executar é

I r
poraEN o red.
Os argumentos
@rgs) devem ser
recuperados de

Diagrama de Sequéncia (Colaboracéo). Segunda fase.

A invocacdo de um servico corresponde a uma das portas de saida configuradas
paa o componente A iente. A assnaura da porta é passada a | nt er f aceServi dor,
que, de pose diso, obtém em Conf i guracao a referéncia ao primeiro conector ligado a
diente, e aporta de entrada ligada & sua porta de ssida em questéo. Feito isso, 0 méodo

7

handle () de conector é invocado, com agumentos referentes a porta de entrada e a
requiscéo redizadapor d i ent e.
O méodo handle() comega SUa operagdo invocendo 0 méodo pre () do
respectivo conector, responsavel peos aspectos ndofuncionais que devem ser executados
ates do encaminhamento da requisicBo para 0 proximo conector/componente configurado.
Apbs a execucdo de pre (), o fluxo deve seguir por dguma porta de ssida do conector.
Definida a porta de sdida, a operagdo forward() do conector € invocada Td operacéo
utiliza a cdasse Configuracao para obter a referéncia ao proximo componente/conector
configurado, de modo andogo a0 explicado anteriormente, e a requiISCA0 Segue no
encadeamento.

O find do encadeamento ocorre quando Servi dor Handl er

é encontrado e

tem sua operacd0 handle () requidtada Eda operacdo tem funcionamento andogo a de
Conect or Handl er, porém nd invoca forward(), € SmM concretiza a requisScéo junto a

Ser vi dor , invocando 0 método que implementa o servigo desgjado.
No contexto das classes | nt er faceServi dor

e Handl er, portas de sdda

S20 representadas por invocacOes de operagdes, e portas de entrada S0 representadas por
operagOes declaradas na interface de componentes e /ou conectores (ass naturas).

48

SugarloafPLoP 2002 Proceedings

E importante ressdtar que podem ser criadas vaias dasses que implementam
aspectos néo-funcionais, e também véias indéncias de cada uma ddas. Em outras pdavras,
seia possivel ter classes Conect or Handl er 1, Conect or Handl er 2,
Conect or Handl er 3, ec., cada qud com uma ou mas ingéncias A mesma observacio
vale para as classes i ente, Servi dor e Servi dor Handl er , tornando fé&cil também a
separacdo entre requistos funcionais do sstema. Deve ser levado em conta o fato de que cada
clase Servidor criada deve ter associada a § uma dase | nterfaceServidor

especifica
2.10. Conseqiiéncias
A utilizacdo deArchitecture Configurator traz as seguintes consequéncias.

a) conectores independentes. cada conector pode s condruido levando-se em conta
um agppecto ndo-funciond diferente e podem s inte-rdacionados sem que
conhegam a configuragdo da aplicacéo.

b) transparéncia: componentes reguiStam e fornecem savigos trangparentemente em
relac@o aos conectores configurados.

C) responsabilidade flexivel. conectores tém amplo poder de manipular e andisr as
informagOes por eles recebidas e podem encaminha-las ou nd a outro conector ou ao
Servi dor. A operacdo forward () busca o sucessor na sequiéncia de conectores e
pode ser invocada ou néo pelos mesmas, conforme os requisitos da aplicacéo.

d) conectores adaptiveis: 0s conectores podem ser concebidos independentemente dos
componentes 0s quas intermediard. Uma vez implementados e configurados em
uma determinada aplicacdo, ndo necesstam de dteragbes em decorréncia de dguma
modificacdo da interface de um dos componentes intermediados.

€) conectores podem ser usados para estender aplicacées ja existentes. este design
pattern, a0 tornar possive a organizacdo dos conectores, facilita a implementacdo de
novos requerimentos que surgem na aplicacd. Adaptagfes que seriam necessarias
aos componentes para suprir tais requerimentos podem ser redizadas em novos
conectores, 0s quais podem ser condruidos e configurados independentemente de
Outros existentes.

f) conectores genéricos: um deeminado conector pode s desenvolvido
independentemente da quantidede de portas dos componentes que ira intermediar, e
da diversdade de assnaturas das mesmas.

2.11. Patterns Relacionados

InterfaceServidor possui a mesma inteface de Servidor, com o
objetivo de controlar 0 acesso a0 mesmo. O controle de acesso ao Ser vi dor foi bassado no
design pattern Proxy [GHJO5], sendo que Ser vi dor corresponde a RealSubject de Proxy e
I nterfaceServidor correponde a casse Proxy do mesmo design pattern. O
Ser vi dor desconhece aexigénciadel nt er f aceSer vi dor .

A inteligacdo dos conectores e componentes como desenhada na estrutura de
Architecture Configurator segue 0 design pattern Object Recursion [HFR99], no qud sua
classe abstrata Handl er corresponde a Handl er de Architecture Configurator, Suas classes
Terminator € Recurser correpondem respectivamente a ServidorHandler e

49

SugarloafPLoP 2002 Proceedings

Conect or Handl er e findmente, ua dase Initiator corresponde a
I nterfaceServidor. Object Recursion € Uulizado no Chain of Responsibility de
[GHJ95].

O design pattern Component Configurator, digponivd em [SSR0O0], permite que
uma golicagdo configure seus componentes (fink e unlink) em tempo de execugdo, sem
necessidede de quaisquer modificaghes elou recompilagbes dos mesmos. O processo € feito
separando-se a implementacd dos componentes de suas operacbes de controle, tais como
init(), fini(), suspend(), resume(). O pattern possUi duas dasses importantes. Component
Repository e Component Configurator. Ambas classes tém funciondidades semehantes a
Confi gur acao e Confi gurador de Architecture Configurator.

A diferenca béasica entre Component Configurator € Architecture Configurator
rdaciona-s2 aos aspectos arquiteturais. O primero contempla 0 epaco de enderegos da
agolicacdo, amazenando as referéncias dos componentes na cdasse Component Repository,
sem ater-se a configurag® arquiteturd da mesma Architecture Configurator, por Sua Ve,
mantém a descricio da arquitetura e informacles de execucdo da mesma Assm, Architecture
Configurator Organiza 0S componentes e conectores de acordo com a decrigéo arquiteturd
mantida pela classe Conf i gur acao.

Entretanto, Architecture Configurator pode S empregado em conjunto com
Component Configurator, com 0 objetivo de permitir a reconfiguracdo de componentes e
conectores da gplicacéo em tempo de execucao.

Interceptor [SSRO0] € um architectural pattern que permite a adicdo de servigos a
determinado framework, de forma transparente, tornando-o extensivel. Este pattern relaciona
e a0 design pattern Architecture Configurator no sentido de ambos permitirem a extensio da
aplicacdo com senigos ndo previtos nos seus componentes béscos Entretanto, Interceptor
trata da extensdo de frameworks, que SB0 edruturas inacabadas que servem de base para o
desenvolvimento de gplicagBes, enquanto que Architecture Configurator permite a extensio
de aquiteturas mais genéricas, através da incorporacéo de conectores que podem encapsular
servicos nao-funcionais a aplicaczo.

Outro design pattern rdacionado € Facade [GHX5|, 0 qud pode auxiliar na
composicdo de Confi guracao e Porta. No moddo da figura 4, Confi guracao serve
de facade para a funciondidade de Porta, com o objetivo de diginguir as fungbes de
Porta e Configuracao. Entrefanto, uma tercara classe pode ser definida para servir
oMo facade para Confi guracao e Porta com o obetivo de tomnar unificada a interface
de acess0 a ambeas classes, smplificando aimplementacdo de conectores e componentes.

Architecture Configurator pode S empregado na implementagdo do
architectural pattern Reflection [HFR99]. ESte pattern Sgpara a arquitetura de um sstema em
dois niveis nivel base (base level) e metanivd (meta level). O primeiro define a logica da
aplicacdo e 0 segundo mantém informagbes a repeito da propria estrutura € comportamento
do dgema O meanivd condge de metaobjetos (metaobjects) com uma interface que
pemite a0 nived base acesso a0 meta-nivel. As classes Aiente e Servidor de
Architecture Configurator podem compor O nivel base, enquanto 0S conectores e suas
respectivas portas podem compor 0 meta-hive, fazendo o pape de metaobjetos

2.12. Usos Conhecidos
De um modo gerd, os dgemas de software podem ser configurados como uma

golicacdo diente-sarvidor, na quad exigem modulos que oferecem sarvicos e médulos que
requiStam savigos. Sendo assm, Architecture Configurator pode s utilizado em quaquer

50

SugarloafPLoP 2002 Proceedings

aplicacio que tenha essa caracteridtica, bastando para isso a implementagdo do esquema de
interpretacd0 da descricdo arquiteturd (classe Confi gur ador), edruturas de dados para
amazenamento e recuperacdo da informacdo de configuracdo (classes Confi guracao e
Porta), e 0o exuema de interceptagdo e encaminhamento das requisigdes (classes
I nt er f aceSer vi dor , Handl er eos handlers para conectores e servidor).

Um uso especifico para 0 Architecture Configurator € 0 ambiente de suporte R
RIO [Lob99]. No R-RIO os componentes sGo objetos inganciados a partir de classes escritas
em Java e conectores podem encgpsular protocolos de comunicagdo e aspectos relacionados a
interacd [SLL99] entre os componentes. R-RIO permite a indanciagdo de componentes em
um ambiente digribuido e mantém a configuracdo da aplicacd implementada em gerentes
locdizados nos hosts do Sgema didribuido. A configuracdo € dimentada por um
interpretador central, ao qual recebe instrugdes baseadas na ADL Babd.

Os gerentes do R-RIO tém funciondidade equivdente a dasse Confi gur acao
do Architecture Configurator, mantendo informagdes da descricdo da configuragéo
arquitetural, bem como da execucdo do sstema O interpretador, por sua vez, tem asociagéo
com aclase Conf i gur ador.

O concelto de porta de entrada e saida com 0 respectivo mapeamento para
operagdes, € usado pdo R-RIO, tanto para componentes quanto para conectores. Outro
agecto do R-RIO referese a0 uso do mecanismo de reflexéo edtruturd da linguagem Java
para gerar de forma automdica um proxy paa 0 componente Servi dor, nos mesmos
moldesdacdlasel nt er f aceSer vi dor dedArchitecture Configurator.

Alguns conceitos colocados em Architecture Configurator aparecem em diversas
ADLs e linguagens para definicdo de conectores. O conceito de conector gparece em ADLS
como ACME [GMW97], Babd [Mad96], C2 [Med99], UniCon [SDZ9%6] e Wright [AG9IT7].
Em todas das exigte a distingdo entre o tipo de conector e ainstdncia de conector.

Propriedades em rdacdo as portas de componentes e conectores, representadas
pea classe Porta, gpaecem em UniCon na forma de lidas chamadas Lidas de
Propriedades. Portas de componentes s8o denominadas players e portas de conectores s&0
denominadas roles em UniCon.

O concdto de encaminhamento/roteamento de mensagens aribuido ao conector
aparece na linguagem C2. O oconector C2 tem a regponsbilidade priméia de redizar o
roteamento e 0 broadcast de mensagens e, secundariamente a definicdo e implementacéo de
politicas de filtragem de mensagens. Tas politicas tém pardedo com a interceptacdo e
manipulacdo descritas em Architecture Configurator.

3. Conclusao

Edte atigo goresentou 0 design pattern Architecture Configurator, proposo para
servir de base aimplementacio da configuracéo de aplicacoes.

Arquiteturas definides em dguma ADL podem s implementadas dravés deste
design pattern, uma vez que ee emprega caacterigicas proprias dos conectores e
caracteridicas inerentes a0 processo de configuracdo de componentes e conectores.
Architecture Configurator faz a latura da arquitetura e a implementa utilizando propriedades
de conectores como a interceptacddp, manipulacdo e encaminhamento de mensagens ou
requisgies. As interconexdes entre componentes e conectores S&0 interpretadas conforme
seus dos de ligacdo definidos pelas portas.

Cada componente ou conector paticipante da arquitetura pode ser implementado
de forma autbnoma e integrado de acordo com a configuracdo arquitetural.

51

SugarloafPLoP 2002 Proceedings

A lugdo destrita em Architecture Configurator nd0 goresenta novidades
concaituais quanto as propriedades de configuracdo, de conectores ou mesmo de arquiteturas
de software, mas reforca estes pontos, propondo um modelo-base sobre 0 qua a configuragéo
entre componentes e conectores pode ser redizada

4. Agradecimento

Os autores fazem um agradecimento a equipe de shepherding do SugarloafPLop
2002, em egpecid as professoras Rosssna Maria de Castro Andrade e Rosana Teresinha
Vaccare Braga, pea guda fundamentd de orientacdo para que fosse possivel aingir esta
vaso find deste atigo, e ao grupo de trabdho do Writers Workshop do SugarloafPlop 2002,
pelas valiosas contribuigdes que gudaram a enriquecer o contelido do trabaho apresentado.

52

SugarloafPLoP 2002 Proceedings

5. Referéncias

[AGY7]

[AppQ0]

[Car01]

[GHJI95]

R. Allen, D. Garlan. 4 Formal Basis for Architectural Connection. ACM Transactions on
Software Engineering and Methodology, vol. 6, no. 3, pag. 213-249, julho 1997.

B. Appleton. Patterns and Software: Essential Concepts and Terminology. Digponive em
http://mww.enteract.com/~bradapp/docs/patterns-intro.ntml, 2000.

Cavaho, S. Um Design Pattern Para a Configura¢do de Arquiteturas de Software.
Dissertacdo de Mestrado. |C/UFF, Niterdi-RJ, maio de 2001.

E. Gamma, R. Hdm, R. Johnson, J. Vlisides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wedey, 1995.

[GMW97] D. Garlan, R. Monrog, D. Wile. Acme: An Architecture Description Interchange Language.

[HFR99]

[Lobog]

[Mal96]

[Medog]

[MRB97]

[SDZ9%6]

[SLL99]

[SomOQ]

[SSROO]

[Sun00]

CASCON'’97. Novembro, 1997.

N. Harison, B. Foote, H. Rohnert. Pattern Languages of Program Design 4. Software
Pettern Series. Addison-Wedey, 1999.

M. Lobosco. Um Ambiente para Suporte a Construgio e Evolugdo de Sistemas
Distribuidos. Dissertacdo de Mestrado. |C/UFF. Margo, 1999.

V. V. Maucdli. Babel — Construindo Aplicagdes por Evolugdo. Dissertacdo de Mestrado.
DEE / PUC-RJ. Fevereiro 1996.

N. Medvidovic. Architecture-Based Specification-Time Sofiware Evolution. Tese de
Doutorado (PhD). Universidade da Cdiférnia, Irvine, 1999.

R. C. Matin, D. Riehle, F. Buschmann. Pattern Languages of Programming Design 3
Software Pattern Series, Addison-Wedey, 1997.

M. Shaw, R. Ddine, G. Zdesnik. Abstractions and Implementations for Architectural
Connections. Third International Conference on Configurable Didtributed Systems. Mao
1996.

A. Sztginberg, M. Lobosco, O. Loques. Configurando Protocolos de Interagdo na
Abordagem R-RIO. Smpdso Brasleiro de Engenharia de Software. FlorianGpolis, Santa
Catarina. 1999.

|. Sommerville. Software Engineering. 6". Edition. Addison-Wesley, 2000.

D. Schmidt, M. Std, H. Rohnert, F. Buschmann. Pattern-Oriented Software Architecture,
Patterns for Concurrent and Networked Objects. Volume 2. John Wiley & Sons, 2000.

Sun Microsystems. Java 2 Plataform, Standard Edition = Documentation.
http://java.sun.com/products/jdk/1.3/docs/index.html. Maio 2000.

53

SugarloafPLoP 2002 Proceedings

54

SugarloafPLoP 2002 Proceedings

Padroes de Projeto para Estruturacao de Aplicacoes Distribuidas
Enterprise JavaBeans

Klissiomara Dias* and Paulo Borbaf
Centro de Informatica
Universidade Federal de Pernambuco

Resumo

Enterprise JavaBeans (EJB) auzilia o desenvolvimento de aplicagdes de negdcio que lidam com
aspectos como distribuicao, persisténcia e transacdes. Aplicacdes dessa natureza, se desenvolvi-
das de forma ad hoc podem levar a sistemas cujo codigo mistura aspectos de negocio com aspec-
tos nao funcionais, podendo comprometer alguns fatores de qualidade, tais como reusabilidade
e extensibilidade. Por este motivo, este artigo propoe dois padroes de projeto que auziliam na
estruturagao de aplicacoes EJB, visando obter alguns benefiicios como reuso, modularidade, ex-
tensibilidade, independéncia de tecnologia (distribui¢ao ou dados) e desempenho. Estes padrées
auziliam ainda na estruturacao de aplicacoes EJB a partir de sistemas jd existentes, sem EJB,
minimizando o tmpacto das mudancas sobre as demais camadas da aplicacao.

Abstract

Enterprise JavaBeans (EJB) technology provides support for the development of modern
applications, taking into consideration aspects like distribution, persistence and transactions.
Applications of this nature, if developed in ad hoc fashion can result in systems whose code
mizes business and non-functional requirements (for example, distribution and persistence), be-
ing able to compromise some quality aspects, such as reusability and extensibility. This paper
proposes two design patterns that aid in structuring EJB applications, in order to gain some
benefits like reuse, modularity, extensibility, technology independence (i.e. distribution or data)
and performance. In addition, they can assist in designing EJB applications from non-EJB
already-existing systems, and thus softening the impact of changes on other application layers.

Copyright (©2002, Klissiomara Dias and Paulo Borba. Permission is granted to copy for the Sugar-
loafPLoP 2002 Conference. All other rights reserved.
*Financiada pelo CNPQ. Email: kld2@cin.ufpe.br
tParcialmente financiado pelo CNPq, vinculo 521994/96-9. Email: phmb@cin.ufpe.br

55

SugarloafPLoP 2002 Proceedings

1 Introducgao

O padrao arquitetural Layer (padrdao em camadas) [5] ¢é utilizado para a estruturagao
de aplicacoes complexas que lidam com diferentes requisitos, funcionais e nao funcionais.
Com a utilizacao desta arquitetura, é possivel distribuir as classes que compoem o sis-
tema em camadas bem definidas, de acordo com cada aspecto da aplicagao (negdcio,
persisténcia, comunicagao, etc.)

A divisao de um sistema em camadas permite obter aplicagbes modulares e reuti-
lizaveis, uma vez que o cédigo de diferentes aspectos (apresentagao, comunicagao, negécio
e dados, por exemplo) nao sdo misturados. Além disso, os elementos das diferentes ca-
madas comunicam-se através de interfaces.

Em aplicagoes distribuidas, a comunicacao entre objetos executando em diferentes
maquinas é realizada através de mecanismos e protocolos de comunicagao. Quando tais
objetos manipulam aspectos de comunicacao diretamente, a tendéncia é que suas fun-
cionalidades sejam misturadas com as tarefas de comunicagao. O mesmo acontece com
aplicacoes que utilizam algum meio de armazenamento persistente. O desenvolvimento ad
hoc de aplicacoes que utilizam alguma plataforma de persisténcia, para armazenamento e
recuperacao de seus objetos, leva a sistemas que misturam codigo de acesso a dados com
o codigo de negdcio da aplicagao.

Enterprise JavaBeans (EJB) [14] é uma tecnologia que trata de aspectos como dis-
tribuicao e persisténcia. Por este motivo, foi feita uma analise acerca da necessidade do
uso de padroes existentes para a arquitetura EJB. Como resultado desta andlise, surgiram
os padroes apresentados neste artigo.

Desta forma, os padroes apresentados neste artigo sao utilizados no contexto de
aplicagoes EJB e estruturam classes e objetos que preenchem as camadas citadas acima.
A apresentagao dos padroes em um mesmo artigo visa facilitar sua compreensao, uma vez
que estes estao relacionados:

e Distributed Adapters Pattern with EJB (DAP-EJB). O DAP-EJB corresponde &
adaptagao do padrao Distributed Adapters Pattern (DAP) [2], o qual foi primeira-
mente definido em Progressive Development of Distributed Object-Oriented Applica-
tions [1] e visa isolar o middleware da aplicacao, tornando-a extensivel para varios
tipos de mecanismo de comunicacao.

e Persistent Data Collections with EJB (PDC-EJB). O PDC-EJB corresponde a
adaptacgao do padrao Persistent Data Collections (PDC) [11], o qual visa permi-
tir reutilizacao da logica de negdcio para diferentes mecanismos de persisténcia.

2 DAP-EJB: Um Padrao para Distribuicao com EJB

Objetivo

Fornecer uma estrutura para implementacao de distribuicao em um sistema com EJB,
visando separacao de conceitos e conseqiientemente fatores de qualidade como modulari-
dade, extensibilidade e reusabilidade.

56

SugarloafPLoP 2002 Proceedings

Contexto

O padrao DAP-EJB ¢ utilizado no contexto de comunicagao remota entre dois compo-
nentes, onde é desejavel que tais componentes nao estejam acoplados a tecnologia de
distribuicao.

Problema

Apesar de EJB prover interoperabilidade e transparéncia de localizacao para o acesso aos
objetos remotos, os clientes de um enterprise bean ainda precisam fazer uso de interfaces
e classes especificas da API de distribuicao a fim de obter as referéncias remotas para os
beans. Isto implica que a interface com o usudrio acaba tendo cédigo especifico de EJB.
O mesmo acontece com relagao a camada de negécio. Como resultado, tanto a interface
com o usuario quanto a camada de negdcio ficam vulneraveis as modificagoes realizadas
na camada de comunicacao.

Forcas

O DAP-EJB leva em consideracao as seguintes forgas:

e Um componente deve ser capaz de acessar servigos remotos fornecidos por outros
componentes;

e Os componentes devem ser independentes do middleware da aplicacao; isto permite,
por exemplo, que o mesmo sistema possa utilizar diferentes middleware ao mesmo
tempo ou, ainda, possa ser executado localmente.

e A modificagao no cédigo dos componentes para suportar comunicagao deve ser min-
imizada; ou seja, a insercao do componente de distribuicao em uma aplicagao nao
distribuida deve causar pouco impacto no cédigo ja existente.

e Modificacao da tecnologia de distribuicao deve ser uma tarefa simples; é impor-
tante estruturar os aspectos de distribuicao de forma modular, vislumbrando o fraco
acoplamento destes em relagao cliente e o negécio da aplicacao.

Solugao

Para resolver o problema apresentado, o DAP-EJB introduz o uso de um par de adapta-
dores [7] que s@o utilizados para encapsular o cédigo relacionado a API de distribuigao.
O objetivo é permitir que a insercao, remocao, ou troca do middleware de distribuicao de
uma aplicacao seja realizado de forma a minimizar as mudancas necessarias no cédigo do
sistema. O uso destes adaptadores isola a interface com o usuario e a camada de negécio
da plataforma de distribuicao do sistema, abstraindo desta forma a tecnologia utilizada
para comunicacao remota entre componentes.

Estrutura

O diagrama de classes da Figura 1 destaca a estrutura do padrao DAP-EJB. As classes
em cinza denotam os adaptadores e seus colaboradores, os quais, basicamente, escondem

57

SugarloafPLoP 2002 Proceedings

a API de distribuicao da interface com o usuério e o cédigo de negécio. As demais classes
lidam com os aspectos de negécio da aplicagao. Os elementos que fazem parte do padrao
e seus colaboradores sao explicados a seguir.

Fonte | . ntradebacha®y m—
Q‘mﬂ
:’V 1
AdaptadarFonte i InterfaceRemote AdaptadarDesting
Orni) 1| %mi))
i 1 ﬁ"-’#
v InterfaceHome

Servicelocator

Figura 1: Estrutura do padrao DAP-EJB

Fonte

A classe Fonte representa qualquer objeto que faz o papel de cliente (GUI, por
exemplo) da fachada e que estd localizado em uma méquina remota em relagao aos
objetos do sistema.

Fachada

A classe Fachada é estruturada de acordo com o padrao facade [7], sendo responsavel
por encapsular todos os servigos oferecidos pelo sistema (no diagrama, o método m
representa um dos possiveis servigos). Esta classe representa, na verdade, o objeto
remoto a ser acessado pelo cliente.

InterfaceFachada

A InterfaceFachada é uma interface que abstrai o comportamento da fachada em
um cenario distribuido. Esta classe, em conjunto com as classes Fonte e Fachada
constituem uma camada independente da tecnologia de distribuicao. Os demais
elementos do diagrama ficam responsaveis por esse aspecto e constituem a camada
de distribuicao do sistema.

AdaptadorFonte

58

SugarloafPLoP 2002 Proceedings

O adaptador fonte é uma classe Java [8] “pura’e isola a classe Fonte do cddigo
de distribuicao. Um objeto desta classe reside na mesma maquina que o objeto
da classe fonte e trabalha como um prozy [7] para o adaptador destino. Repassa
as chamadas feitas pelos clientes para o préprio adaptador destino, isolando todo
o codigo relacionado com a plataforma de distribuicao, mantendo o cliente isolado
deste c6digo (inclusive excegdes de comunicagao).

e AdaptadorDestino

O adaptador destino é um stateless session bean [14] e, como todo componente
EJB, possui duas interfaces remotas. Este componente é responsavel por repassar
as chamadas para o objeto fachada.

e ServiceLocator

A classe ServiceLocator é uma classe auxiliar que visa abstrair a complexidade do
processo de localizacao e criagao dos beans, bem como melhorar o desempenho do
sistema. B utilizada no padrao DAP-EJB para auxiliar o processo de criacao das
referéncias remotas ao adaptador destino.

Dinamica

A Figura 2 apresenta o diagrama de seqiiéncia para um cenario do DAP-EJB. Durante
a inicializacao, o Fonte cria um AdaptadorFonte, o qual executa o método getHome
de ServiceLocator e este executa uma operagao de lookup sobre o servico de nomes
JNDI, a fim de obter uma referéncia da interface home do AdaptadorDestino. Apds
obter a referéncia do home do adaptador destino, o AdaptadorFonte executa o método
create sobre este a fim de obter uma referéncia a sua interface remota, no intuito de obter
acesso aos servigos oferecidos pelo AdaptadorDestino. Ao executar uma operacao create
sobre o adaptador destino, uma unica instancia da Fachada é obtida através do método
getInstancel. O Fonte entao, invoca uma operacao local m sobre o AdaptadorFonte
e este invoca a operacao remota m do adaptador destino, o qual delega esta chamada
localmente para a Fachada.

Consequéncias

O DAP-EJB oferece as seguintes vantagens:

e Codigo modular

O uso do padrao permite a estruturagao dos aspectos de distribuicao de forma
modular, de modo a propiciar o fraco acoplamento destes em relagao ao cliente e a
camada de negécio da aplicacao.

e Reutilizacao e extensibilidade

Devido a estrutura modular obtida com o padrao, é possivel utilizar as classes fonte
e fachada mais facilmente em outras aplicacoes que utilizem diferentes tecnologias
de distribuicao. Além disso, mudancas na camada de comunicacao sao mais faceis

LA Fachada é implementada como um Singleton [7]

59

SugarloafPLoP 2002 Proceedings

Fonte AdaptadorFonte| | Servicelocator | | AdaptadorDesting Fachada ServicoDelMomes
| create ' ' ,
' L getHome : logkup :

create \~

getinstance

S

. |

Figura 2: Diagrama de Sequéncia do DAP-EJB.

de realizar porque afetam somente os adaptadores fonte e destino. Um exemplo
das situacoes citadas ¢ um mesmo sistema ser acessado remotamente por um cliente
utilizando EJB como API de distribuicao ou ser acessado localmente, na maquina
do cliente sem EJB. O mesmo sistema pode, ainda, ser acessado por um cliente que
utiliza CORBA, por exemplo, como tecnologia de comunicac¢ao remota.

e Implementacao progressiva

O padrao suporta implementacao progressiva [4]. Desenvolvedores constroem um
prototipo funcionalmente completo, onde o cliente depende diretamente da fachada,
e realizam os testes da funcionalidade do sistema a fim de validar seus requisitos
funcionais. Depois, o componente de distribuicao pode ser inserido causando pouco
impacto no cédigo ja existente. Isto é possivel porque o componente de distribuigao
implementa a mesma interface que a fachada. E importante destacar que o padrao
além de permitir inserir o componente de distribuicao em um sistema ja existente,
local, também permite adaptar um sistema distribuido em outra plataforma (por ex-
emplo, RMI), sem que para isso seja necesséario descartar as classes correspondentes
ao cliente e fachada.

Por outro lado, o DAP-EJB possui as seguintes desvantagens:
e Aumento do nimero de classes

Um par de adaptadores, duas interfaces remotas e um ServiceLocator sao necessarios.
Todavia, essa estrutura é simples e seu codigo pode ser gerado de forma automatica

60

SugarloafPLoP 2002 Proceedings

com o auxilio de ferramentas, que sao importantes para a utilizacao do padrao
na pratica. Estas ferramentas devem nao somente auxiliar na geracao dos adap-
tadores e elementos relacionados ao componente de distribuicao, mas também na
manutencao, quando da insercao de um método na fachada, por exemplo.

Eficiéncia

Com a introdugao dos adaptadores, é necessario um maior nimero de invocagoes
até que a chamada do método original seja executada no objeto remoto. Além
do overhead causado com a introdugao dos adaptadores, existe um outro fator que
contribui para o overhead quando da invocacao de métodos remotos que, neste caso,
¢ uma caracteristica intrinseca de EJB e que, portanto, nao é uma desvantagem do
padrao em si. Para se ter acesso a um objeto remoto EJB é necessério realizar duas
chamadas de métodos sobre suas interfaces antes de invocar o método de negdcio.
Além disso, eficiencia é um problema genérico da arquitetura em camadas, uma vez
que um maior numero de classes é introduzido no sistema, aumentando, com isso,

a transferéncia de dados entre camadas e, por conseguinte, o nimero de chamadas
de métodos [5].

Exemplo

O diagrama de classes UML [3] da Figura 3 ilustra a estrutura do padrao DAP-EJB
através do exemplo de uma simples aplicacao bancéria. As classes em cinza correspon-
dem aos adaptadores e elementos utilizados para esconder a API de distribuicao do codigo
de negécio e do cliente. As demais classes denotam os aspectos de negdcio da aplicacao.

<=Adaptador Fonte=>
BancoEJESourceldapter

SRR “«zInterface Fachada== <<Fachada»>
Cliente Locoooo____._ = IBanco S O Banco
Vereditar] Yereditar)
v

=<Interface Remote=>=
|[BancoEJBTargetAdapter

“ereditar()

Yy

Servicelocator

“creditar()

<<|ntetface Home::=
IBancoEJETargetAdapterHame

<=Adaptadar Destino=>
BancoEJBTargetAdapter

Sereditar()

Figura 3: Estrutura de uma aplicacao bancaria de acordo com o padrao DAP-EJB.

61

SugarloafPLoP 2002 Proceedings

Implementacao
Adaptador destino implementado como Stateless session bean

O adaptador destino é implementado com um stateless session bean pelo fato de com-
ponentes dessa natureza representarem objetos cujas instancias sao equivalentes no con-
tainer?. Uma mesma instancia de um stateless session bean pode servir as requisicoes de
diferentes clientes, minimizando os recursos necessarios para suportar uma grande quan-
tidade destes. Além disso, ao adaptador destino também podem ser atribuidos aspectos
relacionados aos servigos de transagoes e seguranga, por exemplo.

ServiceLocator para acesso as referéncias remotas dos beans

A tarefa para ter acesso a um componente EJB é comum para todos os clientes (externos
ou internos) que precisam acessar seus servigos. Isto implica que muitos tipos de clientes
repetidamente utilizam os servigos JNDI [10], uma API que fornece um conjunto de
interfaces e classes para acessar uma vasta quantidade de recursos, entre os quais permite
a localizacao de objetos remotos, o que resulta em cédigo duplicado nos mesmos. Além
disso, o processo necessario para localizar e obter referéncias remotas aos homes dos
beans gasta recursos significativos do servidor de aplicagao, o que pode causar impacto
no desempenho do sistema. Neste contexto, a classe ServiceLocator [6], um padrao
que visa abstrair a complexidade do processo de localizacao e criacao dos beans, bem
como melhorar o desempenho do sistema, é utilizada no padrao DAP-EJB para auxiliar
o processo de criacao das referéncias remotas.

Cadigo

Nesta secao é apresentado o cédigo para os elementos do exemplo do padrao. A interface
com o usudrio cria um BancoEJBSourceAdapter e delega as requisicoes do cliente para
este. O adaptador fonte é uma classe Java “pura” e implementa a interface da fachada
IBanco de modo a permitir que a interface com o usuario nao tenha conhecimento da
tecnologia de distribuicao sendo utilizada.

O adaptador fonte declara como atributo as interfaces home e remota do adaptador
destino, por questoes de eficiéncia. Estes atributos sao representados por h e banco,
respectivamente.

public class BancoEJBSourceAdapter implements IBanco {
private IBancoEJBTargetAdapter banco;
private IBancoEJBTargetAdapterHome h;

Com o auxilio dos métodos da classe ServiceLocator, uma unica instancia da inter-
face IBancoEJBTargetAdapterHome ¢é obtida. O método auxiliar conectar realiza este
processamento.

2Nome dado ao ambiente de execucdo dos compoenentes EJB.

62

SugarloafPLoP 2002 Proceedings

private void conectar() throws CommunicationException {
Class home = IBancoEJBTargetAdapterHome.class;
try{
if (h == null){
h = (IBancoEJBTargetAdapterHome)
ServiceLocator.getInstance() .getHome("banco" ,home) ;
}
this.banco = h.create();
} catch(ServiceLocatorException e){
throw new CommunicationException (...);
} catch(CreateException e){
throw new CommunicationException (...);

}
+

A partir do método getHome da classe ServiceLocator, a referéncia a interface home do
adaptador destino é obtida. Além disso, conectar também obtém a referéncia a interface
remota do adaptador destino (IBancoEJBTargetAdapter), a partir do método create de
sua interface home.

A excegao ServiceLocatorException é uma excegao de aplicagao lancada pelo método
getHome se alguma falha acontecer quando da obtencao do home do adaptador destino.
A excecao CreateException ¢ langada pelo método create se a instancia do adaptador
destino nao puder ser criada. As excecoes de aplicagao especificas de EJB sao trocadas
no adaptador fonte pela excecao genérica CommunicationException. Esta excecao nao
depende de qualquer tecnologia de distribuicao particular e é definida de modo a permitir
que o cliente seja isolado de excegoes especificas da API de distribuigao. No construtor
do adaptador fonte o método conectar é chamado. Assim,

public BancoEJBSourceAdapter() throws CommunicationException {
conectar() ;

}

quando uma instancia do adaptador fonte é criada, o processo de localizagao e criacao da
instancia do adaptador destino é também realizado.

Apos obter a referéncia remota do bean, o adaptador fonte estd pronto para executar
chamadas aos métodos de negdcio do adaptador destino. O método creditar do adap-
tador fonte delega as requisi¢oes da interface com o usudrio para o adaptador destino.

public void creditar(String numeroConta, double saldo)
throws CommunicationException, ContaNaoExisteException {
try{
banco.creditar (numeroConta, saldo);
} catch(RemoteException e){
throw new CommunicationException(...);

¥

63

SugarloafPLoP 2002 Proceedings

Pelo fato do adaptador fonte invocar os métodos remotos do adaptador destino, a excegao
RemoteException pode ser lancada se ocorrer alguma falha originada a partir da in-
vocacao remota. Neste caso, RemoteException deve ser trocada pela excecao genérica
CommunicationException. Assim, o cliente nao é exposto as excecoes especificas da
API de distribuicao. A interface IBancoEJBTargetHome representa a interface home do
adaptador destino e herda a interface EJBHome.

public interface IBancoEJBTargetAdapterHome extends EJBHome {
public IBancoEJBTargetAdapter create()
throws CreateException, RemoteException;

}

A excegao RemoteException deve ser declarada em todo método da interface home de
EJB, e CreateException é uma excecao de aplicacao especifica de EJB lancada quando
referéncias remotas do bean nao podem ser criadas. O adaptador destino é um stateless
session bean e por isso apresenta um tunico método create, sem argumentos, em sua
interface home. Tal método é responsavel por criar as suas referéncias remotas. A interface
IBancoEJBTargetAdapter representa a interface remota do adaptador destino e declara
os métodos invocados pelo adaptador fonte.

public interface IBancoEJBTargetAdapter extends EJBObject {
public void creditar(String numero,double valor)
throws ContaNaoExisteException, CommunicationException,
RemoteException;

Esta interface é o tipo da referéncia ao adaptador destino e seus métodos devem lancar
RemoteException. A excegdo ContaNaoExisteException é uma excecao de aplicacao.
Além do método creditar, outros métodos podem ser declarados nesta interface.

A classe BancoEJBTargetAdapter ¢é a classe que representa o adaptador destino.

public class BancoEJBTargetAdapter implements SessionBean {
private IBanco banco;
private SessionContext context;

Esta possui uma referéncia a interface da fachada IBanco no intuito de delegar os servigos
para esta executar. Um atributo da interface SessionContext também deve ser declarado
no adaptador destino, uma vez que é um session bean. Esta interface é utilizada pelo
container durante o ciclo de vida do session bean. Na realidade, o container tem acesso
as informacoes de um session bean através desta interface.

O método ejbCreate de BancoEJBTargetAdapter obtém uma instancia da classe
fachada através do método getInstance.

public void ejbCreate()
throws CreateException, RepositorioException,
CommunicationException{
banco = Banco.getInstance();

64

SugarloafPLoP 2002 Proceedings

Apo6s obter a instancia da fachada, o adaptador destino delega a invocacao de seus
métodos para os métodos desta. Por exemplo, quando o método creditar da classe
BancoEJBTargetAdapter é executado,

public void creditar(String numero,double valor)
throws ContaNaoExisteException, CommunicationException{
banco.creditar (numero,valor) ;

o método creditar da fachada é invocado. Os métodos da interface da fachada IBanco
declaram CommunicationException. Esta excecao genérica é declarada em IBanco pre-
vendo que a aplicagao se tornara distribuida. Por isso, os métodos do adaptador destino
e sua interface remota devem também declarar esta excecao.

Por se tratar de um session bean, BancoEJBTargetAdapter deve implementar a inter-
face SessionBean.

public void ejbRemove() { }
public void ejbActivate() { }

public void ejbPassivate() { }
public void setSessionContext(SessionContext sc){
this.context = sc;
}
}

O container utiliza os métodos dessa interface para notificar as instancias dos session
beans sobre os eventos do seu ciclo de vida.

Variagoes

Variagoes do DAP-EJB sao possiveis. Por exemplo, a fachada do sistema poderia fazer o
papel do adaptador fonte e o adaptador destino, um session bean, seria introduzido entre
esta é a colecao de negécio da aplicagao.

Esta é uma abordagem simplificada para o uso dos adaptadores, uma vez que um menor
nimero de classes deve ser gerado, além disso, os beneficios como o uso de session beans
(distribuicao e gerenciamento de transagoes, por exemplo) sdo mantidos. No entanto,
perde-se um pouco em extensibilidade, uma vez que codigo especifico de EJB ¢é inserido
na camada de negbcio do sistema (entre a fachada e as demais classes que compoem a
camada de negdbcio).

Usos Conhecidos

O DAP-EJB tem sido utilizado em um sistema de informacao para o servigo ptublico de
saiude. Este sistema foi desenvolvido para ser executado via Web. Neste caso, servlets [9]
agem como clientes do adaptador fonte. O adaptador fonte interage com o adaptador
destino, e este com a fachada, localizada na mesma maquina.

65

SugarloafPLoP 2002 Proceedings

Um outro uso do DAP-EJB é em um sistema que fornece servigos para o gerenciamento
de contabilidade, controle de acesso e servicos financeiros. Na realidade, este sistema
utiliza a variagao do DAP-EJB, citada na secao anterior. Neste sistema, a fachada da
aplicagao ¢é utilizada como o adaptador fonte, fazendo acesso ao adaptador destino da
aplicagao.

O DAP-EJB poderia também ser utilizado em outros tipos de sistema, tais como:

e Um sistema para gerenciar clientes de uma empresa de telecomunicagao. O sistema é
capaz de registrar telefones moveis, gerenciar informacoes de clientes e a configuragao
dos servicos de telefonia. Este sistema pode ser utilizado via Web.

e Um sistema para provas interativas. Este sistema tem sido utilizado para fornecer
diferentes tipos de provas, tais como simulados baseados em exames de selecao para
a universidade, ajudando os alunos a avaliar seus conhecimentos antes de realizarem
exames reais.

e Um sistema de supermercado complexo. Este sistema serd usado em varios super-
mercados e ja estd sendo utilizado em outras empresas do mesmo ramo.

Padroes Relacionados

e DAP (Distributed Adapters Pattern). No trabalho A Design Pattern for Object-
Oriented Distributed Applications [2], foi descrito o padrao DAP, o qual é utilizado
no contexto de comunicacao remota entre dois componentes, e visa isolar o codigo
relacionado a API de comunicacao destes. Este serviu como base para a adaptagao
do padrao para Enterprise JavaBeans (DAP-EJB) proposto aqui.

O padrao apresentado neste artigo também utiliza adaptadores como o DAP, no
entanto, estes nao isolam somente os aspectos de distribuicao, mas também sao
responséveis pelo gerenciamento de transacoes e seguranca, por exemplo. E impor-
tante destacar, no entanto, que o gerenciamento de transacoes e seguranca obtidos
com o DAP-EJB s6 é possivel devido a uma caracteristica intrinseca da tecnologia
EJB, a qual permite o gerenciamento automético desses aspectos por intermédio de
seus componentes. Portanto, esta nao é uma caracteristica do padrao, mas sim um
beneficio obtido com a tecnologia EJB.

Na realidade, o padrao DAP-EJB, permitiu mostrar que o DAP pode ser também
implementado com EJB, com pequenas adaptagoes, por exemplo, com relacao aos
aspectos de gerenciamento dos servicos citados acima. A estrutura do padrao per-
manece a mesma, as mudancas dizem respeito muito mais as caracteristicas do
adaptador destino.

e Bussiness Delegate [6] e Session Facade [6]. Estes padrdes sao similares aos adapta-
dores fonte e destino, respectivamente. No entanto, eles nao visam estruturar uma
aplicagao independente de tecnologia, apesar de poderem fazé-lo. A forma como
estao estruturados nao segue esta filosofia. O Bussiness Delegate ¢é utilizado para
isolar o cliente das especificidades da tecnologia EJB, como excecoes e lookup, por
exemplo. No entanto, o Session Facade nao tem o mesmo propésito do adaptador
destino, uma vez que nao ¢é utilizado para isolar a tecnologia de EJB do resto da

66

SugarloafPLoP 2002 Proceedings

aplicacao. Ele serve como um unico ponto de acesso para os demais componentes
do sistema (entity beans [14] e afins).

o Wrapper-Facade [12]. Este padrao encapsula fungoes de baixo nivel (tais como
sockets e threads) da aplicacao. O DAP-EJB encapsula a API de distribuigao EJB,
da aplicacao.

e Adapter, Facade. DAP-EJB é implementado utilizando os padrdes de projeto [7]
Adapter e Facade.

e Singleton [7]. Um objeto da classe Fachada é implementado como um Singleton.

e Abstract Factory. Em conjunto com o DAP-EJB, classes auxiliares sao utilizadas
para o propdsito de configuragao. Tais classes sao estruturadas de acordo com
o padrao Abstract Factory [7]. Assim, dependendo das informagoes contidas, por
exemplo, em um arquivo de configuragao, o sistema poder ser executado localmente(
resultando em uma referéncia para a fachada) ou remotamente (resultando em uma
referéncia para o adaptador fonte).

Desta forma, a utilizacao de fabricas permite que o cédigo do cliente seja isolado das
mudancas ligadas ao codigo de distribuicao, aumentando, assim, a modularidade do
sistema.

3 PDC-EJB: Um padrao para Persisténcia com EJB

Objetivo

Fornecer uma forma de estruturar aplicacoes complexas implementadas com EJB de modo
a separar o cddigo de acesso a dados do cédigo de negdcio e de interface com o usuario.
Classes especificas sao utilizadas para separar estes conceitos, e interfaces garantem a
independéncia entre a camada de negdcio e a camada de dados de um sistema.

Contexto

O padrao PDC-EJB esta inserido no contexto de aplicagoes que utilizam algum tipo de
armazenamento e acesso a dados de forma persistente.

Problema

O desenvolvimento ad hoc de aplicagoes que utilizam alguma plataforma de persisténcia,
para armazenamento e recuperacao de seus objetos, leva a sistemas que misturam cédigo
de acesso a dados com o cédigo de negocio da aplicacao. Em particular, aplicacoes con-
struidas desta forma nao podem dispor de objetos de negdcio reutilizdveis por outras
aplicacoes, que utilizem diferentes tecnologias para a persiténcia dos dados. Da mesma
forma, se a plataforma de persisténcia for substituida (JDBC [15] por EJB, por exem-
plo), o impacto das mudangas no cédigo do sistema nao é localizado, ou seja, as classes
relacionadas ao dominio do negécio da aplicagao também devem ser modificadas.

67

SugarloafPLoP 2002 Proceedings

Desta forma, caso seja necessario adaptar um sistema para utilizar outro mecanismo
de persisténcia, tem-se, na verdade, que desenvolver um novo sistema. Ou seja, reuti-
lizacao e extensibilidade sao seriamente comprometidas em sistemas desenvolvidos sem
estruturagao alguma, pois nao ha uma distingao clara entre o cédigo de negocio, que
contém regras e objetos de negocio, e o codigo de dados.

Forcas

e Problemas relacionados aos requisitos de negocio do sistema devem ser manipulados
independente das operagoes de acesso a dados;

e A modificacao no cédigo do sistema para suportar persisténcia deve ser minimizada;

e O tipo de mecanismo de armazenamento® pode ser substituido durante a vida til
de um sistema;

e (lasses de negbcio podem ser reutilizadas em sistemas diferentes.

Solucao

O padrao PDC-EJB utiliza um conjunto de classes para estruturar o cédigo relacionado
ao dominio de objetos do negdcio e o cédigo de acesso a dados, a fim de evitar a mistura
de cédigo relacionado a tais aspectos, obtendo, com isso, extensibilidade e reutilizacao
das classes. Para tal, o padrao utiliza a separacao das classes do sistema em dois tipos:

e classes para descrever os objetos de negocio, resultantes dos requisitos funcionais; e

e classes para manipulacao e armazenamento de dados.

A comunicacao entre esses dois tipos de classes é realizada através de interfaces que
garantem uma maior independéncia do codigo de negdcio em relacao a forma como efeti-
vamente sdo implementadas as operagoes de persisténcia (o acesso ao banco de dados ou
outro mecanismo, como arquivos, por exemplo).

Estrutura
O diagrama de classes da Figura 4 destaca a estrutura do padrao PDC-EJB. As classes
que denotam os elementos que fazem parte do padrao sao explicadas a seguir.

e Fachada

Esta classe representa todos os servigos do sistema e define uma interface que abstrai
os objetos de negécio da aplicacao [4]. Ela mantém uma referéncia para os vérios
objetos da classe ColecaoDeNegocio da aplicacao e delega as chamadas para estes.

3Termo utilizado aqui, para descrever o meio no qual os objetos de negécio do sistema sdo armazenados,
por exemplo, um banco de dados relacional.

68

SugarloafPLoP 2002 Proceedings

Fachada

SaepicoSistemal)

]

ColecaoDeMegocio

SzopnicoSisternaEspecifical)

&/) InterfaceHome InterfaceRemote
Interface
Megocio %ereateConta(ClasseBasica ch) yetClasseBasical)
SHindByPrimarykey() setClasseBasical)
i B 4
; T b i
ColecaoDeDados £ o
Finserir) \\\ ;J
Srermover]) % J
Sprocurar | ;
Satualizar)) s :
: - EntityBean
k"2 ®oihCreate(ClasseBasica ch) ClasseBasica
Sewicelocator | ~a erhFindElyF'rimaryKey(]
“ethnadD 1 *getDadnsCIasseU
SajbStore) SoperacanClassel]
QgetClasseEﬂasicaO
QsetCIasseEIasica[j

Figura 4: Estrutura do PDC-EJB.

e (lasseBasica

A classe bésica representa o objeto basico de negécio (por exemplo, conta, cliente)
refletindo claramente o dominio do problema. Os métodos desta classe contém
somente operagoes relacionadas aos requisitos funcionais do sistema e métodos get
e set para obter informacoes sobre os atributos desta classe.

e EntityBean

Para cada classe basica da aplicagao, deve existir uma classe entity bean correspon-
dente. Esta classe possui operacoes para persisténcia dos objetos das classes bésicas
no sistema. A classe EntityBean possui uma dependéncia com sua classe basica cor-
respondente e seus métodos manipulam os objetos desta. Porém, a classe basica nao
possui dependéncia com o entity bean, podendo ser reutilizada em outras aplicagoes.

e ColecaoDeNegocio

Esta classe representa o agrupamento dos objetos bésicos de negocio, tendo como
operacoes a insercao, busca e exclusao de elementos do repositério, verificacoes ou
testes de pré-condicoes relativos a estas manipulagoes e mais as operagoes que in-
vocam as operagoes tipicas de objetos de negdcio.

69

SugarloafPLoP 2002 Proceedings

e ColecaoDeDados

A colecao de dados contém cédigo de manipulagao da estrutura de armazenamento
persistente, correspondente a cada classe basica de negécio. O codigo dos métodos
da mesma depende da API especifica da plataforma utilizada para armazenamento
(no caso, EJB ¢ utilizado para persisténcia dos dados). Assim, mudancas na API
de persisténcia nao causam impacto na camada de negocio da aplicagao, o im-
pacto é centralizado nesta classe (uma vez que a interface negdcio-dados isola essas
mudancas). Uma classe colecao de dados implementa sua interface negocio-dados
correspondente. Esta ultima é apresentada a seguir.

e InterfaceNegocioDados

Esta interface possui assinaturas dos métodos de acesso aos dados, como insercao,
atualizacao, consultas e exclusao. Esta interface estabelece uma comunicacao entre
os objetos das classes colecao de negdcio e os objetos das classes colecao de da-
dos, proporcionando extensibilidade. Uma classe ColecaoDeNegocio possui uma
referéncia a esta interface. Desta forma, a classe ColecaoDeNegocio nao precisa ser
modificada quando a classe ColecaoDeDados mudar, desde que esta sempre imple-
mente esta interface.

Os elementos que correspondem a fachada, colecao de negdcio, colecao de dados e inter-
face negdcio-dados sao implementados como classes Java “puras”. Apesar de estar trabal-
hando com EJB, existem justificativas para nao tornar tais classes session beans. O uso de
sessions beans proporciona muitos beneficios. Para um bean, o container gerencia varios
servicos de forma automatica. Estes servicos envolvem gerenciamento de transagoes, con-
trole do acesso concorrente, gerenciamento das instancias no servidor e, por conseguinte,
gerenciamento da memoaria, entre outros. A fim de fornecer todos esses servicos de forma
transparente, o container executa uma vasta quantidade de processamento, incluindo
geracao de classes e mecanismos que visam auxilia-lo no emprego correto e adequado dos
Servicos que gerencia.

Desta forma, toda vez que um método de um bean é requisitado, seja por um cliente
externo ou mesmo por outro bean, o container intercepta cada chamada antes de reenvia-
la para o objeto apropriado. Essa interceptagao é necessaria para que o container tenha
conhecimento de todas as caracteristicas do bean em questao: qual o tipo de mecanismo
de transacao, qual o atributo de transacao para o método chamado, que componentes o
bean referencia, que outros recursos utiliza, e assim por diante. Apds ter acesso a todas
essas informacoes, o container executa os processamentos devidos e finalmente repassa a
chamada para a instancia apropriada.

De fato, a execucao de um método implica em varios processamentos que devem ser
executados pelo container antes de passar a requisicao da chamada para o bean. Em
um sistema que utiliza muitas classes session beans, o desempenho do sistema tende a
degradar. Por isso, as classes fachada, colecao de negdcios, e interface negdcio dados nao
sao implementadas como beans.

Além das razoes supracitadas relacionadas a eficiéncia, a implementacao das classes
de negdcio como classes Java “puras”, permite que estas possam reutilizadas em outras
aplicacoes que utilizem uma plataforma de distribuicao diferente, uma vez seu cédigo nao
estd atrelado a uma tecnologia de distribuicao especifica.

70

SugarloafPLoP 2002 Proceedings

A colecao de dados também é implementada como uma classe Java, no entanto ela
possui codigo relativo a API de EJB, uma vez que utiliza os servigos de persisténcia de
entity beans. Esta classe, bem como a interface negocio-dados sao importantes porque
evitam que a colecao de negdcio tenha aspectos especificos da API de EJB. Isto permite
o desacoplamento entre a tecnologia utilizada para pesisténcia dos dados e camada de
negdécio do sistema.

Outro aspecto a ser considerado na estrutura do padrao PDC-EJB ¢ o relacionamento
entre as classes basicas de negdcio e entity beans. Fntity beans fornecem operagoes para
persistir os dados e para realizar parte da légica do negdcio numa unica classe. Isto
resulta na mistura de papéis, ou seja, codigo de acesso a dados persistentes e cédigo para
manipulacao da légica de negocio sao especificados na mesma classe. Os métodos de
negécio de um entity bean sao declarados em sua interface remota. Isto implica que toda
invocacao de um método de negdcio de um entity bean é feita remotamente. Além disso,
sempre que ¢é feita uma chamada de método sobre a interface home de um entity bean
(para criar ou localizar uma instancia da entidade), o cliente recebe uma referéncia remota
do objeto e nao sua copia. A abordagem com entity beans traz algumas consequéncias:

e O acesso concorrente ao entity bean é gerenciado pelo container

Como cada cliente tem acesso a uma referéncia remota do entity bean, fica a cargo
do container organizar o acesso e controlar a sincronizacao entre os clientes de modo
a manter o estado do bean sempre coerente. Este é um dos grandes beneficios de
entity beans, visto que o programador nao precisa se preocupar em fornecer codigo
necessario ao gerenciamento do acesso concorrente.

e Os métodos de negdcio sao declarados na interface remota do bean

Isto implica que quando o cliente deseja executar um método de negécio, ele o
faz de forma remota. Isto pode causar impacto no desempenho do sistema. Em
particular, no caso da entidade possuir uma grande quantidade de informagoes que
sao acessadas por métodos get e set, pode-se ter um gargalo no trafego dessas
informagoes pela rede. H4 um custo associado a invocacao de métodos e a troca de
dados remota.

e Mistura de conceitos

Entity beans misturam cédigo relacionado a forma como os dados sao persistidos
(fornecidos pelos métodos da interface home) com os métodos de negécio, fornecidos
através da interface remota.

Com o padrao PDC-EJB é possivel minimizar ou evitar o impacto causado pelos
ultimos itens. As classes basicas de negocio ficam responsaveis por processar parte da
logica de negocio e os entity beans assumem o papel de persistir os dados resultantes
deste processamento. Com isso, é possivel tornar clara a separacao dos papéis. Para cada
classe basica existe um entity bean associado. Para facilitar o entendimento, a parte da
estrutura do padrao correspondente a este aspecto ¢ ilustrada na Figura 5.

Nada é mudado com relacao a classe béasica; acrescenta-se um entity bean para facilitar
a implementacao da colecao de dados. A colegao de dados utiliza os servigos de persiténcia
de entity beans. Os métodos getClasseBasica e setClasseBasica sao utilizados pela

71

SugarloafPLoP 2002 Proceedings

EntityBean

YejbCreate(ClasseBasica ch) ClagseBasica
SajbFindByPrimarykey()
“ajbloadl) YyetDadosClassel)
ajbStare() YoperacaoClassel)
YyetClasseBasical)
YsetClasseBasical)

Figura 5: Estrutura para o uso de classes bésicas e entity beans.

colecao de dados para retornar um clone do objeto ClasseBasica e atualizar o objeto
ClasseBasica, respectivamente.

Para realizar esta abordagem, cada instancia do entity bean deverd estar sincronizada
com a instancia da classe bésica de negocio a fim de executar as alteracoes de forma
coerente e mantendo a integridade dos dados a serem persistidos.

Com esta abordagem os clientes tém acesso as copias dos objetos bésicos de negdcio
em vez de referéncias remotas dos entity beans. Executam o processamento localmente, a
partir destas copias e o resultado deste processamento é persistido no banco com o auxilio
de entity beans.

Pelo fato dos clientes manipularem cépias dos objetos basicos de negécio em vez de
referéncias remotas de entity beans, o mecanismo de controle de concorréncia automatico
fornecido por entity beans é perdido. Entretanto, os beneficios alcancados com a estru-
tura do padrao compensam essa perda uma vez que o controle de concorréncia pode ser
facilmente solucionado com o auxilio de mecanismos, tais como timestamp [13].

Dinamica

A Figura 6 apresenta o diagrama de seqiiéncia para um dos possiveis usos do PDC-EJB.
Neste cenario, quando um método da Fachada é invocado, é realizada a delegagao para um
método da ColecaoDeNegocio (no exemplo, uma operacao de consulta que recupera um
objeto do banco de dados). O objeto da ColecaoDeNegocio executa possiveis validagoes e
testes relativos aos dados informados para a consulta, e invoca a operagao procurar sobre
a ColecaoDeDados. Esta utiliza as operacoes de EntityBean para o acesso ao banco de
dados. Através da operacao findByPrimaryKey obtém-se a referéncia remota do objeto
armazenado no banco. A partir desta referéncia, o objeto da classe bésica é obtido através
da operacao getClasseBasica e retornado para o cliente, como resultado da consulta.

Conseqiiéncias
A utilizacao do PDC-EJB traz as seguintes vantagens:

e Reutilizacao e extensibilidade

Devido a estrutura modular do padrao, mudancas na camada de dados nao causam
impacto nas demais camadas. Interfaces entre a camada de negécio e a camada de
dados provéem essa extensibilidade. Isto permite que a camada de negécio nao tenha

72

SugarloafPLoP 2002 Proceedings

Fachada ColecaolDeMegocio ColecaoDeDados EntityBean ClasseBasica

SericoSistermaEspecifico procurar

findByPrimarykey

getClasseBasica ClaszeBasica

'

Figura 6: Diagrama de Sequéncia do PDC-EJB.

conhecimento se a tecnologia utilizada para persistir os dados é JDBC, EJB, etc.
Além disso, a estrutura que o padrao apresenta possibilita que as classes basicas de
negdécio possam ser facilmente reutilizadas em outras aplicacoes que utilizem outras
tecnologias de banco de dados.

e Reducao do trafego na rede

Em vez de vérias chamadas a métodos get para obter os atributos de um bean, o
padrao fornece uma tinica chamada para obter todos os valores encapsulados em um
objeto basico. Isso faz com que uma quantidade de dados seja transferida pela rede
em uma Unica chamada remota. Isto sem duvida diminui a carga imposta pelos
acessos remotos e, consequentemente, melhora o desempenho do sistema.

e Facilidades para teste

A classe basica possui apenas métodos de negocio e métodos “acessores”, sem codigo
de acesso a dados. Desta forma, fica mais facil testar somente a funcionalidade do
sistema usando uma versao volatil do mesmo, sem o uso de entity beans apenas com
colecoes de dados volateis.

e Simplificacao de entity beans e interfaces remotas

Além dos métodos get e set, os entity beans possuem somente os métodos padrao
para persistir os dados; os métodos de negdcio sao executados pela classe basica.
O cliente do entity bean, no caso a colecao de dados, tem acesso ao objetos bésicos
de negocio a partir dos métodos getClasseBasica e setClasseBasica, os Unicos
métodos declarados na interface remota do bean. Esta estruturacao também fornece
um maior potencial para geracao automatica de codigo.

Por outro lado, o PDC-EJB apresenta as seguintes desvantagens:

73

SugarloafPLoP 2002 Proceedings

e Nao utilizacao do controle de concorréncia de EJB

De acordo com a estrutura do padrao, o cliente do sistema tem acesso aos clones dos
objetos basicos e nao as referéncias remotas dos entity beans. Os clientes executam
modificagoes sobre copias locais do objeto da classe basica. Uma vez que as modi-
ficages foram realizadas, o cliente invoca o método setClasseBasica (na verdade,
quem invoca este método é a colegao de dados), passando o objeto modificado para
o entity bean, e este se encarrega de atualizar os seus atributos e persisti-los no
banco de dados. O problema acontece quando outros clientes requisitam o mesmo
objeto.

Apesar do entity bean atualizar os valores, este nao esta ciente dos varios clientes
que obtiveram cépias do mesmo objeto e por isso nao pode propagar a atualizagao
do objeto para os varios clientes. Estes clientes acabam tendo instancias de objetos
que nao refletem seu estado real no banco. No entanto o uso de mecanismos como
timestamp [13], por exemplo, podem ser utilizados para resolver essa deficiéncia.

e Duplicagao

Os atributos da classe basica e do entity bean correspondente sao duplicados. Isto
se deve a limitagao da especificacao 1.1 de EJB, que exige que entity beans CMP
declarem seus atributos ptublicos. De outra forma, o bean poderia herdar a classe
basica. Os atributos da classe bésica sao declarados private por questoes de en-
capsulamento. Isto implica que mudancas nos atributos da classe basica devem ser
refletidas nos atributos do entity bean. No entanto, a mudanca é localizada e poderia
ter um apoio preconizado para manter a consisténcia.

e Produtividade

Duplica-se o nimero de objetos que representam entidades persistentes: é necessario
um entity bean e uma classe basica para cada entidade forte. Torna-se entao
necessario o uso de ferramentas para gerar o codigo do entity bean a partir da
classe basica, por exemplo, bem como manter a consisténcia apds alteracoes. Além
disso, um gerador de codigo poderia também automatizar a criacao dos adaptadores
e classes auxiliares utilizadas na aplicacao.

Exemplo

O diagrama de classes UML da Figura 7 ilustra os elementos que compdem o padrao
através de uma simples aplicagao bancéria.

As classes Banco, CadastroDeContas e Conta correspondem aos objetos do dominio
do problema. As classes que lidam com os aspectos de persisténcia dos dados e, por-
tanto, fazem parte da camada de dados do sistema, sao representadas pelas classes
IRepositorioConta, RepositorioDeContasEJB e ContaEJB. A comunicacao entre os
dois tipos de classes é realizada através de interfaces. Este aspecto é importante porque
permite estruturar os aspectos de forma modular reduzindo o impacto causado por possiveis
modificagoes do sistema tanto para requisitos funcionais (como a introducao de novos
servigos) quanto nao funcionais (como adaptar o sistema para suportar outro mecanismo
de persisténcia ou melhorar a performance das consultas).

74

SugarloafPLoP 2002 Proceedings

<«Fachadaz>
Banco

PradastrarContal)
Pcreditar])

==Caolecan de MNegocio==
CadastroDeContas
SradastrarContal)
Seraditar])
(_() <<Interface Homez> ==Interface Remate=>
IContaHome IConta
IRepositoria
Conta createConta(Conta) SyetCantal)
FindByPrimarykKey() setContal)

=<=Colecan de Dados=> h“ ?1

RepositorioDeContasEJB - i

Sinzerir]) % o

:remnvenj - A

gprucqrar[} ==Entity Beanzx

atualizar() ContaE B
; onts <<Clagse Basicaz>
! Canta
Tar LIi : SajbCreate(Conta o)
e e L EEEEEEEE PP ={ %ajbFindByPrimaryey() i
SajbLoad() shitar()
. Ucreditar])

SojhStore) ®oetald
SgetContal) yEtGalday
ScetContal)

Figura 7: Exemplo de uma aplicagao bancaria estruturada de acordo com o padrao PDC-
EJB.

Implementacgao
ServiceLocator para localizagao de entity beans

A tarefa para ter acesso a um componente EJB é comum para todos os clientes (externos
ou internos) que precisam acessar seus servicos. Isto implica que muitos tipos de clientes
repetidamente utilizam os servigos JNDI [10], uma API que fornece um conjunto de
interfaces e classes para acessar uma vasta quantidade de recursos, entre os quais permite
a localizacao de objetos remotos, o que resulta em cédigo duplicado nos mesmos. Além
disso, o processo necessario para localizar e obter referéncias remotas aos homes dos
beans gasta recursos significativos do servidor de aplicagao, o que pode causar impacto
no desempenho do sistema. Neste contexto, a classe ServiceLocator [6], um padrao
que visa abstrair a complexidade do processo de localizacao e criacao dos beans, bem
como melhorar o desempenho do sistema, ¢é utilizada no padrao PDC-EJB para auxiliar
o processo de criacao das referéncias remotas de entity beans.

75

SugarloafPLoP 2002 Proceedings

Transagoes

O padrao PDC-EJB é utilizado em conjunto com o padrao DAP-EJB, descrito da Secao 2.
Neste caso, o adaptador destino, um session bean, é responsavel por gerenciar as transacoes
associadas aos seus métodos, os quais simplesmente delegam todas as invocagoes para os
métodos da fachada.

A partir de atributos de transacao especificados para os métodos do adaptador destino,
o container gerencia o contexto transacional dos mesmos. A especificagdo garante que
o contexto transacional é propagado a todos os objetos que participam na realizacao de
uma operacao, incluindo a fachada. Portanto, no padrao PDC-EJB, uma classe fachada
nao precisa especificar cédigo para o tratamento de transacoes de seus métodos, uma vez
que esta tarefa é delegada ao container.

Da mesma forma, aspectos relativos ao gerenciamento de seguranca também ficam a
cargo do padrao DAP-EJB. O gerenciamento de transagoes, bem como o gerenciamento
de seguranca sao realizados pelo adaptador destino.

Caodigo

Esta secao apresenta a implementacao dos principais elementos do PDC-EJB. O exemplo
utilizado é a aplicacao bancaria, introduzida na Figura 7. A explicacao do PDC-EJB é
realizada de forma bottom up a fim de facilitar o entendimento. Desta forma, o primeiro
elemento a ser apresentado é a classe basica de negdcio Conta, a qual reflete o dominio
do problema.

A classe Conta é uma classe Java que implementa a interface Serializable [8]. Nao
existem métodos nesta interface e ela simplesmente indica para o sistema que um objeto
pode ser transformado em um stream de bytes para poder ser transmitido pela rede. Os
atributos

public class Conta implements java.io.Serializable {
private String numero;
private double saldo;

numero e saldo sao declarados com visibilidade private por questoes de encapsulamento
e sao inicializados no construtor da classe. Além disso, a classe bdsica também declara
um construtor vazio.

Para cada atributo declarado na classe basica, sao declarados métodos get e set
correspondentes para a obtencao de informacoes sobre os atributos da classe. Os métodos

public String getNumero() { return numero; }

public double getSaldo() { return saldo; }

getNumero e getSaldo representam os métodos “acessores’para os atributos numero e
saldo, respectivamente. Além destes, os métodos set para cada atributo também sao
declarados.

Além de métodos “acessores”, a classe béasica também possui métodos de negdcio
correspondentes ao dominio da aplicagao. O método creditar, por exemplo,

76

SugarloafPLoP 2002 Proceedings

public void creditar(double valor) {
saldo += valor;

}
}

corresponde a uma operacao de negbcio da classe Conta. Outros métodos de negbcio,
além de creditar também devem declarados nesta classe.

O entity bean ContaEJB* e suas interfaces home e remota, sao apresentados. A inter-
face home contém os métodos de acesso ao banco de dados create e findByPrimaryKey.
Estes sao métodos padrao de EJB utilizados para criar e localizar uma entidade banco,
respectivamente.

public interface IContaHome extends EJBHome {
public IConta create(Conta conta)
throws RemoteException, CreateException;

public IConta findByPrimaryKey(String numero)
throws FinderException, RemoteException;

O tipo de retorno de tais métodos é a referéncia remota do entity bean. A excecao
RemoteException é declarada na assinatura dos métodos da interface IContaHome pelo
fato desta tratar-se de uma interface remota. CreateException e FinderException sao
excecoes especificas de EJB e também devem ser declaradas nas assinaturas dos métodos
create e findByPrimaryKey, respectivamante.

Além dos métodos especificos de EJB, outros métodos findXX podem ser especificados,
como por exemplo o método findByAll

public Collection findByAll() throws FinderException, RemoteException;
}

que retorna uma colecao de referéncias a todas as entidades armazenadas no banco de
dados.

A interface remota IConta declara somente métodos get e set para a classe basica
Conta.

public interface IConta extends EJBObject {
public Conta getConta() throws RemoteException;
public void setConta(Conta conta) throws RemoteException;

}

Os métodos de negdcio sao executados localmente, a partir dos clones das classes bésicas
obtidos através do método getConta da interface remota. Apds o processamento local
dos métodos de negdcio, o resultado pode ser atualizado através do método setConta.

A classe ContaEJB implementa a interface EntityBean, especifica de EJB, a qual
fornece métodos para a manipulacao das entidades no banco, pelo container.

Os atributos do entity bean que devem ser mapeados para tabelas no banco de dados,
sao declarados publicos. Esta é uma restricao da especificacao 1.1 de EJB. Neste caso, os
dois atributos apresentados, numero e saldo sao declarados com visibilidade public.

40 cddigo do entity bean no exemplo apresentado utiliza persisténcia gerenciada pelo container (CMP).

77

SugarloafPLoP 2002 Proceedings

public class ContaEJB implements EntityBean {
public String numero;
public double saldo;
private Conta conta;
private EntityContext context;

Um atributo do tipo da interface EntityContext também deve ser declarado para que
o container possa ter acesso as informacoes dos entity beans. O entity bean também
declara conta como atributo por questoes de desempenho, para evitar que sempre seja
necessario criar um objeto da classe Conta antes de envia-lo para o cliente, através do
método getConta.

Os atributos de ContaEJB sao inicializados no método ejbCreate, o qual corresponde
ao método create da interface IContaHome e é responsavel por criar uma entidade no
banco. O método recebe como parametro um objeto da classe Conta. Os atributos do
bean sao inicializados a partir do estado do atributo c. Desta forma, quando da criacao
de uma entidade no banco de dados, o estado da instancia do entity bean (ContaEJB) é
sincronizado com o estado da instancia de sua classe basica (Conta) correspondente.

public String ejbCreate(Conta c) throws CreateException {
numero = c.getNumero();
saldo = c.getSaldo();
return null;

b

Um objeto da classe bésica é passado como parametro para o método ejbCreate de
seu entity bean correspondente para evitar o trafego de parametros pela rede, em vez de
enviar varios atributos pela rede, o objeto completo e enviado, diminuindo o overhead
associado. Apoés os atributos do bean serem inicializados, estes sao inseridos no banco de
dados. O tipo de retorno do método é um objeto do tipo da chave primaria armazenada
na tabela. No cédigo apresentado, o retorno é null porque em persisténcia gerenciada
pelo container (CMP), o container é responsavel por gerar a chave primaria da tabela
é retorna-la como resultado da insercao. O cddigo para insercao no banco é gerado pelo
container.

Os métodos oriundos da interface EntityBean, sao declarados e implementados pelas
classes geradas pelo container, tendo seus métodos com o corpo vazio. Eles sao re-
sponsaveis pela persisténcia da entidade no banco de dados,

void ejbStore() { }
void ejbLoad() { }
void ejbRemove() { }

sendo invocados pelo container durante a execugao dos métodos pelo cliente.

Os métodos getConta e setConta sao responsaveis por manter o estado das instancias
dos objetos de negécio (Conta, no exemplo) sincronizado com o estado das instancias dos
entity beans (ContaEJB, no exemplo).

public void setConta(Conta c) {
numero = c.getNumero();

78

SugarloafPLoP 2002 Proceedings

saldo = c.getSaldo();
conta = c,;

public Conta getConta() {
conta.setNumero(this.numero) ;
conta.setSaldo(this.saldo);
return conta;

A classe RepositorioDeContasEJB representa a colecao de dados do padrao PDC-
EJB. E uma classe Java “pura’e utiliza os servigos de persisténcia de entity beans. Isto
acontece devido ao fato de entity beans representarem entidades persistentes e, portanto,
em uma aplicacao EJB sao responsaveis por persistir tais entidades no banco de dados.

Esta classe implementa a interface negécio-dados IRepositorioConta, a qual fornece
métodos para manipular os dados armazenados no banco de dados. Esta interface é
apresentada mais adiante. Um atributo da interface home do entity bean é declarado na
colecao de dados por questoes de eficiéncia.

O acesso as referéncias dos homes dos entity beans é realizado com o auxilio do método
auxiliar getHome. Este método faz acesso ao método de mesmo nome (getHome) da classe
ServiceLocator. Através deste método, é possivel localizar um entity bean mantendo
uma unica instancia da referéncia remota a sua interface home durante a execucao dos
clientes.

class RepositorioDeContasEJB implements IRepositorioConta {
private IContaHome home;
private IContaHome getHome ()
throws ServiceLocatorException {
if (home ==null) {
home= (IContaHome)
ServicelLocator.getInstance() .getHome("conta",
IContaHome.class) ;
}
return home;
}
}

Todos os métodos desta classe que acessam as operagoes de persisténcia de entity beans,
utilizam o método auxiliar getHome para localizar o entity bean.

O método inserir ¢ utilizado para incluir uma entidade no banco de dados. Recebe
como parametro um objeto da classe basica (Conta) e chama o método create do entity
bean passando conta como parametro. As excecgoes especificas de EJB relacionadas ao
mecanismo de armazenamento de dados, sao substituidas na cole¢cao de dados pela excecao
genérica RepositorioException. Por isso, esta é declarada na assinatura do método. A
troca de excecoes permite isolar a colecao de negécio da API de EJB.

79

SugarloafPLoP 2002 Proceedings

void inserir(Conta conta) throws RepositorioException{
try {
IContaRemote contaBean = getHome().create(conta);
} catch (Exception e) {
throw new RepositorioException(e);
}
}

O método procurar localiza uma entidade no banco a partir de codigo e retorna um
objeto da classe basica Conta. Para tal, utiliza o método de EJB findByPrimaryKey,
o qual retorna uma referéncia remota da entidade armazenada no banco. Apds obter a
referéncia remota, o método getConta ¢é invocado.

public Conta procurar(String codigo) throws RepositorioException {
Conta ¢ = null;
try {
IContaRemote contaBean = getHome() .findByPrimaryKey(codigo);
c = contaBean.getConta();
} catch (Exception e) {
throw new RepositorioException(e);

}

return c;

¥

Este permite obter um clone do objeto Conta, o qual é retornando para o cliente. Isto
permite que os clientes da aplicagao manipulem cépias dos objetos remotos, em vez de
manipula-los remotamente, melhorando com isso, o desempenho, visto que invocacao de
métodos e manipulacao destes remotamente sao tarefas que degradam o desempenho do
sistema.

Assim, a colecao de dados isola dos clientes das camadas acima, o acesso as referéncias
remotas dos entity beans, uma vez que repassa para as camadas superiores os clones das
classes basicas em vez de referéncias remotas. Isto pode trazer problemas de inconsisténcia
dos dados acessados por clientes concorrentes. No entanto este aspecto pode ser facilmente
solucionado com a introducao de mecanismos como timestamp.

A interface IRepositorioConta € a interface negécio-dados. Esta interface é imple-
mentada pela classe RepositorioDeContasEJB.

public interface IRepositorioConta {
public Conta procurar(String numero)
throws RepositorioException;
public void atualizar(Conta conta)
throws RepositorioException;
public void inserir(Conta conta)
throws RepositorioException;
public Boolean existe (String numero)
throws RepositorioException;

80

SugarloafPLoP 2002 Proceedings

A classe colecao de negdcio corresponde, no exemplo, a classe CadastroDeContas. Esta
classe representa uma colecao de objetos da aplicagao e fornece servigos para manipular
um cadastro de contas. Esta classe utiliza os servigos da colecao de dados através da
interface IRepositorioConta e seu codigo é apresentado a seguir.

public class CadastroDeContas {
private IRepositorioConta repConta;

public CadastroDeContas(IRepositorioConta rep) {
repConta = rep;

}

O construtor de CadastroDeContas recebe como argumento um objeto que imple-
menta a interface negdcio-dados. A partir do atributo repConta, a colegao de negbcio
invoca os métodos da colecao de dados.

Duas das operacoes para esta classe sao apresentadas. O método cadastrarConta é
utilizado para inserir um objeto Conta no sistema. Para tal, primeiramente é verificado
se um objeto de mesmo numero ja existe, lancando a exce¢ao ContaJaExisteException
em caso positivo. Caso o objeto a ser cadastrado ainda nao exista no sistema, o método
da colecao de negécio invoca o método inserir da colecao de dados, através da interface
negoécio-dados.

public void cadastrarConta(Conta conta)
throws ContaJaExisteException, RepositorioException{
if (repConta.existe(conta.getNumero()))
throw new ContaJaExisteException();
else
repConta.inserir(conta);

3

O método creditar consulta o sistema para uma determinada conta e, se a consulta
for bem sucedida, um valor é adicionado ao saldo da conta e as informagoes sao atualizadas
na colecao de dados. Todavia, se a conta nao existe, uma excecao € lancada.

public void creditar(String numero,double valor)
throws ContaNaoExisteException, RepositorioException {
if (repConta.existe(numero)){
Conta ¢ = repConta.procurar (numero) ;
c.creditar(valor);
repConta.atualiza(c);

else throw new ContaNaoExisteException();

81

SugarloafPLoP 2002 Proceedings

A implementacao dos demais métodos da colecao de negdcio é feita de forma similar,
e sao omitidos aqui por questoes de brevidade.

A classe Banco (fachada do sistema) contém todos os servigos oferecidos pela aplicagao.
Esta classe possui uma referéncia a classe CadastroDeContas. O construtor cria um
objeto do tipo colecao de negdcio e o atribui ao atributo cadConta. A partir deste ponto,
a fachada pode invocar os métodos da colecao de negocio.

class Banco {
private CadastroDeContas cadConta;
Banco () {
cadConta =
new CadastroDeContas(new RepositorioDeContasEJB());

}

Dois dos métodos da fachada sao apresentados. O método cadastrarConta invoca o
método cadastrarConta da colegao de negdcio.

void cadastrarConta(Conta conta)
throws RepositorioException, ContaJaExisteException {
cadConta.cadastrarConta(conta) ;

O mesmo acontece com o método creditar

void creditar(String numero, double saldo)
throws RepositorioException, ContaNaoExisteException {

cadConta.creditar (numero, saldo);

}

que também utiliza o atributo cadConta para invocar métodos da colecao de negdcio,
no caso, o método de mesmo nome creditar. As excegoes ContaJaExisteException e
ContaNaoExisteException sao excegoes especificas da aplicagao.

Usos Conhecidos

Como parte do padrao DAP-EJB, o PDC-EJB é também utilizado nos mesmos sistemas
que este.

Para o sistema de informacao do servigo publico de saude, o PDC-EJB é utilizado tal
como descrito nesta secao. Esta aplicacao tem como funcionalidade, receber e controlar as
dentncias, notificagoes, além de fornecer informacoes importantes sobre o sistema piiblico
de saude, que sejam do interesse da populacao.

O PDC-EJB é também utilizado no sistema que fornece servigos para o gerenciamento
de contabilidade, controle de acesso e servicos financeiros. Neste sistema, a colecao de
negocio da aplicagao é opcional em algumas partes da aplicagao. Nos casos onde a colecao
de negécio é opcional, o adaptador destino, acessa a colecao de dados, através da interface
negoécio-dados do sistema.

Outros possiveis usos do PDC-EJB:

82

SugarloafPLoP 2002 Proceedings

e Um sistema para gerenciar clientes de uma empresa de telecomunicagao. O sistema é
capaz de registrar telefones méveis, gerenciar informagoes de clientes e a configuragao
dos servigos de telefonia. Este sistema pode ser utilizado via Web.

e Um sistema para provas interativas. Este sistema tem sido utilizado para fornecer
diferentes tipos de provas, tais como simulados baseados em exames de selecao para
a universidade, ajudando os alunos a avaliar seus conhecimentos antes de realizarem
exames reais.

e Um sistema de supermercado complexo. Este sistema serd usado em varios super-
mercados e ja estd sendo utilizado em outras empresas do mesmo ramo.

Padroes Relacionados

e Persistent Data Collections (PDC) [11]. Este padrao também foi adaptado para o
padrao apresentado nesta secao. O PDC promove cédigo modular fornecendo um
conjunto de classes e interfaces que separam o codigo de acesso a dados do codigo
de negdcio e interface com o usudrio [11]. O padrao para EJB também observa
tais aspectos com a diferenga que nao faz uso de uma classe auxiliar (MecanismoD-
ePersistencia) para gerenciamento das transagdes e conexao com banco, como faz
o PDC. Além disso, a classe bésica é associada a um entity bean. Neste padrao,
a primeira possui métodos get e set e métodos de negécio, enquanto a segunda
possui somente métodos de acesso ao banco e métodos que permitem obter clones
dos objetos das classes basicas associadas.

e Value Object [6]. E similar & classe bésica apresentada no PDC-EJB. Este padrao
tem como funcao encapsular os dados do negdocio, ou seja, em vez de um cliente fazer
varias requisi¢oes remotas a métodos get e set para obter os dados da entidade, ele
o faz através de um tunico método que é utilizado para encapsular todos os dados
necessarios a requisicao do cliente.

Apesar de fornecer um mecanismo que melhora consideravelmente o desempenho
do sistema, uma vez que evita o fluxo de chamadas remotas a métodos get e set,
os métodos de negdcio continuam sendo executados remotamente, uma vez que per-
manecem sendo declarados na interface remota do bean. Além disso, o método
ejbCreate recebe os atributos do bean como parametro e nao o objeto correspon-
dente a sua classe basica, como sugere o padrao apresentado aqui.

e Facade [7]. A classe Fachada do PDC-EJB é a implementagao direta do padrao
Facade.

e Singleton [7]. Por questdes de eficiéncia, os objetos da classe Fachada sao imple-
mentados como Singleton. Desta forma, geralmente somente um objeto fachada é
requerido na aplicagao.

e Bridge [7]. A interface negécio-dados do padrao PDC-EJB ¢ implementada como
Bridge. Desta forma, ela é utilizada para permitir a comunica¢ao entre as camadas
de negécio e dados mantendo a primeira isolada da API de persisténcia da aplicagao.

83

SugarloafPLoP 2002 Proceedings

Agradecimentos

Nossos agradecinmentos especiais a Marcio Barros, nosso shepherd, pelos comentérios e
sugestoes importantes que proporcionaram melhorias no nosso padrao.

Referéncias

1]

Vander Alves. Desenvolvimento Progressivo de Programas Distribuidos Orientados a Ob-
jetos. Master’s thesis, Centro de Informatica — Universidade Federal de Pernambuco,
Fevereiro 2001.

Vander Alves and Paulo Borba. Distributed Adapters Pattern: A Design Pattern for
Object—Oriented Distributed Applications. In First Latin American Conference on Pattern
Languages Programming, Sugarloaf PLoP, Rio de Janeiro, Brazil, 3th-5th October 2001.

Grady Booch et al. The Unified Modeling Language User Guide. Object Technology.
Addison-Wesley, first edition, 1999.

Paulo Borba, Saulo Araujo, Hednilson Bezerra, Marconi Lima, and Sérgio Soares. Progres-
sive implementation of distributed Java applications. In Engineering Distributed Objects
Workshop, ACM International Conference on Software Engineering, pages 40-47, Los An-
geles, USA, 17th—18th May 1999.

Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stal.
Pattern—Oriented Software Architecture:A System of Patterns, volume 1. John Wiley &
Sons, 1996.

John Crupi DeepPAK Alur and Dan Malks. core J2EE Patterns —Best Practices and Design
Strategies. Prentice Hall, first edition, 2001.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: FEle-
ments of Reusable Object—Oriented Software. Addison—Wesley, 1994.

James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Specification.
Addison—Wesley, second edition, June 2000.

Marty Hall. Core Servlets and JavaServer Pages. Prentice-Hall, second edition, 2000.

Rosanna Lee and Scott Seligman. JNDI API Tutorial and Reference: Building Directory-
Enabled Java(TM) Applications. Addison-Wesley, 2000.

Tiago Massoni, Vander Alves, Sérgio Soares, and Paulo Borba. PDC: Persistent Data Col-
lections pattern. In First Latin American Conference on Pattern Languages Programming,
Sugarloaf PLoP, Rio de Janeiro, Brazil, 3th-5th October 2001.

Douglas Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann. Pattern—Oriented
Software Architecture: Patterns for Concurrent and Networked Objects, volume 2. John
Wiley & Sons, 2000.

Sérgio Soares. Desenvolvimento Progressivo de Programas Concorrentes Orientados a Ob-
jetos. Master’s thesis, Centro de Informatica — Universidade Federal de Pernambuco,
Fevereiro 2001.

84

SugarloafPLoP 2002 Proceedings

[14] Sun Microsystems. The Enterprise JavaBeans 1.1 Specification. Disponivel em http://-
java.sun.com/products/ejb/docs.html, Outubro 2000.

[15] Seth White, Maydene Fisher, Rick Cattell, Graham Hamilton, and Mark Hapner.
JDBC(tm) API Tutorial and Reference: Universal Data Access for the Java(tm) 2 Plat-
form. Addison—Wesley, second edition, June 1999.

85

SugarloafPLoP 2002 Proceedings

86

SugarloafPLoP 2002 Proceedings

PaDA: A Pattern for Distribution Aspects

Sérgio Soares™ Paulo Borbal
Universidade Catoélica de Pernambuco Centro de Informatica
Departamento de Estatistica e Informatica Universidade Federal de Pernambuco

Centro de Informatica
Universidade Federal de Pernambuco

Abstract

This paper presents a pattern that provides a structure for implementing distribution using
AOP — aspect-oriented programming. The main goal is to achieve better separation of concerns
avoiding tangled code (code with different concerns interlacing to each other) and spread code
(code regarding one concern scattered in several units of the system). Therefore, system mod-
ularity, and hence, maintainability and extensibility are increased. The paper also presents an
example of distribution aspects using AspectJ, an aspect-oriented extension to Java.

Intent

PaDA (Pattern for Distribution Aspects) provides a structure for implementing distribu-
tion code by achieving better separation of concerns. This is obtained through the use of
aspect-oriented programming [7]. It increases system modularity, and hence, maintain-
ability and extensibility.

Context

When implementing a distributed system that requires high modularity, meaning that the
system should be independent of the distribution concern. To achieve better separation
of concern we should use aspect-oriented programming by applying PaDA. An aspect
defines a crosscutting concern, for example, distribution, which is automatically woven to
a system changing its original behavior. Therefore, the system should be implemented in
a programming language that has an aspect-oriented like extension. Examples of these
languages with the respective aspect-oriented extensions are the following:

e Java — Aspect] [10], HyperJ [12], DemeterJ [11], Composition Filters [3];

Copyright (©2002, Sérgio Soares and Paulo Borba. Permission is granted to copy for the Sugarloaf-
PLoP 2002 Conference. All other rights reserved.
*Supported by CAPES. Emails: scbsQcin.ufpe.br, sergio@dei.unicap.br
fPartially supported by CNPq, grant 521994 /96-9. Email: phmb@cin.ufpe.br

87

SugarloafPLoP 2002 Proceedings

o C++ — AspectC [6], Composition Filters [3];

e Smalltalk — AspectS [9], Composition Filters [3].

Problem

Tangled code (code with different concerns interlacing to each other) and spread code
(code regarding one concern scattered in several units of the system) decrease system
modularity. Therefore, maintainability and extensibility are also decreased.

Forces

To distribute a system, PaDA balances the following forces:

e Remote communication. The communication between two components of a system
should be remote in order to allow several clients accessing the system, considering
that the user interface is the distributed part of the system.

e API independence. The system should be completely independent of the commu-
nication API and middleware to facilitate system maintenance, as communication
code is not tangled with business or user interface code. This also allows changing
the communication API without impacting other system code.

e A same system can use different middleware at the same time. This would allow, for
instance, two clients accessing the system, one using RMI and the other CORBA.

e Dynamical middleware changing. The system should allow changing the middleware
without changing or recompiling its source code.

e Facilitate functional tests. Functional tests are easier by testing the system with its
local version; therefore, distribution code errors will not affect the tests.

Solution

In order to solve the problem previously presented, PaDA uses aspect-oriented program-
ming [7] to define distribution aspects [16] that can be woven to the system core source
code. This separation of concern is achieved by defining aspects to implement a specific
concern. After identifying and implementing the crosscutting concerns of a system, they
can be automatically composed (woven) with the system source code, resulting on the
system version with the required concerns.

Figure 1 illustrates the aspectual decomposition, which identifies the crosscutting con-
cerns of a system, and the aspectual recomposition, or weaving, which composes the iden-
tified concerns with the system to obtain the final version with the required functions. In
our case, PaDA defines just one concern (distribution), which is implemented by three
aspects, as we show in next section.

88

SugarloafPLoP 2002 Proceedings

AQOP activities

System Concern 1, Executable
requirements | | Aspectual Conecern 2 | Weavin system
Decomposition &

Concern N |

Figure 1: AOP development phases.

Structure

The PaDA pattern defines three aspects: one to crosscut the target component (server),
another to crosscut the source components (client classes), and the third crosscuts both
target and source component to provide the exception handling, as shown in Figure 2. In
fact, the third aspect defines a concern that is crosscutting to distribution itself, namely
exception handling. In fact, the ServerSide aspect might crosscuts others classes that
are return types or arguments type of the target component methods.

Original system A B
local calls between A and B

Client-side

Distribution Exception
aspects SeI’VGI’-SidG / handling
Recomposition
process Client-side Server-side
aspect aspec

o
Distributed system A % [I ‘
remote calls between A and B 3

Chent Server

]

Exceptlon Distribution
handling aspect specific API

Figure 2: PaDA’s structure.

Figure 3 presents a UML class diagram that shows the aspects and their with the
components to allow them to be remotely accessed. In that figure, TargeComponent is
the one to be remotely accessed by instances of SourceComponent.

89

SugarloafPLoP 2002 Proceedings

“agspect=> “Laspect=> “Laspect=>
ClientSide ExceptionHandler SemverSide
CrOSSCULS CrOSSCUES crosscuts CrOssCUES
Association to \l / \L !/
be rernotely SourceComponent TargetComponent
implemented 1.*

Figure 3: PaDA class diagram.

Dynamics

Figure 4 shows a sequence diagram of what is the original system behavior: a SourceComponent
instance makes local calls to some methods of a TargetComponent instance.

C SourceComponent TargetComponent

| <« Creates==

|

L] | LH

Laocal call ﬁﬁ —
e T

i
|
throw exeption J
|
|

exception handling

&1

Figure 4: Original system behavior.

Figure 5 is the sequence diagram that states what is the behavior after weaving the
aspects to the system: SourceComponent local calls are intercepted by the ClientSide
aspect that gets the reference to the remote instance and redirect the local call to it. Note
that the ServerSide aspect creates and makes the remote instance (a TargetComponent
instance) available to response remote calls.

If the remote call raises an exception, like in the n method call, the ExceptionHandler
aspect wraps the exception to an unchecked one and throws it, in the server-side. Note
that the message that wraps and throws the unchecked exception is a message to the
ExceptionHandler aspect itself, because the aspect is also responsible for catching the
unchecked exception providing the necessary handling in the client-side (SourceComponent).

90

SugarloafPLoP 2002 Proceedings

. SourceComponent . ClientSide . ExceptionHandler - SewerSide - TargetComponent
| | | s<create=> |
| Gets the remate | . \T‘
instance register()
Local calls | . | \T‘
intercepted by | Inokup[]l T
the aepect | instance ‘
| | LH available for
| mi) L | remote calls ‘
! | mo | |
‘ | — I
‘ L | T\ TRemote ﬁ LH
method call
) L | i |
f
| throw exception
wrap and throw unchecked ‘
Exception
catch and handle unchecked exception :I ‘ throwﬁ
T | | | |
Figure 5: System behavior after applying PaDA.
Consequences

The PaDA pattern has several benefits:

o Distributed Implementation. The pattern provides remote communication between
two components of a system;

e Modularity. PaDA structures the distribution code in aspects, which is completely
separated of the system code, making the system source code API-independent;

e Maintenance and extensibility. As the distribution code is completed separated of
the system code, changing the communication API is simpler and has no impact in
the system code. The programmers should just write another distribution aspects,
to the new specific API, or change the aspects already implemented to correct errors
and them woven it to the original system source code.

e Incremental implementation. PaDA allows incremental implementation [15]. The
system can be completely implemented and tested before implementing the distri-
bution aspects, since the distribution aspects are separated from the system source
code. This abstraction increases productivity, since the programmers should not
take care about distribution problems. This incremental implementation also al-
lows requirements validation without the impact of distribution.

91

SugarloafPLoP 2002 Proceedings

Additional separation of concern. PaDA structure defines exception handling as a
crosscutting concern, which is not done by object-oriented programming techniques.
Therefore, the exception handling can be changed without impacting in the original
system source code and in the distribution aspects, or in others aspects that can be
implemented, as the system requires.

Facilitate testing of functional requirements. Tests of the functional requirements
can be done easily if made using the system without the distribution. The full sep-
aration of concerns preserves the original system source code. This means that the
distribution aspect is added to the system just if the composition process (weaving)
is executed. Therefore, to obtain the monolithic system, just use the original source
code, or remove the distribution aspects from the weaving, in case of the need of
another concern, like data management.

The PaDA pattern also has the following liabilities:

New programming paradigm. The pattern uses a new programming technique that
implies in learning a new programming paradigm to use the pattern. Another
impact of being a new programming paradigm is regarding the separation of code
that usually was together in the same module. The programmer of the functional
requirements cannot see the resultant code that will implement the required concern,
decreasing code legibility.

Increased number of modules. PaDA adds three new modules into the system,
increasing the modules management complexity.

Increased bytecode. Each aspect definition will result in a class after woven it into
the system, which will increase the system bytecode.

Name dependence. The aspects definition depends of the system classes, methods,
attributes, and argument names, which decreases the aspects reuse. However, tools
can mostly automate the aspects definition, increasing the aspects productivity and
reuse.

Dynamic change of middleware. At the moment, the AOP languages do not allow
dynamic crosscutting, which does not allow changing the distribution protocol at
execution time. This can be done by other design pattern, DAP [1], however,
without achieving the separation of concerns we achieve with PaDA.

Allow using a same system through different middleware. The idea of AOP is gen-
erate versions of a system including concerns. The feature of using a same system
through different middleware can be achieved if several versions of the system were
generated. However, this implies in having several instances of the system (server-
side) executing, beside a single one, which may affect or invalidate concurrency
control. On the other hand, DAP [1] can do this easily.

92

SugarloafPLoP 2002 Proceedings

Implementation

The PaDA pattern implementation is composed of four major steps:

e Identify the components, server and client, to have the communication between

them distributed.

Write the server-side aspect. The server-side aspect is responsible to use specific dis-
tribution API code changing the server component, making it available to response
remote calls. This aspect may also have to change others components used as pa-
rameters or return values of the server component, depending of the distribution

APL

Write the client-side aspect. The client-side aspects are responsible to intercept the
original local calls made by the client component redirecting them to remote calls
made to the remote component (server).

Write the exception handler aspect. The exception handler aspect is responsible
handle with new exceptions added by the aspects definition. These exceptions raised
in the server-side are wrapped to an unchecked exception to throw them without
changing the signature of the original system source code. Therefore, the exception
handler aspect should also provide the necessary handling in the client-side classes.

Example

To exemplify the pattern we now consider a banking application and the RMI API to
distribute the communication. Figure 6 presents a UML class diagram that models the
banking example.

The BankServlet class is a servlet Java that provides a HT'ML and JavaScript user
interface making requests to the Bank object. This is the communication to be distributed,
therefore the ServerSide aspect should crosscuts the Bank class and the ClientSide
aspect should crosscuts the BankServlet class. The Bank class is the system Facade [§]
and has attributes like accounts and customers records

public class Bank {

b

private AccountRecord accounts;
public void deposit(String number, double value)

throws AccountNotFoundException {
accounts.deposit (number,value) ;

Yoo

and the operations to manipulate them.

In Aspect] the aspects can affect the dynamic structure of a program changing the
way a program executes, by intercepting points of the program execution flow, called
join points, and adding behavior before, after, or around (instead of) the join point.
Examples of join points are method calls, method executions, instantiations, constructor

93

SugarloafPLoP 2002 Proceedings

crosscuts <<aspect>>
HttpSerdet =< |— BankServet CIierEtSide
CrOSSCMS
Bank
crosscuts <=aspect==

depositinumber, value) ExceptionHandler

withdraw(number, value) \

CustamerRecord AccountRecard Crosscuts
add{customer) add{account)
remove(identification) remave(number)
update(custamer) withdraw(number, valug)
retrieve(identification) depositinumber, value)
transferifram, to, value)
balance(humber) <zaspects:
Serverside
) ~
CHIGSCLHS
C Account e
ustomer
identification UERReS
balance

crosscuts

Figure 6: Class diagram of a banking application using PaDA.

executions, field references (get and set), exception handling, static initializations, others,
and combinations of these by using the !, && or || operators. Usually, an aspect defines
a pointcut that selects some join points and values at those join points. Then an advice
defines the code that is executed when a pointcut is reached. The advice is who defines
what code should execute before, after, or around the pointcut.

Server-side aspect

The ServerSide aspects should make the Bank instance available to remote calls. Besides
being the system facade, the Bank class also implements the Singleton [8] design pattern.
The server-side aspect should intercept the Bank initialization to make it available to
be remotely accessed. The first step is defining a pointcut to identify the Bank object
initialization, which is shown in following piece of code

public aspect ServerSide {
pointcut bankInit(Bank b): execution(Bank.new(..)) && this(b);

where the pointcut designator execution join points when any constructor of Bank is
executed, and the this designator join points when the currently executing object is an
instance of the type of b (Bank).

This pointcut is used by the following advice

94

SugarloafPLoP 2002 Proceedings

1: after(Bank b): bankInit(b) {

2 try {

3 UnicastRemoteObject.exportObject (b);

4: java.rmi.Naming.rebind("/BankingSystem", b);
5 } catch (Exception rmiEx) { ... }

6: }

that adds some code (lines 2 to 5) after the pointcut, i.e., after the execution of any Bank
constructor. The added code is responsible to make the Bank instance available to be
remotely accessed, through the name “BankingSystem”.

The server-side aspect has to define a remote interface that has all facade methods
signatures adding a specific RMI API exception (java.rmi.RemoteException).

public interface IRemoteBank extends java.rmi.Remote {
void deposit(String number, double value)
throws AccountNotFoundException, java.rmi.RemoteException;

}

The aspect also has to modify the classes whose objects will be remotely transmitted
over the distributed communication channel. They just have to use the Java Object
Serialization mechanism, by implementing the java.io.Serializable interface. We use
the AspectJ’s introduction mechanism that can modify the static structure of programs
to do it, as in the following piece of code

declare parents: Bank implements IRemoteBank;
declare parents: Account || Client implements java.io.Serializable;

Client-side aspect

The client-side aspect should define a pointcut to identify all executions of the Bank
methods (lines 3 and 4), and advices to redirect local calls to facade’s remote instance,
like the one in lines 6 to 13

1: public aspect ClientSide {

2: private IRemoteBank remoteBank;

3: pointcut facadeCalls(): within(HttpServlet+) &&
4: call(x Bank.*x(..));

5:

6: Object around(double value) throws /* ... */:
7: facadeCalls() && call(void deposit(double)) && args(value) {
8: Object response = null;

9: try {

10: response = remoteBank.deposit(value);

11: } catch (RemoteException ex) { ... }

12: return resposta;

13: }

14: }

95

SugarloafPLoP 2002 Proceedings

where remoteBank (lines 2 and 10) references the facade remote instance whose local
call will be redirected to. In this case the around advice executes its code instead the
code identified by the pointcut facadeCalls and the additional join points (line 7), that
identify calls to the deposit methods that gets a double as argument, which should be
used as argument to the remote call (line 10).

Exception handling

The AspectJ police to handle with exceptions introduced by the aspects definition is
encapsulating them in to an unchecked exception, called soft exception. To do it we use
the declare soft declaration to wrap the NewException that gets thrown at any join
point picked out by the pointcut mightThrowNewException

public aspect ExceptionHandler {
declare soft: NewException: mightThrowNewException();

Therefore, this unchecked exception (SoftException) should be handled in the user
interface class. Note that exception handling is a natural crosscutting concern, usually
spread in the system units. To handle this exception we should define an after throwing
advice that runs after the join points defined by the pointcut facadeCalls if it throws
the SoftException

after() throwing (SoftException ex): facadeCalls() {
// exception handling, for example, messages to the user
}
}

providing the convenient exception handling.

Variants

An extension of this pattern can define other aspects to provide additional non-functional
requirements, such as fault-tolerance, caching, and object transmission on demand to
increase both system robustness and efficiency. Aspects can also provide functional re-
quirements.

Another extension can define the three aspects as a single one that crosscuts source
and target components and other classes that are return types or arguments type of the
target component methods.

Known Uses

This pattern was used in an experiment to implement distribution in a system that allows
citizens to complain about health problems and to retrieve information about the public
health system, such as the location or the specialties of a health unit. The client-side
aspect was defined to the system servlets, and the server-side aspect was defined to the
facade class. The system facade was not in the web server due to security and performance
reasons.

96

SugarloafPLoP 2002 Proceedings

Another use of PaDA in Web based information systems can define the client-side
aspect to an applet, but we have not implemented or seen that.

Developers have been using patterns [17, 2] similar to PaDA to implement distribution.
In particular, the pattern in the first work is similar to PaDA'’s client-side aspect, and the
pattern in the second work is similar to the PaDA’s server-side aspect.

In fact, we know several real software projects that implement distribution and could
use this pattern. Some of these systems are the following:

e The real system for registering health system complaints.

e A system to manage clients of a telecommunication company. The system is able
to register mobile telephones and manage client information and telephone services
configuration. The system can be used over the Internet.

e A system for performing online exams. This system has been used to offer differ-
ent kinds of exams, such as simulations based on previous university entry exams,
helping students to evaluate their knowledge before the real exams.

e A complex supermarket system. A system that is responsible for the control of sales
in a supermarket. This system will be used in several supermarkets and is already
been used in other kinds of stores.

In addition, PaDA can be used as one of the basic patterns of the Progressive Im-
plementation Method (Pim) [4]. Pim is a method for the systematic implementation of
complex object-oriented applications in Java. In particular, this method supports a pro-
gressive approach for object-oriented implementation, where persistence, distribution and
concurrency control are not initially considered in the implementation activities, but are
gradually introduced, preserving the application’s functional requirements. The PaDA
design pattern can be applied for dealing with distribution.

See Also

e DAP — Distributed Adapters Pattern [1]. This pattern and PaDA has the same
objectives, however, DAP uses plain object-oriented programming techniques and
others design patterns, which do not provide full separation of concerns. Another
difference is that DAP does not separate the exception handling as a crosscutting
concern like PaDA does.

e Reflection [5]. This pattern is related to aspect-oriented programming. It provides
a mechanism for changing structure and behavior of software systems dynamically.
This pattern splits the application into two levels. A base level that implements the
functional requirements, and a meta level that can modify the base level behavior.
Comparing it with PaDA the base level is analog to the functional requirements,
for example, implemented in Java, and the meta level is analog to the aspects, for
example, implements in AspectJ.

o Distributed Proxy Pattern [14]. This pattern and PaDA have similar objectives, like
making the incorporation of distribution transparent. However, as the previous one,
this pattern does not provide full separation of concerns.

97

SugarloafPLoP 2002 Proceedings

Wrapper-Facade [13]. Like PaDA this pattern has the goal of minimizing platform-
specific variation in application code. However, Wrapper-Facade encapsulates exist-
ing lower-level non-object-oriented APIs (such as operating systems mutex, sockets,
and threads), whereas PaDA encapsulates object-oriented distribution APIs, such as
RMI and CORBA. Again, this pattern does not provide full separation of concerns.

e Broker and Trader [5]. These architectural patterns focus mostly on providing

fundamental distribution issues, such as marshalling and message protocols. There-
fore, they are mostly tailored to the implementation of distributed platforms, such
as CORBA. PaDA provides a higher level of abstraction: distribution API trans-
parency to both clients and servers.

Chain of Responsibility [8]. Similar to PaDA this patterns decouples the sender of a
request from its receiver. However, it does not perform isolation of the distribution
platform’s API.

Model-View-Controller (MVC) [5] is used in the context of interactive applications
with a flexible human-computer interface. Its goal is to make changes to user inter-
face easy and even possible at run time. PaDA is used in the context of distributed
applications and aims at making changes to the distribution platform a simple task,
not impacting in other parts of the system.

Acknowledgments

We would like to give special thanks to Jorge L. Ortega Arjona, our shepherd, for his im-
portant comments, helping us to improve our pattern. We also thanks Rossana Andrade,
Jonivan Lisboa, Marcos Quindia, and Rubens Ferreira for the suggestions made at the
conference.

References

1]

Vander Alves and Paulo Borba. Distributed Adapters Pattern: A Design Pattern for
Object-Oriented Distributed Applications. In First Latin American Conference on Pattern
Languages Programming — SugarLoafPLoP, Rio de Janeiro, Brazil, October 2001. UERJ
Magazine: Special Issue on Software Patterns.

Dan Becker. Design Networked Applications in RMI Using the Adapter Design Pattern.
Java World, May 1999.

L. Bergmans and M. Aksit. Composing crosscutting concerns using composition filters.
Communications of the ACM, 44(10):51-57, October 2001.

Paulo Borba, Saulo Araujo, Hednilson Bezerra, Marconi Lima, and Sérgio Soares. Progres-
sive Implementation of Distributed Java Applications. In Engineering Distributed Objects
Workshop, ACM International Conference on Software Engineering, pages 40-47, Los An-
geles, EUA, 17th—18th May 1999.

Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stal. A
System of Patterns: Pattern-Oriented Software Architecture. John Wiley & Sons, 1996.

98

[6]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

SugarloafPLoP 2002 Proceedings

Yvonne Coady, Gregor Kiczales, Mike Feeley, and Greg Smolyn. Using aspectc to improve
the modularity of path—specific customization in operating system code. FSE, 2001.

Tzilla Elrad, Robert E. Filman, and Atef Bader. Aspect—Oriented Programming. Commu-
nications of the ACM, 44(10):29-32, October 2001.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: FEle-
ments of Reusable Object-Oriented Software. Addison-Wesley, 1994.

R. Hirschfeld. AspectS: AOP with Squeak. In OOPSLA’01 Workshop on Advanced Sepa-
ration of Concerns, Tampa FL, 2001.

Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and William G.
Griswold. Getting Started with AspectJ. Communications of the ACM, 44(10):59-65,
October 2001.

Karl Lieberherr and Doug Orleans. Preventive program maintenance in Demeter/Java. In
International Conference on Software Engineering, pages 604-605, Boston, MA, 1997.

Harold Ossher and Peri Tarr. Hyper/J: multi-dimensional separation of concerns for Java.
In 22nd International Conference on Software Engineering, pages 734-737. ACM, 2000.

Douglas Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann. Pattern—Oriented
Software Architecture, Vol. 2: Patterns for Concurrent and Networked Objects. Wiley &
Sons, 2000.

Antonio Rito Silva, Francisco Rosa, and Teresa Goncalves. Distributed proxy: A design
pattern for distributed object communication. In PLoP’97, Monticello, USA, September
1997. http://jerry.cs.uiuc.edu/ plop/plop97/Proceedings/ritosilva.pdf.

Sérgio Soares and Paulo Borba. Progressive implementation with aspect—oriented program-
ming. In Springer Verlag, editor, The 12th Workshop for PhD Students in Object-Oriented
Systems, ECOOP02, Malaga, Spain, June 2002.

Sérgio Soares, Eduardo Laureano, and Paulo Borba. Implementing distribution and persis-
tence aspects with AspectJ. In Proceedings of OOPSLA’02, Object Oriented Programming
Systems Languages and Applications. ACM Press, November 2002. To appear.

Gregg Sporar. Retrofit Existing Applications with RMI. Java World, January 2001.

99

SugarloafPLoP 2002 Proceedings

100

SugarloafPLoP 2002 Proceedings

FaPRE/OO: Uma Familia de Padrées para Reengenharia Orientada a
Objetos de Sistemas Legados Procedimentais

Edson Luiz Recchia Rosangela Penteado
DC - Universdade Federal de Séo Carlos / DC - Universdade Federa de Séo Carlos
Universidade Anhembi Morumbi
erecchia@terra.com.br rosangel@dc.ufscar.br
Resumo

Padrées de engenharia reversa e de reengenharia registram como profissionais experientes conduzem esses
processos em sistemas legados. A Linguagem de Padrées de Engenharia Reversa encontrada na literatura
conduz esse processo no contexto da orienta¢do a objetos. Com sua aplicagdo a sistemas legados
procedimentais ndo se consegue realizar plenamente o processo de engenharia reversa. Neste trabalho, uma
Familia de Padrées de Reengenharia é elaborada, para conduzir esse processo a partir de sistemas legados
procedimentais para sistemas alvos orientados a objetos. Sistemas legados implementados em Clipper sdo
utilizados para ilustrar, passo a passo, o uso dessa Familia.

Abstract

Reengineering Patterns, including reverse engineering patterns, record how experienced software engineers
conduct these processes in legacy systems. The Pattern Language for Reverse Engineering found in the
literature conducts this process in an object-oriented context. With its application to procedural legacy systems,
one cannot wholly conduct the reverse engineering process. In this paper, a Family of Patterns for
Reengineering is proposed to conduct this process from procedural legacy systems to object-oriented target
systems. Legacy systems implemented in the Clipper language are used to illustrate, step by step, the usage of
the Family.

1. Introducao

Segundo Chikofsky et d. [5], 0 termo engenharia reversa teve origem na andise de
hardware. Afirmam que engenharia reversa, usada com tecnologia de desenvolvimento de
software, pode fornecer ganhos dgnificativos em temos de produtividade. Definem
engenharia reversa como um processo de andise de um sSstema exigente, que identifica seus
componentes e 0s representa em um nivel mais ato de abstracéo.

A engenharia reversa tem um Otimo potencid de retorno econdmico e € importante
organizar e disseminar técnicas a fim de oferecer uma documentacdo comprovada para
problemas comuns.

Dewar e d. [7], rdatam que pretendiam entender como profissonais experientes
conduziam a reengenharia de sstemas legados, a fim de desenvolver técnicas e materiais para

Copyright © 2002, Edson Luiz Recchia; Rosangela Penteado. Permission is granted to copy for SugarloafPLoP
2002 Conference. All other rights reserved.

101

SugarloafPLoP 2002 Proceedings

transferir experiéncia. Em particular, queriam tratar o problema de gntetizar experiéncia
com reengenharia de sstemas e de organizacOes, para gudar engenheiros de software a
adquiri-las, em paraleo.

Estamos interessados em eaborar padrdes para 0 processo de reengenharia,
epecidmente para engenharia reversa orientada a objetos de Ssemas legados
procedimentais, particularmente no dominio de sSstemas de informagdo, bem como, para
técnicas de conducao desse processo.

Nossa abordagem para resolver esse problema é uma Familia de Padrbes de
Reengenharia, denominada FaPRE/OO, contendo um conjunto de trés clusters de padrdes
para 0 Processo de Engenharia Reversa. A maior contribuicdo da FaPRE/OO é que ela conduz
0 engenheiro de software a gerar conjuntos de padrfes para 0s processos de engenharia
reversa e de engenharia avante especidizados em uma particular linguagem de programacéo
procedimentd.

Neste trabalho mostramos como a FaPRE/OO foi elaborada a partir de sstemas legados
em Clipper [15] e Cobol [3], para dstemas avo em Delphi [15] e Java [3]. Os padrbes da
FaPRE/OO foram aplicados a casos concretos de elaboracdo de orcamentos de obras da
consgtrugdo civil [15], controle de materiad em uma mineradora [3] e controle contébil [8§].

Este trabaho est& organizado da seguinte forma: na Secéo 2 sdo introduzidos os padrfes
para 0 processo de engenharia reversa, propostos pea Familia de Padrbes de Reengenharia
(FaPRE/OO); na Secdo 3 sdo gpresentados exemplos de como se gera conjuntos de padrdes a
partir dessa familia; na Secéo 4 é apresentada uma comparacd da FaPRE/OO com outros
trabal hos, finalmente, na se¢do 5 sfo apresentados os comentarios finais.

2. Padroes para o Processo de Engenharia Reversa da Familia de Padrdes de
Reengenharia - FaPRE/OO

A FaPRE/OO é uma Familia de Padrbes de Reengenharia para gerar processos de
engenharia reversa e de engenharia avante orientados a objetos, a partir de sstemas legados
procedimentais. E composta de quatro clusters, cada um agrupando os padrdes relacionados a
Stuagbes smilares da reengenharia, sendo trés clusters para 0 processo de engenharia reversa
e um para 0 processo de engenharia avante. A Figura 1 ilustra graficamente os clusters € 0S
padrfes existentes em cada um deles.

Cluster 1: Modelar os Dados do Legado: agrupa padrdes que extraem informacdes a
partir dos dados e do cddigo fonte do sstema legado gerando o MER [15] - Modeo Entidade
Relacionamento (visdo procedimental dos dados) e o MASA [11] - Modelo de Andise do
Sdema Atud - Diagrama de Pseudo-Classes (visdo orientada a objetos dos dados). Esses
padrdes conduzem & acdes do engenheiro de software quando se tem o primeiro contato com
um sistema de software. Fazem parte desse cluster 0s seguintes padrées. Iniciar Andise dos
Dados, Definir Chaves, Identificar Relacionamentos; Criar Viséo OO dos Dados.

Cluster 2: Moddar a Funciondidade do Sgema: agrupa padrbes para obter a
funciondidade do distema, criando modelos que recuperem as Regras de Negocio da
Empresa, contidas no sstema legado. Esses padrdes habilitam o engenhelro de software a
obter um entendimento detalhado dos componentes (partes) do sSistema de software,
gprofundando, assm, sua compreensdo sobre o sistema legado. Fazem parte desse cluster os
seguintes padrfes. Obter Cendrios, Congtruir Diagramas de Use Cases, Elaborar a Descricéo
de Use Cases; Tratar Anomdias.

Cluster 3: Moddar 0 Sisema Orientado a Objetos. agrupa padrOes para se obter o
Diagrama de Classes e os Diagramas de Sequéncia do sstema, através da interacdo dos

102

SugarloafPLoP 2002 Proceedings

produtos obtidos pelos padrfes dos clusters anteriores. Esses padrdes habilitam o engenheiro
de software a obter 0 MAS [11] - Modelo de Andise do Sistema, sendo 0 modelo orientado a
objetos a servir de suporte ao processo de engenharia avante. Fazem parte desse cluster 0S
seguintes padrGes. Definir as Clases, Definir Atributos, Andisar Hierarquias, Definir
Métodos, Congtruir Diagramas de Sequiéncia.

Cluster 4: Gerar 0 Sistema Orientado a Objetos. agrupa padrbes que completam o
processo de reengenharia do sSstema, transformando o Sstema legado, do paradigma
procedimentd para 0 paradigma orientado a objetos. Fazem parte desse cluster 0S seguintes
padrdes. Definir a Plataforma; Converter o Banco de Dados, Implementar os Méodos,
Redizar Mehorias na Interface.

o

o

Gerar o Sistema Orientado a Objetos
* Definir a Plataforma.

* Converter o Banco de Dados.

* Implementar os Métodos.

* Realizar Melhorias na Interface.

O3 ®3 —Q3®~3mMm

Y

Modelar o Sistema Orientado a Objetos
* Definir as Classes

Definir Atributos

Analisar Hierarquias

° Definir Métodos
Construir Diagramas de Seqiiéncia

S
i
S
t Modelar a Funcionalidade do Sistema
e * Obter Cenarios

* Construir Diagramas de Use Cases
m - Elaborar a Descri¢io de Use Cases
a * Tratar Anomalias

Modelar os Dados do Legado
* Iniciar Anilise dos Dados
© Definir Chaves
- Identificar Relacionamentos
* Criar Visio OO dos Dados

Processo de Reengenharia

Figura 1: FaPRE/OO - Familia de Padrdes para Reengenharia Orientada a Objetos [15]

O letor observard que muitos padrfes terdo como entrada a saida de agum padréo
gplicado anteriormente, exigindo entéo sua aplicacdo seqiencial. No entanto, como se pode
observar na Figura 1, o modelo é evolutivo, podendo-se, de qualquer padrdo, avancar ou
retroceder apds a sua aplicacdo. A aplicacdo sequencia somente serd necess&ria durante o

103

SugarloafPLoP 2002 Proceedings

primeiro ciclo. Como exemplo, pode-se citar 0 caso de sstemas legados com centenas de
arquivos de dados, divididos em modulos funcionais. Inda-se a engenharia reversa a partir de
um moédulo quaquer, aplicando-se todos padrfes apresentados na Figura 1, construindo-se
assm todos os modeos envolvidos. Com isso, va-se dominando paulainamente 0 sstema,
podendo-se incorporar outros médul os, num processo ciclico e progressivo.

Embora a FAPRE/OO sga composta de padrfes para tratar tanto a engenharia reversa
como a engenharia avante, somente os padrdes referentes a0 processo de Engenharia Reversa
S80 cons derados neste trabal ho.

Os padroes apresentados a seguir obedecem o seguinte formato proposto origind mente
por Demeyer [6]: Nome, Intuito, Problema, Contexto (Influéncias), Solucdo, Avaiacéo,
Judificativa, Usos Conhecidos, Padrdes Relacionados e Produtos Obtidos. O item
correspondente a Solug¢iio a ser adotada é gpresentado na forma de passos, sempre que
necessario. Os itens que tratam da Avaliagio (7rade-off) e Justificativa ndo sdo apresentados
por ndo serem pertinentes, uma vez que devem conter a opinido dos engenheiros de software
guando da utilizacdo desses padrdes em seus processos de engenharia reversa. Finamente, o
item Usos Conhecidos € explicitado a seguir, por ser comum a todos os padrdes.

Usos Conhecidos dos Padroes Propostos:

O uso dos conceitos de cada padréo, sem estarem na forma de padréo, foram reconhecidos

nos processos de engenhariareversarealizados em [1] [2] [3] [8] [10] [11] [24] [17].

Procedimentos utilizados para solucionar problemas andlogos, ja sob a forma de padrfes,

foram usados em [4] [15].

2.1. Cluster 1: Modelar os Dados do Legado

Sgemas legados desenvolvidos de forma procedimentd e implementados em linguagens
como Clipper, Cobal, etc., tém, gerdmente, as seguintes informagdes como documentaco:
cddigo fonte, arquivos de dados, arquivos de indices e o proprio Sstema num aquivo
executavel. No entanto, esses arquivos em Sua maioria, representam entidades importantes do
sstema, sendo possivel, por meio deles, gerar um modelo de dados do sistema.

1. Nome: [niciar Andise dos Dados
Intuito:

Iniciar a consrugdo do MER, Moddo Entidade Reacionamento, utilizando uma tabela
que relaciona todos os programas/modulos que fazem parte do sstema, com seus respectivos
arquivos de dados.

Problema:

Existe uma relacdo de programas/modulos e de arquivos de dados na Organizacdo, porém
nao se sabe como eles se relacionam.

Influéncias:

Auséncia de documentacao, exceto o codigo fonte (programas) e os arquivos de dados.

Em dstemas complexos, ha grande quantidade de arquivos de programas e de dados,

dificultando 0 seu entendimento.

Solucio:

1. Congruir uma tabela, denominada Programas x Arquivos, com duas colunas. A primera
coluna contém os nomes dos programas e, a segunda, 0 home dos arquivos de dados a
gue esses programas tém acesso. O nome original desses arquivos deve ser mantido.

2. Iniciar a construcdo do MER, a partir da tabela construida no passo 1. Considere cada
arquivo de dados do sistema legado como uma entidade do MER.

Padroées Relacionados:

Esse padrdo é a entrada para o padréo | dentificar Relacionamentos.

104

SugarloafPLoP 2002 Proceedings

Produtos Obtidos:
Tabela Programas x Arquivos,
MER — Moddo Entidade Rdacionamento Inicid.

2. Nome: Definir Chaves
Intuito:

Obter as chaves primarias e edtrangeiras para cada entidede identificada pelo padréo
Iniciar Andise dos Dados, a partir de arquivos de dados do sistema legado, a fim de
identificar os relacionamentos entre as entidades que compdem o MER, iniciado no passo
anterior.

Problema:

Em sgemas procedimentais ndo existe 0 conceito de chaves primérias e edtrangeras.
Nesses dstemas as chaves podem estar em arquivos separados ou em clausulas especials
dentro do préprio arquivo de dados.

Influéncias:

Sgemas implementados em linguagens como Clipper, Cobal, etc., utilizam arquivos para

persistir os dados.

Para obter a chave primaria, a partir dos arquivos de dados, é necessario andisar arquivos

de indices (por exemplo, Clipper) ou o proprio arquivo (por exemplo, Cobol).

Para obter a chave estrangeira, necessita-se fazer uma andlise dos arquivos de dados e do

codigo fonte.

O engenheiro de software tem a sua digposicdo utilitiios que acompanham a linguagem

de implementacdo, os quais viabilizam a andise dos arquivos de dados e de indices.

Tém-se todos os indices de acesso aos dados do sistema, nos quais estdo identificadas as

chaves de acesso aos dados.

Solucio:

1. Congruir a Tabela Entidades x Chaves, com duas colunas. A primeira coluna contém os
nomes das entidades e, a segunda, as chaves primérias identificadas para essas entidades.

2. Utilizar o cddigo fonte e uma ferramenta apropriada, se exigtir, para identificar as chaves
edrangeiras das entidades, adicionando-as na Tabela Entidades x Chaves em uma nova
coluna (chaves estrangeiras).

Padroes Relacionados:

Esse padréo é aentrada para o padrdo |dentificar Relacionamentos.

Produto Obtido:

Tabela Entidades x Chaves.

3. Nome: |dentificar Relacionamentos

Intuito:

Identificar os relacionamentos entre as entidades do MER.

Problema:

N&o se sabe como os arquivos de dados do sistema legado estdo relacionados entre 5.
Influéncias:

Sgemas implementados em linguagens como Clipper, Cobol, etc., em gerd ndo utilizam
banco de dados relaciond, no qua os relacionamentos entre as tabelas sfo explicitos.

A partir da ingpecdo dos dados e da andlise do codigo fonte é possivel reconstruir o
modelo de dados do sistema legado.

Solucio:

1. Utilizando-se a Tabela Entidades x Chaves e trechos do codigo fonte que auxiliaram na
elaboracdo dessa tabela, pode-se identificar os relacionamentos entre entidades. Sempre
gue o campo de um arquivo de dados, que representa a chave primé&ia de dguma
entidade, for atribuido a um campo de um outro arquivo de dados, que representa a chave

105

SugarloafPLoP 2002 Proceedings

edrangeira de outra entidade (ou dela mesmo, no caso de auto-relacionamento), ha um
relacionamento entre entidades, sendo esse representado no MER.

2. Paa explicitar a cadinadidade deve-se observar, nos trechos de codigo fonte, se ha
condicdo redtritiva quanto a gravacdo da informacdo. Caso hga, a propria condicdo
informa a cardindidade minima e a mé&ima. Caso ndo hga, a cardindidade minima é
“Zero” eamaximaé“N”.

Padroes Relacionados:
Esse padréo tem como entrada os seguintes padrdes. Iniciar Andise dos Dados e Definir

Chaves.

Produto Obtido:
MER — Modelo Entidade Rel acionamento do sistema legado.

4. Nome: Criar Visdo OO dos Dados
Intuito:

Criar uma visdo orientada a objetos dos dados.

Problema:

Trandformar um modelo de dados desenvolvido de forma procedimenta em um modeo
de dados orientado a objetos.

Influéncias:

Reconhecer classes/objetos e seus rdlacionamentos a partir do codigo procedimentd é

difidil.

O engenheiro de software tem conhecimento dos conceitos da UML, Linguagem

Unificada de Modelagem, para gerar um modelo Orientado a Objetos, a partir do MER.

Solucio:

A patir do MER, congruir o Diagrama de Pseudo-Classes (candidatas a classes) do
sstema legado, gerando, assm, 0 MASA, Moddo de Andise do Sisgema Atud. O nome
origina das entidades do MER deve ser mantido.

1. Consderar cada entidade do MER como uma pseudo-classe.

2. Buscar pares de relacionamentos npara-n, no MER, que podem ser representados como
link de atributo no modelo orientado a objetos, de acordo com a funciondidade do
sistema legado e com os conceltos da orientacdo a objetos.

3. Buscar nos rdacionamentos um-para-n, no MER, agueles que podem representar o
Principio Todo-Parte (Agregacd por: Referéncia ou Vaor), consderando a
funcionalidade do sistema legado e os conceitos da orientacdo a objetos.

4. Casos de Especiaizacdo seréo tratados no padrdo Andlisar Hierarquias.

Padroes Relacionados:

Esse padréo é a entrada para o padrdo Tratar Anomalias.

Produto Obtido:

MASA - Moddo de Andise do Sistema Atud: Diagrama de Pseudo- Classes.

2.2. Cluster 2: Modelar a Funcionalidade do Sistema

Os padrbes desse cluster recuperam a funciondidade do dstema, com o enfoque de
orientacdo a objetos, criando model os que representam as regras de Negdcio.

5. Nome: Obter Cenarios
Intuito:
Obter os Cenarios do Sistema através da andlise das interfaces do sistema em operacéo.
Problema:

106

SugarloafPLoP 2002 Proceedings

Ha grande variedade de interfaces nos sstemas legados. No entanto, € necessario
identificar os Cenarios do Sistema para obter um modelo que represente a sua funciondidade.

Influéncias:

Sdemas implementados em linguagens como Clipper, Cobol, etc, utilizam tdas de

menus para 0 acesso afuncionaidade.

N&o existe uma forma padronizada para a construcdo desses menus.

Cada Cenario, em sistemas legados como Clipper, Cobol, etc., € representado por um

Menu e cada opcao do menu corresponde a um ou mais programas fonte.

Solucio:

Congruir a Tabela denominada Cenarios do Sitema, com duas colunas. A primeira
coluna contém as opgdes do menu principd e, a segunda, os submenus de cada op¢do do
menu principal. Para essa construcdo, obter os cend&rios do sistema através da observacéo do
sgemalegado em operacéo.

Informacoes Adicionais:

Quando dstemas legados possuem interface poluida (ndo possuindo menus e submenus)

contendo todas as opgdes do sSstema em uma tela, 0 engenheiro de software deve usar sua

experiéncia para extrair Cenérios de forma and oga aos menus.

Para submenus que contenham outros submenus, como por exemplo um submenu Manter

Clientes que possua submenu com as opgdes de Incluir, Alterar, Excluir, etc., o

engenheiro de software deve regisrar opgdes secundérias juntamente com o

primeiro submenu: Manter Clientes (Incluir, Alterar, Excluir, etc.).

Quando a interface possuir poucos menus, a Tabela Cendrios do Sistema pode ser

congtruida a partir de botdes, links, ou qualquer outro meio de acesso ainformacéo.

Padroes Relacionados:

Esse padréo é a entrada para o padrdo Construir Diagramas de Use Cases.

Produto Obtido:

Tabela Cenarios do Sistema.

6. Nome: Condruir Diagramas de Use Cases

Intuito:

Congtruir todos os Diagramas de Use Cases do sistema a partir da Tabela Cenarios do
Sisema eaborada pelo padréo Obter Cenérios.

Problema:

Documentar as informagbes da funciondidade de um Sstema legado procedimentd,
durante a engenharia reversa orientada a objetos.

Influéncias:

Obter os Use Cases a partir do cédigo procedimentd é dificil.

Os cenarios obtidos a partir das opgdes de menu, viabilizam a construgdo dos respectivos

diagramas de use cases.

Solucio:

Congderar como Use Case cada item da segunda coluna da Tabela Cenarios do Sistema.
O engenheiro de software deve usar sua experiéncia para definir nomes para cada Use Case,
bem como definir os eventos associados a cada um deles, pela observacdo do sstema legado
em operagcdo, quando da ativacdo de cada opgdo do Menu correspondente. Obtém-se as
epecidizaghes uses € extends/includes por observacdo do codigo fonte de cada item da
segunda coluna (Contelido), dessa tabela, que chama ou é chamado por outro
programa/modulo, que corresponde a outro item dessa mesma coluna.

Padroes Relacionados:

Esse padréo deve ser gplicado em conjunto com o padrdo Entrevisar o Usuério Durante o
Sistema em Operacéo (nterview During Demo) proposto por Demeyer [6] e € utilizado como

107

SugarloafPLoP 2002 Proceedings

entrada para o padréo Elaborar a Descricdo de Use Case.
Produto Obtido:
Diagramas de Use Cases do sistema.

7. Nome: Elaborar a Descricdo de Use Cases
Intuito:
Elaborar a Descricdo correspondente a cada Use Case obtido pelo padrdo Construir
Diagramas de Use Cases.
Problema:
E necessxio regisrar a logica da funciondidede do Sstema para fadilitr sua futura
reengenharia
Influéncias:
Ha fdta de documentacéo do sistema que registre aldgica da funciondidade.
Tem-se o codigo fonte disponivel para obter aldgica da funcionalidade.
O engenheiro de software tem experiéncia de uso da linguagem de programacao.
Solucio:
Para cada Use Case obtido pelo padrédo Construir Diagramas de Use Cases, daborar a sua
Descricdo a partir do codigo fonte do sistema legado.
Padroes Relacionados:
Esse padréo tem como entrada o padréo Construir Diagramas de Use Cases e € utilizado
como entrada para o padréo Tratar Anomalias.
Produto Obtido:
Descricdo de cada Use Case do sstema.

8. Nome: Traiar Anomdias

Intuito:

Andlisar as Descrices de Use Cases para tratar as anomdias, definindo, assm, os
possiveis métodos das pseudo-classes (candidatas a classe) do sistema, obtidas pelo padréo
Criar Viséo OO dos Dados.

Anomalia: Quando a Descricdo do Use Case faz acesso/atudizac@o a arquivos de dados que

ndo pertencem a pseudo-classe a que ee se reaciona, entéo infere-se que esse procedimento

(Descricdo do Use Case) é andmao. A anomdia pode ser do tipo:

o+ Quando o procedimento é observador de duas ou mais classes,

c+ Quando o procedimento é construtor de duas ou mais classes,

oc Quando o procedimento é observador de uma classe e construtor de outra;

o+¢c Quando o procedimento é observador de duas ou mais classes e construtor de outra;

oc+ Quando o procedimento € observador de uma classe e congrutor de duas ou mais
classes,

o+c+ Quando o procedimento € observador de duas ou mais classe e congtrutor de duas ou
mais classe;

i Quando o procedimento é dependente da implementacdo e que ndo se refere a classe
dguma.

Problema:

Em dgtemas condruidos de forma procedimenta pode exisir um nUmero elevado de
anomdias em cada procedimento (codigo fonte). Deve-se diminar essas anomdias uma vez
que, em sistemas orientados a objetos, os méodos estéo associados a uma Unica classe. Entéo,
€ necessario trandformar o codigo fonte correspondente ao procedimento andmalo (Descricéo
do Use Case) em métodos.

Influéncias:

108

SugarloafPLoP 2002 Proceedings

Quando o gsema ndo tem implementacdo orientada a objetos, a andise dos

procedimentos pode ser complexa.

Requer do engenheiro de software experiéncia para extrar as anomdias a patir da

Descricéo do Use Case.

Tém-se as Descricles de Use Cases geradas a partir do codigo fonte.

Solugao:

Para cada Descricdo de Use Case, obtida pelo padréo Elaborar a Descricao de Use Cases,
congtrua a Tabela Detahes de |mplementac@o, com seis colunas:

A primeira coluna contém o nome do Use Case;

A segunda coluna contém o nome de todos os programas/médulos (cddigos fontes)

utilizados na construcéo do Use Casg;

A tercera coluna contém o nome das pseudo-classes do MASA correspondentes aos

arquivos de dados a que se tem acesso em cada programa/maédul o;

A quata coluna contém a classficagdo quanto ao tipo de acesso ao arquivo de dados,

redlizado pelo procedimento;

A quinta coluna contém 0s nomes dos possiveis méodos quando as anomdias forem

eiminadas,

A sexta coluna contém os nomes das pseudo-classes revisadas, a que 0s respectivos

métodos estéo associados.

1. Iniciar a condrucéo da Tabela Detahes de Implementacdo, verificando para cada
Descricéo de Use Case 0 tipo de acesso aos arquivos. Transformar o trecho fonte que
consulta/dtera diversos arquivos em possivels métodos, eiminando assm o mudtiplo
aces0 a arquivos. A parte do codigo que somente consulta um arquivo é retirada desse, e
uma chamada a esse método é feita para que a funcionalidade do sistema sgja mantida.

2. Continuar a congtrucdo da Tabela Detdhes de Implementaco, renomeando as pseudo-
classes que ndo representam completamente a informacdo dentro do contexto do sistema
Por exemplo, uma pseudo-classe com o nome ITPedido poderd ser renomeada para
[tensPedido.

3. Acrescentar na Tabela Detahes de Implementagdo, os nomes de entidades do MER
(arquivo de dados) existentes no cddigo fonte que foram usados apenas para atender a
necessdades de implementacdo. Esses arquivos sf0 tempor&rios e ndo fazem parte da
funciondidade do sSsema. Portanto, toda pseudo-classe que € criada por agum
procedimento classificado com aanomdiai deve ser desconsiderada.

4. Acrescentar na coluna pseudo-classes revisadas, da Tabela Detadhes de Implementacéo,
as pseudo-classes correspondentes a trechos do cddigo fonte usados para implementar
informagbes adicionais em memdria. Por exemplo, tabelas de descontos em fungdo da
quantidede comprada, que foram implementadas em trechos de codigo a0 invés de
edarem persdidas em arquivos de dados. Em sistemas procedimentais artificios
eram comuns para mehorar 0 desempenho do sstema. Como pseudo-classes séo
geradas diretamente do codigo fonte, elas ndo aparecem como entidades do MER e,
consequientemente, como pseudo-classes do MASA, pelo fato de ndo exigtir um arquivo
de dados correspondente.

Informacgées Adicionais:

Na abordagem Fuson/RE [11] [12] [13] sfo andisados procedimentos verificando-se
qua edrutura de dados estd associada a cada um. Além disso, andisase a forma de
associacdo entre classes e procedimentos. Para isso, Fuson/RE adota a convencéo
denominada de anomalias. No padréo Presumir Provavels Objetos Speculate about Domain
Objects), Demeyer [6] utiliza adaptagbes no modelo de classes tails como: renomeando,
remodelando e estendendo para resolver inconsisténcias.

109

SugarloafPLoP 2002 Proceedings

Padroes Relacionados:
Esse padréo tem como entrada o padréo Elaborar a Descricdo de Use Cases e € utilizado
como entrada para os padrdes do Cluster Moddlar o Sistema Orientado a Objetos.
Produto Obtido:
Tabela Deta hes de Implementacéo.

2.3. Cluster 3: Modelar o Sistema Orientado a Objetos

Os padroes desse cluster s80 aplicados para concluir o processo de engenharia reversa do
ssema legado. Nesse momento, a documentagdo levantada da engenharia reversa é
consultada para fins de consolidacdo das informacoes.

9. Nome: Definir as Classes

Intuito:

Iniciar a construcéo do Diagrama de Classes do sstema.

Problema:

Exigem varias informaches levantadas pelo processo de engenharia reversa MER,
MASA, Diagramas de Use Cases, Descricdes de Use Cases e Tabela Detalhes de
Implementacdo. No entanto, elas precisam ainda ser consolidadas e apresentadas na viséo de
orientagcdo a objetos.

Influéncias:

As Pseudo-Classes Revisadas, da Tabeda Detahes de Implementacdo, sio fortes
candidatas & classes do modelo orientado a objetos, pois j& passaram por diversos
refinamentos durante a aplicacéo do padréo Tratar Anomalias.

O mesmo ocorre em relacdo aos relacionamentos entre as pseudo- classes.

Solucio:

1. Transformar cada pseudo-classe revisada, da Tabela Detalhes de Implementagcéo, em uma
classe no Diagrama de Classes.

2. Gerar os relacionamentos no diagrama de classes a partir dos relacionamentos existentes
do MASA. Além disso, para as pseudo-classes que foram geradas diretamente do codigo
fonte, criar relacionamentos que representam o Principio Todo-Parte (Agregacdo por:
Referéncia ou Vaor), bem como /ink de atributo, conforme os conceitos da orientacdo a
objetos, discutidos pelo padréo Criar Visao OO dos Dados.

Padroes Relacionados:

Esse padrdo tem como entrada o padrdo Tratar Anomalias e serve como entrada para o
padréo Definir Atributos.

Produto Obtido:

Diagrama de Classes (Inicid) do sstema: classes definidas.

10. Nome: Definir Atributos
Intuito:
Definir os atributos das classes pertencentes ao Diagrama de Classes em construcéo.
Problema:
Identificar os atributos das classes a partir dos arquivos de dados do sstema legado.
Influéncias:
Transformar os campos dos arquivos de dados em atributos das classes pode requerer
uma andise complexa das estruturas de dados.

110

SugarloafPLoP 2002 Proceedings

Existem ferramentas que auxiliam a andise das estruturas dos dados do legado.

Solucio:

1. Os campos dos arquivos de dados, representados como pseudo-classes no MASA sdo, na
sua maioria, transformados em atributos das classes correspondentes. Dessa forma,
representar esses atributos das classes, no Diagrama de Classes.

2. Os casos em que ndo ha correspondéncia direta deverdo ser tratados em pardelo
avdiando-se as questOes de hierarquias abordadas pelo padréo Andisar Hierarquias.

Padroes Relacionados:

Esse padrdo tem como entrada o padréo Definir as Classes e serve como entrada para o
padréo Definir Métodos. Pode ser aplicado, se necess&rio, em pardelo ao padréo Analisar
Hierarquias.

Produto Obtido:

Diagrama de Classes (continuagéo) do Sistema: classes e atributos definidos.

11. Nome: Andisar Hierarquias

Intuito:

Fornecer um mecanismo para descobrir possivels papéis (mas de uma funcéo) e
hierarquias de heranca que possam estar contidas nos arquivos de dados do sistema legado.

Problema:

Encontrar papéis e hierarquias de heranca que possam estar persstidos como campos em
véarios arquivos de dados do sistema legado.

Influéncias:

Hierarquias de Heranca podem estar contidas nos arquivos de dados das seguintes formas:

a) Por meio de conjuntos de campos opcionals (campos que assumem vaores
dependendo de um contexto. Por exemplo, um arquivo de dados de nome Cliente
possui os campos CPF e CGC, sendo que para cada cliente, somente um desses
campos assumira vaor, dependendo do tipo do cliente — pessoa fisica ou juridica);

b) Por meio de conjuntos de campos semehantes (mesmos campos em diferentes
arquivos de dados).

Hierarquias de Heranca podem também estar contidas em relacionamentos do tipo um-
para-um, ligando vérias pseudo-classes do MASA.

Papéis podem estar contidos nos arquivos de dados, por exemplo, por meio da clausula
Redefines do Coboal.

O engenheiro de software possui experiéncia para definir super-classes e transformar
super-classes em varias subclasses, a partir de pseudo-classes do MASA.

Solucao:

1. Encontrar, no sstema legado, os arquivos de dados com campos opcionals. 1sso indica
uma Situacdo em que uma hierarquia de classe completa esta representada em um Unico
arquivo de dados. Nesse caso, transformar esse arquivo de dados numa super-classe e
gaar tantas classes quantas forem necessarias para representar esse conjunto de
informagoes.

2. Encontrar, no sstema legado, os arquivos de dados com campos semelhantes. 1sso indica
gque a hierarquia de classe eda digtribuida entre vérios arquivos de dados. Nesse caso,
definir uma super-classe movendo os campos comuns para €a € 0S nao comuns,
continuam pertencendo &s respectivas subclasses.

3. Encontrar, no MASA, as pseudo-classes nas quas a chave primaria também serve como
chave edrangeira de outra pseudo-classe. 1ss0 pode representar um relacionamento um-

111

SugarloafPLoP 2002 Proceedings

para-um, indicando, talvez, um relacionamento de heranca. Nesse caso, deve-se andisar a
funciondidade do sstema legado e representar esse conjunto de pseudo-classes como
uma Hierarquia de Heranca entre Classes, quando a essa caracterigtica for validada.
4. Encontrar, no sstema legado, os arquivos de dados com campos possuindo um ou mais
papés. Nesse caso, para cada papel gerar uma nova classe no Diagrama de Classes.
Padroes Relacionados:
Esse padréo tem como entrada os padrdes Definir Classes e Criar Visdo OO dos Dados.
Pode ser aplicado, se necessario, em paralelo ao padréo Definir Atributos.
Produto Obtido:
Diagrama de Classes (continuagéo) do Sistema: classes e atributos definidos.

12. Nome: Definir Méodos

Intuito:

Definir os métodos das classes pertencentes ao Diagrama de Classes em construggo.

Problema:

Identificar méodos de cada clase de forma a implementar toda a funciondidade
requerida por tal classe.

Influéncias:

Definir cada um dos méodos a partir dos procedimentos andmaos existentes no codigo

fonte legado é dificil.

Exigte indicio dos provaveis métodos na Tabela Deta hes de Implementacéo.

Solucio:

Representar os métodos que estéo relacionados na coluna Possivels Méodos, da Tabela
Detdhes de Implementacdo, nas classes respectivas & pseudo-classes, especificadas na
coluna Pseudo-Classes Revisadas, da mesma tabela Assm, obtém-se os métodos das classes
no Diagrama de Classes em construcdo por meio da Descricgo do Use Case correspondente.

Informacoes Adicionais:

O engenheiro de software deve observar trechos do codigo fonte que possam ser
caracterizados como Polimorfismo, gerando tantos métodos quantos forem necessarios,
consolidando, assim, o diagrama de classes do sstema orientado a objetos.

Padroes Relacionados:

Esse padréo tem como entrada o padréo Tratar Anomdlias.

Produto Obtido:

Diagrama de Classes do Sistema.

13. Nome: Congruir Diagramas de Sequéncia

Intuito:

Documentar as Regras de Negocio do dstema legado para facilitar a sua futura
reengenharia

Problema:

Necessdade de explicitar as Regras de Negdcio, muitas vezes embutidas no codigo fonte.

Influéncias:

Representar a interagdo dos métodos obtidos no padrdo Definir Méodos, pode ser

complexo.

Meétodos ja definidos a partir das Descricdes de Use Cases, viabilizam o problema.

Solugao:

Condtruir todos os Diagramas de Sequéncia, a partir de cada Descricdo de Use Case,
obtida pelo padrédo Elaborar Descricdo de Use Cases. Consdere, para a sua construcéo, o

112

SugarloafPLoP 2002 Proceedings

processo de eliminacéo de anomdias efetuado pelo padrdo Tratar Anomdias, quando foram
gerados tantos métodos quantos foram necessirios, para manter a mesma funcionaidade do
sstema legado. Agora, no Diagrama de Seqléncia, é gpresentada graficamente a interagdo
desses métodos.

Padroes Relacionados:

Esse padréo tem como entrada os padrOes Elaborar Descricdo de Use Cases, Definir
Métodos e Tratar Anomalias.

Produtos Obtidos:

Diagramas de Seqgliéncia do Sistema.

3. Exemplos de Uso

Para ilusrar como se geram conjuntos de padrfes a partir da FaPRE/OO, foram
especidizados, para a linguagem Clipper, todos os padrdes do processo de engenharia reversa
dessa familia Dessa forma, gerou-se um conjunto completo de todos padrées dos trés clusters
inidas, derivando, assm, um processo de engenharia reversa orientada a objetos a partir da
linguagem procedimental Clipper.

3.1. Cluster 1: Modelar os Dados do Legado

1. Nome: [niciar Andise dos Dados

Intuito:

Iniciar a construgdo do MER, Moddo Entidade Reacionamento, utilizando uma tabela
que relaciona todos os programas que fazem parte do Sistema, com seus respectivos arquivos
de dados.

Solucio:

1. Congruir a Tabela Programas x Arquivos.

A Tabela 1 ilustra esse passo, sendo que a coluna 1 mostra 0s programas e a coluna 2 0s

arquivos de dados, tratados em cada programa.

Tabela 1: TabeaProgramas x Arquivos
Programa (.prg) Arquivos (.dbf)
Cliente.dbf
ManterClienteprg CLI_Sort.dbf
Pais.dbf
PS Sort.dbf
Pedido.dbf
Cliente.dbf
RegistrarPedido.pr CLI_Sort.dbf
“ P9 Produto.dbf
PRD_Sort.dbf
[tPedido.dbf

2. Iniciar a construgdo do MER, a partir da tabela construida no passo 1. Considere cada
arquivo de dados do sistema legado (.dbf) como uma entidade do MER, Figura 2.

113

2. Nome:
Intuito:
Obter as chaves primarias e edrangeiras para cada entidade identificada pelo padréo

SugarloafPLoP 2002 Proceedings

Cliente

CLI_Sort

Pais

PS_ Sort

Produto

PRD_Sort

Pedido

[tPedido

Figura 2: MER — Modeo Entidade Relacionamento (Inicid)

Definir Chaves

Iniciar Andlise dos Dados, a partir de arquivos de dados do sistema legado (.dbf), a fim de
identificar os relacionamentos entre as entidades que compdem o MER, iniciado no passo 1.

1.

Solugao:
Congiruir a Tabda Entidades x Chaves, iniciamente com duas colunas.

Por meio do comando USE, da linguagem Clipper, € possivel obter todos os arquivos de
indices (.ntx) para cada arquivo de dados (.dbf). Um arquivo .dbf pode ter até 15
arquivos de indices.
Por exemplo. USE Cliente INDEX CliCod, CliNom sendo CliCod.ntx e CliNom.ntx
arquivos de indices do arquivo de dados Cliente.dbf.
Identificase a chave priméaria para cada entidede andisando o respectivo arquivo de
dados .dbf com a feramenta DBU [15], que acompanha a linguagem Clipper,
observando-s2 a linha que contém a pdavra Key. A Figura 3 ilusra as tdas da
ferramenta DBU para 0 comando USE descrito anteriormente.

USE Cliente INDEX CliCod, CliNom

Arquivo .dbf

/

Arquivos .ntx

T

Structure of CLIENTE. DBF
Fil ed Nane Type Wdth Dec
CODl GO Nureri c 7 0
NQVE Character |30
ENDERECO | Character |40
CCDPAI S Nureri c 7 0

(a) Aba Files do DBU

Index CLIENTE.DBF to
File CLICOD.NTX

Key STR (CODIGO,7)

Ok Cancel

Index CLIENTE.DBF to
File CLINOM.NTX

Key NOME

Ok Cancel

(b) Aba Index do DBU

114

Figura 3: Identificacéo da Chave Priméria utilizando o DBU

SugarloafPLoP 2002 Proceedings

Anaisando a aba index, Figura 3(b), conclui-se que o campo CODIGO, do arquivo de
dados CLIENTE.DBF, é a chave primé&ia da entidade Cliente, uma vez que o campo
NOME n&o identifica univocamente um registro desse arquivo de dados.

Repete-se esse passo para cada comando USE encontrado no codigo fonte. Um exemplo
do resultado obtido nesse passo € a Tabela 2.

Tabela 2: TabdaEntidades x Chaves (Inicid)

Entidades Chave Primaria
Cliente CODIGO
Produto CODIGO
Pas CODIGO

2. Utilizr o codigo fonte e a feramenta DBU para identificar as chaves estrangeiras das
entidades, adicionando-as na Tabela Entidades x Chaves em uma nova coluna (chave
edrangeira). A Figura4 ilustraa construcéo da Tabela 3.

USE Pedido INDEX PedCod

! !

Arquivo .dbf Arquivo .ntx
Structure of PED DO DBF Index PEDIDO.DBF to ...
Fil ed Nane Type W dt h Dec
CODI GO Nureri c 7 0
DATA PED Dat e 8 File PEDCOD.NTX
VLR TOT Nuneri c 10 2
—p | NUMERO Nurrer i c ’ 0 Key STR(CODIGO,7) + STR(NUMERO,7)
(a) Aba Files do DBU
Ok Cancel
(b) Aba Index do DBU
Structure of CLIENTE. DBF
Fil ed Nane Type Wdth Dec
oD O NUmeri c 7 0 nCodigo := nCodigo + 1
if Pedido=» (dbAppend())
NOVE Char acter |30 Pedido» Codigo := nCodigo (1)
ENDERECO | Char acter |40 PedidoP Data Ped := cDataSistema
CODPAI S Nuneri c 7 0 Pedido®» Vlr Tot := nTotal
Pedido=» Numero := Cliente=» Codigo (2)
(c) Aba Files do DBU endif

(d) Trecho do Cédigo Fonte

Figura 4: |dentificacéo da Chave Estrangeira utilizando o DBU
Andisando-se:
1) O arquivo CLIENTE.DBF, ja com a chave primaria definida para a entidade Cliente,
0 campo CODIGO,;
2) O aquivo PEDIDO.DBF, cuja chave primaia para a entidade Pedido € a
concatenacdo dos campos CODIGO e NUMERO,;
3) O trecho de codigo exibido na Figura 4(d).

115

SugarloafPLoP 2002 Proceedings

Temse que NUMERO é chave edrangeira da entidade Pedido, definido pelo comando
(2) da Figura 4(d). O campo CODIGO, gque participa da chave priméria, ndo &, também,
uma chave estrangeira porque esse campo é do arquivo de dados PEDIDO.DBF, sendo
atuaizado pelo comando (1) da Figura 4(d).

Dessa forma, completa-se a Tabela Entidades x Chaves, contendo trés colunas, sendo que
a Ultima contém a chave estrangeira, Tabela 3.

Tabela 3: TabdaEntidades x Chaves

Entidades Chave Primaria Chave Estrangeira
Cliente CODIGO —
Produto CODIGO —
Pais CODIGO —
Pedido CODIGO + NUMERO NUMERO
[tPedido CODPEDIDO + CODPRODUTO CODPEDIDO, CODPRODUTO
3. Nome: |dentificar Relacionamentos
Intuito:
Identificar os relacionamentos entre as entidades no MER.
Solucio:

Utilizando-se a Tabela Entidades x Chaves e trechos do codigo fonte que auxiliaram na
elaboracdo dessa tabela, pode-se identificar os relacionamentos entre entidades. Sempre que o
campo de um arquivo de dados, que representa a chave primé&ia de aguma entidade, for
atribuido a um campo de um outro arquivo de dados, que representa a chave estrangeira de
outra entidade, ha um relacionamento entre essas entidades, sendo esse representado no MER.
Para explicitar a cardindidade deve-se observar, nos trechos de cadigo fonte, se ha condicéo
restritiva quanto agravacao dainformacao.

Por exemplo, considere a chave estrangeira NUMERO, Tabela 3, e o trecho de codigo da
Figura 4(d). Note que o0 @mando (2) Pedi do=»Nunero := i ente=>Codi go aribui a
chave primaria da entidade Cliente achave estrangeira da entidade Pedido.

Quando s encontra a chave edrangera de uma entidade, deve-s= gerar um
relacionamento entre entidades do MER. Por exemplo, o comando (2) da Figura 4(d) gera o
relacionamento faz, denotado por (a) na Figura 5, que relaciona as entidades Cliente e Pedido.
Dessa forma, determinam-se todos os relacionamentos entre entidades, gerando o Modelo
Entidade Relacionamento (MER) correspondente ao Sistema legado.

pais [L_gera 01 PS_Sort

pertence

" 1.* N
Cliente L faz Pedido |1-* tem 1

@

*
1 t
em estq,
1.* o

ItPedido

Produto

1 \1
gera
0.1

PRD_Sort

gera

0.1
CLI_Sort

Figura 5: MER do Sstema Legado

116

SugarloafPLoP 2002 Proceedings

4. Nome: Criar Visdo OO dos Dados
Intuito:

Criar uma visdo orientada a objetos dos dados.

Solucio:

A patir do MER, congruir o Diagrama de Pseudo-Classes (candidatas a classes) do
ssema legado, gerando, assim, o MASA, Moddo de Andise do Sigema Atud. O nome
origina das entidades do MER deve ser mantido. A Figura 6 apresenta o MASA para o MER
do Sisema Legado (Figura 5).

1. Consderar cada entidade do MER como uma pseudo-classe.

2. Buscar pares de relacionamentos npara-n, no MER, que podem ser representados como
link de atributo no modelo orientado a objetos, de acordo com a funciondidade do
sistema legado e com os conceitos da orientacdo a obj etos.

3. Buscar nos rdacionamentos um-para-n, no MER, agueles que podem representar o
Principio Todo-Pate (Agregacd por: Referéncia ou Vaor), condgderando a
funcionalidade do sistera legado e os conceitos da orientacdo a objetos.

Pais |1 gera 0.1| PS_Sort MASA
Diagrama de Pseudo-Classes

tem

Cliente [1 faz 1.*| Pedido tem 1.* | produto

1 1

gera gera

ItPedido
0.1 0.1
CLI_Sort PRD_Sort

Figura 6: MASA do Sistema Legado

3.2. Cluster 2: Modelar a Funcionalidade do Sistema

5. Nome: Obter Cendrios

Intuito:

Obter os Cenarios do Sistema atraveés da andlise das interfaces do sistema em operacao.

Solucio:

Congtruir a Tabela Cendrios do Sistema, com duas colunas. A primeira coluna contém as
opgdes do menu principal e, a segunda, 0s sub-menus de cada opcdo do menu principal. Para
construcdo, obter os cendrios do Sistema aravés da observacdo do sistema legado em
operacao.

Conddere, como exemplo, a execucdo de um sSdema hipotético de Gestéo
Adminigrativa, denominado GEST_ADM, implementado na linguagem Clipper. A Figura 7
exibe a interface inicid desse sstema, estando o Prompt do DOS posicionado em: menu de
VENDAS, 0pcao 1> Pedidos. A Tabela4 mostra os cendrios obtidos dessainterface.
Informacoes Adicionais:

Quando sistemas legados possuem interface poluida (ndo possuindo menus e submenus)
contendo todas as opgdes do sstema em uma tela, 0 engenheiro de software deve usar de sua
experiéncia para extrair Cenarios da forma and oga aos menus, como na do caso da Figura 8.

117

SugarloafPLoP 2002 Proceedings

Como a interface da Figura 8 possui as mesmas opgdes mostradas na Figura 7, a Tabela
de Cenarios do Sigema € a exibida na Tabela 4. N& ha garantia que diferentes engenheiros

de software gerem a mesma Tabela de Cendrios do Sistema.

GEST_ADM

CADASTROS

S| STEMA DE GESTAO ADM NI STRATIVA Verséo 1.0

VENDAS COVPRAS FI NANCEI RO FI NALI ZAR

1> Pedidos

2> Pedi dos Pendent es
3> Li beracao de Pedido
4> Bl oquei o de Pedi do

Rotina de Manutencdo em Pedidos

Figura 7: Menu de Abertura do Sistema de Gestdo Administrativa (GEST_ADM)

Tabela 4: Tabedla Cendrios do Sistema

Cenarios Conteudo
(opcoes do menu principal) (opc¢oes do sub-menus de cada opcao principal)
Clientes
Cadastros Produtos
Paises
Pedidos
Pedidos Pendentes
Vendas Liberacdo de Pedido
Blogueio de Pedido
Fornecedores
Compras Condigdes de Pagamento
Ordem de Compra
Lancamento de Pagamentos
Financeiro Pagamentos por Vencimento
Andizar Sar do Ssema
GEST_ADM

SI STEMA DE GESTAO ADM NI STRATI VA Versao 1.0
: Cadastrar Cliente

Cadastrar Produto
Cadastrar Pais
Manut encdo de Pedi dos
Pedi dos Pendent es
Li beracdo de Pedi do
Bl oquei o de Pedi do
Manut encdo de Fornecedores
Condi ¢bes de Pagament o
Manut encdo de Ordem de Conpra
Lancanent o de Paganent os
Paganment os por Venci nento
Sai r

Figura 8: Menu de Aberturado Sistema GEST_ADM (Interface Poluida)

118

SugarloafPLoP 2002 Proceedings

6. Nome: Congruir Diagramas de Use Cases

Intuito:

Congtruir todos os Diagramas de Use Cases do sistema a partir da Tabela Cenérios do
Sistema elaborada no padréo Obter Cenérios.

Solugao:

Considerar como Use Case cada item da coluna “Contelido” da Tabela Cenaios do
Sigema. Observar que cada item da coluna “Cendrios’ possui um Contelido com varias
opgdes, conforme mostra a Tabela 4. Cada op¢do do Contelido de um Cen&rio passa a
corresponder aum Use Case no Diagrama em construcao.

a) Cenario: CADASTROS

Dados Produto

Dados Cliente

Manter Clierxes anter Produtos

Cliente Atualizad

Produto Atualizado

Usuario

b) Cenario: VENDAS

Dados Pedido

Registfar Pedidos

Orgamento

A

Cliente

Figura 9: Diagramade Use Cases do Sissema GEST_ADM

A Figura 9 exibe o Diagrama de Use Cases do Sstema de Gestdo Adminidrativa
GEST_ADM paraos Cenarios CADASTROS e VENDAS.

7. Nome: Elaborar a Descricdo de Use Cases

Intuito:

Elaborar a Descricdo correspondente a cada Use Case obtido no padrdo Construir
Diagramas de Use Cases.

Solugao:

Para cada Use Case obtido no padrdo Construir Diagramas de Use Cases, eaborar a sua
Descricdo a partir de trechos do codigo fonte correspondente & opcdo do Menu ativada,
quando da construcdo do respectivo Use Case. A Figura 10 mostra a Descricéo do Use Case
Registrar Pedidos, do Cen&rio VENDAS, apresentado na Figura 9(b).

119

SugarloafPLoP 2002 Proceedings

1 - Cliente solicita um Pedido
2 - Sistema solicita a ldentificagéo do Cliente
3 - Cliente fornece a ldentificacéo (seu Nome)
4 - Sistema usa parte da ldentificacao para gerar, a partir do arquivo Cliente.dbf , umarelacéo
de todos Clientes semel hantes, gravando esses dados no arquivo CLI_Sort.dbf
5 - Sistema seleciona o Cliente associado com a ldentificacéo
6 - Sistema mostra os dados do Cliente
7 - Cliente confirma seus dados
8 - Sistema grava o cabega ho do Pedido no arquivo Pedido.dbf
9 - Para cada Item do Pedido
9.1 - Cliente informa o Produto e a Quantidade
9.2 - Sistema usa parte da Descricdo do Produto para gerar, a partir do arquivo Produto.dbf,
uma relacdo de todos Produtos semel hantes, gravando esses dados no arquivo
PRD_Sort.dbf
9.3 - Sistema sdleciona 0 Produto informado pelo Cliente
9.4 - Cliente confirma o Item do Pedido
9.5 - Sistema grava o Item do Pedido no arquivo | TPedido.dbf, aplicando o seguinte
desconto:
Para Quantidade Comprada < 10, Conceder Desconto de 3 %
Para Quantidade Comprada entre 10 e 20, Conceder Desconto de 7 %
Para Quantidade Comprada > 20, Conceder Desconto de 10 %
Se o Pais do Cliente for diferente do Brasil, atualizar o Desconto, de acordo:
v ParaoPais=1, Brasl, ndo tem indice de ateracdo do Desconto;
v’ ParaoPais=2, Argentina, multiplicar o Desconto pelo indice 0.95;
v' ParaoPais=3, Uruguai, multiplicar o Desconto pelo indice 0.92;

v' ParaoPais= 15, México, multiplicar o Desconto pelo indice 0.79;
10 - Sistema solicita confirmagéo do Pedido

11 - Cliente confirma o Pedido
12 - Sistema emite Copia do Pedido para ser enviada ao Cliente

Figura 10: Descricdo do Use Case Registrar Pedidos

8. Nome: Tratar Anomdias

Intuito:
Andlisr as Descriches de Use Cases paa tratar as anomdias, definindo, assm, os

possivels métodos das pseudo-classes (candidatas a classe) do sistema, obtidas pelo padréo
Criar Visdo OO dos Dados.

Solucio:
Para cada Descricéo de Use Case, obtida pelo padréo Elaborar a Descricéo de Use Cases,

congtruir a Tabela Detahes de Implementacéo.

1.

Iniciar a construgdo da Tabela Detdhes de Implementacdo, verificando para cada
Descricéo de Use Case o tipo de acesso aos arquivos. Transformar o trecho fonte que
consultaldtera diversos arquivos em possivels métodos, eiminando assm o mditiplo
aces0 a arquivos. A parte do cddigo que somente consulta um arquivo € retirada desse, e
uma chamada a esse método é feita para que a funcionaidade do sistema sgja mantida.

A Tabda 5 exemplifica 0 caso de anomdia o+ct+ para a Descricdo do Use Case
Registrar Pedidos, apresentada na Figura 10.
Continuar a construcéo da Tabela Detahes de Implementacdo, renomeando as pseudo-
classes que ndo representam completamente a informacdo dentro do contexto do sstema
Por exemplo, a pseudo-classe ITPedido (correspondente a0 arquivo de dados
ITPedido.dbf e a entidade ITPedido) podera ser renomeada para ItemPedido, conforme
pode ser visto na Tabela 5.

120

SugarloafPLoP 2002 Proceedings

Tabela 5: Tabela Detalhes de Implementacéo

Codigos Pseudo Tipo Pseudo

Use Case Fontes Classes da Possiveis Classes
Correspondentes| (MASA) | Anomalia Métodos Revisadas

_ Pedido c Pedido() Pedido

I%_ztrar Regze(iprg Cliente 0 SdlecionarCliente() Cliente

1dos (o+ct) Produto 0 SelecionarProduto() Produto
ITPedido c [temPedido() [temPedido

3. Acrescentar na Tabela Detalhes de Implementagdo, os nomes de entidades do MER
(arquivo de dados) existentes no cddigo fonte que foram usados apenas para atender a
necessidades de implementacdo, como € o caso das entidades CLI_Sort e PRD_Sort da
Tabda 6. Esses arquivos sfo temporarios e ndo fazem parte da funciondidade do sistema
Portanto, toda pseudo-classe que é criada por dgum procedimento classficado com a
anomdiai deve ser desconsiderada

4. Acrescentar na coluna pseudo-classes revisadas, da Tabela Detdhes de Implementacéo,
as pseudo-classes correspondentes a trechos do codigo fonte usados para implementar
informacbes adicionais em memoria. Por exemplo, tabelas de descontos em funcéo da
quantidade comprada, que foram implementadas em trechos de cddigo a0 invés de
edarem persdidas em arquivos de dados. Em sisemas procedimentais esses atificios
eram comuns para melhorar 0 desempenho do sstema. Como essas pseudo-classes so
geradas diretamente do codigo fonte, €las ndo aparecem como entidades do MER e,
conseguentemente, como pseudo-classes do MASA, pdo fato de ndo exigir um arquivo
de dados (.dbf) correspondente.

Tabela 6: Tabela Detalhes de Implementacéo

Codigos Pseudo Tipo Pseudo
Use Case Fontes Classes da Possiveis Classes
Correspondentes| (MASA) | Anomalia Métodos Revisadas
Pedido c Pedido() Pedido
Cliente 0 SdecionarCliente() Cliente
_ Produto 0 SdlecionarProduto() Produto
Registrar | RegPed.prg ITPedido c [temPedido() ltemPedido
Pedidos (ot+ct) CLT_Sort i — —
PRD_Sort I — —
— — AplicarDesconto() | Desconto

Por exemplo, na Descricdo do Use Case Registrar Pedidos, Figura 10, o Passo 9.5 é uma
funciondidade que foi implementada em cddigo forte, pois ndo exise no sstema legado
um arquivo de dados (.dbf) contendo os descontos concedidos. Portanto, serd criada a
pseudo-classe Desconto, representando funciondidade, conforme ilustrado na
Tabela 6.

3.3. Cluster 3: Modelar o Sistema Orientado a Objetos

9. Nome: Obter as Classes
Intuito:

Iniciar a construcéo do Diagrama de Classes do sstema.

121

SugarloafPLoP 2002 Proceedings

Solucio:

1. Transformar cada pseudo-classe, da coluna Pseudo-Classe Revisada, da Tabela Detahes
de Implementacéo, em uma classe no Diagrama de Classes, conforme mostraa Figura 11.

2. Gerar os reacionamentos no diagrama de classes a partir dos relacionamentos existentes
do MASA. Além disso, para as pseudo-classes que foram geradas diretamente do cédigo
fonte, como é o caso da pseudo-classe Desconto, criar relacionamentos que representam o
Principio Todo-Parte (Agregacdo por: Referéncia ou Vdor), bem como [link de atributo,
conforme os conceitos da orientacdo a objetos, discutidos pelo padréo Criar Visdo OO
dos Dados. A Figura 12 ilustra os respectivos relacionamentos.

Tabela Detalhes de Implementacao

Codigos Pseudo Tipo Pseudo
da

Use Case Fontes Classes Possiveis Métodos Classes
Correspondentes (MASA) Anomalia Revisadas

Pedido Pedido() Pedido

Cliente SdecionarCliente() Cliente

X Produto SdeciionarProduto) Produto
Registrar RegPed.prg TTPedido TlemPedido() TtemPedido

Pedidos (o+c+) T ot

PRD_Sort
— AplicarDesconto() Desconto
e

v

Diagrama de Classes

.
AR AR

Pais

Cliente Pedido Produto

ItemPedido Desconto

Figura 11: Diagrama de Classes (Construgdo das Classes)

10. Nome: Definir Atributos
Intuito:

Definir os atributos das classes pertencentes ao Diagrama de Classes em construcéo.
Solugao:

1. Os campos dos arquivos de dados (.dbf), representados como pseudo-classes no MASA
s80, na sua maioria, transformados em atributos das classes correspondentes. Dessa
forma, representar esses atributos das classes, no Diagrama de Classes. A Figura 13
ilustra 0 Diagrama de Classes com os atributos.

2. Os casos em que ndo ha correspondéncia direta deverdo ser tratados em pardelo
avdiando-se as questdes de hierarquias abordadas pelo padréo Andisar Hierarquias.

122

SugarloafPLoP 2002 Proceedings

Pais |1 gera 0.1| PS_Sort MASA

|:| l:l Diagrama de Pseudo-Classes
1
tem
1.x 1
Cliente |1 faz 1.*| Pedido |~ tem 1.* | Produto
= —) |
T | T
]
gera ItPedido gera
0.1 1 0.1

CLI_Sort PRD_Sort

Diagrama de Classes
tem

L
ITieme 1 faz 1--‘m;* tem L.*W‘
— — —

ltemPedido |1 tem 1| Desconto
— —

Figura 12: Diagrama de Classes (Construcdo dos Relacionamentos)

Pais
~CodigoiPais
#yDescricao
1
tem
1
Cliente Pedido Produto
#yCodigo_Cliente #yCodigo_Pedido ‘ecodioo Prodio 1
~N0me 1 faz 1.* ~Data7dofPedido L tem 1.* ~DO '90_Produto
#pEndereco By valor_Total & e§§r|§ao
~Codigo_Pais ~Codigo_CIiente &y unidade

ItemPedido Desconto
Codlgo_Pedido
&yCodigo_Pedi 1 tem 1 #yQuantidade_Comprada

~CodigoiProduto @ — ;
~Quantidade ~Descont0_Conced|do

Figura 13: Diagrama de Classes (Definicao dos Atributos das Classes)

11. Nome: Andisar Hierarquias

Intuito:
Fornecer um mecanismo para descobrir possiveis papéis (mais de uma funcdo) e

hierarquias de heranca que possam estar contidos nos arquivos de dados (.dbf) do sigema
legado.
Solugao:
1. Encontrar, no ssema legado, os arquivos de dados com campos opcionais. A Figura
14(a) mostra outro sistema legado no qua o aquivo de dados Clientedbf (entidade

123

SugarloafPLoP 2002 Proceedings

Cliente) é consderado um arquivo com atributos opcionais, contendo informagdes tanto
de Cliente Pessoa Fisica, como de Cliente Pessoa Juridica. Portanto, esse arquivo de
dados é definido como uma super-classe, sendo criadas as subclasses Pessoa Fisica e
Pessoa Juridica, Figura 14(b).

Encontrar, no sstema legado, os arquivos de dados com campos semehantes. A Figura
15(a) mostra, em um outro sstema legado, que foram encontrados dois arquivos de dados
(.dbf) com campos semdhantes, trata-se dos arquivos. PessoaFisica e Pessoaluridica.
Nesse caso, € definida a super-classe Cliente, a qual tera como atributos os atributos
repetidos dos dois arquivos de dados encontrados, Figura 15(b).

0.1

Pais |1 gera PS_Sort
1
pertence
1.
Cliente
& Codigo
Nome N
#pEndereco 1 faz_ 1 pedido |L.* tem 1.2{ produto

& Tipo_do_Cliente

&cce 1 T\1
~CPF tem estg,
~C0digofPais 1 . gera

1 ItPedido 0.1 _
gera Cliente
0.1 PRD_Sort ‘Codigofcliente
— &Nome
CLI_Sort #yEndereco
‘CodigoﬁPais
SelecionarCliente()
. 'ValidarCliente()
(a) Sistema Legado (representado pelo MER) ﬁ \x
PessoaFisica PessoaJuridica
&CPF [W
(b) Diagrama de Classes, em construcdo

Figura 14: Arquivos de Dados com Atributos Opcionals

Encontrar, no MASA, as pseudo-classes nas quais a chave primé&ia também serve como
chave edrangeira de outra pseudo-classes A Figura 16(a) mostra, para outro sstema
legado, que foram encontradas, no respectivo MASA, trés pseudo-classes relacionadas
(por relacionamentos um-para-um), trata-se das pseudo-classes Cliente, Pessoa Fisica e
Pessoa Juridica. Nesse caso, gpos andisar a funciondidade do sstema legado, representa-
se diretamente esse conjunto de pseudo-classes como uma hierarquia de heranca entre
classes, Figura 16(b).

O engenheiro de software deverd observar, no MASA, stuacbes de relacionamentos
desse tipo, devendo sempre representa-los como uma hierarquia de heranca entre classes
no diagrama de classes em congrucdo, para, assm, consolidar cada vez mas esse
diagrama no conceito de orientacdo a objetos.

124

SugarloafPLoP 2002 Proceedings

Pais |1 _gera 0.1 PS_Sort

7N
pertence

1.

Pessoa Fisica
& Codigo
&pNome 1
[2= ndereco

&CPr 1.% N
B Codigo_Pais ‘?/

.
fiz_ 1% ["pedido

Pessoa Juridica 0.1
& Codigo
pertence &Nome PRD_Sort Cliente
1.* |@Endereco & Codigo_Cliente
~C§Q) ®Nome
Caodigo_Pais ~Endere(;o
~Codig0 Pais
(a) Sistema Legado (representado pelo MER) Se'ec'onarc"emeo
alldarcllente()
PessoaFisica PessoaJuridica
[Welal= [Welclo

(b) Diagrama de Classes, em constru¢do

Figura 15: Arquivos de Dados com Atributos Semelhantes

1

tem

1.*
Cliente

#Codigo
#Nome 1 faz 1.*[Pedido |%* tem 1.*[Produto
Senderego — —

#yCodigo_Pais

1 1
ItPedid
pode ser pode ser ge = Cliente
1 #yCodigo_Cliente

1
— — #yNome
PessoaFisica PessoaJuridica #yEndereco
&Codigo & Codigo #pCodigo_Pais
&CPF #CGC
SelecionarCliente()

ValidarCliente()

(a) MASA /d IX

PessoaFisica PessoaJuridica
&CpPF &ccc

(b) Diagrama de Classes, em construcao

Figura 16: Pseudo-Classes com Relacionamentos Um-Para-Um

4. Encontrar, no dstema legado, os arquivos de dados (.dbf) com campos possuindo um ou
mais papéis. Nesse caso, para cada papel gere uma nova classe no Diagrama de Classes.

125

SugarloafPLoP 2002 Proceedings

Essa dtuacdo ocorre com freqiéncia em programas Cobol (clausula Redefines), no
entanto, nos programas em Clipper os campos de cada arquivo de dados possui
unicamente um papel, logo, ese passo ndo regquer detahamento nesta Especidizacéo
para Clipper da FaPRE/OO.

12. Nome: D¢finir Méodos

Intuito:

Definir os métodos das classes pertencentes ao Diagrama de Classes em construcéo.

Solucio:

Representar 0s métodos que estdo relacionados na coluna Possiveis Métodos, da Tabela
Detdhes de Implementacdo, nas classes respectivas & pseudo-classes, especificadas na
coluna Pseudo-Classes Revisadas, da mesma tabela Assm, obtém-se os méodos das classes
no Diagrama de Classes em construgéo por meio da Descricdo do Use Case correspondente. A
Figura 17 ilustra o Diagrama de Classes ja com os métodos representados.

Informacoes Adicionais:

O engenheiro de software deve observar trechos do codigo fonte que possam ser
caracterizados como Polimorfismo, gerando tantos métodos quanto forem necessarios,
consolidando, assm, o diagrama de classes do sstema no paradigma de orientacdo a objetos.
A Fgura 18 ilustra um trecho do codigo fonte em que uma Stuagdo de Polimorfismo foi
observada

Tabela Detalhes de Implementacao

Codigos Pseudo Tipo Pseudo
Use Case Fontes Classes da Possiveis Métodos Classes
Correspondentes (MASA) Anomalia Revisadas
Pedido C Pedido() Pedido
Cliente o SelecionarCliente() Cliente
Produto 0 SeleciionarProduto() Produto
Registrar RegPed.prg ITPedido C ItemPedido() ItemPedido
Pedidos (o+c+) CLI Sort 7 — —
PRD_Sort i — —
— — AplicarDesconto() Desconto

v

Pais -
B Diagrama de Classes
~Descrlc50

SelecionarPais()
ValidarPais()
1
tern}
1.*
a crene Pedido Produto
pCodigo_Cliente ~C0d|
igo_Pedido
fyNome . |@yDatado_pedido [y | MwCodigo_Produto
IpEndereco 1 faz 1. g tem 1. ~Descrlcao
#yCodigo_Pais @ Valor_Total o———— #yUnidade
- 4y Codigo_Cliente II
]
SelecionarCliente() " 1 SelecionarProduto()
ValidarCliente() ahPedido) Il ‘
]

ItemPedido Desconto
@y Codigo_Pedido @y Quantidade_Comprada
fy Codigo_Produto L tem 1 iy Desconto_Concedido
o———

@y Quantidade
AplicarDesconto(Qtd)

AplicarDesconto(Qtd, Pais)

a*itemPedido()

Figura 17: Diagrama de Classes (Definicéo dos Métodos das Classes)

126

SugarloafPLoP 2002 Proceedings

if Qd < 10 /I Qtd. Comprada
Desconto := 3 /1 3% \
elseif @d < 20
Desconto := 7 /1 7% Método:
el se AplicarDesconto
Desconto := 10 /1 10% (Qtd)
endi f
if diente>CodPais <> 1 /1 1: Brasil Método:
if Cliente>CodPais = 2 /1 2: Argentina >
Desconto : = Desconto * 0.95 AplicarDesconto
elseif Cliente>CodPais = 3 /1 3: Uruguai (Qtd, Pais)
Desconto : = Desconto * 0.92
el seif Cliente>CodPais = 15 /1 15: México
Desconto : = Desconto * 0.79
endi f
endi f)

Figura 18: Trecho do Cdodigo Fonte, com caracteristicas de Polimorfismo

13. Nome: Condruir Diagramas de Sequéncia

Intuito:

Documentar as regras de Negdcio do legado parafacilitar a sua futura engenharia avante.

Solugao:

Congruir todos os Diagramas de Sequéncia, a partir de cada Descricdo de Use Case,
obtida pelo padréo Elaborar Descricéo de Use Cases. Considere, como exemplo, a Descricdo
do Use Case Regidirar Pedidos, Figura 10, que passou pelo processo de eiminagdo de
anomalias efetuado pelo padréo Tratar Anomdias, Tabela 6, tendo Sdo gerados diversos
métodos de forma a manter a mesma funcionalidade do legado. Agora, no Diagrama de
Sequéncia, Figura 19, é gpresentada a interacdo desses méodos, mostrando graficamente a
|6gica da Regra do Negécio (Registrar Pedidos), no conceito de orientacdo a objetos.

4. Comparaciao Com Qutros Trabalhos

Usando como suporte a abordagem Fuson/RE [11] [12] [13] e a linguagem de padrfes de
engenharia reversa, proposta por Demeyer et a [6], el@orouse os padrdes de engenharia
reversa da Familia de PadrBes de Reengenharia - FaPRE/OO, para que possam ser gerados
processos, pass0 a passo, para conduzir a engenharia reversa de sstemas legados
implementados em linguagens procedimentals.

Os padrbes de Demeyer foram pesquisados e avaiados durante a redizacéo dos estudos
de casos quanto a sua agplicabilidade em sistemas procedimentais [16]. Embora ndo se consiga
redizar plenamente a engenharia reversa de sstemas procedimentais com esses padroes, ees
deram suporte para a eaboracdo dos padrbes de engenharia reversa da FaPRE/OO em
sgtemas legados procedimentais. A Tabela 7 mostra quais os padrbes de Demeyer foram
utilizados durante a construc@o dessa familia

A abordagem Fusion/RE auxilia 0 processo de engenharia reversa orientada a objetos, a
partir de sstemas legados procedimentais. A Tabela 8 gpresenta os padrdes para 0 processo de
engenharia reversa onde sfo feitas as atividades incluidas nos passos do Fusion/RE.

E importante observar que os resultados obtidos com a especidizagio dessa familia em
uma determinada linguagem de programacéo procedimental, gera um conjunto de padrdes que
irdo fornecer modelos de andise e projeto orientados a objetos, viabilizando a reengenharia
orientada a objetos desses sistemeas.

127

SugarloafPLoP 2002 Proceedings

X

Cliente

Desconto

Interface Cliente Pedido Produto Item Pedido
Pedido

I Solicita um Pedido I

Slft a ldentificagao

Identificagdo |

11

Se\el:\ona r Cliente (Identificasao)

U—)[]

Litir cliente

I

Confirma Dados

Pedifio ()

N

i
Solicha ttens do Pedido

1

Produtq e Quantidade [Para cadp Item Pedido]

Validar Produto ()

-j

Solicita g Confirmagéo do Item

1

Confirma Item

]

tgm Pedido () [Parajcada Item do Pediqo] plicar Desconto (Qtd)

1] U

o
ﬁ
.n.

onfirmagéo do Pedido

'71’

Confirma Pedido |

J

Copia do Pedido

j

Figura 19: Diagramade Sequénciado Use Case Registar Pedidos

Os modelos orientados a objetos produzidos séo baseados em regras que vao do sstema
implementado até modelos abstraidos. Seguem edtritamente a notacdo UML [18] e fazem
parte de um conjunto maior ¢k padrdes de reengenharia que inclui um cluster de padrdes para
0 processo de engenharia avante com mudanca de paradigma de desenvolvimento e de
linguagem de programacéo para o orientado a objetos.

128

SugarloafPLoP 2002 Proceedings

Tabela 7: Padrdes de Engenharia Reversa de Demeyer utilizados durante a Construcéo
dos Padrbes de Engenharia Reversa da FaPRE/OO

Demeyer FaPRE/OO
Clusters Padroes Padroes Clusters
Iniciagao . Ler Todo o Codigo em umaHora — —
a0 . Estudar Superficialmente a Documentagédo — —
Sistema . Ee?rt]rgw Zrt:r ac()) Usuério Durante o Sistema | * gg&iﬁg;&grm% Furl\l/lcci)gr?.lalair di\de
Legado perag . Obter Cenérios do Sistema
o Modelar o Sistema
- Definir as Classes Orientado a Objetos
. Presumir Provaveis Objetos Modelar a Funcionalidade
. Tratar Anomalias do Sistema
Entendimento . Iniciar Andlise dos Modelar os
Dados Dados do
Inicial . Examinar a Base de Dados . Definir Chaves L egado

. . . Modelar o Sistema
-Analisar Hierarquias| Orjentado a Objetos

. Inspecionar as Maiores Construgdes — —
. Explorar Possiveis Modificagbes — —
Detalhamento| - Verificar as Invocagdes dos M étodos — —
. Observar a Execug¢éo dos Componentes — —

do Sistema
Preparagao c.ia . Refazer para Entender . Tratar Anomalias Modelar a EunC| onalidade
Reengenharia do Sistema

Tabela 8: Especidizacdo da Abordagem Fuson/RE

Fusion/RE Padrées para o Processo de
Passos Produtos Engenharia Reversa da FaPRE/OO
1) Revitdizacdoda |.ListaE/S . Iniciar Andlise dos Dados
Arquitetura . Estrutura de Programas . Definir Chaves
. |dentificar Relacionamentos
2) Recuperacéo do . Temas . Criar Visdo OO dos Dados
Modelo do . Moddo de Objetos . Obter Cenérios
Sistema Atual . Modédo do Ciclo de Vida . Congtruir Diagramas de Use Cases
(MASA) . Modelo de Operagdes . Elaborar a Descricdo de Use Cases
. Tratar Anomalias
3) Abstrair o . Moddo de Objetos . Definir as Classes
Modelo de Andise . Modéo do Ciclo de Vida . Andisar Hierarquias
do Sistema (MAS) . Modelo de Operaces . Construir Diagramas de Sequéncia
4) Mapear 0 . Atributo/Elementos de . Definir Atributos
MAS dentro do Dados . Definir Métodos
MASA . Métodos/Procedimentos . Tratar Anomalias

5. Comentarios Finais

A redizacdo do processo de reengenharia de sstemas legados € considerada como um
desafio para os engenheiros de software, pois esse processo envolve muitos fatores de risco.
Entdo, ha interesse em tornar os engenheiros de software especidistas nesse processo. Para
IS0, surgem os padrbes de engenharia reversa e de engenharia avante com 0O objetivo de

129

SugarloafPLoP 2002 Proceedings

regisrar as técnicas e mecanismos que os engenheiros de software experientes utilizam para
conduzir esses processos.

Este trabaho apresentou todos os padrbes para 0 Processo de Engenharia Reversa da
FaPRE/OO, para redizar a engenharia reversa orientada a objetos de sstemas legados
desenvolvidos de forma procedimenta e implementados em linguagens como Algol, Clipper,
Cobal, RPG I, etc.

Um ddgema, origindmente desenvolvido de forma procedimentd e implementado na
linguagem Clipper [15], foi submetido ao processo de engenharia reversa seguindo, passo a
passo, todos os padrdes conforme proposto nesta Familia Assm, é redizada a engenharia
reversa procedimental do sstema legado e, a partir dos resultados dessa atividade, efetua-se a
engenharia reversa orientada a objetos do legado. Em outras palavras, na primeira fase obtém:
se uma documentacdo procedimentd e, na segunda fase, com base na anterior, congtréi-se a
documentacdo de andlise orientada a objetos.

Outro sgema, origindmente desenvolvido de forma procedimental e implementado na
linguagem Cobol [4], foi submetido a0 processo de engenharia reversa usando esta Familia
Nesse trabadho a engenharia reversa é redizada diretamente, iso € sem a necessdade do
produto intermedi&io. A documentacdo de andlise orientada a objetos € obtida diretamente do
codigo procedimental a fim de identificar possivels objetos. Assm, a FaPRE/OO da plena
cobertura para conduzir a engenharia reversa diretamente orientada a objetos a partir do
sstema legado procedimental. A Unica diferenca € a ordem de aplicacdo dos varios padrdes da
Familia. Como o0 modelo do processo € evolutivo, isso S0 fortalece 0 seu potencia em questéo
do dominio de sstemas de informacao.

Ainda um outro ssema, desenvolvido na linguagem Delphi [9], foi submetido, com
pleno sucesso, a0 processo de engenharia reversa seguindo, passo a passo, o0s padrfes
propostos nesta Familia. Embora o ambiente de desenvolvimento desse trabaho tivesse sido
Delphi, o qua viabiliza a construcdo de Sstemes orientados a objetos, o sistema envolvido
nesse estudo de caso foi origindmente implementado sem os conceitos da orientacdo a
objetos.

A FaPRE/OO tem as seguintes caracteristicas:

- Possui quatro clusters de padrdes claramente definidos, com regras para guia a

passagem de um padréo para outro;

Cada padréo é dirigido a documentos que devem ser produzidos,

Tem uma forma ciclica e evolutiva de aplicacéo, podendo-se, de qualquer padréo,
avancar ou retroceder asua aplicacao;

O resultado produzido é baseado, principdmente, no sistema atud e os requistos so
minimos. 0 Sstema executave e o codigo fonte;

E um processo globa que incorpora estratégias especificas para 0s processos de
engenhariareversa e de engenharia avante, como partes do processo de reengenharia.

Agradecimentos

Agradecemos a0 Shepherd Ferndo Germano pelas sugestdes e acompanhamento dado a este
trabalho.

130

SugarloafPLoP 2002 Proceedings

Referéncias Bibliograficas

[1] Bianchini, C. de P.; Morais, R. M. de, “Engenharia Reversa e Reengenharia Orientada a
Objetos”, Documento de Trabaho, PPGCC-DC. Universidade Federa de Sdo Carlos, 2000.

[2] Cagnin M. 1., “Avaliacao das Vantagens quanto a facilidade de Manutencio e Expansio de
Sistemas Legados submetidos a Engenharia Reversa e Reengenharia”, S0 Carlos-SP, 199.
Dissertacéo de Mestrado. Universidade Federa de Séo Carlos.

[3] Camargo, V., “Reengenharia Orientada a Objetos de Sistemas COBOL com a Utilizacio de
Padrées de Projetos e Servlets”, Sdo Carlos-SP, 2001. Dissertacéo de Mestrado. Universidade
Federal de S&o Carlos.

[4 Camargo, V.; Recchia, E. L.; Penteado, R. — “Aplicabilidade da Familia de Padrées de
Reengenharia FaPRE/QOO na Engenharia Reversa Orientada a Objetos de Sistemas
Legados COBOL”, Artigo apresentado no The Second Latin American Conference on Pattern
Languages of Programming — Software Pattern Applications. (SugarL oafPLoP—-SPA), Itaipava-
RJ, Agosto/2002.

[5] Chikofsky, J. E.; Cross, J. H. - “Reverse Engineering and Design Recovery: A Taxonomy”,
|EEE Software, v. 7, n. 1, p. 13-17, Jan. 1990.

[6] Demeyer, S, Ducasse, S.; Nierstrasz, O., “A Pattern Language for Reverse Engineering.
Proceedings”, of the 3" European Conference on Pattern Languages of Programming and
Computing, (EuroPLOP2000), Andreas Ruping(Ed.), 2000.

[7] Dewar, R.; Lloyd, A.D.; Pooley, R.; Stevens, P. “Identifying and Communicating Expertise in
Systems Reengineering: a patterns approach”. |EEE Proceedings — Software, v.146, n.3,
pp.145-152, 1999.

[8] Kulk, E.; Camargo, V. V.; Masero, P. C.; Penteado, R.; Germano, F., “Reengenharia Orientada
a Objetos de um Sistema Contabil Implementado em Cobol para Java”, Documento de
Trabalho, 2002. Universidade de Sdo Paulo — SP.

[9] Lemos, G. S, “Garantia de Qualidade no Processo de Reengenharia Orientada a Objetos”,
Séo Carlos-SP. Dissertag@o de Mestrado apresentada ao PPGCC-DC. Universidade Federa de
Séo Carlos, em Agosto/2002.

[10] Magahées, L. F.; Soares, C. L., “SALV — Reengenharia de um Sistema de Automacao de
Locadora de Video de Visual Basic para Java”, Documento de Trabaho, PPGCC-DC.
Universdade Federa de S50 Carlos, 2000.

[11] Penteado, R. A. D., “Um Método para Engenharia Reversa Orientada a Objetos”, S0
Carlos, 1996. 237 p. Tese (Doutorado em Fisica Computaciond) - Ingtituto de Fisica de Séo
Carlos, Universidade de S&o Paulo.

[12] Penteado, R., Germano, F., Masiero, P. C., “An Overall Process Based on Fusion to Reverse
Engineering Legacy Code”, In: Working Conference Reverse Engineering, 3, 1996,
Monterey-Cdifornia. Anais. |IEEE, p. 179-188.

[13] Penteado, R., Braga, R.T.V., Masiero, P.C., “Improving the Quality Legacy Code by Reverse

Engineering”, Trabaho submetido a0 4" International Conference on Information Systems
Anaysis and Synthesis, ISAS/98, a ser realizado em Julho/1998, Orlando-Florida

131

SugarloafPLoP 2002 Proceedings

[14] Recchia, E. L.; Lemos, G. S;; Deo, M. A., “Locadora de Video — Engenharia Reversa e
Reengenharia”, Documento de Trabalho, PPGCC-DC. Universdade Federal de S&o Carlos,
2000.

[15] Recchia E.L.,“Engenharia Reversa e Reengenharia Baseadas em Padrées”, S50 Carlos-SP.
Dissertacdo de Mestrado apresentada ao PPGCC-DC. Universidade Federa de S&o Carlos, em
Junho/2002.

[16] Recchia, E. L.; Penteado, R. — Avalia¢do da Aplicabilidade da Linguagem de Padrdes de
Engenharia Reversa de Demeyer a Sistemas Legados Procedimentais, Artigo apresentado no
The Second Latin American Conference on Pattern Languages of Programming — Software
Pattern Applications. (SugarLoafPLoP—-SPA), Itaipava-RJ, Agosto/2002.

[17] Tavares, D. P. D.; Marucci, R. A., “Engenharia Reversa e Reengenharia de um Sistema
Legado em CLIPPER para CLIPPER OO”, Documento de Trabaho, PPGCC-DC.
Universdade Federal de S0 Carlos, 2000.

[18] Unified Modding Language, 2002. URL :http//www.rationa.com/uml/index.jtmpl. Consultado
em 03/2002.

132

SugarloafPLoP 2002 Proceedings

DCDP: A Distributed Component Development Pattern:

Eduardo Santana de Almeidd’
Calebe de PaulaBianchini
Antonio Francisco do Prado
Luis Carlos Trevelin

Computing Departament — Federal University of Sdo Carlos
Rod. Washington Luiz, km 235— S&o Carlos/SP - Brazil
P.O box 676 — Zip.Code 13565-905
Phone/Fax: + 55-16-260-8232
{ ealmeida, calebe, prado, trevelin} @dc.ufscar.br

Abstract

This paper presents a Distributed Component Development Pattern (DCDP) that integrates different known
technologies to support the process of Distributed Component-Based Development. The involved technologies
are: the Catalysis method used as a Component-Based Development (CBD) method to define, specify and design
the distributed components, through CORBA architecture. The CORBA architecture to support components
distribution and accessing, components frameworks for interfaces creation, guide the distribution of the
developed problem domain components and facilitate the database access. A CASE tool is the main mechanism
to apply this pattern, supporting the code generation of devel oped components.

1. Context
The proposed pattern is in the Distributed Component-Based Development (DCBD)
context, which aims distributed components creation for diferent domain applications.

2. Motivation

In spite of the recent and constant researches in the Component-Based Devel opment
(CBD) area, there is till a lack of strategies, metodologies and patterns that effectively
support both the development and the components reuse, in certain applications domain.
Although different technologies exist to support the CBD, many difficulties are faced when
trying to integrate those technologies to cover the whole CBD process, from the components
creation to their use in the applications. If considering the distributed components, as they
happen in the Internet with client-server platform, the problem turns even worse.

3. Problem

In the software development, the reuse is characterized by the use of software
products, in adifferent situation for which theseproducts were built [1]. The CBD cares about
the components creation which can be reused in other applications. As a solution for this
problem, the researches [1, 2, 3, 4, 5] show, as a fundamental step, the systematization of the
process of analysis and components creation to a certain application domain.

! Copyright 0 2002, Eduardo Santana de Almeidaand et al. Permission is granted to copy for the SugarloafPLoP
2002 Conference. All other rights reserved. 133
“Thiswork is supported by Fundagio de Amparo a Pesquisa do Estado da Bahia (Fapesb).

SugarloafPLoP 2002 Proceedings

In order to make the reuse effective, it must be considered in all the phases of the
software development process. Therefore, the Component-Based Development must offer
methods, techniques and tools that support from the components identification and
specification, in a problem domain level, to their project and implementation in an object-
oriented language. Besides, the CBD must use interrelations among components already
existing, which have been previoudly tested, aiming to reduce the complexity and software
development costs [2, 4].

4. Solution

Combining the Component-Based Development Catalysis method [2] principles, the
CORBA architecture [6] for distributed component specification, the pattern-based
frameworks and the MVCase [7, 8] tool, it was defined a Distributed Component
Development Pattern (DCDP).

The pattern supports the three levels of Catalysis, and it is accomplished in four steps:
Define Problem, Specify Components, Project Componentsand I mplement Components
according to Figure 1.

Legend Cantral

Catalysis Method Input Cutput
Mechanism

@ Define Catalysis Level
Problem —* Problem Problem .
Domain Domain Eror_bl_?'n Domain

Requirements T Specifications efinition
MVCase | c Specify . Frameworks Broker, Components
omponents Specified GU!, Persistence Specification
Soffware Components
Engineer T COTBA

e I Ll LU e e i B e e i e

¥ Components

MvCase & Project Inner Project

o) Components Projected |CORBA
ol ware Components
SYEENSEES [, O, ape=. = i O e
M%Se ‘ Implement

o Components Implemented

Distributed

Software T T Components

Engingsr
WivCase m‘\
Soffware
Enginger

Figure 1 - DCDP: A Distributed Component Development Pattern

It is followed a presentation of each step of the pattern, used to develop components
for a Service Order domain, which belongs to a bigger domain, the Business Resources
Administration, as shown in Figure 2. Although the Service Order domain is not complete,
the example can show details of used techniques, and the main artifacts generated in each step
of the pattern.

134

SugarloafPLoP 2002 Proceedings

v,

Business Resources

Administration _
. 3 e
@ : e
@] {kj_i*’z}
Sales Control Bills to Pay ujf’l
Stock Control \', Bills to Receive
—1

©

Service Order

Fiaure 2 - General Structure of Business Resour ces Administration

4.1 Define Problem

The Service Order (SO) domain applications are divided in three g modules: the first
one, Customers, is responsible for registering and notifying customers of a certain service
order; the second one, Employees, is responsible for registering employees and controlling
service order tasks; the third one, Reports, is responsible for emitting reports, related to
accomplished and pending tasks consultation, service orders of a certain client, and of
employees responsible for each task.

In the first step of the pattern, the emphasis in the problem understanding, specifying
“what” the components must do to solve the problem. Initially, the domain requirements are
identified, using techniques as storyboards or mind-maps [2], aiming to represent the different
situations and domain problem sceneries. Next, the identified requirements are specified in
Collaboration Models [2, 9], representing the action collections and the participant objects.
Finally, the collaboration models are refined inUse Cases Model [2, 9].

The first step of DCDP is summarized in Figure 3, where a mind-map, defined in the
Service Order domain requirements identification, is specified in an Collaboration Models,
and, later, refined and partitioned in a Use Cases Model, aiming to reduce the complexity and
improve the problem domain understanding.

~ " Add ™, —~
Add ':: Customer/ [_I‘P‘ads"‘:
Manager Ser\m:e Order| is specified | - —Generate ™.

Add "/F*enallng Tasks)
i B G al: - —_Report
Managjer T\asks | |\Sanﬁggbr§er Manager -
Mind Map ~_Report -

—Generate .

. Add
.:’ ACCOF‘I'lP“ShEd \‘ (\Ser\rlceOrder}
s Tasks Rep-ort

Coﬂaborat:on Modefs

is refined
= z) i oo
e ! =
£ F AddTask Generate Pending
ettt ! I Tasks Report
Add Customer MSQ"E," Report Data 7 -
Cusromer Data | - Report PR
Mng‘l g, Task Data o 1
e '-».__‘ % Pl Service Order _ g T
e e gl 4 Data __—— Add Service
I Repo.rr Dara e - \ S i e Order
Generate Service__ — —— e
— Msg03
Order Report =4 — Repor:Daza

Report N s

Manager Report ——— B,

Generate Accb_rﬁi:rlimed
Use Case Model Tasks Report

Figure 3 - First Step of Pattern: Define Problem. 135

SugarloafPLoP 2002 Proceedings

4.2 Specify Components

This step supports the second level of Catalysis, where the system external behavior is
described in a non ambiguous way. In the CASE tool, the software engineer refines the
previous steps specifications, aiming to obtain the components specifictions.

This step begins refining the problem domain models. The Model of Types [2] is
specified, according to Figure 4, showing attributes and object type operations, without
worrying about implementation. Still in this step, the data dictionary can be used to specify
each type found, and the Object Constraint Language (OCL) [2] to detail the objects
behavior, with no ambiguity.

»

Model of Types

i
File Tool Help Type Customer - Company
. Customer
fosen o |CIModel of Types: Logical View/Main d'cf Attributes
@[use Caseview | = = Code: Customer Code
N Dﬁﬂga!ww -1 Customer Employee A i COmpa—yNameNgrﬁLn(pjau?Eromer
lain 7 e
DCustomer | = Code: int Code: int Type Task — Service Order Tasks
seniceOrder 2 CompanyName:String| MName: String Attributes

O Task B CNPJ: String Address. String Code: Task Code

D Employee | =l 1 n gives origin to TaskMame: Task Description

[associationiort = Data Dictionary

[} association(Tal is associated have
G"IjD association{Org & i 1.n in Task — Service Order Tasks

o Vi .

0 DZL”.E;"HE:WE 12 ServiceOrder ®| AddTask (Name: String)
1 Code. Int 1 n Task Pre
: Billing' String -n ~MCode: int Name I=*"
v Observations String| have TaskName String Pos
| CustomerCode: int Self TaskName = Name

ocL

Figure4—Model of Typesfrom Specify Components step.

According to Figure 5, the Model of Types is organized in the Model Framework [2],
with their attributes and relationships. The framework is reused through the Framework
Application [2], representing the dependences of the framework types, with the extended
types in the application. The Use Cases Models, from the previous step, are refined into
Interaction Models represented by sequence diagrams [9] to detail the components scenaries
utility in different applications of the problem domain.

O [7] Sequence Diagram: Use Case View | AddServiceOrder/Main - - u" o M
Model of Types i»_. __|:Manager|:SOConsultinterface :Customert Task [: Employee :ServiceOrder +
is organizedl Use Case Models i :SOConsult '
Interface ‘Customer | |:Task || :Employee ||:ServiceOrder
E ‘Manager
ServiceOrder| LEI D i
P— = ;
Model Framework Is refined ? ' Request Add Service Order
. l = Request Customer Name
is reused i
Customer Name |~
[E4MveasE =lolx]| =
file Tool ~Help ConsultCustomer (String Name)
= system — — .- ;i | —
o (9 se Cace Viow EFramework Application Model : Logical View | Main - Pl | Request Tasks Data |
@ O Logical View E = 5 ek T kiN) i
[Main ™= m onsultTas| ing TaskName) !
i e
O Customer | f— 1 R DtE lovee Dat.
[y 3ervicetrder| L= 3 o b ,“
[Employee B e iEmployees Data !
[Task & R . S0) > 7 ConsultEmployee (String Name)
[y association(on fl= e | i H
[association(Tz A i Request Service Order Data
0 assonatinto B “' Sen:tice Order Data | i
© [component View | |~ = H '
: Employee T AddSO (String Billing, String Others, String Observations,
D Deployment View — { . - s
= [int CodResponsible, int CustomerCode)
B I 0| D B Tl
Framework Application Interaction Models

Figure 5— Second Step of Pattern: Specify Components

136

SugarloafPLoP 2002 Proceedings

Summarizing, the activities from this step, accomplished by the software engineer, in
the MVCase tool, include the specifications of:
a) Model of Types;
b) Model Framework;
c) Framework Application, based on the Model Framework; and
d) Interaction Models, represented by sequence diagrams, based on Use Cases
Model.

These models are used in the next step of the pattern, to obtain the components inner
project.

4.3 Project Components

In this step, the software engineer does the components inner project, according to the
third level of Catalysis. Now, the implementation details become important, standing out:
safety, persistence, distributed architecture and the implementation language.

As afirst step, the Model of Types are refined into components Classes Models [9],
where the classes are modeled with their relationships, taking into consideration the
components definitions and their interfaces, according to Figure 6. The Interaction Models,
represented by sequence diagrams techniques are refined to show design details of the
methods behavior in each class.

EEMvCase
File Tool Help

= =] Class Diagram : Logical View / Main (]
B o -’
l_ ICustomer [TaskEmployee [&
E 7' IServiceOrder O » ’ .!
= | | _Mask ..~ |
: [y] . | e |
E Customer . | | En:lployee
Oiservig | IT Code: int ServiceOrder | Code:int
) associa 5 F Name: string Code: int Name: string
5 |=_||Address: string| Billing: string Task Address: string
depend E ,_¢ City: strir!g 0..n| Others: string On 1..n| Code: int 0..n 1..n|City: _strlnlg
D Task [7] [State: string |is associated|Observations: strin i - <tril has |State: string
: ,_ . 9 | has TaskName.strmg| - Phone: strin
OiTask || fl |||Phone: string ResponsibleCode: int| | ; e g
iz Email: string CustomerCode: int : i
i [5 CNPJ: string : HourValue: string
... e T A TTTE I T RE: string

TaskCode: int
Status: string
Description: string

ServiceOrderCode: int

TaskEmployee

TaskCode: int
EmployeeCode: int
BeginningDate: string

BeginningHour: string
EndHour: string
TotalHours: int
ServiceValue: string

[4

[¥

Figure 6 — Class Model obtained from Model of Types.

Starting from Classes Model, the Components Model may be designed [9], where the
organizations and dependencies between components are shown. The Components Model may
reuse components from other existing frameworks. Thus, components from related domains
with non-functional requirements can be reused, as well as interface creation (GUI) [10],
database persistence (Persistence) [11] and components distribution (Broker) [12]. Figure 7
shows the Components Model obtained from the Classes Model of Figure 6, reusing the
components of frameworks GUI, Persistence and Broker.

137

SugarloafPLoP 2002 Proceedings

Emvease =101 x|
File Tool Help

™ gystem

@ [Use Case View
& O] Logical View

@ [T Cormponent view

Diagram: C View | Main

B |

IServiceOrder O - Task

[main ~7iTask =
Y cClient T _,>| Gul
lize(Client, Ci - . memmemmTT T
[3 rectiscrient ci = L ServiceOrder|
[Task ICustomer - T e R
D realizeiTask,ITa o ™ e "‘«-‘_H -~
[servicedrder s " T el
) - K | “\\‘\ ‘.\"'\-___‘ =
[realizeigerviced y 3 - ey
D Employee /’ ‘\ O

[reslizeEmploves | IEmployee

D dependency(Ser, |

I

0O Yy
IServiceOrder Task O
C1
ITaskEmployee 5 Employee

] :
= ServiceOrderTask
]
5 TaskEmployee

i u]

[4]

Figure 7 — Components Model.

Figure 8 shows, for example, the GUI framework components, which use some
Design Patterns from Gamma's catalog [10], which are Abstract Factory, Factory Method,
and Sngleton. The AbstractToolkit component allows to create basic widgets components, as
frames, textfields, labels, buttons, and other elements that compose the user interface. For a
better view of the interfaces, there are, also, other widgets that compose the user interface,
such as: combobox, panel, and textarea that are not in the figure, as well as the swing library
components [13] from Java. The components LinToolkit and WinToolkit implement the
methods defined by the AbstractToolkit component for Linux and Windows platform,
respectively, maintaining the application portability for different environments. The GUI
framework, has interfaces for each type of widget, like: IFrame, ITextField, ILabel, and
[Button. The components WinFrame, LinFrame, WinTextField, LinTextField, WinLabel,
LinLabel, WinButton, and LinButton implement the widgets according to the interface
execution platform.

[
Component Diagram : Component View / Main :
-
- Abhstract Toolkit | ()
(| E IFrame
A . d [LinFrasmme
rd I ks =]
i L J LT omcli<it -
o C— 1 v T ool
E =]
5 > N LinTesaFiald
| — | 1Button o =3
g]) ILabel
LinEurton ;
= {| =] 5 il
g 1 vwwinButton Linl_akwel [
é‘__‘."‘ (=] [1 [1 vwinl sk ‘
-

Figure 8 — Framework GUI.

In the same way, we have the components of other frameworks, as in the case of
Persistence framework, which supports the information persistence in a relational database.

138

SugarloafPLoP 2002 Proceedings

They are based on design patterns from Gamma's catalog which are, Sngleton, Facade and
others, like PersistentObject [11] e ObjectPool [11].

Figure 9 shows the framework Persistence components. The ConnectionPool
component, through its |ConnectionPool interface, does the management and connection with
the database used in the application. The DriversUtil component, based on eXtensible Markup
Language (XML) [14], has information from supported database drivers, available through its
interface IDriversUtil. The TableManager component manages the mapping of an object into
database tables, making their methods available by the ITableManager interface. The
persistent component of the FacadePersistent structure, through its IPersistentObject
interface, makes the values which must be added to the database available, passing parameters
to the TableManager component.

Component Diagram : Component View / Main

= O
B DriversUtil IPersistentObject TableManager
= E
- | [
=1 5] :
T) - FacadePersistent | __________ T
i IDrnrersLItlI,__:h ITableManager
8 Tl :
i e
&l
IConnectionPool
ELl |
£/ 7
= %ConnectlonPool
£

Figure 9 — Framework Persistence.

The components in the Broker framework use the Distributed Adapters Pattern (DAP)
[12] to implement remote communication between two components. The technique adopted
by DAP to offer this functionality is to insert a pair of adapter components, seeking a better
component unjoining in a distributed architecture. The adapters, basically, encapsulate the
APl needed to remote access Target components. This way, Sources components of an
application in relation to the distributed aspects, and any change on this aspects does not
cause impact on it autonomous. Figure 10 shows the Broker framework structure. The Source
and Target components abstract business rules, from a problem domain. The Targetinterface
interface abstracts the Target component behavior in adistributed scenary. Both this interface,
and the Source and Target components, do not have communication code. These three
elements make an independent distribution layer.

The main components of framework Broker are SourceAdapter and TargetAdapter.
They are connected to a specific distribution APl and encapsulate the communication details.
SourceAdapter is an adapter that isolates the Source component from distributed code. It is
located in the same machine than Source and works as a proxy to TargetAdapter.
TargetAdapter is located in an other machine, isolating the Target component from
distributed code. SourceAdapter and TargetAdapter, usualy, are located in different
machines, and do not directly interact. TargetAdapter implements Remotel nterface used to
connect with SourceAdapter. The Initializer component is located in the same computer as
Target and TargetAdapter components, and it is responsible for the creation of Target and
TargetAdapter components [12] as can be seen inthe Figure 10.

139

SugarloafPLoP 2002 Proceedings

Component Diagram : Component View / Main -
El

i R it Target .. Initializer
A Targetinterface

- '
= SourceAdapter| - O
; “ Rematelnterface TargetAdapter
O

{ |E:f:§:§:f:§:| | '|

Figure 10 —Broker Framework structure.

Figure 11 summarizes the main artifacts and the sequence of the Project Components
activities, which include:
a) Refining Model of Typesinto Classes Models,
b) Refining the Interaction Models, and
¢) Creating the Components Modelsreusing existents components.

Component Diagram : Component Yiew / Mai
= B
l: IServiceOrder O E— Task m
2 g _.-FTask
C.I'g.'ss Models IE O P ServiceOrder
With Patterns \= ICustomer
is given to % ‘\\ ‘m_\\
e 0
@ - i‘,l' IEmployee
2 i
i \i ITaskEmployee
- IServiceOrderTask Employee

z |

Interaction Refined Ii ServiceOrderTask TaskEmployee

Models |
1 ‘ ::f:f:f:f:l [¥]
Component Models

Figure 11 —Third step of Pattern: Project Components.

4.4. Implement Components

At last, the software engineer uses a code generator, from MVCase to implement the
designed components. As the components are distributed, the code is generated using
CORBA. For each component, there are the stubs and skeletons and their interfaces that makes
Its services avaliable.

Figure 12 shows part of the Service Order domain components designed, and the
respective Interface Definition Laguage (IDL) [6] and Java code generated. The code
generation is done through the idlj utilitary, native from Java Development Kit (JDK)
avaliablein the tool.

140

SugarloafPLoP 2002 Proceedings

module ServiceOrder|
exception CorbaCommunicationException()
interface IServiceOrder{
void AddferviceOrderi{in string Billing, in string

— Others, in string Observations,in long
ol x| ResponsiblecCode, in long CustomerCode)

File | Tool | Help raises (CorbaCommunicationException) ;
(S Java b | H void DeleteServiceOrder (in long Code)
o [T T raises (CorbaCommunicationException);
o C(?_?.SCA Gener-ate SosdsubsSkalclons ServiceOrder ConzultServiceOrder (in long Code)
e B3 comp SomoiieID]. Infe.rl.aces generates . raises (CorbaCommunicationException)
@ P Deploy Compile CORBA Components }i

Component Interface IDL Code

package ServiceoOrder{
public final class ServiceOrderHolder implements
org.omg.portable. St reamble{
» public ServiceoOrder.ServiceOrder walue = null;
public ServiceOrderHolderi(]{
}
public ServiceOrderHolder (ServiceOrder.ServiceOrder
initialvalue) {
value = initialvalue;
}

o Stubs and Skeletons Java Code
Figure 12 — Fourth step of Pattern: Implement Components

Summarizing, the main activities of the Implement Components step, accomplished by
the software engineer, in the MVCase tool, are the generation of the IDL an Java code the
distributed components.

5. Consequences

DCDP offers the following benefits:

* Modularity: the pattern alows to separate distribution aspects from interface and
database persistence;

* Reuse through the modularity aspects offered, separating the tiers, the developers
can reuse the components for several applications of the created domain, reducing
the code redundancy;

» Partial Automation: with the MVCase tool support, great part of the activities
posed in the pattern can be executed automatically.

Even having the advantages listed above, the following disadvantages can be

presented:

* Incremental class number [12]: using the DAP pattern, using a pair of adapters,
initialization and nomination components are necessary; anyway, these structures
can be generated through partial automation, using theMVCase tool;

* Knowledge about other technologies. using the Persistence framework, the
software engineer needs to know technologies, like XML, for definition of
information related to database management systems, as connection port,
username, password, and others.

6. Implementation
To support the pattern proposed to Distribution CBD, different methods, techniques
and tools are used, which are presented next.

6.1 Catalysis M ethod

The pattern is based on the Catalysis method for CBD, which has three levels:
Problem Domain Definition, where it is put emphasis in the problem understanding,
specifying “what” the system must do to solve the problem; Components Specification,

141

SugarloafPLoP 2002 Proceedings

where the system behavior is described in a non ambiguous way; and the Components I nner
Project, where it is defined “how” the specified requirements will be implemented.

Catalysis is based on the principles of abstraction, precision and “plug-in”
components. The abstraction principle guides the developer in search of essential aspects of
the system, sparing details that are not relevant for the context of the system. The precision
principle has as objective to detect errors and inconsistency in modeling. The “ plug-in”
components principle supports components reuse to construct other systems.

6.2 Common Object Request Broker Architecture (CORBA)

In the CBD it is necessary to establish a formal relation among the components and
the application that uses them, through well-defined interfaces. To meet these requirements,
the DCDP is based on the CORBA [6] architecture, which is a pattern established by Object
Management Group (OMG) to support distributed objects. CORBA presents well-defined
interfaces and independent of applications, through the IDL [6], that fits perfectly in the CBD
context.

Other aspects that motivated the use of CORBA were: the programming language
independence, due to the possibility of mapping fromIDL to several languages; the portability
among computational environments and services of Safety, Nomination and Notification,
offered by the specification.

6.3 Framewor ks and Patterns

To construct software components safer, more reliable, easier to maintain and use, the
CBD uses frameworks techniques based on Patterns [10]. Framework is a set of related
classes that make reuse of a project for specific software classes [10] The use of patternsin
complex software systems allows previoudly tested solutions to be reused, making the system
more comprehensible, flexible, easy to develop and maintain. The objective of using software
patternsis the spread of the software developing solutions already existing.

6.4 MV Case Tool

CASE tools have been used, with success, in the project and re-project of systems to
be reconstructed. Among the CASE tools, stands out MV Case [7, 8], which supports system
specification using UML techniques, generates code, automatically, in an object-oriented
programming language, starting from high-level specifications, using distributed components
specified in IDL.

MVCase implements a three-tier architecture to construct the components. The three
tiers allow that the software engineer separate the client applications from the remote client
(thin client) interface, business rules, and from the database storing services oranother way of
storing.

The components of these tiers can be distributed in different platforms, supporting
client-server applications, which can be executed by the Internet.

142

SugarloafPLoP 2002 Proceedings

7. Related Patterns

» Abstract Factory, Factory Method and Singleton. The GUI framework is
implemented using the Design Patterns[10] Abstract Factory, Factory Method and
Sngleton.

+ Broker and Trader. Well known patterns for structuring distributed systems
already exist. The Broker [15] and Trader [15] patterns are examples. Theseare
architectural patterns and focus mostly on providing fundamental distribution
issues, such as marshalling and message protocols. Therefore, they are mostly
tailored to the implementation of distributed platforms, such asCORBA. DAP uses
these fundamental patterns and provides a higher level of abstraction: distribution
API transparency to both clients and servers[12].

+ Wrapper-Facade [15] and DAP have the common goal of minimizing platform
specific variation in application code. However, Wrapper-Facade encapsul ates
existing lowerlevel non-object-oriented APIs (such as sockets, and threads),
whereas DAP encapsul ates object-oriented distribution APIs, such asRMI and
CORBA[12].

» Facade, PersistentObject and ObjectPool. Framework Persistence is implemented
using the Design Patterns Sngleton and Facade, and, patterns for database
persistence [11], like PersistentObject and ObjectPool.

8. Acknowledgements

The authors woul like to thank to Shepherd Dr. Jugurta Lisboa Filho for sugestions
received during the process and Rosana Teresinha Vaccare Braga for all contribution. This
work is supported by Fundagéo de Amparo a Pesquisa do Estado da Bahia (Fapesb).

9. References

[1] Jacobson, |., Griss, M., Jonsson, P., 1997. Software Reuse: Architecture, Process and Organization
for Business Sucess, Addison-Wesley. Longman.

[2] D'Souza, D., F., Wills, A., C., 1999. Objects, Components, and Frameworks with UML, The
Catalysis Approach, Addison-Wesley. USA.

[3] Heineman, G., T., Councill, W., T., 2001. Component-Based Software Engineering, Putting the
Pieces Together, Addison-Wesley. USA.

[4] Szyperski, C., 1998. Component Software: Beyond Object-Oriented Programming, Addison-
Wesley. USA.

[5] Cheesman, J., Dani€ls, J., 2000. UML Components. A Simple Process for Soecifying Component-
Based Software. Addison-Wesley. USA, 1™ edition.

[6] The Common Object Request Broker Architecture, 1996. Object Management Group. Avaliablein
10/04/2001, URL: http:// www.omg.org.

[7] Almeida, E., S., Bianchini, C., P., Prado, A., F., Trevdin, L., C., 2002. MV Case: An Integrating
Technologies Tool for Distributed Component-Based Software Development. In APNOMS 2002,
The Asia-Pacific Network Operations and Management Symposium,Poster Session. Proceedings of
|EEE.

[8] Almeida, E., S., Lucrédio, D., Bianchini, C., P., Prado, A., F., Trevdlin, L., C., 2002. MV Case
Tool: An Integrating Technologies Tool for Distributed Component Development (in portuguese).
In SBES 2002, 16th Brazlian Symposium on Software Engineering, Tools Session

[9] Rumbaugh, J., et al., 1998. The Unified Modeling Language Reference Manual, Addison-Wesley.
USA.

[10] Gamma, E., et al., 1995. Elements of Design Patterns: Elements of Reusable Object Oriented
Software, Addison-Wesley.

[11] Yoder, J., Johnson, R., E., Wilson, Q., D., 1998. Connecting Business Objects to Relational
Databases. In PLoP’ 1998, Pattern Language of Progamming.

[12] Alves, V., Borba, P., 2001. Distributed Adapters Pattern (DAP): A Design Pattern for Object-
Oriented Distributed Applications. In Sugar! nafPlan’' 2001, The First Latin American Conference
on Pattern Languages of Programming. 143

SugarloafPLoP 2002 Proceedings

[13] Horstmann, C., S., Corndll, G., 2002. Core Java 2: Volume |1, Advanced Features, Prentice Hall.

[14] eXtensible Markup Language, 2000. World Wide Web Consortium. Avaliable in 10/04/2001,
URL: http:// www.w3.org/xml.

[15] Buschmann, F., et al, 1996. Pattern Oriented Software Architecture: A System of Patterns. John
Wiley & Sons.

144

SugarloafPLoP 2002 Proceedings

O Uso de Padroes na Integracao de Visoes Modeladas com UML

Vania M. P. Vidal Fabiana G. Marinho*
Departamento de Computacao Instituto Atlantico
Universidade Federal do Ceard — UFC Rua Chico Lemos 946
Campus do Pici Bloco 960 Cidade dos Funcionérios
Fortaleza, CE — Brasil Fortaleza, CE — Brasil
vvidal@lia.ufc.br fabiana@atlantico.com.br
Resumo

Durante o projeto conceitual de um banco de dados, as visoes dos usudrios sao abstraidas e
representadas. Em sequida, essas visoes sdo integradas em um esquema conceitual global (esquema
integrado) que satisfaz os requisitos de toda a organizacdo. Neste artigo, apresentamos uma
metodologia para integracdo de visées modeladas com UML[1]. O processo de integragdo proposto
em nossa metodologia usa o catdlogo de padrées desenvolvido por Marinho/[8].

Abstract

During database conceptual project, user views are represented and integrated in a global con-
ceptual schema (integrated schema) that completely satifies the organization requirements. In
this article, we discuss an view integration methodology using UML[1]. The integration process
proposed in our methodology uses the patterns catalog developed by Marinho[8].

1 Introducao

O projeto de um banco de dados é composto de duas fases principais - projeto conceitual e pro-
jeto légico. No projeto conceitual, o projetista especifica o banco de dados em termos do modelo
semantico adotado. O resultado dessa fase constitui o esquema conceitual da aplicagdo. No pro-
jeto légico, o esquema conceitual é traduzido em um dos modelos tradicionais de implementagao,
resultando no esquema légico da aplicacao.

Durante o projeto do esquema conceitual, as visoes dos varios usuarios sao abstraidas e repre-
sentadas. Essas visoes, além de proteger o acesso aos dados, ajudam a alcancar um certo grau de
independéncia légica, uma vez que é possivel alterar o esquema do banco de dados sem alterar uma
visdo. As visoes sdo entao integradas em um esquema conceitual global que satisfaz os requisitos de
toda a organizagao, denominado esquema integrado.

Observamos que pouco trabalho tem sido feito com UML no sentido de aprimorar sua capacidade
de construir esquemas conceituais globais que representem adequadamente os requisitos dos usudrios
e aplicagoes. Definir uma metodologia que facilite e que, de certa forma, padronize o processo de
integragao desses esquemas é necessario.

Neste trabalho, propomos uma metodologia para integracao de visoes modeladas com UML. O
processo de integracao de visdes proposto estd baseado no uso de padroes de modelagem. Esses
padroes tém como objetivo auxiliar os projetistas nas atividades que compoem o processo de inte-
gracao de visdes, de modo a assegurar que essa tarefa seja realizada de forma segura e eficiente.

A motivagdo para o desenvolvimento desse estudo foi encontrada na ineficicia existente nas
atuais praticas de integracao de visoes, quando aplicadas a situacoes especificas do mundo real. A

*Este trabalho foi suportado pelo Instituto Atlantico (www.atlantico.com.br).

Copyright (© 2002, Fabiana Gomes Marinho. Permissao de cépia concedida para a Conferéncia Sugarloaf-
PLoP 2002. Todos os outros direitos reservados.

145

SugarloafPLoP 2002 Proceedings

UML foi utilizada por se tratar de uma linguagem de modelagem unificada, tendo mostrado todos
os sinais de se tornar a linguagem de modelagem padrao para especificar, visualizar, documentar e
construir aplicagoes orientadas a objeto. Nosso estudo tomou como ponto de partida vérios trabalhos
realizados para integracao de visdes e modelagem conceitual dos dados ([14], [7], [11], [3], [9], [2],
110], [5), [4], [12]).

Neste artigo, também formalizamos algumas restrigoes de integridade e elementos do modelo de
objetos da UML. Esse formalismo é necessario para validar as solugoes propostas no catalogo de
padroes adotado.

Nas secoes a seguir descrevemos nossa abordagem para o processo de integracao de visoes e
como o catilogo de padroes é utilizado nesse processo. Na secao 2, descrevemos a metodologia
desenvolvida para a integragdao de visdes. Na segdo 3, formalizamos o significado dos elementos
do modelo de objetos da UML. Na secao 4, apresentamos as restrigoes de integridade utilizadas
na validagao dos padroes descritos. Na secao 5, apresentamos alguns dos padrdoes que compdem o
catalogo de padroes. Na secao 6, apresentamos as conclusoes e direcionamentos futuros do nosso
trabalho.

2 Caracteristicas Gerais da Metodologia

Nesta secao, descrevemos as caracteristicas gerais da metodologia proposta para tratar o processo
de integracao de visoes utilizando o diagrama de classes da UML.
Conforme ilustrado na Figura 1, nosso enfoque consiste em 4 fases:

(i) Primeiramente, cada grupo de usudrios analisa seus requisitos de dados e especifica as visoes
dos dados na forma de um esquema, conceitual.

(ii) Em seguida, essas visoes individuais sdo combinadas em um esquema conceitual global e a
definicao conceitual das visdes é criada. A definicdo conceitual das visdes consiste dos es-
quemas das visoes originais e de um conjunto de assertivas de correspondéncia (ACs) que
especifica como cada visao é definida em termos do esquema conceitual global obtido. Usamos
as assertivas de correspondéncia para especificar o relacionamento das visoes dos usuarios com
o esquema integrado. Esse passo é bastante complexo devido as diversas representagoes uti-
lizadas pelos projetistas na modelagem das visdes. Todo o processo de integracao das visoes
proposto em nossa metodologia esta baseado no uso de padroes de modelagem.

(iii) Apés a integragao das visoes, o esquema conceitual global é mapeado para o esquema légico.
Esse esquema légico é representado em termos do modelo de dados especifico do sistema de
gerenciamento de banco de dados adotado.

(iv) Neste tltimo passo, as defini¢oes conceituais das visoes sao traduzidas em definigoes légicas em
termos do esquema logico obtido. As ACs também sao mapeadas do esquema conceitual para
o esquema légico. Esse passo nao é abordado em nosso trabalho.

2.1 O Processo de Integragao de Visoes

O processo de integracao de visoes proposto em nossa metodologia consiste em 5 etapas. Cada etapa
esta baseada no uso de padroes de modelagem. Nesta secao, descrevemos como esses padroes sao
usados em cada passo do processo de integracao de visoes.

(i) Decomposigao: certas formas de dependéncias funcionais (DFs) sugerem a presenga de re-

dundéancias no esquema conceitual. O padrao P1 remove essas DFs indesejaveis, de modo a
minimizar a redundéancia do esquema conceitual.

146

SugarloafPLoP 2002 Proceedings

Modelagem
das
visbes

Esquemas
das
visOes

Integragédo
das
visbes

Definicao
conceitual
das visdes

Esquema
conceitual
global

Projeto l6gico

Projeto

- Esquema

l6gico das o
. l6gico
visbes

Definicdo
I6gica das
visbes

Figura 1: Projeto de Banco de Dados Através da Integracao de Visoes

(ii) Combinacao I: durante a etapa de combinagao I, as vérias visoes dos usudrios sao analisadas

(iii)

e comparadas para determinar correspondéncias entre extensoes de classes. O resultado desse
processo é o esquema combinado inicial, o qual contém todas as visoes originais e um conjunto
de ACs de extensao. Os padroes P2 e P3 sao usados para auxiliar na identificacao dessas ACs.

Otimizacao I: uma vez identificada a equivaléncia entre extensoes das classes, aplicamos ao
esquema combinado inicial uma série de transformacoes, de modo a obter um esquema global
otimizado. Os padroes P10, P11 e P21 tém como objetivo reduzir o tamanho do esquema
através da fusdo de classes e atributos comuns.

(iv) Combinagao II: o objetivo dessa segunda etapa de combinagao é identificar relacionamentos

semanticos entre classes de associacao e entre associagoes. O resultado da fase de combinacao
IT é um novo esquema combinado composto por todas as visoes originais e um novo conjunto de
ACs que expressam o relacionamento entre classes de associacao e associagoes. Os padroes P4,
P5, P6, P7, P8 e P9 sao utilizados para identificar os relacionamentos semanticos citados.

(v) Otimizacao II: nessa etapa, os padroes P12, P13, P14, P15 /P16, P17, P18, P19 e P20

reestruturam os esquemas novamente, de forma a eliminar redundancias identificadas na etapa

(iv).

147

SugarloafPLoP 2002 Proceedings

3 Os Elementos de Modelagem da UML

Nesta secao formalizamos alguns elementos de modelagem que compoem o diagrama de classes da
UML. Esse formalismo ¢é necessario porque possibilita a validacao das soluces propostas nos padroes
adotados.

Os elementos basicos do diagrama de classes sao classe, atributo, associcao e classe de associagao.
A seguir apresentamos as extensoes propostas para o diagrama de classe da UML envolvendo as
definicoes de ligagoes monovaloradas e ligacoes multivaloradas, caminho e classe de associacdo.

Pedido Multiplicidade Cliente
Classe . .
- | data: String *‘/ 1| nome: String
namero: String enderego: String
prego: Money telefone: set <String>
1 Generalizagdo AR
Agregacao / /
Associagéo Pessoa Fisica Pessoa Juridica
o #cartdo: String nome-contato: String
Ligagdo limite-crédito: Money
ou papel
*
linha de item *

Item-Pedido
* 1| Produto 0.1
quantidade: Integer Empregado |depto Departamento
prego: Money 1. 1 ‘

1.*| ger

1
Gerente

Figura 2: Exemplo - Diagrama de Classes da UML

Para cada direcao de navegagao de uma associacao é associada uma ligagdo ou papel. Usaremos
a notacao [: A — B para indicar que as instancias da classe A estao relacionadas com instancias
da classe B através da ligacao [. Neste caso, dizemos que [é uma ligacao da classe A. Por exemplo,
na Figura 2, temos que as instancias da classe Item-Pedido estao associadas a uma instancia da
classe Pedido através da ligagao linha de item (linha de item: Item-Pedido — Pedido).

As ligagoes também possuem uma multiplicidade. Se o valor maximo da multiplicidade especifi-
cada para uma ligacao for 1, entdao dizemos que a ligacao é monovalorada; caso seja maior que 1, a
ligacao é multivalorada.

Dado uma classe de associagao C entre as classes Cq, ..., Cy, entao existe uma ligagao mono-
valorada [; : C — Gy, para 1 <i < n. Em geral, nomeamos a ligagao /; com o nome da classe C;.
Por exemplo, no esquema da Figura 3, a classe de associacao Geréncia captura o fato de que um
empregado e trabalha em um projeto p que é gerenciado pelo gerente g. Existe uma ligacdo da
classe de associacao Geréncia para cada uma de suas classes participantes cuja multiplicidade é 1.

Instancias de uma classe podem estar associadas com instancias de outras classes através da
composicao de duas ou mais ligagoes. Considere, o diagrama da Figura 2. De acordo com as ligagoes
definidas entre as classes Empregado, Departamento e Gerente, temos que um empregado estd
relacionado com o gerente do seu departamento de forma indireta através da composicao das ligacoes
depto e ger, ou seja, existe um caminho entre as classes Empregado e Gerente (depto e ger). Uma
definicao formal de caminho é apresentada a seguir.

Definicao 3.1 (Caminho) Sejam Ci,Cag,... Cpy1 classes de um esquema tais que existe uma

ligagao l; de Ci para Ciyq (I; : C; — Cit1), 1 < i < n. Assim sendo, 6 =l elpe...01l, é
um caminho de Cq.

148

SugarloafPLoP 2002 Proceedings

Gerente Empregado Projeto

gerencia trabalha pertence

empregado |q
1.*

1.%

gerente \/ projeto

Geréncia

Figura 3: Exemplo - Classe de Associagao

Um caminho é monovalorado se todas as ligacoes que o compdem sao monovaloradas. Um
caminho é multivalorado se pelo menos uma das ligagoes que o compoe é multivalorada.

Definicao 3.2 (Estado de Classe e de Objeto) Suponha o diagrama de classes S = (C,T), onde C
representa um conjunto finito de classes e T um conjunto de restricdes de integridade definidas sobre
as classes em C. O estado de uma classe C € o conjunto de objetos que pertencem a extensdo de C,
ou seja, o conjunto de objetos que sdo instancias de C em um determinado instante. O estado de
um objeto € definido pelos valores de suas propriedades (atributos e ligagoes) em um determinado
instante. Considere ¢ uma instancia da classe C. Para qualquer atributo a de C, c.a retorna o valor
do atributo a para a instancia ¢ no estado corrente. Para qualquer ligagdio I: C — C', c.l retorna as
instancias de C' que estao associadas com ¢ através da ligacao | no estado corrente. Para qualquer
caminho 6 =l elpe...el, de C, ondel; :C — Cq el;: Ci_1 — Cj, 2 <1i <n, c.d retorna as
instancias de Cy que estdo associadas com ¢ através do caminho § no estado corrente.

4 Restricoes de Integridade em UML

As restricoes de integridade capturam a semantica do mundo real representada nos esquemas con-
ceituais. A UML, no entanto, ndo define uma sintaxe explicita para descrever essas restrigoes.
Nesta secao, definimos uma notacao especifica para representar restricoes de chave, restricées de
dependéncia funcional, restrigcoes de dependéncia existencial e assertivas de correspondéncia.

Uma restrigao de chave especifica a unicidade nos valores dos atributos de uma classe. A seguir
definimos formalmente a restrigao de chave.

Definicao 4.1 (Chave) Seja C uma classe e az, agz, ..., an atributos de C. A restrigao de chave
ai, ag, ..., an € Chaves(C) especifica que para quaisquer instancias e1 e ez de C se e1.a; = ea.a;,
1 <1< n, entdo e1 = ey (e1 e e2 sao semanticamente equivalentes, isto €, representam o mesmo
objeto do mundo real).

O diagrama de classes da UML nao possui uma definicao precisa para restricoes de dependéncia
funcional. A seguir, propomos uma notacao formal para esse tipo de restricao.

Definigao 4.2 (Dependéncia Funcional) Seja C uma classe de S e p1,P2,...,Pn, q propriedades
de C. A dependéncia funcional C[p1,P2,...,Pn — 4] especifica que para quaisquer instincias ci e
c2 de C, se c1.p; =c2.pi, 1 < i< n, entdo c1.q = C32.q.

As restrigoes de dependéncia existencial (DEs) sao importantes para dar suporte a reestruturagao
de esquemas conceituais, pois permitem expressar formalmente a equivaléncia seméantica de compo-
nentes de esquemas. A seguir, definimos formalmente alguns tipos de DEs utilizadas nos padroes
apresentados neste artigo. Suponha Cj e Cs classes, p1, P2, ---, Pn propriedades de C1 e q1,qz2, ..., dn
propriedades de Cs.

149

SugarloafPLoP 2002 Proceedings

Definicao 4.3 (DE de Subconjunto) A restri¢cio de DE Ci[p1,P2,...,Pn] C C2[d1,q2,...,qn] es-
pecifica que para qualquer instancia c1 de Cy existe uma instancia co de Co tal que c1.p; = c2.q;,
1<i1< n

Definicao 4.4 (DE de Equivaléncia) A restricio de DE Cq [p1,P2,---,Pn] = C2 [d1,92,- - -, qn]
especifica que Cy [p1,P2,---,Pn] C C2 [q1,4d2;...,4dn] €¢ C2 [q1,4q2,...,9n] C C1 [P1,P2,-- -, Pnl-

As assertivas de correspondéncia sdo tipos especiais de restrigoes de integridade usadas para
especificar a correspondéncia entre componentes de esquemas. Existem vérios tipos de ACs, depen-
dendo dos elementos envolvidos e da natureza da correspondéncia. No presente trabalho, consider-
amos apenas as assertivas de correspondéncia de extensio (ACEs) e assertivas de correspondéncia
de caminhos (ACCs).

As ACEs representam os diferentes tipos de relacionamentos existentes entre as extensoes das
classes de um ou mais esquemas. Em Marinho[8] sao definidos nove tipos de ACEs. A seguir
definimos os dois tipos de ACEs mais comuns e que sao usados nos padroes apresentados neste
artigo. Suponha C; e Cq classes de um esquema.

Definigao 4.5 (ACE de Subconjunto) A ACE de subconjunto C1 C Ca especifica que para qualquer
instancia e1 de Cy, existe uma instancia ez em Cao, tal que e1 = eq.

Definicao 4.6 (ACE de Equivaléncia) A ACE de Equivaléncia C1 = Cg especifica que C1 C Ca
e Cy C C;.

As ACCs especificam relacionamentos entre caminhos de classes semanticamente relacionadas.
As classes C; e Co, sdo semanticamente relacionadas quando suas instancias podem representar
objetos semanticamente equivalentes. A seguir definimos os dois tipos de ACCs mais comuns e que
sao usadas nos padroes apresentados neste artigo.

Definicao 4.7 (ACC de Equivaléncia) Sejam 61 e d2 caminhos (monovalorados ou multivalorados)
das classes Cq1 e Cqo respectivamente, onde Cy e Co sdo classes semanticamente relacionadas. A
ACC de equivaléncia C1.01 = Ca.02, especifica que para quaisquer e1, eg instancias de C1 e Ca,
respectivamente, se € = eg entdo €1.07 = €3.03.

Definicao 4.8 (ACC de Subconjunto) Sejam d1 e d2 caminhos multivalorados das classes C1 e Ca
respectivamente, onde C1 e Co sdo classes semanticamente relacionadas. A ACC de subconjunto
C1.01 C C2.02, especifica que para quaisquer e1, ez instancias de C1 e Cq, respectivamente, se eq
= es entdo e1.01 C e3.03.

9 O Catalogo de Padroes

Nesta secao descrevemos brevemente o catdlogo de padroes para integragao de visdoes modeladas
com UML. Os padroes estao agrupados em trés categorias principais, classificadas de acordo com a
etapa do processo de integracao de visdes que eles tratam (ver segao 2.1): Padrdo de Decomposigao,
Padroes de Combinagdo e Padroes de Otimizagao.

Padrao de Decomposigao

P1. Decompondo Classes para Eliminar DFs Indesejdveis - identifica no esquema conceitual
a presenca de classes embutidas representadas por restrigoes de dependéncia funcional.

Padroes de Combinagao

P2. Identificando Correspondéncias entre Extensoes de Classes - identifica ACs entre ex-
tensoes de classes de um esquema conceitual.

150

SugarloafPLoP 2002 Proceedings

P3. Identificando Associagoes Ocultas - identifica associaces ocultas a partir da andlise do
esquema conceitual.

P4. Identificando Correspondéncias entre Classes de Associagao - identifica restrigoes de DE
entre classes de associacao.

P5. Identificando Correspondéncias entre uma Classe de Associacdo e uma Classe Partici-
pante da Classe de Associagdo - identifica ACs entre extensoes de uma classe de associagao
e uma das classes participantes da classe de associacao.

P6. Identificando Correspondéncias entre Associagoes - identifica restrigoes de DE entre as-
sociagoes.

P7. Identificando Associagoes Derivadas - verifica se uma associagao é derivavel da com-
posicao de duas ou mais associacoes.

P8. Identificando Correspondéncias entre uma Classe de Associag¢ao e uma Associacdo -
identifica DEs entre uma classe de associacao e uma associacao definida entre duas classes
participantes da classe de associacao.

P9. Identificando Classes de Associagdo Derivadas - verifica se uma classe de associagao é
derivavel da composicao das associacoes existentes entre as classes participantes da classe
de associagao.

Padroes de Otimizagao

P10. Integrando Classes Fquivalentes - reestrutura o esquema conceitual de modo a capturar
as ACEs de equivaléncia.

P11. Eliminando Redundancias Capturadas por ACEs de Subconjunto - reestrutura o esquema
conceitual de modo a capturar as ACs de subconjunto entre extensoes das classes.

P12. Representando Correspondéncias entre uma Classe de Associacdo e uma Classe Par-
ticipante da Classe de Associacdo - reestrutura o esquema conceitual a partir das corres-
pondéncias seméanticas identificadas entre extensoes de uma classe de associagao e uma
das classes participantes da classe de associagao.

P13. Integrando Associacdes Fquivalentes - reestrutura o esquema conceitual capturando as
ACs de equivaléncia entre associagoes.

P14. Eliminando ACs de Subconjunto entre Associacdes - reestrutura o esquema conceitual
capturando as ACs de subconjunto entre associagoes.

P15. Remowvendo Associacdes Derivadas - reestrutura o esquema conceitual de modo a re-
mover associagoes derivaveis da composi¢ao de duas ou mais associagoes.

P16. Removendo Classes de Associagao Derivadas - reestrutura o esquema conceitual para
remover classes de associacao derivaveis da composicao das associagoes existentes entre
as classes participantes da classe de associagao.

P17. Integrando Classes de Associacdo FEquivalentes - reestrutura o esquema conceitual
visando remover restricoes de DE de equivaléncia entre classes de associacao.

P18. FEliminando Redundancias Capturadas por DEs de Subconjunto entre Classes de Asso-
ctacdo - reestrutura o esquema conceitual visando remover restricoes de DE de subcon-
junto entre classes de associagao.

P19. Integrando Classes de Associacao e Associagdes Equivalentes - reestrutura o esquema
conceitual para capturar as restricoes de DE de equivaléncia entre classes de associagao
e associacoes.

P20. Eliminando DFEs de Subconjunto entre uma Classe de Associacdo e uma Associa¢do -
reestrutura o esquema conceitual para capturar as restricoes de DE de subconjunto entre
classes de associagao e associacoes.

151

SugarloafPLoP 2002 Proceedings

P21. Adicionando Associacoes Ocultas - reestrutura o esquema conceitual adicionando asso-
ciacoes ocultas identificadas.

A Figura 4 apresenta a classificacao geral dos padroes, assim como seus inter-relacionamentos.
As elipses representam respectivamente as categorias dos problemas abordados. Os padrdes sao rep-
resentados por retangulos. As setas implicam na existéncia de um relacionamento entre os padroes,
ou seja, implicam que um padrao usa ou depende dos resultados obtidos com a aplicagao do outro.

Devido a limitacao de espaco, selecionamos alguns padroes mais relevantes do catalogo de padroes
utilizado. Os padroes P2 e P11 estao relacionados com a integracao de classes semanticamente
relacionadas. Os padroes P4 e P18 focalizam a integracao de classes de associacao. J4 os padroes
P7 e P15 abordam a remogao de associagdo derivadas do esquema conceitual. Nosso objetivo é
mostrar como os padroes podem contribuir para a qualidade das atividades presentes no processo
de integracao de visoes de um banco de dados.

152

C1. Decomposicao

P1. Decompondo
classes para eliminar
FDs indesejaveis

Legenda

Classificacéo

E— Uso
<+<—» Complemento
O Categoria
B

\

C2. Combinagéo

SugarloafPLoP 2002 Proceedings

[

P2. Identificando
correspondéncias
entre extensdes

. Otimizagédo

P10. Integrando
classes equivalentes

P5. Identificando
corespondéncias
entre CAs e classe

P11. Eliminando
ACs de subconjunto
entre extensdes

P6. Identificando
correspondéncias
entre associagdes

P12. Representando
correspondéncias
entre uma CA e uma
classe

P7. Identificando
associagdes
derivadas

P13. Integrando
associagdes
equivalentes

P4. |dentificando
correspondéncias
entre CAs

P14. Eliminando
ACs de subconjunto
entre associ¢des

P9. Identificando
CAs derivadas

P15. Removendo
associagdes
derivadas

P17. Integrando CAs
equivalentes

P8. Identificando
correspondéncias
entre uma CA e
associacao

— 7 /]

P18. Eliminando
DEs de subconjunto
entre CAs

P3. Identificando
associagdes ocultas

P16. Removendo
CAs derivadas

P19. Integrando CAs
e associacdes
equivalentes

P20. Eliminando
DEs de subconjunto
entre uma CA e uma

associacéo

P21. Adicionando
associacdes ocultas

Figura 4: Classificacao dos Padroes para Integracao de Visoes com UML

153

SugarloafPLoP 2002 Proceedings

P2. Identificando Correspondéncias entre Extensoes de Classes

O padrao P2 é usado durante a fase de combinacao I e identifica uma situacao de possivel corres-
pondéncia entre extensoes de classes.

Contexto: Considere o esquema S; mostrado na Figura 5.

A B
X1 Xl
X, X,
Xq Xy
S

Figura 5: Classes com Atributos em Comum

Sejam A e B classes. Suponha que x1, X2,..., X, sejam atributos em comum das classes A e B.
Problema: Verificar se existe um relacionamento semantico entre as extensoes das classes A e B.

Solugao: A semantica da aplicacao deve ser analisada para verificar se:

1. existe uma ACE de subconjunto dada por A C B ou

2. existe uma ACE de equivaléncia dada por A = B.

Exemplo P2.1: Considere o esquema So mostrado na Figura 6. Analisando as classes EMPRE-
GADO ¢ GERENTE, verificamos que elas possuem um conjunto de atributos em comum: os
atributos cpf, nome e salario. Essa situacao sugere a existéncia de um relacionamento semantico
entre as extensoes das classes EMPREGADO ¢ GERENTE.

Departamento’ Empregado Projeto
depto cpf trabalha

#departamento #projeto
nome

nome . nome
salério

Gerente Departamento

cpf pertence
nome #departamento
salério nome
data-cargo S

2

Figura 6: Exemplo - Classes com Atributos Similares

Analisando a semaéantica associada ao esquema So, identificamos que todo gerente é um empre-
gado. Isso significa que para toda instancia g de GERENTE existe uma instancia e de EMPRE-
GADO, tal que g = e. Esse relacionamento é formalmente capturado pelas ACs abaixo:

Assertiva de Correspondéncia de Extensao:
(i) GERENTE C EMPREGADO
Assertivas de Correspondéncia de Caminho:

(ii) GERENTE.cpf = EMPREGADO.cpf

154

SugarloafPLoP 2002 Proceedings

(iii) GERENTE.nome = EMPREGADO.nome
(iv) GERENTE.salario = EMPREGADO.sal&rio

(v) GERENTE. pertence = EMPREGADO. depto

Usos Conhecidos: Uma discussao relacionada a identificagdo de correspondéncias seménticas
entre extensoes pode ser encontrada em Storey[13].

Padroes Relacionados: No padrao P11, propomos a reestruturacao dos esquemas conceituais
de forma a capturar as ACEs identificadas.

P4. Identificando Correspondéncias entre Classes de Associacao

O padrao P4 ¢ utilizado durante a fase de combinacao II e identifica situagoes de possiveis corres-
pondéncias entre classes de associacao.

Contexto: Suponha o esquema S mostrado na Figura 7.

C C C C C C

1 2 n 1 2 n

S

Figura 7: DE entre Classes de Associagao

Sejam A e B classes de associacdo. Suponha que Ci, Ca, ..., C, sejam classes em comum
participantes das classes de associacao A e B. Considere I4; : A - Cijelg : B —C;, 1 <i<n.

Problema: Verificar se existe uma restricao de dependéncia existencial entre as classes de asso-
ciacado A e B.

Solugao: A semantica deve ser analisada para verificar se:

1. existe uma restricao de DE de subconjunto entre A e B, dada por A [la1,la2,...,lan] C B
1, B2, -\ IBn] ou

2. existe uma restricdo de DE de equivaléncia entre A e B, dada por A [la7,l42,...,14n] = B

[B1, B2, ..., ln]-

E importante observar que as ACEs sao casos especiais de DEs. No caso de A [laz,la2, ..., lan]
C B [lg1,1B2, ..., Ign) € [la1, laz, ..., lay] conter a chave de A e [lps, lp2, ..., I, conter a chave de B,
entao existe uma ACE de subconjunto entre A e B dada por A C B.

No caso de A [laz,la2,...,lan] = B [lB1, B2, ..., IBn] € [la1,lag, ..., lan] conter a chave de A e
[lB1,1B2, ..., Ign] conter a chave de B, entao existe uma ACE de equivaléncia entre A e B dada por
A = B.

155

SugarloafPLoP 2002 Proceedings

Exemplo P4.1: Considere os esquemas Sy e Ss da Figura 8. A existéncia de uma instancia
na classe de associacao MATRICULA associando uma disciplina d e um professor p, requer
a existéncia de uma instancia na classe de associagado OFERTA associando d e p. Essa re-
stricao é capturada pela assertiva de DE de subconjunto MATRICULA [disciplina, professor] C
OFERTA[disc, prof].

Disciplina_| | »| Professor Estudante Disciplina Professor
disc }prof
I
I
1
Oferta 1..* | disciplina
1.* 1.*
sala
estudante \/ professor
S, |
I
I
Matricula
S

Figura 8: Exemplo - DE de Subconjunto entre Classes de Associagao

Exemplo P4.2: Suponha os esquemas S3 e S4 da Figura 9. As classes de associacao ALOCAQAO
e MATRICULA relacionam um mesmo conjunto de classes: as classes SEMESTRE, DISCI-
PLINA e PROFESSOR.

Semestre Disciplina Professor Semestre Disciplina Professor
1.* | disciplina 1. |disciplina
1 1.* 1 1.*
semestre \/ professor semestre \/ professor
I I
I I
| |
Alocagédo Matricula
S3 S4

Figura 9: Exemplo - DE de Equivaléncia entre Classes de Associacao

A existéncia de uma instancia na classe de associacao ALOCACAO associando um semestre
s, uma disciplina d e um professor p, requer a existéncia de uma instancia na classe de associagao
MATRICULA associando s, d e p e vice-versa. Essa restrigdo é formalmente capturada pela as-
sertiva de DE de equivaléncia ALOCAGAO [semestre, disciplina, professor] = MATRICULA[semestre,
disciplina, professor].

Usos Conhecidos: A identificacao de restrigoes de dependéncia existencial a partir da andalise dos
esquemas conceituais pode ser encontrada em Vidal[14].

Padroes Relacionados: Certas formas de restrigoes de dependéncia existencial capturam re-
dundéanciacs no esquema conceitual. O padrées P13 e P14 reestruturam os esquemas de modo a

remover essas redundancias.

P7. Identificando Associagoes Derivadas

156

SugarloafPLoP 2002 Proceedings
O padrao P7 é usado durante a etapa de combinagao II e ajuda a identificar associagoes derivadas
no esquema conceitual. Uma associagao derivada (ou redundante) é aquela cujas instancias podem

ser inferidas a partir de instancias de outras associagoes.

Contexto: Suponha o esquema S da figura 10.

C c C loa c

1 |1 2 |2 3 n-1 n

c

S

Figura 10: Associagdo Derivada

Existem dois caminhos ligando as classes C; e Cy: o caminho I; e o caminho [; e ... e [, ;.
Identificamos, portanto, a presenca de um ciclo. Existe um ciclo em um esquema quando existe mais
de um caminho ligando duas classes no esquema conceitual.

Problema: Verificar se a ligacao I, é derivavel da composi¢ao das ligacoes [; o ... [,_;.

Solucao: Um ciclo no esquema conceitual sugere a presenca de uma associagdo derivada. Ao
detectar a existéncia de um ciclo, é necessario verificar a compatibilidade das multiplicidades que
compoem esse ciclo. As multiplicidades de dois caminhos sdo compativeis se os valores minimo e
maximo das multiplicidades desses caminhos sao iguais. Além disso, a semantica deve ser analisada.
Pela andlise da semaéantica associada ao esquema S, temos que [, é derivada da composicao dos
caminhos [; o ... [,_; se para qualquer instancia c¢1 de Cy, entdo c1.l, = c1.(l; ®... e[, ;). Nesse
caso, existe uma ACC de equivaléncia dada por I, = (I; e...e [, 7).

Exemplo P7.1: Considere o esquema S1 mostrado na figura 11. Existem dois caminhos ligando as
classes PECA e FORNECEDOR: o caminho é-fornecida e o caminho estd-contida e é-preenchido.
Identificamos, portanto, a presenca de um ciclo.

Pec;a esta-contida Pedido | é-preenchido Fornecedor
1.* * * *
é-fornecida fornece
S

Figura 11: Exemplo - Associacao derivada

As multiplicidades do ciclo da figura 11 sdo compativeis, pois uma peca pode estar associada a
zero ou mais fornecedores pelo caminho é-fornecida e pode estar associada a zero ou mais fornecedores
pelo caminho estd-contida e é-preenchido.

E necessério agora verificarmos se os caminhos representam o mesmo fato do mundo real. No
contexto do exemplo mostrado na figura 11, temos que o caminho é-fornecida é derivavel da com-
posicao dos caminhos estd-contida e é-preenchido, pois para qualquer instancia p de PECA, entao
p.é-fornecida = p.(estd-contida e é-preenchido). Esta restri¢ao é formalmente capturada pela ACC
de equivaléncia é-fornecida = estd-contida e é-preenchido.

157

SugarloafPLoP 2002 Proceedings

Usos Conhecidos: Uma discussao relacionada a existéncia de derivagao em esquemas conceituais
pode ser encontrada em Fowler[6].

Padroes Relacionados: No padrao ¢ mostramos como remover associagoes derivadas do esquema
conceitual.

P11. Eliminando Redundancias Capturadas por ACEs de Subconjunto

O padrao P11 é utilizado durante a fase de otimizagao I e propoe uma reestruturagao do esquema
conceitual de forma a eliminar redundancias capturadas por ACEs de subconjunto.

Contexto: Suponha o esquema S mostrado na Figura 12.

A B B'

Figura 12: Eliminando AC de Subconjunto entre Extensoes de Classes

Sejam A e B classes, At (A) o conjunto de atributos da classe A, At (B) o conjunto de atributos
da classe B, Lg(A) o conjunto de ligacoes da classe A e Lg(B) o conjunto de ligacoes da classe B.
Existe uma ACE de subconjunto entre A e B, dada por A C B.

Problema: Remover do esquema conceitual a redundancia capturada pela ACE de subconjunto
A C B.

Solugao: O esquema S deve ser transformado no esquema S’ como mostrado na Figura 12. No
esquema S’, a classe B’ é equivalente a classe B e a classe A’ é definida como uma subclasse da
classe B’. Os atributos e ligagoes de A’ sao distribuidos como segue:

-At(A’) = At(A) - At(B), onde - (diferenga de conjuntos) significa que os atributos da classe A’
sao aqueles atributos de A que nao possuem atributos semanticamente equivalentes em B.

- Lg(A’) = Lg(A) - Lg(B), onde - (diferenga de conjuntos) significa que as ligagdes da classe A’
sao aquelas ligacoes de A que nao possuem ligagoes semanticamente equivalentes em B.

O mapeamento entre o esquema original S e o esquema transformado S’ é formalmente especifi-
cado pelas ACs abaixo:

i) A
ii) B

iii) os atributos de B sdo mapeados diretamente nos atributos de B’

(
(
(
(iv) os atributos de A que nao possuem atributos semanticamente equivalentes em B sdo mapeados
diretamente em atributos de A’

158

SugarloafPLoP 2002 Proceedings

Exemplo P11.1: Suponha o esquema S; mostrado no exemplo P2.1.

De acordo com a AC (i), verificamos uma generalizacao implicita entre as classes GERENTE
e EMPREGADO que nao esta devidamente representada no esquema Si. Nesse caso, propomos
reestruturar o esquema Sy como sugerido no esquema So da Figura 13. No esquema S, definimos
duas novas classes EMPREGADO’ e GERENTE’ e definimos uma generalizacao entre essas
classes. Os atributos e ligacoes da nova classe EMPREGADO?’ correspondem aos atributos e
ligagoes da classe EMPREGADO. Os atributos da classe GERENTE’ correspondem aos atrib-
utos da classe GERENTE que nao possuem atributos semanticamente equivalentes em EMPRE-
GADO. As ligagoes de GERENTE’ correspondem as ligacbes de GERENTE que nao possuem
ligagoes semanticamente equivalentes em EMPREGADO.

O mapeamento entre o esquema original S; e o esquema transformado Sa é formalmente especi-
ficado pelas assertivas de correspondéncia abaixo:

Assertivas de Correspondéncia de Extensao:
(i) EMPREGADO0 = EMPREGADOQ’

(ii) GERENTE = GERENTE’

Assertivas de Correspondéncia de Caminho:
iii) GERENTE.cpf = EMPREGADO’ .cpf

iv) GERENTE.nome = EMPREGADO’ .nome

(

(

(v) GERENTE.salario = EMPREGADO’.sal&rio

(vi) GERENTE.data-cargo = GERENTE’.data-cargo
(

vii) GERENTE. pertence = EMPREGADO’ . depto

Departamento Empregado’ Projeto
depto cpf trabalha
#departamento #projeto
nome
nome o nome
salario
Gerente'
data-cargo
S

2

Figura 13: Exemplo - Eliminando AC de Subconjunto entre Extensoes de Classes

Usos Conhecidos: Uma discussao relacionada a reestruturacao de esquemas a partir das ACEs
pode ser encontrada em Vidal[14].

Padroes Relacionados: No padrao P2 mostramos como identificar ACEs de subconjunto.
P15. Removendo Associacoes Derivadas
O padrao P15 ¢ utilizado durante a fase de otimizacao II e propoe uma reestruturacao do esquema

conceitual de forma a eliminar redundéancias capturadas pela presenca de associagoes derivadas no
esquema conceitual.

159

SugarloafPLoP 2002 Proceedings

c, | c | c c |t c

) 3 n-1 n

S

Figura 14: Associacdo Derivada

Contexto: Suponha o esquema S da figura 14.
Pela analise da seméantica de S, temos que I, é derivada da composi¢ao dos caminhos [;e...e[, ;,
isto é, I, = l1 e..0 ln,1.

Problema: Reestruturar o esquema conceitual de modo a remover a associacao derivada [,.

Solucao: O esquema S deve ser transformado no esquema S’ como mostrado na figura 15.

|
C1 |1 C2 |2 C3 Cn>1 n-1 Cn

Sl
Figura 15: Removendo Associa¢ao Derivada

O mapeamento entre o esquema original S e o esquema transformado S’ é formalmente especifi-
cado pelas assertivas de correspondéncia abaixo.

i)C;=Cl,1<i<n

(i) C1.l, = C{.Uj0...0ly_1)

(iii) Ci.l, = Cl.l;, 1 < i <n
Exemplo P15.1: Considere o esquema Sq do exemplo P7.1. De forma a remover a redundancia
identificada, sugerimos reestruturar esse esquema como mostrado no esquema So da figura 16. No
esquema So, removemos a associacao é-fornecida, ja que esta pode ser obtida a partir da composicao
das associagoes estd-contida e é-preenchido. Vale a pena ressaltar que o projetista pode decidir

permanecer com a associacao derivada no esquema durante a implementagao do banco de dados por
motivos relacionados ao desempenho das operacoes a serem executadas sobre o banco de dados.

Peca | esta-contida Pedido | é-preenchido Fornecedor
1+ . .

Figura 16: Exemplo - Removendo Associagao Derivada

*

O mapeamento entre o esquema original S1 e o esquema transformado So é formalmente especi-
ficado pelas assertivas de correspondéncia abaixo:

Assertivas de Correspondéncia de Extensao:

160

SugarloafPLoP 2002 Proceedings
(i) PEGA = PECA’
(ii) PEDIDO = PEDIDQ’
(iii) FORNECEDOR = FORNECEDOR’
Assertivas de Correspondéncia de Caminho:
(iv) PEGA. é-fornecida = PEGA’ . (estd-contida e é-preenchida)
(v) PECA. estd-contida = PEGA’ . estd-contida

(vi) PEDIDO. é-preenchido = PEDIDO’ . é-preenchido
Usos Conhecidos: Fowler[6] aborda o problema de associagdes derivadas no esquema conceitual.

Padroes Relacionados: No padrao P7 discutimos como identificar a presenca de associacoes
derivadas no esquema conceitual.

P18. Eliminando Redundancias Capturadas por DEs de Subconjunto entre Classes de
Associagao

O padrao P18 é utilizado durante a fase de otimizacao II e propoe uma reestruturacao do esquema
conceitual de forma a eliminar redundancias capturadas por DEs de subconjunto entre classes de
associacao.

Contexto: Suponha o esquema S mostrado na Figura 17.

Cl C2 Cn C1 C2 Cn Cn+1 CD
: p>n
A B
S

Figura 17: DE de Subconjunto entre Classes de Associagao
Sejam A e B classes de associagao, At (A) o conjunto de atributos de A, At(B) o conjunto de

atributos de B, Lg(A) o conjunto de ligacoes de A e Lg(B) o conjunto de ligagoes de B. Existe uma
restrigao de DE entre A e B dada por textttA [las, lag, ... lan] C B [lp1, B2, ..., IBp).

Problema: Remover do esquema conceitual a redundancia causada pela restricao de DE de sub-
conjunto existente entre as classes de associacdo A e B dada por A [las, laz,....lan] C B [lB1, B2, ..., lBp].

161

SugarloafPLoP 2002 Proceedings

CI1 CIZ Cln
B’ Chi Cy
| p>n
A
SI

Figura 18: Removendo DE de Subconjunto entre Classes de Associagao

Solucao: O esquema S deve ser transformado no esquema S’ como mostrado na Figura 18. No
esquema S’, a classe B’ é equivalente a classe B e a classe A’ é modelada como uma associagao
9 / /
entre as classes B’,C; ,; e Cj,.
Os atributos e ligagoes da nova classe de associagao A’ sao distribuidos como segue:

-At(A’) = At(A)

- Lg(A’) = Lg(A) - Lg(B), onde - (diferenca de conjuntos) significa que as ligagoes da classe A’
sao aquelas ligagoes de A que nao possuem ligacoes semanticamente equivalentes em B.

O mapeamento entre o esquema original S e o esquema transformado S’ é formalmente especifi-
cado pelas assertivas de correspondéncia abaixo:

i) A

iii) os atributos de A sdo mapeados diretamente em atributos de A’

(
(ii
(iif) G = ¢
(
(

iv) os atributos de B sdo mapeados diretamente em atributos de B’

Exemplo P18.1: Considere os esquemas S1 e S do exemplo P4.1.

Sugerimos reestruturar os esquemas Sy e S como mostrado no esquema S3 da Figura 19. No es-
quema integrado Sg, definimos as classes de associagao MATRICULA’ ¢ OFERTA’. Os atributos
e ligagoes da classe de associacao OFERTA” correspondem aos atributos e ligagoes da classe de asso-
ciagao OFERTA.. Os atributos da classe de associacao MATRICULA’ correspondem aos atributos
de MATRICULA. As ligagoes de MATRICULA’ correspondem as ligagoes de MATRICULA
que nao possuem ligacoes semanticamente equivalentes em OFERTA.

O mapeamento entre o novo esquema Sz e 0s esquemas originais S; e Sg é formalmente especi-
ficado pelas assertivas de correspondéncia abaixo:

Assertivas de Correspondéncia de Extensao:

162

SugarloafPLoP 2002 Proceedings

Disciplina |1 » 1.+ | Professor

disc | prof

I
|
|
|
|
|

Oferta’ |{ .« 1.* | Estudante

T
sala ofta | est
|
|
|
|

Matricula'

Figura 19: Exemplo - Representando DE de Subconjunto entre Classes de Associacao

(i) OFERTA = OFERTA’
(ii) MATRICULA = MATRICULA’
Assertivas de Correspondéncia de Caminho:

(iii) MATRICULA. estudante = MATRICULA’ . est

(iv) MATRICULA. disciplina = MATRICULA’ . ofta’. disc

(v) MATRICULA. professor = MATRICULA’.ofta’. prof
Usos Conhecidos: Restri¢oes de dependéncia existencial sdo abordadas em Vidal[14].

Padroes Relacionados: No padrao P4 mostramos como identificar, a partir da andalise da seméantica
do mundo real, as restricoes de dependéncia existencial entre classes de associacao.

6 Conclusoes

Segundo Navathe[12], dois motivos justificam a necessidade de integragao de visdes durante o projeto
de um banco de dados: (i) a estrutura de um banco de dados para grandes aplicacoes é bastante
complexa de ser modelada por um tnico projetista em uma unica visao; (ii) em geral, os grupos de
usudrios trabalham de forma independente nas organizagoes e possuem seus proprios requisitos dos
dados, que podem conflitar com os interesses de outros grupos. Neste artigo, abordamos o problema
da integracao de visoes modeladas com UML durante o projeto conceitual de um banco de dados.

O processo de integracdo proposto em nossa metodologia usa o catalogo de padroes definido
em Marinho[8]. A idéia associada a esse catdlogo é propor uma série de solugoes individuais para
problemas de integracao que, em conjunto, mostram como construir um esquema conceitual global
de forma correta.

Como trabalhos futuros, pretendemos incorporar o catdlogo de padroes proposto a um tuto-
rial para ensino de modelagem conceitual utilizando o diagrama de classes da UML. Esse tutorial
possibilitara, através de exemplos, questionamentos e textos explicativos, o aprendizado de forma
didatica de importantes técnicas de modelagem conceitual, auxiliando os projetistas de banco de
dados no desenvolvimento de projetos conceituais consistentes, mesmo em situagoes nao facilmente
capturadas por um esquema conceitual.

163

SugarloafPLoP 2002 Proceedings

Agradecimentos: Agradecimento especial ao shepherd, Jerffeson Teixeira de Souza, pela co-
operacao e tempo dispensados na realizacdo deste trabalho e ao Instituto Atlantico pelo apoio
financeiro que viabilizou a apresentagao deste artigo na SugarloafPLoP’02.

Referéncias

1]

[12]

[13]

[14]

Grady Booch, Ivar Jacobson, and James Rumbaugh. The UML specification document. Tech-
nical report, Rational Software Corporation, 1997. Disponivel em www.rational.com.

M. Casanova and Vania Maria Ponte Vidal. Towards a sound view integration methodology.
In 2nd ACM SIGACT/SIGMOD Conference on Principles of Database Systems, 1983.

E. Codd. Further normalization of the data base relational model. In Data Base Systems, 1972.

Deb Dey, Veda Catherine Storey, and Terence M. Barron. Improving database design through
the analysis of relatioships. Draft Only, Maio 1997.

Martin Fowler. Analysis Patterns. Reusable Object Models. Object Technology Series. Addison-
Wesley, 1997.

Martin Fowler. UML Distilled. Object Technology Series. Addison-Wesley, 1997.

T. W. Ling. A normal form for entity-relationship diagrams. In International Conference on
the Entity-Relationship Approach, 1985.

Fabiana Gomes Marinho. Padroes para integragao de visdes modeladas com uml. Master’s
thesis, Universidade Federal do Ceara, 2001.

R.J. Miller, Y. E. Ioannidis, and R. Ramakrishman. The use of information capacity in schema
integration and translation. In 19th International Conference on Very Large Databases, 1993.

S.B. Navathe and S.G. Gadgil. A methodology for view integration in logical database design.
In 8th International Conference on Very Large Data Bases, 1982.

Michael Schrefl. A comparative analysis of view integration methodologies. In GI-Fachtagung
EMISA, 1987.

R. Shamkant Navathe, Elmasri and J. Larson. Integrating user views in database design. Data
Engineering, 1986.

Veda C. Storey. Relational database design based on the entity-relationship model. Data e
Knowledge Engineering, 1991.

Vania Maria Ponte Vidal. Preservando a Semdntica de Atualizagdes na Integracdo de Visoes.
PhD thesis, Universidade Federal do Rio de Janeiro, 1994.

164

Special Session on Software
Pattern Applications

SPA is dedicated to explore gpplications that involve software patterns. It provides a
forum for researchers and practitioners in the area to meet and exchange research idess
and results.

We want to soread the use of paterns in Lain America, simulating not only new
patterns to be written, but also disseminating the culture of patterns among our software
devdopers. This can be obtained if we show that paterns ae a poweful reuse
technique that has evolved in the last decade and is being used more and more in
concrete projects.

The SPA Session Dynamics

SPA sessions were about 30 minutes each, with 25 minutes for authors presentation
and 5 minutes for questions.

A tool and a formalism to design and apply patterns!

Agnés Conte', José-Celso Freire Junior™?, Jean+ Pierre Giraudint,
| btissem Hassine®, Dominicque Riet*

ILSR-IMAG, SIGMA
BP 72, 38402 SAINT MARTIN D'HERES CEDEX — France

2UNESP/IFEG/DEE
12500-000 - CP 205 - Guaratingueta/SP Brazil B

E-mail : Agnes.Conte@imag.fr, Jose-Celso.Freire@imag.fr,
Jean-Pierre. Giraudin@imag.fr, Ibtissem.Hassine@imag.fr,
Dominique.Rieu@imag.fr

Abstract

Pattern systems are becoming more and more numerous. They offer product patterns or process patterns of
varied range and cover (analysis, design or implementation patterns, and general, domain or enterprise
patterns). New application development environments have been developed together with these pattern-oriented
approaches. These tools address two kinds of actors: patterns engineers who specify pattern systems, and
applications engineers who use these systems to specify information systems. Most of the existing development
environments are made for applications engineers; they dffer few functionalities allowing definition and
organization of pattern systems. This paper presents AGAP, a development environment for defining and using
patterns, which distinguishes pattern formalisms from pattern systems. Not only does AGAP address
applications engineers, but it also allows patterns engineers to define pattern systems. The same formalisms or
items of existing formalisms may either be used in order to facilitate the engineering of pattern systems or to
increase the level of reuse. We illustrate the use of AGAP by the presentation of P-Sigma, a common formalism
for pattern representation. PSigma expresses a semantics common to most of the existing formalisms and
standardizes the expression of product patterns and process patterns. It allows to clarify the patterns selection
interface and facilitates the organization of pattern systems. Two pattern systems developed during industrial

experimentation validate the P-Sigma formalism and were implemented in AGAP.

Keywords: pattern, pattern system, reuse, product pattern, process pattern, pattern formalism, pattern-based
devel opment environment.

1 Introduction

A wide variety of reusable component models have dready been proposed to integrate reuse
in al gpplications development processes. business objects [20], generic domain modes [16],
anayss patterns [8] [9], design patterns [11], frameworks [15], tc. In al cases, a component

1 Copyright O 2002, Agnés Conte et al. Permission is granted to copy for the SugarloafPLoP 2002 Conference.
All other rights reserved.

is conddered as a tested and accepted solution to a problem which occurs frequently in
information sysems development.

In this paper, particular interest is given to the pattern gpproach [1]. Different criteria may be
used to compare component models [10] [7]. Some of them are particularly interesting to
characterize patterns.

Type of knowledge. A pattern @pitdizes products — a product corresponds to a goa to
reach - or capitaizes processes - a process corresponds to away to reach aresult.

Coverage. A pdtern coverage may be generic (resp. domain, enterprise) if it solves a

problem frequently occurring in severd domains (rep. in an gpplication domain, in a

particular enterprise).

Range. The pattern range may be analysis, design or implementation depending on the

stage of the engineering process it addresses.
The best known pattern systems (P. Coad [8], E. Gamma [11], etc.) propose general product
patterns dedicated to only one stage of the development process (analysis for P. Coad's
patterns, design for E. Gamma's patterns). SW. Ambler's patterns [2] are general process
patterns coveing dl the sages of the engineering process. They provide collections of
techniques, actions and/or tasks for software development. Findly, the pattern system
proposed by L. Gzara [13] concerns a specific domain (the Product Information Systems? —
PIS- or the Product Deta Management). Petterns cover the stages of analysis and design of
the PIS development and integrate product patterns and process patterns. In this pattern
system, process patterns am to specify a PIS development process which makes easier the use
of product patterns (selection, application, composition, €tc.).
Whatever thelr coverage, range or type may be, patterns have to be integrated in development
environments. Pattern-based tools are dedicated to two kinds of actors:

The applications engineer’'s god is to agpply patterns and to combine these patterns

gpplications in order to modd an information system.

The paterns engineer’s god is to define new patterns by identifying recurrent problems

and solutions to these problems.
The mgority of exiging tools only integrates E. Gammas pattern sysem [GAM 95 and
don't take into account the patterns engineers needs ([4] [19] [17] [18] [21] [6] [12]). Section
2 presents AGAP, a development environment, which combines the needs of the applications
engineers and the needs of patterns engineers. Section 3 introduces the RSigma formdiam, a
pattern representation formadism which intends to resolve some limits of the exiding peattern
formdisms P-Sgma ams to express a common semantics for the magority of exiging
formdism, to standardize the expresson of product patterns [8] [11] [9] and process patterns
[2] [GZA13R00], to make explicit the patterns selection interface to facilitate their reuse, and
finally to propose paiterns relaionships to better organize pattern systems and to increase
their reuse. To conclude, section 4 presents two industria experiences usng AGAP and P-
Sigma and proposes future prospects of our research.

2 product Information Systems (PIS) support all types of engineering data used to define, manufacture and support products.
They may include definitions, specifications, CAD drawings, manufacturing process plans and routings, project plans,
control records, etc.

2 AGAP

2.1. Actors

AGAP (in french «Atdier de Gedion et d Application de Patrons») offers solutions to
combine the various needs of two kinds of actors. applications engineer and patterns engineer.

2.1.1. Patterns engineer

The patterns engineer’s god is to define pattern formdisms and pattern systems described
according to these formaisms. Several use cases are dlocated to him (see Figure 1): for
example, a patterns engineer must be able to create, modify, vaidate and visudize a pattern
formdism or a pattern sysem. The vadidation of a patern formaism (respectively a pattern
system) implies that it is not modifiable, but adlows it to be used to cregte pattern systems
(respectively information systems). The patterns engineer is dso authorized to manipulate
gpplications domains and targeted technologes a pattern system is applied to a given doman
(for example banking |S) according to a given technology (for example, relational or object-
oriented technology). Findly, AGAP dlows a dasdficaion of items the patterns engineer
can define, modify and visudize the types of the fields (text, UML diagrams, €tc.).

| Patterns svstem | Earmalism
O Validate_ pattem&;te\m O

/gatefformalism
Visualize_formalism

Modifiy_patterns system § %&O

Create_patterns system

)

Modify_formalism

/ Validate_formalism
Visualize_patterns system ngin
D—| |_Technology
omain
7 feld ¢ \\:
\ Visuatize_technology O
Enrich_domain i
_ I Create._field_tybe O Enrich_technology

O Visualize_field_type O
Visualize_domain
Create_domain @ Create_technology

Modify_field_type

T

Figure 1: Patterns engineer’s use cases

2.1.2. Applications engineer
The god of the applications engineer is to goply peatterns in order to modd and design
information systems. This gpplication is based on one or more patern sysems avaladle in
AGAP. The main needs of the gpplications engineer can be summarized by UML use cases
(see Fgure 2): an goplications engineer must be able to creste or modify an information
gysdem, to visudize a paten sysem and to visudize an informaion system trace. An
information system trace shows the patterns sdection and patterns application processes by

preserving the patterns agpplications, the patterns from which they result, and the successve
integrations of patterns gpplications.

i \ Patterns system

Applications
engineer \

Visualize_patterns_system

Information system \

N\

Visualize_information_system_trace Create_information_system

-

Modify_information_ system

Figure 2: Applications engineer’s use cases

2.2. Components

AGAP is composed of 7 busness components. Tool, Information System, Pettern system,
Domain, Technology, Formdism and Fedd-type. Only two components will be described here
(Formdism and Pattern system).

The dructure of each component conforms the business components sructuring of the
Symphony process [14]. This gructuring is inspired by CRC (Class-Responghility-
Collaboration) [24]. According to this method, a business component is modeled by a package
composed of three parts(see Fgure 3): an interface part (what I can do), a structurd part
(what I am) and a collaboration part (what I use). The three parts of a component are
represented by four object types stereotyped by:

¢+ Master object: it is the main object of the component for which the sarvices are
carried out. It isidentifiable by any externa actor.

+ Part object: the part-object is complementary to the master object. It is identified by
its atachment with the master object to which it is linked by a relaion of composte
type.

+ Role object: it is an object servant. All the services of the other components are cdled
through this object.

¢+ Interface: it represents the services contract of the component. It supports the
operations of the component respongbility.

2.2.1. Component « Formalism »
A formdism (see Fgure 3) contains one or more items which can be shared with other
formalisms. Some of them are mandatory, and others are optiona. Three types of items exidt:
Interface item in order to facilitate patterns sdection, Realization item in order to express
patterns solution and Relations item in order to organize pattern systems. Each item is
composed of one or more fields which may be optional.

Formalism

Validate_formalism()
Visualize_formalism()

(What | can do)

<<Master>>
<<Interface>> Formalism
Formalism service fname 1
Fauthor
Create_formalism() I el 0..%
Modify_formalism() v

<<Part>>
Interface item

Item

<<Part>>

I

1

<<Part>>
Realization item

<<Part>>
<<Part>>
Field . h
Relation item
(What | am)

*

<<Role>>

Patterns system

<<Role>>
Field type

(What | use)

2.2.2. Component « Pattern system »

A pattern system (see Figure 4) is composed of patterns. Its representation is described in a
given formdism. Each patern has a given number of items whose fidds are defined in the
associated formaism. A domain (banking 1S, geographic IS, etc) and a technology (object-

Figure 3: Component «Formalismy

oriented, relational, etc.) are associated to each pattern system.

Patterns system

<<Master>>
Patterns system

<<Interface>>
Patterns system service

g

Create _patterns_system()
Modify_patterns_system()
Validate _patterns_system()
Visualize _patterns_system()

(What | can do)

0..1T

<<Part>>
Pattern

i

<<Part>>

Item value
(from Logical View)

<<Role>>
Formalism

<<Role>>
Domain

<<Role>>
Technology

<<Role>>

T

<<Part>>
Field value

Iltem

<<Role>>
Field

(What | am)

(What I use)

Figure 4: Component « Pattern system »

We describe the use case « Visudize _patterns _ system » with a scenario (see Figure 5).

| Scenario: Visualize_ patterns_ system

1- Searchfor the pattern systems

2- Choose a pattern system

3- Digdlay information (name, formdism, domain, technology, etc.) of the chosen pattern
system

4- Optiondly visudize patterns and the relationships between them

5- Optionaly sdlect a pattern and visudize itsinformation (items va ues).

6- Terminate the scenario or go to 5.

Figure 5: A scenario of the use case « Visualize patterns_system »

Figure 6 displays the screen proposed to the user to visudize a pattern system. The formalism,
the domain and the technology associated to a pattern sysem are showed (for example in

Figure 6, for the Symphony pattern system).

The button « See » dlows the user to reach dl the patterns composing this pattern system: he
can then visudize the reaiondhips between the patterns of the chosen pattern system (see
Figure 7). The pattern system is represented by a graph whose nodes symbaolize the different
patterns of the system and whose arcs represent the relationships between patterns. The user
can then sdect a pattern and get its information. Findly, when the user clicks on a pettern, he
reaches the information on the pattern itsalf (see Figure 8).

Ega Patterns list visualization o] 1

E%Patterns system visualization] =

The patterns system Symphony process Q

Z=usERE "What | am" Speciication
He uses the farmalism P-SICMA

Its domain and its associate technology are O zayze=s O

Information system development | See | Business Component zeysess What | use" Speciication
Specifcation
Ohject oriented | See |

If you want to see its associate patterns list, click here O

"What | can do" Specification

See

Return | Gl |

Figure 6: Visualizing a pattern system Figure 7: Visualizing the relationships between the
patterns of a pattern system

E%Pattern visualization

=101]

Identifier :

- "What I au” |

Classification :

- Analysis |

- Use Cases affectation to Business Corporents

Context : - Reepuirernents Specification stage is corapleted, all the Business Components ave identified and the
uses cases have been affected to BO (patterm Use Cases Affectation to Business Components™)

Problem : - This pattern allowz to build the component atructure |
- Feuse & Modulanty & Esolutnty

Force : - This pattern participates to Infonmation Systeras odeling whith Business Cormponents. This

representation provides Information Swystera modulanty and evolution, It facilitates reuse of BC
specifications

Process solution :

Muodel solution :

.. |losee

Application Case :

A
\ | to see
1

Conséquence ;

Solution vicualization

Brmnssx campansni

Stroctueal part j [create a package 1'i v
I), T Y

/ !
sl |i|:|=rhf|.land madel the mesber abject

[l ey okt

o !

J \ I |58y 3nd radel the par -:-mms]
]"rfr_ \.11 W
et B 2xPgypss |
Fur cbiet | Part et o
| | speciy mastarand par nh|9¢tsa11nh.rlasi
{#ha [am3 : T
I link the parl obiects o the mastar okject
Cloze | T

o

| specify ihe mulipidlies |

Clnse

Figure 8 : Visualizing the information on a pattern in AGAP

2.3. Meta-Model and implementation

Building on the seven business components described above, we propose a modd containing
the essentid information on the patterns managed by AGAP. This modd is consdered as the

meta-model of AGAP (see Figure 9).

AGAP is implemented in Java with the RAD JBuilder3. Human interfaces are designed using
the graphicd libray Swing. XML files ae manipulaed by the IBM paser. The

communication between AGAP and Rational Rose is done by Microsoft COM technology.

The metaamodd of AGAP is theresfter indtantiated to produce pattern systems description
formdiams and patern sytems. We present in the next section the formdism P-Sigma, a

common pattern representation formalism, and an indantiation of the meta- model of AGAP.

<<Part>>
Interface item

(from Formalism)

<<Part>>
Realization item|
(from Formalism)

3 The formalism P-Sigma

3.1. Goals

P-Sigmamain objectives are:

Figure 9: AGAP’s meta-model

<<Part>>
Relation item

(from Formalism)

<<Master>>
Field type
(from Field-Type)
<<Master>>
Technology
(from Technoloy) <<Master>> 0.%
\ Tool A
(from Tool)
*
0.*
<<Master>> *
Domain <<Master>>
(from Domain) Formalism
. (from Formalism)
1 0.. .
<<Master>>
0.n Patterns system 0.* 0.1
% (from Patterns system)
N 1.*
<<Master>> P A/
Information system N 0.1 <<Part>> <n::: >
(from 1S) Item value <F—
(from Patterns system) (from Formalism)
1
*
1
<<Part>>
Pattern application 1 <<Part>>
(from 1) Pattern
(from Patterns system)
’ . 1.
<<Part>> <<Part>>
Product
- 1. i
(fromS) +imitation of> Field
* /
<<Part>>
Field value
1 (from patterns system)

Standardization of product and process pattern representation.

3 http://www.borland.fr/produits/jbuilder/

A dngle pattern system must integrate product and process patterns and therefore must offer a
unique formdism to facilitate the combined expresson of modd and process solutions. A
pattern expressed in P-Sigma can then:
v’ Offer only a Modd Solution. It is the case when this modd adaptation does not
require any gpecific methodologicd assdance. The pattern’'s application is then
obtained by cloning and adapting the proposed mode.

v Offer only a Process Solution. It is the case of patterns whose objective is to
decompose a process into dementary fragments, adso described by patterns. The
pattern’ s gpplication conssts in performing the proposed process.

v' Offer a modd (Modd Solution) as a solution to the given problem as well as the way
to obtan such a mode (Process Solution). The Process Solution condsts then in a
methodologica guide asssting the desgner to adapt the modd. The pattern’s
gpplication condgts in performing the process proposed by the Process Solution in
conformity with the modd proposed by the Mode Solution

Globdly, dl patterns could be expressed in a more homogeneous way, therefore facilitating
its communication and its combination.

Better formalization of the pattern’s selection interface

Contrary to the exiging representation formdisms, where the items dlowing pattern’s
section are not explicit, P-Sgma diginguishes five items helping to sdect paterns. These
items are grouped in the formaism Interface part.

Pattern system organization

Mogt pattern formalisms express dl types of rdationships in a unique item. As an example,
the “Combination” item of P. Coad's formdism [8] gives the possble combinations of the
pattern with other patterns. The “Reated Patterns’ item of E. Gamma's formaism [11] gives
patterns using or wed by the given pattern. SW. Ambler’s “linked patterns’ item [2] includes
patterns composing the studied pattern, patterns composed of the studied pattern and patterns
associated with it. The semantics of these items is therefore not clearly defined. P-Sigma
formdisn ams to make explicit the different reations among patterns. The Redion part
enables to organize a pattern system thanks to clear relations. uses, requires, dterndive,
refines, etc.

3.2. General Structure

P-Sgma is composed of three pats Interface, Redization and Reation. Interface part
contains al dements dlowing pattern’s sdection. Redizaion pat gives the solution in terms
of Modd Solution and Process Solution. Findly, Relation pat organizes relationships
between patterns.

Each part contains a certain number of items (see Figure 10). Each item is composed of one or
severd typed fidds (text, UML diagram, keywords logica expression, etc.). Figure 10
underlines for each item the number and the type of its different fieds It aso shows the
mandatory items. Identification, Classfication, Context, Problem and Solution (Process or
Modd).

| O*O |
: | 1 - Interface | ’ : 3 - Relationship
Identifier : | 2 - Realization "
© Text 1..1
|—| Uses
" Pattern *
Classification Process Solution
" Text 1..1 “Text 1..1
“ Domain term 0..1 “ Activities diagrams 0..1 Requires
" Pattern *
Model Solution J&'\
| | Context “Text 1.1 \ Alternative
Text1..1 “ Classes diagram 1..1 \ * Pattern *
. \
Pattern * “ Sequences diagrams * \I
Y L Refines
Problem Application case \ © Pattern *
" Text 1..1 “Text 1..1 \\
“ Classes diagram 1..1 \
" Sequences diagrams * At least one item solution
Force . .
" Text 1..1 must beinstantiated
. . Consequence
lity t 0..1
Quality term Text 1..1
Figure 10: General Structure of P-Sigma formalism

detailed.

Figure 8 patidly illusrates the interface pat and the solution part of RSigma by the pattern
“What I am” Specification of the Symphony pattern sysem. In the following, Relation part is

3.3. Relation part

The Redation part is composed of four items corresponding to the four types of reationships
between patterns. Uses, Refines, Requires and Alternative. In P-Sigma, each rddion is

expressed by an item giving the patterns linked to the pattern described (see Figure 10).The
meaning of each relation is based mainly on the items of the Interface part.

Uses: If apattern P1 uses a pattern P2, then:

v" P1'sProcess Solution must be expressed using P2.

v' P2's Classification may be enriched with respect to P1's one: new keywords may be
added in P2's Classfication

v' P2's Context may be enriched with respect to P1's one.

P1 uses P2 P1 P2
Classification M1 M1U M2
Context C1 ciruc2
Process Solution Apply P2

Example:
Business Component Specification Uses {«Wha | Am» Specification, « What | use»
Specification, « What | can do » Specification}

The Business Component Specification pattern uses 3 patternsin order to model the BC.

O

"What | am" Specification

<<use>>

D

Business Component

Specification

— O

<<use>> What | use" Specification

O

"What | can do" Specification

Refines: If apattern P1 refines a pattern P2, then:
P1’s Problem must be a specidization of P2's one.

P1's Classification may be enriched with respect to P2's one.
P1’s Force may be enriched with respect to P2's one..
P1’'s Context may be enriched with respect to P2’'s one.

v

v
v
v

P1 refines P2 P1 P2
Classification M1U M2 M2
Context ci1ucC2 C2
Force FIUF2 F2
Process Solution Pb1 is a specialization Pb2

of Pb2

Requires: If apattern P1 requires a pattern P2, then:
v' P2'sapplication isrequired in P1'sone.

v' P2 must appear in P1's Context.

P2 must have been executed before executing P1.

P1 requires P2 P1 P2
Context P2 must have C2
been applied
Example:

“What | am” Specification Requires { Use Cases affectation to BC}

O

Use Cases affectation to BC

]\ <<require>>

"What | am" Specification

Alternative: A pattern P1 is an dternative of a pattern P2 if P1 and P2 have different
force itemsjudtifying different solutions to the same problem:
v P1 and P2 have the same Classification, the same Context and the same Problem.

v Only the Force of the two patternsis different.

P1 alternative of P2 P1 P2
Classification M M
Context C C
Problem P P
Force Fl1 F2 F2

4 Conclusion

This aticle presented AGAP, a development environment suited to two types of actors,
goplications engineers and patterns engineers. AGAP addresses therefore two types of
Processes:

a process by reuse dlowing the applications engineer to define information systems by
selecting, applying and integrating patterns applications,

a process for reuse dlowing the patterns engineer to define and to organize pattern
systems.

AGAP dearly esablishes a distinction between formdisms and pattern systems. It is therefore
possble to define severa pattern systems by using the same formdism or by reusng items of
exiging formdisms. An expected improvement of the metamodd condsts in managing the
synonymies between items having a dmilar meaning in different formdisms (for example, E.
Gammads Intention item and P-Sigma's Problem item). AGAP enables as wdl to capitdize
item fidds types. For example, specifying P-Sigma implies the definition of a grest number of
types. Thus, the gpplication of class diagrams and sequence diagrams is achieved and can be
reused to define itemsfields of others formalisms.

However, severd use cases mentioned in the aticle have not yet been implemented (for
example the patterns sdection use cases) because the specificity of the “Interface’ items is not
currently taken into account in the tool. An ongoing dudy based on information research
techniques should resolve it [3]. Another problem is due to the use of traces linked to patterns
goplication. Patterns gpplications are indeed “naturaly” preserved and keep a link with the

patterns from which they are issued. These imitations ae represented by instances of AGAFP's
“Information System” component classes. These traces are nevertheess not yet exploited to
facilitate the evolution and the maintenance of 1S specifications.

AGAP was used to specify two formdisms (P-Sigma and E. Ganmd's formaism), and two
pattern sysems written in P-Sigma. These pattern systems result from applied researches on
two projects in collaboration with indusrid companies. The fird one focuses on the
engineering of Product Information Sysems (PIS) of industria enterprises [13] and was
developed in collaboration with Schneider Electric company (project CNRS PROSPER-
POSEIDON). The goa was to propose an engineering process based on reuse of
specifications of indudrid products. Patterns technology offers a framework to consider a PIS
engineering process as a st of process fragments, in order to design PIS modes thanks to a
st of mode fragments. A pattern sysem was developed and vaidated; it is a sgnificant
evolution of exiding patern sysems for it explicitly introduces a combination of process
patterns and product patterns as wedl as a differentiation of inter-patterns relaionships
semantics[7].

The second pattern system developed in AGAP concerns the specification of Symphony, a
development process based on business components proposed by the UMANIS company.
UMANIS uses a pragmatic development process for business component oriented information
sysems. Coupled with this process, UMANIS wishes to develop an environment in which the
engineers could be efficently guided in their desgn activities, while taking into account
different specific dtuations of targeted information systems as wdl as former expetise. In a
fird sep, this god led us to findize P-Sigma in order to get patterns capitdizing knowledge
and consensud expetise in engineering fidld, where decison and process aspects are
important. P-Sigma's "Interface’ pat was in paticular improved thanks to the sdection of
patterns to be applied according to the running context. A itern system was then developed
in which patterns are essentidly process petterns modding process fragments. This
development process was aso used to specify AGAP.

From these first vdidated results, other research works were initisted to facilitate reuse in
information sysems engineering fidd and to guaranty a tracesbility between design choices
and software products resulting from the design. These works require ether improvements of
P-Sgma, or the definition of a meta-process to combine use of severd formdisms. These
formalisms would teke into account others peatterns, architectures and components forms:
Stuationd patterns [23] [22], frameworks [5], distributed objects on a CORBA bus, €tc.

We would like to underline that these indudtrid experimentations showed the difficulty to
ewich such paten sysems In these experimentations, new paterns were found and
formalized by researchers and not by gpplication doman experts. One meets the same
difficultiesin the domain of knowledge bases building.

References:

[1] C. Alexander, The Timeless Way of Building, Oxford University Press, 1979.

[2] SW. Ambler, Process Patterns building Large Scale Systems using Object technology,
SIGS Books, Cambridge University Press, December 1998.

[3] C. Beru, A. Front-Conte, Patterns retrieval system: first attempt, 5Sth Internaiond
Conference on Applications of Naturd Language to Information Systems (NLDB'2000),
Versalles, June 2000.

[4] I. Borne, N. Revault, Comparaison d’outils de mise en oeuvre de design patterns,
Object-oriented Patterns, Vol5, num2, 1999.

[9] F. Buschmann, R. Meunier & a., Pattern-Oriented Software Architecture: A System of
Patterns, Wiley & Sons, 1996.

[6] C. Castti, S Cagtano, M.G. Fugini, |. Mirbel, B. Pernici , WERDE: a pattern-based
tool for exception design in workflows, proceedings of SEBD 98, Ancona, 1998.

[7] C. Cauvet, D. Rieu, P. Ramadour, et A. Front-Conte, Réutilisation dans [’ingénierie
des systemes d'information, Chapitre de I’ouvrage Ingénierie des systemes d’information du
Traité IC2 — Information — Commande — Communication, Hermes, Février 2001.

[8] P. Coad, D North e¢ M Mayfield, Object Models — Strategies, Patterns and
Application, Y ourdon Press Computing Series, 1995.

[9] M. Fowler, Analysis Patterns — Reusable Object Models, Addison-Wedey, 1997.

[10] A. Front-Conte, JP. Giraudin, D. Rieu, C. Sant-Marcel, Réutilisation et patrons
d’ingénierie, Chapitre de I'ouvrage Génie Objet: Analyse et Conception de [’Evolution,
Editeur M. Oussalah, Hermes, 1999.

[11] E Gamma, R. Hem, RE. Johnson, J Vlissdes, Design patterns: Elements of
Reusable Object-Oriented Software, Addison-Wed ey, 1995.

[12] Dennis Gruijs A Framework of Concepts for Representing Object-Oriented Design
and Design Patterns, Masters Thess, Utrecht University, CS Dept., INF-SCR-97-28,
November.

[13] L. Gzara D. Rieu, M. Tollenaere, Pattern Approach To Product Information Systems
Engineering, Requirements Engineering Journd, Editors: Peri Loucopoulos & Colin Potts,
Springer- Verlag, London, LTD., 2000.

[14] 1. Hassne, D. Rieu, F. Bounaas, O. Seghrnouchni, Symphony : a Conceptud Mode
based on Business Component, IEEE SMC' 02, Hammamet, Tunisia, October 2002.

[15] R.E. Johnson, Documenting Frameworks using Patterns, OOPSLA'92, 1992.

[16] N. Maiden, A. Sutdliffe, C. Taylor, D. Till, A4 set of formal problem abstractions for
reuse during requirements engineering, 1S, Hermes, vol. 2, n° 6, pp. 679-698, 1994.

[17] M. Meijers, Tools Support for Object-Oriented Design Patterns, Master's Thesis,
Utrecht University, 1996.

[18] T.D. Mejler, S. Demeyer, R. Engd, Making design patterns explicit in face, in
European Software Engineering Conference (ESEC/FSE 97), 1997.

[19] L'Objet, Numéro spécial Patrons orientés objet, Coordonnateurs D. Rieu et J-P.
Giraudin, Vol. 5, n° 2, Hermés, 1999.

[20] OMG Business Object Concept, BODTF, White Paper, Fred Cummings eds, BOM/99-
01-01.

[21] B. Pagd, M Winter, Toward pattern-based tools, EuroPLoP'96,1996.

[22] C. Rdland, N. Prakash, A. Benjamen, A multi-model view of process modeling,
Requirements Engineering Journd, pp 169-187, 1999.

[23] RJ. Weke, K. Kumar, Method Engineering: a proposal for Situation-specific
Methodology Construction, in Sysems Andyss and Desgn: a Research Agenda, Cotterman
and Senn (eds), Wiley, pp 257-268, 1992.

[24] R Wirfs-Brock, B. Wilkerson, L. Weiner, Designing Object-Oriented Software
Prentice-Hall, Englewood Cliffs, New Jersey, 1990.

Avaliacdo da Aplicabilidade da Linguagem de Padroes de Engenharia
Reversa de Demeyer a Sistemas Legados Procedimentais

Edson Luiz Recchia Rosangela Penteado
DC - Universidade Federa de Séo Carlos/ DC - Universidade Federal de Séo Carlos
Universdade Anhembi Morumbi
erecchia@terra.com.br rosangel@dc.ufscar.br
Resumo

A Linguagem de Padrées de engenharia reversa existente na literatura conduz esse processo no contexto de
orientagdo a objetos. Sua aplica¢do a sistemas legados procedimentais ndo fornece resultados expressivos para
todos os padrdes aplicados. Assim, para que a engenharia reversa de sistemas legados procedimentais seja
realizada plenamente ha necessidade de aprimorar a Linguagem de Padrées existente. Este trabalho tem por
objetivo analisar cada um dos padroes de Demeyer quanto a sua aplicabilidade para sistemas legados
procedimentais. Ressalta-se, entretanto, que essa andlise foi necessaria para que outros padroes pudessem ser
elaborados de forma a atender a reengenharia orientada a objetos a partir de sistemas legados procedimentais.

Abstract

The Pattern Language for reverse engineering found in the literature conducts this process in an object-
oriented context. Its application to procedural oriented legacy systems does not provide expressive results for all
the patterns. Thus, it is necessary to improve this Pattern Language in order to realize wholly the reverse
engineering process for procedural legacy systems. In this paper, the Pattern Language written by Demeyer is
analyzed in a procedural context. However this analysis was necessary so that others patterns could be

elaborated in order to became possible the reengineering object-oriented process from the procedural legacy
systems.

1. Introducao

O interesse em transformar um dstema legado procedimenta em um orientado a objetos,
pelo processo de reengenharia, existe em diversas empresas. 1sso ocorre devido a necessidade
de dterar 0 ambiente e/lou a linguagem de programacéo para mais aud, dterar a interface
para que s tenha maior usabilidade e o interesse em melhorar a manutenibilidade do sstema.
Com essa preocupacdo surgem diversas abordagens, ferramentas e métodos para auxiliar o
engenheiro de software no processo de reengenharia.

A Linguagem de Padrdes de Demeyer [1] foi projetada para auxiliar no processo de
engenharia reversa de sstemas orientados a objetos, porém suas idéias podem ser adaptadas
para permitir a engenharia reversa de sstemas legados procedimentais, conforme proposto na
Familia de Padrdes de Reengenharia- FaPRE/OO [3].

Assim, este trabadho discute a Linguagem de Padrbes de Demeyer aplicada a sstemas
legados procedimentais, apresentando o comportamento de cada um dos padrbes que a

compdem, quando aplicados para a redizacdo da engenharia reversa de um sstema legado

Copyright © 2002, Edson Luiz Recchia; Rosdngela Penteado. Permission is granted to copy for
SugarloafPLoP 2002 Conference. All other rights reserved.

procedimenta. Essa discussio fornece os argumentos que incentivaram a criacdo da
FaPRE/OO.

Edte trabalho esta organizado da seguinte forma: na Secdo 2 apresenta-se a Linguagem de
Padres de Engenharia Reversa de Demeyer, na Secdo 3 avadlia-se cada padréo dessa
linguagem de padrdes para sstemas procedimentais, na Secdo 4 a FaPRE/OO é brevemente
descrita e s80 apresentadas as consideragOes finais.

2. Linguagem de Padroes de Engenharia Reversa proposta por Demeyer

A linguagem de padrBes de engenharia reversa proposta por Demeyer [1] é o resultado do
trabaho realizado com apoio do Governo Suico sob 0 Projeto no. NFS-2000-46947.96 e
BBW-96.0015 e, também, com o apoio da Unido Européa sob o programa ESPIRIT Projeto
no. 21975 (FAMOQS). Essa linguagem resume a experiéncia no processo de engenharia
reversa obtida como parte do Projeto FAMOOS, que teve como objetivo principa investigar
técnicas de engenharia reversa e de reengenharia de sistemas orientados a objetos.

Essa linguagem de padrdes tem como objetivo gpoiar diferentes fases quando se rediza
engenharia reversa em um sisema de software, desde quando ndo ha familiaridade com o
sstema até quando se esta preparando a reengenharia em 9. Essa linguagem de padrdes foi
divididaem clusters (Figura 1), cada qua resumido nas sub-segles seguintes.

A =
E = .
n Preparagao da Reengenharia
t Refazer para-Entender
e —
n
d Detalhamento do Sistema
i Verificar as InvocagBes de Métodos
m Observar a Execugad dos Componentes
e -
n
t Entendiniento Inicial
o] Presumir Provaveis Objetos
Examinar a Base de Dados
d Insp,etfionar as Maiores Construgdes
o] _~Explorar Possiveis Modificacdes
S -
: Iniciagéo ao Sistema Legado
S LerTodo o Cédigo em Uma Hora
t Estudar Superficialmente a Documentag&o
e Entrevistar o Usuario Durante o Sistema em Operagéo
m
a
Recursos Gastos "

Figura 1: Linguagem de PadrBes de Engenharia Reversa (extraida de Demeyer [1])
2.1 - Cluster: Iniciacdo a0 Sitemalegado (First Contact)

Esse cluster agrupa os padres que mostram o que fazer quando se tem o primeiro contato
com um sstema de software. E composto dos seguintes padrdes. Ler Todo o Codigo em Uma

Hora, Estudar Superficidmente a Documentacdo e Entrevisar o Usuaio Durante 0 Sistema
em Operacéo.

1. Nome: Ler Todo o Codigo em UmaHora (Read All the Code in one Hour)

Intuito: Fazer uma avaiacéo inicid da condicdo do sSstema aravés da leitura do codigo num
tempo limitado.

Problema: Precisase de uma avaiagdo inicia da condicéo interna do sSstema para plangar
os esforcos da engenharia reversa.

Contexto: (a) A condicdo interna do Sstema varia muito, dependendo dos engenheiros de
software envolvidos no desenvolvimento e na sua manutencdo; (b) Em sstemas com milhares
de linhas de codigo, exise muita informacdo a s ingpecionada, tornando-se dificl uma
avadiacdo correta; (¢) A fdta de familiaridade do engenheiro de software com o sstema,
dificulta filtrar 0 que € de fato necessaio; (d) Temse o codigo fonte disponivel, sendo uma
informacéo confiavel; (e) O engenheiro de software tém boa habilidade com a linguagem de
implementacdo usada no sitema legado, assm pode-se identificar regras de negdcio em
trechos de codigos.

Solu¢do: Ler o codigo fonte sem ser interrompido (sem atender telefonemas, sem barulho de
colegas, etc.). Leia o codigo fonte por gproximadamente uma hora. Anote pouca coisa para
maximizar seu contato com o codigo. Apos esse tempo de leitura, gaste 0 mesmo tempo (uma
hora) para produzir um reatorio contendo suas congtatagOes, incluindo: (1) Entidedes
importantes (classes, packages); (2) Linguagem do codigo; (3) Edtilo de codigo de dificil
interpretacéo; (4) Elabore esse relatdrio dando nomes & entidades, de acordo como essas séo
mencionadas no codigo fonte.

Padroes Relacionados: Os padrées Ler Todo o Cbdigo em Uma Hora e EStudar
Superficidmente a Documentacdo maximizam a chance de se obter uma visdo coerente do
sstema Para melhor compreender a documentacdo do sistema, pode-se preceder esse padrdo
com o padrdo Entrevistar o Usuério Durante o Sistema em Operacéo.

2. Nome: Estudar Superficidmente a Documentacdo (Skim the Documentation)

Intuito: Supor, inicidmente, a funciondidade do ssema por meo da letura da sua
documentagao existente, num espaco limitado de tempo.

Problema: Plangar os esforgos necessrios para a redizacdo da engenharia reversa a partir da
iddainicid do 9gema

Contexto: (a) A funcionalidade do sstema muda com o0 passar do tempo e muitas dessas
mudangas podem néo estar documentadas, (b) Em sstemas com milhares de linhas de cddigo,
existe muita informacdo a ser ingpecionada, tornando-se dificil uma avdiacéo correta; (¢) A
fdta de familiaridade do engenheiro de software com o sstema, dificulta filtrar 0 que é de
fato necessirio; (d) Tem-se a documentacdo disponivel, assim ha, pelo menos, uma descricéo
correta de como o0 sistema se comportou no passado; (e) O engenheiro de software é capaz de
interpretar especificacbes formais (por exemplo, datecharts) e semi-formais (por exemplo,
use cases) contidas na documentagdo, entdo ele é capaz de compreender o Sistema

Solucio: Ler a documentagdo sem s interrompido. Estude a documentacd num curto
epaco de tempo (gproximadamente uma hora). Faca pouca anotagcdo para maximizar o
contato com a documentacdo. Apds esse tempo de leitura, gaste 0 mesmo tempo (uma hora)
para produzir um relatorio contendo suas congtatagBes, incluindo: (1) Requisitos importantes;
(2) Caacteristicas importantes, (3) Limitagbes importantes;, (4) Referéncias para informagdes
relevantes do projeto.

Padréoes Relacionados: O padrdo Entrevisar o Usuario Durante o Sissema em Operacéo
pode gudar a coletar uma lista de entidades que se desgja andisar na documentacao.

3. Nome: Entrevistar o Usuario Durante 0 Sistema em Operacéo (Interview During Demo)
Intuito: Obter a idéa inicd da funciondidede do siema observando-o em operacdo e
entrevistando a pessoa que o esta demonstrando.

Problema: Dimensionar os esforgos necessarios para a redizacdo da engenharia reversa a
partir dos cendrios tipicos de uso e das caracteritticas principais do sstema.

Contexto: (a) A vaiacdo do uso de cenaios entre diferentes usudrios dificulta o seu
entendimento; (b) Obter, a partir do usuério, 0 que ha de errado com o sistema é dificil; (c) O
engenheiro de software tem acesso a pessoas chaves na organizacdo (usudrios, gerentes e
aqueles que ddo manutencdo no sSstema), 0s quais podem demongtrar e explicar os cenarios
do sstema

Solucio: Observar 0 Sstema em operacéo atraves de sua demonstracéo e entrevistar 0 usuario
gue o0 estd demondrando. Apls essa demondtracdo produza um relatério contendo suas
condtatagBes, incluindo: (1) Alguns cendrios tipicos, (2) Caracterigticas principais oferecidas
pelo sstema e se das sdo gpreciadas ou ndo; (3) Componentes (encapsulamento) do Sstema e
suas responsabilidades.

Padrodes Relacionados: Para se obter um resultado satisfatorio deve-se aplicar esse padréo
diversas vezes, com diferentes tipos de usuarios. Dependendo da complexidade do sistema,
pode-se exercitar esse padrdo antes, depois ou durante 0 uso dos padrdes Ler Todo o Codigo
em UmaHora e Estudar Superficidmente a Documentacéo.

2.2 - Cluster: Entendimento Inicid (Initial Understanding)

Esse cluster agrupa os padrdes que descrevem como obter um entendimento inicia de um
Sstema de software documentado, principamente, com diagramas de classes. E composto dos
seguintes padrBes. Presumir Provaveis Objetos, Examinar a Base de Dados, Ingpecionar as
Maiores ConstrucOes e Explorar Possiveis Modificagoes.

4. Nome: Presumir Provaveis Objetos (Speculate about Domain Objects)

Intuito: Refinar, progressvamente, um modelo de objetos de acordo com o codigo fonte,

definindo hipdteses sobre quai's objetos devem ser representados no Sistema.

Problema: N&o se sabe como os conceitos do negdcio estdo mapeados em classes no codigo

fonte.

Contexto: (a) Existemn muitos conceitos no Ssema, assim ha vé&ias mandras de representa

los na linguagem de programacéo utilizads; (b) Muito das linhas de codigo ndo tem relacéo

com a representacdo dos conceitos do sistema, mas Sm com temas relacionados a solucéo de
implementacéo (interface do usuario, banco de dados, etc.); (¢) Entende-se a funciondidade

do sistema, portanto pode-se ter uma idéia sobre o que o sSstema representa; (d) Devido a

experiéncia do engenheiro de software, ele pode imaginar como modelar o sstema

Solucio: ldedizar um modeo hipotético de classes que represente 0 Ssema. Refinar esse

modelo ingpecionando se 0s nomes das classes ocorrem no codigo fonte e adaptando-o

adequadamente. Repita 0 processo até que o model o se estabilize.

1. Com o entendimento dos requisitos e os cenaios de uso, desenvolver um modelo de
classes que sirva como hipotese inicia do que se espera do codigo fonte. Dar nomes &
classes, operagles e atributos tomando por base sua experiéncia e nas convengles de
nomenclatura adotadas.

2. Rdacionar os nomes num diagrama de classes e tentar encontr&los no codigo fonte,
usando qualquer ferramenta que estga disponivel. Tomar cuidado com nomes exigtentes
no codigo fonte, eles nem sermpre representam o conceito desejado.

3. Manter anotados os nomes que aparecem no codigo fonte (confirma suas hipdteses) e
agueles que ndo combinam com o que foi identificado no codigo fonte (contradiz suas
hipéteses). Note que as discordancias sdo positivas, as S8 motivo para o refinamento.

4. Adaptar o modelo de classes baseado nas discordancias:

(@ renomeando as classes, quando se descobre que os nomes no codigo fonte néo
combinam com suas hipéteses,

(b) remodelando as classes, quando se descobre que a representacdo do codigo fonte ndo
corresponde com o que se tem no modelo. Por exemplo, pode-se transformar uma
operacdo em classe, ou um atributo em uma operacéo.

(¢) estendendo as classes, quando elementos importantes sdo observados no codigo
fonte e ndo gparecem no diagrama de classes,

(d) procurando alternativas, quando os conceitos de funcionaidade ndo sdo encontrados
no codigo fonte. 1sso pode implicar em colocar em teste sntomas quando existem
adgumas contradicbes, mas podem também implicar em definir un modelo de classes
completamente diferente quando existem muitas contradi goes.

Padrées Relacionados: Todos os padroes do cluster Iniciagdo ao Sistema Legado auxiliam

na construcdo do modelo hipotético de classes. O padréo Observar a Execucdo dos

Componertes, do cluster Detdhamento do Sistema, pode gjudar a melhorar esse modelo.

5. Nome: Examinar o Banco de Dados (Reconstruct the Persistent Data)

Intuito: Adequar o modelo de objetos, obtido pelo padrdo anterior, com o banco de dados do

sistema legado.

Problema: N&o se conhece quais 0s objetos que so criticos para a funciondidade do sistema.

Contexto: Reconstruir o modelo de classes a partir das tabelas do banco de dados relaciond.

Solucio: Derivar um modelo de classes representando as entidades que estéo armazenadas

em forma de tabelas no banco de dados do sstema legado. Considerando-se um Banco de

Dados Relacional genérico os seguintes passos devem ser aplicados:

1. Congtruir um modelo de classes, consderando cada tabela como uma classe, preservando
0 Seu nome.

2. Sdecionar como atributos os nomes das colunas correspondentes acada tabela.

3. Sdecionar todos os relacionamentos de chave edtrangeira entre tabelas, consderando uma
associacdo entre as classes correspondentes.

Apbs esses passos, temse um modelo de classes que representa as entidades que estéo
armazenadas num banco de dados relacional. Contudo, banco de dados relaciona n&o
pode armazenar relacionamento de heranca. Para isso s80 acrescentados 0s passos de 4 a
6.

4. Veificar as tabelas onde a chave primaria também serve como chave estrangeira de outra
tabda Isso pode identificar um relacionamento um-para-um, indicando um
relacionamento de heranca. Neste caso, represente esse conjunto de tabelas como uma
hierarquia de heranca entre classes.

5. Veificar as tabelas com definicbes de campos semehantes, indicando que provavelmente
a hierarquia de classe eda didtribuida em vérias tabelas. Neste caso, defina uma super-
classe movendo os campos comuns para essa super-classe.

6. Veificar as tabelas com atributos opcionais. 1sso pode indicar uma Situacdo em que uma
hierarquia de classe completa estd representada em uma Unica tabela Neste caso,
transforme essa tabela em uma super-classe e gere varias subclasses para representar esse
conjunto de informagdes.

Padrées Relacionados: O padrdo Examinar o Banco de Dados requer um entendimento

inicid da funciondidade do sstema, o qua € obtido com o padrdo Presumir Provéves

Objetos.

6. Nome: Inspecionar as Maiores Construces (Identify the Largest)

Intuito: Identificar trechos importantes de codigo utilizando ferramentas de determinacéo de
métricas, ingpecionando as maiores construgdes.

Problema: N& s sabe onde estd implementada uma funciondidade importante em milhares
de linhas de codigo fonte.

Contexto: @) N& exige uma manera fé&cil de sdber 0 que € mais ou menos importante no
codigo fonte; (b) Em sistemas com milhares de linhas de cddigo, existem muitos dados a ser
inspecionados, tornando-se dificil uma avdiacdo correta; (¢) Atravées da utilizacdo de
ferramentas de determinacdo de métricas é possivel quantificar o tamanho das entidades no
codigo fonte e verificar quais SBo importantes.

Solu¢io: Usar ferramentas de determinacdo de métricas para coletar um conjunto limitado de
medidas sobre as entidades dentro do sstema (por exemplo, hierarquias de heranca, packages,
classes e métodos). Represente os resultados de ta forma que se possa avdiar facilmente
diferentes medidas para uma mesma entidade.

Exemplo: Identificar hierarquias de heranca

Identifique as maiores sub-&vores na hierarquia de heranga como candidatas potenciais para
fornecer funciondidade importante. Para isso, construa uma lista de classes com as métricas,
NDC (Number of Descendent Class), HNL (Hierarchy Nesting Level), NOM (Number of
Methods for Class) e NOA (Number of Attributes for Class). Vaores grandes de NDC, NOM
e NOA e vdores pequenos (~= 0) de HNL indicam que a funciondidade importante esta na
raiz da hierarquia de heranca. Vaores pequenos de NDC, NOM e NOA (~= 0) e vaores
grandes de HNL indicam que a funciondidade importante esta nas folhas da hierarquia de
heranca.

Padrodes Relacionados: O padrdo Explorar Possiveis ModificagcBes pode ser usado para focar
nas partes do ssema que mudaran com as diferentes verses geradas, identificando assm
funciondidade importante,

7. Nome: Explorar Possiveis Modificagtes (Recover the Refactorings)

Intuito: Reconstruir 0 processo iterativo da construgdo do Sstema, pela comparacdo de
subseqiientes versdes, observando 0 quanto 0 Sistema cresceu ou decresceu, por meio de
trechos de codigo fonte que foram aterados.

Problema: Recuperar 0 que 0s desenvolvedores do Sstema dteraram durante o
desenvolvimento e subsequentes manutencdes.

Contexto: (a) O ssgema tem sdo modificado aravés de novas auaizaches de verséo e a
comparacdo das varias versdes é bagtante trabahosa; (b) Através de ferramentas € possive
percorrer o codigo fonte, assm pode-se andisar as ateragdes redlizadas nas diferentes versdes
do sstema; (¢) Através da utilizacdo de ferramentas de determinacdo de métricas é possivel
quantificar o tamanho das entidades no codigo fonte; (d) Devido a experiéncia do engenheiro
de software, ele pode inferir porque certas modificagtes foram aplicadas.

Solucio: Usar feramentas de determinacd de métricas para comparar medidas de
subsequentes versdes do sstema legado, encontrando entidades cujos vaores de medidas
aumentaram ou diminuiram. Asim, descobreese onde funciondidade foi incluida ou
removida, respectivamente.

Padroes Relacionados: O padrdo Inspecionar as Maiores Construcdes pode ser usado para
descobrir partes do sistema que mudaram com as diferentes verses geradas.

2.3 - Cluster: Detdhamento do Sstema (Detailed Model Capture)

Esse cluster agrupa os padrbes que mostram como obter um entendimento detalhado de
um determinado componente (encapsulamento) em seu ssema de software. Ese cluster é
composto dos seguintes padrées. Verificar as Invocactes de Métodos e Observar a Execucdo
dos Componentes.

8. Nome: Veificar as Invocactes de Métodos (Derive Public Interface)

Intuito: Saber como uma classe eta relacionada com outra verificando os parémetros
definidos nos méodos da interface da classe.

Problema: Obter 0 relacionamento entre classes no sistema legado.

Contexto: (a) No edggio find da engenharia reversa temrse uma visso globd da
funcionalidade do sstema e basecado nesse entendimento pode-se sdecionar classes para uma
ingpecdo futura; (b) Com uma ferramenta adequada, para percorrer 0 codigo, € possivel
identificar onde 0 método esta definido a partir de sua chamada.

Solu¢do: A patir da inspecdo de uma chamada do método, encontrar a sua assinatura na
interface da classe aonde ele foi definido, descobrindo informagdes por melo da conexdo de
mensagens.

Padroes Relacionados: Os padrdes Inspecionar as Maiores Construcfes e Explorar Possivels
ModificagOes podem ser usados para descobrir funcionalidade importante a ser avdiada

9. Nome: Observar a Execucéo dos Componentes (Step Through the Execution)

Intuito: Obter um entendimento detahado do comportamento de uma parte do codigo,
através da execucdo de seus componentes (encapsulamento).

Problema: E preciso obter o entendimento detalhado de uma parte encapsulada do codigo.
Contexto: (a) Baseado no entendimento do sistema pode-se selecionar trechos de codigo para
ingpecdo; (b) Com uma ferramenta para depurar o codigo, é possivel inspecionar estruturas de
dados e interagir com a execucado, passo a passo, de pedacos de codigo.

Solu¢do: Alimentar, com um conjunto representativo de massa de teste, a entrada do pedaco
de codigo fonte para se obter uma sequiéncia norma de operagBes. Usar um depurador para
acompanhar a execucao passo a passo e ingpecionar 0 estado interno do pedaco de cadigo.
Padrées Relacionados: Os padrfes Inspecionar as Maiores Construgdes e Explorar Possivels
M odificacOes podem ser usados para descobrir funcionaidade importante a ser avdiada.

2.4 - Cluster: Preparacéo da Reengenharia (Prepare Reengineering)

Esse cluster possui um padréo que guda a preparar 0S passos subsequentes de
reengenharia. Refazer para Entender.

10. Nome: Refazer para Entender (Refactor To Understanding)
Intuito: Obter um melhor entendimento de uma parte especifica do codigo fonte, refazendo-a.

“Refazer para Entender’ € 0 processo de modificar um sstema de software, de ta
maneira que o comportamento externo do codigo ndo sga dterado, mas sua estrutura
interna s§a melhorada. E uma forma disciplinada de colocar em ordem o cddigo,
minimizando as posshilidades de introduzir “bugs’. Na essencia, quando e rediza esse
processo se esta melhorando o projeto do codigo, depois dele ter sido escrito.

Problema: Compreender um particular trecho de codigo que aparenta ser importante mas €

muito dificil de andis& 1o completamente.

Contexto: (a) Cbodigo sem documentacéo € dificil de se ler, entéo é dificil, também, de s

entender; (b) Alterar codigo sem documentacdo pode causar efeitos colaterais.

Solucgiio: Renomear interativamente e refazer 0 codigo para introduzir nomes sgnificativos e

se certificar de que a estrutura do codigo reflete o que 0 Sstema esta fazendo de fato.

1. Remover codigo duplicado: Quando se identifica codigo duplicado, tentar refazé-lo num
smples locd. Por exemplo, transformar o trecho de codigo num méodo e, nos locais
onde foi encontrado o codigo duplicado, substitui-1o por uma chamada do Método.

2. Substituir trechos condicionais por Métodos: Quando se encontra grande construgéo
condiciona, transformar os trechos de codigo de cada condicdo em novos méodos dando
a ees nomes baseados nas condigcfes. Continue o0 processo aé que se tenha o
entendimento completo da estrutura do codigo.

3. Substituir trechos de cédigo longo por Métodos: Longos trechos de codigo com
comentarios separando blocos de cddigo violam a regra ce que todos os comandos num
smples trecho de codigo deveriam ter 0 mesmo nivel de abstracdo. Refazer cada bloco
introduzindo um novo método.

4. Renomear atributos com nomes significativos: Procurar por atributos com nomes
obscuros. Procurar saber sobre 0 seu contexto e dar nomes significativos.

5. Renomear métodos com intuito significativo: Procurar por méodos que néo tem nomes
relacionados com a sua funcionalidade. Recupere os seus objetivos, investigue todas as
chamadas desses métodos de acordo com 0s seus objetivos.

6. Renomear classes com propositos significativos: Encontrar classes cujos nomes néo
s20 representativos com a funcionalidede. Encontrar seus objetivos e entéo renomeélas
de acordo com esses obyjetivos.

Padrées Relacionados: Para gudar a entender a funciondidade, pode-se usar o padréo

Observar a Execucdo dos Componentes.

3. Avaliacdo da Aplicabilidade da Linguagem de Padrdes de Engenharia Reversa de
Demeyer a Sistemas Legados Procedimentais

A seguir é gpresentada a avdiacdo da aplicabilidade de cada padréo da Linguagem de
Padrbes de Demeyer a sistemas legados procedimentais. O objetivo desta avaliacdo néo é de
criticar tais padrfes, vito que foram propostos com objetivos diferentes, mas judificar a
necessidade da criacéo da FaPRE/OO [2] [3].

Para a avdiacdo da aplicacd de cada padré muitos itens do formato apresentado
anteriormente ndo seréo novamente apresentados. Serdo descritos, apenas, os itens Avaliagéo
(Trade off) e dudificativa, conforme sugerido por Demeyer, pois devem conter a opinido
dos engenheiros de software quando da utilizagdo dos padrbes em seus processos de
engenhariareversa, dém dos itens Nome e Intuito de cada padréo.

3.1 - Cluster: Inicia¢io ao Sistema Legado (First Contact)

1. Nome: Ler Todo o0 Codigo emUmaHora (Read All the code in one Hour)
Intuito: Fazer uma avdiacéo inicid da condicdo do sSstema aravés da leitura do codigo num
tempo limitado.
Avaliacao (Trade-off):
Pros:
O codigo fonte de sstemas orientados a objetos e, também implementados em linguagens
orientadas a objetos, posshilita uma andlise rdpida devido & proprias caracteristicas
desse contexto. Sendo assim, com a aplicagdo desse padrdo 0 engenheiro de software
obtém algumas informagdes (classes, objetos, méodos, etc.) para poder dimensionar os
esforcos que tera que despender durante o processo de engenhariareversa.
Contra:
O cddigo fonte de dstemas procedimentais implementados em linguagens tais como,
CLIPPER, COBOL, RPGII, etc., é em ged, sequencid e dividido em mbdulos
fundonais. Com a aplicagcdo desse padrd0 consegue-se obter poucas informacdes
relevantes sobre um sistema legado procedimental.
Justificativa: Esse padrdo ndo é aplicado em sistemas legados procedimentais porque nesses
sstemas ndo se condata 0 encapsulamento que é uma caracteristica dos sistemas orientados a
objetos. Dessa forma pode-se inferir, num curto espaco de tempo, poucas informagdes tas
como, as entidades mais importantes, estilo de programacao redizada, etc.

2. Nome: Esudar Superficidmente a Documentacdo (Skim the Documentation)

Intuito: Supor, inicidmente, a funciondidade do Sdema por meo da letura da

documentacéo existente do sistema, num espaco limitado de tempo.

Avaliacao (Trade-off):
Pros:
Independente do contexto no qual o sstema kgado foi desenvolvido (orientado a objetos
ou procedimental), a documentagdo existente pode contribuir na andise inicid da sua
funciondidade. Em sstemas legados orientados a objetos, a documentacdo existente pode
s produzida com guda de ferramenta Case. A partir dessa documentagdo consegue-se
obter afunciondidade inicid do sstema legado num curto espaco de tempo.
Contra:
Segundo estudos de casos redizados em sstemas legados procedimentals, sabe-se que
eses Sstemas possuem, em gerd, pouca documentacdo. Na sua maioria o que existe, de
fato, so, codigo fonte, estruturas de arquivos de dados e sstema executdvd. Com a
andise dessa documentacdo ndo se consegue obter a funcionadidade inicid do sSstema
legado num curto espaco de tempo.

Justificativa: Este padréo ndo € gplicado em sstemas legados procedimentais por ndo ser

possivel obter informagdes relevantes no curto espaco de tempo sugerido.

3. Nome: Entrevisar o Usu&io Durante o Sistema em Operacdo (Interview During Demo)
Intuito: Obter a idéa inicid da funciondidade do sSstema observando-o em operacéo e
entrevistando a pessoa que o estd demonstrando.
Avaliacio (Trade-off):
Pros:
A obsarvacdo do Ssema em execugdo permite a0 engenheiro de software o
conhecimento de sua funciondidade.

Contra:
Geadmente, Ssemas grandes e integrados envolvem mais do que um usu&io, por
exemplo, sstemas do tipo ERP — Entrerprise Resource Planning, em que exigem V&ios
ub-sstemas interagindo entre S. Esse padréo deve ser aplicado a todos os usuarios
envolvidos para se conseguir a maioria dos cendrios tipicos. Além diso, deve-se ter a
preocupacdo de obter informagOes das interfaces de Negocios entre os subsistemas. Na
maioria das vezes is0 € feito atraves de reunides coletivas com todas as aress envolvidas
da organizacdo. Sendo assim, nesse contexto de sstema integrado, ndo se consegue obter
as informagBes necessarias num curto espaco de tempo.
Justificativa: Esse padréo foi utilizado na eaboracdo da FaPRE/OO, para os padroes.
Congruir Diagramas de Use Cases e Obter Cendrios. Pois, entrevistar usuérios quando estéo
operando 0 ddema e engenhelros de software que paticiparan do desenvolvimento do
sstema legado é essencid para se obter informagBes da funciondidade e dos cenérios tipicos
de uso.

3.2 - Cluster: Entendimento Inicial (/nitial Understanding)

4. Nome: Presumir Provaveis Objetos (Speculate about Domain Objects)
Intuito: Refinar, progressvamente, um modelo de objetos de acordo com o codigo fonte,
definindo hipdteses sobre quai's objetos devem ser representados no sistema.
Avaliacao (Trade-off):
Pros:
Este padrdo concebe um modelo hipotético de classes, que representa o Sistema a partir
das classes/objetos, de acordo com a suposicao das informagOes levantadas pelos padrdes
anteriores. Refina-se esse modelo inspecionando se 0s nomes dessas classes/objetos
ocorrem no codigo fonte e adaptando- as adequadamente ao modelo.
Contra:
Em ssemas procedimentais ndo exisem classes/objetos claramente definidas no cddigo
fonte. Assm, ndo é possivel fazer suposicdo de um modelo de classes/objetos somente a
partir desse codigo fonte. No entanto, é possivel eaborar um modelo inicia a partir dos
dados e do codigo fonte do sistema legado.
Justificativa: Este padréo foi usado duas vezes durante a elaboracdo da FaPRE/OO,
utilizando-se como hipétese de possivels classes as entidades do MER, Modelo Entidade
Reacionamento, da seguinte forma:
1) Com base no cbédigo fonte eaborase a Tabeda Detahes de Implementacdo, usando o
padrdo Tratar Anomalias.
2) Com base na Tabda Detdhes de Implementacdo e no MER foram efetuados refinamentos
gerando o diagrama de classes do sstema, por meio do padréo Definir as Classes.
Durante a aplicacdo desse padrédo nos estudos de caso, em sSistemas procedimentais, pdde-se
aproveitar a esséncia da concepcdo desse padrdo adaptando-o0 a0 contexto procedimental, da
seguinte forma utilizourse como hipétese de possivels classes os arquivos de dados, uma vez
gue esses arquivos em dgdemas procedimentals representam, na Sua maioria, entidades
importantes do sitema. A partir dai um modelo de dados procedimental, e ndo de classes, é
obtido com refinamentos sucessivos a partir dos dados e do codigo fonte.

5. Nome: Examinar o Banco de Dados (Reconstruct the Persistent Data)
Intuito: Adequar o0 modelo de objetos, obtido pelo padréo anterior, com o banco de dados do
Sstema legado.
Avaliacao (Trade-off):
Proés:
Em ddemas orientados a objetos, implementados em bancos de dados relacionals,
exisem tabelas em que as regras de acesso sB0 bem definidas. Portanto, consegue-se
derivar um modelo de classes representando as entidades que estdo armazenadas no
banco de dados.
Contra:
Em ddemas procedimentas, em gerd, ndo exigem aquivos de dados definidos
claramente como as tabelas dos bancos de dados relacionais. Sendo assim, ndo € possivel
elaborar um moddo somente com a andise dos dados, temrse que andisar também o
codigo fonte para encontrar as regras de acesso. Portanto, € possivel eaborar um modelo
de classes a partir dos dados e do codigo fonte do sistema.
Justificativa: Este padr&o foi usado duas vezes durante a elaboracdo da FaPRE/OQ:
1) Este padrdo contribuiu, em parte, para a eaboracdo dos padrdes, Iniciar a Andise dos
Dados e Definir Chaves, na construcéo do MER do sistema legado.
2) Ede padréo também contribuiu para a eaboracdo do padréo Andisar Hierarquias na
construcdo do Diagrama de Classes do sstema.
E comum em sistemas orientados a objetos ter um banco de dados relaciona contendo os
dados persistentes. JA para sistemas procedimentals tém-se arquivos de dados. No entanto, 0s
conceitos de banco de dados podem ser aplicados nesses sistemas, gerando modelos
representativos das informagdes do Negocio. Durante a aplicacéo desse padrdo nos estudos de
caso, em sSistemas procedimentais, pode-se aproveitar a esséncia da sua concepcdo adaptando-
0 a0 contexto procedimenta, da seguinte forma como possivels classes foram utilizados os
arquivos de dados, uma vez que, esses nos Sstemas procedimentais representam, na sua
maioria, entidades importantes do sstema. A partir dai um modelo de pseudo-classes é obtido
sendo refinado sucessivamente a partir do codigo fonte e da andlise dos arquivos de dados.

6. Nome: Inspecionar as Maiores Construces (Identify the Largest)
Intuito: Identificar trechos importantes de codigo utilizando ferramentas de determinacéo de
métricas, ingpecionando as maiores construgdes.
Avaliacao (Trade-off):
Proés:
Em sistemas orientados a objetos pode-se usar ferramentas de determinacdo de métricas
para coletar um conjunto limitado de medidas sobre as entidades do sstema (por
exemplo: hierarquia de heranca, packages, classes, métodos, etc.). Pode-se representar os
resultados de ta forma que sga possive avdiar, facilmente, diferentes medidas para uma
mesma entidade.
Contra:
N&o é possivel implementar os conceitos de, hierarquia de heranga, packages, €tc., em
Sistemas procedimentais.
Justificativa: Este padrdo ndo foi utilizado na elaboracdo da FaPRE/OO, mas 0 uso de
métricas pode ser explorado paraauxiliar a engenharia reversa de sstemas procedimentais.

7. Nome: Explorar Possiveis Modificagbes (Recover the Refactorings)
Intuito: Reconstruir 0 processo iterativo da construgdo do sstema, pela comparacdo de
subsequientes versdes, observando 0 quanto 0 sistema cresceu ou decresceu, por meio de
trechos de codigo fonte que foram aterados.
Avaliacao (Trade-off):
Pros:
Para sstemas legados orientados a objetos pode-se usar ferramentas de determinacéo de
meétricas, propostas pelo padréo anterior, para comparar medidas de versdes subsequentes
afim de encontrar entidades onde funcionaidade pode ter sdo incluida ou removida
Contra:
N&o é possivel implementar os conceitos de, hierarquia de heranga, packages, €tc., em
Sstemas procedimentals
Justificativa: Este padréo ndo foi utilizado na elaoracdo da FaPRE/OO, mas 0 uso de
métricas pode ser explorado para auxiliar a engenharia reversa de sistemas procedimentais.

3.3 - Cluster: Detalhamento do Sistema (Detailed Model Capture)

8. Nome: Veificar aslnvocacbes de Métodos (Derive Public Interface)
Intuito: Saber como uma classe eda relacionada com outra verificando os parémetros
definidos nos métodos da interface da classe.
Avaliacao (Trade-off):
Pros:
Em dsstemas orientados a objetos é possivel encontrar informagtes através da assinatura
dos méodos, constantes da interface da classe, descobrindo-se como uma classe esta
relacionada com outra por meio dos parametros (conexdo de mensagens).
Contra:
Em sdemas procedimentais a implementacdo dos conceitos de conexdo de mensagens
ndo € como em Sstemas orientados a objetos. A comunicacdo entre arquivos de dados
nos sistemas procedimentais pode ser obtida através da andlise do codigo fonte.
Justificativa: Este padréo néo € aplicado em sistemas legados procedimentais porque nesses
Sistemas ndo se congtata os conceitos da orientacdo a objetos.

9. Nome: Observar a Execucéo dos Componentes (Step Through the Execution)

Intuito: Obter um entendimento detahado do comportamento de uma parte do codigo,

através da execucdo de seus componentes (encapsulamento).

Avalia¢ao (Trade-off):
Pros:
Esse padrdo tem uma proposta muito interessante para se entender parte do cddigo
aravés da execucdo dos componentes. Seu conceito é também bastante utilizado, na
préatica, pelos engenheiros de software. Esse processo pode ser comparado afase de teste
nos Sistemas procedimentais.
Contra:
Em dsstemas procedimentais 0 encgpsulamento, existente em orientacdo a objetos, ndo é
redizado quando da implementacdo de sistemas, ou sga, essa implementacéo € redizada
por meio de um conjunto de linhas sequienciais de codigo.

Justificativa: Este padrdo néo foi utilizado devido aformacéo do codigo fonte dos sistemas
legado procedimentals, uma vez que o padréo Refazer para Entender pode ser melhor
aplicado no contexto de Sistemas procedimentals.

3.4 - Cluster: Preparacio da Reengenharia (Prepare Reengineering)

10. Nome: Refazer para Entender (Refactor To Understanding)
Intuito: Obter um melhor entendimento de uma parte especifica do codigo fonte, refazendo-a.

Avaliacio (Trade-off):
Proés:
Com este padréo consegue-se modificar partes do codigo fonte, de ta manera que o
comportamento externo do codigo ndo sga dterado, mas a sua edrutura interna sga
melhorada
Contra:
Em sgstemas procedimentais esse padréo requer profundo conhecimento da linguagem de
programagao utilizada naimplementacéo do Sstema legado.
Justificativa: Este padrdo foi utilizado, em parte, na elaboracéo do padrdo Tratar Anomalias,
da FaPRE/OO. Com a aplicagdo desse padréo, apesar da necessidade do conhecimento da
linguagem, € possivd diminar incondsténcias (anomdias) comumente encontradas em
sstemas procedimentals.

4. Consideracoes Finais

Ede trabadho gpresentou, primeramente, a linguagem de padrfes proposta por Demeyer

[1] judificando, em seguida, que ndo é auficiente utilizd-la para processos de engenharia

reversa de sstemas legados procedimentais. Para solucionar esse problema, foi congtruida a

FaPRE/OO, contendo padrdes para conduzir processos de reengenharia orientada a objetos de

sstemas legados procedimentais[2] [3].

A FaPRE/OO é composta de quatro clusters, cada um agrupando os padrfes relacionados

a Stuacbes smilares da reengenharia, sendo os trés primeiros para 0 processo de engenharia

reversa e o Ultimo para o processo de engenharia avante:

» Cluster 1 - Modelar os Dados do Legado - agrupa os seguintes padr@es. Iniciar Andise
dos Dados, Definir Chaves, Identificar Relacionamentos e Criar Visao OO dos Dados,

» Cluster 2 - Moddar a Funciondidade do Sistema - agrupa os seguintes padroes. Obter
Cenéarios, Congtruir Diagramas de Use Cases, Elaborar a Descricdo de Use Cases e Tratar
Anomdias;

» Cluster 3 - Moddar o Sistema Orientado a Objetos - agrupa os seguintes padrdes. Definir
as Classes, Definir Atributos, Andisar Hierarquias, Definir Méodos e Congruir
Diagramas de Seqguiéncia; e

» Cluster 4 - Gerar o Sistema Orientado a Objetos - agrupa os seguintes padrfes. Definir a
Plataforma, Converter o Banco de Dados, Implementar os Méodos e Redizar Mehorias
na Interface.

Tabela 1 - Padrdes de Demeyer utilizados na elaboracéo dos Padrfes para o Processo de

Engenharia Reversa da FaPRE/OO

Linguagem de Padrées de Demeyer

Padrées para o Processo de Engenharia Reversa da

FaPRE/OO
Clusters Padroes Padrées Clusters
. Ler Todo o Cédigo em umaHora — —
Iniciagdio _
ao . Estudar Superficialmente a — —
Sigema Documentagéo __
Legado | Entrevistar o Usudrio Durante o . gg:s(tj;lilerSDlagramas e | Modelar aFuncionalidade
Sistema em Operacéo _Obter Cendrios do Sistema
- Modelar o Sistema
. L . - Definir as Classes Orientado a Objetos
. Presumir Provéaveis Objetos - -
. Modelar a Funcionalidade
. Tratar Anomalias do Sistena
Entendimento . Iniciar AndlisedosDados | Modelar os Dados do
. Definir Chaves Legado
Inicial . Examinar aBase de Dados Voddar o Ssema
- Analisar Hierarquias Orientado a Objetos
. Inspecionar as Maiores Construgdes — —
. Explorar Possiveis Modificagdes — —
Detalhamento .\éte)nflcar as Invocag:j)%ddos M étodos — —
do Sistema |- Observar a Execucdo dos o .
Componentes
Preparagao (_Jla . Refazer para Entender . Tratar Anomalias Modelar a F_unC|onaI|dade
Reengenharia do Sistema

Tabela 2 - FaPRE/OO x Padrdes de Demeyer

Padrdes para o Processo de Engenharia Reversa da

Linguagem de Padroes de Demeyer

FaPRE/OO
Clusters Padroes Padroes Clusters
Modelaros & Iniciar Analise dos Dados . Examinar a Base de Dados Entendimento Inicia
. Definir Chaves . Examinar a Base de Dados Entendimento Inicia
Dadosdo [Tgentificar Relacionamentos — —
Legado . Criar Visdo OO dos Dados — —
. Entrevistar o Usuério o '
. Obter Cenérios Durante o Sistema em Inici ;L agdi stema
Modelar Operacéo €9
a . Presumir Provéveis Objetos Entendimento Inicial
: : . Entrevistar o Usuério o '
Funcionalidade ir Di
. Congtruir Diagramas de Use Cases | rante o Sistema em Iniciacdo ao Sistema
do Operacio Legado
Sistema . Elaborar a Descric8o de Use Cases — —
. . Presumir Provéaveis Objetos —
- Tratar Anomalias . Refazer para Entender
. Definir as Classes . Presumir Provéaveis Objetos —
Modelar o ["Definir Atributos — —
Sstema . Analisar Hierarquias . Examinar aBase de Dados Preparagao pla
Orientado a I Reengenharia
Objetos . Definir Métodos — —

. Construir Diagramas de Sequiéncia

A Tabela 1 mosgtra os padrdes de Demeyer utilizados para a elaboracdo da FaPRE/OQO. Por
exemplo, do primero cluster da linguagem de padrbes de Demeyer, somente o padréo
Entrevisar 0 Usu&rio durante o Sistema em Operacdo é utilizado. Os padrdes Inspecionar as
Maiores Construgdes, Explorar Possiveis Modificagdes, Verificar as Invocagbes dos Métodos
e Obsarvar a Execucdo dos Componentes ndo foram utilizados, mas podem ser Utels em
futuros refinamentos do processo. Cabe ressdtar que alguns padrbes da linguagem de
Demeyer foram utilizados, dgumas vezes, para a €laboracdo de mais do que um padréo da
FaPRE/OO, como mostraa Tabela 1.

A Tabda 2 complementa a Tabdla 1 mostrando 0 relacionamento existente entre os
padrfes para 0 processo de engenharia reversa da FaPRE/OO e a linguagem de padrdes de
Demeyer.

Referéncias

1 Demeyer, S.; Ducasse, S.; Nierstrasz, O., “A Pattern Language for Reverse Engineering”.
Proceedings of the 5" European Conference on Pattern Languages of Programming and
Computing, (EuroPLOP2000), Andreas Ruping(Ed.), 2000.

2] Recchia, E. L., Engenharia Reversa e Reengenharia Baseadas em Padrdes, S50 Calos-S,
Junho/2002. Dissertacéo de Mestrado apresentada ao PPGCC - Universidade Federa de S&o
Carlos.

[3] Recchia, E. L.; Penteado, R. — FaPRE/OO: Uma Familia de Padrdes para Reengenharia
Orientada a Objetos de Sistemas Legados Procedimentais. Artigo apresentado no
SugarloafPLoP2002 — The Second Latin American Conference on Pattern Languages of
Programming — Agosto/2002, Itaipava— RJ.

Analyzability and Changeability in Design Patterns’

Javier Garzést and Mario Piatini2

L ALTRAN SDB Senior Consultant
Projects Engineering Research Group
ALTRAN SDB
C/ Ramirez de Arellano, 15, 28043, Madrid - SPAIN
j garzas@l transdb. com

2 Alarcos Research Group
Escuela Superior de Informética,
University of Castilla-LaMancha
Rondade Calatrava, s/n. 13071, Ciudad Real — SPAIN
Mario. Piattini @clmes

Abstract

It has been a long time since the appearance of the Object Oriented (OO) paradigm. From that moment, the
designers have accumulated much knowledge in the design and construction of OO systems. However, at the
present time the exclusive use of patterns is not sufficient to guide a design in a formal way. Two important
quality parameters for Object Oriented (patterns) Design exist: Analyzability and Changeability. Principles
permit to us to analyze an easier manner in which to introduce design patterns. Indirections provide
changeability to the pattern. With all the former, we can obtain a metric to answer how much Changeability we
can apply in order not to lose the design's Analyzability.

1. Introduction

In the late eighties, the application of patterns in OO gppeared and was consolidated,
among others, by the work of Coad (1992), Gamma et al. (1995), Buschmann et al. (1996),
Fowler (1996) and Risng (1998). The motivation was to transfer a type of Object Oriented
Desgn Knowledge (OODK) (Garzas and Piattini, 2001), knowledge accumulated during
years of experience. Since then, designers have been reading and using paiterns, regping
benefit from this experience.

However, a the present time the exclusve use of peatterns is not sufficient to guide a design
in a formad way, the designer's experience being necessary to avoid overload, non-agpplication
or the wrong use of patterns due to ignorance, or any other problems that may give rise to
faulty and counteractive use of the patterns. When patterns are used, severa types of
problems may occur (Wendorff, 2001; Schmidt, 1995):

- Difficult Application.
- Difficult Learning.

! Copyright © 2002, Javier Garzas and Mario Piattini. Permission is granted to copy for
the Sugarloaf PLoP 2002 Conference. All other rights reserved.

- Temptation to Recast everything as a pattern
- Pattern overload.
- Ignorance.

- Deficiencies in cadogues Search and Complex Application, High Dependence of the
Programming Language, Comparatives, €tc.

In principle, usng desgn patterns increments design qudlity. In this sense, there are many
works about metrics and design quality, for example (Genero et d., 2000), (Brito e Abreu and
Carapuca, 1994), (Briand et a., 1999), (Henderson-Sdlers, 1996), etc. Since design qudlity
can be measured by qudity metrics the use of desgn patterns should lead to better
measurements. However, many common object-oriented design metrics indicate lower quality
if desgn patterns are used. In this sense, Relbing (2001) comments that if we have two smilar
desgns A and B for the same problem, B using desgn petterns and A not using design
patterns, B should have a higher qudity than A. However, if we agoply “classic’ object-
oriented design metrics to both designs, the metrics tell us that design A is better — mostly
because it has less classes, operations, inheritance, associations, etc. Who is wrong? The
metrics or the patern community? Do we have the wrong quality metrics for object-oriented
design? Or does using petterns in fact make a design worse, not better? So what is the cause
of the contradiction between the supposed qudity improvement by design patterns and the
measured quality deterioration? (Reibing, 2001)

Fird, in the following section, we will andyze the maintenance and desgn petterns and
relaionship with andyzability and changesbility in more deal. Laer, we will show a
measurement of the impact of the paterns used. In the last sections we present
acknowledgments, our conclusions and future projects, and references.

2. Maintenance and design patterns

According to the ISO/NIEC 9126 — 1999 “Software Product Evaluation — Quality
characteristics and Guidelines for their use” Sandard mantanability is subdivided into
Andyzability, Changesbility, Stability, Testability and Compliance.

Software maintenance consumes the largest part of the overdl lifecycle cost (Pigoski, 1997,
Bennett and Rglich, 2000). The incapacity to change software quickly and reliably means
that organizations lose business opportunities. Thus, in recent years we have seen an
important increase in research directed at addressing these issues.

If we obtain a correct OO design, we will obtain better maintenance. Considering the 9126
dandard, two important parameters for quaity maintenance of Object Oriented Design
(patterns) exist:

- Changeability dlows a design to be able to change easly, an important requirement at the
time of extended functiondity into an existing code.

- Analyzability dlows us to understand the design. This is an essentia requisite in order to be
able to modify the design in aredigtic period of time.

To be specific, a the time of agoplying patterns to a software design, two opposites forces
agopear and these forces are directly related to maintainability. On the one hand, we put
together a common terminology to the applying petterns, we have proven solutions, but we
have the inconvenience that the solution, once obtained, can be very complex, and this means
that the desgn is less comprehensble, and modifying the design is more difficult (Prechdt,
2000). Thus, to continue with the previous concepts, a curious relation between Changesbility
and Andyzability appears. If we increase the design's Changeability then we will decrease the
design's Andyzakility, and vice versa

+ N //?7Changeability

Quantity

Number of Patterns

Fig. 1. The Rdationship between Changeability and Analyzability. The Breaking Point determines the “Optimal
Patterns Number”, where the best maintenanceisin relation to Patterns.

Figure 1 shows grgphicdly the rdationship between Changesbility and Andyzability when
patterns are applied. As the figure shows:

- If adesgn hasalot of design patterns this design will have a great amount of Changeshility
- If adesign hasfew design patterns this design will have a great amount of Anayzability

2.1 Analyzability issues

In generd, the pattern introduction is a complex task. In this epigraph, we show how to
introduce design patterns to the desgn from design principles. This method permits us to
andyze an easer way to introduce design patterns.

Gazés and Fattini (2001) comment that an OOD principle can be defined as a set of
proposals or truths based on experience that form the foundation of OOD and whose purpose
is to control this process. Some principles are the following (other principles gpart from those
described here may exist but we are limited by the length of this paper):

= Open-Closed Principle (OCP): A module should be open for its extenson and closed for
its modification.

= Substitution Principle (SP): The subclasses must be subgtitutable by their base classes.

= Dependency Inversion Principle (DIP): Depend upon abstraction. Do not depend upon
Specifications.

= Interface Segregation Principle (ISP): Many clients specific interfaces are better than
one general purpose interface.

= Default Abstraction Principle (DAP): Introduces an abstract class that makes the
implementation in default of most of the interface operations between the interface and the
classtha implementsiit.

= Interface Design Principle (IDP): “Program” an interface, not an implementation.

= Black Box Principle (BBP): Favor the object composition over classinheritance.

* Do not Concrete Superclass Principle (DCSP): Avoid maintaining concrete superclass.

In generd, we can date that in order for an OO system to be of a certain qudity it should
not violate any principles. On the other hand, patterns contribute to an efficient design, but in
generd the exact rdationship between principles and patterns is unknown or more specificaly
we do not know which principle(s) ensure(s) each pattern.

Therefore, for example, in order to conform to the DIP, one of the dtrategies could be to use
the abstract Factory pattern. The purpose of other patterns such as Prototype, Factory method,
etc. is more to perform the Abstract Factory than to directly conform to a principle. Therefore,
we can conclude tha there are patterns that directly alow a principle to be complied with,
whilst other patterns are more related to patterns than to principles. Consequently, patterns
could be classfied according to the principles they follow. The principles would even enable
us to create a different catalogue of patterns to tha currently exigting (in most cases they are
samply presented in dphabetica order). Checklists of principles could dso be drawn up which
asess the design and offer us solution patterns that ensure that they are complied with. We
may specify more and consder their reationship with the patterns, so that the principles can
be one or saverd of the following types.

Type 1, the pattern Type 3, the principle can
contributes to agood solution improve a solution to
to the resulting modd of the Type 2, the pattem which a pattern has

completes or contains the

application of the principle principle

(“from the principle towards
the pattern”).

previousy been applied
(“from the pattern towards
the principle’).

Table 1 shows an andyds of the principles mentioned in the previous epigraphs and their
relationship with each pattern of those detalled by Gamma et al. (1995) in function of the

previous types.

We can obsarve that the relationship of patterns has been ordered aphabeticaly. In this way,
we can obtain an objective order and later, based on the principles, we will be able to obtain
andogies.

Principle OCP SP DIP ISP DAP IDP BBP DCSP
Pattern 112|311(2(3fJ1|2|3)1|(2(311|2|3)1|2(311|2|3)1|2(3
Abstract F.

Class
Adap. 5o

Bridge
Builder
ChainR.
Command
Composite
Decorator
Facade
Factory M.
Flyweight
Interpreter
Iterator

M ediator
Memento
Observer
Prototype
Proxy
Singleton
State
Strategy
Template M.
Visitor

Table 1. Principles and their relationship with each pattern of those detailed by Gammaet al. (1995)

Severd congderations, uses and investigation lines can be extracted. Some examples are
the fallowing:

= |t dlows us to break down each one of the patterns into smaler forces, facilitating the
sudy of dements common to dl the patterns of ther own character: “patterns within the
patterns’ or “meta-patterns”’.

= |t dlow us to guide the use of patterns, since it is easer to know how D apply a pattern
that a principle in a correct way, and once the principle is gpplied, it is easy to arrive a the
pattern. This facilitates the pattern's good use. For example, the use of NSCP implies the
use of creational patterns and this assures us that our system is written in function of
interfaces and not in function of implementations.

= |tdlowsaforma study of micro architectures.

= |t dlows us to obtain the forces (principles) that conform the pattern and how, depending
in its manner of incidence within the pattern (type 1, 2 or 3), this can be of different
characterigtic. For example:

- We can observe that Abstract Factory, Builder, Factory Method and Prototype
mantan an dmog identical kernd of principles while Singleton does not complete
ay principle. Singleton is not a micro architecture (it only describes one class).
Singleton deds with the creation of objects but it does not do this with the same
characteristic and the same abstraction as the other four cregtiona peatterns, we are
according to Buschmann et al. (1996) whereon this pattern is an Idiom. With regard to

the four remaining creation patterns, we observe that they complete the same
principles with the exception of Builder, snce this has the same character as the
previous ones but by means of a compostion drategy. As we see, the sudy of the
principles that intervene in a pattern alows us, among many other things, a finer and
based classfication.

- We obsarve that any micro architecture with some hierarchy whose design pattern we
want to consder should complete (type 2) a least the following principles. OCP, SP,
DIP, IDP and DCSP.

- We obsarve that in patterns sructurdly identicd to State and Strategy the same
principles are completed and with the same characteristics.

- All paterns that complete OCP, SP, DIP, IDP and DCSP in type 2, ISP and DAP in
type 3 and do not fulfill the BBP it is cdassfied (according to Gamma's book) as of
behavior.

= We will be able to look for and/or to vaidate new design patterns observing whether they
complete certain meta-patterns.

The principles dlow us to extract good practicd OO, observing how the patterns are based
and how they are connected with the design.

2.2 Changeability issues

The dement that provides changeability to the pattern is what it is cdled indirection.
Nordberg (2001) comments that “a the heart of many desgn paterns is an indirection
between service provider and service consumer. With objects the indirection is generdly via
an abgract interface’. Unfortunately each leve of indirection moves the software farther from
the red world or andyss levd view of the problem and deeper into rdatively atificid
mechanism classes that add overhead to both desgn comprehenson and implementation
debugging. With respect to the previous factors, we have observed the following:

- Every time that a pattern is introduced a least one indirection appears in the desgn and
these dements ae not of dominion or busness logic, such as natifications, observer
classes, updates methods, etc.

- Every time that we add an indirection the software moves around further away form the
andyss. Upon adding indirections or design classes the design becomes less semantic, less
comprehensible or less analyzable.

- Every timethat an indirection is added it increases the design changesbility.

3. Metrics for Optimal Patterns Number

With al the former, we have a problem: how much Changegbility can we apply in order not
to lose the design's Andyzahility? Obtaining metrics to answer the previous question woud
be agreat contribution.

We can define a parameter that quantifies how changesble a desgn is in rdation to
indirections

Changeability Number (CN) = Indirection Classes Number (ICN) 1)

On the other hand, a vadue tha measures the dedgn's andyzability must condder the
number of desgn classes introduced: these are classes that smplify, reusng (such as the
subject class into observer pattern) or indirection (such as the observer class into observer
pattern). Thus:

Andyzability Number (AN) = Domain Classes Number (DCN) —)
Indirection Classes Number (ICN) — Smplify Classes Number
(SCN)

We may obsarve in the lag formula, that when we have an andyss diagram its
andyzability is maximum. When we introduce atifacts into the dedgning phase on the
andyss diagram the modd's andyzability decreases We dso may obsarve, as certain
paterns will have a larger impact in the andyzability than other ones, depending on the
classes that the patterns introduce.

Now, we may caculate the Optima Patterns Number (OPN) as follow:

Changegbility Number (CN) = Anayzability Number (AN) 3
Indirection Classes Number (ICN) = Domain Classes Number
(DCN) — Indirection Classes Number (ICN) — Smplify Classes €)]
Number (SCN)

Indirection Classes Number (ICN) = [Domain Classes Number)
(DCN) — Simplify Classes Number (SCN)] / 2

Condgdering in the previous formula that the DCN parameter is a fixed vadue in desgn
phase, the rest of parameters depend of the kind of pattern or design artifact introduced.

Shortly, we will add to the measures a bigger refinement level considering aspects such as
the quality of methods.

3.1. Example

The following example (figure 2) shows us the Metrics for Optima Petterns Number
gpplication (Changeability Number (CN) and Andyzability Number (AN)).

At firg, we have three Domain entities (D1, D2 and D3). At this point we have not
introduced some patterns, we do not have indirection classes, therefore, CH = 0. With three
Domain Classes we have AN = 0 (we do not have Indirection Classes Number (ICN) or
Simplify Classes Number (SCN), we only have Domain Classes Number (DCN)).

We introduce the Observer Pettern a a later moment (b in figure). This pattern has an
indirection class (observer class), and this introduces one Smplify Class (subject class). With
thepreviousCH=1and AN=3-1-1=1.

CN=0
a) D1 i—> D2 |—> D3 | AN = 3-0-0 =3

Observer |‘ Subject |

i CN=1
D1 i—b D2 |—> D3 | AN=3-1-1 =1

Observer I‘_ Subject |
CN=2
C) D1 i—V D2 —> D3 | AN =3-2-3 =2

State

StateA | StateB |

b)

Fig. 2. Thisexample showsthe CH and AN variation at the moment of applying patterns

Finaly, we introduce the State Pettern and this has an indirection class (State class) and, for
our example, it introduces two Smplify Classes (StateA and StateB). With the previous CH =
2andAN=3-2-3=-2

At this moment the CH number is bigger than the AN number (figure 3). According to the
former, a this moment we should not introduce more patterns if we want to mantan the
andyzability of design. Perhaps at a later date it may be essentia to add more patterns, but a
this moment, if we are only improving the design, in a preventive phase, we do not have an
explicit need to introduce a pattern. The relationship between CH and AN gives us a rationd
way to control the patterns’ use.

4. Acknowledgments

This research is a part of the DOLMEN project supported by CICYT (TIC 2000-1673-C06-
06). We would adso like to thank to ALTRAN SDB for the support shown towards this
invedtigation & al times.

5. Conclusion and future projects

The experts have aways used proven idess. It is in recent years when these idess,
materidized into the pattern concept, have reached their greatest popularity and diffuson,
thanks to the concern of the community to discover, to cdassfy and to diffuse dl types of
patterns.

——

P i ~

Fig. 3. The graph shows CN and AN evolution

The patterns are useful dements but there are gill many dements to be sudied if we want
to goply them in a rationd manner. The firg thing that we must make clear is the word quality
for desgn patterns; this word must be used with great care when we apply it to patterns. An
gppropriate notion of qudity should result if the qudity definition incudes many views In
maintenance quality two gppropriate views could be changeability and andyzability.

On the other hand, more knowledge exists apart from that related to patterns, adthough it
would be true to say that this other knowledge is frequently “hidden”. We denominate,
diginguish and classfy the following caegories in OODK: principles, heuridic, patterns and
refectorings (Garzas and Piattini, 2001). But there is much uncertainty with regards to the
previous eements. In fact, the previous knowledge eements have never been dudied as a
whole, neither its compatibility has been studied nor does a method based on this knowledge
exig. There is dill a lot of work to be done in order to systematize and offer this OO Design
knowledge to designersin such away that it can be easily used in practical cases.

6. References

Benngt K. H. and Rglich V. T. Software Maintenance and Evolution: a Roadmap, in
Finkdstein A. (Ed) The future of Software Engineering, ICSE 2000, June 4-11, Limerick,
Ireland, pp 75-87.

Brito e Abreu F. and Cargpuca R. Object-Oriented Software Engineering: Measuring and
controlling the development process. 4th Int Conference on Software Qudity, USA, 1994.

Briand L., Morasca S. and Basli V. Defining and Vdidating Measures for Object-Based
high-level design. |EEE Transactions on Software Engineering, 25(5), 722- 743, 1999.

Buschmann F., Meunier R., Rohnert H., Sommerlad P. and St M., A System of Patterns.
Pattern-Oriented Software Architecture, Addison-Wedey, 1996.

Coad P., “Object-Oriented Patterns’, Comm. ACM, Vol. 35, No 9, Sep. 1992, pp. 152-159.
Fowler M. Analysis Patterns. Addison Wed ey, 1996.

Gamma E, Hem R, Johnson R and Vlissdes J. Dedgn paiterns. Elements of Reusable Object
Oriented Software. Addison-Wedey, 1995.

Gazés J., Rattini M. Principles and Patterns in the Object Oriented Design, OOPSLA 2001 -
Workshop “Beyond Design: Patterns (mis) used’. Octubre 14-18, 2001. Tampa Bay, Florida,
USA.

Genero M., Fattini M. and Cdero, C. Early Measures For UML class diagrans. L Objet.
6(4), Hermes Science Publications, 489-515, 2000.

Henderson-Sellers B. Object-oriented Metrics - Measures of complexity. Prentice-Hall, Upper
Saddle River, New Jersey, 1996.

Nordberg M. E. Aspect-Oriented Indirection — Beyond OO Design Patterns. OOPSLA 2001 -
Workshop “Beyond Design: Patterns (misjused’. Octubre 14-18, 2001. Tampa Bay, Florida,
USA.

Prechdt L., Unger B. Tichy W. Bosde P. A controlled Experiments in Maintenance
Comparing Dedgn Paterns to Smpler Solutions. IEEE Transactions on Software
Engineering, September 2000.

Pigoski, T. M. Practicd Software Mantenance. Best Practices for Managing your
Investements. Ed. John Wiley & Sons, USA, 1997.

Rebing R. The impact of Pattern Use on Design Quality. OOPSLA 2001 - Workshop
“Beyond Design: Patterns (mis)used”. Octubre 14-18, 2001. Tampa Bay, Florida, USA.

Risng L., The Paterns Handbook: Techniques, Strategies, and Applications, Cambridge
University Press, 1998.

Schmidt D. C., Experience Usng Dedign Paterns to Develop Reusable Object-Oriented
Communication Software, Communications of the ACM 38,10, October 1995, pp 65-74.

Wendorff P., “Assessment of Dedgn Paterns during Software Reenginesring: Lessons
Learned from a Large Commercia Project”, Procedings of the Fifth European Conference on
Software Maintenance and Reengineering , CSMR 2001, IEEE Computer Society.

SugarloafPLoP 2002 Proceedings

Designing Websites by Using Patterns

Francisco Montero, Maria Lozano, Pascual Gonzalez, Isidro Ramos'

LoUISE Research Group "Departamento de Sistemas Informaticos y
Escuela Politécnica Superior de Albacete Computacion
University of Castilla—La Mancha Universidad Politécnica de Valencia
Campus Universitario Camino de Vera s/n

02071 — Albacete — Spain E-46071 Valencia - Spain

http://www.info-ab.uclm.es/louise iramos@dsic.upv.es
{fmontero, mlozano, pgonzalez} @info-
ab.uclm.es
Abstract

This paper contains a resumed collection of patterns for designing web sites. Traditionally, the Web
is mainly seen as a medium used to exchange information and that is the main reason why most web sites are
designed like a book in which you can jump back and forth. Usability criteria should be considered when we
are developing a web site [8]. This set of patterns is established under these criteria.

1. Introduction

The World Wide Web has rapidly become the dominant Internet tool, combining
hypertext and multimedia to provide a network of multidisciplinary resources. It is
important to make sure that all parts of a web site are useful. A user will come to a site
expecting to be able to perform a particular task, or read a particular piece of information.
When we are designing a web site we want to make sure that the user can find that
resource quickly and easily. If they can't find the information quickly then they may leave
our site, and proceed to another site where they can find the resource. The Web is a new
medium and requires a new approach [8].

We should begin by asking, as in any user interface design process, Who are the
users? and What are the tasks? But answer these questions is not easy. Anybody can visit
our web site, kids, seniors, older or disabilities people. All information and resources
should be accessible to them [3]. Everybody should be able to navigate with no problem.
The idea is that, no matter what you're doing, there's a user-centred way of doing it. Users
should be considered throughout the web site design process. Usability should not be an
afterthought. Testing and fixing a web site affer it has been built is inefficient and unlikely
to produce good results.

Shneiderman [10] commented that “It will take a decade until sufficient experience,
experimentation, and hypothesis testing clarify issues” and warned that meanwhile “the
paucity of empirical data to validate or sharpen insight mean that some guidelines are
misleading”. Nevertheless, many sets of web design guidelines have been published. There
are many guidelines [14] that can be used to improve the design of our web sites. Most of

Copyright © 2002, Francisco Montero, Maria Lozano, Pascual Gonzalez, Isidro Ramos. Permission is
granted to copy for the SugarloafPLoP 2002 Conference. All other rights reserved.

209

these recommendations for web site designers are however not based on research but on
intuition. They are based in the designer’s experience.

Traditionally, interface design experiences are gathered with guidelines but patterns
can be used too. The concept of a pattern language has been developed by Christopher
Alexander and his colleagues in architecture and urban design [1, 2]. In brief, a pattern
language is a network of patterns of varying scales; each pattern is embodied as a concrete
prototype, and is related to larger scale patterns, which it supports, and to smaller scale
patterns which support it. The goal of a pattern language is to capture patterns in their
contexts, and to provide a mechanism for understanding the non-local consequences of
design decisions [4].

2. A Web Design Patterns Language

This patterns language describes the usability-desired result unlike a prescriptive
pattern language or guidelines. The patterns in this language are grouped into three levels.

e Web site level, people expect a web site to provide information, be interactive and
fulfill their requirements. web sites have to be visually pleasing, download quickly, be
helpful, easy to use and explore, in addition to presenting a professional appearance. A
web site is made up of a collection of documents, images, sounds and other files. These
usually reside in a unique place on the Internet. We can find this collection of web
pages because they have an address.

e Web page level, a web page is a single page on any specific web site. A page is
specially important, the home page, due to it identifies the web site.

¢ Ornamentation level. There are several elements that usually are on a web page.
These elements give useful support to user for performing his/her tasks. These
elements improve usability of the web site.

This taxonomy of three levels is based on [1]. The Alexander’s language contains
253 patterns split into three broad categories, towns, buildings and construction. The first
94 patterns are collected together under the heading of "Towns". However, they cover far
more than just urban planning and begin by examining the responsibilty of the designer
from a global perspective. Moving on from the study of areas and collections of buildings,
Alexander examines the buildings which make up the urban landscape and suggests over
100 patterns which define his position on what constitutes good building design. Alexander
finishes his collection of patterns by defining the right way to construct buildings. The
patterns in this final section of the language show how the need for careful thought and
creative effort are required throughout the design process. The main objective of
Alexander was improving a quality without name and planning cities, towns and buildings.
Alexander wanted to create structures that are good for people and have a positive
influence on them by improving their comfort and their quality of life. When we are
developing a web site that’s our goal too. We are interested in designing web sites with
quality. But what is quality?. Quality is perhaps usability, understandability, learnability,
operability, adaptability, accessibility, etc. We think that quality is everything mixed
together.

The proposed web pattern language will be introduced by using a particular
example. The patterns in the entire collection are depicted graphically in Figure 1 and
summarised at the end of this section by using three tables, one of them for each level of
patterns.

A problem is presented by each pattern and, under a context and a set of forces, a
solution is proposed [7]. Problems are associated with user requirements and solutions look
for improving usability web site. Usability is [ISO/IEC 9126-1] learnability,
understandability and operability and these elements are improving by providing
navigation, functionality, control, language, feedback, consistency, error prevention and
visual clarity facilities.

News and

‘ TR
(suggestions

We speak your

Notable gquotation
4

b=

Home sweet
; home

Have you got . Nobody must know it
everything you need?
A second

Where can | go? ’
. ! Kleep your | saw you bhefore
anguage
Everything is /
similar

on colour

Could you write
it for me?

Figure 1. Proposed pattern language

Figure 1 shows the proposed pattern language. It has a structure of a network, in the
left column there are patterns of web site level, in the centre column there are patterns of
web page level and, finally, in the right column there are patterns of ornamentation level.

The following tables summarise the patterns in this pattern language for reference
purposes. These patterns could be integrated on a methodology to develop user interfaces
like IDEAS [5]. There are patterns at requirements level, like these, that can be used in the
beginning of an usability-based iterative life cycle. So patterns can be used to improve a
participatory design, evaluate web site under usability criteria and facilitate communication
between stakeholders involved in web site development.

Web site patterns
Problem Solution Pattern name
Set up a reception point where
user finds information about the | Welcome
web site
Web site musts provide the
needs mechanisms that allow
any user to move from one place
to another places
How can the user do a|Speak wuser’s language is|We speak your language

How does the user know
where he is?

How does the user know
where he can go and what
will he find there?

Where can I go?

useful use of the web site
and access information at
your own pace?

“design for all”

How does the user know
where he is? How does the
user know that he is
visiting the same web site?

Web site should be designed by
using the same criteria: colours,
fonts, navigation location and
layout.

Everything is similar

How does the user know if
he needs anything else for
visiting a web site?

The user should be informed of
what he need for visiting a web
site.

Have you got everything
you need?

Web page patterns

Problem
How does the user know
where the user is?

\ Solution
Provide a checkpoint where the
user feels like at home.

Pattern name

Home sweet home

How can the user access
the content of the web page
in a simple and proper
way"?

Keep your language clean and
inoffensive.

Keep your language

How does the user know
when his operations have
finished or what is their
current state?

Show the wuser a status
information of some kind,
indicating how far along the
process is in real time.

Still working

How can the user visit the
web site to his’her own
pace?

Provide return approaches.

A second opportunity

How can the user provide

Provide appropriate “blanks”
to be filled in, which clearly and

preformatted information? | correctly indicate what The form
information should be provided.
How can the user visit the Design for all people,

web site without be
interrupted or disoriented
by unnecessary effects?

technology and knowledge level
in a possible manner.

Be careful!

Problem

How does the user know
what the main feature of
the web site owner is?

Ornamentation patterns
\ Solution
Include a tag line that explicitly
summarise what the site or
company does.

Pattern name

Notable quotation

How can the user get a
suitable print of
information?

Provide a text version of web
pages directly printable

Could you write it for me?

How can the user have got
access to additional and
periodic information?

Provide an approach to user
cans book on-line

Subscribe here

How can the user get
additional information on
products or documents?

Include a “Contact Us” link on
the homepage

Contact us

How can the wuser find

specified information? Offer a search engine Search

Use an approach to maintain
state variables on the Web, like |1 saw you before
cookies

How does the user know
where he/she has been?

How can the user access to
the content of web site in a | Use suitably colours
suitable way?

How can the user access
the content of web site in a | Provide on-demand Size is important
suitable way?

How can provide private
information in secure way?
How does the user know
what are the news in the

Everything depends on
colour...

Implement security in web site | Nobody must know it!

Include at homepage news and

. ; News and suggestions
suggestions sections

web site?
How does the user know |Include location references in

) . You are here
where he/she is? web site

How does the user know

|] “A ” .
who the owner of web site nclyde a link to an “About Us About this
is? section

In the next section, we will describe some of these patterns by using them to solve
problems related with the creation of a web site where usability degree should be high.
This task helps us to introduce some of these patterns with more detail than this section.

When each pattern is introduced a last field, examples and implementation details,
provides references (urls) and brief considerations on how this pattern can be recognised
when we are navigating across the Web.

3. Example of use: Applying the Web Pattern Language

Suppose than you have to promote an institution, a business or a research group. An
interesting possibility could be the creation of a web site where users can find out about
services, products, latest news supplied by that institution.

You are a beginner designer and know that having a good web site is important, but
you have not got enough experience in web design. There are guidelines, experiences and
knowledge gathered in web site design field but it is difficult to use and in some occasions
can be contradictory. However, a language is the most powerful tool of communication,
but in a language there are words, sentences and relationships between words and
sentences. On the other hand, patterns are a way of documenting design expertise. A
pattern language can be useful in two senses: firstly as a tool to document the experience
and secondly, as a tool to communicate between stakeholders of the project (end-user
included).

How could I use this collection?
1. Read the resumed list of patterns.
2. Scan down the list, and find the pattern, which best describes the overall
scope of the project or the problem that you want to solve.
3. Read the starting pattern. Tick all of the low order patterns and ignore all
the high order patterns.

SugarloafPLoP 2002 Proceedings

4. Turn to each pattern and now tick only relevant low order patterns.

5. Keep going like this, until you have ticked all the patterns you want for
your project.

6. Adjust the sequence by adding your own material where you haven't
found a corresponding pattern.

7. Change any patterns where you have a personal version, which is more
relevant.

As an example, and after of reading the list of patterns, we could select some of them, for
instance, Welcome, Home sweet home, Notable quotation, About this, Search, News and
suggestions, Contact us, or Subscribe here. These patterns are related like shown figure 1
and they are of different levels. Then we can read them in more detail.

Welcome

Motivation:

When a user arrives at a web site, like he/she arrives at a city, town or any important

building needs to know where he/she is, what can he do there, and what he need for

visiting that web site.

Problem:

How does the user know where he/she is? How does the user know where he can go?

Who does the site manage? What is the purpose of the site?

Forces:

e Users need know where they are

e User wants to know where they can go next

e A complex web site can be very disorienting for users

e Users who are familiar with the structure and content of a web site should be able to
jump straight to the space where they want to go

Solution:

Set up a reception point where the user finds information about the web site. From this

welcome point, user will be able to enter to home page (Home sweet home). User’s

information, such as language or monitor size should be gathered to the provision of web

site’s services to user (We speak your language). In its defect, the user should be

informed about the best conditions for the visiting web site (Have you got everything you

need?). User finds information about content (About this) and owner (Contact us) of the

web site in this page. Welcome and homepage is the same in many occasions.

Consequences:

Provide improvements on the navigation, functionality and feedback

Examples & http://www.aosa.es, http://www.alanismorissette.com These web
implementation sites, and many others on the Web, have got a initial page where
details: users are received. These web pages have as main features their low-

load time, offer the possibility to customise the language or browser
properties, and provide information on who, what, when and where
the user can find on the web site.

214

http://www.aosa.es/
http://www.alanismorissette.com/

SugarloafPLoP 2002 Proceedings

Home Sweet Home

Motivation:

A web site can be achieved by random way, but always must have a point of reference.

When an user arrives at a web site, like he/she arrives at a city, town or any important

building needs to know where he/she is, what he can do there, and what he need for

visiting that web site. The homepage is an essential component of a web site. Questions

such as: who?, what?, when? and where? should have answer on it.

Problem:

How does the user know where the user is? How does the user know where he will go?

Who does the site manage? What is the purpose of the site?

Forces:

e Users need know where they are

e User wants to know where they can go next

e A complex web site can be very disorienting for users

e Users who are familiar with the structure and content of a web site should can jump

straight to the space where they want to go

Solution:

Provide a checkpoint where the user feels like at home. Homepage is a place where the

user can go back if he is disoriented. Its layout puts important information at top (News

and suggestions), includes logos (Notable quotation), search approaches (Search) and

information contact (Contact us, About this, Subscribe here) .

Consequences:

Provide improvements on the functionality, control and navigation

Examples & http://www.apple.com, http://www.icee.org Any web site has a

Implementation homepage. It is a specific page that introduces distinctive features. It

details: has links to different sections of the web site, such as news, contact,
about us, search etc. References to homepage should be included in
every pages of the web site (A second opportunity).

/2 TUNEY - Microsoft Internet Explorer =10|.x

JArchivo Edician “er Favoritos Herramientas Ayuda

J Eords v = v (D fat | @Pisqueda [GaFavoritos £ 4Historial ||%v =

music chat stuff email home

|@ l_’_ ‘Q Internet v

215

http://www.apple.com/
http://www.ieee.org/

Notable quotation

Motivation:

When you are designing a web site you should provide information about its purpose.
Problem:

How does the user knows what is the main feature of the web site owner?

Forces:

e Users are in a hurry

e Users don’t read web pages, they have a look at pages

Solution:

Include a tag line that explicitly summarise what the site or company does. Its should be
brief, simple and to the point. Include a short description of the site in the window.
Consequences:

Provide improvements on visual clarity, functionality and feedback

Examples & http://www.coolhomepages.com, http://www.bbva.es These web
Implementation pages has images or taglines that implements this pattern. A tagline
details: is a short phrase that communicates the "who" and "why' of your
Web site.
The following elements create effective taglines:

subject + audience + organization.
About this

T
"The only known cure
for Designer's Block" The best way to get me.
Motivation:

All business web sites need to provide a clear way to find information about the company

no matter how big or small the company is.

Problem:

How does the user know who the owner of web site is?

Forces:

e People like to know with whom they are doing business

e (QGetting company information might be the sole reason that users come to the site

e Many users want to know who is behind the service

Solution:

Include a link to an “About Us” section that gives users an overview about the web site

owner and links to any relevant details about your products, services, company values,

business proposition, management team, and so forth.

Consequences:

Provide improvements on functionality and feedback.

Examples & http://www.sunspot.net, http://www.ireland.com This pattern is

Implementation implemented by adding a page or a section where information about

details: owner of the page can be found. Normally a link to this section is
situated in the homepage.

http://www.coolhomepages.com/
http://www.bbva.es/
http://www.sunspot.net/
http://www.ireland.com/

SugarloafPLoP 2002 Proceedings

Search

Motivation:

Search is one of the most important elements of a homepage (Home sweet home), and it

is essential that users be able to find it easily and use it effortlessly.

Problem:

How can the user find specified information?

Forces:

e User wants to know if the searched information is on the web site

e User doesn’t read web site. He/she has a look at it.

Solution:

Offer a search engine. Give users an input box on the homepage to enter search queries,

instead of just giving them a link to a search page [9]. Search on the homepage should

search the entire site default [12].

Consequences:

Provide improvements on functionality and control.

Examples & http://www.paginasamarillas.es, http://www.microsoft.com This

Implementation pattern is implemented by providing a search form. Search forms are

details: the user interface of the search engine. It can consist on a very
simple form with just a text field and a button, it can be a page and
add a lint to it in your navigation. Advanced search capabilities can
be worth adding. An advanced search page with options for phrases,
multiple fields, special collections or zones, and date ranges allows
them to perform more precise searches.

Search Now:

| All Products

|| D

=2

amazoncom.

News and suggestions

Motivation:

Users want to know if there are new features in the web site. Users admit suggestions and
want to know offers and promotions.

Problem:

How does the user know what the news in the web site are?

Forces:

e User doesn’t read web site. He/she has a look at it

e Users are in a hurry

Solution:

Include news and suggestions sections at the homepage where users will have rapid
access to new services offered by Web site

Consequences:

Provide improvements on functionality and navigation

Examples & http://www.microsoft.com, http://www.terra.es This pattern is
Implementation implemented by placing latest news or suggestions in an outstanding
details: place in the homepage (Subscribe here).

217

http://www.paginasamarillas.es/
http://www.microsoft.com/
http://www.microsoft.com/
http://www.terra.es/

SugarloafPLoP 2002 Proceedings

Contact us

Motivation:

All business web sites need to provide a clear way to contact with web site owner.

Problem:

How can the user get additional information on products or documents?

Forces:

e People like to know with whom they are doing business

e Getting company information might be the sole reason that users come to the site

e Many users want to know how is behind the service

Solution:

Include a “Contact Us” link on the homepage that goes to a page with all contact

information for your company (About this).

Consequences:

Provide improvements on feedback.

Examples & http://www.intel.com, http://www.lucent.com This pattern is

Implementation implemented by including a page or a section where user can find

details: contact information, in many occasions this information is included
at the bottom of all the pages of the web site. In others cases, a form
is provided to the user. This form contains features like a text area or
text fields for the user can provide his email and other comments.

Yo

Please type your massage below:

Send Message

Subscribe here

Motivation:

Users want not to visit a web site everyday, they prefer to be informed when new
products or news arrive.

Problem:

How can the user have got access to additional and periodic information?

Forces:

e Useris in a hurry

e User wants to be informed

Solution:

Provide an approach where users can book on-line by providing an e-mail. So, the web
site owner can send information to registered users about news and suggestions (News

and suggestions).
218

http://www.intel.com/
http://www.lucent.com/

SugarloafPLoP 2002 Proceedings

Consequences:

Provide improvements on feedback.

Examples & http://www.prenhall.com, http:/www.sun.es This pattern is

Implementation implemented by using a simple form where user usually only have to

details: provide an email. In other occasions is necessary provide more
information related with the user’s profile and preferences, so it is
possible provide personalised information. Unsubscribe option
should be provided too.

| subscribe p |

In this moment, we have a departure point to start the development of the web site. With a
language, the redaction of pattern includes references to others patterns of low order. If in
this moment, our beginner designer identifies the need of getting information from the
user, could read The form pattern and related ones — Still working, Search, Contact us,
Subscribe here, Nobody must know it and I saw you before. Next, some of them are
explained

The form

Motivation:

The user has to provide information, usually short answers to questions

Problem:

How can the user provide preformatted information?

Forces:

e The user needs to know what kind of information to provide

e Users generally do not enjoy supplying information this way

e [t should be clear what is required, and what is optional

e The user is in a hurry

Solution:

Provide appropriate “blanks” to be filled in, which clearly and correctly indicate what

information should be provided [11]. Search, Subscribe here, Contact us are examples of

forms. In occasions, a form fills a complete page. The user needs know if his/her submit

was correctly processed (Still working). In some situations, we need to get confidential

information of the users then must to provide additional security (Nobody must know it!)

Consequences:

Provide improvements on the functionality

Examples & http://www.iomega.com, http://www.iberia.es These web pages and

Implementation some others like them, where the user can provide information

details: implement this pattern. An HTML form is a section of a document
containing normal content, markup, special elements called controls
(checkboxes, radio buttons, menus, etc.), and labels on those

219

http://www.prenhall.com/
http://www.sun.es/
http://www.iomega.com/
http://www.iberia.es/

SugarloafPLoP 2002 Proceedings

controls. Users generally complete a form by modifying its controls
(entering text, selecting menu items, etc.), before submitting the
form to an agent for processing (e.g., to a web server, to a mail
server, etc.)

Flight Search
From IAIicante ;I

Tao Iﬂxberdeen ;I

Adults Children Infantad-2)
seate [1 | |0 .| |0 -]
bepatt [07/07/02 | i |00h v]

Retumn | 7 Joon <]
Class IChcu:-Se class ;I

Particular examples of this patterns are Contact us, Subscribe here.

Still Working

Motivation:

Web sites are places where users can download information, images, files or applications,

but this downloading can take a lot of time, create significant delays or be accomplished

in different ways.

Problem:

How does the user know when his/her operations have finished or what is their current

state?

Forces:

e The user wants to know how long they have to wait for the process to end

e The user wants to know how fast the progress is being made, especially if the speed
varies

e Sometimes its impossible to tell how long the process is going to take

Solution:

Show the user a status information of some kind, indicating how far along the process is

in real time. Images, files and any element that the user can download should have got

information about size, so users can know how long have to wait for the download

process. Images and text should be downloaded on-demand (Size is important).

Consequences:

Provide improvements on the functionality, feedback and error prevention

Examples & http://www.google.com, http://www.acrobat.com Many web pages
Implementation needs load a plug-ing to get a correct visualisation, a progress bar is
details: used to provide such information. Sometimes a task running within a

web site might take a while to complete. A web page with usability
provides some indication to the user about how long the task might
take and how much work has already been done. If you don't know
or don't want to indicate how complete the task is, you can use a
cursor or an animated image to indicate that some work is occurring.
If, on the other hand, you want to convey how complete the task is,
then you can use a progress bar like this one (http://java.sun.com):

[12% |

220

Sometimes, you can't immediately determine the length of a long-
running task. You can show this uncertainty by putting the progress
bar in indeterminate mode. In this mode, the progress bar displays
animation to indicate that work is occurring. In the Java look and
feel, indeterminate progress bars look like this:

Nobody must know it!

Motivation:

If user provides private information, he/she will need to have the right to expect
confidentiality. Rapid advances in communication technology have accentuated the need
for security in the Internet.

Problem:

How can provide private information in secure way?

Forces:

e Users want to security

e Users do not need to know technical aspects

Solution:

Implement security in web site. Users should be registered in order to access to private
sections on the web site, but sometimes only a login and password is not enough [13].
Consequences:

Provide improvements on feedback and control

Examples & http://www.bankofamerica.com, http://www.cdnow.com This pattern
Implementation is implemented with login form where we’ll ask the user for their
details: username and password by using php or asp. But unless your form is

located on a secure server, the information is transmitted in cleartext,
and encryption won’t occur until the php script runs.

Enter your username: I

Type in your password: I

Login Restahlecer |

| saw you before

Motivation:

When a user comes back to a web site he needs know what places he has visited, what
documents he has downloaded and if there are modifications from last visit.

Problem:

How does the user know where he/she has been?

Forces:

e User does not want to loose his time

e User wants to receive personalised information

http://www.bankofamerica.com/
http://www.cdnow.com/

SugarloafPLoP 2002 Proceedings

Solution:

Use an approach to maintain state variables on the Web like cookies. Since HTTP is a

non-persistent protocol, it is impossible to differentiate between visits to a web site,

unless the server can somehow mark a visitor.

Consequences:

Provide improvements on feedback and error prevention

Examples & http://www.kinkos.com, http://www.americanairlines.com This

Implementation pattern is implemented by using cookies. Web cookies are simply

details: bits of software placed on your computer when you browse web
sites, so the web site will recognise the user’s computer when he
comes back to visit again. Cookies have some beneficial things. For
example, when you log on or purchase online to certain sites, did
you ever notice that when you return again you do not have to sign
on the next time? That’s because it stored your password and id on
your machine in a cookie. So user’s workload is reduced.

4. Conclusions

This paper presents a first approach of a web design pattern language. Its main goal
is to gather the experience on web design and provides a communicative tool than can be
used by every stakeholder in a project. The pattern language distinguishes between three
design levels: the web site, a web page and the ornamentation. The recurring principle
through the pattern language is supporting users to achieve usability improvement.

Web site patterns are associated with common features that can be found on many
web sites and are extrapolated from another different context. The user requires know
where he/she is (Welcome) and where he/she can go (Where can I go?). The user wants to
visit the web site in a suitable way (We speak your language [6], Have you got everything
you need?, Everything is similar).

Web page patterns introduce design patterns related with web page design. They
are usual and considered features when we are designing web sites. In these hierarchical
structure a homepage is necessary (Home sweet home). In some occasions, the user needs
provide information then he/she must fill a form (The form) and always the user wants to
have the control (Still working, A second opportunity) and to visit web sites to his/her own
pace (Keep your language, Be careful!).

Ornamentation patterns introduce decoration features of a web site. These features
provide improvements on the general usability of any web site. They are related with the
use of colours (Everything depends on colour...), sizes (Size is important), security
(Nobody must know it!) and providing location references (You are here, Contact us) and
information (I saw you before, News and suggestions, Subscribe here).

Patterns can be used in web design to improve a human-centred design, as a
communicative tool and as checklist to evaluate the usability of a web site, this last idea is
in progress. This pattern language is been shepherd in this time in other paper that was sent
to VikingPLoP.

5. Acknowledgements

This work is supported in part by the Spanish CICYT TIC 2000-1673-C06-06 and
CICYT TIC 2000-1106-c02-02 grants.

222

http://www.kinkos.com/
http://www.americanairlines.com/

6. References

[].
[2].
[3].

[4].

Christopher Alexander. “A Pattern Language”, Oxford University Press, 1977.
Christopher Alexander. “The Timeless Way of Building”, Oxford University Press, 1979.
Constantine Stephanidis, Anthony Savidis. “Universal Access in the Information Society:
Methods, Tools and Interaction Technologies.” Springer-Verlang. 2001.

Thomas Erickson, “Supporting Interdisciplinary Design: Towards Pattern Languages for
Workplaces”. 1997. Http://www.pliant.org/personal/Tom_Erickson

. Maria Lozano, Isidro Ramos, Pascual Gonzalez. “User interface Specification and

Modeling in an Object-Oriented Environment for Automatic Software Development”.
IEEE 34" International Conference on TOOLS USA. 2000.

. Fernando Lyardet, Gustavo Rossi. “Web Usability Patterns”. EuroPLoP, 2001.

http://hillside.net/patterns/EuroPLoP2001/papers.html

. Gerard Meszaros, Jim Doble, “A Pattern Language for Pattern Writing”, in Martin, Riehle,

Buschmann, PloP Design 3. Reading, Mass: Addison-Wesley, 1994.

. Jakob Nielsen, “Designing Web Usability: The Practice of Simplicity”. New Riders

Publishing. 2000.

. Jakob Nielsen, Marie Tahir. “Homepage Usability: 50 Websites deconstructed”. New

Riders. 2002.

. Ben Shneiderman. “Designing the User Interface: Strategies for Effective Human-

Computer Interaction”. Addison Wesley. 1998.

. Jenifer Tidwell. “Common Ground: A Pattern Language for Human-Computer

Interaction”. http://www.mit.edu/~jtidwell/. 1998/99

. Martijn van Welie. Interaction design patterns. http://www.welie.com/. 2001
. Joseph Yoder, Jeftrey Barcalow. “Arquitectural Patterns for Enabling Application

Security”. PloP’97 D-4 book. 1998.

. Yale C/AIM WWW Style Manual http://info.med.yale.edu

Apple’s Web Design Guide http://applenet.apple.com

IBM Web Design Guidelines http://www.ibm.com/IBM/HClI/guidelines

Mary Evans. “Web Design: An Empiricist’s Guide”. University of Whasington, Seatle,
Washington. 1998.

http://www.pliant.org/personal/Tom_Erickson/Patterns.Chapter.html
http://hillside.net/patterns/EuroPLoP2001/papers.html
http://www.mit.edu/~jtidwell/
http://www.welie.com/
http://info.med.yale.edu/
http://applenet.apple.com/
http://www.ibm.com/IBM/HCI/guidelines

Software Decisions with Pattern Relations

Martin Auer Wolfgang Zuser Valter Vieira de Camargo
Vienna University of Technology University of Sdo Paulo
Institute of Software Technology Instituto de Ciéncias Matematicas
Research Industrial Software Engineering e de Computagao (ICMC/USP)
1040 Vienna, Austria Cep 13560-970 Sao Carlos, SP, Brasil
{m.auer, zuser} (@swt.tuwien.ac.at valtercamargo@hotmail.com
Abstract

The concept of patterns is gaining widespread acceptance in the software community--in un-
derstanding domains, in reusing elegant solutions’ designs and in communicating efficiently.
Several types of patterns (for example, analysis patterns, design patterns or idioms) cover
different aspects of software solutions. Other patterns describe important issues of the soft-
ware development process.

Despite recent efforts, many patterns or pattern languages remain isolated and don’t re-
late well to each other. While analysis patterns are widely used to support domain under-
standing, other powerful ways to use them remain unexploited.

In this paper, applications of patterns and idioms are described to support software deci-
sions. First, existing analysis patterns are transferred to a new domain, and modified wher-
ever necessary due to the target domain’s requirements. Then, analysis patterns are related to
concrete ways of designing and implementing working solutions, expressed by design patterns
and idioms. Finally, these relations are used to support software decisions.

The proposed approach of translating existing analysis patterns to new domains and re-
lating them to solution-oriented patterns substantially eases domain understanding and soft-
ware decision making.

1. Introduction

The concept of patterns is becoming ubiquitous in software engineering and development.
Originally introduced in [AIS77] in the context of architecture, it gained widespread accep-
tance with [GHJ95], which cover design patterns. Other pattern families include analysis,
process and architectural patterns [Fow97, Amb98, BMRI6].

Patterns are short, simple solutions to common problems arising time and again in compa-
rable situations, or, as [CNM97] put it, “templates worthy of emulation”. They help to
- understand domain-related problems;

Copyright © 2002, Martin Auer, Wolfgang Zuser, Valter Camargo.
Permission is granted to copy for the SugarloafPLoP 2002 Conference.

- find existing and working solutions;
- communicate consistently and thus more efficiently by defining an instrumental
vocabulary, a pattern language.

Yet many possible applications of patterns remain unexploited. This paper proposes the

usage of patterns to

- efficiently reach domain understanding by applying existing patterns from similar do-
mains and modifying them according to the target domain’s requirements;

- connect analysis issues (expressed in analysis patterns) directly to design and imple-
mentation issues (design patterns, language idioms, or commercial off-the-shelf solu-
tions) in order to collect and document possible design and implementation decisions
along with their implications;

- support software decisions which have to take into account high-level and non-
functional requirements as maintainability, understandability, stability etc.

This application of software patterns is being investigated in an on-going research effort at
the Institute of Software Technology at the Vienna University of Technology, which tries to
use analysis patterns and pattern relations to assess the domain of software measurement and
to improve software measurement infrastructure with protocols and data formats.

Especially the design of protocols and data formats (as in this case) or the design of data-
base structures which should be stable with regards to future changes can benefit from the
proposed approach.

Section 2 points out related work. Section 3 describes the process of collecting a possibly
extensive set of analysis patterns. Section 4 describes relations between patterns at different
software development life-cycle stages. Section 5 shows the application of pattern relations
with regard to software decision making. Section 6 summarizes the benefits of the proposed
approach.

2. Related Work

[AIS77] defined many patterns in the context of architecture. [GHJ95] used similar templates
in describing software design patterns. Other patterns families include analysis patterns
[CNMO97, Fow97], process patterns [Amb98] and architectural patterns [BMR96, HBH99].

This paper has several different points of contact to patterns-related issues.

1. Domain understanding and coverage. Analysis patterns have been used successfully
to devise domain-specific applications and to share domain knowledge by acting as a
common vocabulary [Fer98]. Examples include:

[Kel98] presents several patterns from the domain of insurance systems.
[WHO8] describe analysis patterns for e-commerce transactions and proposes a
component library based on these patterns.

[Fer98] points out the similarity of a health-care solution to a commercial da-
tabase application.

2. Relations between patterns. Right from the first pattern-related publications, patterns
were described as to be closely related to other patterns. This fact was expressed in
[GHJ95] by a dedicated section “related patterns” for each pattern’s descriptions and
by an overview chart describing common relations between different design patterns.

[Zim95] goes one step further and organizes pattern relationships in different cate-
gories like “X uses Y in its solution”, “variant of X uses Y in its solution”, “X is simi-
lar to Y”. Some limitations of existing approaches are:

Usually, relations are described between patterns of the same type (e.g. analy-
sis patterns, design patterns,..) only.

Relations are described between patterns of the same publication only. Al-
though recently authors tend to establish relations to existing patterns, these are

mostly limited to well known patterns like those from [GHJ95].

3. Making software decisions. When building software systems, many decisions have to
be made, for example, whether a solution should be “strong” (i.e., very specialized and
efficient) or “weak” (i.e., more general and flexible, yet less efficient [VG98]). Other
issues involve reusability, maintainability, simplicity, understandability etc. Especially
architectural patterns [BMR96] consider typical high-level trade-off decisions.

It remains difficult to reuse software decisions because of the strong dependency
between the domain/initial requirements and these decisions. Even in the case of simi-
lar domains and requirements, software decisions usually can’t be reused because of
the lack of documentation and missing mappings to domain issues or requirements.

These three points of contact build the elements of a process which uses analysis patterns
and pattern relations to support software decisions.

3. Create Analysis Pattern Set

[Fow97], who applies patterns from the health care domain to the corporate finance one and
modifies them according to the specific needs, states: “By allowing patterns to migrate like
this, I hope that more and more useful patterns will emerge, [...]".

Indeed, many patterns proposed by [Fow97] can be transferred with little or no change to
other domains.

This transfer of analysis patterns to new domains substantially eases the creation of an ini-
tial set of patterns which describe the new domain. The resulting patterns can then be modi-
fied according to the target domain’s needs.

Thus, the creation of the analysis pattern set for a new domain, the target domain, can be
performed with the following steps:

1. Identify similar domains. Many domains have a lot of similarities which allows adopt-
ing many of their analysis patterns to the new domain.

2. Identify those patterns which can be transferred to the new domain without any
changes.

3. Identify those patterns which can not be transferred to the new domain due to the new
domain’s context.

4. Identify those patterns which have to be modified in order to be applicable to the new
domain, modify them and document the rationale of the modifications.

5. Create new patterns which are not covered by the existing and modified patterns or
which should replace the omitted ones.

This approach has several benefits:

- Working solutions are applied to similar problems (this benefit is the one usually ob-
tained by applying patterns).

- Analysis issues are less likely to be forgotten or underestimated. For example, when
going through a list of analysis problems from a similar, well-explored domain some
analysis patterns which may not have been considered important or considered at all
may come to the attention of the new domain’s analyst.

- Using this approach several times, and updating the set of patterns over time makes it
far more likely to reach a very extensive and maybe even complete coverage of the
domain with analysis patterns.

By documenting the rationale of the transfer decisions, the new domain’s analysis steps
can be discussed and considered when changes or updates have to be made, maybe by differ-
ent persons. A lot of background and domain information, as well as trade-off decisions are
encoded in an easily accessible format for future usage.

Example

The step of creating a set of analysis patterns for the (target) domain of software metric col-
lection is currently being investigated at the Institute of Software Technology at the Vienna
University of Technology. In order to devise a set of “software metric analysis patterns”,
well-known analysis patterns from the domains of observation and measurement in health
care and corporate finance (described extensively in [Fow97]) are transferred to the target
domain. Some patterns are changed, if necessary, according to specific software metric do-
main requirements.

The main differences between the source and target domains (health care/corporate fi-
nance and software metrics, respectively) are:
- The source domain environment is quite stable;
- The source domain has rigid restriction on data security and history;
- The target domain of software metric collection operates in the ever-changing and
highly heterogeneous software development environment;
- The target domain has less rigid restrictions on data security and archives.

Despite the differences, the similarity of the two domains allows to reuse many existing
patterns and considerations.

In our example, from the approximately 16 measurement patterns proposed in [Fow97],

- 4 can be transferred without changes (the basic patterns Quantity, Measurement, Pro-
tocol, Phenomenon With Range);

- 8-10 can be applied to the new domain with minor changes (for example, Conversion
Ratio, Active Observation/Hypothesis/Projection);

- 2-4 can be omitted in the new domain (for example, the Subtyping Observation pat-
tern).

- Furthermore, 4-6 new patterns have to be introduced to specifically address software
metric issues not covered in the existing patterns (for example, to handle distance met-
rics like coupling between classes).

Examples for some transferred and/or modified patterns:

Pattern Explanation

Observation, Fowler proposes several patterns to handle qualitative ob-
Category Observa- | servations in addition to quantitative observations.

tion We propose to reuse and transfer the pattern using Phe-

nomenon objects [Fow97, page 45] to the target domain
and omit the one using Category objects [Fow97, page 43].

A concrete occurrence of this pattern in the domain of
software metrics would be the measurement of complexity.
Complexity can be measured using McCabe’s metrics
(which would be an object of the class Measurement in the
diagram below); alternatively it can be assessed ‘“manu-
ally” by visually interpreting the graphical complexity of a
program’s flow graph and mapping this impression on an
ordinal scale, i.e., to different perceived complexity levels
like “simple”, “complex”, “very complex”. The Ilatter
mapping can be expressed with objects of the class Phe-

nomenon.
Original pattern:
Observation
Measurement Category Obs.
0..n 0.n
Phenomenon 0.n] Phenomenon
Type

If rules of thumb are used to map McCabe values to
complexity classes (for example, McCabe>15 => “very
complex”) then in order to specifically address this de-
pendency between quantitative and qualitative observa-
tions, the Associated Observation pattern [Fow97, page
50] can be applied.

Dual Time Record | Fowler’s original Dual Time Record pattern includes two
Time Record objects: one for the applicability on an ob-
servation and one for the recording time. Each object can
be either a Time Point or a Time Period object.

We propose to explicitly make the applicability a Time
Period and the recording time a Time Point object. This
could avoid problems in the semantics of Time Point-type
observation applicability.

Original Dual Time Record pattern:

Time Record [Time Point

1 1

Observation Time Period

Modified Dual Time Record pattern:

Time Point Time Period

N/

Observation

In the original pattern’s description, support for ap-
proximate time points is mentioned as potentially valuable
(when for example medical information is recorded by the
doctor, the patient might not remember the exact time
point of a certain event). This should not be necessary in
the (usually time-stamped) context of software artifacts.

A detailed list of the transferred analysis patterns and the changes made to them is shown
in [Aue02b].

4. Patterns Relations

After constructing a possibly extensive set of analysis patterns for the domain, each pattern
should be related to elements of the solution, namely to design patterns or language idioms.
While there are several approaches to support the transition form analysis to design (even a
pattern language is proposed to support it, see [Ker95]) we think that the simple concept of
relation is sufficient to document possible analysis-design transitions.

We don’t interpret the mathematical notation of “relation” strictly. We propose this meta-
phor to connect two or more elements of different sets, where the relation should express
“Pattern A can be expressed or implemented by pattern or idiom or solution B in some way”.

Examples

The analysis pattern Associated Observation [Fow97, page 50] records the chain of events in
a diagnosis procedure. The idea of the pattern is to allow links between different observations
(as an example, the link “thirst and weight loss indicate diabetes” is given).

Such associated observations can lead to different designs and implementations. First, let
us take a look at different ways of designing the solution of this pattern:

- The analysis pattern Associated Observation could be expressed by the design pattern

Observer [GHJ95] at the design level, yielding the analysis/design relation (Associ-
ated Observation, Observer).
The Observer design pattern describes objects that are notified whenever the object
they are depending on changes its state. One could think of a “Diabetes Observer”
class which changes state when certain conditions are met in the primary diagnosis
data.

- Another, less obvious design approach would be to use the design pattern Interpreter
[GHJ95]. This pattern interprets languages defined by a representation grammar.

One could express diagnoses as sentences of a grammar-based language, which serve
as input to an interpreter. A “Diabetes Interpreter” would then try to assess whether
certain conditions are met by a specific diagnosis sentence.

At the implementation level, there are many idioms that might be used to implement the
analysis pattern.

- Triggers could be used at the database level to implement the pattern.

- Alternatively, it could be implemented using some Java idiom for dynamically inter-
preting rules or formulas encoded in strings. This way, a concrete associated observa-
tion would be defined in the software system by a rule or formula (a string like “if
some_attribute="x" then diabetes observation="true’””) which is easy to customize, as
it is not hard-coded in Java.

SugarloafPLoP 2002 Proceedings

- Another way of implementing the concept would be to use some OLAP (online ana-
lytical processing) tool’s dynamic formula capability. Hand in hand with this idiom, a
whole solution context is proposed -- the use of a COTS tool instead of custom cod-
ing.

All relations express that the analysis patterns’ solution part can be designed or imple-
mented using a specific approach. Such relations describing possible future designs or imple-
mentations can affect software decisions in very early life-cycle stages (see next section).

An example of an application of pattern relations is the development of a metric data ex-
change format at the Institute of Software Technology at the Vienna University of Technol-
ogy. Analysis patterns are related to XML idioms which can express the analysis patterns’
structure. For example, there are dedicated data types in the XML schema language which
support range information encoding and verification including whether a range or interval is
open or closed'. This makes it the ideal idiom to be related to the Range analysis pattern (de-
scribed in [Fow97, page 76]).

The transition between analysis and design/implementation has always been of interest to
software engineers. Basing transition decisions on known sets of design patterns and idioms
may ease this process.

Several benefits can be derived from mapping analysis patterns to possible design patterns

and idioms early in the software life-cycle:

- People tend to implement solutions in their preferred languages and methods. If forced
to document these transition decisions early, sub-optimal decisions can be easily de-
tected in a very early life-cycle stage.

- The overall process (create a set of analysis patterns, then relate its elements to possi-
ble designs and implementations) lets developers proficient in different design para-
digms and programming languages easily compare and weigh their different propos-
als.

- By documenting not only one proposed design or implementation, but also other pos-
sible variants, the factors affecting the implementation decision become an integral
part of the documentation.

- The tracing of the domain model to its implementation details is improved. Changes to
the domain model can be easily propagated into the design model and implementation
details.

! The following XML schema snippet defines a range type based on the built-in primitive data type “integer” by
setting the so-called facets “minInclusive” and “maxInclusive”. Facets allow to customize schema elements in a
wide variety of ways.

<xsd:simpleType name="myInteger’”>
<xsd:restriction base="xsd:integer”>
<xsd:minInclusive value="1000"/>
<xsd:maxInclusive value=79999"/>
</xsd:restriction>
</xsd:simpleType>

232

Certainly there are some problems in this approach as well:

- Sometimes there will be no adequate design pattern for a certain analysis issue, espe-
cially if the analysis pattern is large and its solution design counterpart therefore
unlikely to be of general interest--thus being no design pattern by itself. An example
for such a large analysis pattern is the Portfolio analysis pattern [Fow97, page 183]
consisting of 10 classes and 10 relations. Yet in such cases the solution design can
usually be split up into several smaller parts of general applicability, into real design
patterns. One part of the Portfolio pattern, for example, expresses a range of dates,
which can be mapped to an XML range idiom (see the example above).

- The design patterns given in [GHJ95] can’t cover all analysis patterns. Many other
pattern languages must be considered as well, but collecting, learning, refining and
classifying the large number of patterns is an immense task--in fact, we very much
doubt if there will be anything close to a “unified design pattern language” any time
soon. Yet notwithstanding such gaps, existing pattern sets offer a good starting point
for possible transitions, whereas a gap might indicate the need for a new design pat-
tern.

Another interesting issue in this context is how non-functional requirements can be ex-
pressed with pattern relations. Although some analysis patterns are concerned about later non-
functional implications of the model they provide (for example, in the description of the
Measurement analysis pattern [Fow97, page 41] it is indicated that this pattern’s approach can
avoid a class to expose too large a number of operations in its interface), they mostly focus on
structural or dynamic domain aspects from a functional point of view.

Design patterns and idioms, on the other side, usually are aware of such non-functional is-
sues like performance, understandability and maintainability.

By using relations between analysis patterns striving for a simple model on one hand and
design patterns or idioms solving problems under constraints on the other, non-functional
implications can be attached to the analysis model.

5. Software Decision Support

Once a set of pattern relations is obtained, it can be used effectively to support early life-cycle
software decisions.

A first step might be to depict the relations between analysis patterns to design patterns
and idioms expressing similar problems or to idioms expressing the same problem in different
programming languages in a tabular form. This can point out sets of design patterns and/or
idioms according to several criteria:

- Are there any analysis patterns that can only be implemented with one single imple-

mentation idiom or design solution? Are there any idioms, whose related analysis pat-
terns can all be expressed with other idioms as well?

SugarloafPLoP 2002 Proceedings

- What is the minimal set of design patterns and idioms that cover (i.e., express, imple-
ment) all analysis patterns?

- How many design patterns and idioms are necessary in different contexts (for exam-
ple, using two different programming languages or object frameworks) to express all
analysis patterns?

- Will newly introduced analysis patterns (maybe some already known patterns for the
next release of the software) still be expressible with the set of idioms or design solu-
tions? Will a database design be stable when requirements slightly change? Can a data
format or protocol encode all identified analysis issues?

Example

Pattern relations between analysis patterns and XML idioms are currently being used at the
Institute of Software Technology at the Technical University of Vienna to specify and for-
mally verify the expressiveness of the metric data exchange format SIMDEF (whose initial
draft is described in [Auc02])*.

The analysis patterns obtained by transferring and modifying existing patterns, as well as
by introducing new ones are related to XML idioms able to encode software metric data struc-
tures. The final version of the metric data exchange format SIMDEF will be a subset of all
possible idioms and strives to encode metric data in a light-weight and human-readable way.

Several high-level requirements influence the final software implementation decisions:

- Although a very small set of XML idioms could be used to express all software meas-
urement value types, or patterns, some additional idioms are likely to be used to en-
hance the formats understandability, for example, by specifically supporting the com-
mon case of multiple selection measurement values, instead of modeling it using a set
of single selection values.

- Those XML idioms are preferred that can easily and transparently be mapped to flat
database structures for later analysis operations.

- Those XML idioms are preferred that support automatic verification of data formats,
therefore XML schemas are used to define the data structure.

2 SIMDEF (SImple Metric Data Exchange Format) is an XML data format defined entirely by XML schema
expressions to exchange typical metric information (like work report data, questionnaire data, etc.) between
metric data providers (like IDEs, static source code analyzers,..) and a central metric hub which is implemented
as a Web service to a central repository, a relational database. The data is communicated as SOAP (Simple Ob-
ject Access Protocol) messages to the hub. The format and the corresponding protocol’s technological choices
are aimed to support heterogeneous and ever-changing software environments, thus reducing data collection
costs.

234

6. Conclusions

The proposed approach of creating a domain-covering set of analysis patterns, possibly by
starting off with patterns from similar domains, of relating analysis patterns directly to design
or even implementation patterns/idioms which can express the analysis patterns, and of select-
ing those relations for implementation which satisfy some high-level requirements like reus-
ability, maintainability, stability etc. has several benefits:

- Working solutions are used as a starting point (this is pattern intrinsic).

- Using this approach repeatedly in the same domain makes it more likely to reach a
very extensive and maybe even complete coverage of a domain with analysis patterns.

- By documenting the rationale of the analysis to design/implementation transitions, the
domain’s analysis steps can be traced back, and domain information and trade-off de-
cisions are encoded in an easily accessible format.

- Sub-optimal design decisions can be detected in early life-cycle stages.

- Developers with different backgrounds can easily compare and weight their different
approaches.

Especially database structure or protocol design can benefit from this approach, which
substantially enhances the construction of stable software solutions. The approach is currently
being adapted to the domain of software metric collection at the Institute of Software Tech-
nology at the Vienna University of Technology.

7. References

[AIS77] C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson, 1. Fiksdahl-King, S. Angel,
A Pattern Language, Oxford University Press, 1977

[AmbI8] Scott W. Ambler, Process Patterns: Building Large-Scale Systems Using Object
Technology, Cambridge University Press, 1998

[Aue02] M. Auer, Measuring the Whole Software Process: A Simple Metric Data Exchange
Format and Protocol, Proc. of 6th ECOOP Workshop on Quantitative Approaches in Object-
Oriented Software Engineering (QAOOSE 2002), Malaga, June 11th, 2002

[Aue02b] M. Auer, Translating Measurement Patterns to Software Metrics, Tech. Report 02-
08, Institute of Software Technology, Vienna University of Technology

[BMR96] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, Michael Stal,
Pattern Oriented Software Architecture - A System of Patterns, Wiley, 1996

[CNMO7] Peter Coad, David North, Mark Maryfield, Object Models: Strategies, Patterns, and
Applications, Yourdon Press, New Jersey, 2nd ed., 1997

[GHJ95] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of Reus-
able Object-Oriented Software, Addison-Wesley, 1995

[HBH99] J. Hall, L. Barroca, P. Hall, editors, Software Architectures - Advances and Appli-
cations, Springer-Verlag, 1999

[Fer98] Eduardo B. Fernandez, Building systems using analysis patterns, in Proceedings of
the third international workshop on Software architecture, ACM, pages 37-40, Orlando, Flor-
ida, 1998

[Fow97] Martin Fowler, Analysis Patterns: Reusable Object Models, Addison-Wesley, 1997
[Kel98] Wolfgang Keller, Some Patterns for Insurance Systems, PLoP’98,
http://’www.objectarchitects.de/ObjectArchitects/papers/index.htm

[Ker95] Normal L. Kerth, Caterpillar’s Fate: A Patterns Language for the Transformation
from Analysis to Design, in: James O. Coplien, Douglas C. Schmidt, ed., Patterns Languages
of Program Design, pp 293--324, Addison-Wesley, 1995

[VGI8] Iris Vessey, Robert L. Glass, Strong Vs. Weak Approaches to Systems Development,
CACM 41(4), pp 99--102, 1998

[WH98] Hans Weigand, Willem-Jan van den Heuvel, Meta-Patterns for Electronic Commerce
Transactions based on FLBC, Hawaii Int Conf on System Sciences (HICSS'98), IEEE Press,
1998

[Zim95] Walter Zimmer, Relationships Between Design Patterns, in: James O. Coplien,
Douglas C. Schmidt, ed., Patterns Languages of Program Design, pp 345--364, Addison-
Wesley, 1995

Aplicabilidade da Familia de Padroes de Reengenharia FaPRE/OO na
Engenharia Reversa Orientada a Objetos de Sistemas Legados COBOL

Vdter Vieirade Camargo Edson Luiz Recchia Rosangela Penteado
Fundacdo Educaciond de PPGCC-DC-UFSCar / Departamento de Computacéo
Fernandopolis - FEF Universdade Anhembi Morumbi Universidade Federal de S&o
valtercamargo@hotmail.com erecchia@terra.com.br Carlos
rosangel@dc.ufscar.br
Resumo

FaPRE/OO é uma familia de padrées desenvolvida para conduzir processos de reengenharia orientada a objetos de
sistemas legados procedimentais. Este artigo trata a aplicabilidade de forma evolutiva e complementar dos padrées
relativos afase de engenharia reversa a sistemas legados desenvolvidos em Cobol. Por evolutiva, entende-se que o
processo de aplica¢do é em ciclos, isto ¢, padroes que sdo aplicados no inicio do processo, podem ser reutilizados
posteriormente, a fim de aumentar o entendimento e refinar os produtos obtidos. Por complementar, entende-se que
os padroes podem se complementar uns aos outros para a resolu¢do de um problema. O processo de engenharia

reversa ¢ exemplificado pela aplicagdo em um sistema de controle de estoque, implementado em Microfocus
COBOL 85, com 74 Kloc.

Abstract

FaPRE/OO is a pattern family developed to conduct object oriented reengineering processes of procedural legacy
systems. This paper deals with the applicability, in an evolutionary and complementary form, of the patterns related
to the reverse engineering phase, to legacy systems developed in COBOL. As evolutionary we mean that the
application process is in cycles, that is, patterns that are applied at the beginning of the process, can be reused in
subsequent phases, so as to improve understanding and refine the products obtained. As complementary we mean
that the patterns can complement each other for the solution of a problem. The reverse engineering process is
exemplified through its application to an inventory control system, implemented in Microsoft COBOL 85, with 74
Kloc.

1. Introducao

A engenhaia reversa condse em andisar um Sdema exigente, identificando seus
componentes e representando-os em um nivedl mas dto de abstracdo [6]. Exigtem duas
dternativas para redizar a engenharia reversa orientada a objetos de um ssema legado
procedimenta, como pode ser viso na Figura 1. A primera, mais tradiciond, € redizar a
engenharia reversa procedimenta do sstema legado e, a partir dos resultados dessa atividade,
efetuar a engenharia avante orientada a objetos. Em outras paavras, na primeira fase obtém-se a
documentacdo procedimental e, na segunda, com base nela, condroi-se a documentacdo de
andise orientada a objetos. A documentacdo obtida na primeira fase reflete exatamente como o
sgema legado estd implementado e, mesmo que incondsténcias sgam encontradas, N0 devem
ser solucionadas, pois 0 serdo na segunda fase. A segunda dternativa, que foi objeto de varios
trabalhos ja publicados [1, 2, 3, 4, 9, 10, 11, 12], é redizada identificando-se diretamente
possiveis objetos no codigo legado procedimental. Dessa forma, busca-se, logo no inicio,
identificar e solucionar possiveis inconsisténcias do codigo legado. N&o se obtém documentacéo

Copyright © 2002, Valter Vieira de Camargo; Edson Luiz Recchia; Rosdngela Penteado. Permission is granted
to copy for SugarloafPLoP 2002 Conference. All other rights reserved.

que represente exatamente como 0 legado estd implementado, mas Sm uma documentacdo que
esta mais proxima da documentacéo orientada a objetos find.

A Familia de Padrdes para reengenharia orientada a objetos de dSstemas legados
procedimentais (FaPRE/OO), proposta em [14], possui padrOes para conduzir a engenharia
reversa, que resulta em modelos de andise orientados a objetos. O exemplo mostrado pelos
autores da FaPRE/OO utiliza a primera dternativa da Figura 1, enquanto que este trabaho
utiliza a segunda dternativa, por meo de uma variacdo na ordem em que os padrbes da
FaPRE/OO sdo aplicados.

Assm, o objetivo deste trabalho é de mostrar que a FAPRE/OO pode ser utilizada de forma
evolutiva e complementar, para obter 0 modelo de andise orientado a objetos diretamente a
patir do ssema legado procedimenta. Além disso, € feita a agplicacdo dos padrBes da
FaPRE/OOQ, ingtanciando-os para o caso especifico da linguagem COBOL.

Legenda: Sistema Legado
Alternatival ——p Procedimental
Alternativa2 =9 \.\
AN
3 \
Model os de Projeto Modelosde Analise
Orientados a P | Orientados a Objetos
Procedimentos

Figura 1 - Alternativas para conduc¢iao do Processo de Engenharia Reversa OO

Edgte trabaho estd organizado da seguinte forma: na Secéo 2 gpresenta-se, resumidamente, 0s
padrdes para a redizacd da engenharia reversa da Familia de Padrbes para a Reengenharia
Orientada a Objetos de Sistemas Legados Procedimentais, FaPRE/OO. Na secdo 3, 0 uso dos
padrdes da FaPRE/OO é exemplificado para um sisema de controle de estoque implementado
em COBOL, e na Sego 4 sdo apresentadas as consideragdes finais.

2. Familia de Padroes para Conduzir Processos de Reengenharia Orientada a Objetos de
Sistemas Legados Procedimentais

Os padrbes da FaPRE/OO foram divididos em clusters, cada um agrupando os padrdes
relacionados a Stuagbes smilares. A Fgura 2 ilustra graficamente os clusters € 0s padroes
exigentes em cada um deles. No primeiro cluster, “Modelar os Dados do Legado” extraem-se
informacOes a partir dos dados e do codigo fonte do sistema legado gerando o MER - Modelo
Entidade Relacionamento (visdo procedimenta dos dados) e o MASA - Moddo de Andise do
Sgema Atud - Diagrama de Pseudo-Classes (visdo orientada a objetos dos dados). Esses
padrdes guiam o engenheiro de software quando se tem o primeiro contato com um ssema
legado. Fazem parte desse cluster 0s seguintes padroes.

Iniciar Andise dos Dados
Definir Chaves
Identificar Relacionamentos

Criar Visdo OO dos Dados
No segundo cluster “Modelar a Funciondidade do Sstema’, os padrfes sdo agrupados
para obter a funcionaidade do sistema, criando modelos que recuperem as regras de negécio da
empresa contidas no sistema legado. Esses padrfes habilitam o engenheiro de software a obter
um entendimento detalhado dos componentes do sistema, aprofundando sua compreensdo sobre
0 mesmo. Fazem parte desse cluster 0S seguintes padroes.
Obter Cenérios
Congtruir Diagramas de Use Cases
Elaborar a Descricdo de Use Cases
Tratar Anomalias
No terceiro cluster, “Modelar 0 Sistema Orientado a Objetos’, padrdes sdo agrupados
para se obter o diagrama de classes e os diagramas de sequiéncia do Sstema, atraves da interacdo
dos produtos obtidos pelos padrbes dos clusters anteriores. Esses padrées habilitam o engenheiro
de software a obter 0 MAS-Modeo de Analise do Sistema, sendo 0 modelo orientado a objetos a
servir de suporte a0 processo de reengenharia. Fazem parte desse cluster 0s seguintes padroes.
Definir as Classes

Definir Atributos
Andisar Hierarquias
.. ,
Definir Métodos
Congruir Diagramas de Seqiiéncia
A e —>~
Processo de
. Engenharia Avante
E
n
t
e
n
d Vlorlelar o Sistema Orientado a Objetos
. Definir as Classes
1 - Définir Atributos
m - Andisar Hierarquias
- Définir Métodos
e - Construir Diagramas de Segliéncia
n
t
o
Modelar a Funcionalidade do Sistema
- Obter Cenérios
d . Congtruir Diagramas de Use Cases
o . Elaborar a Descricdo de Use Cases
- Traar Anomdias
S
i
s Modelar os Dados do Legado
*Iniciar Andlise dos Dados
t - Definir Chaves
e - ldentificar Relacionamentos
m - Criar Visdo OO dos Dados
a

Processo de Reengenharia

Figura 2 - Padrdes do Processo de Engenharia Reversa da FaPRE/OO

Como a FaPRE/OO é para a reengenharia, a Figura 2 apresenta quatro clusters, sendo que 0s
trés primeiros sdo para a engenharia reversa e o Ultimo para a engenharia avante, completando o
processo de reengenharia. Como o enfoque deste trabaho é gpenas a engenharia reversa,
somente 0s trés clusters iniciais € que sd0 detalhados e que serdo apresentados nas proximas

secoes.
3. Estudo de Caso

Utilizowrse como estudo de caso um sistema de controle de estoque, implementado em
COBOL Microfocus 85, composto por 498 modulos, sendo que 69 sdo programas e o restante
CopyFiles'. O sistema possui setenta e quatro (74) Kloc e sua funcdo principa é cadastrar
materiais, fornecedores, contas, previso de compras e aguns documentos, como: requisicéo de
materid, <olicitacdo de materid, comunicado de recebimento, devolugdo de materias ao
fornecedor e correcdo de estoque fisico. Esse dstema faz pate de um maior, que integra
contabilidade (quatrocentos e doze (412) Kloc), e folha de pagamento (cinglenta e dois (52)
Kloc). O engenheiro de software responsavel pela aplicacdo dos padrfes ndo conhecia e nem
teve contato com os mantenedores e/ou desenvolvedores do sistema

O objetivo desse estudo de caso € comprovar a viabilidade de aplicacéo da FAPRE/OO de
forma evolutiva e complementar. Como evolutiva entende-se que 0 processo de aplicacéo € em
ciclos, isto é padrBes que sdo aplicados no inicio do processo, podem ser utilizados novamente,
em fases poderiores a fim de devar o entendimento e refinar os produtos obtidos. Como
complementar entende-se que os padrdes podem interagir entre § para a resolucdo de um
problema.

Os resultados obtidos com a aplicagdo da FaPRE/OO durante o processo de engenharia
reversa sdo comentados a seguir. Cada sub-se¢ao representa a aplicacéo de um dos seus padrdes.

3.1. Padrao: Iniciar Analise dos Dados

Deve-se andlisar os arquivos de dados do sstema e verificar os papéis que esses arquivos
representam no mundo red. Geramente um arquivo de dados possui um papd principd e pode
OU nd0 possuir papéis secundérios. Cada um desses papéis deve ser considerado como uma
entidade no DER (Diagrama Entidade Relacionamentos).

A identificacdo de papéis nos arquivos de dados do sstema faz com que se obtenha um
DER sam inconsséncias e redundancias, diminando, asim, essa preocupacdo em fases
posteriores. Esse tipo de identificacdo foi utilizado, pois se objetiva avdiar a viabilidade da
FaPRE/OO para a segunda aternativa apresentada pela Figura 1.

Se a primeira dternativa tivesse sdo escolhida, o produto seria um DER representando o
sstema legado procedimenta como de € A identificacdo das possives classes (pseudo-classes),
seria redizada pelo padrdo Tratar Anomdias e Andisar Hierarquias. Quando da adocdo da
segunda dternativa, antecipam-se as consolidagdes que devem ocorrer posteriormente. Dessa
forma, pode-se dizer que os padrBes Iniciar Andise dos Dados, Tratar Anomdias e Andisar
Hierarquias podem ser utilizados de forma complementar durante a andise dos dados.

A Uutilizacdo desse padréo para 0 dominio da linguagem COBOL consderou as trés
formas de utilizagdo do comando REDEFI NES identificadas por Camargo [5]. A primera forma
sugere a criagdo de um relacionamento de agregacéo cuja cardindidade do relacionamento € 1
para 1, pois, ocorre redefinicdo de um item dementar para um item de grupo smples. A segunda
ocorre quando determinado item de grupo é redefinido em outro, fornecendo smilaridade a0

! Trechos de cédigo que séo copiados para dentro de um programa durante a compilago.

comportamento de hierarquias de generdizacéo/especidizacdo da orientacdo a objetos. A
terceira forma ocorre quando um item de grupo de nivel gera € redefinido em outro, sendo
assim, o registro possui dois comportamentos bem digtintos e representa dois papéis bem
digintos no mundo real. A Figura 3 agpresenta um exemplo da segunda forma. O trecho de
cédigo mostra que o0 arquivo de dados COBOL possui como papel principal empregado, e como
papéis secund&ios. secretaria, operador e engenheiro. Além disso, um relacionamento de
heranca pode ser identificado analisando-se que os itens dementares NRO- EMP, SALARI O e
ENDERECO sfo gerais e comuns a todos papéi's que o arquivo venha a assumir.
As tabel as obtidas como produto da aplicagéo desse padréo séo:

a) Tabda 1, com trés colunas, mostra na primeira coluna os programas que foram
condderados durante a engenharia reversa; na segunda os arquivos de dados utilizados
por cada programa e, naterceira, o papel principa de cada arquivo.

b) Tabda 2, modra os papéis secundarios que alguns arquivos possuem. Notase um
nimero elevado de papéis secundarios para o arquivo FDES030. 1sso ocorre porgque esse
arquivo armazena dados de véarios documentos e todos ees compartilham dados comuns.
Para cada papel identificado uma entidade deve ser criadano DER.

01 EMPREGADO .
02 NRO-EMP PIC X(5). - Campos sem redefinicio.
02 SALARIO PIC 9(4). - Comuns a todas as formas que
02 ENDERECO PIC X(30). 0 registro possa assumir
02 SECRETARI A.

03 FORMACAO PI C X(10).
0(2) 30';5RNO REDEFINE: Csf((: 1EO)I ARLA. B I Itens de grupo redefinidos.
02 ENGENHEI RO REDEFINES OPERADCR Secretiria O“h"l_’er ador ou
03 ESPECI ALI DADE PI C X(10) engenheiro.

Figura 3 — Segunda Forma de Utilizacdo do Comando REDEFINES

Durante a andlise, pode-se identificar arquivos de dados cujo papd € reacionado a
implementacdo e que ndo devem ser consderados como entidades do DER. Exemplos desse tipo
de arquivos so agueles que lidam com impressdo de relatorios e aexibicéo de telas.

Tabela 1 — Papéis Principais Tabela 2 — Papéis Secundérios

Programas | Arquivos Papel Principal Arquivos Papéis Secundarios

ESFO2010 | FDES010 Material FDESO010 Fornecimento
FDES020 Conta Estoque
FDSP020 Fornecedor Almoxarifado
FPES2010 Implementacéo

ESFO3000 | FDES010 Material FDES030 Estoque
FDES030 Movimento Almoxarifado
FDES033 Movimento Requisicdo de material
FDSA001 Conta de aplicagdo Devolugao de material
FDSA002 Conta de aplicacéo Devolucéo de material ao fornecedor
FDSPO010 Compra Transferéncia entre estoques
FDSP020 Fornecedor Solicitacdo de material
FPES3000 Implementacéo Correcédo de estoque fisico

Comunicado de recebimento tipo 1

Por meio de inspegbes ao codigo notourse que, uma das decisdes de projeto do
engenheiro de software responsavel pelo desenvolvimento do sstema, foi a de ndo criar arquivos
Sseparados para estoque e amoxarifado. A solugdo foi adicionar campos representando essa
funciondidade em todos os arquivos do sstema como parte da chave primaria. Porém, durante o
processo de engenharia reversa com a aplicacdo da FaPRE/OO no sistema COBOL optou-se por

criar as entidades Estoque e Almoxarifado, por representarem diferentes papéis no dominio de
aplicacd do sgema. A identificacdo dos programas e arquivos de dados foi redizada com o
auxilio computaciond da ferramenta Legacy Aid [8].

3.2. Padrao: Definir Chaves

O padrdo sugere a criacéo de apenas uma tabela, porém, optou-se por criar duas, uma
para as chaves primérias e outras para as estrangeiras. Uma coluna adiciona, com mnemonicos
mais significativos para as chaves, guiou essa deciséo.

Deve-se, primeiramente, andisar as entidades que foram geradas a partir da Tabela 1, que
mostra 0s papés principais. Para cada uma ddas deve-se inspecionar 0 FD (File Description)
gue a gerou e, em seguida, a | NPUT- OUTPUT SECTI ON do programa correspondente. 1sso
deve ser feito porque programas COBOL possuem, nessa secéo, a declaracéo RECORD KEY que
indica a chave primé&ia do arquivo de dados. Dessa forma, identificarse a chave priméia para o
pape principa do arquivo.

ApGs a andise de todas as entidades geradas, através de papéis principals, deve-se iniciar
a andise das entidades geradas por papéis secundarios. A identificacdo das chaves primérias para
essas entidades consiste em andlisar o trecho de cddigo da FD responsavel pelo papd secundério
e inferir uma chave primaia com base na sua funciondidade em relacdo ao pape principd que o
arquivo possui.

A Figura 4 apresenta um trecho de codigo do FDES030, um FD que possui como pape
principad o movimento de materiais e, como papés secundarios, outros documentos apresentados
pela Tabela 2, entre eles, Requisicdo ce Materid, delimitado com linha tracgjada na Figura 4. A
chave priméria para o papd principd € o item de grupo ESO030CHAVE- PRI NCI PAL, que pode
s identificado andisando-se a | NPUT- OQUTPUT SECTI ON para esse FD. Porém, identificar
uma chave primaia para o item de grupo ES030- RM que representa um papel secundério desse
arquivo, necessita de andise adiciond. Esse papd corresponde a uma requisicdo de materid que
0 exige se 0 papd principa exidir. 10 €, pode-se inferir que uma requisicéo de materid € uma
entidade fraca que depende da exigéncia da entidade Movimento, representada pelo pape
principal do arquivo. Sendo assm, a chave primé&ia da entidade gerada pelo papel secundario € a
chave priméaria da entidade gerada pelo papd principa do arquivo.

05 ESO30CHAVE- PRI NCI PAL.
10 ES030CHAVE- SECUNDARI A.
15 ES030ESTOQUE PIC 9(01).
15 ESO30ALMOXARI FADO PIC 9(02). —
15 ES030LOTE PIC 9(02). Requisicao
15 ES030TI PODODOC PIC 9(02). de Material
15 ES030NUMERODOC PIC 9(04). € um papel
10 ES030SEQUENDOC PIC 9(02). secundario
05 ESO30MATERI AL- COD. para do
10 ESO30MATERI AL PIC 9(05). FDES030
10 ESO30MATERI AL- DV PIC 9(01).
05 "ESO30-RM T T T TTTTTTTTTTTTTTTTeTTT H
' 10 ES030- R QTDEREQUI S PIC 9(06) V99!
! 10 ES030- RM QTDEFORNEC PIC 9(06) Voo
! 10 ES030- RM FI LLERL PIC X(04). |
' 10 ES030- RM APLI CACAO PIC X(15). !
| 10 ES030- RV VALOR-SI STEMA PIC 9(12) V99! —
| 10 ES030- RV DEM-NAG-ATEND PIC X(01). ! Redefinicao
| 10 ESO30-RM-EILLERZ _______ PLC_ X(41).
05 ES030-DM REDEFINES ESO -RM.

Figura 4 — Identilicacao de Chaves Primarias

Porém, outros fatores também podem influenciar na identificacdo da chave primaia para
uma entidade gerada por meio de um pape secundario. Optourse por definir como chave
prim&ia da entidade Requi sicaoMaterial os itens dementares ESO30LOTE,
ES030TI PODODOC e ESO030NUMERODOC. Nem todos os itens eementares da chave priméia
do papd principal foram utilizados para definir a chave do pape secund&io. Isso ocorre devido
a0 conhecimento do engenheiro de software sobre 0 sistema que esta sendo andlisado. Inspegdes
no oodigp e a andise da funciondidade mostralam que ESO30ESTOQUE e
ESO030ALMOXARI FADO s itens eementares existentes em todos 0s outros arquivos. Essa
decisdo de projeto foi utilizada para que néo fossem criados arquivos que representassem
funciondidades. Sendo assm, como o DER criado conterd uma entidade Est oque e uma
Al moxar i f ado, esses itens de dados podem ser desconsiderados. A Ultima linha do trecho de
cédigo fonte apresentado pela Figura 4 mostra a redefinicdo do item de grupo que representa a
requisico do materid. Desse ponto em diante, um novo pape secundario € identificado.

O primeiro produto obtido da aplicacéo desse padrdo € a Tabela 3. A primera coluna
exibe o nome das entidades identificadas, a segunda exibe as chaves primarias com a mesma
nomenclatura do codigo fonte e, a terceira, gpresenta as chaves com a nomenclatura adterada para
mnemonicos mais Sgnificativos.

Tabela 3 - Tabela de Chaves Primarias

Entidades Chaves Primarias Mnemomicos Significativos
Material ESO10CHAVE codigo
Produto Acabado ESO18CHAVE codigo
PrevisaoCompra ESO80CHAVE codigo
Fornecimento ESO010CHAVE + SPO20CHAVE cod_material + cod_fornecedor
Movimento COD_ESTOQUE + COD_ALMOXARIFADO + cod_estoque + cod_almoxarifado +

NUMERO + TIPO_DOC + NUMERO _DOC + LOTE numero + lote

RequisicaoMaterial TIPO_DOC + NUMERO _DOC + LOTE tipo_doc + numero_doc + lote

O processo de identificagdo de chaves edrangeiras inicia-se com a andise de programas
gue contenham dois arquivos, depois trés e assm sucessvamente. O fato de um programa lidar
com mais de um arquivo € um forte indicio de relacionamento entre eles.

05 ESO10MATERI AL-CLASSE PIC X(02).
05 ESO10MATERI AL- DESCR PIC X(50).
05 ESO010MATERI AL- UN PIC X(02).
05 ES010CLASSI FI - CONTA. FDES010 (Material)
10 ESO10CONTA3 PIC 9(02). Campos que representem a
10 ESO10CONTA4 PIC 9(02). <« chave do arquivo de
10 ESO10CONTAS PIC 9(04). Contas
05 ESO10MATERI AL- LOCAL.
10 ESO010DEPCSI TO PIC X(02).
10 ESO10PRATELEI RA PIC X(03). (a)
05 ES020CHAVE.
10 ES020ESTOQUE PIC 9(01).
10 ESO020ALMOXARI FADO PIC 9(02). FDES020 (Conta)
10 ESO20CONTA. Chave do arquivo de
15 ES020CCNTA3 PIC 9(02). Contas
15 ES020CONTA4 PIC 9(02). & |
15 ESO020CONTAS PIC 9(04).
05 ES020CONTA- DESCR PIC X(30).
05 ES020CONTA- DBDI A PIC 9(11)V99. (b)

Figura 5 — Identificacio de Chaves Estrangeiras

Deve-se iniciar 0 processo de andlise para 0s papéis principais. Por meio da Tabea 1
pode-s= identificar dguns dos programas que lidam com mas de um aquivo. O programa
ESFO2010, responsavel pelo cadastro de materiais, tém trés arquivos. associados FDESO10,
FDES020 e FDSP020, que possuem como papel principal “materid”, “conta’ e “fornecedor”,
repectivamente. Andisando-se 0 codigo fonte do FDES010 nota-se a presenca de campos que
representam, semanticamente, a chave priméia do arquivo de contas, FDES020. A Figura 5
apresenta, na parte superior rotulada com a letra (a), o trecho de codigo do FDES010 €, na parte
inferior rotulada com (b), o trecho de cddigo do FDES020. Nota-se que ro FDES010, cujo papel
principd é materid, ha campos que provavelmente representam semanticamente a chave do
arquivo FDESO20, cujo pape principd € contas. Para certificar-se disso deve-se verificar se 0
tipo e 0 tamanho dos campos s8 0s mesmos. Além disso, também se deve andisar 0 codigo
fonte a fim de veificar se, em determinado ponto do fluxo de execucdo, ha uma atribuicdo dos
dados que representam a chave primé&ia do arquivo de contas para os campos do arquivo de
material que representam a chave estrangeira

A andise do fluxo de execucdo foi redizada com o auxilio computacional de um recurso
da ferramenta Legacy Aid [8] denominado code Walkthrough. ESse recurso permite smular a
execucdo do cddigo e, parddamente, visudizar o grafo de fluxo de controle a medida que o
controle passa de n0 para nd. Esse recurso permite, também, que a interacdo do usu&io
respondendo sim/ndo em condigdes de salegéo.

Tendo redizado o processo de identificacdo de chaves estrangeiras para 0s papéis
principais, deve-se, em seguida, andisar as entidades que foram geradas por meio de papés
secundéarios. Como citado anteriormente, alguns papéis secundarios dardo origem a entidades
fracas. Sendo assim, para esses tipos de papéis, 0 processo de identificacdo de chaves
edrangeiras ja esta pronto. Porém, vae a pena revisar os trechos de codigo responsdvels pela
geracdo de papéis secundarios, para verificar possiveis chaves edtrangeiras escondidas sob
muitas deci sdes de projeto.

A Tabela 4 representa parte do segundo produto obtido da aplicacdo do padrédo Definir
Chaves para 0 sstema de controle de estoque COBOL. A primera coluna tem o nome das
entidades, a segunda, as chaves estrangeiras com a mesma nomenclatura do codigo fonte e a
tercaira, as chaves estrangeiras dteradas para mnemaonicos mais sgnificativos.

Tabela 4 — Tabela de Chaves Estrangeiras

Entidades Chaves Estrangeiras Mneménicos Significativos
Material ESO10CLASSIF-CONTA cod_conta
ESO010NUMEROFORN cod_fornecedor
Produto Acabado ES018CDMATERIAL cod_material
Compra SPO10PREVISAO-COMPRAS cod_previsaoCompras
SPO1OMATERIAL cod_material
Fornecedor
PrevisaoCompra ESO8OMATERIAL cod_material
RequisicaoRessuprimento SPO50-MATERIAL cod_material
SPO50-PREVISAOCOMPRAS cod_previsaoCompras
Movimento ESO30MATERIAL cod_material
RequisicaoM aterial ESO30NUMERODOC numero_documento
ESO30MATERIAL cod_material

3.3. Padrao: Definir Relacionamentos

Com base na tabela de chaves estrangeiras pode-se desenvolver o Diagrama Entidade
Rdacionamento (DER - Figura 6) com suas entidades e respectivos relacionamentos. A
cardindidade dos relacionamentos é obtida verificando o nimero de repeticbes de uma chave

edrangeira dentro de um arquivo de dados. O DER ndo representa a edtrutura de arquivos
exigentes no ssema legado. Durante a aplicacdo do primeiro padréo jA se preocupou em
resolver inconsisténcias de projeto representadas no codigo fonte. Dessa forma, dimina-se carga
de responsabilidade dos padrdes poderiores. Outra vantagem disso é utilizar a segunda
dternativa de redizacdo da engenharia reversa, apresentada pela Figura 1.

]0..n
1 n . 1 0..n Produto
Contas Material Acabado
0..n
i e =
Requisicao
armazena fornecimento 0.n| Ressuprimento
0..n
0..n

0.n] 0.n
Almoxarifado
Fornecedores Compra 1 PrevisaoCompras
pertence_e
movimenta
Estoque
Movimento
A

Solicitacao Correcao DevolucaoMaterial Comunicado Comunicado Devolucao

Material Lancamento Fornecedor Recebimentol Recebimento2 Material

Requisicao Transferencia CorrecaoEstoque
Material Estoques Fisico

Figura 6 — Diagrama Entidade Relacionamento

0.*
possui contém
Contas |1 1..* | Material |1 ProdutoAcabado
requisita

RequisicaoRessuprimento

[possul
.. Compra | PrevisaoGompras Modificagéo dos
- — Y P —— nomes dos
Criacéo de classe de rel acionamentos
— f I dentificagdo associagdo para para mnemaoni cos
/L de Agregactes relacionamentos n paran mais significativos

——
1.
Movimento
Q

SolicitacaoMaterial ”CorrecaoLancamento || DevolucaoMateriaIl | ComunicadoRecebimentol ” ComunicadoRecebimento2 ” DevolucaMaterial
1L 1 I

RequisicaoMateriall | TransferenciaEstoques | | CorrecaoEstoqueFisico |
| I . |

Figura 7 — Modelo de Anilise da Solu¢do Atual

3.4. Padrao: Criar Visao Orientada a Objetos dos Dados

Deve-s2 mapear cada entidade identificada anteriormente para uma pseudo-classe do
Modelo de Andise da Solucdo Atua (MASA), como proposto pelo méodo de engenharia
reversa Fuson/RE [9]. Durante 0 mapeamento, deve-se identificar possivels relacionamentos de
agregacéo e, também, criar classes de associacdo para relacionamentos com cardinalidade npara
n. Além disso, também é aconsdhéavel, sempre que possivel, dterar o nome dos relacionamentos
para mnemonicos mais Sgnificativos

A Figura 7 apresenta o produto obtido da aplicacdo desse padrdo. Utilizando a segunda
dternativa de engenharia reversa mostrada pela Figura 1, esse pseudo-modelo de classes se
goroxima do modelo find. 1ss0 ocorre porque, no processo de resolugdo, as inconsisténcias e
redundancias exisentes no codigo fonte procedimental sdo distribuidas a0 longo de todo o
processo de engenharia reversa e ndo sdo concentradas em poucas fases. A concentracéo de
esforgos em agumas fases de um processo aumenta a probabilidade dos engenheiros de software
se desmotivarem e, consequentemente, redizarem tarefas mal feitas.

3.5. Padrao: Obter Cenarios

Esse padréo foi aplicado como sugerido pea Familia, ndo havendo necessidade de
indancié-lo para a linguagem COBOL, pois a maioria dos sstemas legados apresenta interfaces
com menus e submenus. A Tabela 5 € parte do produto obtido da andise de interfaces do sstema

legado COBOL.
Tabela 5 - Tabela de Cenarios do Sistema
Cenarios SubOpc¢odes do Menu Principal
(Opc¢oes do Menu Principal)
Atualizacéo de Cadastros Materiais
Compras
Previséo de Compras
Fornecedores
Consultas Cadastro de Materiais

Arquivo do Movimento
Cadastro de Fornecedores
Cadastro de Contas
Cadastro de Compras
Cadastro de Especificacbes

3.6. Padrao: Construir Diagramas de Use Case

Esse padréo, como o anterior, foi aplicado como sugerido pela Familia nd&o havendo
necessdade de especidiza-lo para a linguagem COBOL. Ele utiliza, de forma complementar, o
padrdo Iniciar Andise dos Dados, pois, os diagramas devem ser eaborados levando em
consideracdo os papé's que sdo manipulados pelo sstema.

<<uses>>
atualizarRequisicaoMaterial

dados movimento >©

atualizarMovimentos

A

atorGerente

Figura 8 — Diagrama de Use Case

A Figura 8 gpresenta um diagrama de Use Cases, epecificado em UML, que demondtra a
funciondidade do sstema referente & movimentacdo dos materiais. Apesar do comportamento
do Use Case audizarMovimentos ser composto por varios outros Use Cases, esse diagrama
goresenta apenas um, 0 audizarRequiscaoMaterid. O diagrama mostra que o aor Gerente
interage com 0 Use Case audizarMovimento enviando a ele dados da movimentacdo do
materid. Esse, por sua vez, invoca 0 Use Case audizarRequiscaoMaterid a fim de manipular
dados da requisicéo.

3.7. Padrio: Elaborar a Descri¢cao dos Use Cases

A descricéo de cada Use Case identificado no padrdo Congruir Diagramas de Use Case
deve ser elaborada analisando-se 0 codigo fonte correspondente aele.

Esse padréo também utiliza o padrdo Iniciar Andise de Dados complementarmente, pois,
durante a descricgo de um Use Case deve-se condderar os papéis que foram identificados
anteriormente.

3.8. Padrao: Tratar Anomalias

Esse padrdo consdera a construcdo de uma tabela que solucione as anomdias
encontradas no codigo fonte procedimental. A eaboracdo dessa tabela, denominada Detahes de
Implementacdo, leva em consderacdo a descricdo dos Use Cases obtida no padréo Elaborar a
Descricdo dos Use Cases. Deve-se andlisar se a descricdo do Use Case faz acesso a mais de uma
entidade (papel) no DER, pois se fizer, o principio de encapsulamento da orientacdo a objetos
esta sendo violado e essa anomdia deve ser solucionada. A classficagdo de anomadias utilizada €
amesma definida pelo méodo Fuson/RE.

Como o0 ddgema do edudo de caso foi desenvolvido utilizando o paradigma
procedimental, é comum a exigéncia de sentencas que fazem acesso a dados de diferentes
papéis. A Figura 9 apresenta um trecho de codigo de um parégrafo que quebra o principio de
encepsulamento a0 ecrever (gravar) dados em dois arquivos digtintos. O pardgrafo de nome
10- 00- | NCLUSAO uutiliza o comando MOVE para mover o conteldo da varidvel REG10-
MATCOD parao campo ESO10MATERI AL, do arquivo de dados FDES010- FD, e o conteido da
vaidved REGL0- FORNECEDOR para o campo SP020FORNECEDOR, do arquivo de dados
FDSP020- FD. O Use Case correspondente a esse paragrafo sera categorizado como C+
(FDES010- FD/ FDSP020- FD).

E provave que um Use Case dé origem a tantos métodos quantos forem seus acessos a
entidades diferentes, isto € um Use Case que faz acesso a trés arquivos sera transformado no
minimo em trés méodos um para cada entidade a que tem acesso. Os nomes dos novos métodos
devem utilizar mnemanicos Sgnificativos e seguirem a padronizagéo da UML [15].

10-00-INCLUSAO
. Nome do Paragrafo I

B

MOVE REGLO- MATCOD TO| ESO10MATERIAL)
PERFCRM 40- 00- LE- MATERTATS ~------ - €=====.=Q Pseudo-atributos de I

pseudo-classes diferentes

Figura 9 — Paragrafo Andomalo

A Tabela 6 gpresenta parte do produto obtido da aplicacdo desse padrdo. A primera linha
da tabela, destacada em negrito, mostra que 0 Use Case AtudizarMateriais, correspondente ao
programa ESFO2010, possui acesso de leitura (O) a duas entidades e de escrita (C) a uma Unica
entidade. Sendo assm, o codigo fonte correspondente a esse Use Case deve ser andisado a fim
de solucionar a anomdia encontrada. A solucdo consite em criar trés méodos, com
funciondidades digtintas de leitura e gravacao e, coloca 10s em suas classes correspondentes.

Vale ressdtar que esse padréo foi utilizado de forma complementar pelo padréo Iniciar
Andlise de Dados, pois aidentificacdo das classes parte dagui.

Tabela 6 — Tabela Detalhes de Implementacio

Use Case Programas Pseudo-Classes Tipo de Possiveis Métodos Pseudo-Classes
Anomalia Revisadas
atualizarMateriais | ESFO2010 Material c incluir Material
Contas 0 selecionarConta Conta
Fornecedor 0 selecionarFornecedor | Fornecedor
AtualizarRequisicaol ESFO3000 Material o] selecionarMaterial Material
Material M ovimento o incluir Movimento
RequisicaoMaterial | ¢ incluir Requisicao
Material
atualizarConta ESFO2020 Contas c incluir Conta

3.9. Padrao: Definir as Classes

A daboracéo do diagrama de classes do sstema possui como base 0 MASA obtido no
padréo Criar Visdo Orientada a Objetos dos Dados. A regra geral € que cada pseudo-classe no

MASA sga mapeada para uma classe no Modelo de Andlise do Sistema (Figura 10).

Novas classes
identificadas no

sistema legado

formecimento

RequisicaoRessuprimento

Compra | possui

N 0..*
Almoxarifado -

PrevisaoCompras

1.*
Fornecedores 1
p; Movimento
1 /
Estoque /
L
fornece
SolicitacaoMaterial CorrecaolLancamento DevolucaoMaterial ComunicadoRecebimentol ComunicadoRecebimento2 DevolucaMaterial
RequisicaoMaterial TransferenciaEstoques CorrecaoEstoqueFisico

Figura 10 - MAS (Modelo de Anélise do Sistema)

Reacionamentos que envolvem entidades fracas determinam que a exigéncia dessa
entidade depende da existéncia de uma entidade forte relacionada, ito € o tempo de vida da
entidade fraca depende do tempo de vida da entidade forte. Sendo assim, ha uma smilaridade
semantica com relacionamentos de agregacdo da orientacdo a objetos, também conhecidos como
Todo-Parte. As entidades que foram geradas por meio de papéis secund&ios geramente sfo
fracas e, sendo assm, devem fazer parte de um relacionamento de agregacéo no diagrama de
classes do sstema

O MAS apresentado na Figura 10, foi obtido em duas etgpas. Na primeira, fezse um
mapeamento direto das classes do MASA. Posteriormente, observou-se que, como o0 sistema foi
desenvolvido sem a utilizacdo de técnicas de projeto adequadas, adgumas classes e
relacionamentos poderiam ser melhorados. Sendo assm, iniciorse um processo de refinamento
gue a preocupacdo foi a de tornar 0 modelo de classes 0 mais orientado a objetos possivel, sem
redundancias ou inconssténcias. Esse processo de refinamentos consdera a utilizagdo evolutiva
dos padroes. Definir Atributos, Definir Métodos e Andisar Hierarquias, descritos a seguir.

As classes representadas em cinza na Figura 10 foram identificadas por meio da aplicacéo
deste padrdo. Nota-se que houve pouca ateracdo nas classes ja existentes no modelo.

3.10. Padrao: Definir Atributos

Deve-se andisar os trechos de codigo dos papéis principais dos arquivos de dados a fim
de obter os atributos das classes existentes no MAS. A identificagcdo dos atributos ndo apresenta
muitas dificuldades, pois, como os papés ja foram identificados, o esforco concentra-se na
identificacdo dos trechos de codigos geradores dos papéis. Tendo feito identificacdo, obter
ositens eementares, que representam os atributos, € ago relativamente fécil.

3.11. Padrao: Definir Métodos

Representar os métodos relacionados na coluna Possiveis Méodos da Tabela Detalhe de
Implementagdo (Tabela 6) nas respectivas classes especificadas na coluna PseudoClasses da
mesma tabela. Assm, obtémse os métodos das classes no Diagrama de Classes por meio da
Descricdo do Use Case correspondente.

3.12. Padrao: Analisar Hierarquias de Heranca

Sisemas legados implementados em COBOL, freqlentemente, gpresentam a utilizagéo
do comando REDEFI NES. Esse comando, como ja citado anteriormente, confere a um registro
COBOL comportamentos distintos. Camargo e Penteado [5] identificaram trés dterndivas de
utilizacdo do omando REDEFI NES e como podem se tratadas durante 0 mapeamento para um
modelo de classes orientado a objetos. Na segunda aternativa, determinados campos do registro
sempre s2o0 utilizados para qualquer uma das formas assumidas por €e, enquanto que 0s outros,
que sfo redefinigles, sGo utilizados gpenas em algumas. Esse comportamento que 0 comando
REDEFI NES confere a um regisro COBOL agoroxima-se do conceito de
generdizacdo/especializacd de orientacdo a objetos, em que Vvéa&ios tipos de objetos
compartilham informagBes comuns. A Figura 3 apresenta um trecho de codigo que mostra essa
segunda dternativa de REDEFI NES. Esse tipo de utilizacd do comando REDEFI NES deve ser
tratado como sugere a Figura 11. O nivel 01 do FD da origem a classe Todo, tendo como
aributos os campos comuns. Ja os itens de grupo tornar-se-do classes Parte. A mulltiplicidade
deve sr 0.1 em relacéo & classes Parte, representando que elas podem ou ndo serem utilizadas.

Como o processo de engenharia reversa descrito aqui utiliza a segunda dterndiva
gpresentada pela Figura 1, pouco trabaho fol gasto nesse cluster para solucionar problemas de
redundéncias e inconssténcias, pois esses ja foram distribuidos a0 longo do processo. Os
problemas encontrados nesta fase decorrem de decisdes de projeto mad formuladas que foram
feitas pelo engenheiro de software responsavel pelaimplementacdo do sisterna legado.

O MAS obtido apos a fase de refinamentos possui poucas diferencas em relagdo ao
MASA obtido no padréo Criar Visdo Orientada a Objetos dos Dados. Isso ocorre porque durante
a gplicacdo do padréo Iniciar Andise dos Dados cuidou-se da identificacdo de papéis, que sfo
representagtes do mundo red que o sstema manipula. Os refinamentos redlizados restringem-se
a diminacdo de relacionamentos redundantes, identificacdo de outros papéis obscuros no cddigo
fonte, devido a muitas decisdes de projeto, e dteracdo de nomes para mnemonicos mas
ggnificativos.

EMPREGADO

N
Classe Todo ? |[BBnumero candidato a
— & BHsALARIO generalizagdo/
%ENDERECO especializagédo

1
1 .
Classes Parte || SECRETARIA OPERADOR ENGENHEIRO
: %FORMACAO I%TURNO Q)ESPECIALIDADE
&

1

1

1

1

Figura 11 — Criacéo de Relacionamentos de Heranca a partir de REDEFI NES

Deve-se ressdtar que esse padréo foi utilizado de forma complementar durante a
gplicacdo do padrdo Iniciar Andise de Dados. Isso ocorre, pois, quando se utiliza a segunda
dternativa de engenharia reversa, a preocupacdo com relacionamentos de heranca ja é tratada
desde a aplicacéo dos primeiros padrfes.

3.13. Padrio: Construir Diagramas de Seqiiéncia

Deve-se eaborar os diagramas de sequéncia a partir da descricdo dos Use Cases. A
Figura 12 apresenta o diagrama de sequéncia para 0 Use Case AtudizarRequiscaoMaerid
mostrado na Figura 8. A construcéo desse diagrama néo apresenta complicagOes, ja que se baseia
na descricdo dos Use Cases jaidentificados.

4. Consideracoes Finais

Este trabalho mostrou a aplicacdo da FaPRE/OO [14] para processos de engenharia
reversa orientada a objetos de Sgemas legados procedimentais de forma evolutiva e
complementar. A aplicabilidade da FaPRE/OO usando a segunda dternativa para 0 processo de
engenharia reversa orientada a objetos (ver Figura 1) pdde ser plenamente constatada. Nesse
processo, papéls sfo identificados logo no seu inicio. Sendo assim, ndo se obtém um DER que
represente as estruturas de dados do sistema legado, mas um que j4 se aproxima bastante do
modelo de andlise orientado a objetos fina. Nessa dternativa, aguns padrfes sfo utilizados de
forma a interagir para a resolucdo de um problema e de modo evolutivo, destacando o poder da
FaPRE/OO e distribuindo as consolidagdes ao longo de todo o processo.

A Tabela 7 modra os padrdes que foram utilizados de forma complementar para a
realizacdo do processo de engenharia reversa de sistemas COBOL gpresentados neste trabalho.

X

atorGerente :
atorGerente

Interface : MovimentoMateriais : RequisicaoMaterial mil : Material

1 1
| dados Documentd

1 1
DI MovimentoMateriais()

TocalizarDocumemo()

I

L]
dados Requisicaq

RequisicaoMaterial()

localizarRequisicao() /ITl
/L_l [para cada item requjisicao]

H Material()
1

T localizar()
1
caddstrar() L
Mensagem ! i
]
ih ;
L |
]]
1 1
]]
]]
| |

Figura 12 — Diagrama de Seqiiéncia
Tabela 7— Padrées Complementares
Cluster Padraoes Padrdes complementares
Modelar os Dados do Legado Iniciar Analise dos Dados Tratar Anomalias

Analisar Hierarquias

Modelar a Funcionalidade do Sistema | Construir Diagramas de Use Cases | Iniciar Analise dos Dados
Elaborar a Descri¢éo dos Use Cases

Modelar o Sistema Orientado a Objetos | Definir as Classes Obter Viséo Orientada a Objetos dos Dados

O padrdo Iniciar Andlise dos Dados utiliza, complementarmente, os padrdes Tratar
Anomdias e Andisar Hierarquias. Isso ocorre porque durante a identificacdo dos papéis é
preciso andisar as hierarquias (itens de grupo) existentes em arquivos de dados COBOL. O
padréo Tratar Anomadias é utilizado de forma complementar porque é durante a sua aplicacéo,
que as pseudo-classes (papéis) st identificadas. Os padrdes Congtruir Diagramas de Use Cases
e Elaborar a Descricdo dos Use Cases Utilizam, complementarmente, o padréo Iniciar Andise
dos Dados porque tanto a identificacdo, quanto a descricdo dos Use Cases, S80 baseadas nos
papéis que foram identificados nesse padrdo. O padrdo Definir Classes utiliza
complementarmente o padréo Obter Visdo Orientada a Objetos dos Dados, pois a definicéo das
classes do modelo find deve considerar o modelo que mais se gproxima dele, que €0 MASA.

As duas dternativas apresentadas na Figura 1 fornecem diretrizes bem definidas para que
engenheiros de software possam redizar com seguranca 0 processo de engenharia reversa. O
engenheiro de software familiarizado com Sstemas procedimentais tem, na FaPRE/OO [14],
diretriz segura para que 0 processo de engenharia reversa sga passo a passo redizado e validado,
primera dternativa da Figura 1. Caso 0 engenheiro de software esdga familiaizado com

linguagens orientadas a objetos a dternativa 2 permite que, no inicio do processo de engenharia
reversa, pea aplicacdo de forma complementar e evolutiva da FaPRE/OO, um modeo orientado
aobjetos do sstema legado procedimenta sgja obtido com facilidade.

Referéncias Bibliograficas

[1]
[2]

[3]

[4]

[5]
[6]
[7]

[8]
(9

[10]

[11]

[12]

[13]

[14]

[15]

Braga, R. T. V., “Padroes de Software a partir da Engenharia Reversa de Sistemas Legados”,
Sao Carlos-SP, 1998. Dissertagdo de Mestrado. Universidade de S&o Paulo.

Cagnin, M.1.; “Avaliagdo das vantagens quanto afacilidade de manutencéo e expansdo de sistemas
legados sujeitos a engenharia reversa e a reengenharia’, SdoCarlos — SP, 1999. Dissertacdo de
Mestrado. Universidade Federal de S&o Carlos.

Cagnin, M. |.; Penteado, R.; Masiero, P.C; “Reengenharia com o uso de Padrdes de Projeto”.
Floriandpolis - Santa Catarina, 1999a. In: Simpdésio Brasileiro de Engenharia de Software,
SBES99, 13, Anais.

Camargo, V.V., “Reengenharia Orientada a Objetos de Sistemas COBOL com a utilizagdo de
Padrdes de Projeto e Servlets’, Sdo Carlos-SP, 2001. Dissertacdo de Mestrado. Universidade
Federa de Séo Carlos.

Camargo, V.V.; Penteado, R.D. Diretrizes para a Realizac8 da Engenharia Reversa de Sistemas
COBOL utilizando Fusion/RE. In Proceedings do CLEI 2001 - México, (CD-ROM).

Chikofsky, E. Reverse Engineering and Design Recovery - A Taxonomy. |EEE Software. v. 7, n. 1,
p. 13-17. 1990.

Demeyer, S.; Ducasse, S.; Nierstrasz, O., “A Pattern Language for Reverse Engineering”.
Proceedings of the 5" European Conference on Pattern Languages of Programming and Computing,
(EuroPLOP'2000), Andreas Ruping(Ed.), 2000.

Legacy Aid. www.casemaker.com. Consultado em 5/2002.

Penteado, R. A. D., “Um Método para Engenharia Reversa Orientada a Objetos”, S80 Carlos,
1996. 237 p. Tese (Doutorado em Fisica Computacional) - Ingtituto de Fisica de S&o Carlos,
Universidade de S&o Paulo.

Penteado, R., Germano, F., Masiero, P. C., “An Overall Process Based on Fusion to Reverse
Engineering Legacy code”, In: Working Conference Reverse Engineering, 3, 1996a, Monterey-
Cdifornia. Anais. IEEE, p. 179-188.

Penteado, R., Braga, R.T.V., Masiero, P.C., “Improving the Quality Legacy code by Reverse
Engineering”. 4" International Conference on Information Systems Analysis and Synthesis,
|SAS/98, pags 364-370, Julho/1998, Orlando-Florida.

Penteado, R.D.; Masiero, P.C.;Cagnin, M.I.— “An Experiment of Legacy Code Segmentation to
Improve Maintenability”. In Proceedings of 3 rd European Conference on Software Maintenance
and Reengineering. CSMR 99, Amsterdan, The Netherlands. |EEE, P91-1000, 1999.

Recchia, E. L., “Engenharia Reversa e Reengenharia Baseadas em Padrdes”, S50 Carlos-SP,
2002. Dissertacdo de Mestrado apresentada ao PPGCC - Universidade Federal de So Carlos.
Recchia E. L.; Penteado, R. — FaPRE/OO: Uma Familia de Padrdes para Reengenharia
Orientada a Objetos de Sistemas Legados Procedimentais . Artigo aser apresentado no The
Second Latin American Conference on Pattern Languages of Programming. (Sugarloaf Plop, a ser
realizado em Itaipava-RJ, agosto 2002)

Unified Moddling Language. http//www.rational.com/uml/index.jtmpl. Consultado em 03/2002.

Special Session on Writing
Patterns

WP wants to provide newcomers an opportunity to write ther firg pattern. There is no
better way to learn what patterns are dl about than by writing one yourself. After having
done the tutorial about "Software patterns’, in the first day of the Conference, the WP
sessonsam at guiding newcomers to get Started with their patterns.

The WP Session Dynamics

WP sessions were about 1 hour each. All participants were invited to read the papers in
advance, s0 that they could contribute, during the sesson, with condructive criticism
about the pattern. The patterns discussed in these sessons are beginning to emerge, O
authors have heard about the format, the adequacy of notations, what to include in the
severd pattern elements, etc.

The sesson dynamics was smilar to the Writers workshop, but the author could
interact with questions and darifications during the sesson, rather than only in the last
10 minutes.

Papers of this sesson are candidates to be submitted to future PloP's, where they will be
shepherded and workshoped.

Padrao Arquitetural para Sistemas
Computacionais de Controle Supervisorio

Centro Federal de Educagao Tecnologica do Parana
Programa de Pés-Graduagao em Eng. Elétrica e Informatica Industrial
Av. Sete de Setembro, 3165 - CEP 80.230-901 - Curitiba-PR — Brasil

Jean Marcelo Simao, Marcos Antonio Quinaia, Paulo Cézar Stadzisz
{simao, quinaia, stadzisz}@cpgei.cefetpr.br

Resumo

Padrdes de software representam uma area de pesquisa promissora em razdo dos beneficios advindos da sua
aplicacgdo, principalmente em termos de produtividade alcangada com a reutilizagdo. Em automatica, padrdes
arquiteturais podem ser aplicados a problemas recorrentes envolvendo diversos tipos de sistemas
computacionais. Uma aplicagdo complexa, para a qual padrdes arquiteturais podem trazer grande contribuigao, ¢
o Controle Supervisorio de Sistemas Automatizados de Manufatura (CS-SAM).

Este artigo propde um padrdo arquitetural para CS-SAM que atende a requisitos funcionais obtidos através da
analise por diagramas de casos de uso. Esta analise considera diagramas especificos de casos de usos cujas
recorréncias sdo apresentadas em diagramas genéricos de casos de uso, empregando como notagdo uma extenso
da UML. A concepgdo dos componentes do padréo arquitetural é realizada com um certo grau de generalizagéo,
uma vez que os requisitos funcionais genéricos estdo estabelecidos. Estes componentes do modelo sao,
primeiramente, especializados de forma a atender requisitos especificos e, subseqiientemente, generalizados para
comportar elementos recorrentes em maior grau de abstragao.

Como caracteristicas particulares, o padrio arquitetural apresenta um modelo de Monitoracdo/Comando,
concebido em uma hierarquia de classes, € um modelo de Decisdo/Coordenagdo que estabelece, em termos
genéricos, uma logica causal, na qual a avaliag@o e correlagdo de estados (observados na monitoracao) implicam
em uma seqiiéncia de ordens (ativando comandos). A logica causal no padrdo arquitetural € expressa na forma de
um Sistema Baseado em Regras genérico para CS-SAM. Cada sistema de Controle Supervisorio instanciado a
partir do padrdo arquitetural proposto apresenta grupos de objetos entendidos como agentes, constituindo-se,
portanto, em um Sistema Especialista realizado por agentes reativos e cooperativos.

Palavras-Chaves: Padrdes Arquiteturais, Reuso de Software, Controle Supervisorio, Sistemas Automatizados de
Manufatura, Sistemas Baseados em Regra, Agentes.

Abstract

Software patterns represent a promising research area in reason of the subsequent benefits of its application,
mainly in terms of productivity reached with the reuse. In automatic, architectural patterns can be applied in
recurrent problems involving diverse types of computational systems. A complex application, for which
architectural patterns can bring great contribution, is the Supervisory Control of Automated Manufacturing
Systems (SC-AMS).

Copyright (c) 2002, Jean Marcelo Simdo, Marcos Antonio Quindia, Paulo Cézar Stadzisz. Permission is granted to copy for the
SugarloafPLoP 2002 Conference. All other rights reserved.

SugarloafPLoP 2002 Proceedings

This article proposes an architectural pattern for SC-AMS that takes care of the functional requirements gotten
through the analysis by use cases diagrams. This analysis considers specific use cases diagrams whose
recurrences are presented in generic use cases diagrams, employing an UML extension as notation. The
conception of the architectural pattern components is carried out with a certain generalization degree, since that
the generic functional requirements are established. These components of the model are firstly specialized
aiming to solve specific requirements and, subsequently, they are generalized to comprise recurrent elements in a
wide abstraction degree.

As particular feature, the architectural pattern presents a model of Monitoring/Command, conceived in a class
hierarchy, and a model of Decision/Coordination that establishes, in generic terms, a causal logic in which the
evaluation and correlation of states (observed in the monitoring) implies in a sequence of orders (activating
commands). The causal logic in the architectural pattern is expressed in the form of a generic Rule Based System
for SC-AMS. Each system of Supervisory Control instantiated from the considered architectural pattern presents
groups of objects understood as agents, therefore consisting in an Expert System carried out by reactive and
cooperative agents.

Keywords: Architectural patterns, Software Reuse, Supervisory Control, Automated Manufacturing Systems,
Rule Based Systems, Agents.

1 Problema

Conceber, Instanciar e Realizar Controle Supervisério de Sistemas Automatizados de
Manufatura (CS-SAM) via padrao arquitetural de software.

2 Contexto

O enfoque deste trabalho ¢ a apresentacdo de um padrdo arquitetural para CS-SAM no
qual os elementos constituintes sao genéricos e aplicaveis a uma certa classe de fabricas.

Nesta secdo ¢ apresentada uma célula de manufatura que serve como objeto de
compreensdo do macro-contexto, bem como dos requisitos para a concepcao do padrao em
questdo. A obten¢ao dos requisitos se da pela compreensao e generalizacdo do funcionamento
desta célula e da estruturagdo e relacionamento entre os componentes que implementam o
Controle Supervisorio.

2.1 SAM/CS-SAM

Um SAM ¢ um complexo sistémico envolvendo sistemas eletromecéanicos (i.e.
equipamentos) e elementos computacionais (e.g. sistemas computacionais) integrados e
cooperativos no sentido de produzirem manufaturas. O SAM faz parte de um contexto de
automacao maior intitulado automatica. A automatica consiste de uma sinergia de elementos
de computagdo e automagao voltada para a automatizag¢do de sistemas.

A Figura 1 apresenta um exemplo de SAM simulado na ferramenta ANALYTICE II
(Koscianski et al., 1999) (Simao, 2001) que permite expressar as caracteristicas fundamentais
de sistemas industriais reais. Esta célula de manufatura ¢ composta por diversos equipamentos
e sua funcdo ¢ produzir pegas ficticias dos tipos A e B.

256

Torno Mecénico

Centro de Usinagem

S

Robd Kuka 386

Robd ER Il
Mesa 2 - posicéo 2

7

Mesa 2 - posigéo 1

Mesa 1 - posigéo 2

Mesa 1 - posigéo 1

AGV com manipulador

Mesa3 - posigéo 2 : P

Mesa3 - posicao1
Armazéi

Robd Puma 560

Figura 1 — Célula de Manufatura simulada em ANALYTICE II

Cada peca processada neste SAM possui um plano de processo gerado em um outro
sistema de decisdo chamado de Planejamento. O plano dita quais méaquinas a pega deve visitar
e quais operagdes devem ser realizadas sobre ela (Kiinzle, 1990) (Bongaerts, 1998). Omitindo
as operagdes, 0O plano de processo para pegas A ¢ {<armazém> <mesa 1> <centro-de-
usinagem> <mesa 2>} e para pecas B ¢ {<mesa3> <torno> <mesa3>}. Poderiam existir ainda
alternativas de fabricagdo no plano de processo, caso existisse um escalonador dindmico para
realizar as selecdes em tempo de execugao.

O papel do software de Controle Supervisorio ¢ fazer com que os elementos
constituintes do SAM (e.g. tornos e robos) trabalhem de forma harmoénica para realizarem a
fabricacao das pecas segundo os planos de processo (Mendes, 1995) (Miyagi, 1996). De uma
forma geral, os elementos de um SAM podem ser classificados em equipamentos, elementos
de hierarquia e elementos de processo.

Uma divisdo comum para equipamentos ¢ classifica-los como de atuagdo (realizam
operacdes sobre as pegas), de transporte (realizam o translado de pegas) e de armazenagem
(realizam o armazenamento de pegas). No exemplo proposto, o Torno e o Centro de
Usinagem sao classificados como equipamentos de atuagdo, o Puma, o Kuka e o ERIII como
de transporte e 0 Armazém e as Mesas como de Armazenagem.

Os elementos de hierarquia sdo subsistemas da planta industrial, como a estagdo de
trabalho (i.e. grupo de equipamentos), a célula de manufatura (i.e. grupo de equipamentos e
estagdes de trabalho) e a planta (i.e. grupo de equipamentos, estagdes e células). Como
exemplo, o SAM ilustrado na figura 1, poderia conter trés estacdes {<torno> <mesa3>
<ERIII>}, {<centro-de-usinagem> <mesa 2> < Kuka>} e {<armazém> <mesa 1> <Puma>}.

O SAM como um todo poderia ser considerado como uma célula composta pelas trés estacdes
e pelo equipamento de transporte <AGV>.

Esta divisao hierarquica propicia o desenvolvimento do CS-SAM em diversos niveis,
conhecido como Controle Supervisorio Hierarquico (Kiinzle, 1990). Por exemplo, um CS
Hierarquico pode determinar que algumas pecas vao para uma célula e nao para outra. Uma
vez na célula, outro nivel de coordenagdo deste CS-SAM determinard quais elementos
daquela célula processarao as pegas.

Quanto aos elementos de processo, eles englobam as pecas, os lotes de pecas e os
paletes. Um lote de pecas consiste em um grupo de pegas de um mesmo tipo que avangcam em
conjunto no sistema de manufatura. Um lote tem uma prioridade de processamento e um
plano de producdo, permitindo escopos mais amplos de controle supervisorio, como saber
qual lote deve visitar qual célula. Por fim, um palete ¢ um elemento sobre o qual uma ou mais
pecas (dependendo do modelo) sdo colocadas para fins de protecdo e padronizagdo no
transporte. Os paletes sdo recursos limitados no SAM. Dependendo da morfologia das pegas,
certos SAMs podem ndo empregar paletes, como ocorre no exemplo estudado.

3 Forgas

Em automatica, padrdes podem ser utilizados no desenvolvimento de software para
Controle Supervisoério de Sistemas Automatizados de Manufatura (CS-SAM).

Apesar dos numerosos estudos envolvendo CS-SAM (Chaar et al., 1993) (Mendes,
1995) (Miyagi, 1996) (Cury et al., 2001), nota-se uma caréncia de pesquisas especificas ao
desenvolvimento de padrdes arquiteturais para estes sistemas computacionais (Schmid, 1995).
Considerando-se a complexidade e dimensao tipica de sistemas CS-SAM, o desenvolvimento
e emprego de padrdes arquiteturais poderiam trazer uma contribui¢do importante para os
desenvolvedores.

Um padrdo de software é a materializacdo de uma solugdo genérica e reutilizavel em
diversos problemas recorrentes, baseado na observagao de experiéncias de desenvolvimentos
passados. Um padrdo pode ser aplicado a uma classe de problemas analogos, diminuindo o
esfor¢o de concepgdo (Gamma et al., 1994).

Os padroes sao alvo de varias discussoes e estudos, caracterizando-se como uma nova
area de pesquisa. Existem padrdes em varios niveis de abstracdo e extensdo, como por
exemplo: padrdes arquiteturais (Buschmann et al., 1996), de analise (Fowler, 1996), de
projeto (Gamma et al., 1994), de programacao (Coplien et Schmidt., 1995), de persisténcia e
padroes para hipertexto/hipermidia (Vlissides et al., 1996) (Martin et al., 1997). Os padrdes
podem ser utilizados em diversos dominios de aplicagdo como em telecomunicagoes, sistemas
de informagdo ¢ automatica.

Mais especificamente, um padrdo arquitetural expressa uma organiza¢do ou esquema
estrutural fundamental para sistemas de software. Este tipo de padrdo prevé um conjunto
predefinido de subsistemas, especificando suas responsabilidades e inclui regras e linhas
gerais para a organizagado e relacionamento entre eles (Buschmann et al., 1996).

O processo de concepcdo de uma arquitetura computacional genérica robusta (e.g.
padrdo arquitetural) para CS-SAM ndo ¢, entretanto, uma tarefa simples pois além de se
conceber uma estratégia de controle da fabrica, ¢ necessario generalizd-la a um conjunto de

SugarloafPLoP 2002 Proceedings

situagoes de controle de fabricas semelhantes. Algumas abordagens t€ém sido propostas na
literatura (Schmid, 1995) (Bongaerts, 1998) (Langer et al., 2000) (Simao, 2001).

4 Solucao

Este artigo tem como objetivo apresentar um padrdo arquitetural aplicavel na
construgdo de software para CS-SAM. A solugdo comeca com a analise funcional (especifica
e genérica) de uma fabrica ficticia, modelada na ferramenta de simulagio ANALYTICE II
(Koscianski et al., 1999) (Simao, 2001). A partir desta analise, sintetiza-se, na forma de um
padrdo, uma arquitetura genérica aplicavel a outros sistemas de controle semelhantes.

Em sintese, o Padrao Arquitetural proposto para CS-SAM tem como esséncia uma
arquitetura de software genérica no formato de um Sistema Genérico Baseado em Regras,
modelado sob o paradigma da Orientagdo a Objetos, onde as instancias constituem-se em
Sistemas Especialistas realizados por Agentes Computacionais reativos € cooperativos que
implementam uma técnica eficiente de inferéncia.

4.1 Notacao Utilizada

Para a proposi¢do de um padrao arquitetural para CS-SAM utiliza-se uma andlise de
requisitos funcionais seguida de uma andlise estrutural. A andlise de requisitos funcionais
primeiramente define as responsabilidades de um Controle Supervisorio para o sistema de
manufatura proposto na Figura 1 e, entdo, as generaliza para uma classe maior de CS-SAM.
Na andlise estrutural definem-se as classes para este sistema realizando-se, a seguir, a
generalizacdo do modelo.

Neste trabalho, diagramas especificos permitem definir responsabilidades e localizar
recorréncias que sdo entdo expressas em diagramas genéricos, segundo um formalismo
estabelecido. Os diagramas genéricos definem o padrdo arquitetural e a notagdo utilizada para
compd-los pode ser considerada uma extensdao da UML.

A analise de requisitos funcionais especificos baseia-se em diagramas de casos de usos
comuns e a analise de requisitos funcionais genéricos baseia-se em uma extensdo de
diagramas de casos de uso. Esta extensdo ¢ denominada Diagrama de Caso de Uso Genérico
que contém casos € subcasos de usos genéricos e atores genéricos, além das primitivas da
UML.

Atores genéricos sdo representados acrescentando-se um circulo cinza ao fundo do
icone tipico da UML, o que equivale a defini¢do de um estereotipo <<genérico>> (Figura 2).
Um ator genérico representa um ator que pode ter multiplas ocorréncias em um diagrama de
casos de uso derivado. Considerando-se, como exemplo, o ator genérico Equipamento de um
sistema CS-SAM, quando a arquitetura genérica fosse derivada para um sistema em
particular, este ator poderia ser mapeado em mais de um ator representando os diferentes
equipamentos da fabrica. Pode-se entender que um ator genérico possui uma cardinalidade
indicando o nimero de ocorréncias que podem existir deste ator em um mesmo diagrama de
casos de uso. Na notagdo proposta, a cardinalidade ¢ indicada no interior da elipse do caso de
uso usando a notac¢ao padrao da UML.

259

SugarloafPLoP 2002 Proceedings

Os casos de uso genéricos t€ém como representagdo grafica uma elipse com uma faixa
cinza a sua esquerda (Figura 2), o que equivale a definicdo de um esteredtipo <<genérico>>.
Um caso de uso genérico representa um caso de uso que pode ter multiplas ocorréncias em
um diagrama de casos de uso derivado do modelo genérico. Assim como para atores, um caso
de uso genérico possui uma cardinalidade indicando o numero de ocorréncias. Como
exemplo, pode-se considerar o caso de uso genérico Monitorar Equipamento que poderia ter
varias ocorréncias como: Monitorar Robé Puma, Monitorar Centro de Usinagem, etc.

As andlises estruturais especifica e genérica empregam diagramas com classes
instanciaveis e abstratas conforme a notagao original da UML.

Ator Genérico Caso de Uso Genérico

Figura 2 — Notacdo utilizada

4.2 Requisitos Funcionais do Padriao Arquitetural

Para que o Controle Supervisorio consiga controlar a fabricacdo de pegas € necessario
monitorar os estados de elementos da fabrica (equipamentos, pecas, paletes, hierarquias),
decidir como coordenar estes elementos segundo os estados monitorados e, entdo, comanda-
los segundo uma coordenagao apropriada.

A andlise de requisitos funcionais para o CS-SAM pode ser dividida nos aspectos
relacionados ao Comando, a Monitoragao e a Decisdo/Coordenacdao dos elementos de um
Sistema Automatizado de Manufatura.

A atividade de Comando consiste em enviar comandos a equipamentos ou a elementos
de hierarquia (e.g. “robo transporte peca” ou “célula processe o lote de pecas”). A atividade
de Monitoragdo consiste em acompanhar os estados discretos dos elementos do SAM (e.g.
“robd parado”, “estagdo de trabalho ocupada”, “peca na etapa trés do plano de processo™). A
Decisao/Coordenacao ¢ responsavel pela andlise dos estados dos elementos do SAM, de
forma a decidir quando coordena-los (i.e. instigar comandos em uma determinada seqiiéncia)
para que realizem o processo produtivo segundo planejamento prévio e protocolos especificos

(Simdo, 2001).

Durante a andlise de requisitos funcionais, sao criados os diagramas de casos de uso
especificos que sdo, entdo, generalizados obtendo-se os diagramas de casos de uso genéricos.
Na analise de requisitos sd@o considerados apenas os aspectos de software, uma vez que o CS-
SAM ¢ essencialmente um sistema computacional.

4.2.1 Requisitos Funcionais do Comando

Um servigo importante em CS-SAM ¢ o envio de comandos aos equipamentos. Por
exemplo, o Controle Supervisorio deve ser capaz de comandar o robd Puma para realizar a

260

SugarloafPLoP 2002 Proceedings

tarefa de pegar uma determinada peca do Armazém e po-la na Mesa-1. Este servigo ¢, entdo,
mapeado no subcaso de uso Comandar Puma no diagrama da Figura 3.

A Figura 3 ainda traz os casos de uso Comandar AGV, Comandar Centro de
Usinagem e Comandar Armazém para melhor exemplificar a atividade de comando dos
equipamentos.

% Comandar AGV Comanc(ilar
Mesal Centro de Usinagem Centro de Usinagem

Puma Armazém

Figura 3 - Comando de Equipamentos

A partir da observagdo dos diagramas especificos (Figura 3), obtém-se um diagrama
de caso de uso genérico para qualquer equipamento (Figura 4). Neste diagrama observa-se o
requisito funcional genérico necessario a concep¢do de um padrdo arquitetural no tocante ao
Comando de equipamentos no CS-SAM.

@ Com andar E quipamento

E quipam erto

Figura 4 — Comando de Equipamento

Uma técnica possivel de generalizacdo ¢ analisar se uma solucdo aplicada a um grupo
de elementos do sistema aplica-se também a um conjunto maior de elementos. Por exemplo,
quando se comanda um equipamento, estd se executando esta operagdo sobre um subsistema
fabril, portanto indaga-se a “genericidade” dos requisitos funcionais de Comando para outros
subsistemas ou elementos da fabrica.

Analisando os requisitos funcionais para comandar os elementos de hierarquia, nota-se
a similaridade para com os equipamentos. O diagrama da Figura 4 pode ser generalizado para
suportar estes elementos (Figura 5).

@ ot atidat Eletn etito F abri

Elemmento Fabril

Figura 5 - Comando de Elemento Fabril

4.2.2 Requisitos Funcionais da Monitoraciao

E fungdo do CS-SAM estabelecer os momentos apropriados para o envio de
comandos. Por exemplo, um comando ndo pode ser dado ao rob6 Puma enquanto ele se

261

SugarloafPLoP 2002 Proceedings

encontrar em um estado de quebra ou em um estado de execugdo de outra atividade. Portanto,
um servi¢o que precede o Comando ¢ a observagdo dos estados discretos dos equipamentos.
Os casos de uso Monitorar Puma, Monitorar Centro de Usinagem, Monitorar AGV e
Monitorar Armazém exemplificam esta funcionalidade (Figura 6).

Processos de Monitoragdo incluem tanto o registro quanto a disponibilizacao dos
estados de cada atributo do objeto observado (e.g. monitorar cada posi¢do do Armazém que
pode estar ocupada ou desocupada), sendo que o estado geral ¢ dado pela composicao dos
estados especificos. Desta forma, Monitorar inclui, genericamente, dois subcasos de usos
chamados Registrar Estados e Disponibilizar Estados (Simao, 2001).

Monitorar AGV % Monitorar Centro de Usinagem

AGV <<1nc1ude>> <<1nc1ude>> Centro de Usinagem <<inc1ude>> <<in01ude>:>

Reglstrar Estados Dlspomblhzar Reglstrar Estados do Disponibilizar Estados
do AGV Estados do AGV Centro de Usmagem do Centro de Usinagem

e P —

<<include>>| <<include>>| <<1nclude>>| <<include>>|
Armazém

Disponibilizar Dlspomblllzar Registrar Estados
Estados do Puma Estados do Armazém do Armazém

Figura 6 - Monitoracido/Comando de Equipamentos

Puma

Registrar Estados
do Puma

A partir da observagao dos diagramas especificos de Monitoracao (Figura 6), obtém-se
um diagrama de casos de uso genérico para qualquer equipamento (Figura 7). Neste diagrama
observa-se os requisitos funcionais genéricos necessdrios a concepcdo de um padrdo
arquitetural no tocante a Monitora¢do de equipamentos no CS-SAM.

4{2_—11-'1 oritorar E quipa.mentu:u_——:a
| D

B o Iz zinclude== brainpludes =
oAt ento

Fegatrar Estados
do Equipam ento

Figura 7 - Monitoragio de Equipamento Genérico

Disponibilizar E stados
do Equipam ento

Analisando os requisitos funcionais para monitorar os elementos de hierarquia, nota-se
a similaridade com os equipamentos. O diagrama da Figura 7 pode ser generalizado para
suportar estes elementos.

Em um SAM existem ainda outros elementos fabris que devem ser considerados na
Monitoracdo. Estes elementos sdo as pegas, o lote de pecas e os paletes, chamados de
elementos de processo. No que diz respeito as pecas e lotes de pecas, € necessario
acompanhar seus estados em relagdo a seus planos de processo e, também, a suas prioridades

262

SugarloafPLoP 2002 Proceedings

de produgdo. Com relacao aos paletes, seus estados sdo determinados pela existéncia de pegas
nas suas posi¢des e, também, pela sua posi¢ao na planta.

Propde-se, entdo, uma generalizacao ainda maior do caso de uso para Monitoracao de
forma a comportar tanto elementos de processo quanto elementos de hierarquia (Figura 8).

Motitorar Elem ento

K -
,*rii inclhade= = : <oifcludes >
Elem ento .

W iy

Fegstrar Estados da
Elemento

Dispondbilizar E stados
do Elemiento

Figura 8 - Monitoracio de Elemento Genérico

4.2.3 Requisitos Funcionais da Decisdo/Coordenacio

No que diz respeito a atividade de Decisdo/Coordenagdo, os requisitos funcionais
estao relacionados com a tomada de decisdo baseada nos estados dos elementos monitorados e
com a coordenagdo destes elementos segundo uma logica de comandos.

Estas funcionalidades da Decisao/Coordenacao podem ser observadas nas interagdes
entre os equipamentos para a realizagdo do beneficiamento das pecas. Um exemplo ¢ o
transporte realizado pelo robo Puma, entre o Armazém e a Mesa-1. Para que se possa realizar
esta atividade, ¢ necessario haver uma pega no Armazém, que a Mesa-1 esteja com uma
posi¢do livre para receber a peca e que o Puma esteja disponivel. Além disso, ¢ necessario
saber se o plano de processo da pega considerada prevé, neste momento, que ela seja
transportada para a Mesa-1. Em suma, antes de decidir se o Puma realizard o transporte, ¢
necessario avaliar os estados dos elementos envolvidos conforme demonstra o caso de uso da
Figura 9.

m Coordenar Transporte de Pe¢a do Armazém pm

<<include>%j <<include>x|
Decidir momento de transporte <<include>> __ Coordenar o transporte
-

<<include>> _ ~. | - | ‘N <<include>>
—~ “<<include>> ~ <<include>> >
= B

Obter
estado da
Mesal

. I |
<<include>>| <<include>>|

Ordenar o Puma
a pegar peca do
Armazém e
deposita-la na
Mesal

Obter
estado do
Armazém

Obter
estado
do Puma

Obter estado
de produgao
da Peca

Atualizar
o estado
da Mesal

Atualizar
estado do
Arrmazém

Figura 9 — Decisdo/Coordenaciio do transporte de Peca do Armazém para a Mesal

De mesma forma, se for avaliado o caso do transporte de pegas da Mesa-1 para a
Mesa-3, via AGV, encontram-se similaridades com o caso anterior. Para que este transporte
ocorra, também sdo necessarias algumas condi¢des sobre os elementos envolvidos (i.e. “ter
uma pec¢a na Mesa-17, “o AGV estar livre”, “a Mesa-3 dispor de uma posi¢do vaga para
receber a pega” e “o plano de processo da pega prever a Mesa-3, neste momento, como a
proxima visitagdo”). Ainda analisando o transporte das pegas de Mesa-1 para o Centro de

263

SugarloafPLoP 2002 Proceedings

Usinagem ou o transporte da Mesa-3 para o Torno, verificam-se similaridades funcionais.
Também, em todos os casos de uso, nota-se que, além de realizar estas avaliagdes, ¢
necessario tomar decisdes a respeito dos estados discretos observados e, se pertinente, enviar
ordens para que os equipamentos realizem suas tarefas.

Do estudo do diagrama de casos de uso especifico, obtém-se o caso de uso genérico,
retratado na Figura 10. Este diagrama comporta a interagdo entre os diversos elementos do
SAM (i.e. de processos, de hierarquia e equipamentos).

C:jf Decidir & Coordenar Atividade dos Elementos =
I

I

==include= x| I

ki |

Decidit momentos de coordenacio <<includ e= |

|

z<includes=! z<include=! <<include>=! I
kU W W

Coordenar
ahwidades
dos

elementas

Ohter Estadaos
Elementaos de
Hierarquia

Ohter Estados
dos Elementos
Processuats

Ohter Estadas
dos

Equipamentos

Figura 10 - Decis@o e Coordenagdo das atividades dos elementos fabris

4.3 Padrao Arquitetural para CS-SAM

Tendo como base a andlise especifica e genérica de requisitos funcionais, esta se¢ao
apresenta diagramas de classes especificos e genéricos, utilizados na descricdo do padrdo
arquitetural para CS-SAM. Os diagramas sdo apresentados em duas etapas. A primeira etapa
envolve a atividade de Monitoragdo e a atividade de Comando (quando esta for pertinente),
uma vez que estas atividades sdo realizadas sobre os elementos fabris. A segunda etapa visa
as atividades de Decisao/Coordenacao.

Ressalta-se que, em termos de engenharia de software, cada uma destas atividades
pode ser classificada como um padrao de projeto. Um padrao de projeto consiste de um ou
varios elementos de projeto de software, tais como modulos, interfaces, classes, objetos,
métodos, relagdes entre elementos, € uma descri¢ado do seu comportamento. (Buschmann et
al., 1996) (Gamma et al., 1994).

Os diagramas de classes para Monitoragao/Comando sdo, inicialmente, concebidos
com um nivel de genericidade intermedidrio (e.g. como diagramas genéricos para qualquer
equipamento, para qualquer elemento de hierarquia ou para qualquer elemento de processo).
A seguir, sdo incluidas especializacdes refinando as classes até o nivel de classes
instanciaveis, projetadas para tratar os elementos do SAM. Esta etapa constitui-se na parte
descendente (top-down) do processo de concepcdo do modelo de Monitoragdo/Comando. A
proxima etapa da concepg¢ao da Monitoragdo/Comando se da pela definicdo de uma classe
base para as classes mais abstratas existentes, reunindo-as em uma raiz de heranga unica. Esta

264

segunda etapa caracteriza-se como a parte ascendente (bottom-up) do processo de concepcao
da Monitora¢ao/Comando.

Os diagramas de classes para Decisdo/Coordenagdo sdo concebidos de forma que as
instancias possam avaliar e correlacionar quaisquer estados observados na Monitoragdo, bem
como coordenar quaisquer comandos predeterminados no Comando. Para reduzir a
complexidade no tratamento dos diferentes estados e no envio dos diferentes comandos aos
elementos fabris, define-se um conjunto de classes padronizadas para a Decisao/Coordenagao.

O padrao arquitetural apresenta colaboracdes de classes fortemente acopladas cujas
especializagdes permitem, portanto, criar instancias em grupos de objetos coesos. Cada um
destes grupos ¢ considerado um agente computacional. Esta abstracdo na forma de agente
facilita a compreensao das interagdes entre os grupos de objetos.

Os conceitos relativos a agentes, encontrados na literatura, sdo variados. Neste
trabalho considera-se um agente como um modulo de software com alto grau de coesdo, com
escopo bem definido, com autonomia e pertencendo a um certo contexto, no qual seu
comportamento atual pode e, provavelmente, influenciard na sua existéncia futura (Franklin et
Graesser, 1996) (Miiller, 1998) (Rich et Knight, 1991) (Russell et Norvig, 1995).

O padrao arquitetural proposto ¢ orientado a objetos e o conceito de agente ¢ aplicado
com reservas. De fato, pretende-se identificar entidades mais abstratas nas instancias das
especializacdes do padrdo, através do conceito de agentes cooperativos ¢ reativos. Estas
instdncias ndo se classificam necessariamente como um sistema multi-agente, embora
pudessem ser consideradas como tal (Franklin et Graesser, 1996) (Miiller, 1998) (Rich et
Knight, 1991) (Yufeng et Shuzhen, 1999).

Uma vez estabelecida a parte estrutural do padrao arquitetural e apresentadas classes
que permitam instanciar agentes para o SAM, um diagrama de atividades demonstra,
genericamente, a dindmica de interagdes entre os elementos da Monitoragdo/Comando com a
Decisao/Coordenagao.

4.3.1 Diagramas de Monitora¢io/Comando

Para atender aos requisitos funcionais da Monitoracao/Comando, propde-se um agente
computacional associado a cada elemento do SAM. Em termos de Monitoracdo, o agente ¢
responsavel por padronizar o registro e a disponibilizacdo dos estados do elemento
representado. Quanto ao Comando, cabe ao agente comunicar-se com o elemento fabril para
estimular a realizacdo de alguma atividade, gerando uma provavel mudanca de estado. Desta
forma, cada agente de Monitoragao/Comando inclui o protocolo especifico de comunicagao
com o elemento fabril associado.

Monitoracio/Comando de Equipamentos

Cada equipamento do SAM (e.g. robd, torno ou esteira) possuird um agente para o
representar, monitorar ¢ comandar. Este agente ¢ designado como um cae (comando ativo de
equipamento) e a classe principal de seu modelo ¢ a CAE. Um cae ainda tem como objetos
associados um conjunto de ats € um conjunto de mts, que provém respectivamente das classes
Atributo e Metodo.

Um at representa e mantém o estado discreto de uma caracteristica de um cae. Como
exemplo, um at para acompanhar os estados de uma posi¢cao de um armazém (i.e. com pega

SugarloafPLoP 2002 Proceedings

ou sem peca) ou um at para registrar o estado do atuador de um robo (i.e. fechado ou aberto).
O acompanhamento de estado ¢ feito pelo cae através do interfaceamento com os dispositivos
(via rede local ou porta de comunicagdo) ou por inferéncia através de algum artificio dedutivo
como temporizadores. Cada af ainda tem como fun¢do notificar a mudanca de estados a
elementos de monitoragdo e decisao apropriados.

Um mt ¢é responsavel por alterar o valor de um az. Um cae ainda pode se associar a um
ou mais cms (i.e. agentes cuja classe principal ¢ denominada Comando, derivada da classe
Metodo). Um cm tem como responsabilidade adicional comandar, via o cae associado, o
equipamento representado. Cada cm ainda apresenta a capacidade de inferir informacdes (e.g.
qual ferramenta usar numa operagdo) e, normalmente, recebe pardmetros para realizar suas
atribuicoes.

Para melhor representar os equipamentos, pode-se ter hierarquias de classes derivadas
de CAE, de Atributo e de Metodo. Um bom nivel de especializagdo a partir de CAE ¢ definir
conjuntos de classes para equipamentos de armazenagem, transporte e atuagdo, nos quais se
especifica elementos mais refinados mas ainda genéricos e aplicaveis a cada escopo.

A Figura 11 apresenta um conjunto de classes para representar individualmente
equipamentos de armazenagem. A classe CAEArmazenagem possui uma relagdo de
agregacdo com a classe ATPosicao concebida para tratar posi¢cdes de armazenamento. Para
cada objeto do tipo ATPosicao existe um objeto do tipo MTAIEstPos para realizar sua
mudanca de estado. A classe CAEArmazenagem ¢ especializada em CAEArmazem e
CAEMesa para instanciar, respectivamente, agentes responsaveis pela monitoragdo e
comando do Armazém e das Mesas da célula de manufatura exemplo.

Atributo 1 Altera | * Metodo
CAEI
% CAEArmazenagen Z%
ATBoleano MTAItAtrBo
A n CAEArmazem| CAEMesa | * A
ATPosicao MTAItEstPos

Figura 11 — CAE especializado para equipamentos de armazenagem

A Figura 12 apresenta uma hierarquia especializada para representar equipamentos de
transporte. A classe CAETransporte ¢ associada a classe ATLivre (criada para especificar a
disponibilidade dos equipamentos representados pelos agentes instanciados). CAE Transporte
¢ especializada em CAETranpFixo ¢ CAETranspMovel. Para CAETranspFixo hid um
CMMoverAtuador que trata a movimentacao do atuador e um CMAbrirFecharAtuador para
tratar sua abertura e fechamento. CAETranpFixo ¢ ainda especializada em CAEPUMAS560,
CAEKuka ¢ CAEBracoMec que servem para instanciar os objetos responsaveis por
equipamentos da célula exemplo. Para CAETranspMovel existe o CMMover para tratar
movimentagdes na fabrica. Esta subclasse CAETranspMovel ¢ especializada

266

SugarloafPLoP 2002 Proceedings

CAETranspMvAtivo ¢ CAETranspMvPassivo (i.e. com ou sem atuador).
CAETranspMvAtivo permite derivar uma classe para representar o AGV.

CAH
ATBoleanc ATBolean
* CAET t
ATPosicao L. ransporte ! ATLivre
/ \l\ — -
CAETranspFix(Metodo| ranspyov
k>
< Comando
7 ! /7 V\ [CAETranspM A% CfET MvPassi
CMAbrirFecharAtuad| [CMMover ranspyIvAtiv ranspiviassiv
1 | CMMoverAtuady | Z> ?
1
CAEPUMAS6(CAEKuka CAEBracoMec CAEAGV

Figura 12 - CAE especializado para equipamentos de transporte

A Figura 13 traz uma classe especializada para equipamentos de processamento de
pecas, chamada CAEExecucdo. Esta classe relaciona-se com a classe ATLivre, bem como
com a classe CMTrabalharPega voltada ao comando do processamento da peca.

CAE

1% Comando
CAEExecucao CMTrabalharPeca

Z% Z% ATBoleano|

CAETorno CAECentrodeUsinagem ATLivre

Q

Q

Figura 13 - CAE especializado para equipamentos de processamento de pecas

Para que estes diagramas de classe representem equipamentos reais, ¢ necessaria uma
maior especificacdo de detalhes de funcionamento interno das classes, bem como
interfaceamento com os equipamentos fabris. De fato, para projetar um CAE para
equipamento real, ¢ necessario conhecimento multidisciplinar. Estes diagramas de classe tém
como principal objetivo expressar as interfaces padronizadas para com a decisdo e ndo
detalhes de implementacao.

Os elementos comuns as classes CAETransporte, CAEArmazenagem ¢
CAEExecugdo sao agrupados ou associados a classe CAE. Um exemplo ¢ a associagdo com a
classe ATListaPecaPlanoProcesso. A funcao de cada instancia desta classe ¢ indicar o
proximo destino de cada peca segundo seu plano de processo.

A Figura 14, além de sintetizar os diagramas das figuras 11, 12 e 13, define a parte de
Monitoragao/Comando de equipamentos para o padrao arquitetural de CS-SAM. Em todos
estes diagramas de classe, as Unicas classes passiveis de instanciagdo sdo as que representam

267

SugarloafPLoP 2002 Proceedings

equipamentos especificos, assim como as derivacdes de Atributo ¢ Meétodo relacionadas.
Portanto, todas as demais classes sdo consideradas como classes abstratas.

yosTm BaseFatos
ibuto
CAE
ATListaPecaPlanoProcesso] =
ATBoleano | 1 |
ATOperante - 1 ATBO‘ cano
ATLivre
1.*
MTAItAtrBol 1
MTAItEstPos E
1.*
<> CAEArmazenagem CAETransporte CAEExecucao
K>——
ATBoleano

CMTrabalharPeca

ATPosicao 1.% (? Y 1.*

CAETranspFixo

CAETranspMovel

1.* CMMover

Lo 0.c

CMDMoverAtuador Metodo
Comando

1
1 CMAbrirFecharAtuador |—>

<

CAETranspMvPassivo CAETranspMvAtivo

Figura 14 - Hierarquia de Equipamentos

Monitoracao de Elementos de Processo (Pecas, Lotes e Paletes)

Para realizar o CS-SAM ¢ necessario monitorar os estados das pecas, lotes e paletes
que transitam no SAM. Com este intuito, definem-se classes de monitoracdo chamadas
ElPrPalete, ElPrPeca ¢ ElPrLote. Estas classes (Figura 15) sdo especializagdes da classe
EIPr (Elemento de Processo) e cada qual também pode possui derivacdes de Atributo, para
registrar estados, e de Meétodo, para altera-los.

Para a classe EIPrPeca existe uma classe ATPlanoProcesso para registrar o estado da
peca representada com relacao ao seu Plano de Processo. A classe ElPrPalete relaciona-se
com a classe ATPosicao. Ainda, para a classe ElPrPalete, sio definidas duas classes
chamadas MTReceberLiberarPeca ¢ MTFixarDesfixarPeca, relacionadas a ATPosicao.
ElrPrLote representa um lote de pegas e os estados de suas instancias influenciam-se pelas
instancias de EIPrPeg¢a relacionadas. Por fim, a classe base EIPr possui um atributo
especificando sua prioridade de processamento.

As pegas nao fazem parte do SAM, elas sdo processadas por ele. Por isto, os elementos
de processo ndo sdo focados diretamente pela Decisdo/Coordenag¢do, mas sim de forma
indireta, uma vez que servem para compor o estado dos demais elementos do SAM passiveis
de monitoracdo e comando. Por exemplo, um objeto do tipo ATListaPecaPlanoProcesso tem
seu valor em fung¢do do estados de objetos do tipo A TPlanoProcesso.

268

SugarloafPLoP 2002 Proceedings

Atribut(BaseFatos
ATPlanoProcess(EIPr
Metodc
MTReceberLiberarPec] 1 * -prioridadel:in
1
ATBoleanc
ATPosicao
Metodc 1.* ElPrPalete 1 « | EIPrPeca | * 1 ElPrLote
MTFixarDesfixarPeca - -
Comporta Composto
1.* ﬁ

Figura 15 - Diagrama de Classes para Elementos Processuais

Monitoragdo/Comando de Niveis Hierarquicos

Para representar, decidir, monitorar ¢ comandar niveis hierdrquicos existe uma classe
denominada EIHi (Elemento de Hierarquia). Esta classe especifica a capacidade de suas
instancias agregarem objetos dos tipos EIHi, EIPr ¢ CAE (Figura 16), assim como agregarem
elementos de decisdo.

Cada instancia EIHi mantém ats cujos estados advém de monitoracdo propria (e.g.
realizada via interfaceamento com sensores) ¢ em fungdo dos valores dos afs de seus
agregados.

Uma instancia EIHi, similarmente aos caes, pode associar-se a cms especializados,
chamados de emcp (comandos compostos). Um cmcp tem como fungdo induzir o inicio da
atividade de controle supervisério no escopo do elemento de hierarquia representado. Por
exemplo, o comando “produzir lote de pecas na célula” ativa os agentes responsaveis pelo
controle supervisorio no escopo da célula comandada.

BaseFatos BaseFatos BaseFatos
CAE EIHi EIPr

>

Figura 16 - Diagrama de Classes para EIHi

Monitora¢io/Comando no Padrio Arquitetural

Todos os agentes de Monitoragdo/Comando analisam estados de elementos do SAM e
tém a capacidade de altera-los. Cada estado que ocorre no sistema pode ser considerado como

269

SugarloafPLoP 2002 Proceedings

um fato. Portanto, cada um dos agentes trata a mudanga de fatos ocorridos sobre o elemento
que ele representa.

Genericamente, CAE, EIHi ou EIPr ¢ considerado do tipo BaseFatos. As instancias
(agentes) de qualquer derivado da classe abstrata BaseFatos sdo designadas como abf (agente
da base de fatos) (Figura 17). Na BaseFatos sao encapsuladas caracteristicas comuns as suas
especializacdes (e.g. identificador).

Conforme observado, toda derivacdo da BaseFatos compde-se com derivados de
Atributo e Método. Em ultima andlise, a classe Atributo ¢ uma interface padrao de saida e
Método ¢ uma interface padrao para entrada de informagdes nas derivagdes da BaseFatos.
Assim, a classe BaseFatos ¢ uma forma de expressdo comum (ou um padrdo) para monitorar
e comandar os elementos que possam influenciar a decisao.

A esséncia da Monitoracdo/Comando para este padrdo arquitetural encontra-se nas
figuras 14, 15, 16 e 17. Para conceber a Monitoragdo/Comando de CS-SAM especializam-se
estes diagramas para tratar o caso especifico e fazem-se as instanciacdes necessarias que,
entdo, realizardo a atividade de Controle Supervisorio.

Altera

1\ 1.*

Atributo 1 * BaseFatos 1.* Metodo

-Identificador:int

Panss

EIPr EIHi Comando

CAE

? , 0..*

Figura 17 - Diagrama de Classes - Monitoracio e Comando

4.3.2 Decisao/Coordenacao

Para compor a parte do padrdo arquitetural relativo a Decisdo/Coordenagao ¢
necessario um conjunto de classes que modele os relacionamentos com a
Monitora¢do/Comando, bem como a logica causal existente entre a Decisdo e a Coordenacao.
O modelo deve prever que a Decisdo ocorre pela avaliagdo e correlagdo dos fatos observados
nos ats dos abfs, enquanto a Coordenacgao envolve um conjunto de ordens sobre mts e cms
dos abfs, em resposta a decisdo tomada, alterando estados de ats.

Por conseqiiéncia, observa-se que o CS-SAM trabalha sob a forma de um Sistema de
Produgdo (SP) (Simao, 2001). Um modelo utilizado freqiientemente para realizar SPs ¢ o de
Sistema Baseado em Regras (SBR) (Pan et al., 1998) (Rich et Knight, 1991).

A Decisao/Coordenagdo, no padrio arquitetural proposto, toma a forma de um
diagrama de classes que modela um SBR genérico. Portanto, cada instancia criada, a partir da

270

SugarloafPLoP 2002 Proceedings

especializacao do padriao arquitetural, constitui-se de um Sistema Especialista, realizado por
agentes, aplicado sobre um determinado sistema de produg¢ao industrial.

Instancia de Decisao/Coordenacao

Para que cada CS-SAM constituido, segundo o padrdo arquitetural proposto, possa
realizar uma logica de Decisao/Coordenacao, ela pode ser expressa em regras tais como as
descritas nas Figuras 18 e 19.

A Figura 18 apresenta uma Regra expressando o conhecimento necessario para
realizar o transporte de pecas do Armazém para a Mesa-1. A regra dita o seguinte: se existe
uma ou mais pe¢ca no Armazém cujos plano de processo indicam a Mesa-1 como proximo
equipamento a ser visitado, se o Puma est4 livre e se a Mesa-1 tem alguma posi¢ao livre,
entdio o Puma deve transportar uma das pegas do Armazém para a Mesa-1, segundo
parametros especificos. Quando mais de uma peca ¢ passivel de transporte, a escolha ¢ feita
pelo escalonador dinamico.

REGRA Transporte Armazém-Mesa-1
SE - T
,,/’Agente CAEArmazeml Atributo ATListaPecaPlanoProcesso = CAEMesal E
4 Agente CAEPumal Atributo ATLivre = Verdade E
\‘_Agfnte CAEMesal Atributo ATPosicaoLivre = Verdade
ENTAO Iiiimmmssmn oo oo T
’:::_—_ Agente CAEPumal Comando CMMoverAtuador(CAEArmazeml, CAEMesal). 4

Figura 18 — Regra para decidir e coordenar transporte de pecas entre Armazém e Mesa-1

A Figura 19 apresenta outra instancia de Regra responsavel pela Decisdo/Coordenagao
de transporte de peca da Mesa-1 para o Centro de Usinagem, bem como o processamento da
peca neste ultimo equipamento. O conhecimento desta Regra é: se existe uma ou mais pecas
na Mesa-1 cujos planos de processo indicam o Centro de Usinagem como proximo
equipamento a ser visitado, se o Centro de Usinagem esta livre e se 0 KUKA386 esta livre,
entdo o KUKA386 deve transportar uma das pecas da Mesa-1 para o Centro de Usinagem e
esta deve processar a peca segundo pardmetros especificos.

SE
--"Agente CAEMesal Atributo ATListaPecaPlanoProcesso = CAEMaquinaFerramental E ~~<
«: Agente CAEMaquinaFerramental Atributo ATLivre = Verdade E \)
“>~.Agente CAEKuka386-1 Atributo ATLivre = Verdade -
ENTAO :::::::::»———-—-—““"'"""""'_"____"'"““““““---~—--—_::‘_'_i:—_—
7 'Xgente CAEKuka386-1 Comando CMMoverAtuador(CAEMesal ,CAEMaquinaFerramentaiT =~

Figura 19 - Regra para decidir e transportar peca da Mesa-1 para Centro de Usinagem.

Cada Regra ¢ composta por uma Condi¢ao e uma A¢ao. Na Condi¢do hd uma série de
Premissas e na A¢do uma série de Ordens. A Premissa pode ser: (i) Premissa Simples, que
compara (ou avalia) o at de um abf com um determinado valor via algum operador; ou (ii)
Premissa Composta, que correlaciona valores de afs. A Ordem tem a funcdo de instigar um mt
ou um cm de um abf para realizar suas atribuigoes.

271

SugarloafPLoP 2002 Proceedings

Em termos de Controle Supervisorio, cada Condi¢ao representa a parte da Decisao,
enquanto cada Ac¢ado representa parte da Coordenagdo. Portanto, a regra representa a relagao
causal entre estas partes. Todo o conhecimento pertinente a Decisdo/Coordenagdao advém do
conjunto de Regras do CS-SAM.

Para especificar um diagrama de classes genérico para comportar a
Decisao/Coordenagdo, seguindo os principios de SBR, pode-se observar regras especificas e
delas obter elementos que comportem as funcionalidades genéricas desejadas.

Neste trabalho propde-se uma estrutura de classes que permita instanciar objetos que
comportem o conhecimento expresso em regras no formato apresentado. Os relacionamentos
expressos no diagrama de classes devem permitir aos agentes realizarem uma inferéncia
rapida e eficiente, uma vez que o CS-SAM pode necessitar de tempo curto de resposta.

Decisdo/Coordenaciio no Padriao Arquitetural

O modelo da Decisdo/Coordenacao possui uma classe Regra para representar cada
regra do SBR. As instancias desta classe sdo chamadas de ars (agentes regra). A Regra agrega
duas classes, a Condicao ¢ a Acao, cujas instancias sao designados por acs (agentes condi¢ao)
e aas (agentes acdo). Cada ac apresenta uma relacdo causal com um aa (Figura 20).

O ac faz o célculo logico do ar que o possui. Cada ac ¢ conectado a um ou mais aps
(agentes premissa) oriundos da classe Premissa. Um ap possui: (1) um valor booleano sobre si
mesmo, (ii) um apontamento a um unico at (a Referéncia), (iii)) um operador 16gico (o
Operador) e (iv) um valor ou um limite de valores (o Valor). O ap calcula seu valor booleano
comparando o Valor e a Referéncia por meio do Operador (i.e. Premissa Simples). Outro
recurso do ap ¢é o Valor ser referéncia a um outro at, permitindo correlagdes (i.e. Premissa
Composta). Enfim, o ac faz o calculo l16gico através da conjun¢do dos valores booleanos dos
aps conectados.

O aa realiza coordenagdes por meio de uma seqiiéncia de aos (agentes ordem)
associados que, além de serem instancias da classe Ordem, comandam assincronamente abfs
citados no respectivo ac, via mts ou cms, para realizarem suas atribuigoes. Um aa so ¢
passivel de execucao se o respectivo ac estiver em estado de verdade.

Outras caracteristicas de um ar sdo: (i) autodestrui¢ao se um dos agentes referenciados
no seu ac deixar de existir; (ii) modularidade de escopo (i. e. os ars de uma instancia de um
EIHi ndo enxergam os ars de outra instancia); (vi) aps, conectados ao seu ac, compartilhados
com acs de outros ars, quando pertinente; e (vii) aos conectados ao seu aa, compartilhados
com aas de outros ars, também quando pertinente (estes compartilhamentos colaboram no
processo de inferéncia).

272

SugarloafPLoP 2002 Proceedings

Regra 1..* Resolucao 1 ResolutorConflit(
|—<> kK>—————
1 | =
" cao
Condicao Relacao Causal
1.*
1.%
——< BaseFatos K>——— .
Notifica Notifica
1.* 1..* 1..* I..
Notifica
Premissa [0..* 1.2| Atributo Metodo Ordem
1 L 1 0..%
Altera Instiga

Figura 20 - Diagrama de classes para Decisio/Coordenacio

A dinamica de interagdes entre os agentes pode gerar conflitos. Um conflito ocorre
quando um ap tem a Referéncia oriunda de um abf exclusivo (i.e um abf para recurso
compartilhado, como um rob6 que atende a dois equipamentos) e esta sendo utilizado por ars
em estado de verdade (elegiveis). Por exemplo: a Premissa “Agente CAEKUKA386-1
Atributo ATLivre = Verdade” que hipoteticamente colabora para ars serem elegiveis, sendo
0o CAEKUKAZ386-1 exclusivo. Para resolver o impasse, escolhe-se um ar para ser ativado (o
eleito), tomando como base alguns parametros de decisdo (e.g. um escalonador dinamico ou
politicas de controle). Tendo o eleito, os demais até entdo elegiveis passam a ser considerados
falsos ou inelegiveis. Toda a politica de resolucao de controle, neste padrao arquitetural, ¢
encapsulada em uma agente do tipo ResolutorConflito (Figura 20).

A dindmica de interagdes entre os agentes ainda permite uma inferéncia robusta em
comparagdo com o modelo usual, em SBR, de pesquisar toda a base de fatos (Rich et Knight,
1991) ou mesmo com os modelos mais avangados, como por exemplo a eficiente abordagem
proposta por Forgy (Forgy, 1982), intitulada RETE network.

Os agentes realizam a inferéncia utilizando notificagdes: o abf avisa aos ats que
devem mudar de valor quando percebem alguma mudanca que os interessa no elemento
monitorado (nl na Figura 21). O at, que sabe quais aps t€m interesse na mudanga de seu
estado, notifica os aps interessados quando a mudanga de estado ocorre (n2). Os aps
notificados recalculam, entdo, seus valores 16gicos. Cada ap sabe quais acs tém interesse na
sua mudanga de valor booleano. Portanto, quando um ap muda de estado, ele notifica os acs
interessados (n3). Cada ac notificado reavalia seu valor 16gico e em caso de alteragcdo avisa
seu ar. O ar em estado de “verdade” habilita seu aa a ser executado.

O relacionamento dos agentes cria um grafo de conexdes, permitindo uma inferéncia
agil, sem buscas através de propagacdes de mensagens. Esta inferéncia consiste na dindmica
principal das instancias criadas a partir deste padrao arquitetural.

273

N
ar
at2 n
nl N

am a0 a

)
E ;
N5 —
&

Figura 21 - Principio de Notificacdes em Diagrama de Objetos

5 Conseqiiéncias

Este artigo apresentou um padrao arquitetural para Controle Supervisorio de Sistema
Automatizados de Manufatura. Definiu-se uma extensdao da UML para tratar a genericidade
na andlise de requisitos para a composi¢do do padrdo arquitetural. Esta extensdo traz como
beneficio a capacidade de expressdo genérica de requisitos funcionais através da qual varios
diagramas de casos de uso especificos podem ser representados em um tnico modelo.

O padrao arquitetural proposto pode ser classificado como: (i) multicamada, com uma
camada de Monitoracao/Comando ¢ uma camada de Decisao/Coordenacao; (ii) baseado em
regras, uma vez que o padrao ¢ modelado segundo um SBR genérico; (iii) orientado a objetos;
(iv) orientado a agentes, uma vez que grupos coesos de objetos sdo apresentados como
agentes; e (v) dirigido a eventos, pois os agentes reagem e cooperam por estimulo de eventos.

O artigo apresentou um padrdo arquitetural para uma area importante em computacao
relacionada com a automagao industrial. Contribuigdes para concepc¢ao de sistema de controle
supervisorio sdo necessarias em razdo da complexidade de desenvolvimento de sistemas
computacionais para este fim.

O padrao arquitetural apresentado inclui conceitos de inteligéncia artificial, uma vez
que o modelo de solugdo adotado ¢ o de um sistema baseado em regras genérico para realizar
CS-SAM. Este modelo emprega o conceito de agentes na instanciagdo das classes e adota um
mecanismo avanc¢ado de inferéncia por meio de notificagdes.

A robustez do padrdo arquitetural constituido, bem como a eficacia dos sistemas
instanciados a partir do padrao, t€ém sido observados em sistemas de Controle Supervisério
aplicados sobre simula¢des de plantas industriais em ANALYTICE II, incluindo a planta
apresentada como exemplo neste trabalho. Também se pretende aplicar este padrdo
arquitetural a sistemas reais.

Como trabalhos paralelos, esta sendo definida uma metodologia para a concepgao de
padrdes arquiteturais segundo a abordagem apresentada e a defini¢do de um padrdo genérico

para concepgao e realizacao de sistemas baseados em regras, consistindo basicamente, do uso
dos niveis mais genéricos do padrdo arquitetural proposto em outras dreas de aplicagao.

Trabalhos futuros incluem a definigdo de um modelo de distribuicdo computacional do
padrao arquitetural, desenvolvimento de um ambiente para instanciacdo de sistemas
especialistas segundo o padrao, e enquadramento dos moddulos constituintes do padrdo
arquitetural segundo os padrdes de projeto existentes na literatura. Prevé-se, também, o
desenvolvimento de padrdes arquiteturais para a concepgao e realizacdo de outros sistemas de
gestdo de informacdo voltados a SAM, tais como o Planejamento, o Escalonamento e a
Supervisao, de forma integrada ao padrao de Controle Supervisorio proposto.

6 Padroes Relacionados

A literatura especializada em arquiteturas de software para CS-SAM nao ¢é vasta.
Existem varias politicas para composicdo de CS-SAM, mas sdao muito especificas, ndo
podendo ser consideradas como arquiteturas de software.

Dentre as arquiteturas propostas existem as holonicas. A arquitetura holdnica ¢
considerada uma arquitetura agil. Uma arquitetura agil para manufatura é aquela na qual
encontram-se propriedades acentuadas de autonomia, organizacdo, tolerdncia a falhas,
adaptacdo, comunicacdo, dentre outras que permitem a concepg¢ao de sistemas de manufatura
mais flexiveis e ativos. Estes sistemas tém sido inspirados em sistemas naturais (e.g.
bioldgicos e sociais) que possuem as caracteristicas citadas e envolvem os conceitos de
hierarquia, heterarquia, agentes e multi-agentes (Bongaerts, 1998) (Sorensen et Langer, 1998)
(Wyns, 1999).

No caso especifico de Controle Supervisério, ha a proposta de Sorensen (Sorensen et
Langer, 1998) que consiste de uma hierarquia de classes tratando da divisdo em subconjuntos
similares aos apresentados (i.e. monitoracdo/comando e decisdo/coordenacdo). Entretanto,
ndo ¢ explicitada uma forma padronizada de interagdo entre os modulos, a dindmica entre eles
¢ abordada em termos mais abstratos, necessitando de especializagdes que resolvam a questao
(como por exemplo o padrao arquitetural proposto). Esta abordagem consiste-se, de fato, em
uma arquitetura de software importante no tocante ao modelo holonico, porém ndo a
apresentada na forma de um padrio arquitetural.

Uma solugdo encontrada na literatura ¢ o artigo apresentado por Schmid (Schmid,
1995). Similarmente a proposta de Sorensen, naquele artigo sdo tratados os aspectos de
divisdo estrutural dos constituintes genéricos de um Controle Supervisério de Manufatura,
porém com um grau de especializagdo maior. Apesar de ser um pouco mais detalhado, ainda
ndo sdo dadas solugdes efetivas para a modelagem, instanciacdo e realizacdo da dinamica de
interagdo dos elementos. Por fim, a abordagem de Schmid ainda ndo ¢ apresentada na forma
de um padrdo arquitetural, mas sim na forma de uma arquitetura de software composta por
padroes de projeto.

Aarsten (Aasten et al., 1995) apresenta um framework, quase no formato de um padrao
arquitetural, muito robusto e aplicado a CS-SAM. Nesta abordagem ja ¢ tratada a questdo do
relacionamento dindmico entre os constituintes do CS-SAM, apresentando uma forma
detalhada de concepcdo, de instanciagdo e de realizagdo do controle. Um ponto positivo da
proposta de Aarsten ¢ a preocupacao com detalhes observada desde a analise até a

implementagdo do controle supervisorio, tanto no tocante a simulagdes quanto a aplicacdes
reais. Ainda no que tange a implementacdo, ha detalhes importantes de integracdo, como
questoes relativas a banco de dados e distribuicdo computacional. Todavia, ndo ¢ tratada uma
forma de expressdo da decisdo e nem mecanismos que permitam esta decisdo apresentar
inferéncias avancadas.

Aaesten (Aarsten et al., 1996) apresenta uma aplicagdo especializada de um padrao
apresentado em (Aarsten, 1995). Em suma o trabalho consiste da uma especializagdao e
respectiva aplicagdo do referido padrdo para a situacdo de controle supervisério de robds
moveis.

Brugali (Brugali et al., 1997) apresenta algumas consideracdes e evolucdes (no sentido
de aplicagdes) dos trabalhos apresentados por eles e seus parceiros em artigos prévios
(Aersten, 1995) (Aersten, 1996).

7 Referéncias Bibliograficas

Aarsten, A., Brugali, D. e Menga, G. Designing Concurrent and Distributed Control Systems: an
Approach Based on Design Patterns. In Communications of the ACM - Special Issue on Design
Patterns. 1996.

Aarsten, A., Elia, G. e Menga, G. G++: 4 Pattern Language for the Object Oriented Design of
Concurrent and Distributed Information Systems, with Applications to Computer Integrated
Manufacturing . In J. Coplien and D. Schmidt (eds.) Pattern Languages of Program Design.
Addison-Wesley, 1995.

Bongaerts, L. Integration of Scheduling and Control, In Holonic Manufacturing Systems. Ph.D. Thesis
- KatholiekeUniversiteit Leuven, 1998.

Brugali, D., Menga, G e Aarsten, A.. The Framework Life Span: A Case Study for Flexible
Manufacturing Systems. In Communications of the ACM. Outubro 1997.

Buschmann F., Meunier R., Rohnert H., Sommerlad P. e Stal, M. Pattern-Oriented Software
Architecture - A System of Patterns. Wiley and Sons Ltd., 1996.

Chaar, J. K., Teichroew, D. ¢ Volz, R. A. Developing Manufacturing Control Software: A Survey and
Critique, The International Journal of Flexible Manufacturing Systems, Kluwer Academic
Publishers, 1993. pp. 053-088.

Cheesman, J. e Daniels, J. UML Components — A Simple Process for Specifying Component-Based
Software. Addison Wesley, 2001.

Coplien, J. e Schmidt, D. (eds.) Pattern Languages of Program Design, Reading-MA. Addison-
Wesley, 1995.

Cury, J. E. R., de Queiroz, M. H. e Santos, E. A. P. Sintese Modular do Controle Supervisorio em
Diagrama Escada para uma Célula de Manufatura. V Simpoésio Brasileiro de Automagio
Inteligente, Canela, RS, Brasil, 2001.

Forgy, C. L. RETE: A Fast Algorithm for the Many Pattern/Many Object Pattern Match Problem.
Artificial Intelligence, v.19,1982. p. 17-37.

Fowler, M. Analysis Patterns: Reusable Object Models. Addison-Wesley, 1996.

Franklin, S. e Graesser, A. Is it an Agent, or Just a Program? A Taxonomy for Autonomous Agents,
Proceedings of the 3th International Workshop on Agent Theories, Architectures and Languages,
Springer-Verlag, 1996.

Gamma, E. et al. Design Patterns: Elements of Reusable Object-Oriented Software. Addison Wesley,
1994.

Koscianski, A., Rosinha, L. F., Stadzisz, P. C., Kiinzle, L. A. FMS Design and Analysis: Developing a
Simulation Environment In: Proceedings of the 15th International Conference on CAD/CAM,
Robotics and Factories of the Future, Aguas de Lindoéia, v.2. 1999. p.RF25 - RF210.

Kiinzle, L. A. Controle de Sistemas Flexiveis de Manufatura - Especificagdo dos niveis equipamento e
estacdo de trabalho, Dissertacdo de Mestrado, CEFET/PR, 1990.

Langer, G., Sorensen, C., Schnell, J. e Alting, L. Design of a Holonic Shop Floor Control System for a
Steel Plate Milling-Cell, In : 2000 Int. CIRP Design Seminar on Design with Manufacturing:
Intelligent Design Concepts Methods and Algorithms, Israel, 2000.

Martin, R.C.; Riehle, D. e Buschmann, F. (eds.) Pattern Languages of Program Design 3. Reading-
MA. Addison-Wesley, 1997.

Mendes, R. S. Modelagem e Controle de Sistemas a Eventos Discretos - Manufatura integrada por
computador, Belo Horizonte, Fundacdo CEFET-MG, 1995.

Miyagi, P. E. Controle Programavel — Fundamentos do Controle de Sistemas a Eventos Discretos,
Edgard Bliicher, 1996.

Miiller, J. P. Architectures and Applications of Intelligent Agents: A Survey. International House.
Ealing London W5 5DB. Knowledge Engineering Review, 1998.

Pan, J., DeSouza G. N., Kak, A. C. FuzzyShell: A Large-Scale Expert System Shell Using Fuzzy Logic
for Uncertainty Resoning. IEEE Transactions on Fuzzy Systems, Vol. 6. No 4, 1998.

Rich, E. e Knight, K. Artificial Intelligence, McGraw-Hill, 1991.

Rumbaugh, J., Jacobson, 1. e Booch, G. The Unified Modelling Language Reference Manual. Addison
Wesley Longman, 1999.

Russell, S. e Norvig, P., Artificial intelligence: A Modern Approach. Prentice Hall, 1995.

Schmid, H. A. Creating the Architecture of a Manufacturing Framework by Design Patterns.
Fachbereich Informatik, Fachhochschule konstanz. OOPSLA’95, 1995.

Simao, J. M. Proposta de uma Arquitetura para Sistemas Flexiveis de Manufatura Baseada em
Regras e Agentes. Dissertagdo de mestrado. CPGEI/CEFET-PR, 2001.

Sorensen C., Langer C. G. Developing a System Architecture for Holonic Shop Floor Control.
International Federation of Automatic Control — Preprints of The 5th IFAC Workshop On
Intelligent Manufacturing Systems, Gramado - RS, Brazil, November. 1998.

Vlissides, J.; Coplien, J.; Kerth, N (eds.). Pattern Languages of Program Design 2. Addison-Wesley,
1996.

Wyns J. Reference Architecture for Holonic Manufacturing Systems - The Key to Support Evolution
and Reconfiguration. Ph. D. Thesis PMA/Katholieke Universit Leuven. 1999.

Yufeng, L. e Shuzhen, Y. Research on the Multi-Agent Model of Autonomous Distributed Control
System, In 31 International Conference Technology of Object-Oriented Language and Systems.
IEEE Press. China. 1999.

A Queue-based Algorithmic Pattern

Marcos C. d’Ornellas?

ornellas@inf.ufsm.br

Grupo de Pesquisas em Processamento de Imagens (PIGS)
Laboratério de Ciéncias Espaciais de Santa Maria (LACESM)
Universidade Federal de Santa Maria (UFSM)

Abstract

This paper briefly discuss the general class of algorithms that can be imple-
mented using queue-based constructions. Common characteristics of these algo-
rithms are also described in order to provide a generic representation for queue-
based algorithms. In addition it describes the queue-based pattern in terms of
wavefront propagation and its relationship within mathematical morphology. Such
a pattern is essential for the development of morphological operators and oper-
ations. Examples of pattern usage are contour processing, morphological recon-
struction, and watersheds for grey-scale and color images to name a few.

Keywords: mathematical morphology, software development, implementation
techniques, algorithmic patterns, and generic programming.

1 Name

Queue-based

2 Intent

Serve as a foundation to provide a generic representation for queue-based algorithms. Queue-
based provides flexibility in terms of requirements for queue-based algorithms and govern their
effective implementation. In addition it enhances morphological algorithm reusability.

3 Also Known As

Wave-front propagation or just propagation.

4 Motivation

In parallel implementations, computational power is wasted because, at each iteration, only
a small fraction of the processed pixels actually change values. This is even the case for the
sequential ones. Although it is more efficient for operator iterations than the parallel pattern is
[5]. Apart from that, morphological image operators implemented this way, are often iterated
several times to achieve stability, which make them inefficient in practice. Therefore, reasonable

!Financial support from FAPERGS Process n. 02/0287.0

solutions not only in the algorithmic design but also in the implementational techniques are
needed.

Algorithms that incorporate image scanning techniques based on queues have been proposed
in the literature [8] [9] [28] [24] [27] to overcome the implementation constraints related to parallel
and sequential implementations. Queue-based algorithms take advantage of the fact that the
image data are finite and totally ordered. The algorithms guarantee that pixels that effectively
contribute for the output results are processed only once. Queue-based algorithms can also be
treated as a specialization of sequential implementations where the scanning order is derived
from a predefined ordering relationship on the pixel intensities.

A priority-based queue is accomplished by first placing all pixel addresses related with a
given intensity value into a large array of pixels. Then, a distributive procedure makes use of
address calculations to get the frequency distribution of image intensities. This method allows
for breadth-first propagation?
alternative for the data structure relies on hierarchical queues [1] [3] which make use of a dou-
ble ordering relation for every pixel in the image. Consequently, queue-based data structures
improve significantly the efficiency of morphological algorithms.

at any pixel intensity with the use of a single queue. Another

5 Applicability

The queue-based pattern may be used whenever a morphological operator can be imple-
mented using a wavefront propagation interpretation from a set of seeds or markers. This
operator is geared towards efficiency since relevant pixels that actually contribute for the output
results are processed only once.

Algorithms that use a queue-based pattern share a certain number of characteristics, which
are listed in the following:

e Total Ordering Relation: algorithms presume that the image data to be processed is
totally ordered and finite. Every image pixel may contain additional information other
than its pixel position and intensity, which might be used to order the image data;

¢ Queue-based Data Structure: algorithms utilize a queue-based data structure to speed
up computations. Such queue-based structure contains only the relevant pixels, which are
needed to be processed. In other words, image pixels are processed only once;

e Two-step Algorithms: an algorithm contains two steps namely initialization and data-
driven propagation. The first step selects the pixels for the initial wavefront. The second
step propagates the wavefront based on the image data and is bound to produce the result;

e Wavefront Propagation: wavefront propagation implies that the action of the morpho-
logical operator is closely associated with the notion of connectivity. The basic operation
is the updating of all neighboring pixels based on the value of the propagated pixel;

e Iteration Until Stability: the data-driven propagation step after the initialization pro-
cess assures that the algorithm will reach stability after a number of iterations (governed
by a while ...do loop) or when a certain condition is met;

2The propagation is known since long as an iterative procedure until stability is reached. The computation
is a growing process and is based on the propagation of sets of pixels called markers through a mask image.
Algorithms using this approach have been described by a number of authors in the literature leading to efficient
implementations [15] [21].

e Origin Included in the Support: algorithms assume that the origin is included in the
structuring element support, which is important because only anti-extensive erosions and
extensive dilations are considered.

6 Structure

The generic representation for queue-based algorithms given in figures 1 and 2 contain ele-
mentary information that needs to be described in order to make the queue-based pattern.

So far, the discussion is focused on the application of wavefront propagation in mathematical
morphology. Indeed, there are two generic design structures for the queue-based algorithms [14].
These structures are characterized by whether the data-driven propagation is embedded or not
in the initialization step.

The case of queue-based algorithms are shown in figure 1 and 2. Morphological applications
related to the algorithm in figure 1 are: contour processing methods, morphological reconstruc-
tion, area opening and area closing, dynamics, levelings, fast marching methods, and watersheds
to name a few. Connectivity analysis and extrema detection are examples of applications related
to the algorithm in figure 2.

Figure 1: Queue-based algorithm showing a generic representation of the wavefront propagation.
Note that the algorithm includes two steps: an initialization and a data-driven propagation.
Initialization:

for all (pixel p € Dy) do
if (conditionl) then
g.eng(f(p),p)

end if
end for

Data-driven Propagation:
while (!(g.empty()) do
p = q.deq()
for all (p’ € N(p)) do
if (condition2) then

region settings
g-enq(f(p'),p")
end if
end for
end while

Figure 2: Queue-based algorithm showing an alternative generic representation of the wavefront
propagation. Note that the data-driven propagation is mixed in the initialization step.

for all (pixel p € Dy) do
if (conditionl) then

q-enq(f(p), p)

while (!(g.empty()) do
p = q.deq()
for all (p' € N(p)) do
if (condition2) then

region settings
g-enq(f(p'),p")
end if
end for
end while

end if
end for

7 Participants

The queue-based pattern includes the following elements:

Iterator: an iterator is a fundamental structure that abstracts the process of moving
through a finite set of elements [7]. Iterators in the generic representation for queue-based
algorithms are highly influenced by the queue-based data structures used in the wavefront
propagation since these structures provide a mechanism to control the scanning order of
pixels in the image. A priority queue is the data structure chosen for this pattern;

Pixel Lattice: the pixel lattice £ includes, among other elements like those that the value
set V and the ordering <, the notions of the supremum operator \/ and infimum operator
/\ working on subsets of V. The largest of all elements in V is called lattice supremum,
denoted as \/, while the smallest of all elements in V' is called lattice infimum, denoted
as \. All these elements must be explicitly defined by £ = (V, <, \/, A,V ., Az);

Adjunction: the adjunction is represented by A = (N) since algorithms using the wave-
front propagation interpretation are extensions of flat morphology, using flat and symmet-
ric structuring elements. Note that N specifies the connectivity, i.e. the number of pixels
needed in neighborhood operations for every pixel in the priority queue.

These three elements form the building block representation of the generic queue-based
pattern. The computational complexity of algorithms using a queue-based pattern is linear
with the number of pixels put in the priority queue, which is responsible for the data-driven
propagation.

8 Collaborations

Iterator is coupled with queue-based data structures involved. All the data must be
accessed by the iterator when an algorithm is implemented in both initialization and
data-driven propagation. In addition, the pixel lattice serves as a framework for the
development of the algorithms;

9

10

e Pixel Lattice defines the value set used for the data involved. In other words, it deter-
mines a set of common rules to be used in the wave-front propagation for a family of data

types;

e Adjunction is closely related with the way a propagation step is conducted. Therefore,
it works together with the iterator.

Consequences

e Some algorithms share a certain number of characteristics, which are listed as follows: total
ordering relation, queue-based data structure, two-step algorithms, wavefront propagation,
iteration until stability, and origin included in the support. An algorithm that has these
characteristics is termed a queue-based algorithm. The set of characteristics serves as a
basis to provide a generic representation for queue-based algorithms;

e A generic representation for queue-based algorithms utilizes wavefront propagation. It
implies that the action of the morphological operator is closely associated with the notion
of connectivity and is based on a kind of growing process, where the information is propa-
gated through the image. Two possible generic representations for queue-based algorithms
were introduced in order to describe the queue-based pattern. These representations are
characterized whether the data-driven propagation is embedded or not in the initialization
step;

e A queue-based pattern is constructed in order to provide flexibility in terms of requirements
for queue-based algorithms and govern their effective implementation;

e A generic programming approach might be applied to morphological image operators based
on wavefront propagation like contour processing methods, morphological reconstruction,
and watersheds. Generic programming tools as C++ with STL applies a more evolutionary
and experimental approach to morphological algorithm development. The proposed queue-
based pattern enhances morphological algorithm reuse.

e Care must be taken when a wavefront propagation interpretation is applied to an image
with too many constraints (e.g. lines, areas, or polygons). In this case, the time complexity
is proportional to the number of steps needed to end up the propagation process.

Implementation

Morphological operator design must comply with the complete lattice framework theory, i.e.

algorithmic implementations must be tied to the generic pattern representation that includes
the iterator, the pixel lattice, and the adjunction. Iterators in the generic representation for
queue-based algorithms are highly influenced by the queue-based data structures used in the
wavefront propagation since these structures provide a mechanism to control the scanning order
of pixels in the image. This section gives an overview of common queue-based data structures
like ordinary queues, priority queues and hierarchical queues. Later, the iterator is combined
with the pixel lattice and the adjunction, producing the queue-based pattern.

The following implementation issues are relevant for the queue-based pattern:

Data Structures: Queues are often used in the implementation of efficient and reliable mor-

phological image operators [22] [24]. Items stored in the queue are pixel addresses or pixel

values, but the queue must be able to handle other features according to the implementa-
tion. The size of the queue can be fixed [28] or be controlled dynamically [19]. There are
various ways to implement priority queues. The easiest one is to use linked lists, consis-
tently keeping the elements in the list in order of descending priority. A faster approach is
to store the data in binary trees, with an ordering property imposed to make sure that the
highest-priority element is always easily accessible. The appropriate ordering property is
that the element stored at any node of the binary tree should have a priority greater than
or equal to that of any element stored in either one of its subtrees. A binary tree that has
this property is called a heap.

C++4 and STL: The STL is a relatively small library which achieves a remarkable degree
of reuse through its basis in the principles of generic programming and its use of C++
templates. Because of this, it has a particularly clear shape. The distinction between
containers, iterators and algorithms is its most striking structural feature: dynamically,
the way a container delivers iterators which are then used by algorithms is a consistent
and fundamental pattern of use.

11 Algorithm Samples and Usage

This section deals with examples of morphological operators and operations constructed
using a queue-based pattern. The examples covered are contour processing, morphological re-
construction, and watersheds.

Contour Processing Operations: The contour processing approach was introduced in math-
ematical morphology in [8] [9] [28]. Given a binary image X, it is processed using a raster
scanning order and transitions from white (background) to black (foreground) are detected.
Pixels belonging to the contour of X, denoted by 9(X), are then stored in a simple queue,
which contains their coordinates and other additional information like pixel intensity.

Efficient implementations for dilations can also be obtained by following that X & A =
XU(@O(X) @ A). This is valid for any connected structuring element that contains the
origin. Figure 3 shows the original algorithms proposed in [28] for the erosion algorithm
based on contour processing.

The queue-based pattern for the contour processing is given as follows:

e Iterator: iterators are highly influenced by the priority queue used in the wavefront
propagation since it provides a mechanism to control the scanning order of pixels in
the image;

e Pixel Lattice: all the elements must be explicitly defined by £ = (V, <, \/, A, V2, Az)-
For instance:

£=(0,1,<,\. A\.1.0)

e Adjunction: the adjunction is represented by A = (N). Erosions and dilations are
given by:

N = N\ {fw)} (1)
yEN ()

@M@ =\ {/fw)} (2)

yEN(z)

Figure 3: A queue-based algorithm representation using the contour processing method for the
erosion.
Note(s): f - input image; q1,q2 - auziliary queues, N(p) - neighborhood of p.

Queue Initialization:

border = 0

Q ql,q2
for all (pixel p € D) do
if (f(p)! =0 and (3(p') € N(p): f(p') ==0)) then

ql.eng(p)
end if

end for
for all (pixel p € ¢1) do
flp)=0

end for

Data-driven Propagation:
while (!(gql.empty())) do
p = ql.deq()
for all (pixel p € ¢1) do
for all (p' € (N(p) N Dy)) do
if (f(p') ==1) then
f)=0
q2-enq(p)
end if

end for
end for
ql = q2
end while

Morphological Reconstruction: Many algorithms have been proposed in the literature for
image segmentation, but just a few have shown widespread applicability. One method that
often guides the segmentation process within mathematical morphology is morphological
reconstruction. This algorithm takes a segmentation that has too many small regions
and uses a heuristic evaluation function to combine regions with low local contrast. This
contrast measure is computed as a function of the minimum-edge height values of regions
and their boundaries. Thresholding the contrast measure at different levels produces
segmentations at various scales of detail [19].

Definition 1 (Morphological Reconstruction) The reconstruction by dilation of a mask
image g from a marker image f (Dy = Dy and f < g) is defined as the geodesic dilation
of f with respect to g until stability is reached and is denoted by pg(f):

pa(f) =\ ou(f) (3)

n>1

Definition 2 (Dual Morphological Reconstruction) The dual reconstruction or re-
construction by erosion of a mask image g from a marker image f (Dy = Dy and f > g)

s defined as the geodesic erosion of f with respect to g until stability is reached and is
denoted by p,(f):

() = Neps) (4)

When dealing with binary semantics, a morphological reconstruction is easily obtained by
applying the wavefront propagation interpretation along with a queue-based data struc-
ture. In such case, it works like contour processing algorithms since pixels belonging to
the contour(i.e. the marker image) are put in the queue in the initialization process. A
second step is the data-driven propagation, where these pixels are propagated according to
their connected components. The algorithm for binary reconstruction using a queue-based
pattern is given in figure 4.

Figure 4: Binary reconstruction algorithm using a queue-based pattern.
Note(s): g - binary mask image, f - binary marker image, f C g. The result is given in f.
Initialization:
for all (pixel p € D,) do
if ((f(p)==1) and (3¢ € N(p) | f(g) == 0) and (g(p) == 1)) then
q-enq(p)
end if
end for

Data-driven Propagation:
while (!(q.empty()) do
p = q.deq()
for all (¢ € N(p)) do
if ((f(¢) ==0) and (g(q) ==1)) then

flg) =1
q-enq(p)
end if
end for
end while

It was shown in [3] [26] that the extension to grey-scale semantics can be achieved in a
similar manner. Instead of propagating the contours of feature objects, propagation starts
from the regional maxima of the image. The grey-scale reconstruction algorithm using a
queue-based pattern is given in figure 5.

The queue-based pattern for the morphological reconstruction is given as follows:

e Iterator: iterators are highly influenced by the priority queue used in the wavefront
propagation since it provides a mechanism to control the scanning order of pixels in
the image;

e Pixel Lattice: all the elements must be explicitly defined by £ = (V, <, \/, A\, V2, Az)-
For binary and grey-scale reconstruction, the pixel lattice is given by:

£=(01,<,\,\.10
£ =([0,255],<,\/, \,255,0)

e Adjunction: the adjunction is represented by A = (N). Erosions and dilations are
given by:

N = N @) (5)

yEN ()

@M@ =\ {/fw)} (6)

yEN(z)

Figure 5: Grey-scale reconstruction algorithm using a queue-based pattern.

Note(s): g - grey-scale mask image, f - grey-scale marker image (regional maxima), f C g. The result
is given in f.
Initialization:
for all (pixel p € D,) do
if ((f(p)! =0) and (3g € N(p) | f(q) ==0)) then

q.enq(p)
end if

end for

Data-driven Propagation:
while (!(q.empty()) do

= q.deq()
for all (q € N(p)) do

)
if ((f(g) < f(p)) and (9(q)! = f(g))) then
f(a) =min(f(p),9(q))

q-entJ(p)
end if

end for
end while

Watershed Segmentation: Watershed analysis has proven to be a powerful tool for many
image segmentation problems. In the flooding scheme [20], water slowly rises within the
topographic surface represented by an image, so that all points below water level are
immersed. Holes are punched in the regional minima and the topography is flooded from
below. As the water rises, more surface minima are pierced, which in turn starts more
catchment basins. The catchment basins expand as the water rises and floods more points.
When two floods from different catchment basins meet, a dam is built at these points to
prevent the catchment basins from merging. After the surface is completely flooded, only
the tops of the dams are visible and are treated as dividing lines. These watershed lines
separate the surface into catchment basins [2] [3] [26].

Two steps can compose the bare-bones watershed implementation: initialization step,
and data driven propagation. Its algorithmic representation is given in figure 6. Similar
versions of this algorithm can be found in [3] [6] [12] [13] [15] [16].

The queue-based pattern for watersheds when applied to grey-scale images, is given as

follows:

e Iterator: iterators are highly influenced by the priority queue used in the wavefront
propagation since it provides a mechanism to control the scanning order of pixels in
the image;

e Pixel Lattice: all the elements must be explicitly defined by £ = (V, <, V, A, V., Az)-
For instance:

£ = (]0,255], \//\2550

e Adjunction: the adjunction is represented by A = (V). Erosions and dilations are

Figure 6: A Watershed algorithm for grey-scale images implementing a queue-based pattern.

Initialization:
PQ q
for all (pixel p € Dy) do

if (M(p)! =0 and(3(p') € N(p) : M(p') == 0)) then

g.enq(f(p),p)

end if

end for

Data-driven Propagation:
while (!(g.empty()) do
p = q.deq()
for all (p’ € (N(p) N Dy)) do
if (M(p’') ==0) then

M(p') = M(p)
g-enq(f(p'),p")
end if
end for
end while
given by:

N = N W) (7)

yEN ()

6H@) =\ {fw)} (8)

yEN(z)

12 Known Uses

Efficient algorithms in image processing are known to be designed and implemented using
queue-based data structures. Several queue-based operators and operations have been proposed
in the literature leading to a large collection of applications, which are characterized as follows:

contour processing methods: Contour processing methods were introduced in [9] [28] [21]
with applications for fast binary neighborhood operations including erosion, dilation, dis-
tance transforms, and skeletons. Other possible applications of contour processing methods
like contour filling and object labeling become available by slightly modifications of the
basic operations.

morphological reconstruction: Reconstruction is a powerful morphological tool. The ob-
servation that the reconstruction operator could be implemented using design techniques
based on queues gave birth to another important application of queue-based algorithms.
With respect to binary images, reconstruction has been used to remove object features
connected to the image border, hole filling, image labeling, skeleton pruning, and ultimate
erosion to name a few [19]. Other applications involving grey-scale images have been pro-
posed by [22] [25] like connected filtering, extrema detection, dome and basin extraction,
minima imposition, and hole filling.

area opening and area closing: Area opening and area closing find its applicability in
image filtering tasks and image segmentation [23]. Area opening and area closing are
also used in the construction of more complex morphological operators. An example is

the morphological attribute openings and closings, which are generalizations of the area
opening and area closing, and allow filtering of images based on a wide variety of shape or
size based criteria [4].

levelings: In complex image-segmentation problems, it is possible to use a composition of

morphological transformations such as geodesic opening and closing operations, in order
to enhance marker selection. The composition of opening and closing operations by mor-
phological reconstruction may be considered as a recently formalized technique, called
levelings [10] [11]. Applications involving marker selection like watersheds take advantage
that, after the levelings, an image has homogeneous regions (i.e. flat zones), and that the
levelings can be applied to the original image at different levels of simplification using any
criterion like size, shape, or contrast.

fast marching methods: A fast marching level set method is presented for monotonically

advancing fronts, which leads to an extremely fast scheme for solving the Eikonal equa-
tion [18]. This technique has been applied to a wide collection of problems, including
construction of geodesics on surfaces, computer vision, and shape-from-shading [17].

watersheds: One of the most useful methods among the mathematical morphology algorithms

is a watershed transform. It is the classical morphological method for segmentation and
has been used in several applications like medical imaging, robot vision, image sequences,
and so forth [3]. The idea of using the watershed method for image segmentation is that
the watershed of the surface tends to follow the high ground of the original image in terms
of the intensity level. Therefore, finding the watershed of the magnitude of the gradient of
an image ensures these lines will follow the edges (or regions of high ground) in the image.
This achieves a useful result for image segmentation;

polygon filling: Polygon filling is often executed in the image or frame buffer. It is assumed

that a polygon with proper closed borders are given and that inside the polygon no pixel
has the colour value with which it is to be filled. For the seed fill algorithm we need a
starting point which is inside the polygon. Starting at this seed position, the algorithm
proceeds in all directions and sets each pixel to the required fill colour until the border is
reached;

robot planning: Research in robot planning has considered the interleaving of planning and

13

execution for example, as well as the issue of planning sensor actions as a way of gaining
information for planning. A major theme in robot planning is also the integration of
predictive and reactive planning as a way of making activity more resilient in the face
of a changing environment. Predictive planning often applies the queue-based pattern
in the configuration space using a visibility graph and through free space decomposition
techniques.

Related Patterns

Parallel and Sequential patterns [5] are also used in mathematical morphology. Although

these patterns are less eficient than the queue-based pattern, they are essential for several
applications ranging from distance transforms to morphological reconstruction. A queue-based
pattern can only be used when the notion of propagation is embedded in the solution.

References

1]

2]

[12]

[13]

[14]

S. Beucher. Segmentation d’Images et Morphologie Mathématique. PhD thesis, Ecole Na-
tionale Supérieure des Mines de Paris, Fontainebleau, 1990.

S. Beucher. Watershed, hierarchical segmentation and waterfall algorithm. In J. Serra and
P. Soille, editors, Mathematical Morphology and Its Applications to Image Processing, pages
69-76. Kluwer Academic Publishers, The Netherlands, 1994.

S. Beucher and F. Meyer. The morphological approach to segmentation: the watershed
transformation. In E. R. Dougherty, editor, Mathematical Morphology in Image Processing,
chapter 12, pages 433-481. Marcel Dekker, New York, 1993.

Edmond J. Breen and Ronald Jones. Attribute openings, thinnings, and granulometries.
Computer Vision and Image Understanding, 64(3):377-389, 1995.

M. C. d’Ornellas. Algorithmic Patterns for Morphological Image Processing. PhD thesis,
Univesiteit van Amsterdam, 2001.

M. C. d’Ornellas and R. v.d. Boomgaard. Generic algorithms for morphological image
operators - a case study using watersheds. In H. J. A. M. Heijmans and J. B. T. M. Roerdink,
editors, Mathematical Morphology and Its Applications to Image Processing, pages 323-330.
Kluwer Academic Publishers, The Netherlands, 1998.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: Abstraction and reuse
of object-oriented design. In O. M. Nierstrasz, editor, ECOOP’93: Object-Oriented Pro-
gramming - Proceedings of the Tth European Conference, pages 406—431. Springer, Berlin,
Heidelberg, 1993.

F. C. A. Groen and N. J. Foster. A fast algorithm for cellular logic operations on sequential
machines. Pattern Recognition Letters, 2:333-338, 1984.

L. Ji, J. Piper, and J. Tang. Erosion and dilation of binary images by arbitrary structuring
elements using interval coding. Pattern Recognition Letters, 9:201-209, 1989.

F. Meyer. From connected operators to levelings. In H. J. A. M. Heijmans and J. B.
T. M. Roerdink, editors, Mathematical Morphology and Its Applications to Image Process-
ing, pages 191-198. Kluwer Academic Publishers, The Netherlands, 1998.

F. Meyer. The levelings. In H. J. A. M. Heijmans and J. B. T. M. Roerdink, editors,
Mathematical Morphology and Its Applications to Image Processing, pages 199-206. Kluwer
Academic Publishers, The Netherlands, 1998.

L. Najman and M. Schmitt. Watershed of a continuous function. Signal Processing, 38:99—
112, 1994.

L. Najman and M. Schmitt. Geodesic saliency of watershed contours and hierarchical seg-
mentation. IEEFE Transactions on Pattern Analysis and Machine Intelligence, 18(12):1163—
1173, 1996.

D. Noguet. A massively parallel implementation of the watershed based on cellular au-
tomata. In IEFE Conference on Application Specific Array Processors, July 1997.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

D. Noguet, A. Merle, and D. Lattard. A data dependent architecture based on seeded region
growing strategy for advanced morphological operators. In P. Maragos, R. W. Schafer, and
M. A. Butt, editors, Mathematical Morphology and Its Applications to Image and Signal
Processing, pages 235—243. Kluwer Academic Publishers, 1996.

J. B. T. M. Roerdink and A. Meijster. The watershed transform: definitions, algorithms,
and parallellization strategies. Fundamenta Informaticae, 41:187-228, 2000.

J. A. Sethian. A fast marching level set method for monotonically advancing fronts. National
Academy of Sciences Journal, pages 1591-1595, 1996.

J. A. Sethian. Theory, algorithms, and applications of level set methods for propagating
interfaces. Acta Numerica, pages 309-395, 1996.

P. Soille. Morphological Image Analysis. Springer-Verlag, Barcelona, 1999.

P. Soille and L. Vincent. Determining watersheds in digital pictures via flooding simulations.
Visual Communications and Image Processing '90, pages 240-250, 1990.

B. J. H. Verwer. Distance Transform: Metrics, Algorithms and Applications. PhD thesis,
Delft University of Technology, 1991.

L. Vincent. Algorithmes Morphologiques a Base de Files d’Attente et de Lacets. Extension
auxr Graphes. PhD thesis, Ecole Nationale Supérieure des Mines de Paris, 1990.

L. Vincent. Morphological area openings and closings for grey-scale images. In Y-L. O,
A. Toet, D. Foster, H. J. A. M. Heijmans, and P. Meer, editors, Proceedings of the Workshop
“Shape in Picture”, 7-11 September 1992, Driebergen, The Netherlands, pages 197208,
Berlin, 1992. Springer.

L. Vincent. Morphological algorithms. In E. R. Dougherty, editor, Mathematical Morphology
in Image Processing, chapter 8, pages 255—288. Marcel Dekker, New York, 1993.

L. Vincent. Morphological grayscale reconstruction in image analysis: Applications and
efficient algorithms. IEEE Transactions on Image Processing, 2:176-201, 1993.

L. Vincent and E. R. Dougherty. Morphological segmentation for textures and particles. In
E. R. Dougherty, editor, Digital Image Processing Methods, pages 43—102. Marcel Dekker,
New York, 1994.

L. Vincent and P. Soille. Watersheds in digital spaces: An efficient algorithm based on
immersion simulations. IFEE Transactions on Pattern Analysis and Machine Intelligence,
13(6):583-598, 1991.

L. J. Van Vliet and B. J. H. Verwer. A contour processing method for fast binary neigh-
bourhood operations. Pattern Recognition Letters, 7:27-36, 1988.

FEM Simulator Skeleton

Maria Lencastre (mlpm@cin.ufpe.br)*
Felix C. G. Santos (fcgs@demec.uf pe.br)
Isledna Rodrigues (ira2@cin.ufpe.br)
Mechanical Engineering Department, Federal University of Pernambuco
Rua Académico Hélio Ramos, SN, Recife, PE 50740-530 — Brazil

Abstract

This paper proposes a pattern, called FEM Smulator Skeleton, which describes a general set of classes, and
their interactions, for guiding the development of Smulators Models based on the Finite Element Method
(FEM). This pattern is intended to help the design and implementation of simulators based on what is here
called algorithm skeletons, defined in section 6. By simulators we call a computational system, aimed at
obtaining approximate solutions to systems of coupled partial differential equations, together with a set of
regrictions (differential-algebraic relationships involving one or more vector fields). The problem is first
divided into different pre-defined levels of abstraction (global solution, blocks of groups, groups of phenomena,
phenomena) where the simulator designer must supply algorithm skeletons for each one of those levels. A simple
example is shown in section 8 of this paper, which describes the pattern applicability in the development of a
simulator for the dynamics of a rigid body attached to an elastic beam (with temperature dependent constitutive
relation), where both are also submitted to thermal loads. The main advantage of the pattern isits high level of
abstraction, reusability and modularity in the design of smulators for several coupled multi-physics phenomena.

1. Introduction

A Simulator can be defined as an indispensable problem-solving tool, which can be used
for obtaining an approximate solution of many real world problems. In [17], Banks defines
some steps that guide the model builder in a thorough simulation study process: (a) Statement
of the problem; (b) Identification of questions that are to be answered by the smulation study,
including the various scenarios that will be investigated; (c) Model conceptualisation, where
the real world system under investigation is abstracted by: a conceptual model; a series of
mathematical and logical relationship, concerning the components and the structure of the
system; (d) Data Collection; (e) Model Trandation, where the conceptual model constructed
in step c is coded into a computer—recognizable form, an operational model; (f) Verification,
which is concerned at whether the operational model is performing properly; (g) Vaidation,
which measure the accuracy of the conceptual model as a representation of the real system.

One of the most complex problems with which scientists and engineers are concerned
nowadays, related to smulation software, is the lack of tools which could fulfil their research
requirements in terms of: flexibility in building different solution strategies; providing support
for implementation of more suitable numerical methods; guarantee of superior quality on
software component’s design, implementation and analysis. The main issue behind thisis the
fact that, due to the increasing complexity of the models and numerical methods, the building
of samulation software has become a major part of the scientists and engineer's work. As a
consequence, the tasks of method validation and verification and
shifting from one method to another require considerably more time spent in the development
and implementation of the software than in just some years ago. The same is aso true in the

1 Copyright 2002, [Maria Lencastre, Felix Santos, Isledna Rodrigues]. Permission is granted to copy for
SugarloafPLoP 2002 Conference. All other rights reserved.

software industry, and even more dramatically there, due to the needed sophistication required
by avery competitive market [8].

Nowadays smulation systems supporting coupled multi-physic phenomena can be
important predictive tools in many industrial activities. However, the need for more suitable
numerical tools, which could more appropriately simulate a large amount of coupled
phenomena, and the need for computational environments, which could help the building of
those tools, is till a reality. Simulations using FEM can become very complex, particularly
when the designer wants to guarantee high level of abstraction and reuse of the developed
solutions. Those requirements comprise the main strategies in saving the production costs of
high quality simulation software. This paper shows that a simulation implementation
complexity for coupled phenomena can be greatly reduced with the use of predefined
structures, due to FEM polymorphism. Of particular importance for us is the simulation of
chemo-thermo-mechanical interactions (including control mechanisms), which occur inside a
given system and between such a system and its surrounding environment.

The FEM Simulator Skeleton considers four levels of computation for FEM simulator
conception. It supports abstractions for different phenomena coupling in a single strategy,
identifying which parts can be more reusable than others and proposing a hierarchical and
modular solution. The pattern also suggests a physical phenomenon abstraction, called here
computational phenomenon. The main objective with such an abstraction is to make it easier
the representation of data sharing and dependence between different phenomena.

The pattern’s description is based on suggestions found in [16]. In section 2 the pattern
name is supplied. Section 3, details the context in which existent problems might inhibit
further developments, and to which the pattern solution applies. Section 4 presents the design
challenge through a question. Section 5 shows pattern forces, that is, the patterns design trade-
offs, what pulls the problem in different directions, towards different solutions. Section 6
explains how to solve the problem. Section 7 describes the pattern applicability. Section 8
presents an example of usage, that is, a general smulator scenery and a possible problem that
can be solved by the defined simulator. Section 9 details the resulting context, telling which
forces the pattern resolves and which forces remains unresolved by the pattern, and it points
to other patterns that might be the next ones to be considered. Section 10 talks about known
users. Finally, section 11 presents some conclusions and references.

2. Name

FEM Simulator Skeleton, which means a pattern for modelling FEM simulators based on
algorithm skeletons for coupled phenomena.

3. Context

When a designer defines a computational model for a mathematical formalism, using the
FEM in the context of coupled phenomena, he has to deal with problems like data dependence
and data sharing (Figure 3.1). Such issues are not so trivial to treat in a homogeneous way
because it is strongly dependent on the specific problem being considered. Thus it becomes
difficult to provide reasonable high levels of abstractions, which could represent the main
components, properties, relationships and operations involved. Without that, even when
making use of sophisticated FEM libraries, the tasks involved in building and assessing the
performance of new methods could become very costly and time consuming due to the lack of
modularity and reuse. Also as far as we are concerned, there is no standardized solution for

the control of coupled phenomena simulations, making the integration of reusable
components a very difficult task in this context.

Phenomenon 1 Phenomenon n
T~
Data Sharing Data dependence

Figure3.1 Phenomenareationship

There are 4 steps frequently identified in a FEM simulation process. Model, Pre-
processing, Simulation and Post-processing [18]. Here we give a brief description of the
function considered for each step [8,9]:

1) Modelling, where the smulator structure conceptualisation is defined, based on the
designer strategies (skeleton algorithms, global scenery and so on);

2) Pre-processor, where the simulator is built, that is, where the smulator dynamic data
structures are generated and assembled, based on the designer definitions, in order to
create the required simulator, for the desired mathematical and computational formalism;

3) Smulation Processor, represents the smulation run, where the main computation effort
would be, in general, the computation of the discrete vector fields for all phenomena,
which means the solution of several coupled systems of (frequently non-linear) algebraic
equations for each time step (if time dependent). In this step, different groups of input
data are processed on the pre-defined simulator. The output from this processor allows for
the model verification.

4) Post-processor, where the solution is processed in order to obtain the quantities of interest
for the user and for the needed visualization.

| MODELLING | | PRE-PROCESSOR | | SIMULATOR || POST-PROCESSOR
T]

Figure 3.2 Simulation Process

In this pattern we are concerned with the conception of the Simulation Processor, the
Modelling phase. We assume that the simulator building and assembling will be based on a
variable designer data model, which describes. the initial scenery, algorithm skeletons and
numerical methods, phenomena, geometry and so on. The initial scenery defines the class of
problems that the simulator will be able to tackle in a broad sense. The simulator model is
able of considering the use of many procedures (for instance: Time Loop; Adaptation
Iteration; Time Step Estimation; Solution of Algebraic Systems; Error Estimation; etc), which
may be either present or not, depending on the configuration of the initial Scenery. Thus the
simulator model is provided with a global solution strategy, several phenomena details and
their inter-relationships, together with iterations on solution schemes for blocks, groups, and
so on. Those pieces of data for the simulator model will then be mapped to appropriate
structures during the Pre-processor phase. The result of the Pre-Processor is the final
Simulator, which will be activated, when desired, to compute the approximate solutions and
to send them to the Post-Processor. The Post-Processor will generate the final results in the
way designed and implemented by the user.

4. Problem

How a complex simulator for coupled multi-physics phenomena based on the Finite
Element Method (FEM) can be structured in such a way that guarantees high level of reuse
and modularity?

5. Forces

The FEM Simulator Skeleton pattern tries to solve forces, which are related to high costs
in complex simulation systems development, especially in the direction of complexity
management and software quality achievement. Nevertheless, this pattern also considers the
automatic articulation of solution strategies for coupled multiphysic phenomena and their
possible replacement. In what follows we describe the evolved forces in the context of FEM
coupled phenomena simulators modelling:

a) High complexity: there is a lack of standard abstractions that help the simplification and
organization of complex structures of data and code related to coupled phenomena
smulations in the FEM context. The relationships among phenomena are strongly
problem-dependent and solution algorithm dependent.

b) Reusability: numerical experiments are complex congructs, based on pieces of
information such as strategies, auxiliary methods and pieces of data. They can be strongly
reusable for large classes of problems.

c) Adaptability: due to the frequent improvement of auxiliary numerical methods or due to
the need of comparing different methods, the simulator architecture must guarantee that it
can suffer adaptations (to some extent) to support the required modifications without
heavy reprogramming.

d) Strategy Independence: in order to allow the designer to specify the simulator features and
strategies, there must exist flexibility in building different solution strategies.

e) Integrability: there is a need for an integral piece of software, which is able of
monolithically solving a specified set of coupled phenomena. Some problems smply do
not allow for an independent solution for each phenomenon. Furthermore, whenever
different software components have to be used together for the simulation of coupled
phenomena (for instance, in a partitioned, staggered way), problems concerning data
transfer and integration frequently appear.

6. Solution

The main structure of the pattern for representing a general FEM simulator is composed
of Simulator, Block of Groups, Group of Phenomena, Phenomenon and Algorithm Skeletons
and MathMethods, see Figure 6.1. The FEM Simulator Skeleton pattern suggests a FEM
simulator algorithms organization with 4 levels of computational demands. Global Skeleton,
Block Skeletons, Group Skeleton and Phenomenon. These levels were defined due to the high
number of repeated (smilar) structures and the degree of reusability of the involved
algorithms (see example in section 8).

g Q
I\ 1. \ /1
GolbalSkeIeton} l"* Block }<> L } Group |~ Phenomenon

w RN %

‘Block Skeleton | | GroupSkeleton | | MathMethod

Y
Algorithm Skeleton

Figure 6.1 Participants of the Simulator Pattern

6.1 Participants

The FEM Simulator Skeleton pattern is composed of the following participants:

Smulator represents a class of possible simulations and it is responsible for the control of
the main process flow; thus it maintains the core of simulation through the Global
Skeleton.

Algorithm Skeletons are agorithms described by the simulator designer, corresponding to
one of the levels of computation (Global, Block, Group), using the pattern-defined
abstractions.

MathMethod is a tool with a very specific purpose and is used by either Algorithm
Skeletons or encapsulated procedures inside a Phenomenon. For instance, MathMethods
are defined for numerical integration, mesh adaptation, error estimation and other tasks.

= Global Skeleton isthe highest level of the solution scheme and it articulates the action of
all Blocks. It is supposed to be strongly reusable.

Block is a set of Groups of phenomena. Each Block has a set of skeletons called Block
Skeletons. More than one block is justified, for instance, in the case where a problem can
be partitioned into either independent or one-side dependent sets of groups of phenomena.

= Block Skeletons, where the Groups are required to perform a certain number of categories
of procedures (for instance, partitioned - staggered - solution procedures involving groups
of phenomena). When a Group is asked to execute a category of procedures (for instance,
to compute a solution for its group of phenomena), it executes a very specific algorithm,
which isamember of that category. Block Skeletons are supposed to be strongly reusable.

A Group is a set of phenomena, which are going to be solved monolithically. A Group is
provided with a set of Group Skeletons.

Group Keletons represent very specific procedures. Due to its problem- and method-
specific definition and organization, the Group Skeletons are the less reusable among all
Skeletons. Nevertheless, it may be implemented in such a way that it becomes able of
considering a varying number of phenomena, depending on the requirements from the
simulation design.

A Phenomenon represents a complex system composed of data and tools. Its primary
responsibility is to provide the contributions of each phenomenon to a Group System to be
solved in each instant of the solution process. This level is the place where the couplings
and other processes of data sharing and dependence are considered in the formation of

the needed vectors and matrices. It is the lowest level of the procedures in the solution
schemes and thus it represents a tremendous effort in terms of programming, testing and
validation. Therefore, the reusability of the tools located in the classes, which compose
what we call a Phenomenon is fundamental in the saving of time and cost whenever one is
programming new simulations.

6.2 Levelsof Computation

The 4 levels of computation demands (skeletons and methods) are detailed in what

follows.

a)

b)

Global Skeleton is the first level of computation and represents the global algorithm
skeleton (the core of the simulator). The global algorithm skeleton articulates the
procedures involving al blocks. The procedures here deals with a higher level of the
smulation execution, like time loops, adaptive iterations, and so on. It also includes
general requirements such as asking the blocks to obtain the block solution or to perform
an adaptation procedure. There is no need for matrices and vectors manipulations in this
level. The building of a Global Skeleton depends on a series of decisions about the whole
classification of the simulation. A Global Algorithm Skeleton is unique for each
smulator, but may be replaceable, producing another smulator. Globa Algorithm
Skeleton is the procedural structure representing the algorithm to be performed with
demands defined still in a higher level. It does not make any requirements directly neither
to a Group of phenomena nor to any phenomenon.

Block Skeletons are made in order to articulate the Groups of Phenomena in the execution
of tasks demanded by the Global Skeleton. Each block has a set of skeletons (Block
Skeletons), which satisfies the demands from the Global Skeleton by decoding them into
demands for the groups in a previously defined order. A simulator may have a Block
Skeleton changed without needing to change its Global Skeleton. Nevertheless, a well-
designed Block Algorithm Skeleton is aso very reusable and it is not supposed to be
substituted even in the case of very severe changesin the solution algorithm in the level of
the Group of phenomena. Block Skeleton defines solution procedures such as iterations in
the case of operator splitting solution strategies (which involves all Groups), iterations in
the case non-linear solvers (involving one or more Groups) and so on. It aso transfers
directly to its Groups some of the demands coming from the Global Skeleton (time step
estimation, error estimation, etc.) and possibly post-processing the output from the
Groups.

Group Skeletons are made in order to articulate the Phenomena in the execution of tasks
demanded by the Block Skeletons. A Group is provided with a set of Group Skeletons,
which represent very specific procedures and may not be very reusable. Its purpose is to
segment (encapsulate) the parts from the solution scheme, which are specific of the
particular solution method being used for a group of phenomena. Usualy, the more
reusable parts of the solution scheme are best located either in a Block Skeleton or in the
Global Skeleton. In the Group Skeletons the quantities produced by the Phenomena
Skeletons are manipulated in the way required by the solution method, which
characterizes the Group. Thus the Group becomes specialized in the solution of any subset
of a set of possible phenomena and so, all vectors and Matrices used in the solution are
located in the Groups. The Group also needs to have knowledge of the couplings of its

Phenomena whenever building coupled terms. This is so because the coupled terms are
built using a possibly already computed discrete vector field (possibly related to other
group), which should be appropriately defined. Frequently, Group Skeletons make use of
MathMethods, whenever there is a task, which can be encapsulated representing either a
reusable or a replaceable procedure (solution of an algebraic system of equations, for
instance).

d) Phenomenon Procedures represent the lowest level of all procedures in the ssmulation and
are specific of al possble contributions its Phenomenon can provide to any solution
scheme. Starting from the computation of the Global Skeleton and going through the two
other levels of articulation, what remains to be defined are the contributions of each
phenomenon to its Group solution scheme in a uniform parameterised way. The
phenomena classes will be composed of phenomenon data and a group of numerical
methods (MathMethods), which are replaceable (can be modified by the users through
input data, like integration rules, for instance).

6.3 Computational Phenomenon Abstraction

A computational phenomenon, or simply a phenomenon (see Figure 6.2), is defined by
it's vector field and weak forms defined in its geometric entity together with boundary
conditions information. The boundary conditions are also implemented as fictitious
phenomena, defined on the respective geometric entity of the boundary of its domain. A
phenomenon has also MathMethods which implement, for example, Mesh generation,
Integration Rules, Shape Functions, etc.

A computational phenomenon is considered as a set of processes, which produces
matrices and vectors related to a specific weak form (as awhole or only parts of it) defined on
a specific geometric domain. Each one of those matrices and vectors may be dependent on
vector fields from other phenomena. The reference adopted in the definition of a
computational phenomenon is based on the smulation region in which it is defined.
Phenomenon is an abstraction and may also be used to represent restrictions (involving one or
more phenomena), boundary conditions and other types of relationships and processes.

Coupling
1

*
Phenomenon
1.* 5 .
— =] PhenEntity = IntegrationRule
~_

1“1///‘
WeakForm (<
\Vo.1 P
Ceometty 1* 1.* 0.* PhenMesh
MathMeth od VectorField ‘ ShapeFunction

/ 1.*

l\" GeometryMesh M GeometryFiniteElm PhenFiniteElem
1. 1.1

7.
/
PhenFinite Ele mNode

1.* \
GeometryEntity

Figure 6.2 Phenomena classes

An original phenomenon may generate several computational phenomena by the time the
modelling is finished. The generated phenomena are related to boundary conditions, which

are defined for the original one and implemented as fictitious phenomena. Fictitious
phenomena defined in order to implement boundary conditions inherit many pieces of
information from the origina phenomenon, such as vector field, geometric and phenomenon
mesh, etc.

6.4 Interaction

We can summarize the pattern major interaction in the following way: (a) the Global
Skeleton articulates the procedures involving al blocks; it does not make any requirements
directly neither to a Group of phenomena nor to any Phenomenon; (b) the Block Skeletons
then define the activities of the groups; (c) the Group Skeletons in turn articulate the
phenomena in their computations. This produces more clean and reusable Global and Blocks
algorithm Skeletons leaving to the Groups algorithm Skeletons the responsibility of defining
the specific problem dependent (non-reusable) procedures of the whole solution algorithm.

7. Applicability

We can say that the proposed pattern has great applicability in FEM simulation modelling
especially when the following situation is very frequent:

= Several phenomena defined on the same geometric region, with either different
meshes and different adaptation criteria or sharing meshes and other data;

» Interchange of data between phenomenais very frequent (data dependence)

= Assessment of solution quality may be different and sometimes interdependent (error
estimation, adaptation, approximation properties) from one phenomenon to another

» The desired solution algorithms articulate separate groups of phenomena and those
groups, in turn, consider sets of phenomena in the computation procedures (asit is the
casein operator splitting (staggered) schemes).

8. Example of Usage

In order to make clear why the pattern was proposed, in section 8.1 we show the general
scenery of a smulator model, which is described to the extent that it is needed for our
explanation purposes. Many details will not be mentioned in the pursuing of explanation
clarity. Section 8.2 details the pattern application to the proposed simulator scenery. The
objective of this example is to give a better comprehension of the involved pattern
participants, providing an illustration of the interaction between the computation levels of
FEM Smulator Skeleton pattern. Section 8.3 provides some considerations related to the
pattern application. In section 8.4 we show one real example, of problem formulation, that can
be solved by the defined simulator.

8.1 A Simulator description

We consider the following global scenery example for a FEM simulator specification: a
simulator capable of solving problems involving transent Phenomena; the phenomena
context includes linear temperature-dependent elasticity, rigid body motion and linear heat
transfer; Dirichlet restrictions are considered through Lagrange multipliers; the simulator
process does not include estimation error and adaptation processes (see Figure 8.1).

Simulator

= Transient phenomena in the context of linear temperature-dependent
dasticity, rigid body motion and linear heat transfer; Dirichlet

restrictions are considered through Lagrange multipliers;

Equation type in each group is linear

Figure 8.1 Simulator specification (global scenery)

The Block Scenery for each Block considers an iteration between the solution for the
Lagrange multipliers and the solution for the phenomena themselves (assumes stabilization).
Also, it assumes that there are two blocks. one for temperature and its Lagrange multipliers
and other for the elagticity, rigid body motion and their Lagrange multipliers. This type of
choice for the number of blocks is due to the fact that the present model of heat transfer does
not depend on the result of the elasticity problem. Thus the heat transfer problem (and
respective Lagrange multipliers) can be solved before solving the elasticity/rigid body motion
problem (and respective Lagrange multipliers), which depends on the temperature.

The Group Scenery for the Groups of Phenomena is with matrix assembling; the inner
procedure for each solver group is linear and iterative with Pre-conditioning and Equation
typein each groupislinear. No Front tracking.

8.2 Pattern Application

Usually, it is observed that an algorithm defined for the solution of a problem by the
FEM method has repeated (similar) structures. Thus in the pursuing of a high degree of
reusability, four levels of demands in the agorithm were devised: Global Skeleton, Block
Skeleton, Group Skeleton, and Phenomena procedures. In the Block Skeleton we will assume
that N'q is the number of groups for the i™ “block. In what follows we present the algorithm
Skeleton and the Global skeleton.

Figure 8.2 describes the Globa Algorithm Skeleton for the proposed Simulator. As it
involves, for example, transent phenomena it includes tasks to compute initial time steps for
blocks and also the computation of the next time step.

I. FromBlocksi = 1 until 2
1.0) Retrieve initial state for Block i
[.1) Compute initial time step 4t; for Block i
[.11) Computeinitial auxiliary data for Block i
I1. Computeinitial At=min, . <, {4t} and settimeinstantt; = 0
1. While t; < Ty do:
|||O)S§tt0:tl andt1:t0+ At
[11.1) For Blocki =1 until 2
111.1.0) Solvefor Block i
I11.1.1) Compute next time A4t; for Block i
I11.11) Compute next timestep At=min i <» {4t;}
[11.111) Continue with time iteration
IV. End of the smulation

Figure 8.2 Global Algorithm Skeleton

In Figure 8.3, we represent a graph in order to help the understanding of the algorithms
that compose the global skeleton. In the graph-like structure, each node on the graph means

either the definition of a loop, an iteration or a procedure. Figure 8.4 details the Block
Skeleton for the proposed Simulator. It is composed of sub-skeletons that implement for
example: Initial state for the Block (1.0), the solver for the block (111.0), and so on.

om

mio arer nim

Figure 8.3 Global Algorithm Skeeton Graph

Is-B") Initial State for Block r (see (1.0)):
Is-B".0) For i = 1 until N’y
Is-B".0.0) Ask Group i to compute Initial state for its phenomena
[t-B") Initial time step for Block r (see (1.1)):
It- B".0) For i = 1 until N'g
It- B".0.0) Ak Group i to compute Initial time step 4i
It-BLI) Set At' = min 1 'p {4}
Id-B") Compute initial auxiliary data for Block r (see (1.11))
1d-B".0) For i = 1 until N’y
Id-B".0.0) Ask Group i to compute its auxiliary data.
9-B") Solve for Block r (see (111.0))
S-B'.0) Initialiseiteration state k = O for Block i
S-B'.1) Set k = 0. While convergence for Block r is not achieved, do:
9-Br.1.0) Compute the (k+ 1)th-solution based on the k th-solution for Block r
9-Br.1.1) Compute error between the solutions k and k+ 1 for Block r
9-Br.1.11) Compute auxiliary data for next step and increment k = k+1
S-B".11) Accept last solution from iteration loop for Block r
Sk-B") Initialiseiteration state k = 0 for Block r (see (3-B'.0)):
S-B'.0) For i = 1 until N
S-B'.0.0) Ask Group i to initialise iteration state k= 0
9-B") Compute the (k+ 1) "-solution from the K" -solution for Block r (see (3-B'.1.0)):
9-B".0) For i = 1 until N'g
9-B".0.0) Ask the Group i to compute the (k+1)" -solution from the K" —solution
for Groupi
Er-B") Compute error between the (k+1)™ -solution and the k™ -solution for Block r (see (3-B'.1.1)):
Er-B".0) For i = 1 until N'g
Er-B'".0.0) Ask Group i to compute error Ei* for Group
Er-B".I) Compute Block error E" based on the Group errors{ Ei*} 1<j< N
Ad-B") Compute auxiliary data for Block r at k™ -iteration (see (3-B".I.11)):
Ad-B".0) For i = 1 until Ny
Ad-B'".0.0) Ask Group i to compute the auxiliary data for this Group.
As-B") Accept last solution obtained in the iteration for Block r (see (9-B".11)):
As-B'.0) For i = 1until Ny
As-B'".0.0) Accept last solution obtained for Group i and storeit.
Nt-B") Compute next time step for Block r (see (I11.1.1)):
Nt-B".0) Ask group i to compute next time step 4;
Nt-BLI).Set At = min. <i _mrg {4}

Figure 8.4 Block Skeleton for any Block r

O It-B.0 Q
Is-B.0 //” \
O
Is-B.0.0 “\ I-B.0.0 I-B.0u
\‘\
O '
U

15-B.0.0.0

I-B.1

a9 /9{
/

11-B.0.0.0

Figure 8.5 Example of subgraphs of the Block Skeleton Graph

In Figure 8.5, a part of the Block Skeletons is described in graph-like structures. So, the
number of Block algorithms is ten, which are the same for both blocks in the current setting.
Observe that those Block Skeletons articulate the groups in a very smple way, almost only
sending to the groups the requests made by the Global Skeleton. Nevertheless, it should be
noted that the decision of providing an iterative scheme involving the Groups was made and
defined by the Block Skeleton. In this sense such a procedure is transparent to the Global
skeleton and to the Group Skeletons.

The Group Skeletons is subtler in what concerns the articulation of their phenomena for
providing the demands of the original solution algorithm. The detailed description of Group
Skeletons is beyond the objectives of this example. However, it can be seen from the
algorithm that each Phenomenon should provide Matrices and vectors for assembling. In
order to make it simpler and uniform, consider that, for each matrix (let us say, C) a given
phenomenon may provide at the finite element level, it will offer the following indexed
options

0. C
1. C.Vec

If more than one matrix is provided (let us say C; and C,) linear combinations will also

be provided like, for instance,
2. aCi+bGC,

In the above Vec is a given vector and a and b are given scalars. Each one of those quantities
a phenomenon offers to its Group may depend on vector fields from other phenomena (either
from its Group or not). It is the responsibility of the current Group to indicate: (i) the quantity
to be computed by its phenomena and (ii) in the case of coupling, what is the vector field
(either from the current Group or not) the coupled phenomena should use in order to provide
what is needed for the computation of the coupled quantity. With such an organization,
demands to the Phenomena become very uniform, making them extremely reusable.

A fina remark is related to the fact that this pattern was made possible by the way the
data and tools are built in the Phenomenon level. It isin this level that the data dependence
and sharing between phenomena are defined, leaving the Global Skeleton and the Block
Skeletons free from those details. However, it is the Group Skeletons, which are the agents
responsible to map the need of a phenomenon for quantities from other phenomena to the
actual quantities, which are stored either in the current Group or in other Groups.

8.3 Considerations

This pattern considers that the class of problems, which define the applicability of a
simulator, can be defined in a somehow clear way. For instance, considering only its Global
Skeleton, the Simulator built in the example (section 8.2) is able of solving simulations in the
class of dynamic problems with neither adaptation nor error estimation. Now, considering its
Block Skeletons, it is able of solving only linear (or very mild non-linear) problems with
Dirichlet type of restrictions and using a staggered stabilized methodology. Those restrictions
may involve one or more vector fields. The Group Skeletons are very specific to the solution
scheme used and even slight modifications may cause a need to redesign and re-program
them. As it was said just before, the couplings and other process of data sharing and
dependence are considered in the phenomenon level leaving the Global Skeleton and the
Block Skeletons free of having to consider them. Since the Group Skeletons are the least
reusable, it may (and frequently does) deal with specifying the right quantities a coupled
phenomenon should retrieve from its own Group. This reflects a coupling between Groups,
which has been described earlier and is related to the specifics of the solution methodology
being used by the Group.

8.4 Example of the Smulator Applicability

An example of a problem that can be solved by the defined simulator (section 8.1 and
8.2) is described in what follows. Consider the geometry defined in Figure 8.6. It is composed
of two sub-domains Q; and Q. The physical phenomena defined therein are (transient state):
linear elasticity with temperature dependent constitutive equations in Q;; rigid body motion of
Q, (this body has a certain distributed density py) and heat transfer in Q; and Q». Let a point
pv O Q> be areference point for the rigid body. It is very convenient if such a point could be
the centre of mass of Q,, because the weight and inertia terms will not generate moments
around py. The proposed simulator will build the global linear system related to al the
geometric mesh elements, for each phenomenon, and solve this system.

r 4 I'g

8
r Q) % 7 rs

6

Iy 3 I'_l

Figure 8.6 Whole domain

For the present example of problem formulation, to be applied to the defined FEM

simulator we can consider the following defined [10]:

a) Blocks: block 1, composed of groups 1 and 2; block 2, composed of groups 3 and 4.

b) Groups. group 1, phenomena represented by vector fields T, and T, (heat transfer in Q;
and Q); group 2, phenomena represented by vector field |, (Lagrange multiplier in 7,
due to restrictions between T, and T,); group 3, phenomena represented by their vector
fields wy and w; (elasticity in Q; and rigid body motion in Q5); group 4, composed of the
phenomena represented by their vector fields p and pr (Lagrange multipliersin M, and I,
respectively, due to restrictions in wy).

9. Consequences

It is worthwhile observing that a FEM Simulator Skeleton pattern is not restricted to a
given implementation of Blocks, Groups and Phenomena. Their abstract behaviour and
interaction are independent of a specific implementation. When dealing with the building of a
specific Smulator, the implementation of the Global Skeleton and of the Blocks Skeletons
should reflect the needs for the solution of a large class of problems, which constitutes its
strategy. Thus each built Smulator, based on the proposed pattern, should be able of solving
completely different problems, defined on completely different geometries and considering
completely different sets of phenomena, provided the problem is still within its applicability
range.

9.1 Forcessolved by the pattern

The FEM Simulator Skeleton pattern supports:

= Higher level of abstraction for the main concepts of FEM Simulation Skeleton pattern
modelling, reducing the complexity and improving the correctness of the systems
(ssmulators) that will be devel oped.
Higher level of hierarchical modularity for the system process organization, by the use
of global skeletons, blocks and group skeletons.
A solution, which may consider monolithic coupled phenomena simulation.

= The higher levels of code reusability are found in the Phenomena, Global and Block
skeleton structures, followed by Group of phenomena. The less reusable is the group
of phenomena, because it is the place more sensitive to modifications, whenever
changes in the numerical method and type of ssimulation are desired.
Reliability of the computer-generated predictions is improved by the use of pre-
defined strategies, numerical methods and templates.

= A higher level of maintainability is acquired once the pattern: separates different
levels of computation and high reusability of the first two levels of computation is
guaranteed.

9.2 Negative Consequences

In the FEM Simulator Skeleton pattern some negative consegquences can be identified: the
model builders require specia training, that is, the designer must understand the proposed
abgtractions; designers will only achieve higher levels of reusability if they know how to
articulate their strategies and problems; the smulator performance can decrease due to the
extraimposed levels of abstraction.

9.3 Forcesunsolved by the pattern

Some forces are still not solved or not even treated in the present work:

a) Automatic programming: this is desired due to the great volume of code that must be
reprogrammed in a single application of coupled phenomena.

b) Expertise level: there are lots of standard stuations and states, which are neither
assisted nor guaranteed.

c) Performance: generally the smulations are very computer time consuming. So the
performance must be taken seriously into consideration.

d) Scalability: simulations frequently require large volume of data, which can be
partitioned and processed by many processors in a distributed memory environment.
So, scalability with respect to the number of processorsis important.

e) Portability: the smulations code should have high levels of reusability. So, it is
important for it to be portable in order to take advantage of different existing expertise,
using different computational environments, which frequently should interact in
building multi-physics simulations.

f) Reliability: the reliability of computer-generated predictions is a great concern to
specialists.

g) Simulation Pre-processing: pre-processing of input data is an important task, since the
simulator structures require a complex mapping of the real input data. Also, the data
structure may ease the burden on the global algorithms complexity in what concerns
data sharing and data dependence between different phenomena.

9.4 Patternsthat might be the next ones

Patterns that might be the next ones to be considered are related to:
Pre-processing of input data (it was considered in [11]);
Support for solution independence, in order to alow the designer to specify the system
features and strategies,
Automatic Programming.

9.5 Related patterns

The authors did not find any pattern that is specifically about algorithm hierarchical
modularisation for simulations based on FEM. There are some works, however, which present
some level of abstraction and modularisation [3,4,7]. Specifically, in the simulation of
coupled phenomena based on FEM, there are some works under development [8,9,10], but
not yet in a pattern form.

10. Known users

Computational Mechanics has had a profound impact on science and technology over the
past three decades, due to its effectiveness in solving problems of interest to society and on
providing deeper understanding of natural phenomena. The field has been enormousy
successful to date because of its unprecedented predictive powers, making it possible the
simulation of complex physical events and the use of these simulations in the design of
engineering systems [10]. This is done through the so called “computer modelling”: the
development of discretized versions of theories of physics (and other fields), which are
amenable to digital computation, together with complex processes of manipulating these
digital representations to produce abstractions of the way real systems behave [1]. The Finite
Element Method (FEM) has been frequently used in the field of Computational Mechanics,
which has come to rely heavily on this technique. Gradually FEM is becoming the most
popular analysing procedure within various fields of design [2].

Thus due to tremendous ongoing activity in the fields of application of the FEM, there is
a need for tools which could help the development of simulators with a high reusability
degree in both the academic and industrial worlds. The expected users of this pattern are

scientists and engineers who already deal with development of FEM codes in some level, or,
at least, have a basic knowledge of that method.

11. Conclusion

The FEM Simulator Skeleton pattern gives support in the conception of FEM simulators.
This pattern makes it possible to separate complex procedures from simpler ones and strongly
re-usable software components from less re-usable ones. Besides, it opens the way to
automatic programming of FEM simulators for coupled phenomena. One immediate benefit is
the enhancement of re-usability.

Refer ences

[1] Committee on Theoretical and Applied Mechanics, “Research Directions in Computation al
Mechanics’, areport of the United States, September 2000.

[2] Tworzydlo, Oden T. J. “Knowledge- Based Methods and Smart Algorithms in Computational
Mechanics’, Engineering Facture Mechanics, Vol.60 No5/6, 1995.

[3] Langtangen et a, “Increasing the Efficiency and Reliability of Software Development for System
PDES’, Modern Software Tools for Scientific Computing, pages 247-268 Birkauser, 1997 .

[4] Langtangen et al, “Finite Element Pre-processors in Diffpack”, Report 1999-01.

[5] OMG, “Unified Modelling Language Specification Version 1.4”, September 2001.

[6] Oren T., King D., “Requirements for a Repository Based Simulation Environment”, Proceedings of
the 1992 Winter Simulation Conference. ed. Swain, Goldsman, €t, 1992.

[7] Parker S., Weinstein D. and Christopher J. “The SCIRUN Computational Steering Software
System”, Modern Software Tools for Scientific Computing, 1997

[8] Santos F., Lencastre M. and Almeida |. “Data and Process Management in a FEM Simulation
Environment for Coupled Multi-physics Phenomena’, Fifth International Symposium on
Computer Methods in Biomechanics and Biomedical Engineering Rome, 2001

[9] Santos F., Lencastre M. et d. “FEM Simulation Environment for Coupled Multi-Physics
Phenomena’, Simulation and Planning In High Autonomy Systems - AlS 2002; Theme: Towards
Component-Based Maodelling and Simulation, Lisboa, Portugal, 2002.

[10]Santos F., Lencastre M. and Araljo J. “A Process Mode for FEM Simulation Support
Development”, Summer Computer Simulation Conference - SCSC’ 2002, US Grant Hotel- San
Diego, California, July, 2002

[11] Tanir and Servic “A Standard Simulation Environment: A Review of Preliminary Requirements’,
Proceed. Winter Simulation Conf. ed. Swain, Goldsman et al, 1994.

[12]Rucki and Miller “An Algorithm Framework for Flexible Finite Element-based Modelling”,
Computer Methods Application Mechanic Engineering, 136 (1996) 363-384.

[13]Tworzydio and Oden “Knowledge- Based Methods and Smart Algorithms in Computational
Mechanics. “ Engineering Facture Mechanics. Vol.60 N05/6, 1995.

[14]Kortright “Modeling and Simulation with UML and Java’, Nicholls State Univ. LA, 1997.

[15]Gamma, E. et a. “Design Patterns — Elements of reusable object-oriented software”. Addison-
Wedley, 1994,

[16]Coplien, J. “Foundation of Pattern Concepts and Pattern Writing”. Bell Labs / USA and
University of Manchester / UK. Simpésio Brasileiro de Engenharia de Software —SBES 2001,
Brazil, 2001.

[17]Banks, J. “Handbook of Simulation - Principles, M ethodology, Applications and Practice”. John
Wiley & Sons, Inc. Georgia Ingtitute of Technology, Atlanta, Georgia. 1998.

[18] Cook R. D. “ Finite Element Modeling for Stress Analysis’, by John Wiley and Sons, Inc., 1995

APPENDIX

This agppendix presents the following paper "PDC: Persgent Data Collections Paitern'.
PDC is a design pattern that contains a set of classes to obtain a better maintenance and
reue levds when usng persgence mechanisms to devdop an object-oriented
aoplicaion. This pgper was submitted and workshopped in the fird verson of the
SugarloafPLOP conference (SugarloafPLoP2001). Unfortunately, we could include it in
the SugarloafPLoP2001 hard copy proceedings, but we ae glad to publish its find
verson in the SugarloafPLoP2002 proceedings.

PDC: Persistent Data Collections pattern

Tiago Massoni Vander Alves Sérgio Soares Paulo Borba*
Centro de Informética
Universidade Federal de Pernambuco

Introduction

The object—oriented applications layer architecture [2, 3] allows the distribution of classes
into well-defined layers, according to each crosscutting concern of an application (busi-
ness, communication, data access, etc.) to obtain separation of concerns. Elements from
different layers communicate only through interfaces. However, we have to refine these
layers by filling them with specific classes. The complete set of these classes, related to
business and data access concerns, was transformed into a design pattern, called PDC
(Persistent Data Collections), which is presented in this paper.

Brief

Provide a set of classes and interfaces in order to separate data access code from business
and user—interface code, promoting modularity.
Context

When developing persistent object—oriented information systems applications using spe-
cific Application Programming Interfaces (APIs) that lead to interwoven code making
maintenance and reuse difficult.

Problem

Obtain better maintenance and reuse levels when using persistence mechanisms to develop
an object—oriented application.

Forces

e Developers should be able to address the business aspects of an application inde-
pendently from persistence operations.

*Supported in part by CNPq, grant 521994/96-9. Electronic mail: {tmasson,vralves}@us.ibm.com,
{scbs,phmb}@cin.ufpe.br. Av. Professor Luis Freire s/n Cidade Universitaria 50740-540 Recife PE
Brazil.

e Ad hoc implementations directly using specific Application Programming Interfaces
(APIs) usually lead to interwoven code that is hard to maintain. For example, a
Java [8] program can use the JDBC API (Java Database Connectivity API [14]) for
manipulating persistent data within business code.

e The type of persistent storage or vendor may change over the life of an application.
e Business classes may be reused by other applications.

e It may be non-trivial to deal with some aspects from persistent systems, such as
enabling connections to database platforms and managing transactions efficiently.

e The system performance should not be affected.

Solution

The basic idea of PDC is to avoid mixing data access code with business code from
domain-related objects, leading to extensibility and reusability. For this purpose, we
propose the separation of design classes in two types:

e classes describing business logic objects.
e classes for data manipulation and storage, with specific persistence code.

The communication between these two types of classes is carried out through inter-
faces, which guarantee independence between the business layer and the data access layer.
Business code will be the same, regardless of how data access operations are implemented.

PDC suggests the use of persistent data collections, which contain code for manipu-
lating a group of persistent objects of an application. These collections represent a clear
distinction between the ”data” and the ”data set”, being the core of our solution. Our so-
lution is complemented by ideas taken from other well-defined design patterns, as Facade,
Abstract Factory and Bridge [7]. The goal is to reduce the impact caused by modifications
in the system functional and non—functional requirements.

As in the example in Figure 3, for each important domain object which will be persis-
tent in the application (like Account), we create two other classes: the business collection
(AccountRecord) and the data collection (AccountRepositoryJDBC) classes, represent-
ing business and persistent collections of domain objects, respectively. Furthermore, each
persistent domain class must inherit from the PersistentObject class, indicating that
its objects will be stored persistently.

The Bank class encapsulates all services offered by the application (applying the Facade
pattern [7]). The object from this class calls methods on all business collection objects
of the application (as AccountRecord), in order to implement the services. The business
collection in turn uses persistence-related services from its corresponding persistent data
collection (as the insert and search methods).

The PersistenceMechanismJDBC class is used by Bank and persistent data collections
(as AccountRepositoryJDBC) for performing database platform services, such as connec-
tion and transaction management. These issues are addressed by specific methods in the
persistence mechanism.

In order to request services from the data access layer, the business objects send mes-
sages to data access objects only through interfaces, which provides extensibility for the
design of the application. In the example, the TAccountRepository interface separates
business collections from persistent data collections, and the IPersistenceMechanism
interface isolates specific persistence mechanism services from its business clients, such as
the Bank class.

As in the example above, we can use PDC to structure the application using a set
of specific classes, separating business and user—interface concerns from persistence con-
cerns. Such application is easier to maintain and to extend, since its core functionality
is decoupled from data access code. In addition, classes from the application can also be
reused by other applications.

Structure

Figure 1 details the structure of PDC, using an UML class diagram [4]. The class names
denote the element of the pattern itself, including classes with the ”Interface” stereotype,
which denote interfaces containing only method signatures to be implemented by the
indicated classes.

Facade

systetnService()

1“*

specificliystemSetrvice])

\L “<[nterface=>
<=Interface>> [Persistencellecharism
[Buszitiess-Data

BusinessCollection ‘

inget) heginTransactions)
tetmovel) CDnnEFtO
updatel) cofmmit()
searchr) &
PersistentData”ollection Persistenceldecharism
rﬂ;i:;‘tgo beginTransaction)
connect()
update) :
searchi) commit()

i

BusinessBasic

getClassDatad)

Figure 1: Class diagram of PDC.

The participants of the pattern are presented as follows, along with their matching
elements of the example presented in Figure 3:

e Facade. This class provides a simple interface to all services of a complex sys-
tem [7]. A facade offers a simple default view of the system that is useful for most
clients. It keeps references to the several BusinessCollection objects of the ap-
plication, and delegates calls to them. Additionally, it implements the Singleton
pattern, thus exactly one instance of this class will be active during execution. This
element is represented by the Bank class in the example.

¢ BusinessBasic. This class represents a business basic concept, reflecting clearly
the problem domain (for instance, account, client, investment). If we choose this
class to inherit from an abstract class containing abstract data access methods (see
Implementation Section), the BusinessBasic class has to implement those methods.
Using this approach, although some data access code is placed within a business
class, the business code of the class does not depend on the data access code. Such
code on a business basic class can be easily removed or replaced, with no impact on
business code. In the example, this class is represented by the Account class.

e BusinessCollection. This class represents a grouping of objects from a sig-
nificant business basic class, on the business’ perspective. It contains methods
for inserting, querying, updating, and deleting business objects, with verification
and tests of preconditions related to the object manipulation. Furthermore, the
BusinessCollection class also contains methods directly related to the application
domain. This element is represented by the AccountRecord class in the example.

e PersistentDataCollection. This class contains methods for manipulating per-
sistent objects of a specific business basic class. The code for these methods de-
pends on a specific API for accessing some persistence platform, thus any changes
to this platform will cause direct impact on this class, but absolutely no impact
on business code (since the IBusiness-Data interface isolates these changes). The
PersistentDataCollection class implements methods from a IBusiness-Data in-
terface and depends on services from the PersistenceMechanism class in order
to perform database operations, more specifically for finer granular transactions
and database connections. In the example, the role of this class is played by the
AccountRepositoryJDBC class.

e IBusiness—Data. This interface establishes a communication protocol between
BusinessCollection objects and PersistentDataCollection objects. A business
collection class depends on this interface for storing and retrieving objects from the
database. This approach promotes modularity, since changes to the data access code
do not have impact on business code. In the example, this interface is represented
by IAccountRepository.

e PersistenceMechanism. This class contains methods that implement specific ser-
vices related to a database platform, such as connecting to and disconnecting from
the database, and transaction management. Methods related to connection manage-
ment open and maintain a database connection for a service from the application,
making this connection available to one or more PersistentDataCollection ob-
jects involved in the accomplishment of the service. Methods related to transaction
management open, confirm or abort transactions, in order to provide consistency
among all operations used to accomplish an application service. The code of these

methods depends on a specific persistence API. This class is represented by the
PersistenceMechanismJDBC class in the example.

e IPersistenceMechanism. This interface is defined in order to provide indepen-
dence between the business classes and the PersistenceMechanism class (which
implements this interface). Therefore, if we change the database platform, we have
to replace the old PersistenceMechanism object by a new object, but this modifi-
cation does not have impact on business classes. The Facade class depends on this
interface for invoking transaction methods. The example presents an interface with
the same name.

Dynamics

Figure 2 shows a sequence diagram [4] of a typical scenario for the use of PDC, using the
approach of data access methods encapsulated into a business basic class (see Implementa-
tion Section). The Facade object creates a PersistenceMechanism object, whose services
will be requested during execution. Next, a service on the Facade object is called, which
in turn begins a transaction (invoking a method on the PersistenceMechanism object)
and delegates the call to a BusinessCollection object in order to perform this service
(a querying operation that retrieves data from the database). The BusinessCollection
object performs all validation and tests on the input data, then invokes an operation
to manipulate persistent data on the corresponding PersistentDataCollection ob-
ject (through the corresponding business—data interface). The latter creates an empty
BusinessBasic instance and fills it with database information (calling deepAccess, which
in turn executes queries through services offered by the PersistenceMechanism object,
as the executeQuery method), returning the resulting object to the Facade object. In
the end of the operation, the Facade object confirms the end of a database transaction,
invoking commitTransaction on the PersistenceMechanism object.

Consequences

The use of PDC offers the following benefits:

e Support for independent implementation. PDC’s layer architecture allows to address
the business aspects independently from persistence operations. This abstraction is
promoted by interfaces between the business layer and the data access layer.

o Maintainability. The pattern’s structure increases the system maintainability by
separating business code from data access code. Therefore, changes in the data
access classes should not interfere in the business classes.

e Faxtensibility. The pattern makes it easier to seamlessly change the database tech-
nology or vendor, minimizing or even eliminating impact on business code. In-
terfaces between the business layer and the data access layer promote the desired
extensibility for the application.

o Use of several persistence platforms. 'The resulting code is able to support stor-
ing objects into several persistence platforms, such as files, relational and object—
oriented databases, by creating a number of implementations for the persistence

» Facade . Business . PersistertData

Collection Collection
T T :
I - |
create : Persistence | |
W echanism I I
T |
. . |
o beginTransaction I I |
| |
I | i
: o : | |
speclﬂcﬁystemﬁemcel{quer\,rlng) I ST I
| -
i create - Basic
| Business
| T
I |
The read business I dEEpAFCESS |
basicobjed iz I [
returned by the eecutec uery -
guerying operstion. Ij .
\\ ! :
I
N ol !
R e e T -
commitTransaction

Creates the ohject
and fillz it with
information from
the databasze.

——]
Sl B
P

Figure 2: Dynamics of PDC.

mechanism class and for each persistent data collection class; all of these classes
must implement the corresponding interfaces.

Reuse. Due to the structure provided by the pattern, business classes can be easily
reused by another application based on other database technologies. In addition,
changes to data access issues are simpler, since they are restricted to data access
code.

Abstraction. As the pattern abstracts the persistence problem by using interfaces,
persistence implementation may use complex algorithms or APIs to deal with some
non-trivial aspects from persistent systems, such as enabling connections to database
platforms and managing transactions efficiently.

Support for progressive implementation. During early phases of the application
development, functionally complete prototypes are constructed, where business col-
lection classes depend on business—data interfaces, but the latter are implemented
by volatile data collections (storing objects in memory only). Later, data access
code can be added seamlessly, replacing volatile data collections by specific per-
sistent data collection objects, then adding a persistence mechanism object. Such
approach enables addressing the business problems independently from persistence
operations, simpler validation of user requirements, and simplification of tests [9)].

The liabilities of the pattern are:

e Increased number of classes. For each significant business basic class, we have to
create up to three additional classes and one interface. However, their structure is
simple and their generation can be simply automated by tools.

e [ncreased indirection. In order to introduce the layer architecture we must use dif-
ferent kinds of classes that delegate some calls to others, which may decrease system
performance. In fact, this lost of efficiency is minimal, since these indirections are
locally executed, and the additional execution time is irrelevant when compared
to the overhead of the 10 operations that read from and write to the persistence
mechanism.

Implementation

Here we consider how to implement PDC using JDBC as the data access API for using
relational database services. Consider the following implementation issues:

e Java platform. The pattern elements must be implemented in the Java program-
ming language, since JDBC is part of the Java platform.

e [nheritance in the business basic class. Most code for manipulating objects using
JDBC can be contained in business basic classes, within methods inherited from an
abstract class (PersistentObject in our banking example). It can be considered
a miscellaneous of business and data access code, even though those inherited data
access methods are not invoked by business code (as mentioned earlier). One alter-
native for such situation is to transfer all code for manipulating persistent business
basic objects to the persistent data collection classes. The disadvantage of such ap-
proach is that changes in a business basic class will also reflect in the corresponding
persistent data collection class; it is necessary to implement a new persistent data
collection for each new platform. On the other hand, in this approach changes in
the persistent platform will not affect the business basic classes.

e Transactions. Using JDBC, we can easily implement transactions using database
services. We must use the setAutoCommit, commit and rollback methods on the
Connection class in order to implement a transaction when implementing a sequence
of operations, which must be executed as a single one.

e Business basic subclasses. A business basic class can be specialized in business
basic subclasses, depending on the business rules. In the case of business collection
and persistent data collection classes (including business—data interfaces), we can
choose from two design alternatives: one is to create a class for each business basic
subclass; another is to use only one class, in order to avoid duplicate code. A
detailed discussion about this topic is presented in a related work [15].

e Concurrency control. One concurrency problem arises when using a connection pool
to manage the connections with the persistence mechanism. Each execution flow
(thread) must obtain a connection from the connection pool before communicating

with the persistence mechanism. Usually there is a single connection pool contain-
ing all the connections of the system, and thus this poll is accessed concurrently.
Moreover, we need to apply some concurrency control to the system. Examples of
others situations in which concurrency control should be addressed are interference
by business rules (system policies), unsafe data types, and other race conditions [12].

e Volatile data collections. We can use this type of class for storing objects in a
non-persistent manner, in order to support progressive implementation. Using this
approach, we can abstract from persistence or any other non—functional requirement,
when implementing functional prototypes for the application. These prototypes
can be useful for validating user requirements and simplifying tests. This class
also implements its corresponding business—data interface, but its methods use in—
memory data structures like arrays or lists to manipulate business objects.

o Abstract factories. Variations of PDC can include classes which represent abstract
factories [7], in order to increase extensibility and reusability of business classes.
An abstract persistence factory class can be introduced, containing a method for
creating a persistence mechanism object, and such method can be implemented by
a subclass of the abstract factory, the concrete factory. The facade object can call
this method to instantiate the persistence mechanism, without making a explicit
call to its constructor method. The same idea can be used for creating persistent
data collections, isolating the business classes (facade and business collection classes)
from the instantiation code. In both cases, the information needed by the concrete
factories to instantiate the objects is placed in simple text or XML configuration

files.

Sample Code

We now provide a brief sketch of the implementation of the main elements of PDC using
Java and the JDBC API, in the banking application example introduced in Figure 3.
First, we present a business basic class, Account, which reflects directly the problem
domain. The public modifier in classes and methods is omitted by brevity.

class Account extends PersistentObject {
private Number number;
private double balance;
void credit(double value) { balance = balance + value; 1}

/* Data access operations */
void insert() throws StoringException {
try {
String sql = "insert into account values (";
sql += "ID = "+super.getId(); // get the object id
sql += "NUMBER = "+this.getNumber();
sql += "BALANCE = "+this.getBalance();
super.pm.executeUpdate(sql) ;
} catch (SQLException e) { throw new StoringException(); }

Bank

addA coountl)
credit])

!

AccoutRecord

addd coount))
credit)

“<nterface=>
LA ccountREepositony

nsert()
gearch)

£

&ccoutRepository]DBC

|

“<Interface=>
IPersistencellechanism

beginTransaction)

cotiect()
B

cottumit()
|

PersistencellechasmIDBEC

ingett()
gearch)

!

Account

beginTransaction)
cotiect)
cottnit()

PersistentTihject

ingettl)

Tlaccess()

deeplnsert()
deepd ccessi)

credit)

Figure 3: Example of PDC applied to a banking application.

void deepInsert (IPersistenceMechanism pm)

throws StoringException {

super.pm = pm;

this.number.deepInsert (pm) ;

this.insert();

Two of the attributes and one business operation, credit (containing only business code
and not invoking any data access method), are presented above. In another portion of
the class, there are data access methods inherited from the PersistentObject class,
containing specific code for database operations in this class (as the insert method).
Any exception related to the data access API (SQLException) is replaced by a general
database exception (StoringException).

In addition, this class contains methods with the deep prefix, which are special op-
erations for manipulating attributes which are references to other objects or collection
of objects (as the number attribute). The deepInsert method in the Account class has
an IPersistenceMechanism interface parameter receiving a reference to a persistence
mechanism object in order to perform the corresponding database operation:

Notice that deepInsert is called first for the attribute, before the insert for the Account
object. This order is followed in operations to write data to the database, due to a
restriction of relational databases, which forces the code to insert rows in auxiliary tables
first (number attribute), then insert a row in the main table (Account object). In this
way, the relationships can be established with no errors. This order does not need to be
followed in operations querying the database. Operations deleting data from the database
depend on the referential integrity defined for the tables involved.

Although there is business code along with data access code in the same class, the
business methods do not depend on the data access methods, since the former do not
invoke the latter. Therefore, we can insert and remove data access methods with no
impact on business code (a process easily automated by tools). The PersistentObject
class is presented below:

abstract class PersistentObject {

protected long id;

protected IPersistenceMechanism pm;

abstract void insert() throws StoringException;

abstract void deepInsert(IPersistenceMechanism pm)
throws StoringException;

abstract void access() throws StoringException;

abstract void deepAccess(IPersistenceMechanism pm)
throws StoringException;

}

where the id and the pm attributes denote the object identity of a persistent object
and a persistence mechanism object to perform database operations, respectively. The
abstract data access methods in this class must be implemented by all business basic
classes, which will be made persistent. The StoringException exception is raised when
a problem occurs in any database operation.

In order to represent a set of business basic objects on the business’ vision, we use a
business collection class. We present the class AccountRecord, which represents a set of
bank accounts:

class AccountRecord {
private IAccountRepository accountsRep;
AccountRecord(IAccountRepository accountsRep) {
this.accountsRep = accountsRep;

¥

where the constructor of AccountRecord receives as argument an object which implements
a business—data interface, and two of the business operations for this class, addAccount
and credit, are also presented. The first method inserts an Account object into the
database, raising an exception if an account with the same number already exists.

void addAccount(Account account)
throws StoringException, DuplicateAccountException {
if (this.accountsRep.exists(account.getAccountNumber()))
throw new DuplicateAccountException();
else this.accountsRep.insert(account);

}

The second method queries the database for a given account. If the query is successful,
a value is added to the account’s balance and the account is updated in the database.
However, if the account does not exist in the database, an exception is raised.

void credit(Number accountNumber, double value)
throws StoringException, UnknownAccountException {
if (accountsRep.exists(accountNumber)) {
Account account = accountsRep.search(accountNumber);
account.credit(value) ;
this.accountsRep.update(account);

by

else throw new UnknownAccountException();

3

The database is represented by the attribute accountsRep, a business—data interface with
data access operations. This interface is as follows:

interface IAccountRepository {
void insert(Account account) throws StoringException;
Account search(Number accountNumber) throws StoringException;
void update(Account account) throws StoringException;
boolean exists(Number accountNumber) throws StoringException;

¥

where the update method is important to maintain consistency between in—memory
(volatile) and persistent objects. Other methods on this interface could be complex queries
(for instance, returning a set of objects) and methods for sequential querying.

A class implementing a business—data interface is a persistent data collection class. In
our example, this class implements its methods invoking data access methods defined in
the business basic classes. In our example, the AccountRepositoryJDBC class is presented
as follows:

class AccountRepositoryJDBC implements IAccountRepository {
private PersistenceMechanismJDBC pm;
void insert(Account account) throws StoringException {
account.deepInsert (this.pm);

by

Note that the pm attribute stores a persistence mechanism object, which is passed as an
argument for the database operations on Account objects, as in the search method.

Account search(Number accountNumber) throws StoringException {
Account ac = new Account(accountNumber) ;
ac.deepAccess(this.pm);
return ac;

b

On the other hand, if it is desired to develop a functional prototype first, we can
implement a business—data interface using a volatile data collection. In the banking
application, we can create a class which stores and retrieves Account objects from an
array. The objects will be maintained in the array only during the current execution.

The facade class of the pattern is represented by the Bank class in this application:

class Bank {

private IPersistenceMechanism pm;

private AccountRecord accounts;

Bank() throws PersistenceMechanismException {
PersistentFactory factory = PersistentFactory.getFactory();
this.pm = factory.createPersistenceMechanism();
this.accounts = new AccountRecord(

AccountDataFactory.getFactory() .createDataCollection(pm)) ;

}

void addAccount(Account account)

throws StoringException, AccountAlreadyExistsException {
this.pm.beginTransaction();
try { this.accounts.add(account); 7}
catch (Exception e) {
this.pm.cancelTransaction();
throw e;
+
this.pm.commitTransaction();
b
void credit(String accountNumber, double value)
throws StoringException, UnknownAccountException {
this.pm.beginTransaction();
try { this.accounts.credit(accountNumber,value); }

3

This persistence mechanism object is instantiated in the Bank’s constructor, in order to
initialize the system, being stored in an IPersistenceMechanism interface attribute. All
the initialization process is performed using a PersistenceFactory class, which reads a
configuration file and creates the right specific persistence factory object for the applica-
tion. This object will then create the specific persistence mechanism object for the Bank
class, promoting extensibility of the business code (the facade class does not instantiate
the persistence mechanism object directly). See the Implementation section.

Bank uses services from its AccountRecord attribute, delegating calls to the latter in
its methods. This attribute is initialized by passing as argument a new persistent data
collection object, which implements a business—data interface and receives a persistence
mechanism object. In order to maintain separation between business and data access
code, this persistent data collection object is instantiated by a specific data factory for
JDBC, which in turn was first instantiated by a static method (getFactory) in an abstract
AccountDataFactory class (see Implementation section). In the addAccount and credit
methods, the Facade class invokes methods on the persistence mechanism object for
beginning and confirming a transaction, or canceling it if some exception occurs.

The IPersistenceMechanism interface, which is used by Bank, is presented as follows:

interface IPersistenceMechanism {
void beginTransaction() throws PersistenceMechanismException;
void commitTransaction() throws PersistenceMechanismException;
void cancelTransaction() throws PersistenceMechanismException;
void connect() throws PersistenceMechanismException;
void disconnect() throws PersistenceMechanismException;

}

where PersistenceMechanismException is the exception raised when some error occurs
in one of those operations. A persistence mechanism class implements this interface using
specific database API operations, as in the following example:

class PersistenceMechanismJDBC implements IPersistenceMechanism {
void beginTransaction() throws PersistenceMechanismException {
try {
// requests a connection from a connection pool
Connection conn = this.requestConnection();
conn.setAutoCommit (false) ;
}
catch (SQLException e) {
throw new PersistenceMechanismException();

}

}

This class implements the beginTransaction method using services from the JDBC
API. First, a connection to the database is requested from a connection pool (allowed by
JDBC). If there is not any opened connection, a new one is created. Then a transaction
is initialized in the context of the connection. Any SQLException raised is replaced by a
general exception, in order to guarantee isolation between business and data access code.

Known Uses

Several organizations have been using PDC as a design pattern for many real software
projects. Most of these projects have aimed at developing from simple to complex ap-

plications, and satisfactory results have been collected in such situations. Some of these
systems are presented as follows:

e A system to manage clients of a telecommunication company. The system is able
to register mobile telephones and manage client information and telephone services
configuration. The system can be used over the Internet.

e A system for performing online exams. This system has been used to offer differ-
ent kinds of exams, such as simulations based on previous university entry exams,
helping students to evaluate their knowledge before the real exams.

e A complex supermarket system. A system that is responsible for the control of sales
in a supermarket. This system will be used in several supermarkets and is already
been used in other kinds of stores.

e A system for registering health system complaints. The system allows citizens to
complaint about health problems and to retrieve information about the public health
system, such as the location or the specialties of a health unit.

e This pattern is also used in undergraduate and graduate courses on object—oriented
programming at the Center of Computer Science of the Federal University of Per-
nambuco. Several kinds of systems (such as games, academic control systems, and
sales systems) have been developed in these courses.

In addition, the pattern is one of the basic patterns of the Progressive Implementa-
tion Method (Pim) [5]. Pim is a method for the systematic implementation of complex
object—oriented applications in Java. In particular, this method supports a progressive
approach for object—oriented implementation, where persistence, distribution and con-
currency control are not initially considered in the implementation activities, but are
gradually introduced, preserving the application’s functional requirements [1, 9, 11, 15].
Pim relies on the use of specific architectural and design patterns for structuring object—
oriented applications, in order to promote modularity and separation of concerns [10].
PDC is the design pattern applied for dealing with persistence.

Related Patterns

e Crossing Chasms [6]. In their set of patterns for object-relational integration,
Brown and Whitenack deal with the definition of database schemas for relational
databases, supporting the object model. These patterns can be useful in PDC (for
setting up the database tables), since they have distinct objectives (PDC aims at
structuring the application in layers for a seamless introduction of persistence).

e Persistent Layer and other patterns [16]. Yoder’s patterns and PDC have very
similar objectives in obtaining separation of concerns between business and data
access code. Many of the ideas presented in the Yoder’s patterns can be combined
into elements of PDC in a practical way (for instance, Transaction Manager and
Connection Manager can be instantiated as the PDC’s persistence mechanism class).
However, Yoder’s patterns do not separate definitions of “data” and “data set”, as
defined in our persistent data collections, and assuming to be applied specifically

to relational databases. We believe that PDC can be applied almost directly to a
number of persistence platforms, including object databases and files.

Abstract Factory [7]. This pattern is applied in PDC to implement a persistence
factory class for creating persistence mechanism objects, which is used by a facade
class. Factories also can be used for creating persistent data collection objects
transparently for the business collection classes (see Implementation section).

Facade [7]. The facade class of PDC is a direct implementation of the Facade
pattern.

Singleton [7]. Usually only one facade object is required in an application. Thus
facade objects are often implemented as Singletons.

Bridge [7]. This pattern is used in PDC as the business-data and persistence
mechanism interfaces, which play the role of a bridge between the business and the
data access layers.

Concurrency Manager [13]. This pattern can be used in PDC to control concurrent
situations, such as interferences by business rules (system policies), unsafe data
types, and other race conditions.

Acknowledgements

We would like to give special thanks to our shepherd in this paper, Rosana Teresinha
Vaccare Braga, from ICMC-USP, for making important suggestions for improving this
pattern. We also thanks Jorge L. Ortega Arjona and Gunter Mussbacher for the sugges-
tions made at the conference.

References

1]

Vander Alves. Progressive Development of Distributed Object-Oriented Programs.
Master’s thesis, Centro de Informatica — Universidade Federal de Pernambuco, Febru-
ary 2001.

Scott Ambler. Building Object Applications that Work. Cambridge University Press
and Sigs Books, 1998.

Scott, Ambler. The Object Primer. Cambridge University Press, 2001.

Grady Booch et al. The Unified Modeling Language User Guide. Object Technology.
Addison-Wesley, 1999.

Paulo Borba, Saulo Aratjo, Hednilson Bezerra, Marconi Lima, and Sérgio Soares.
Progressive implementation of distributed Java applications. In FEngineering Dis-
tributed Objects Workshop, ACM International Conference on Software Engineering,
pages 4047, Los Angeles, USA, 17th—18th May 1999.

[6]

[10]

[11]

[12]

[13]

K. Brown and B. Whitenack. Crossing Chasms: A Pattern Language for Object-
RDBMS Integration. In J. Vlissides et. al. (eds.), Pattern Languages of Program
Design 2. Addison-Wesley, 1996.

Erich Gamma et al. Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1994.

James Gosgling, Bill Joy, and Guy Steele. The Java Language Specification. Addison-
Wesley, 1996.

Tiago Massoni. A Software Process with Support to Progressive Implementation
(in portuguese). Master’s thesis, CIn — Federal University of Pernambuco, February
2001.

David L. Parnas et al. On the Criteria to be Used in Decomposing Systems into
Modules. Communications of ACM, 15(12):1053-1058, December 1972.

Sérgio Soares. Progressive Development of Concurrent Object-Oriented Programs
(in portuguese). Master’s thesis, Centro de Informatica — Universidade Federal de
Pernambuco, February 2001.

Sérgio Soares and Paulo Borba. Concurrency Control with Java and Relational
Databases (in portuguese). In V Brazilian Symposium of Programming Languages,
23th—25th May 2001.

Sérgio Soares and Paulo Borba. Concurrency Manager. Technical report, State
University of Rio de Janeiro—UERJ, Rio de Janeiro, Brazil, 3th-5th October 2001.
To appear.

Sun Microsystems. Java Database Conectivity Specification, 2000. Available at
ftp://ftp.javasoft.com/pub/jdbec.

Euricélia Viana. Integrating Java with Relational Databases (in portuguese). Mas-
ter’s thesis, Centro de Informéatica, UFPE, 2000.

J.W. Yoder, R.E. Johnson, and Q.D. Wilson. Connecting Business Objects to Rela-
tional Databases. In Proceedings of the 5th Conference on the Pattern Languages of
Programs, Monticello-IL-EUA, August 1998.

