
 

 

 SugarLoafPLoP 2002 
Proceedings 

 

 

Editors  
Rosana T. Vaccare Braga  

Joseph W. Yoder 
 
 
 
 
 

 
Organized by: 

COPPE/UFRJ - Brazil 
ICMC/USP - Brazil 

UFC - Brazil 
UIUC - USA 

 
Underwritten by the Hillside Group 

Supported by SBC (Brazilian Computer Society) 
 

    

http://www.cos.ufrj.br/~sugarloafplop/ 



 

 

Publisher: ICMC/USP 

Editors: Rosana T. V. Braga and Joseph W. Yoder 

Copyright  2002 by ICMC. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

              Latin American Conference on Pattern Languages of 

                         Programming  SugarLoafPLoP 2002 (2.: 2002 : Itaipava, RJ) 

                   Proceedings… / Editors Rosana T. Vaccare Braga,  

              Joseph W. Yoder. -- São Carlos, SP: ICMC/USP, 2002. 
                   326 p. 

                   ISBN 85-87837-07-9  

 
                   1. Padrões de Software. 2. Linguagens de Padrões. I. Braga, Rosana  

               T. Vaccare, ed. II. Yoder, Joseph W., ed. III. Título. 

 

 



i 

Program Comittee  

 

Conference Co-Chairs 

Claudia M. L. Werner (COPPE / UFRJ, BR)  
Rossana M. Castro Andrade (DC / UFC, BR) 

 

Program Co-Chairs 

Rosana T. Vaccare Braga (ICMC-USP, BR)  
Joseph W. Yoder (University of Illinois/The Refactory, Inc., US)  

 

Local Organization 

Leonardo G. P. Murta (COPPE/UFRJ, BR)  
Marcio de Oliveira Barros (COPPE/UFRJ, BR) 

 

Shepherds  
Federico Balaguer - University of Illinois at Urbana-Champaign, USA  
Fernão Stella de Rodrigues Germano - ICMC/Universidade de São Paulo, Brasil  
Gustavo Rossi - Universidad Nacional de La Plata, Argentina  
Jerffeson Teixeira de Souza - University of Ottawa, Canada  
Jorge Ortega Arjona - University College London, UK  
Jugurta Lisboa Filho - Universidade Federal de Viçosa-MG, Brasil  
Márcio de Oliveira Barros - COPPE/Universidade Federal do Rio de Janeiro , Brasil  
Robert Hanmer - Software Technology Center - Bell Labs, USA  
Rossana Maria de Castro Andrade - DC/Universidade Federal do Ceará - Brasil  
 

Referees  
Adenilso da Silva Simão - ICMC/Universidade de São Paulo  
Antonio Castelo Filho- ICMC/ Universidade de São Paulo  
Antonio Valerio Netto - ICMC/ Universidade de São Paulo  
Claudia Lima Werner - COPPE/ Universidade Federal do Rio de Janeiro  
Ernesto Massaroppi - DEM/Universidade de São Paulo  
Fernando de Carvalho Gomes - DC/ Universidade Federal do Ceará  
Fernão Stella de Rodrigues Germano- ICMC/ Universidade de São Paulo   
Julio Wilson Ribeiro - DC/ Universidade Federal do Ceará  
Maria Istela Cagnin- ICMC/ Universidade de São Paulo  
Paulo César Masiero- ICMC/ Universidade de São Paulo  
Rosana T. Vaccare Braga- ICMC/ Universidade de São Paulo  
Rosangela A. D. Penteado - DC/Universidade Federal de São Carlos  
Rossana Maria de Castro Andrade - DC/ Universidade Federal do Ceará  
Willie Dresler Leiva- ICMC/Universidade de São Paulo   



ii 



iii 

Table of Contents 
     Page 

Foreword .......................................................................................................................................... 1 

Writers' Workshops ..................................................................................................................... 3 

     DORS : Database Query Optimizer with Rule Based Search Engine, by Carlo Giovano S. Pires, 
and Javam C. Machado ........................................................................................................................  

 
5 

     The AbstractOptimizer, by Savitha Muthanna ................................................................................. 21 

     Um Design Pattern para Configuração de Arquiteturas de Software, by Jonivan Coutinho Lisboa,  
Sérgio Teixeira de Carvalho, and Orlando Gomes Loques Filho ......................................................... 

 

37 

     Padrões de Projeto para Estruturação de Aplicações Distribuídas Enterprise JavaBeans, by 
Klissiomara Dias and Paulo Borba ....................................................................................................... 

 

55 

     PaDA: A pattern for distribution aspects, by Sergio Soares and Paulo Borba ................................. 87 

     FaPRE/OO: Uma Família de Padrões para Reengenharia Orientada a Objetos de Sistemas 
Legados Procedimentais, by Edson Luiz Recchia and Rosangela Penteado ...................................... 

 

101 

     DCDP: A Distributed Component Development Pattern, by Eduardo Santana de Almeida, Calebe 
de Paula Bianchini, Antonio Francisco do Prado, and Luis Carlos Trevelin ......................................... 

 

133 

     O Uso de Padrões na Integração de Visões Modeladas com UML, by Vânia M. P. Vidal and 
Fabiana G. Marinho .......................................................................... .................................................... 145 

Special Session: Software Pattern Applications ............................................................. 165 

     A tool and a formalism to design and apply patterns, by Agnès Conte, José-Celso Freire Junior, 
Jean-Pierre Giraudin, Ibtissem Hassine, and Dominique Rieu ............................................................. 

 
167 

     Avaliação da Aplicabilidade da Linguagem de Padrões de Engenharia Reversa de Demeyer a 
Sistemas Legados Procedimentais, by Edson Luiz Recchia and Rosangela Penteado ...................... 

 
183 

     Analyzability and Changeability in Design Patterns, by Javier Garzas and Mario Piattini ............... 199 

     Designing Websites by Using Patterns, by Francisco Montero, Maria Lozano, Pascual Gonzalez, 
and Isidro Ramos................................................................................................................................... 

 
209 

     Software Decisions with Pattern Relations, by Martin Auer, Wolfgang Zuser, and Valter Camargo 225 

     Aplicabilidade da Família de Padrões de Reengenharia FaPRE/OO na Engenharia Reversa 
Orientada a Objetos de Sistemas Legados COBOL, by Valter Vieira de Camargo, Edson Luiz 
Recchia, and Rosangela Penteado ...................................................................................................... 

 

237 

Special Session: Writing Patterns ......................................................................................... 253 

     Um Padrão Arquitetural para Sistemas Computacionais de Controle Supervisionário, by Jean 
Marcelo Simão, Marcos Antonio Quinaia, and Paulo Cézar Stadzisz .................................................. 

 
255 

     A Queue-based Algorithmic Pattern, by Marcos Cordeiro d' Ornellas ............................................. 279 

     FEM Simulator Skeleton, by Maria Lencastre, Felix C. G. Santos, and Isledna Rodrigues ............ 293 

APPENDIX:  PDC: Persistent Data Collections Pattern, by Tiago Massoni, Vander Alves, 
Sérgio Soares, and Paulo Borba .......................................................................................................... 

 

 
309 



iv 

 



 

Foreword 
 

Software developers have long observed that certain themes recur and  endure across different 
applications and systems. The emerging interest in patterns represents an effort to catalog and 
communicate these themes and motives to provide handbooks of proven solutions to common  
problems. 

SugarLoafPLoP brings together researchers and practitioners whose  interests span a remarkably 
broad range of topics, who share an interest in exploring the power of the pattern form. 
SugarLoafPLoP invites you to add your expertise to the growing corpus of patterns.  

SugarLoafPLoP focuses on improving the expression of patterns. Here you have the opportunity 
to refine and extend your patterns with help from knowledgeable and sympathetic fellow patterns 
enthusiasts. 

PLoP Conferences usually restrict paper submissions to works that propose patterns. However, for 
some of them, like Chilli PLoP, hot topics involving patterns are acceptable. Following this trend, 
this year SugarloafPLoP has introduced two special sessions: "Software Pattern Applications" 
(SPA) and "Writing Patterns" (WP). 

These proceedings are the result of the Conference. Besides improving their papers during the 
shepherding process, authors have gained insights and constructive criticism during the workshops 
so that, after the Conference, they have evolved their papers to the version presented in these 
proceedings. As this is a Latin American Conference, we  allow papers to be written in English, 
Spanish, or Portuguese. In these proceedings we have eleven English papers and seven Portuguese 
papers. 

The efforts of many people contributed to the SugarloafPLoP Conference. We thank all authors 
that submitted papers, making possible the realization of this event. We thank the shepherds that 
have dedicated their time to help us, as well as the referees that revised the special session papers. 
We specially thank the Conference co-chairs Claudia and Rossana for their excellent and hard 
work in the organization of this event. We thank Leonardo and Marcio that helped in the local 
arrangements and in the Web site maintenance. Finally, we thank the cooperation of the Brazilian 
Computer Society (SBC) and the sponsorship of CNPq, FAPERJ, and the Hillside Group.  

 

 

 

Rosana T. Vaccare Braga  (rtvb@icmc.usp.br) 
Joseph W. Yoder (joeyoder@joeyoder.com) 
Program co-chairs 

 

November, 2002 

 



 

 



 

Writers' Workshops 
 
Each workshop session was about 1 hour and 15 minutes in length. There was a special 30 
minute session at the beginning of the conference so that each workshop group could be 
introduced and work out logistics, such as how much they wanted non authors to participate and 
in which order the papers would be presented. 
 
The Workshop Process 
 
The writers workshop format has proven to be useful in past PLoP conferences, so it was 
followed by each group. Although this format may seem unfamiliar, it has shown to be useful for 
developing an environment where patterns authors can share their ideas. 
 
 
Introduction/Reading: Moderator introduces the Author and the Author reads a selection 
from the paper. This is the last we hear of the author til the end. (allow 5 minutes) 
 
Summary: One of the workshop participants summarizes the paper.(5 minutes) 
 
Positive Feedback: Moderator asks for things people liked about the patterns. The 
comments can be about presentation or content, and at the discretion of the moderator 
comments about presentation and content can be intermingled, or done separately. 
(Allow 15 minutes) 
 
Constructive Criticism:Moderator asks for ways in which the paper can be improved, both 
in content and presentation. (Allow 20-40 minutes) 
 
Positive Closure: Moderator asks particpants for a final closure, in which they reinforce the 
positive aspects of the pattern. (Allow 5 minutes) 
 
Author Feedback: The author asks for clarification on comments made during the session. 
The Author should pick a few of the most important points. (or ones which were made by 
the most people.) Further clarification can be had during off line discussions. (Allow 10 
minutes) 
 
Closing: The workshop participants thank the author. 
 
 

 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



Copyright   2002, Carlo Giovano S. Pires and Javam C. Machado. Permission is granted to copy for 
the SugarloafPLoP 2002 Conference. All other rights reserved. 

 

DORS: Database Query Optimizer with Rule Based Search Engine 
 
 

Carlo Giovano S. Pires1 
cgiovano@atlantico.com.br 

Javam C. Machado 
javam@ufc.br 

Instituto Atlântico Federal University of Ceará 
 
 

Abstract 
 
The database query optimizer is a very important and complex module in database management systems. It 
receives a query optimization request with a query tree as a parameter and return an optimized execution plan. 
The query optimization problem is NP-Hard; therefore, there are many proposals of heuristics and techniques 
for optimization strategies. There are also several data models (e.g object-oriented, relational, object-relational 
and semi-structured/XML) suitable to store information for different kinds of applications. Several optimization 
frameworks were proposed with the aim of making easier to build optimizers and reuse design decisions. 
However, they are tied to some specific language and hard to integrate with other database modules. We 
propose a design pattern to help the design and construction of a database optimizer. So far, we do not have 
knowledge about similar work. 
 
1. Context 
 

Different types of applications should use a suitable data model. For instance, commercial 
systems work well with relational data models, CAD/CAM systems need a more expressive 
data model as the object-oriented, and the Internet with XML applications work well with 
semi-structured data models. Different data models and  different kinds of applications require 
specific implementation of the query optimizer. The database developer should design 
optimizers able to support different kinds of databases, data models and applications. Some 
examples of database and application kinds are object-oriented databases, multidatabases, and 
parallel databases. Object-oriented databases use a model that requires the optimizer to 
support different data types, use of indexes for class hierarquies and method execution. 
Multidatabase is a front-end application that integrates different kinds of database. A 
multidatabase optimizer should support different data models, distributed data and data 
transfer issues.  

The large adoption of Web-based applications in the Internet has increased the number of 
users and the number of database query requests. Thus, scalability is important for a database 
server. Parallel database architecture is a good alternative for improving scalability and 
response time. However, parallel query optimization is a very complex problem. The 
optimizer for parallel databases should balance the trade-offs of memory use, data 
partitioning, data transfer, synchronization of operations and a very large search space. 
Different kinds of parallel database architectures must also be analyzed.  

A database query processing module (Figure 1) provides the retrieval of information using 
a high-level query language such  SQL [ISO96] or OQL [CB97]. The query processing 
module is usually composed of three other modules. The first module is the query parser. The 
parser converts a query, submitted by a database user and written in a high-level language, 
into an algebraic operators expression. Next, the optimization module receives the expression 
and builds a good execution plan. The plan determines the order of execution of the operators 
and select suitable algorithms for implementation of the operators. The plan is built with the 

                                                                 
1 The presentation of this work was sponsored by Instituto Atlântico (www.atlantico.com.br) 



 
 

 

aim of retrieving the result of the query with high performance. Finally, the query plan is 
executed by the execution engine module that deliver the result for the user. The query 
optimization module, or optimizer, is the key module for query processing design. 

 

Query
Parser

Query
optimization

Query
execution

1 2 3

Algebraic
expression

Execution
plan

Query
defined
by the
user

Query
result

Query
processor

 
Figure 1 – Database query processor 

 
The optimization process is usually broken into different phases. This approach simplifies 

the optimization problem using each phase to optimize a specific aspect of the query. The 
aspects may be, for instance, the logical optimization and the order of operations, the 
algorithms for implementation of the operations and the allocation of them into the nodes of a 
parallel or distributed system. Each aspect requires specific algebraic operations, 
transformations and specific optimization algorithms.  

Database developers and researchers of optimization techniques may use the DORS 
(Database Query Optimizer with Rule Based Search Engine) pattern to help them to build 
extensible optimizers. 
 
2. Problem 
 

How to design an extensible database query optimizer that supports different data models, 
new algebra proposals and search strategies? 
 
3. Forces 
 

• Maintainability and Prototyping: The optimizer should support different data models. 
The database developer should be able to change the specific implementation related 
to a specific data model transparently to other aspects (e.g, optimization algorithms 
and design of optimization phases and their ordering). For instance, the developer may 
change the transformation of operators related to a data model and add transformations 
of operators of a new data model without changing the optimization. The developer 
may even add new operations and transformations for a data model and keep the other 
components implementation.  

 
• Flexibility: The database developer should be able to change the optimization 

algorithm, configure optmization algorithms for each phase, add and experiment new 
proposals without changing the other components. The optimizer may be configured 
according to a query context or according to a database user configuration. For 
instance, a database may support queries written in object query language, or semi-



 
 

 

tructured languages and, in run time, choose the specific algebraic transformations. 
Some databases allows the user to select the type of optimization algorithms, as cost-
based or heuristics-based algorithms.  

 
• Scalability: The optimizer should be scalable to support a large number of 

simultaneous requests. In the last years, the growth of Internet applications has opened 
the access of information for millions of simultaneous users. 

 
4. Solution 
 

Decouple the optimization process/procedure from each of its phases by creating a 
hierarchy of search strategies (SearchStrategy). It also decouples each phase from the set of 
transformation rules (Rule) that a search strategy can apply. Instances of SearchStrategy are 
parameterized with a given set of instances of Rule that it can apply over a query expression.   

A Rule is composed of a header, a promise value, an applicability condition and a 
transformation code. The header defines a pattern matching description of the target 
expression. The applicability condition uses properties of the expression and the optimization 
context to determine if the transformation code is executed or not. The transformation code 
rewrites the expression, modifies the optimization context and estimates values for the 
properties of the new expression (eg. ordering of the result and execution cost of the 
expression). The promise is used to order the application of the rules.  

An instance of Optimizer can have more than one optimization phase. Each phase is implemented 
as an instance of SearchStrategy. The configuration of one Optimizer and its SearchStrategies can be 
changed at run-time. When an optimizer gives a query expression to a SearchStrategy, the 
SearchStrategy applies the appropriate set of rules to the expression and stores the results on a 
repository of optimized expression (SearchSpace). Finally the optimizer compose the optimal plan 
retrieving optimized expressions from the repository. 

 

RuleFactory

createRule()
getInstance()

ConcreteRule

condition()
promise()
apply()
verifyPatternMatching()

SearchSpace

getInstance()
addExpression()
getExpression()

Optimizer

optimize()

ConcreteRuleFactory

createRule()

Rule

verifyPatternMatching()
promise()
condition()
apply()

1. .n1. .n

cache a rule set

SearchStrategyFactory

createStrategy()
getInstance()

ConcreteSearchStrategy

search()

ConcreteOptimizer

optimize()

SearchStrategy

search()

1. .n1. .n

phases are composed

cache expressions

execute

get rules

select  and create

create strategy with

select  and create

 
Figure 2 – Structure of DORS Pattern 



 
 

 

 
5. Structure 
 

Figure 2 presents the structure of DORS pattern using an UML class diagram. A detailed 
description of each component is presented in section Participants. 
 
6. Participants 
 

• Optimizer 
 

− provides a simple interface for the optimization subsystem of the query 
processor. 

− defines the method optimize that receive, as input, a query expression (usually 
represented as a tree). The output of the optimize method is an expression that 
represents an execution plan. The execution plan determines the order, 
processor allocation and algorithms for the query operations.  

 
• ConcreteOptimizer 
 

− implements the Optimizer interface. 
− coordinates the optimization process. The ConcreteOptimizer defines the 

optimization phases, coordinates rule sets and search strategies. It creates and 
uses one or several types of SearchStrategy and apply them in some order, 
according to the optimization phases adopted in the optimization model. 

− delegates the implementation of the search algorithm for optimization to some 
ConcreteStrategy. The ConcreteOptimizer may work with more than one 
strategy and rule factory for different optimization phases. 

− combines dynamically different types of rule sets, search strategies and cost 
models. 

 
• SearchStrategyFactory 

 
− encapsulates the creation of search strategies. 
− has a method named createSearchStrategy that receives a parameter 

identifying the phase/order/task of optimization. 
 

• SearchStrategy 
 

− defines an interface for expanding the search space and searching for good 
expressions. 

− has a method named search that receives the target expression and the factory 
of rules as parameters. 

− hides one or more specifics types of search strategies within an optimizer for 
one or more phases. 

 
 
 



 
 

 

 
• ConcreteSearchStrategy 

 
− implements the services for query optimization search strategies as dynamic 

programming, exhaustive search, bottom-up search, or some strategy else. 
− collaborates with rules to execute transformation in the query expression, 

expanding the search space and exploiting optimization possibilities. 
− uses the RuleFactory to create a list of rules.  
− process each rule received from the factory against the expression. 
− adds the expressions generated by the rules to the search space. 
− determines how to apply the rules to each term in the expression. 

 
• SearchSpace 

 
− provides a data structure for storage of the expressions generated by the 

optimization process. 
− provides methods to store and find a expression in the search space. 

 
• Rule 

 
− encapsulates a transformation of a term within an expression.  
− provides a mechanism based on pattern matching for verifying if it is 

applicable to a given term. 
− provides a method named promise to return a value to help the search strategy 

to give priority to the application of rules. 
− provides a method to verify some condition of application. After the Pattern 

Matching  and before the execution of the rule, this method is verified. The rule 
is executed only if the method returns true. 

 
• ConcreteRule 

 
− implements a specific transformation rule for some algebraic operator under 

some condition. 
− defines a pattern description of the expression it should be applied. 
− may usually work as a logical rule (mapping logical algebraic operators into 

logical algebraic operators and reordering them), a physical rule (mapping a 
logical operator into a physical operator), or an enforcer rule (use to enforce 
required properties, as the order of the query result, or the partition across 
processing nodes in a parallel system). 

− estimates the expression cost. The cost is estimated using database statistics. 
Physical rules are tied to physical operators, therefore they are suitable for 
defining cost functions and applying them. 

 
 
 
 



 
 

 

• RuleFactory 
 

− defines the abstract interface for a ConcreteRuleFactory. 
− represents a rule set (or rule module). A rule set groups rules that should be 

applied in a specific context or optimization phase. A rule set may be defined 
for a logical algebra, a physical algebra, or different proposal for logical and 
physical algebras. 

 
• ConcreteRuleFactory 

 
− creates the rule objects for some algebra according to the expression. 
− uses the pattern matching mechanism to select the rule for the target 

expression. 
− uses a generic pattern matching mechanism that allows a ConcreteRuleFactory 

compare an expression with the rules and discover which are applicable to the 
expression. This mechanism uses the information about the top node in the 
expression to execute compare the expression with the pattern description in 
the rule. The node information may be the algebraic operator in the node and 
details about the parameters of the operator. 

 

anOptimizerQuery 
Processor

optimize(expr)

aSearchStrategy aRuleFactory aRuleaSearchStrategyFactory

search(expr, aRuleFactory)
createRule(expr)

Returns a list of 
applicable rules

apply

condition

Returns a new 
Expression

addToSearchSpace(aNewExpr)

getBestPlan

createSearchStrategy(phase)

verifyPatternMatching(expr)

For each rule 
returned for the 
expression

executionPlan

 
Figure 3 – Dynamics of DORS 



 
 

 

7. Dynamics 
 

Figure 3 shows, using a sequence diagram [FMSK00], a typical scenario of query 
optimization with the DORS pattern. The query processor starts the optimization sending an 
optimize message to the optimizer. Then, the optimizer uses a factory to create a concrete 
search strategy according to the optimization phase. The optimizer uses the search method of 
the concrete search strategy to start the tranformations of the target expression. The search 
method recieves the expression as a parameter and it is configured with some rule factory. 
The method  uses the rule factory to create rules (calling the createRule method with the 
query expression as a parameter). The createRule method iterates over a pool of rules, 
according to the order of promise, and chooses a rule using the verifyPatternMatching 
method. All rules that matches the pattern for the expression in the optimization context are 
added, in order of promise, to a list. This list is returned to the search strategy. The search 
strategy iterates over the returned list and runs each rule using the apply method. This method 
verifies the condition of execution before transforming the expression. If the condition 
method returns true, then the rule is executed and a new expression is generated. The cost of 
the new expression is estimated and the expression is finally returned to the search strategy. 
The search strategy adds each new expression generated from each rule to the search space. 
The transformations are done for one term of the expression. Each specific search strategy has 
its own way of exploring the other terms and sub-expressions. The search strategy type also 
defines the criteria to add the generated expressions to the search space. After the 
transformation process is finished, the optimizer gets the best plan from the search space and 
returns it to the database execution engine as the selected execution plan. 

 
8. Consequences 

 
• Maintainability and Prototyping. The rule abstraction allows the easy adoption of new 

algebraic operations. New operators may be used due to the adoption of a new data 
model or due to the support for new characteristics in a database. The search engine 
abstraction allows the adoption of new optimization algorithms or prototyping of new 
techniques. 

 
• Flexibility. The database system has the flexibility to use different implementations of 

the optimizer. The implementations may differ according to query contexts and 
languages, or according to different architecture of the database server (a parallel 
server for instance). Rule and RuleFactory abstractions allows the optimizer to work 
with several data model (e.g. object-oriented, relational, semi-structured) and 
architectures (e.g. sequential, parallel, distributed). Supporting new data models 
requires defining and adding new rule sets. 

 
• Scalability. The Flyweight pattern used for rule factories and rule objects provides the 

management of the large number of rule objects necessary to support the processing of 
a huge number of query requests, improving the scalability of database servers. The 
multi-phased implementation provided by the SearchStrategy and 
SearchStrategyFactory, and the cost model encapsulation into rules provides 
flexibility for use of parallel machines as database servers. Parallel data server 
provides high degree of scalability. The pipelining of SearchEngine tasks allows the 
use of parallelism within the optimization phases. 



 
 

 

 
• Encapsulation. The rule based approach with RuleFactory, ConcreteRuleFactory, 

Rule and ConcreteRule classes provides the encapsulation of  data model/algebra and 
cost estimation.  

 
• Dynamically combines phases, search strategies and rule sets. Usually database 

optimization algorithms divides the problem in different phases to decrease the 
problem complexity. For instance, an optimizer may execute a logical optimization 
phase to execute structural transformations in the query expression, and then, execute 
a physical optimization phase to choose algorithms suitable to implement the 
operators in the expressions generated in the first phase. The DORS pattern allows 
each phase to be modelled with a search strategy abstraction, so one may even use 
different strategies to each phase. The optimizer configure SearchStrategy with a 
RuleFactory. The RuleFactory interface lets a SearchStrategy to use a rule set 
transparently. The SearchStrategy works with Rules returned from the RuleFactory 
and apply them without being tied to the algebraic transformation. 

 
• Performance: The execution time of a query is the critical component to response 

time. However, the optimization time is also important for the final result. The 
complete search space for a query expression is huge. The optimizer uses heuristics 
and pruning techniques in the search strategies and rules to reduce the search space. 
The rational pruning of the search space is the key point to keep optimization time 
small. However, decoupling optimizer components to gain flexibility may introduce 
some overhead in the optimization process. This overhead may be in memory use due 
to extra classes as factories or may be in execution time due to the indirection 
introduced with abstract classes and polimorphism. In standart database servers, these 
issues may not be critical to due the availability of memory and processor resources, 
but in low-resource devices as PDA’s, the issues might be critical. In this case, the 
database developer may consider the trade-offs between flexibility and performance as 
stated in the Variants section. 

 
9. Implementation 
 

• The query processing module may pass a list of  search strategies types in the 
constructor of the Optimizer to configure the algorithms for different optimization 
phases, or even, pass a search strategy factory that creates a strategy according to a 
phase parameter.  

 
• A RuleFactory implements the Flyweight pattern [GHJV95], creating an instance of 

each rule type and adding it to a pool in order of promise (the promise method of the 
Rule type). When the search strategy ask for a rule, the factory iterates over the pool 
(in the promise order) and applies the verifiesPatternMatching method against the 
expression passed as parameter of the factory method. If the method returns true, the 
instance is added to a return list. After the process had walked through the entire pool, 
the list is returned. Actually, the RuleFactory returns a subset of the pool. 

 
• The SearchSpace supports a fixed number of instances (greater than one). The pool of 

instances is used to organize the expressions into groups. It also may be implemented 



 
 

 

as a MEMO structure, using the Memoization technique [Gra95]. This technique lets 
the optimizer ask to a MEMO structure if an expression was generated for a given rule 
(transformation). Thus, it avoids a rule being applied two times for the same 
expression.  

 
• A common way of implementing optimizers is to divide the optimization tasks in 

phases. Usually, one phase runs a complete set o rules and after generating all possible 
expressions, it starts the next phase using the expressions produced. Another 
interesting technique is to build a pipeline of tasks where as soon as one expression is 
produced it is passed to the next tasks. This may be implemented just passing a 
SearchStrategy instance to its predecessor search strategy. The first one calls the 
second as soon as a rule produces a list of expressions. This process should use just 
abstract interfaces for the search strategies, letting the optimizer configure the order of 
them.  

 
• The Expression class should be a tree data structure that stores in each node a 

representation of a database query operation. These operations may be, for instance, a 
data read from the disk, a join of two data streams, the formatting of data for the final 
result. Besides the operation description, each node stores attributes for the sub-
expression delimited from the node to the leafs of the tree. These attributes may be, for 
example, the cost of execution of the sub-expression or the order of the delivered 
intermediate, or final, result. The result of the optimization process is also an 
expression named plan. The plan is evaluated by the execution engine by executing 
the operations from the leafs towards the root node. 

 
10. Related Patterns  
 

• Strategy [GHJV95]: 
− The Strategy pattern is used to let the ConcreteOptimizer (the client) to 

configure the SearchStrategy with some type of RuleFactory. Thus, the 
SearchStrategy may execute transformations (execution of a Rule) according to 
the ConcreteOptimizer choice. 

 
• Façade [GHJV95]: 

− ConcreteOptimizer works as a Façade to coordinate the optimization phases, 
search strategies and rule factories. 

 
• Abstract Factory [GHJV95]: 

− SearchStrategyFactory and RuleFactory are Abstract Factories. They use 
concrete implementations to build families of search strategies and rules.  

 
• Singleton [GHJV95]: 

− SearchSpace is a singleton. It provides a single point of access to store and 
retrieve generated expressions in a memory cache.  

− Rule is a singleton. It provides a single instance of each rule type. 
 



 
 

 

• Flyweight [GHJV95]: 
− The RuleFactory uses this pattern to improve performance in the management 

of several fine-grained rule objects during the optimization process. 
 
11. Sample Code 
 

The Fortaleza XML Data Server (FoX) is a project with the aim of providing fast storing 
and retrieval operations for XML [W3C] data. One key area of the project is to build a 
flexible optimizer to evaluate techniques of optimization for this new data type. The project 
basically investigates two alternatives. The first one uses an object-oriented data model to 
store XML over Lambda-DB [FSRM00]. This implies that the database query parser should 
convert a XQuery [W3C] query into an object-query tree and pass it to the optimizer. The 
second alternative stores the XML data using the GOA data manager [MS94] and uses an 
algebra suitable for XQuery. In both solutions, the project adopt a two-phase optimization 
model with a Top-Down search strategy for the two-phases.  

Figure 4 presents the structure of  the first approach (object-oriented data-model). This 
solution uses the object-oriented monoid algebra [Feg97]. It has the 
LogicalMonoidRuleFactory for the logical and first phase and the 
PhysicalMonoidRuleFactory for the physical phase. The solution uses a configuration file to 
declare the algebra used. 
 

joinToMERGE_JOINRuleNestToNESTFreeGroupRule

TopDownSearchStrategy

rewrite()
merge()

FoXDBOptimizer

optimize()

FoXRuleFactory

createRule()

PathExpressionToPointerJoinRule

FoXDBXMLOptimizer

addToPlans()
getBestPlan()

FoXSearchStrategy

search()

LogicalMonoidRuleFactoryPhysicalMonoidRuleFactory

FoxRule

condition()
promise()
apply()
verifyPatternMatching()
subsumes()

0..n0..n0..n0..n

logical

physical

 
Figure 4 – Design of the database query optimizer of the FoX project 

 
The diagram shows just three rules (there are more than twenty). The rule 

PathExpressionToPointerJoin is from the logical set and the other two are physical rules. 
The class FoXDBXMLOptimizer uses the FoxSearchStrategyFactory to create search 

engines for each phase. The optimizer stores one instance of a search engine for each phase 



 
 

 

into a private variable named strategies. In this implementation, the optimizer uses only one 
search strategy type for the two phases and two rule sets. However, the 
FoxSearchStrategyFactory reads a configuration file that determines a strategy for each 
phase. The FoXDBXMLOptimizer does not apply a pipelined processing, rather, it process the 
entire logical rule set for the Monoid algebra and, for each new generated expression, it 
process the second phase to select physical operators. The physical operators are algorithms 
selected to efficiently implement the logical operators. Each new physical expression 
generated in the second phase is added to the list of execution plans. In the end of the method, 
the optimizer executes the getBestPlan method that, based on the cost of expressions, chooses 
the best one. This plan is returned to the execution engine of FoX Database. 
 
public class FoXDBXMLOptimizer extends FoXDBOptimizer { 
 
private List strategies; 
 
public FoXDBXMLOptimizer(){ 
        strategies = new ArrayList(); 
        FoXSearchStrategyFactory sFac = FoXSearchStrategyFactory.getInstance(); 
  strategies.add(sFac.createStrategy(“phase1”)); 
        strategies.add(sFac.createStrategy(“phase2”));  
} 
 
public Expression optimize(Expression expr){ 
       List plans; 
 FoXSearchStrategy search1 = (FoXSearchStrategy) strategies.get(0); 
       FoXSearchStrategy search2 = (FoXSearchStrategy) strategies.get(1); 
 
 FoxRuleFactory logicalMonoidRuleFactory = new LogicalMonoidRuleFactory(); 
       FoxRuleFactory physicalMonoidRuleFactory = new PhysicalMonoidRuleFactory(); 
 
 List logicalExprs = search1.search(expr, logicalMonoidRuleFactory); 
 
       for(int i=0; i < logicalExprs.size(); i++){ 
  Expression logicalExpr = (Expression)logicalExprs.get(i); 
  List phyExpr  
                 = search2.search(logicalExpr, physicalMonoidRuleFactory); 
  addToPlans(plans, phyExpr); 
 } 
 
 return getBestPlan(plans); 
} 
 
... 
 
} 
 

The TopDownSearchStrategy extends the FoXSearchStrategy abstract class and provides 
an implementation for its methods. It receives in the constructor a FoXRuleFactory and stores 
the instance into a private variable named ruleFactory. This implementation uses an auxiliar 
method named rewrite in the TopDownSearchStrategy class. The rewrite method does not 
belong to the pattern and it is used in this specific implementation to provide the recursive 
calls necessary to implement a top-down search strategy The search method calls the rewrite 
method. This kind of strategy optimize first the parameters of a term in the expression and 
then, with the optimized sub-expressions, optimize the term. During this process, the strategy 
passes attributes that represents required properties that helps the lower levels of recursive 
optimization to provide new expression according to a context. This context may be, for 



 
 

 

example, some specific order, a required data partition for parallel a database, or even, lower 
and upper costs for pruning plans.  
 
 
public class TopDownSearchStrategy extends FoxSearchStrategy{ 
 
protected RuleFactory ruleFactory; 
 
public TopDownSearchEngine(FoxRuleFactory rf){ 
 ruleFactory = rf; 
} 
 
public void search(Expression expr){ 
    Attributes atrbs = new Attributes(); 
    rewrite(expr, atrbs, ruleFactory);  
} 
 
... 
 
} 
 

The first action of the rewrite method from the TopDownSearchStrategy class is to verify 
if the expression being optimized is not already stored in the search space. If the expression is 
already optimized, the SearchSpace returns a list of expressions. This list stores all the plans 
generated for the expression. The search strategy uses the list to get the plans stored in the 
search space and abort the rest of the rewrite process.  

If there is no expression list for the expression, the rewrite method starts the generation of 
new optimized expressions. The first action is to ask to the ruleFactory, that may be a 
LogicalMonoidRuleFactory or PhysicalMonoidRuleFactory, to create a list of rules applicable 
to the expression. For each rule in the returned list, the method gets the parameter of the 
expression and optimize them first, applying recursively the rewrite method. Before calling 
the method recursively, it asks the rule for expected attributes. If the rule needs some 
properties to be produced in the lower levels of optimization, it returns a valid instance of 
attributes. The expected attributes are passed in the recursive call. Note that the recursive calls 
end when the method reaches the leafs terms because they do not have parameters. Each list 
returned in the recursive calls is added to a list of optimized parameters. For simplicity of the 
presentation of the method, the examples shows a method named combine that builds a list of 
lists of parameters, representing all the combinations of optimized parameters.  

Each rule is applied to every combination of optimized parameter and the result of the 
apply method of the rule is merged with the list of rewrote expressions. This process builds a 
list with the union of the results of the application of the rules for the expression. Finally, 
these expressions are added to the search space and returned as the result of the method 
rewrite from the TopDownSearchStrategy class. 
 
public class TopDownSearchStrategy extends FoxSearchStrategy{ 
 
... 
 
public Expression rewrite(Expression expr, Attributes atrbs){ 
 
List rewroteExpressions; 
List optimizedExpressions = SeachSpace.getInstance().getExpression(expr, atrbs); 
 
if(optimizedExpressions != null){ 
    return optimizedExpressions; 
} 



 
 

 

 
List rules = ruleFactory.createRule(expr); 
 
for(int i = 0; i < rules.size(); i++){ 
       Rule rule = (Rule) rules.get(i); 
       Attributes expectedAttrbs = rule.getExpectedAttribs(); 
       if(expectedAttrbs !=null) attribs = expectedAttrbs; 
 
 List optimizedParams = new ArrayList(); 
       List params = expression.getParams(); 
 for(int p=0; p<params.size(); p++){ 
  optimizedParams.add(rewrite((Expression)params.get(p), attribs)); 
 } 
  
 List combinedParams = combine(optimizedParams); 
 for(int p=0; p < combinedParams.size(); p ++){ 
  List optimizedCombinedParams = (List) combinedParams.get(p); 
  List transformedExprs = rule.apply(optimizedCombinedParams); 
  merge(rewroteExpressions, transformedExprs);  
 }  
} 
 
SeachSpace.getInstance().addExpression(rewroteExpressions); 
 
return rewroteExpressions;  
 
}  
 
... 
 
} 
 

The condition method of the joinToMERGE_JOINRule class receives, as its argument, the 
list of parameters that belong to the expression being optimized. The method uses the 
parameters to verify if the rule should be applied to the expression. The method gets the 
second, the third and the forth parameters, that corresponds, respectively, to the left 
expression (x), right expression (y) and predicate of the join operation. The MERGE-JOIN 
algorithm expects the data stream in the left expression to be ordered according to the 
attributes of the join predicate. Thus, the condition method uses another auxiliar method, 
named subsumes, to verify this condition. If the left expression is ordered according to the 
predicate, then the MERGE-JOIN algorithm may be used and the method returns true. 
Otherwise, it returns false. 
 
 
public class joinToMERGE_JOINRule extends FoxRule{ 
 
... 
 
private boolean condition(List params){ 
 List params = expr.getParams(); 
 Expression x = (Expression)params.get(1); 
       Expression pred = (Expression)params.get(3); 
  
 if(subsumes(pred, x)){ 
  return true; 
 } 
 else{ 
  return false; 
 } 
}  
 



 
 

 

... 
 
} 
 

The apply method of the class joinToMERGE_JOINRule transforms (rewrite) the logical 
term denoting a join operator into a physical term denoting a MERGE_JOIN algorithm to 
implement the join of two streams. First, the method verifies the condition of the applicability 
of the rule. If the condition method returns true, then the transformation begins. The method 
gets the second and third parameters of the expression, that corresponds, respectively, to the 
left plan (x) and right plan (y) of the join operation and use them to estimates the cost of the 
new expression. It creates an instance of the Attribute class. This class is a simple data 
structure used to store properties of the plan. The properties are the ordering, size and cost of 
the plan. The cost of the new expression is estimated according to a cost model that states that 
the cost of a MERGE-JOIN algorithm is the sum of the size of the left and right plan. This 
value is doubled to accumulate the cost of the sub-expressions. Finally a new expression is 
created identifying a MERGE_JOIN term with the parameters and the new attributes. The 
expression is added to the return list and the list is returned as the result of the apply method. 
The return value is a list because a rule may create alternate plans with a loop. 
 
public class joinToMERGE_JOINRule extends FoxRule{ 
 
... 
 
public List apply(List params){ 
 
 List returnList = new ArrayList(); 
 
 if(condition(params)){ 
   
  Expression x = (Expression)params.get(1); 
  Expression y = (Expression)params.get(2); 
 
  Attributes atts = new Attributes(); 
  atts.setSize(x.getAttributes().size() * y.getAttributes().size()); 
  atts.setCost(2*(x.getAttributes().size()  
                                                  * y.getAttributes().size())); 
  atts.setOrder(x.getAttributes().order());  
  Expression newExpr = new Expression(Expression.MERGE_JOIN, params,  
                                                                         atts); 
  returnList.add(newExpr);   
 } 
 return returnList; 
 
}  
 
... 
 
} 
 
12. Variants 
 
• A Factory class may be introduced to create the concrete types of RuleFactory according 

to some system configuration. This implementation allows the use one single optimizer 
implementation for different data models.  

 
• Changes in optimizers usually occurs in data and cost models, forcing changes in rules 

and rule factories. Thus, providing interfaces for ConcreteRule and ConcreteRuleFactory 



 
 

 

is very important for optimizer flexibility. For optimizers with controlled and established 
search strategies and phases, the database developer may avoid using 
SearchStrategyFactory and SearchStrategy. In this case, one may use the optimizer 
bound to specific types of ConcreteSearchStrategy. 

 
13. Known uses  
 

In the following examples, the FoX project uses the complete DORS pattern. The 
frameworks Cascades [Gra95], Columbia [SMB01] and OPTGEN [Feg97] use the main 
abstractions (Rule, RuleFactory, SearchStrategy, and SearchSpace) in their implementations 
with similar structure and behavior. See bellow more details of each one of them. 
 
• Cascades [Gra95] and Columbia [SMB01] are frameworks with top-down search engine 

that provides a set of classes to build optimizers. The framework uses the DBI-Optimizer 
interface hiding the concrete implementation of the optimizer. It provides a Rule class 
with methods that perform transformations, ordering of rules and conditions of use. The 
phases are implemented by the Task class, but the framework provides only the top-down 
approach for search strategies. The Task objects may use pipelining of processing. It uses 
the MEMO approach to implement the search space. The pattern matching mechanism is 
provided with the Binding class. Guidance objects are used to divide rules into rule sets. 

 
• The OPTGEN [Feg97] framework provides a rule language (OPTL [Feg97]) for optimizer 

specification. The language is an extension of C++. With the OPTL language, the 
developer may declare rules with pattern matching, conditions (named guards) and the 
transformation of expressions. The language provides the declaration of rule modules 
(rule factories). The rules are processed in each module in the order they are declared. The 
language allows the declaration of several logical modules and one physical module. The 
framework uses top-down search engine with MEMO search space. The result of the 
OPTL program compilation is the C++ source code of the optimizer. The source code uses 
C++ classes to implement the specification declared in the OPTL program.  

 
• In [PM01] and [Pir01] the OPTGEN framework wad modified to add the support for 

optimization for parallel object-oriented databases. The modified framework used a three-
phase optimization model with top-down search engine for the first two phases and a 
simple substitution  search engine for the third phase. It also used in the first phase a 
sequential logical algebra, and in the second and third phases it used two different 
physical parallel algebras. The rules for parallel algebras were built according to an 
analysis pattern. 

 
• The FoX Data Server Project in development at Federal University of Ceará uses the 

DORS pattern to design and build a flexible optimizer for XML data. 
 
 
 
Acknowledgements: We would like to thank our shepherd Federico Balaguer and our  writers 
workshop group (F. Montero, Joe Yoder, Marcos D´Ornellas, Savitha Muthanna) for their valuable 
suggestions and comments on this paper. 
 
 



 
 

 

References 
 
[CB97] R. Cattel, D. Barry, editors. The Object Database Standard: ODMG 93. Morgan Kaufman, 
1997. 
 
[Feg97] L. Fegaras. The OPTGEN Optimizer Generator. Department of Computer Science and 
Engineering. The University of Texas at Arlington, http://ranger.uta.edu/~fegaras/optimizer, 1997. 
 
[FSRM00] L. Fegaras, C. Srinivasan, A. Rajendran, D. Maier. Lambda-DB: An ODMG-Based Object-
Oriented DBMS. ACM SIGMOD International Conference on Management of Data, Dallas, Texas, 
2000. 
 
[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable 
Object-Oriented Software, Addison-Wesley, 1995. 
 
[Gra95] G. Graefe. The Cascades Framework for Query Optimization. Bulletin of the IEEE Technical 
Committee on Data Engineering, 18(3), Pages 19-29,  September  1995 
 
[ISO96] ISO/IEC JTC1/SC21 N10489,  ISO//IEC  9075,  Part  2,  Committee  Draft (CD), Database 
Language SQL - Part 2: SQL/Foundation, ftp://speckle.ncsl.nist.gov/isowg3/dbl/BASEdocs/cd-
found.pdf, July, 1996. 
 
[MS94] M.L.Q. Mattoso, J.M. Souza, GOA: Um Servidor de Objetos Persistentes para Sistemas de 
Banco de Dados Orientados a Objetos (in portuguese), XX Conferência Latinoamericana de 
Informática, Mexico City, Mexico, September 1994. 
 
[Pir01] C. G. Pires. Optimizer Development with Query Rewrite for Parallel Object-Oriented 
Database Management Systems  (in portuguese).  Master’s thesis, Federal University of Ceará, 
September, 2001. 
 
[PM01] C. G. Pires, J. C. Machado. Applying Rules for Partitioned Parallelism in OODBMS within an 
Optimizer Generator Framework.  XVI Brazilian Symposium of Database, SBC, Rio de Janeiro, 2001. 
 
[SMB01] L.  Shapiro, D. Maier, P. Benninghoff, K. Billings, Y. Fan, K. Hatwal, Q. Wang, Y. Zhang, 
H. Wu, B. Vance. Exploiting Upper and Lower Bounds In Top-Down Query Optimization, IDEAS 
2001, Grenoble, France, 2001. 
 
 



  

 
 

The AbstractOptimizer1 
 
 

Savitha Muthanna,  
savitha_muthanna@agilent.com 

Agilent Technologies Inc. 
24001 E. Mission Avenue,  

Liberty Lake WA 95019-9599 
U.S.A 

 
 

Abstract 
Several times there is the need to further optimize aspects of a design that might result in better 
performance for the program or application. In the realm of real-time embedded systems, optimizing the 
number of tasks executing in the system would be a major optimization. This paper presents a design 
pattern, the AbstractOptimizer, which provides a way to achieve this optimization in a simple and elegant 
manner.  
 
 
1. Motivation  
 

Test and Measurement instrument boxes, present useful measurement results to 
the user, after performing a series of measurements on a device under test. Examples are 
embedded real-time instruments that test the Radio Frequency (RF) performance of a 
cellular phone. These are devices that can be extremely complicated and can use a 
complicated combination of hardware and firmware to simulate a real-time cellular 
network. 
 

Consider the User Interface of such an instrument, illustrated in Figure 1. This 
will have a CRT displaying several measurements. In Figure 1, �Waveform Quality 
Measurement� is a viewing area or a Screen. �Rho�, �Frequency Error�, �TimeError�, 
�Continuous� etc. give the user different pieces of information that are useful to her. 
�Rho�, �Frequency Error� and �Time Error� describe the results of measurements. 
�Continuous�, for example, describes a setting that applies to the �Waveform Quality� 
measurement.  

                                                
1 Copyright © 2002, Agilent Technologies Inc. Permission is granted to copy for the Sugarloaf PLOP 2002 
Conference. All other rights reserved. 



  

 

 
Figure 1: Instrument User Interface 

 
Figure 2 illustrates an object-oriented design of such a system. 

 
 

 
 
 
 
 
 
 
 
 
 

Figure 2: Classes and relationships. 
 

The Screen is a class containing one or more DisplayFields. Each DisplayField 
will display one measurement result (MeasDispField), e.g.: �Frequency Error� in Figure 
1. A DisplayField can also represent a setting that the instrument is set to 
(SettingDispField), e.g.: �Continuous�.  
 

Each MeasDispField is connected to a VirtualInstrument(VI) which is an 
abstraction of a small piece of functionality, one of the mini instruments in this box. A VI 
computes a set of measurements results. Each MeasDispField represents one 
measurement result sent by a VI. Also, each MeasDispField is executed by an 
independent thread and encapsulates a fairly complicated measurement display loop that 
continually looks for the most recent measurement result posted by the VI and displays 
this result at a given display rate. The MeasDispField is pivotal to this problem context. 
The VI periodically posts measurement results at a much higher rate than the 
MeasDispField can display it.  
 

Applying this design to implement the Screen described in Figure 1, we will have 
the following: The Screen will be represented by a Screen instance. The �Rho�, 
�Frequency Error� etc. will be represented by MeasDispField instances. Each one of 
these MeasDispFields is associated with a measurement result associated with a VI 
instance. 

SettingDispField

Display()

MeasDispField

Display()
MeasurementDisplayLoop()
PostMeasResult()

VirtualInstrument

Measure()

PostMeasResult

DisplayField

Display()

Screen

Display()

Display

for all DisplayField{
DisplayField->Display()}



  

 
So, here�s the problem: Of the MeasDispFields displayed on a Screen, some of 

them could be results associated with the same VI. Also, each MeasDispField has one 
task associated with it. The purpose of this task is to allow the MeasDispField to display 
one real-time measurement result. The problem that needs to be solved in this case is, to 
optimize the design of the Screen and DisplayFields to reduce the number of tasks 
running to display results on a single screen.  
 

Also, if this test and measurement box is a platform then it will be capable of 
supporting various incarnations. E.g., it needs to be capable of supporting various 
wireless protocols in each incarnation to test various types of cellular phones. Therefore, 
once the Screen and DisplayFields classes have been designed, multiple instances of 
Screen and DisplayField objects will need to be instantiated for the several measurements 
for each incarnation of this box, for each wireless protocol. This pattern must allow 
several Screen and DisplayField objects to be configured and instantiated without any 
knowledge of the details of this optimization.  
 

The AbstractOptimizer pattern in this context allows the number of tasks 
associated with a Screen to be optimized, with a clean design and prevents any 
redundancy of critical code. 
 

This paper introduces the concept of the �application developer� to further 
highlight the advantages of using this pattern (The Consequences section discusses the 
advantages in more detail). The term �application developer� refers to the individual(s) 
responsible for creating the DisplayField and Screen objects. The application developer 
may or may not be the same person as the designer of the DisplayField and Screen 
classes. The idea here is that, once the DisplayField and Screen classes are designed, they 
would reside in a library and the �application developer� would create any number of 
DisplayField and Screen objects to fit their application.  
 
2. Context 
 

You are building real-time embedded systems, and are doing a major optimization 
of the number of tasks executing in the system. 
 
3. Problem 
 
  How can we design a set of reusable classes for real-time embedded systems that 
improve performance by optimizing the number of tasks associated with the system and 
protect the application developer from knowledge about the optimization details? 
 
4. Forces 
 

• Improved performance: It is critical that optimization of a real-time embedded 
systems result in better performance. 



  

 

• Design Abstraction: The application developer needs to be shielded from any 
knowledge of this optimization. In other words, this design should allow various 
instances of Screens and DisplayFields to be created for every application, 
without having to know about the existence of the AbstractOptimizer or having to 
create instances of the Abstract Optimizer. The application developer is therefore 
completely shielded from any knowledge or use of the AbstractOptimizer. 

• Reusability: Design Reusability across various incarnations of the test instrument 
is a necessity. Allowing optimization code to be re-used in a library-like manner 
and be untouched for various incarnations of the test instrument can provide for 
this reusability. 

• Eliminate redundancy: This may be obvious, but in redesigning to optimize 
areas of the design and move functionality around, ensure that the code is not 
redundant. 

 
5. Solution 
 

In the context of the problem described above, the solution of this problem is to 
introduce a set of classes to that allow the DisplayFields to be grouped based on whether 
they are associated with the same VirtualInstrument or not. This will allow all the 
DisplayFields associated with the same VirtualInstrument to be executed by one task and 
still have a real-time display of the associated measurement result. Figure 3 describes the 
solution. 
 
6. Structure  
 
 
 
 
 
 
 
 
 

Figure 3: Classes and relationships in the solution 
 
7. Participants 
 

• Compound: The Compound class contains one or more instances of the 
AbstractOptimizer. The Compound, in its constructor, actually creates one or 
more instances of the AbstractOptimizer. It is passed the list of Elements (which 
have already been created) into its constructor. It then maps the Elements to each 
AbstractOptimizer by using properties of Elements that allow them to be grouped 
into exclusive sets. Before this pattern is applied or used, the Compound contains 
one or more instances of the Elements instead of one or more instances of the 
AbstractOptimizer. In problem context described earlier, the  �Screen� class is the 
Compound. 

AbstractOptimizerTypeA

operationTypeA()

AbstractOptimizerTypeB ElementTypeA ElementTypeB

Compound ElementAbstractOptimizer



  

 

• AbstractOptimizer: The AbstractOptimizer is an abstract base class, that 
represents common functionality shared by all optimizers. It will contain one or 
more instances of Elements. It provides an interface to not only encapsulate 
functionality common among Elements but also offers significant optimization. It 
allows mutually exclusive groupings of Elements, with optimization in mind. 

• AbstractOptimizerTypeA: The AbstractOptimizerTypeA is a type of 
AbstractOptimizer that encapsulates functionality, previously (before applying 
this pattern) encapsulated by ElementTypeA. Therefore, the behaviors exhibited 
by one or more Elements (which existed as part of  ElementTypeA) will now be 
encapsulated inside AbstractOptimizerTypeA, Similarly for 
AbstractOptimizerTypeB. For e.g., �operationTypeA()� is a method belonging to 
the �AbstractOptimizerTypeA� class.  Before the application of this pattern it 
would have been part of the ElementTypeA class. It further specializes in 
encapsulating behaviors that are common to one or more Elements. 

• Element: Every AbstractOptimizer contains one or more Element classes. The 
Elements are generally groupable into exclusive sets of common 
attributes/behaviors. In the problem context described earlier, the �DisplayField� 
is the Element.  

 
8. Collaborations 
 

Figure 4 below, describes one set of collaborations, between the different classes 
in this pattern. The Compound class requests that �OperationTypeA� be performed on all 
its constituent AbstractOptimizers. Each AbstractOptimizer, executed by one task, 
requests its constituent Element classes to perform �Operation TypeA�. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 4: Dynamic interactions of the pattern objects 
 

Compound AbstractOptimizer(Task 1) Element 1 Element 2

Operation TypeA
Operation TypeA

Operation TypeA

Operation TypeA

Operation Type A



  

Please see the section on implementation, for depth and detail on the 
collaborations that are introduced upon application of this pattern on the problem 
described in the motivation section. 
 
9. Consequences 
 

•  This pattern will cause a definite improvement in performance of the system that 
is being optimized, by reducing the number of tasks associated with the system. 
An added cost in terms of memory consumption however, is that a few more 
instances of a class are added to the system if that is a consideration.  

• It completely shields the application developer from the knowledge of its 
existence, because it is the Compound�s responsibility to actually create the 
AbstractOptimizer. Say, that once designed, the set of classes described above 
reside in a library and it is now the responsibility of the application developer to 
instantiate Compounds and Elements, that are required for their application and 
configure them correctly. The application developer will not know of the 
existence of the AbstractOptimizer hierarchy of classes, since it is the 
Compound�s responsibility to create the AbstractOptimizer and map its 
constituent Elements to each AbstractOptimizer by gleaning the required 
information from the Elements. 

• This pattern is very useful where the Element and Compound classes need to be 
designed and then reside in a library. The application developer only needs to 
instantiate the Compound and the Element classes based on the requirements of 
her system. This will make automatic optimization most desirable. This is 
especially true, if there are a large number of Compound and Element classes to 
create, which makes the task of manually grouping together Elements forbidding. 
However, it is easily applicable and useful in situations where a library is not used 
to house the Compounds and Elements. The objective of optimization by using 
this pattern is achievable whether a library-model is used or not.  

• Optimization is the primary purpose of using this pattern. There is always a cost if 
a design is over-optimized. Therefore the designer needs to evaluate the need for 
optimization before applying this pattern to their context. For example, at one end 
of the spectrum, if it happened in the above example that, every MeasDispField 
was associated with a different VI, there may not be any need for optimization 
and the Compound may as well contain a list of Elements. On the other end of the 
spectrum, every MeasDispField on the Screen could be associated with the same 
VI. If we then employ our pattern, we have one Compound that includes one 
AbstractOptimizer which in turn contains all the Elements. 

 
10. Implementation 

An important aspect in the implementation of this pattern, is the identification and 
definition of the AbstractOptimizer and the determination of its constituent Element 
classes. The following points are meant to serve as a guideline in going about this task: 

• Identify what the �common functionality� is that will allow objects to be grouped 
together and optimized. Let us call this �groupable property�. 

• Next, design the AbstractOptimizer hierarchy for your context. 



  

  

• Instantiate the AbstractOptimizer during the construction of the Compound class. 
The construction of the AbstractOptimizer will utilize this �groupable property� 
to know how to group various Elements and associate them with one 
AbstractOptimizer. 

• Redesign the old Element classes to move the common behavior of these objects 
to the Abstract Optimizer, which will now apply this behavior on a group of 
Elements rather than one Element. 

 
Applying this pattern to the context previously discussed (in the Motivation section), 

the solution will look like the set of classes in Figure 5. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Design Pattern applied on the example problem 
 

The Screen class (Compound) now contains one or more CompoundDisplayFields 
(AbstractOptimizers). The CompoundDisplayField provides an abstract interface to not 
only encapsulate functionality common among DisplayFields (Elements) but also offers 
significant optimization. It allows for mutually exclusive groupings of DisplayFields and 
its purpose is to achieve optimization. 
 

Each CompoundDisplayField object is associated with or more DisplayFields. 
Each CompoundDisplayField can be of two types, Paced CompoundDisplayField 
(PacedCDF) and Non-Paced CompoundDisplayField (NonPacedCDF), to accommodate 
the optimizations associated with the two variations of DisplayFields. The PacedCDF 
will now contain the �MeasurementDisplayLoop()� operation, which paces every so often 
looking for posted measurement results sent by a Virtual Instrument. This operation was 
previously contained by the MeasDispField class. The PacedCDF therefore contains one 
or more MeasDispField objects. The NonPacedCDFs on the other hand contains the 
SettingDispField objects.  
 

Let us examine the collaborations introduced by this re-designed set of classes, 
upon application of this pattern. The collaborations between the different classes work as 
described in Figure 6 below. The Screen class requests all its constituent PacedCDFs to 
display themselves. Each PacedCDF, associated with one task, wakes up, subscribes to a 
measurement result from the VI and waits for a measurement result. When it receives a 

SettingDispField

Display()

MeasDispField

Display()

for all CompoundDisplayField{
CompoundDisplayField->Display()}

NonPaced
CDF

Display()

PacedCDF

Display()
MeasurementDisplayLoop()
PostMeasResult()

VirtualInstrument

Measure()

PostMeasResult

DisplayField

Display()

CompoundDisplayField
Screen

Display()

Display



  

 

measurement result, it then asks its constituent MeasDispFields to display themselves. 
Each MeasDispField then extracts the relevant portion of the measurement result and 
writes the pixels on the physical display.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Dynamic interactions of the classes in the solution after application of the 
pattern. 

 
Figure 7 illustrates how the collaborations worked before application of the 

pattern, highlighting the performance boost introduced by the pattern. The Screen class 
requests that all its constituent MeasDispFields, each of them associated with its own 
individual task to display itself. Each task wakes up, subscribes to results from a VI, 
waits for a measurement result to be sent by the VI. The VI then notifies the 
MeasDispField of the new measurement result and also stores this result. The 
MeasDispField  then displays the measurement result on the physical display. 

 
 
 
 
 

 
 

 
 
 
 

VirtualInstrume
nt

Screen PacedCDF 
(Task 1)

MeasDispField
1

MeasDispField
2

display()
wake up

subscribe to measurement result

wait for new result

notify and store new measurement result
display

display

write result on screen

write result on screen



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Dynamic interactions of the classes before the application of the pattern 
 
11. Sample Code: 
 

Here is some sample code, in C++, that illustrates the creation of the 
CompoundDisplayField objects inside the Screen constructor.  
 

CompoundDisplayField objects (PacedCDF and NonPacedCDF objects) are 
created as follows:  Each DisplayField is examined by determining if it is a 
MeasDispField and if so, all MeasDispFields associated with the same VI will be 
associated with one PacedCDF. Each DisplayField that is not a MeasDispField (perhaps a 
�SettingDispField�) will be associated with a Non-PacedCDF. 
 

The list of DisplayFields associated with a Screen is passed to Screen at 
construction time. Each DisplayField will contain attributes that are all programmed into 
it (during its construction) that determine whether the DisplayField is a MeasDispField or 

VirtualInstrument Screen MeasDispField1 
(Task 1)

MeasDispField2 
(Task 2)

display

wakeup
subscribe to new measurement result

wait for result

notify and store new result
display new result

display

wake up

subscribe to new measurement result
wait for result

notify and store new result
display new result



  

not. It will also contain a pointer to the VI that it is associated with. Obviously the 
DisplayFields are created before the Screens are constructed. 
 
// Screen class interface 
Class Screen{ 
Public: 
   Screen(DisplayField *); 
   ~Screen(); 
   void Display(); 
 
Private: 
   AddDisplayFieldToCDF(DisplayField *); 
   AddDisplayFieldToNonPacedCDF(DisplayField *); 
 
   CompoundDisplayField *compound_df[MAX_NUM]; 
} 
 
// The Screen class Constructor. 
Screen::Screen(DisplayField  *list_of_displayField) 
   { 
   DisplayField *temp = list_of_displayField; 
   Int32 num_of_CompoundDisplayFields; 
 
   // Construct the associated CompoundDisplayField objects. 
 
   /*  
    NOTE: Before applying this pattern, the list of DisplayField   
    pointers would simply have been stored away. 
   */ 
 
   while (temp != NULL) 
      { 
      if (temp->typeQ() ==  MEASDISPFIELD) 
         { 
         // If a CompoundDisplayField  that is associated  
         // with this VI does not exist, then create a new 
         // PacedCDF. 
         if (!CompoundDisplayFieldExists(temp)) 
            { 
            // Create new PacedCDF 
            compound_df[num_of_CompoundDisplayFields] =  
                                        new PacedCDF(); 
 
            num_of_CompoundDisplayFields++; 
            } 
         else  
            { 
            // Add this DisplayField to the list of 
            // DisplayFields associated with an existing  
            // CompoundDisplayField. 
            AddDisplayFieldToCDF(temp); 



  

            } 
         } 
   else 
      // Add this DisplayField to the list of NonPacedCDFs. 
      { 
      AddDisplayFieldToNonPacedCDF(temp) 
      } 
 
   // Get the next DisplayField. 
   temp++; 
   } 
 

Next, sample code has been included below to illustrate a simplified version of 
the �MeasurementDisplayLoop()� mechanism of the PacedCDF, after application of this 
pattern. 
  

The Screen class can be asked to �display� the Screen. Upon receiving the request 
to display, Screen will request all its associated CompoundDisplayFields to display 
themselves in turn. 
 
Void Screen::display() 
   { 
   for (index = 0; index < MAX_NUM; index ++) 
       { 
        if (compound_df[index] != NULL) 
           { 
           compound_df->display(); 
           } 
       } 
   } 
 

When the CompoundDisplayField is asked to display, if the 
CompoundDisplayField is a PacedCDF, it will have a task associated with it, that is 
blocked pending a message that will be woken up if asked to display. Before applying 
this pattern, the MeasDisplayLoop was executed by one task associated with each 
MeasDispField. After applying the pattern, only the PacedCDF has one task that executes 
the MeasDisplayLoop and simply asks its constituent MeasDisplayFields to display 
themselves. 
 

The following piece of code illustrates the definition of the PacedCDF class and 
the mechanism of displaying the PacedCDF and while doing so, all the MeasDispFields 
associated with this PacedCDF.  
 
// PacedCDF inherits from CompoundDisplayField.  
Class PacedCDF::public CompoundDisplayField 
   { 
   public: 
     PacedCDF(); 
     ~PacedCDF(); 



  

     virtual void display(); 
 
   private: 
      const int MAX_NUM_OF_DISPLAY_FIELDS = 10; 
      void executeMeasDisplayLoop(); 
      void measDisplayLoop(); 
   void initializeLoop(); 

 void startTimer(); 
 void waitForEvent(semaphore); 
 void notifyResult(MeasurementResult *); 

 
 // A pointer to the associated VI. 
 VirtualInstrument *VI; 

   MeasDisplayField   
             *list_of_display_fields[MAX_NUM_OF_DISPLAY_FIELDS]; 
 

 // To contain the results from the VI. 
 MeasurementResult *result;  

 
// The state of the PacedCDF, i.e., whether displayed  
// or not. 
DisplayState state; 

 
// The task associated with this Paced CDF, uses this  
// queue to //communicate new display requests. 
MsgFifoQueue mesg_queue;  

 
// This semaphore indicates the presence of a new  
// measurement //result posted by the VI. 
Semaphore vi_result_arrived_semaphore; 

 
} 
 

The following piece of code illustrates the workings of the critical 
�measurementDisplayLoop�.  First, the �display()� function of the �PacedCDF� class 
wakes up the task, by sending a message indicating that the PacedCDF now needs to be 
displayed.  The �executeMeasDisplayLoop()� function is then executed. This function 
receives the message on the queue, and kicks off the execution of the 
�measurementDisplayLoop()� function by the task.  
 
void PacedCDF::display() 
   { 
   // Set the state of this PacedCDF to “displayed”. 
   State = DISPLAYED; 
 
   // Send a message on a queue to wake up the task associated  
   // with this PacedCDF. 
   msgFifoQSend(msg_queue, this, OSI_WAIT_FOREVER); 
   } 
 
// The PacedCDF task is waiting for a message to arrive.  



  

// When it does, it calls the ‘measDisplayLoop’ function. 
void PacedCDF::executeMeasDisplayLoop() 
   { 
   msgFifoQReceive(msg_queue, this, OSI_WAIT_FOREVER); 
 
   this->measurementDisplayLoop(); 
   } 
 

The �measurementDisplayLoop()� function does some initialization, starts a timer 
to control the display rate of the measurement result. It then subscribes to the VI for a 
new measurement result and waits for the result. The VI then executes the 
�notifyResult()� function to notify of the arrival of a new result and stores this result. The 
PacedCDF now requests all its constituent MeasDispFields to extract their portion of the 
measurement result and display it on the Screen. 
 
// The critical “MeasurementDisplayLoop” function that subscribes  
// to the measurement result of interest and waits for the result 
// from the VI. 
void PacedCDF::measurementDisplayLoop() 
   { 
 
   // do some initial setup 
   initializeLoop(); 
   while (state == DISPLAYED) 
      { 
      // kick off a timer, to ensure that display happens  
      // every so often. 
      startTimer(); 
 
      // Subscribe to the measurement result from the VI. 
      VI->subscribeToMeasurement(); 
 
      // Wait for the result from the VI. 
      waitForEvent(vi_result_arrived_semaphore); 
 
      // At this point we have the result from the VI. The VI is  
      //a concurrent task that has deposited the results, in a  
      // member variable of this class and then has released  
      // the “vi_result_arrived_semaphore”. Now request all the  
      // associated MeasDispFields to display the result. 
      for(index=0; index <  NUM_OF_DISPLAY_FIELDS; index++) 
         { 
         list_of_display_fields->display(); 
         } 
      } 
   } 
 
 
 
 
 



  

 
The following piece of code describes the �notifyResult()� function which is 

executed by the VI, to notify the task executing the �measurementDisplayLoop()� that 
there is a new result available and to store this result. 
 
void PacedCDF::notifyResult(MeasurementResult *result) 
   { 
   storeResult(result); 
   signalEvent(vi_result_arrived_semaphore); 
   } 
 

The following piece of code describes the �display()� function of the 
MeasDisplayField class that simply writes the measurement result on the physical 
display. 
 
void MeasDisplayField::display(MeasurementResult *result) 
   { 
   videoDisplay(result[this_measurement_index]); 
   } 
 
12. Related Patterns:  
 
Observer: The PacedCDF can obtain periodic measurement results to display from the 
VI, using the Observer pattern. It can use a subcriber-notify model to susbscribe to 
measurement results and periodically obtain results that need to be displayed by the task 
associated with the PacedCDFs. 
 
State: The State pattern can be associated with the PacedCDFs. The behavior of the 
PacedCDF object is dependent whether it is displayed or not. 
 
AbstractFactory:  Creation of the DisplayFields and Screens associated with each 
incarnation of a test and instrument box, can use the AbstractFactory pattern to create 
instances of it. 
 
13. Known Uses:  
 

Used in the design of one of the sub-systems inside the User Interface of the 
Agilent 8960  Series 10 for Wireless Manufacturing. 

 
14. Acknowledgements:  
 

Many thanks are due to my shepherd Robert Hanmer for his thought-provoking    
comments that helped to refine this paper.  I am also deeply grateful to Agilent 
Technologies for providing the time and resources required to author and present this 
paper at the SugarLoaf PLOP 2002. I would like to thank Joseph Yoder, Program Co-
chair, SugarLoaf PLOP 2002, who repeatedly reviewed and helped revamp this paper. I 
would also like to thank the participants of my Writer�s workshop group �hushy� at 
SugarLoafPLOP 2002, Carlo Giovano S. Pires,  Francisco Montero  and Marcos Cordeiro 



  

d�Ornellas for their comments and criticisms that have helped get this paper into a much 
better shape.  Finally I would like to thank the organizers of the SugarLoaf PLOP 2002 
for making this a fun and rewarding experience for me. 
 
15. References: 
 
[1] E. Gamma, R. Helm, R. Johnson, J.  Vlissides. Design Patterns: Elements of Reusable Object-
Oriented Software, Reading MA:Addison-Wesley, 1995. 
 
[2] James O. Coplien and Douglas C. Schmidt(Editors).Pattern Languages of Program Design.  
Addison-Wesley (Software Patterns Series), 1995.  
 
[3] Martin Fowler, Scott Kendall. UML Distilled: A brief guide to the standard Object Modelling 
language, Second Edition, Addison-Wesley, 2000. 
 
[4] The Agilent 8960 Series 10 for Wireless Manufacturing. http://we.home.agilent.com/cgi-
bin/bvpub/agilent/Product/cp_Product.jsp?NAV_ID=-
11874.536881883.00&LANGUAGE_CODE=eng&COUNTRY_CODE=ZZ 
 
[5] David Stepner, Nagarajan Rajan, David Hui . Embedded Application Design Using a Real-
Time OS. Proceedings of the 38th ACM/IEEE conference on Design automation conference. June 
1999. 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



Copyright  2002, Jonivan Coutinho Lisbôa, Sérgio Teixeira de Carvalho, Orlando Gomes Loques Filho. 
Permission is granted to copy for the SugarloafPLop 2002 Conference. All other rights reserved. 

 
 

Um Design Pattern para Configuração de Arquiteturas de Software 
 
 

Jonivan Coutinho Lisbôa (jlisboa@ic.uff.br) 
Sérgio Teixeira de Carvalho (sergiotc@ic.uff.br) 
Orlando Gomes Loques Filho (loques@ic.uff.br) 

 
 

Universidade Federal Fluminense – Instituto de Computação 
Rua Passo da Pátria 156 – Bloco E – 3o. Andar 

Boa Viagem  24210-240  Niterói-RJ - Brasil 
 
 

Resumo 
 

Este trabalho apresenta a descrição de um design pattern, chamado Architecture Configurator, 
que modela o processo de implantação da configuração de um sistema de software. Os patterns 
são meios utilizados para documentar situações recorrentes em desenvolvimento de software. Sua 
utilização no estudo de implantação de arquiteturas visa facilitar o estudo comportamental de um 
sistema, sem que o projetista precise ater -se a detalhes de implementação. Além disso, o uso de 
patterns possibilita obter alguns requisitos desejados na implementação de arquiteturas, como 
separação de interesses, reutilização de componentes, facilidade de manutenção e extensão do 
sistema, entre outros. 

 
Palavras-chave : design patterns, arquiteturas de software, configuração de software.  
 
 

Abstract 
 

This work presents the description of a design pattern called Architecture Configurator, that 
models the establishment of software system configuration. Patterns are used to document 
recurrent situations in software development. The use of patterns for studying architecture 
establishment aims to make easy the catch of system behavior with no need by the designer to rely 
on implementation details. Moreover, using patterns makes possible to acquire some desired 
features in architecture implementation, like separation of interests, component reuse, 
maintenance and extension easiness, and more. 

 
Keywords : design patterns, software architecture, software configuration.  
 
 
1. Introdução 

 
A concepção de um sistema de software parte da definição de uma arquitetura, 

que o descreve em termos dos componentes que o integram – os módulos e conectores – e das 
ligações feitas entre eles, através de pontos de interação específicos –  as portas. 

A descrição de uma arquitetura pode ser realizada de maneira formal, através de 
uma linguagem de descrição arquitetural (ADL – Architecture Description Language). O 
produto da descrição arquitetural de um sistema é a sua configuração, ou seja, a estrutura 
topológica da aplicação. Na configuração, estão definidos os pontos de interação de cada 
módulo e cada conector, e também a maneira como os componentes irão interagir entre si – as 



 

 

ligações entre eles. A configuração é abstrata, e deve ser implementada mediante a criação 
das instâncias dos componentes, e a realização das ligações especificadas.  

Quando bem definido, o projeto de uma arquitetura pode fornecer um nível de 
abstração que permite a análise do comportamento do sistema como um todo, sem a 
necessidade de se conhecer detalhes de implementação. Para conseguir isso, pode ser útil o 
reaproveitamento de experiências anteriores na implantação de arquiteturas de software. Isso 
é possível através da utilização de patterns, que são meios de se documentar situações 
recorrentes em desenvolvimento de software. 

Este artigo apresenta uma descrição do design pattern Architecture Configurator, 
que fornece uma base para a implementação de configurações arquiteturais. Para isso, 
fundamenta-se nos mecanismos de interceptação, encaminhamento e manipulação de 
requisições realizadas entre os componentes do sistema, e também na interligação entre eles 
[Car01].  

Em linhas gerais, o Architecture Configurator privilegia a reutilização de 
software, através da separação de interesses (requisitos funcionais e não-funcionais). Podem 
ser entendidos como requisitos funcionais aqueles que descrevem a funcionalidade do 
sistema, ou seja, representam os serviços oferecidos pelo mesmo. Já os requisitos não-
funcionais envolvem propriedades desejadas para o sistema (por exemplo, confiabilidade, 
tempo de resposta, capacidade de sincronização) [Som00]. Na configuração, os requisitos 
funcionais podem ser encapsulados nos módulos (chamados também de módulos funcionais), 
enquanto que os requisitos não-funcionais podem ser encapsulados pelos conectores.  

O Architecture Configurator foi proposto quando se observaram alguns padrões 
de recorrência encontrados tanto na implementação de arquiteturas quanto na implementação 
dos conectores [Car01]. Independentemente de sua funcionalidade, os conectores interceptam 
as requisições de serviços e respostas, examinam e manipulam tais requisições, e 
encaminham-nas a seus respectivos destinos. Por sua vez, a configuração arquitetural possui 
como pontos de recorrência os seguintes fatos: módulos e conectores possuem portas; as 
portas utilizadas na interação entre dois módulos devem ter o mesmo tipo; um módulo 
interage com outro através de um ou mais conectores; um conector pode ser conectado 
diretamente a outro conector. 

Na configuração, os conectores podem ser encadeados, formando uma rede, com 
o objetivo básico de interceptar as requisições e respostas vindas de módulos funcionais. A 
característica de interceptação dos conectores e o encadeamento dos mesmos, feito durante a 
implantação da configuração, formam a base para a implementação de arquiteturas, e, por 
conseguinte, do Architecture Configurator . 

 
2. Descrição 
 

A descrição de patterns deve seguir o formato Contexto-Problema-Solução, 
apresentando o contexto no qual o problema deve ser tratado, descrevendo o problema em si, 
e apresentando a solução empregada. Existem vários formatos padronizados de descrição, nos 
quais podem ocorrer diferenças quanto aos elementos apresentados. Segundo os patterns 
Mandatory Elements Present e Optional Elements When Helpful [MRB97], existem alguns 
elementos considerados obrigatórios, enquanto outros são opcionais. Os obrigatórios são: 
Nome, Contexto, Problema, Forças e Solução. Alguns opcionais : Consequências, Patterns 
Relacionados, Usos Conhecidos, dentre outros. 

Para a descrição a seguir, foi utilizada uma combinação de elementos de dois 
formatos: o formato canônico, ou formato de Alexander [App00] e o padrão GoF, de Gang of 



 

 

Four, referência aos autores do primeiro catálogo a ter aceitação como uma forma 
padronizada para descrição de patterns [GHJ95]. Do primeiro foram tomados os elementos 
Problema, Contexto, Forças, Solução e Exemplo, e do segundo, os elementos Objetivo (ou 
Intento), Estrutura e Participantes, Colaborações e Consequências. Os elementos Nome, 
Patterns Relacionados e Usos Conhecidos são comuns aos dois formatos de descrição. 
 
2.1. Nome 
 

Architecture Configurator. 
 
2.2. Objetivo 
 

O Architecture Configurator modela o processo de implantação da configuração 
de um sistema, obtida mediante a descrição arquitetural do mesmo. 
 
2.3. Contexto 
 

A arquitetura de uma aplicação envolve módulos e um ou mais conectores. Os 
módulos interagem uns com os outros, requerendo e/ou fornecendo serviços, e os conectores 
intermediam essa interação. A interação entre módulos e conectores ocorre através de pontos 
específicos: as portas. Esses três elementos (módulos, conectores e portas) formam a base de 
uma arquitetura de software. 

Neste contexto, um módulo refere-se a um processo, objeto, procedure, ou 
qualquer pedaço de código ou dados identificável. Um conector possui semelhança com um 
módulo, pois também possui interfaces e serviços definidos, e sua funcionalidade também é 
representada por classes, métodos e procedimentos; porém, funcionalmente comporta-se 
como um interceptador e encaminhador de requisições, pois seus métodos são específicos 
para tais fins. As portas podem ser de dois tipos: portas de entrada, que representam serviços 
oferecidos, e portas de saída, que representam invocações de métodos. 

Genericamente, um sistema de software pode ser composto por módulos que 
oferecem algum tipo de serviço (servidores) e módulos que utilizam serviços oferecidos 
(clientes). Então, os sistemas podem ser descritos como uma aplicação cliente-servidor, com 
clientes invocando métodos dos servidores, para realizar alguma tarefa. A figura 1 ilustra uma 
possível arquitetura para uma aplicação cliente-servidor simples, na qual os módulos cliente e 
servidor têm a interação entre si intermediada por um conector. 

 

providerequest
Servidor     C-SCliente

 
Figura 1 Arquitetura de um sistema cliente-servidor simples. Os módulos Cliente e Servidor têm sua interação 

intermediada pelo conector C-S. Observem-se as portas request e provide que indicam, 
respectivamente, uma invocação de método (porta de entrada) e um serviço oferecido (porta de 
saída). 

 
A aplicação de uma arquitetura de software a um sistema supõe que a topologia 

do mesmo possa ser descrita de maneira formal, através de uma linguagem de descrição 
arquitetural (ADL – Architectural Description Language). Na descrição arquitetural do 
sistema estão presentes a descrição de cada módulo e cada conector, com suas respectivas 



 

 

portas. Cada elemento da arquitetura (módulos, conectores e portas) é definido como um tipo, 
e são criadas instâncias de módulos e conectores. As ligações entre as instâncias também 
estão definidas de modo apropriado. 

O código 1 mostra a definição da arquitetura ilustrada na figura 1, feita na ADL 
Babel [Mal96]. Nas linhas 2 e 3 são definidas as portas presentes na aplicação. Nas linhas de 
5 a 11 são definidos os tipos para os módulos Servidor e Cliente, sendo declarada uma 
instância para cada um, nas linhas 7 e 11. Nas linhas de 13 a 16 é definido o conector, com 
sua instância. Na linha 18 as instâncias são criadas, e  na linha 19 é especificada a ligação 
entre os módulos. 

 
1 module ClienteServidor {
2 port Request;
3    port Provide;
4
5 module Servidor {
6      inport Provide;
7    } servidor;
8
9    module Cliente {
10     outport Request;
11   } cliente;
12
13   connector C-S {
14     inport Request;
15     outport Provide;
16   } cs;
17
18   instantiate servidor, cliente, cs;
19 link cliente to servidor by cs;
20
21 } cliente_servidor;
22
23 start cliente_servidor;

 
 
Código 1 Descrição da arquitetura do sistema cliente-servidor simples em Babel. 

 
A definição da arquitetura é abstrata, e torna-se concreta no momento em que são 

criadas as instâncias de módulos e conectores, e são realizadas as ligações apropriadas através 
de suas portas. A forma concreta da descrição arquitetural é chamada de configuração do 
sistema, e nada mais é do que a situação topológica do mesmo em relação aos objetos que o 
compõem. O processo de implantação de uma arquitetura é chamado de programação da 
configuração. 

A utilização de uma descrição arquitetural possibilita ao desenvolvedor um certo 
nível de abstração, além de fornecer ao projeto do sistema a propriedade de separação de 
interesses funcionais de interesses não-funcionais. Como consequência disso, são obtidas 
maiores facilidades na reutilização de módulos, extensão e manutenção do sistema. Além 
disso, a própria arquitetura traz consigo algumas propriedades relativas à interação entre os 
componentes do sistema, feita através de conectores. 
 
2.4. Problema 

 
Na implantação da configuração, o mecanismo que concretiza a troca de 

mensagens entre as instâncias de módulos e conectores deve ser estabelecido, conforme 



 

 

definido na descrição arquitetural do sistema. Contudo, as propriedades da arquitetura em 
questão devem permanecer inalteradas, independentemente da topologia estabelecida para o 
sistema ao qual a arquitetura é aplicada. 

 
2.5. Forças 
 

Uma solução para o problema da implementação de arquiteturas deve considerar o 
seguinte: 

1) As propriedades da arquitetura, como reutilização de componentes e conectores, 
separação de requisitos e abstração, devem ser preservadas na sua implementação. 

2) Os componentes e conectores devem ser independentes quanto à sua definição. Esta 
ortogonalidade permite que modificações em componentes não afetem conectores, e 
vice-versa, facilitando a separação de interesses; 

3) Os módulos de um sistema não devem ter suas interfaces e comportamentos 
modificados com o objetivo de adicionar requisitos não-funcionais ao mesmo; se não 
for assim, fica comprometida a facilidade de reutilização de módulos com mesma 
funcionalidade para aplicações diferentes; 

4) Os módulos e conectores devem preferencialmente ser coesos quanto aos seus 
requisitos; isso torna possível que o projetista de software se desprenda dos detalhes 
de implementação, podendo ter uma visão abstrata do comportamento do sistema; 

5) A especificação da interface dos módulos deve tratar preferencialmente dos requisitos 
funcionais dos mesmos e deve ser claramente definida; com isso, ficam bastante claros 
quais serviços são oferecidos por módulos servidores, e quais serviços são requisitados 
por módulos clientes; 

6) Os conectores podem ser utilizados para estender a arquitetura quanto a novos 
serviços não-funcionais; 

 
2.6. Exemplo 
 

Considere-se um sistema cliente-servidor simples, como, por exemplo, a aplicação 
Produtor-Consumidor com buffer limitado (PCB). Ela é composta de dois módulos clientes 
(Produtor e Consumidor) e um módulo servidor (Buffer). Os módulos possuem, cada 
um, sua funcionalidade intrínseca (requisitos funcionais), e interagem entre si da seguinte 
forma: o Produtor produz itens requerendo o serviço específico para armazenar itens no 
Buffer (put); o Buffer armazena/recupera itens, fornecendo os respectivos serviços 
(put/get); o Consumidor consome itens, requerendo o serviço específico para retirar itens 
do Buffer (get). 

A aplicação de uma arquitetura de software a esse sistema poderia ser feita da 
seguinte maneira: cada módulo cliente (Produtor e Consumidor) seria representado 
contendo uma porta de saída, que representa a invocação de um serviço (put pelo 
Produtor e get pelo Consumidor). O módulo servidor (Buffer) seria representado 
contendo portas de entrada, indicando os serviços fornecidos (put, get e estado). Além 
disso, poderia existir um conector (Guarda) para intermediar a interação entre os módulos, 
tratando da sincronização de acesso ao Buffer por Produtor e Consumidor. Guarda 
retarda a execução de Consumidor se Buffer estiver vazio e retarda a execução de 
Produtor se Buffer estiver cheio. A capacidade de sincronização pode ser considerado 
um requisito não-funcional. A figura 2 ilustra essa possível arquitetura. 



 

 

 

Produz Item

Consome Item

estado

put

get

Armazena Item

Retira Item
Consumidor

Produtor

Buffer   Guarda

portas

 
 
Figura 2 Arquitetura da aplicação Produtor-Consumidor com buffer limitado. Os componentes Produtor,  

Consumidor e Buffer agem como se o conector Guarda não existisse. 

 
O conector intercepta, analisa e encaminha as requisições feitas por Produtor e 

Consumidor através de pontos de acesso específicos – as portas definidas nos módulos e 
nos próprios conectores. As portas representam serviços que poderão ser interceptados para o 
respectivo tratamento não-funcional. Tal interceptação é realizada de forma transparente em 
relação aos módulos envolvidos. Isto é, os módulos ignoram quaisquer mecanismos de 
intermediação existentes entre eles. 
 
2.7. Solução 
 

A implementação de uma arquitetura cliente-servidor pode ser feita segundo o 
diagrama apresentado na figura 3.  

 

Con f i gu rado r

P o r t a

C o n e c t o r H a n d l e r

hand le ( )

pre()

pos( )

S e r v i d o r H a n d l e r

hand le ( )

C l i e n t e
Serv idor

s e r v i c o 1 ( )

s e r v i c o 2 ( )

C o n f i g u r a c a o

g e t L i n k ( )

s e t L i n k ( )

H a n d l e r

f o r w a r d ( )

h a n d l e ( )

I n t e r f a c e S e r v i d o r

se rv i co1 ( )

se r v i co2 ( )

 
 

Figura 3  Diagrama de classes de uma possível solução para a arquitetura cliente-servidor utilizando 
Architecture Configurator 

 



 

 

As classes Cliente e Servidor representam os módulos funcionais e a classe 
ConectorHandler representa o conector da arquitetura. A programação da configuração 
está representada pela classe Configuracao. 

Configurador é uma classe que define, de um modo geral, um mecanismo que 
interpreta as instruções de uma ADL, e a partir da descrição interpretada, define os tipos para 
componentes, conectores e portas presentes na aplicação, e também procede com a 
instanciação e inteligação dos mesmos, para permitir a execução da aplicação. Para a 
realização de tais coisas, são invocados os serviços da classe Configuracao.  

Configuracao recebe as solicitações de Configurador para realizar a 
configuração de componentes e conectores, e iniciá -los. Ela mantém duas categorias de 
informações: de descrição e de execução da arquitetura. Informações de descrição referem-se 
à arquitetura descrita através de uma ADL (código 1), enquanto as informações de execução 
relacionam-se às instâncias – referências – dos componentes e conectores durante o processo 
de execução da aplicação. 

A classe abstrata Handler é responsável pelo encadeamento entre conectores e 
componentes, conforme a descrição arquitetural disponibilizada por Configuracao. 
Handler utiliza-se também das informações de execução da mesma classe, uma vez que 
necessita das referências aos objetos que representam componentes e conectores no espaço de 
execução da aplicação. No modelo, as classes ConectorHandler e Buffer são 
encadeadas por Handler. ServidorHandler representa a classe Servidor no 
encadeamento e possui uma referência a esta última.  

As requisições invocadas por Cliente são interceptadas pela classe 
InterfaceServidor, que possui a mesma interface de Servidor. 
InterfaceServidor busca em Configuracao a referência ao conector 
ConectorHandler e invoca a operação handle() do mesmo. 

Conforme a porta de entrada configurada no conector ConectorHandler, 
handle() invoca a operação adequada. Cada operação descrita no conector invoca 
forward(), responsável por dar seqüência ao encadeamento controlado por Handler. Na 
seqüência, ServidorHandler tem sua operação handle() solicitada, a qual encaminha 
a requisição original para Servidor, finalizando o encadeamento. 

No exemplo de aplicação citado anteriormente (PCB), as classes Produtor e 
Consumidor têm o papel de Cliente, a classe BufferReal tem o papel de 
Servidor, a classe InterfaceBuffer tem o papel de InterfaceServidor, a classe 
Guarda tem o papel de ConectorHandler e a classe Buffer tem o papel de 
ServidorHandler.  

A solução descrita apresenta algumas propriedades importantes, que conseguem 
absorver as forças apresentadas da seguinte maneira: 

a) As funcionalidades de módulos e conectores estão separadas dos processos de 
interceptação e encaminhamento (realizados pelas classes InterfaceServidor e 
Handler, respectivamente), possibilitando a reutilização de componentes. Isso 
resolve parte da força 1.  

b) A separação de requisitos é atendida, pois modificações funcionais ou de interface nos 
módulos não afetam os conectores, e vice-versa. Isso acontece porque são definidas 
classes distintas para módulos e conectores, nas quais as funcionalidades de cada 
módulo e conector são implementadas de forma bem definida e coesa – cabe ao 
conector, por exemplo, rotear as mensagens para os outros conectores e módulos 



 

 

interligados. Além disso, a classe Porta mantém o mapeamento entre os pontos de 
interação dos componentes – as portas de entrada e saída – e as operações definidas 
nas classes e invocações a operações, independentemente das interfaces. Esses fatos 
resolvem parte da força 1, a força 2 e a força 4. 

c) Os processos de interceptação e encaminhamento das requisições ocorrem de forma 
transparente, sem que os módulos do sistema tomem conhecimento disso. 
InterfaceServidor possui a mesma interface de Servidor, o que permite que 
Cliente utilize seus serviços como se estivessem lidando diretamente com ele. A 
solução, portanto, é independente da arquitetura apresentada. Tal independência pode 
ser estendida a qualquer tipo de arquitetura, oferecendo ao desenvolvedor um nível de 
abstração bastante elevado. A parte de abstração da força 1 é resolvida. 

d) A definição de novos conectores, e sua inclusão apropriada no encadeamento mantido 
por Handler, torna possível a obtenção de novos requisitos não-funcionais, sem que 
seja preciso alterar a interface ou o comportamento dos módulos funcionais. Tal fato 
contribui para a extensão do sistema de uma maneira independente de sua topologia 
corrente. São atendidas as forças 3 e 6. 

e) A classe Configuracao mantém informações de descrição e execução da 
arquitetura configurada. A descrição é composta basicamente pela definição das 
interfaces dos módulos e conectores e as ligações realizadas entre eles, enquanto que 
as informações de execução tratam de referências às instâncias dos objetos 
configurados. Nessa informação está contida a definição clara da interface dos 
módulos, e de como eles interagem entre si. Isso satisfaz a força 5.  

 
2.8. Participantes 
 

A figura 4 apresenta uma tabela, na qual é feito um resumo de todas as classes 
participantes no Architecture Configurator, suas responsabilidades e colaboradores.  

 
Classes Responsabilidades Colaboradores 

Cliente - Utiliza a interface fornecida por 
Interface Servidor para requisitar um 
serviço particular; 

InterfaceServidor 

Servidor - Implementa um ou mais serviços 
particulares; 

- 

InterfaceServidor - Fornece a interface do servidor aos 
clientes; 

- Recupera a referência do conector 
interligado ao cliente no nível da 
configuração, ou do próprio servidor, 
caso não haja nenhum conector 
envolvido; 

- Repassa a solicitação do cliente ao 
conector recuperado, ou ao servidor, 
no caso de não haver conectores; 

- Retorna ao cliente resposta oriunda 
do servidor; 

Servidor 
Configurador 
Conector Handler 

 
 



 

 

Handler - Serve como classe abstrata base para 
o servidor e para os conectores; 

- Realiza o encadeamento de 
conectores e componentes a partir da 
configuração estabelecida; 

Configuracao 

ConectorHandler - Implementa serviços relacionados à 
funcionalidade de um conector; 

- Invoca uma de suas operações 
correspondente à porta de entrada 
requisitada; 

- Requisita, junto ao próximo conector 
ou componente configurado, a 
operação correspondente a uma de 
suas portas de saída. Essa requisição 
é feita através da operação forward() 
da classe Handler. 

Configuracao 

ServidorHandler - Encaminha ao servidor a requisição 
vinda originariamente do cliente; 

Servidor 

Configurador - Define a arquitetura da aplicação a 
partir de uma ADL; 

- Recebe instruções a partir de uma 
determinada ADL e invoca serviços 
da classe Configuração para executá-
las; 

Configuracao 

Configuracao - Fornece a configuração estabelecida 
entre componentes e conectores; 

- Disponibiliza serviços para 
configurar componentes e conectores 
e iniciar a aplicação; 

- Mantém a descrição da arquitetura, 
bem como informações quanto à 
execução da mesma; 

Porta 

Porta - Fornece as portas configuradas de 
conectores e componentes com suas 
respectivas assinaturas; 

- 

 
Figura 4  Tabela que resume as Classes, Responsabilidades e Colaboradores. 

 
A figura 5 apresenta um possível diagrama de instâncias em tempo de execução 

para a implementação de Architecture Configurator. 
 
 
 



 

 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figura 5  Um possível diagrama de objetos de Architecture Configurator. 
 
2.9. Colaborações 
 

Uma vez descritos tipos para portas, componentes e conectores através de uma 
ADL, torna-se necessário estabelecer, ainda no nível de descrição arquitetural, a estrutura do 
sistema de software. É a partir da descrição das interligações entre componentes e conectores 
que inicia-se a colaboração entre os participantes de Architecture Configurator. 

A colaboração é composta basicamente de duas fases: (i) estabelecimento da 
configuração arquitetural; (ii) implementação da configuração arquitetural. 

A primeira fase é iniciada pelo Configurador e descreve as interligações entre 
componentes e conectores. Configurador interpreta a descrição arquitetural, identificando 
as instâncias de componentes e conectores, e procedendo com sua instanciação. A referência 
às instâncias fica armazenada na classe Configuracao. Após isso, Configurador 
identifica as ligações previstas entre componentes e/ou conectores, e a cada instrução 
referente a uma ligação, é invocada na classe Configuracao a operação para realizar tal 
ligação. Ainda nesta fase, as instâncias de componentes e conectores são iniciados, através de 
instrução apropriada.  

A segunda fase trata do mecanismo de interceptação e encaminhamento de 
requisições oriundas de componentes clientes. Este mecanismo compreende basicamente a 
organização dos componentes e conectores, realizada pela classe Handler, conforme a 
configuração estabelecida na primeira fase.  

A primeira fase está retratada na figura 6. O diagrama de seqüência ilustra a 
interligação de Cliente a ServidorHandler através de ConectorHandler e a 
iniciação dos mesmos. Instâncias de componentes e conectores são mantidas pela classe 
Configuracao. 

Note-se que Servidor não aparece no diagrama de seqüência da primeira fase, 
uma vez que é iniciado pelo objeto correspondente à classe ServidorHandler. Para cada 
classe que oferece serviços (Servidor) há uma classe respectiva associada 
(ServidorHandler), facilitando o processo de encadeamento de objetos realizado pela 
classe Handler. Esta solução é baseada no pattern Object Recursion apresentado em 
[HFR99]. 

  
 

Cliente 

InterfaceServidor ConectorHandler 

Configuracao ServidorHandler 

Porta Servidor 

cfg 

cfg cfg sucessor 

conector 



 

 

setlink ()

start ()

: Configurador : Cliente

: Conector
Handler

: Servidor
Handler

: Configuração
(Desc/Exec)

Cliente
Conector
Handler

Servidor
Handler

Cliente

start ()

Conector
Handler

start ()

Servidor
Handler

run ( )

run ( )

run ( )

 
 

Figura 6 Diagrama de Seqüência (Colaboração). Primeira fase. 

 
A iniciação de Cliente dará princípio à segunda fase da colaboração, retratada 

na figura 7. A seqüência de colaboração inicia-se a partir da invocação, por parte da instância 
de Cliente, a um serviço (servico1(), na figura) oferecido por um Servidor. Todas 
as invocações a partir do Cliente são interceptadas por um objeto 
InterfaceServidor. Este encaminha a invocação através da cadeia de conectores e 
componentes, representados por instâncias de ConectorHandler e ServidorHandler. 
Cada uma das instâncias de ConectorHandler representa, preferencialmente, um aspecto 
não-funcional, implementado por um conector. Ou seja, a cada conector configurado, deve 
estar associada uma instância de ConectorHandler. 
 



 

 

 
Figura 7  Diagrama de Seqüência (Colaboração). Segunda fase. 

 
A invocação de um serviço corresponde a uma das portas de saída configuradas 

para o componente Cliente. A assinatura da porta é passada a InterfaceServidor, 
que, de posse disso, obtém em Configuracao a referência ao primeiro conector ligado a 
Cliente, e a porta de entrada ligada à sua porta de saída em questão. Feito isso, o método 
handle() de conector é invocado, com argumentos referentes à porta de entrada e à 
requisição realizada por Cliente.  

O método handle() começa sua operação invocando o método pre() do 
respectivo conector, responsável pelos aspectos não-funcionais que devem ser executados 
antes do encaminhamento da requisição para o próximo conector/componente configurado. 
Após a execução de pre(), o fluxo deve seguir por alguma porta de saída do conector. 
Definida a porta de saída, a operação forward() do conector é invocada. Tal operação 
utiliza a classe Configuracao para obter a referência ao próximo componente/conector 
configurado, de modo análogo ao explicado anteriormente, e a requisição segue no 
encadeamento.  

O final do encadeamento ocorre quando ServidorHandler é encontrado e 
tem sua operação handle() requisitada. Esta operação tem funcionamento análogo à de 
ConectorHandler, porém não invoca forward(), e sim concretiza a requisição junto a 
Servidor, invocando o método que implementa o serviço desejado. 

No contexto das classes InterfaceServidor e Handler, portas de saída 
são representadas por invocações de operações, e portas de entrada são representadas por 
operações declaradas na interface de componentes e /ou conectores (assinaturas). 

handle (portaEnt, req) 

: Servidor conector  sucessor  

serviço1(args)* 

pos ( ) 

pre ( ) 
handle (portaEnt,req) 

getlink(portaSai)

serviço1 (args) 

: Conector 

Handler 
: Interface 

Servidor 
: Cliente  

Configuração 

: Servidor 

Handler 

getlink(this,portaSai) 
Configuração 

* a informação 
de qual 
operação 
executar é 
recuperada de 
portaEnt ou req. 
Os argumentos 
(args) devem ser 
recuperados de 
req. 

forward (portaSai, req) 



 

 

É importante ressaltar que podem ser criadas várias classes que implementam 
aspectos não-funcionais, e também várias instâncias de cada uma delas. Em outras palavras, 
seria possível ter classes ConectorHandler1, ConectorHandler2, 
ConectorHandler3, etc., cada qual com uma ou mais instâncias. A mesma observação 
vale para as classes Cliente, Servidor e ServidorHandler, tornando fácil também a 
separação entre requisitos funcionais do sistema. Deve ser levado em conta o fato de que cada 
classe Servidor criada deve ter associada a si uma classe InterfaceServidor 
específica. 
 
2.10. Conseqüências 
 

A utilização de Architecture Configurator traz as seguintes consequências: 
 

a) conectores independentes: cada conector pode ser construído levando-se em conta 
um aspecto não-funcional diferente e podem ser inter-relacionados sem que 
conheçam a configuração da aplicação. 

b) transparência: componentes requisitam e fornecem serviços transparentemente em 
relação aos conectores configurados. 

c) responsabilidade flexível: conectores têm amplo poder de manipular e analisar as 
informações por eles recebidas e podem encaminhá-las ou não a outro conector ou ao 
Servidor. A operação forward() busca o sucessor na seqüência de conectores e 
pode ser invocada ou não pelos mesmos, conforme os requisitos da aplicação.  

d) conectores adaptáveis: os conectores podem ser concebidos independentemente dos 
componentes os quais intermediarão. Uma vez implementados e configurados em 
uma determinada aplicação, não necessitam de alterações em decorrência de alguma 
modificação da interface de um dos componentes intermediados. 

e) conectores podem ser usados para estender aplicações já existentes: este design 
pattern, ao tornar possível a organização dos conectores, facilita a implementação de 
novos requerimentos que surgem na aplicação. Adaptações que seriam necessárias 
aos componentes para suprir tais requerimentos podem ser realizadas em novos 
conectores, os quais podem ser construídos e configurados independentemente de 
outros existentes. 

f) conectores genéricos: um determinado conector pode ser desenvolvido 
independentemente da quantidade de portas dos componentes que irá intermediar, e 
da diversidade de assinaturas das mesmas.  

 
2.11. Patterns Relacionados  
 

InterfaceServidor possui a mesma interface de Servidor, com o 
objetivo de controlar o acesso ao mesmo. O controle de acesso ao Servidor foi baseado no 
design pattern Proxy [GHJ95], sendo que Servidor corresponde a RealSubject de Proxy e 
InterfaceServidor corresponde à classe Proxy do mesmo design pattern. O 
Servidor desconhece a existência de InterfaceServidor.  

A interligação dos conectores e componentes como desenhada na estrutura de 
Architecture Configurator segue o design pattern Object Recursion [HFR99], no qual sua 
classe abstrata Handler corresponde a Handler de Architecture Configurator, suas classes 
Terminator e Recurser correspondem respectivamente a ServidorHandler e 



 

 

ConectorHandler e, finalmente, sua classe Initiator corresponde a 
InterfaceServidor. Object Recursion é utilizado no Chain of Responsibility de 
[GHJ95]. 

O design pattern Component Configurator, disponível em [SSR00], permite que 
uma aplicação configure seus componentes (link e unlink ) em tempo de execução, sem 
necessidade de quaisquer modificações e/ou recompilações dos mesmos. O processo é feito 
separando-se a implementação dos componentes de suas operações de controle, tais como 
init(), fini(), suspend(), resume(). O pattern possui duas classes importantes: Component 
Repository e Component Configurator. Ambas classes têm funcionalidades semelhantes à 
Configuracao e Configurador de Architecture Configurator. 

A diferença básica entre Component Configurator e Architecture Configurator 
relaciona-se aos aspectos arquiteturais. O primeiro contempla o espaço de endereços da 
aplicação, armazenando as referências dos componentes na classe Component Repository, 
sem ater-se à configuração arquitetural da mesma. Architecture Configurator, por sua vez, 
mantém a descrição da arquitetura e informações de execução da mesma. Assim, Architecture 
Configurator organiza os componentes e conectores de acordo com a descrição arquitetural 
mantida pela classe Configuracao.  

Entretanto, Architecture Configurator pode ser empregado em conjunto com 
Component Configurator, com o objetivo de permitir a reconfiguração de componentes e 
conectores da aplicação em tempo de execução.  

Interceptor [SSR00] é um architectural pattern que permite a adição de serviços a 
determinado framework , de forma transparente, tornando-o extensível. Este pattern relaciona-
se ao design pattern Architecture Configurator no sentido de ambos permitirem a extensão da 
aplicação com serviços não previstos nos seus componentes básicos. Entretanto,  Interceptor 
trata da extensão de frameworks, que são estruturas inacabadas que servem de base para o 
desenvolvimento de aplicações, enquanto que Architecture Configurator permite a extensão 
de arquiteturas mais genéricas, através da incorporação de conectores que podem encapsular 
serviços não-funcionais à aplicação. 

Outro design pattern relacionado é Facade [GHJ95], o qual pode auxiliar na 
composição de Configuracao e Porta. No modelo da figura 4, Configuracao serve 
de facade para a funcionalidade de Porta, com o objetivo de distinguir as funções de 
Porta e Configuracao. Entretanto, uma terceira classe pode ser definida para servir 
como facade para Configuracao e Porta com o objetivo de tornar unificada a interface 
de acesso a ambas classes, simplificando a implementação de conectores e componentes. 

Architecture Configurator pode ser empregado na implementação do 
architectural pattern Reflection [HFR99]. Este pattern separa a arquitetura de um sistema em 
dois níveis: nível base (base level) e meta-nível (meta level). O primeiro define a lógica da 
aplicação e o segundo mantém informações a respeito da própria estrutura e comportamento 
do sistema. O meta-nível consiste de metaobjetos (metaobjects) com uma interface que 
permite ao nível base acesso ao meta-nível. As classes Cliente e Servidor de 
Architecture Configurator podem compor o nível base, enquanto os conectores e suas 
respectivas portas podem compor o meta-nível, fazendo o papel de metaobjetos. 
 
2.12. Usos Conhecidos  
 

De um modo geral, os sistemas de software podem ser configurados como uma 
aplicação cliente-servidor, na qual existem módulos que oferecem serviços e módulos que 
requisitam serviços. Sendo assim, Architecture Configurator pode ser utilizado em qualquer 



 

 

aplicação que tenha essa característica, bastando para isso a implementação do esquema de 
interpretação da descrição arquitetural (classe Configurador), estruturas de dados para 
armazenamento e recuperação da informação de configuração (classes Configuracao e 
Porta), e o esquema de interceptação e encaminhamento das requisições (classes 
InterfaceServidor, Handler e os handlers para conectores e servidor).  

Um uso específico para o Architecture Configurator é o ambiente de suporte R-
RIO [Lob99]. No R-RIO os componentes são objetos instanciados a partir de classes escritas 
em Java e conectores podem encapsular protocolos de comunicação e aspectos relacionados à 
interação [SLL99] entre os componentes. R-RIO permite a instanciação de componentes em 
um ambiente distribuído e mantém a configuração da aplicação implementada em gerentes 
localizados nos hosts do sistema distribuído. A configuração é alimentada por um 
interpretador central, ao qual recebe instruções baseadas na ADL Babel.  

Os gerentes do R-RIO têm funcionalidade equivalente à classe Configuracao 
do Architecture Configurator, mantendo informações da descrição da configuração 
arquitetural, bem como da execução do sistema. O interpretador, por sua vez, tem associação 
com a classe Configurador. 

O conceito de porta de entrada e saída com o respectivo mapeamento para 
operações, é usado pelo R-RIO, tanto para componentes quanto para conectores. Outro 
aspecto do R-RIO refere-se ao uso do mecanismo de reflexão estrutural da linguagem Java 
para gerar de forma automática um proxy para o componente Servidor, nos mesmos 
moldes da classe InterfaceServidor de Architecture Configurator. 

Alguns conceitos colocados em Architecture Configurator aparecem em diversas 
ADLs e linguagens para definição de conectores. O conceito de conector aparece em ADLs 
como ACME [GMW97], Babel [Mal96], C2 [Med99], UniCon [SDZ96] e Wright [AG97]. 
Em todas elas existe a distinção entre o tipo de conector e a instância de conector. 

Propriedades em relação às portas de componentes e conectores, representadas 
pela classe Porta, aparecem em UniCon na forma de listas chamadas Listas de 
Propriedades. Portas de componentes são denominadas players e portas de conectores são 
denominadas roles em UniCon.  

O conceito de encaminhamento/roteamento de mensagens atribuído ao conector 
aparece na linguagem C2.  O conector C2 tem a responsabilidade primária de realizar o 
roteamento e o broadcast de mensagens e, secundariamente a definição e implementação de 
políticas de filtragem de mensagens. Tais políticas têm paralelo com a interceptação e 
manipulação descritas em Architecture Configurator. 

 
3. Conclusão 
 

Este artigo apresentou o design pattern Architecture Configurator, proposto para 
servir de base à implementação da configuração de aplicações. 

Arquiteturas definidas em alguma ADL podem ser implementadas através deste 
design pattern, uma vez que ele emprega características próprias dos conectores e 
características inerentes ao processo de configuração de componentes e conectores. 
Architecture Configurator faz a leitura da arquitetura e a implementa utilizando propriedades 
de conectores como a interceptação, manipulação e encaminhamento de mensagens ou 
requisições. As interconexões entre componentes e conectores são interpretadas conforme 
seus elos de ligação definidos pelas portas. 

Cada componente ou conector participante da arquitetura pode ser implementado 
de forma autônoma e integrado de acordo com a configuração arquitetural. 



 

 

A solução descrita em Architecture Configurator não apresenta novidades 
conceituais quanto às propriedades de configuração, de conectores ou mesmo de arquiteturas 
de software, mas reforça estes pontos, propondo um modelo-base sobre o qual a configuração 
entre componentes e conectores pode ser realizada. 
 
4. Agradecimento 
 

Os autores fazem um agradecimento à equipe de shepherding do SugarloafPLop 
2002, em especial às professoras Rossana Maria de Castro Andrade e Rosana Teresinha 
Vaccare Braga, pela ajuda fundamental de orientação para que fosse possível atingir esta 
versão final deste artigo, e ao grupo de trabalho do Writers Workshop do SugarloafPlop 2002, 
pelas valiosas contribuições que ajudaram a enriquecer o conteúdo do trabalho apresentado.  

 



 

 

5. Referências 
 
[AG97] R. Allen, D. Garlan. A Formal Basis for Architectural Connection. ACM Transactions on 

Software Engineering and Methodology, vol. 6, no. 3, pág. 213-249, julho 1997. 
 
[App00] B. Appleton. Patterns and Software: Essential Concepts and Terminology. Disponivel em 

http://www.enteract.com/~bradapp/docs/patterns-intro.html,  2000. 
 
[Car01]  Carvalho, S.  Um Design Pattern Para a Configuração de Arquiteturas de Software.  

Dissertação de Mestrado.  IC/UFF,  Niterói-RJ,  maio de 2001. 
 
[GHJ95] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns: Elements of Reusable 

Object-Oriented Software. Addison-Wesley, 1995. 
 
[GMW97] D. Garlan, R. Monroe, D. Wile. Acme: An Architecture Description Interchange Language. 

CASCON’97. Novembro, 1997. 
 
[HFR99] N. Harrison, B. Foote, H. Rohnert. Pattern Languages of Program Design 4. Software 

Pattern Series. Addison-Wesley, 1999. 
 
 [Lob99] M. Lobosco. Um Ambiente para Suporte à Construção e Evolução de Sistemas 

Distribuídos. Dissertação de Mestrado. IC/UFF. Março, 1999. 
 
[Mal96] V. V. Malucelli. Babel – Construindo Aplicações por Evolução. Dissertação de Mestrado. 

DEE / PUC-RJ. Fevereiro 1996. 
 
[Med99] N. Medvidovic. Architecture-Based Specification–Time Software Evolution. Tese de 

Doutorado (PhD). Universidade da Califórnia, Irvine, 1999.  
 
[MRB97] R. C. Martin, D. Riehle, F. Buschmann. Pattern Languages of Programming Design 3. 

Software Pattern Series, Addison-Wesley, 1997. 
 
[SDZ96] M. Shaw, R. Deline, G. Zelesnik. Abstractions and Implementations for Architectural 

Connections. Third International Conference on Configurable Distributed Systems. Maio 
1996. 

 
[SLL99] A. Sztajnberg, M. Lobosco, O. Loques. Configurando Protocolos de Interação na 

Abordagem R-RIO. Simpósio Brasileiro de Engenharia de Software. Florianópolis, Santa 
Catarina. 1999. 

 
[Som00] I. Sommerville. Software Engineering.  6th. Edition.  Addison-Wesley, 2000.  
 
[SSR00] D. Schmidt, M. Stal, H. Rohnert, F. Buschmann. Pattern-Oriented Software Architecture, 

Patterns for Concurrent and Networked Objects. Volume 2. John Wiley & Sons, 2000.  
 
[Sun00] Sun Microsystems. Java 2 Plataform, Standard Edition Documentation. 

http://java.sun.com/products/jdk/1.3/docs/index.html. Maio 2000. 
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



Padrões de Projeto para Estruturação de Aplicações Distribúıdas
Enterprise JavaBeans

Klissiomara Dias∗ and Paulo Borba†

Centro de Informática
Universidade Federal de Pernambuco

Resumo

Enterprise JavaBeans (EJB) auxilia o desenvolvimento de aplicações de negócio que lidam com

aspectos como distribuição, persistência e transações. Aplicações dessa natureza, se desenvolvi-

das de forma ad hoc podem levar a sistemas cujo código mistura aspectos de negócio com aspec-

tos não funcionais, podendo comprometer alguns fatores de qualidade, tais como reusabilidade

e extensibilidade. Por este motivo, este artigo propõe dois padrões de projeto que auxiliam na

estruturação de aplicações EJB, visando obter alguns benefııcios como reuso, modularidade, ex-

tensibilidade, independência de tecnologia (distribuição ou dados) e desempenho. Estes padrões

auxiliam ainda na estruturação de aplicações EJB a partir de sistemas já existentes, sem EJB,

minimizando o impacto das mudanças sobre as demais camadas da aplicação.

Abstract

Enterprise JavaBeans (EJB) technology provides support for the development of modern

applications, taking into consideration aspects like distribution, persistence and transactions.

Applications of this nature, if developed in ad hoc fashion can result in systems whose code

mixes business and non-functional requirements (for example, distribution and persistence), be-

ing able to compromise some quality aspects, such as reusability and extensibility. This paper

proposes two design patterns that aid in structuring EJB applications, in order to gain some

benefits like reuse, modularity, extensibility, technology independence (i.e. distribution or data)

and performance. In addition, they can assist in designing EJB applications from non-EJB

already-existing systems, and thus softening the impact of changes on other application layers.

Copyright c©2002, Klissiomara Dias and Paulo Borba. Permission is granted to copy for the Sugar-
loafPLoP 2002 Conference. All other rights reserved.

∗Financiada pelo CNPQ. Email: kld2@cin.ufpe.br
†Parcialmente financiado pelo CNPq, v́ınculo 521994/96–9. Email: phmb@cin.ufpe.br



1 Introdução

O padrão arquitetural Layer (padrão em camadas) [5] é utilizado para a estruturação
de aplicações complexas que lidam com diferentes requisitos, funcionais e não funcionais.
Com a utilização desta arquitetura, é posśıvel distribuir as classes que compõem o sis-
tema em camadas bem definidas, de acordo com cada aspecto da aplicação (negócio,
persistência, comunicação, etc.)

A divisão de um sistema em camadas permite obter aplicações modulares e reuti-
lizáveis, uma vez que o código de diferentes aspectos (apresentação, comunicação, negócio
e dados, por exemplo) não são misturados. Além disso, os elementos das diferentes ca-
madas comunicam-se através de interfaces.

Em aplicações distribúıdas, a comunicação entre objetos executando em diferentes
máquinas é realizada através de mecanismos e protocolos de comunicação. Quando tais
objetos manipulam aspectos de comunicação diretamente, a tendência é que suas fun-
cionalidades sejam misturadas com as tarefas de comunicação. O mesmo acontece com
aplicações que utilizam algum meio de armazenamento persistente. O desenvolvimento ad

hoc de aplicações que utilizam alguma plataforma de persistência, para armazenamento e
recuperação de seus objetos, leva a sistemas que misturam código de acesso a dados com
o código de negócio da aplicação.

Enterprise JavaBeans (EJB) [14] é uma tecnologia que trata de aspectos como dis-
tribuição e persistência. Por este motivo, foi feita uma análise acerca da necessidade do
uso de padrões existentes para a arquitetura EJB. Como resultado desta análise, surgiram
os padrões apresentados neste artigo.

Desta forma, os padrões apresentados neste artigo são utilizados no contexto de
aplicações EJB e estruturam classes e objetos que preenchem as camadas citadas acima.
A apresentação dos padrões em um mesmo artigo visa facilitar sua compreensão, uma vez
que estes estão relacionados:

• Distributed Adapters Pattern with EJB (DAP-EJB). O DAP-EJB corresponde à
adaptação do padrão Distributed Adapters Pattern (DAP) [2], o qual foi primeira-
mente definido em Progressive Development of Distributed Object-Oriented Applica-

tions [1] e visa isolar o middleware da aplicação, tornando-a extenśıvel para vários
tipos de mecanismo de comunicação.

• Persistent Data Collections with EJB (PDC-EJB). O PDC-EJB corresponde à
adaptação do padrão Persistent Data Collections (PDC) [11], o qual visa permi-
tir reutilização da lógica de negócio para diferentes mecanismos de persistência.

2 DAP-EJB: Um Padrão para Distribuição com EJB

Objetivo

Fornecer uma estrutura para implementação de distribuição em um sistema com EJB,
visando separação de conceitos e conseqüentemente fatores de qualidade como modulari-
dade, extensibilidade e reusabilidade.



Contexto

O padrão DAP-EJB é utilizado no contexto de comunicação remota entre dois compo-
nentes, onde é desejável que tais componentes não estejam acoplados à tecnologia de
distribuição.

Problema

Apesar de EJB prover interoperabilidade e transparência de localização para o acesso aos
objetos remotos, os clientes de um enterprise bean ainda precisam fazer uso de interfaces
e classes espećıficas da API de distribuição a fim de obter as referências remotas para os
beans. Isto implica que a interface com o usuário acaba tendo código espećıfico de EJB.
O mesmo acontece com relação à camada de negócio. Como resultado, tanto a interface
com o usuário quanto a camada de negócio ficam vulneráveis às modificações realizadas
na camada de comunicação.

Forças

O DAP-EJB leva em consideração as seguintes forças:

• Um componente deve ser capaz de acessar serviços remotos fornecidos por outros
componentes;

• Os componentes devem ser independentes do middleware da aplicação; isto permite,
por exemplo, que o mesmo sistema possa utilizar diferentes middleware ao mesmo
tempo ou, ainda, possa ser executado localmente.

• A modificação no código dos componentes para suportar comunicação deve ser min-
imizada; ou seja, a inserção do componente de distribuição em uma aplicação não
distribuida deve causar pouco impacto no código já existente.

• Modificação da tecnologia de distribuição deve ser uma tarefa simples; é impor-
tante estruturar os aspectos de distribuição de forma modular, vislumbrando o fraco
acoplamento destes em relação cliente e o negócio da aplicação.

Solução

Para resolver o problema apresentado, o DAP-EJB introduz o uso de um par de adapta-
dores [7] que são utilizados para encapsular o código relacionado à API de distribuição.
O objetivo é permitir que a inserção, remoção, ou troca do middleware de distribuição de
uma aplicação seja realizado de forma a minimizar as mudanças necessárias no código do
sistema. O uso destes adaptadores isola a interface com o usuário e a camada de negócio
da plataforma de distribuição do sistema, abstraindo desta forma a tecnologia utilizada
para comunicação remota entre componentes.

Estrutura

O diagrama de classes da Figura 1 destaca a estrutura do padrão DAP-EJB. As classes
em cinza denotam os adaptadores e seus colaboradores, os quais, basicamente, escondem



a API de distribuição da interface com o usuário e o código de negócio. As demais classes
lidam com os aspectos de negócio da aplicação. Os elementos que fazem parte do padrão
e seus colaboradores são explicados a seguir.

Figura 1: Estrutura do padrão DAP-EJB

• Fonte

A classe Fonte representa qualquer objeto que faz o papel de cliente (GUI, por
exemplo) da fachada e que está localizado em uma máquina remota em relação aos
objetos do sistema.

• Fachada

A classe Fachada é estruturada de acordo com o padrão facade [7], sendo responsável
por encapsular todos os serviços oferecidos pelo sistema (no diagrama, o método m

representa um dos posśıveis serviços). Esta classe representa, na verdade, o objeto
remoto a ser acessado pelo cliente.

• InterfaceFachada

A InterfaceFachada é uma interface que abstrai o comportamento da fachada em
um cenário distribúıdo. Esta classe, em conjunto com as classes Fonte e Fachada

constituem uma camada independente da tecnologia de distribuição. Os demais
elementos do diagrama ficam responsáveis por esse aspecto e constituem a camada
de distribuição do sistema.

• AdaptadorFonte



O adaptador fonte é uma classe Java [8] “pura”e isola a classe Fonte do código
de distribuição. Um objeto desta classe reside na mesma máquina que o objeto
da classe fonte e trabalha como um proxy [7] para o adaptador destino. Repassa
as chamadas feitas pelos clientes para o próprio adaptador destino, isolando todo
o código relacionado com a plataforma de distribuição, mantendo o cliente isolado
deste código (inclusive exceções de comunicação).

• AdaptadorDestino

O adaptador destino é um stateless session bean [14] e, como todo componente
EJB, possui duas interfaces remotas. Este componente é responsável por repassar
as chamadas para o objeto fachada.

• ServiceLocator

A classe ServiceLocator é uma classe auxiliar que visa abstrair a complexidade do
processo de localização e criação dos beans, bem como melhorar o desempenho do
sistema. É utilizada no padrão DAP-EJB para auxiliar o processo de criação das
referências remotas ao adaptador destino.

Dinâmica

A Figura 2 apresenta o diagrama de seqüência para um cenário do DAP-EJB. Durante
a inicialização, o Fonte cria um AdaptadorFonte, o qual executa o método getHome

de ServiceLocator e este executa uma operação de lookup sobre o serviço de nomes
JNDI, a fim de obter uma referência da interface home do AdaptadorDestino. Após
obter a referência do home do adaptador destino, o AdaptadorFonte executa o método
create sobre este a fim de obter uma referência à sua interface remota, no intuito de obter
acesso aos serviços oferecidos pelo AdaptadorDestino. Ao executar uma operação create

sobre o adaptador destino, uma única instância da Fachada é obtida através do método
getInstance1. O Fonte então, invoca uma operação local m sobre o AdaptadorFonte

e este invoca a operação remota m do adaptador destino, o qual delega esta chamada
localmente para a Fachada.

Consequências

O DAP-EJB oferece as seguintes vantagens:

• Código modular

O uso do padrão permite a estruturação dos aspectos de distribuição de forma
modular, de modo a propiciar o fraco acoplamento destes em relação ao cliente e a
camada de negócio da aplicação.

• Reutilização e extensibilidade

Devido à estrutura modular obtida com o padrão, é posśıvel utilizar as classes fonte
e fachada mais facilmente em outras aplicações que utilizem diferentes tecnologias
de distribuição. Além disso, mudanças na camada de comunicação são mais fáceis

1A Fachada é implementada como um Singleton [7]



Figura 2: Diagrama de Sequência do DAP-EJB.

de realizar porque afetam somente os adaptadores fonte e destino. Um exemplo
das situações citadas é um mesmo sistema ser acessado remotamente por um cliente
utilizando EJB como API de distribuição ou ser acessado localmente, na máquina
do cliente sem EJB. O mesmo sistema pode, ainda, ser acessado por um cliente que
utiliza CORBA, por exemplo, como tecnologia de comunicação remota.

• Implementação progressiva

O padrão suporta implementação progressiva [4]. Desenvolvedores constroem um
protótipo funcionalmente completo, onde o cliente depende diretamente da fachada,
e realizam os testes da funcionalidade do sistema a fim de validar seus requisitos
funcionais. Depois, o componente de distribuição pode ser inserido causando pouco
impacto no código já existente. Isto é posśıvel porque o componente de distribuição
implementa a mesma interface que a fachada. É importante destacar que o padrão
além de permitir inserir o componente de distribuição em um sistema já existente,
local, também permite adaptar um sistema distribúıdo em outra plataforma (por ex-
emplo, RMI), sem que para isso seja necessário descartar as classes correspondentes
ao cliente e fachada.

Por outro lado, o DAP-EJB possui as seguintes desvantagens:

• Aumento do número de classes

Um par de adaptadores, duas interfaces remotas e um ServiceLocator são necessários.
Todavia, essa estrutura é simples e seu código pode ser gerado de forma automática



com o aux́ılio de ferramentas, que são importantes para a utilização do padrão
na prática. Estas ferramentas devem não somente auxiliar na geração dos adap-
tadores e elementos relacionados ao componente de distribuição, mas também na
manutenção, quando da inserção de um método na fachada, por exemplo.

• Eficiência

Com a introdução dos adaptadores, é necessário um maior número de invocações
até que a chamada do método original seja executada no objeto remoto. Além
do overhead causado com a introdução dos adaptadores, existe um outro fator que
contribui para o overhead quando da invocação de métodos remotos que, neste caso,
é uma caracteŕıstica intŕınseca de EJB e que, portanto, não é uma desvantagem do
padrão em si. Para se ter acesso a um objeto remoto EJB é necessário realizar duas
chamadas de métodos sobre suas interfaces antes de invocar o método de negócio.
Além disso, eficiência é um problema genérico da arquitetura em camadas, uma vez
que um maior número de classes é introduzido no sistema, aumentando, com isso,
a transferência de dados entre camadas e, por conseguinte, o número de chamadas
de métodos [5].

Exemplo

O diagrama de classes UML [3] da Figura 3 ilustra a estrutura do padrão DAP-EJB
através do exemplo de uma simples aplicação bancária. As classes em cinza correspon-
dem aos adaptadores e elementos utilizados para esconder a API de distribuição do código
de negócio e do cliente. As demais classes denotam os aspectos de negócio da aplicação.

Figura 3: Estrutura de uma aplicação bancária de acordo com o padrão DAP-EJB.



Implementação

Adaptador destino implementado como Stateless session bean

O adaptador destino é implementado com um stateless session bean pelo fato de com-
ponentes dessa natureza representarem objetos cujas instâncias são equivalentes no con-

tainer 2. Uma mesma instância de um stateless session bean pode servir às requisições de
diferentes clientes, minimizando os recursos necessários para suportar uma grande quan-
tidade destes. Além disso, ao adaptador destino também podem ser atribúıdos aspectos
relacionados aos serviços de transações e segurança, por exemplo.

ServiceLocator para acesso às referências remotas dos beans

A tarefa para ter acesso a um componente EJB é comum para todos os clientes (externos
ou internos) que precisam acessar seus serviços. Isto implica que muitos tipos de clientes
repetidamente utilizam os serviços JNDI [10], uma API que fornece um conjunto de
interfaces e classes para acessar uma vasta quantidade de recursos, entre os quais permite
a localização de objetos remotos, o que resulta em código duplicado nos mesmos. Além
disso, o processo necessário para localizar e obter referências remotas aos homes dos
beans gasta recursos significativos do servidor de aplicação, o que pode causar impacto
no desempenho do sistema. Neste contexto, a classe ServiceLocator [6], um padrão
que visa abstrair a complexidade do processo de localização e criação dos beans, bem
como melhorar o desempenho do sistema, é utilizada no padrão DAP-EJB para auxiliar
o processo de criação das referências remotas.

Código

Nesta seção é apresentado o código para os elementos do exemplo do padrão. A interface
com o usuário cria um BancoEJBSourceAdapter e delega as requisições do cliente para
este. O adaptador fonte é uma classe Java “pura” e implementa a interface da fachada
IBanco de modo a permitir que a interface com o usuário não tenha conhecimento da
tecnologia de distribuição sendo utilizada.

O adaptador fonte declara como atributo as interfaces home e remota do adaptador
destino, por questões de eficiência. Estes atributos são representados por h e banco,
respectivamente.

public class BancoEJBSourceAdapter implements IBanco {

private IBancoEJBTargetAdapter banco;

private IBancoEJBTargetAdapterHome h;

Com o aux́ılio dos métodos da classe ServiceLocator, uma única instância da inter-
face IBancoEJBTargetAdapterHome é obtida. O método auxiliar conectar realiza este
processamento.

2Nome dado ao ambiente de execução dos compoenentes EJB.



private void conectar() throws CommunicationException {

Class home = IBancoEJBTargetAdapterHome.class;

try{

if (h == null){

h = (IBancoEJBTargetAdapterHome)

ServiceLocator.getInstance().getHome("banco",home);

}

this.banco = h.create();

} catch(ServiceLocatorException e){

throw new CommunicationException (...);

} catch(CreateException e){

throw new CommunicationException (...);

}

}

A partir do método getHome da classe ServiceLocator, a referência à interface home do
adaptador destino é obtida. Além disso, conectar também obtém a referência à interface
remota do adaptador destino (IBancoEJBTargetAdapter), a partir do método create de
sua interface home.

A exceção ServiceLocatorException é uma exceção de aplicação lançada pelo método
getHome se alguma falha acontecer quando da obtenção do home do adaptador destino.
A exceção CreateException é lançada pelo método create se a instância do adaptador
destino não puder ser criada. As exceções de aplicação espećıficas de EJB são trocadas
no adaptador fonte pela exceção genérica CommunicationException. Esta exceção não
depende de qualquer tecnologia de distribuição particular e é definida de modo a permitir
que o cliente seja isolado de exceções espećıficas da API de distribuição. No construtor
do adaptador fonte o método conectar é chamado. Assim,

public BancoEJBSourceAdapter() throws CommunicationException {

conectar();

}

quando uma instância do adaptador fonte é criada, o processo de localização e criação da
instância do adaptador destino é também realizado.

Após obter a referência remota do bean, o adaptador fonte está pronto para executar
chamadas aos métodos de negócio do adaptador destino. O método creditar do adap-
tador fonte delega as requisições da interface com o usuário para o adaptador destino.

public void creditar(String numeroConta, double saldo)

throws CommunicationException, ContaNaoExisteException {

try{

banco.creditar(numeroConta, saldo);

} catch(RemoteException e){

throw new CommunicationException(...);

}

}

...

}



Pelo fato do adaptador fonte invocar os métodos remotos do adaptador destino, a exceção
RemoteException pode ser lançada se ocorrer alguma falha originada a partir da in-
vocação remota. Neste caso, RemoteException deve ser trocada pela exceção genérica
CommunicationException. Assim, o cliente não é exposto às exceções espećıficas da
API de distribuição. A interface IBancoEJBTargetHome representa a interface home do
adaptador destino e herda a interface EJBHome.

public interface IBancoEJBTargetAdapterHome extends EJBHome {

public IBancoEJBTargetAdapter create()

throws CreateException, RemoteException;

}

A exceção RemoteException deve ser declarada em todo método da interface home de
EJB, e CreateException é uma exceção de aplicação espećıfica de EJB lançada quando
referências remotas do bean não podem ser criadas. O adaptador destino é um stateless

session bean e por isso apresenta um único método create, sem argumentos, em sua
interface home. Tal método é responsável por criar as suas referências remotas. A interface
IBancoEJBTargetAdapter representa a interface remota do adaptador destino e declara
os métodos invocados pelo adaptador fonte.

public interface IBancoEJBTargetAdapter extends EJBObject {

public void creditar(String numero,double valor)

throws ContaNaoExisteException, CommunicationException,

RemoteException;

...

}

Esta interface é o tipo da referência ao adaptador destino e seus métodos devem lançar
RemoteException. A exceção ContaNaoExisteException é uma exceção de aplicação.
Além do método creditar, outros métodos podem ser declarados nesta interface.

A classe BancoEJBTargetAdapter é a classe que representa o adaptador destino.

public class BancoEJBTargetAdapter implements SessionBean {

private IBanco banco;

private SessionContext context;

Esta possui uma referência à interface da fachada IBanco no intuito de delegar os serviços
para esta executar. Um atributo da interface SessionContext também deve ser declarado
no adaptador destino, uma vez que é um session bean. Esta interface é utilizada pelo
container durante o ciclo de vida do session bean. Na realidade, o container tem acesso
às informações de um session bean através desta interface.

O método ejbCreate de BancoEJBTargetAdapter obtém uma instância da classe
fachada através do método getInstance.

public void ejbCreate()

throws CreateException, RepositorioException,

CommunicationException{

banco = Banco.getInstance();

}

...



Após obter a instância da fachada, o adaptador destino delega a invocação de seus
métodos para os métodos desta. Por exemplo, quando o método creditar da classe
BancoEJBTargetAdapter é executado,

public void creditar(String numero,double valor)

throws ContaNaoExisteException, CommunicationException{

banco.creditar(numero,valor);

}

...

o método creditar da fachada é invocado. Os métodos da interface da fachada IBanco

declaram CommunicationException. Esta exceção genérica é declarada em IBanco pre-
vendo que a aplicação se tornará distribúıda. Por isso, os métodos do adaptador destino
e sua interface remota devem também declarar esta exceção.

Por se tratar de um session bean, BancoEJBTargetAdapter deve implementar a inter-
face SessionBean.

public void ejbRemove() { }

public void ejbActivate() { }

public void ejbPassivate() { }

public void setSessionContext(SessionContext sc){

this.context = sc;

}

}

O container utiliza os métodos dessa interface para notificar as instâncias dos session

beans sobre os eventos do seu ciclo de vida.

Variações

Variações do DAP-EJB são posśıveis. Por exemplo, a fachada do sistema poderia fazer o
papel do adaptador fonte e o adaptador destino, um session bean, seria introduzido entre
esta é a coleção de negócio da aplicação.

Esta é uma abordagem simplificada para o uso dos adaptadores, uma vez que um menor
número de classes deve ser gerado, além disso, os benef́ıcios como o uso de session beans

(distribuição e gerenciamento de transações, por exemplo) são mantidos. No entanto,
perde-se um pouco em extensibilidade, uma vez que código espećıfico de EJB é inserido
na camada de negócio do sistema (entre a fachada e as demais classes que compõem a
camada de negócio).

Usos Conhecidos

O DAP-EJB tem sido utilizado em um sistema de informação para o serviço público de
saúde. Este sistema foi desenvolvido para ser executado via Web. Neste caso, servlets [9]
agem como clientes do adaptador fonte. O adaptador fonte interage com o adaptador
destino, e este com a fachada, localizada na mesma máquina.



Um outro uso do DAP-EJB é em um sistema que fornece serviços para o gerenciamento
de contabilidade, controle de acesso e serviços financeiros. Na realidade, este sistema
utiliza a variação do DAP-EJB, citada na seção anterior. Neste sistema, a fachada da
aplicação é utilizada como o adaptador fonte, fazendo acesso ao adaptador destino da
aplicação.

O DAP-EJB poderia também ser utilizado em outros tipos de sistema, tais como:

• Um sistema para gerenciar clientes de uma empresa de telecomunicação. O sistema é
capaz de registrar telefones móveis, gerenciar informações de clientes e a configuração
dos serviços de telefonia. Este sistema pode ser utilizado via Web.

• Um sistema para provas interativas. Este sistema tem sido utilizado para fornecer
diferentes tipos de provas, tais como simulados baseados em exames de seleção para
a universidade, ajudando os alunos a avaliar seus conhecimentos antes de realizarem
exames reais.

• Um sistema de supermercado complexo. Este sistema será usado em vários super-
mercados e já está sendo utilizado em outras empresas do mesmo ramo.

Padrões Relacionados

• DAP (Distributed Adapters Pattern). No trabalho A Design Pattern for Object-

Oriented Distributed Applications [2], foi descrito o padrão DAP, o qual é utilizado
no contexto de comunicação remota entre dois componentes, e visa isolar o código
relacionado à API de comunicação destes. Este serviu como base para a adaptação
do padrão para Enterprise JavaBeans (DAP-EJB) proposto aqui.

O padrão apresentado neste artigo também utiliza adaptadores como o DAP, no
entanto, estes não isolam somente os aspectos de distribuição, mas também são
responsáveis pelo gerenciamento de transações e segurança, por exemplo. É impor-
tante destacar, no entanto, que o gerenciamento de transações e segurança obtidos
com o DAP-EJB só é posśıvel devido a uma caracteŕıstica intŕınseca da tecnologia
EJB, a qual permite o gerenciamento automático desses aspectos por intermédio de
seus componentes. Portanto, esta não é uma caracteŕıstica do padrão, mas sim um
benef́ıcio obtido com a tecnologia EJB.

Na realidade, o padrão DAP-EJB, permitiu mostrar que o DAP pode ser também
implementado com EJB, com pequenas adaptações, por exemplo, com relação aos
aspectos de gerenciamento dos serviços citados acima. A estrutura do padrão per-
manece a mesma, as mudanças dizem respeito muito mais às caracteŕısticas do
adaptador destino.

• Bussiness Delegate [6] e Session Facade [6]. Estes padrões são similares aos adapta-
dores fonte e destino, respectivamente. No entanto, eles não visam estruturar uma
aplicação independente de tecnologia, apesar de poderem fazê-lo. A forma como
estão estruturados não segue esta filosofia. O Bussiness Delegate é utilizado para
isolar o cliente das especificidades da tecnologia EJB, como exceções e lookup, por
exemplo. No entanto, o Session Facade não tem o mesmo propósito do adaptador
destino, uma vez que não é utilizado para isolar a tecnologia de EJB do resto da



aplicação. Ele serve como um único ponto de acesso para os demais componentes
do sistema (entity beans [14] e afins).

• Wrapper-Facade [12]. Este padrão encapsula funções de baixo ńıvel (tais como
sockets e threads) da aplicação. O DAP-EJB encapsula a API de distribuição EJB,
da aplicação.

• Adapter, Facade. DAP-EJB é implementado utilizando os padrões de projeto [7]
Adapter e Facade.

• Singleton [7]. Um objeto da classe Fachada é implementado como um Singleton.

• Abstract Factory. Em conjunto com o DAP-EJB, classes auxiliares são utilizadas
para o propósito de configuração. Tais classes são estruturadas de acordo com
o padrão Abstract Factory [7]. Assim, dependendo das informações contidas, por
exemplo, em um arquivo de configuração, o sistema poder ser executado localmente(
resultando em uma referência para a fachada) ou remotamente (resultando em uma
referência para o adaptador fonte).

Desta forma, a utilização de fábricas permite que o código do cliente seja isolado das
mudanças ligadas ao código de distribuição, aumentando, assim, a modularidade do
sistema.

3 PDC-EJB: Um padrão para Persistência com EJB

Objetivo

Fornecer uma forma de estruturar aplicações complexas implementadas com EJB de modo
a separar o código de acesso a dados do código de negócio e de interface com o usuário.
Classes espećıficas são utilizadas para separar estes conceitos, e interfaces garantem a
independência entre a camada de negócio e a camada de dados de um sistema.

Contexto

O padrão PDC-EJB está inserido no contexto de aplicações que utilizam algum tipo de
armazenamento e acesso a dados de forma persistente.

Problema

O desenvolvimento ad hoc de aplicações que utilizam alguma plataforma de persistência,
para armazenamento e recuperação de seus objetos, leva a sistemas que misturam código
de acesso a dados com o código de negócio da aplicação. Em particular, aplicações con-
strúıdas desta forma não podem dispor de objetos de negócio reutilizáveis por outras
aplicações, que utilizem diferentes tecnologias para a persitência dos dados. Da mesma
forma, se a plataforma de persistência for substitúıda (JDBC [15] por EJB, por exem-
plo), o impacto das mudanças no código do sistema não é localizado, ou seja, as classes
relacionadas ao domı́nio do negócio da aplicação também devem ser modificadas.



Desta forma, caso seja necessário adaptar um sistema para utilizar outro mecanismo
de persistência, tem-se, na verdade, que desenvolver um novo sistema. Ou seja, reuti-
lização e extensibilidade são seriamente comprometidas em sistemas desenvolvidos sem
estruturação alguma, pois não há uma distinção clara entre o código de negócio, que
contém regras e objetos de negócio, e o código de dados.

Forças

• Problemas relacionados aos requisitos de negócio do sistema devem ser manipulados
independente das operações de acesso a dados;

• A modificação no código do sistema para suportar persistência deve ser minimizada;

• O tipo de mecanismo de armazenamento3 pode ser substitúıdo durante a vida útil
de um sistema;

• Classes de negócio podem ser reutilizadas em sistemas diferentes.

Solução

O padrão PDC-EJB utiliza um conjunto de classes para estruturar o código relacionado
ao domı́nio de objetos do negócio e o código de acesso a dados, a fim de evitar a mistura
de código relacionado a tais aspectos, obtendo, com isso, extensibilidade e reutilização
das classes. Para tal, o padrão utiliza a separação das classes do sistema em dois tipos:

• classes para descrever os objetos de negócio, resultantes dos requisitos funcionais; e

• classes para manipulação e armazenamento de dados.

A comunicação entre esses dois tipos de classes é realizada através de interfaces que
garantem uma maior independência do código de negócio em relação à forma como efeti-
vamente são implementadas as operações de persistência (o acesso ao banco de dados ou
outro mecanismo, como arquivos, por exemplo).

Estrutura

O diagrama de classes da Figura 4 destaca a estrutura do padrão PDC-EJB. As classes
que denotam os elementos que fazem parte do padrão são explicadas a seguir.

• Fachada

Esta classe representa todos os serviços do sistema e define uma interface que abstrai
os objetos de negócio da aplicação [4]. Ela mantém uma referência para os vários
objetos da classe ColecaoDeNegocio da aplicação e delega as chamadas para estes.

3Termo utilizado aqui, para descrever o meio no qual os objetos de negócio do sistema são armazenados,
por exemplo, um banco de dados relacional.



Figura 4: Estrutura do PDC-EJB.

• ClasseBasica

A classe básica representa o objeto básico de negócio (por exemplo, conta, cliente)
refletindo claramente o domı́nio do problema. Os métodos desta classe contêm
somente operações relacionadas aos requisitos funcionais do sistema e métodos get
e set para obter informações sobre os atributos desta classe.

• EntityBean

Para cada classe básica da aplicação, deve existir uma classe entity bean correspon-
dente. Esta classe possui operações para persistência dos objetos das classes básicas
no sistema. A classe EntityBean possui uma dependência com sua classe básica cor-
respondente e seus métodos manipulam os objetos desta. Porém, a classe básica não
possui dependência com o entity bean, podendo ser reutilizada em outras aplicações.

• ColecaoDeNegocio

Esta classe representa o agrupamento dos objetos básicos de negócio, tendo como
operações a inserção, busca e exclusão de elementos do repositório, verificações ou
testes de pré-condições relativos à estas manipulações e mais as operações que in-
vocam as operações t́ıpicas de objetos de negócio.



• ColecaoDeDados

A coleção de dados contém código de manipulação da estrutura de armazenamento
persistente, correspondente a cada classe básica de negócio. O código dos métodos
da mesma depende da API espećıfica da plataforma utilizada para armazenamento
(no caso, EJB é utilizado para persistência dos dados). Assim, mudanças na API
de persistência não causam impacto na camada de negócio da aplicação, o im-
pacto é centralizado nesta classe (uma vez que a interface negócio-dados isola essas
mudanças). Uma classe coleção de dados implementa sua interface negocio-dados
correspondente. Esta última é apresentada a seguir.

• InterfaceNegocioDados

Esta interface possui assinaturas dos métodos de acesso aos dados, como inserção,
atualização, consultas e exclusão. Esta interface estabelece uma comunicação entre
os objetos das classes coleção de negócio e os objetos das classes coleção de da-
dos, proporcionando extensibilidade. Uma classe ColecaoDeNegocio possui uma
referência a esta interface. Desta forma, a classe ColecaoDeNegocio não precisa ser
modificada quando a classe ColecaoDeDados mudar, desde que esta sempre imple-
mente esta interface.

Os elementos que correspondem à fachada, coleção de negócio, coleção de dados e inter-
face negócio-dados são implementados como classes Java “puras”. Apesar de estar trabal-
hando com EJB, existem justificativas para não tornar tais classes session beans. O uso de
sessions beans proporciona muitos benef́ıcios. Para um bean, o container gerencia vários
serviços de forma automática. Estes serviços envolvem gerenciamento de transações, con-
trole do acesso concorrente, gerenciamento das instâncias no servidor e, por conseguinte,
gerenciamento da memória, entre outros. A fim de fornecer todos esses serviços de forma
transparente, o container executa uma vasta quantidade de processamento, incluindo
geração de classes e mecanismos que visam auxiliá-lo no emprego correto e adequado dos
serviços que gerencia.

Desta forma, toda vez que um método de um bean é requisitado, seja por um cliente
externo ou mesmo por outro bean, o container intercepta cada chamada antes de reenviá-
la para o objeto apropriado. Essa interceptação é necessária para que o container tenha
conhecimento de todas as caracteŕısticas do bean em questão: qual o tipo de mecanismo
de transação, qual o atributo de transação para o método chamado, que componentes o
bean referencia, que outros recursos utiliza, e assim por diante. Após ter acesso a todas
essas informações, o container executa os processamentos devidos e finalmente repassa a
chamada para a instância apropriada.

De fato, a execução de um método implica em vários processamentos que devem ser
executados pelo container antes de passar a requisição da chamada para o bean. Em
um sistema que utiliza muitas classes session beans, o desempenho do sistema tende a
degradar. Por isso, as classes fachada, coleção de negócios, e interface negócio dados não
são implementadas como beans.

Além das razões supracitadas relacionadas à eficiência, a implementação das classes
de negócio como classes Java “puras”, permite que estas possam reutilizadas em outras
aplicações que utilizem uma plataforma de distribuição diferente, uma vez seu código não
está atrelado a uma tecnologia de distribuição espećıfica.



A coleção de dados também é implementada como uma classe Java, no entanto ela
possui código relativo a API de EJB, uma vez que utiliza os serviços de persistência de
entity beans. Esta classe, bem como a interface negócio-dados são importantes porque
evitam que a coleção de negócio tenha aspectos espećıficos da API de EJB. Isto permite
o desacoplamento entre a tecnologia utilizada para pesistência dos dados e camada de
negócio do sistema.

Outro aspecto a ser considerado na estrutura do padrão PDC-EJB é o relacionamento
entre as classes básicas de negócio e entity beans. Entity beans fornecem operações para
persistir os dados e para realizar parte da lógica do negócio numa única classe. Isto
resulta na mistura de papéis, ou seja, código de acesso a dados persistentes e código para
manipulação da lógica de negócio são especificados na mesma classe. Os métodos de
negócio de um entity bean são declarados em sua interface remota. Isto implica que toda
invocação de um método de negócio de um entity bean é feita remotamente. Além disso,
sempre que é feita uma chamada de método sobre a interface home de um entity bean

(para criar ou localizar uma instância da entidade), o cliente recebe uma referência remota
do objeto e não sua cópia. A abordagem com entity beans traz algumas consequências:

• O acesso concorrente ao entity bean é gerenciado pelo container

Como cada cliente tem acesso a uma referência remota do entity bean, fica a cargo
do container organizar o acesso e controlar a sincronização entre os clientes de modo
a manter o estado do bean sempre coerente. Este é um dos grandes benef́ıcios de
entity beans, visto que o programador não precisa se preocupar em fornecer código
necessário ao gerenciamento do acesso concorrente.

• Os métodos de negócio são declarados na interface remota do bean

Isto implica que quando o cliente deseja executar um método de negócio, ele o
faz de forma remota. Isto pode causar impacto no desempenho do sistema. Em
particular, no caso da entidade possuir uma grande quantidade de informações que
são acessadas por métodos get e set, pode-se ter um gargalo no tráfego dessas
informações pela rede. Há um custo associado à invocação de métodos e à troca de
dados remota.

• Mistura de conceitos

Entity beans misturam código relacionado à forma como os dados são persistidos
(fornecidos pelos métodos da interface home) com os métodos de negócio, fornecidos
através da interface remota.

Com o padrão PDC-EJB é posśıvel minimizar ou evitar o impacto causado pelos
últimos itens. As classes básicas de negócio ficam responsáveis por processar parte da
lógica de negócio e os entity beans assumem o papel de persistir os dados resultantes
deste processamento. Com isso, é posśıvel tornar clara a separação dos papéis. Para cada
classe básica existe um entity bean associado. Para facilitar o entendimento, a parte da
estrutura do padrão correspondente a este aspecto é ilustrada na Figura 5.

Nada é mudado com relação à classe básica; acrescenta-se um entity bean para facilitar
a implementação da coleção de dados. A coleção de dados utiliza os serviços de persitência
de entity beans. Os métodos getClasseBasica e setClasseBasica são utilizados pela



Figura 5: Estrutura para o uso de classes básicas e entity beans.

coleção de dados para retornar um clone do objeto ClasseBasica e atualizar o objeto
ClasseBasica, respectivamente.

Para realizar esta abordagem, cada instância do entity bean deverá estar sincronizada
com a instância da classe básica de negócio a fim de executar as alterações de forma
coerente e mantendo a integridade dos dados a serem persistidos.

Com esta abordagem os clientes têm acesso às cópias dos objetos básicos de negócio
em vez de referências remotas dos entity beans. Executam o processamento localmente, a
partir destas cópias e o resultado deste processamento é persistido no banco com o aux́ılio
de entity beans.

Pelo fato dos clientes manipularem cópias dos objetos básicos de negócio em vez de
referências remotas de entity beans, o mecanismo de controle de concorrência automático
fornecido por entity beans é perdido. Entretanto, os benef́ıcios alcançados com a estru-
tura do padrão compensam essa perda uma vez que o controle de concorrência pode ser
facilmente solucionado com o aux́ılio de mecanismos, tais como timestamp [13].

Dinâmica

A Figura 6 apresenta o diagrama de seqüência para um dos posśıveis usos do PDC-EJB.
Neste cenário, quando um método da Fachada é invocado, é realizada a delegação para um
método da ColecaoDeNegocio (no exemplo, uma operação de consulta que recupera um
objeto do banco de dados). O objeto da ColecaoDeNegocio executa posśıveis validações e
testes relativos aos dados informados para a consulta, e invoca a operação procurar sobre
a ColecaoDeDados. Esta utiliza as operações de EntityBean para o acesso ao banco de
dados. Através da operação findByPrimaryKey obtém-se a referência remota do objeto
armazenado no banco. A partir desta referência, o objeto da classe básica é obtido através
da operação getClasseBasica e retornado para o cliente, como resultado da consulta.

Conseqüências

A utilização do PDC-EJB traz as seguintes vantagens:

• Reutilização e extensibilidade

Devido à estrutura modular do padrão, mudanças na camada de dados não causam
impacto nas demais camadas. Interfaces entre a camada de negócio e a camada de
dados provêem essa extensibilidade. Isto permite que a camada de negócio não tenha



Figura 6: Diagrama de Sequência do PDC-EJB.

conhecimento se a tecnologia utilizada para persistir os dados é JDBC, EJB, etc.
Além disso, a estrutura que o padrão apresenta possibilita que as classes básicas de
negócio possam ser facilmente reutilizadas em outras aplicações que utilizem outras
tecnologias de banco de dados.

• Redução do tráfego na rede

Em vez de várias chamadas a métodos get para obter os atributos de um bean, o
padrão fornece uma única chamada para obter todos os valores encapsulados em um
objeto básico. Isso faz com que uma quantidade de dados seja transferida pela rede
em uma única chamada remota. Isto sem dúvida diminui a carga imposta pelos
acessos remotos e, consequentemente, melhora o desempenho do sistema.

• Facilidades para teste

A classe básica possui apenas métodos de negócio e métodos “acessores”, sem código
de acesso a dados. Desta forma, fica mais fácil testar somente a funcionalidade do
sistema usando uma versão volátil do mesmo, sem o uso de entity beans apenas com
coleções de dados voláteis.

• Simplificação de entity beans e interfaces remotas

Além dos métodos get e set, os entity beans possuem somente os métodos padrão
para persistir os dados; os métodos de negócio são executados pela classe básica.
O cliente do entity bean, no caso a coleção de dados, tem acesso ao objetos básicos
de negócio a partir dos métodos getClasseBasica e setClasseBasica, os únicos
métodos declarados na interface remota do bean. Esta estruturação também fornece
um maior potencial para geração automática de código.

Por outro lado, o PDC-EJB apresenta as seguintes desvantagens:



• Não utilização do controle de concorrência de EJB

De acordo com a estrutura do padrão, o cliente do sistema tem acesso aos clones dos
objetos básicos e não às referências remotas dos entity beans. Os clientes executam
modificações sobre cópias locais do objeto da classe básica. Uma vez que as modi-
ficações foram realizadas, o cliente invoca o método setClasseBasica (na verdade,
quem invoca este método é a coleção de dados), passando o objeto modificado para
o entity bean, e este se encarrega de atualizar os seus atributos e persist́ı-los no
banco de dados. O problema acontece quando outros clientes requisitam o mesmo
objeto.

Apesar do entity bean atualizar os valores, este não está ciente dos vários clientes
que obtiveram cópias do mesmo objeto e por isso não pode propagar a atualização
do objeto para os vários clientes. Estes clientes acabam tendo instâncias de objetos
que não refletem seu estado real no banco. No entanto o uso de mecanismos como
timestamp [13], por exemplo, podem ser utilizados para resolver essa deficiência.

• Duplicação

Os atributos da classe básica e do entity bean correspondente são duplicados. Isto
se deve à limitação da especificação 1.1 de EJB, que exige que entity beans CMP
declarem seus atributos públicos. De outra forma, o bean poderia herdar a classe
básica. Os atributos da classe básica são declarados private por questões de en-
capsulamento. Isto implica que mudanças nos atributos da classe básica devem ser
refletidas nos atributos do entity bean. No entanto, a mudança é localizada e poderia
ter um apoio preconizado para manter a consistência.

• Produtividade

Duplica-se o número de objetos que representam entidades persistentes: é necessário
um entity bean e uma classe básica para cada entidade forte. Torna-se então
necessário o uso de ferramentas para gerar o código do entity bean a partir da
classe básica, por exemplo, bem como manter a consistência após alterações. Além
disso, um gerador de código poderia também automatizar a criação dos adaptadores
e classes auxiliares utilizadas na aplicação.

Exemplo

O diagrama de classes UML da Figura 7 ilustra os elementos que compõem o padrão
através de uma simples aplicação bancária.

As classes Banco, CadastroDeContas e Conta correspondem aos objetos do domı́nio
do problema. As classes que lidam com os aspectos de persistência dos dados e, por-
tanto, fazem parte da camada de dados do sistema, são representadas pelas classes
IRepositorioConta, RepositorioDeContasEJB e ContaEJB. A comunicação entre os
dois tipos de classes é realizada através de interfaces. Este aspecto é importante porque
permite estruturar os aspectos de forma modular reduzindo o impacto causado por posśıveis
modificações do sistema tanto para requisitos funcionais (como a introdução de novos
serviços) quanto não funcionais (como adaptar o sistema para suportar outro mecanismo
de persistência ou melhorar a performance das consultas).



Figura 7: Exemplo de uma aplicação bancária estruturada de acordo com o padrão PDC-
EJB.

Implementação

ServiceLocator para localização de entity beans

A tarefa para ter acesso a um componente EJB é comum para todos os clientes (externos
ou internos) que precisam acessar seus serviços. Isto implica que muitos tipos de clientes
repetidamente utilizam os serviços JNDI [10], uma API que fornece um conjunto de
interfaces e classes para acessar uma vasta quantidade de recursos, entre os quais permite
a localização de objetos remotos, o que resulta em código duplicado nos mesmos. Além
disso, o processo necessário para localizar e obter referências remotas aos homes dos
beans gasta recursos significativos do servidor de aplicação, o que pode causar impacto
no desempenho do sistema. Neste contexto, a classe ServiceLocator [6], um padrão
que visa abstrair a complexidade do processo de localização e criação dos beans, bem
como melhorar o desempenho do sistema, é utilizada no padrão PDC-EJB para auxiliar
o processo de criação das referências remotas de entity beans.



Transações

O padrão PDC-EJB é utilizado em conjunto com o padrão DAP-EJB, descrito da Seção 2.
Neste caso, o adaptador destino, um session bean, é responsável por gerenciar as transações
associadas aos seus métodos, os quais simplesmente delegam todas as invocações para os
métodos da fachada.

A partir de atributos de transação especificados para os métodos do adaptador destino,
o container gerencia o contexto transacional dos mesmos. A especificação garante que
o contexto transacional é propagado a todos os objetos que participam na realização de
uma operação, incluindo a fachada. Portanto, no padrão PDC-EJB, uma classe fachada
não precisa especificar código para o tratamento de transações de seus métodos, uma vez
que esta tarefa é delegada ao container.

Da mesma forma, aspectos relativos ao gerenciamento de segurança também ficam à
cargo do padrão DAP-EJB. O gerenciamento de transações, bem como o gerenciamento
de segurança são realizados pelo adaptador destino.

Código

Esta seção apresenta a implementação dos principais elementos do PDC-EJB. O exemplo
utilizado é a aplicação bancária, introduzida na Figura 7. A explicação do PDC-EJB é
realizada de forma bottom up a fim de facilitar o entendimento. Desta forma, o primeiro
elemento a ser apresentado é a classe básica de negócio Conta, a qual reflete o domı́nio
do problema.

A classe Conta é uma classe Java que implementa a interface Serializable [8]. Não
existem métodos nesta interface e ela simplesmente indica para o sistema que um objeto
pode ser transformado em um stream de bytes para poder ser transmitido pela rede. Os
atributos

public class Conta implements java.io.Serializable {

private String numero;

private double saldo;

numero e saldo são declarados com visibilidade private por questões de encapsulamento
e são inicializados no construtor da classe. Além disso, a classe básica também declara
um construtor vazio.

Para cada atributo declarado na classe básica, são declarados métodos get e set

correspondentes para a obtenção de informações sobre os atributos da classe. Os métodos

public String getNumero() { return numero; }

public double getSaldo() { return saldo; }

getNumero e getSaldo representam os métodos “acessores”para os atributos numero e
saldo, respectivamente. Além destes, os métodos set para cada atributo também são
declarados.

Além de métodos “acessores”, a classe básica também possui métodos de negócio
correspondentes ao domı́nio da aplicação. O método creditar, por exemplo,



public void creditar(double valor) {

saldo += valor;

}

}

corresponde a uma operação de negócio da classe Conta. Outros métodos de negócio,
além de creditar também devem declarados nesta classe.

O entity bean ContaEJB4 e suas interfaces home e remota, são apresentados. A inter-
face home contém os métodos de acesso ao banco de dados create e findByPrimaryKey.
Estes são métodos padrão de EJB utilizados para criar e localizar uma entidade banco,
respectivamente.

public interface IContaHome extends EJBHome {

public IConta create(Conta conta)

throws RemoteException, CreateException;

public IConta findByPrimaryKey(String numero)

throws FinderException, RemoteException;

O tipo de retorno de tais métodos é a referência remota do entity bean. A exceção
RemoteException é declarada na assinatura dos métodos da interface IContaHome pelo
fato desta tratar-se de uma interface remota. CreateException e FinderException são
exceções especificas de EJB e também devem ser declaradas nas assinaturas dos métodos
create e findByPrimaryKey, respectivamante.

Além dos métodos espećıficos de EJB, outros métodos findXX podem ser especificados,
como por exemplo o método findByAll

public Collection findByAll() throws FinderException, RemoteException;

}

que retorna uma coleção de referências a todas as entidades armazenadas no banco de
dados.

A interface remota IConta declara somente métodos get e set para a classe básica
Conta.

public interface IConta extends EJBObject {

public Conta getConta() throws RemoteException;

public void setConta(Conta conta) throws RemoteException;

}

Os métodos de negócio são executados localmente, a partir dos clones das classes básicas
obtidos através do método getConta da interface remota. Após o processamento local
dos métodos de negócio, o resultado pode ser atualizado através do método setConta.

A classe ContaEJB implementa a interface EntityBean, espećıfica de EJB, a qual
fornece métodos para a manipulação das entidades no banco, pelo container.

Os atributos do entity bean que devem ser mapeados para tabelas no banco de dados,
são declarados públicos. Esta é uma restrição da especificação 1.1 de EJB. Neste caso, os
dois atributos apresentados, numero e saldo são declarados com visibilidade public.

4O código do entity bean no exemplo apresentado utiliza persistência gerenciada pelo container (CMP).



public class ContaEJB implements EntityBean {

public String numero;

public double saldo;

private Conta conta;

private EntityContext context;

Um atributo do tipo da interface EntityContext também deve ser declarado para que
o container possa ter acesso às informações dos entity beans. O entity bean também
declara conta como atributo por questões de desempenho, para evitar que sempre seja
necessário criar um objeto da classe Conta antes de enviá-lo para o cliente, através do
método getConta.

Os atributos de ContaEJB são inicializados no método ejbCreate, o qual corresponde
ao método create da interface IContaHome e é responsável por criar uma entidade no
banco. O método recebe como parâmetro um objeto da classe Conta. Os atributos do
bean são inicializados a partir do estado do atributo c. Desta forma, quando da criação
de uma entidade no banco de dados, o estado da instância do entity bean (ContaEJB) é
sincronizado com o estado da instância de sua classe básica (Conta) correspondente.

public String ejbCreate(Conta c) throws CreateException {

numero = c.getNumero();

saldo = c.getSaldo();

return null;

}

Um objeto da classe básica é passado como parâmetro para o método ejbCreate de
seu entity bean correspondente para evitar o tráfego de parâmetros pela rede, em vez de
enviar vários atributos pela rede, o objeto completo e enviado, diminuindo o overhead

associado. Após os atributos do bean serem inicializados, estes são inseridos no banco de
dados. O tipo de retorno do método é um objeto do tipo da chave primária armazenada
na tabela. No código apresentado, o retorno é null porque em persistência gerenciada
pelo container (CMP), o container é responsável por gerar a chave primária da tabela
é retorná-la como resultado da inserção. O código para inserção no banco é gerado pelo
container.

Os métodos oriundos da interface EntityBean, são declarados e implementados pelas
classes geradas pelo container, tendo seus métodos com o corpo vazio. Eles são re-
sponsáveis pela persistência da entidade no banco de dados,

void ejbStore() { }

void ejbLoad() { }

void ejbRemove() { }

sendo invocados pelo container durante a execução dos métodos pelo cliente.
Os métodos getConta e setConta são responsáveis por manter o estado das instâncias

dos objetos de negócio (Conta, no exemplo) sincronizado com o estado das instâncias dos
entity beans (ContaEJB, no exemplo).

public void setConta(Conta c) {

numero = c.getNumero();



saldo = c.getSaldo();

conta = c;

}

public Conta getConta() {

conta.setNumero(this.numero);

conta.setSaldo(this.saldo);

return conta;

}

}

A classe RepositorioDeContasEJB representa a coleção de dados do padrão PDC-
EJB. É uma classe Java “pura”e utiliza os serviços de persistência de entity beans. Isto
acontece devido ao fato de entity beans representarem entidades persistentes e, portanto,
em uma aplicação EJB são responsáveis por persistir tais entidades no banco de dados.

Esta classe implementa a interface negócio-dados IRepositorioConta, a qual fornece
métodos para manipular os dados armazenados no banco de dados. Esta interface é
apresentada mais adiante. Um atributo da interface home do entity bean é declarado na
coleção de dados por questões de eficiência.

O acesso às referências dos homes dos entity beans é realizado com o aux́ılio do método
auxiliar getHome. Este método faz acesso ao método de mesmo nome (getHome) da classe
ServiceLocator. Através deste método, é posśıvel localizar um entity bean mantendo
uma única instância da referência remota à sua interface home durante a execução dos
clientes.

class RepositorioDeContasEJB implements IRepositorioConta {

private IContaHome home;

private IContaHome getHome()

throws ServiceLocatorException {

if (home ==null) {

home= (IContaHome)

ServiceLocator.getInstance().getHome("conta",

IContaHome.class);

}

return home;

}

}

Todos os métodos desta classe que acessam as operações de persistência de entity beans,
utilizam o método auxiliar getHome para localizar o entity bean.

O método inserir é utilizado para incluir uma entidade no banco de dados. Recebe
como parâmetro um objeto da classe básica (Conta) e chama o método create do entity

bean passando conta como parâmetro. As exceções espećıficas de EJB relacionadas ao
mecanismo de armazenamento de dados, são substitúıdas na coleção de dados pela exceção
genérica RepositorioException. Por isso, esta é declarada na assinatura do método. A
troca de exceções permite isolar a coleção de negócio da API de EJB.



void inserir(Conta conta) throws RepositorioException{

try {

IContaRemote contaBean = getHome().create(conta);

} catch (Exception e) {

throw new RepositorioException(e);

}

}

O método procurar localiza uma entidade no banco a partir de codigo e retorna um
objeto da classe básica Conta. Para tal, utiliza o método de EJB findByPrimaryKey,
o qual retorna uma referência remota da entidade armazenada no banco. Após obter a
referência remota, o método getConta é invocado.

public Conta procurar(String codigo) throws RepositorioException {

Conta c = null;

try {

IContaRemote contaBean = getHome().findByPrimaryKey(codigo);

c = contaBean.getConta();

} catch (Exception e) {

throw new RepositorioException(e);

}

return c;

}

}

Este permite obter um clone do objeto Conta, o qual é retornando para o cliente. Isto
permite que os clientes da aplicação manipulem cópias dos objetos remotos, em vez de
manipulá-los remotamente, melhorando com isso, o desempenho, visto que invocação de
métodos e manipulação destes remotamente são tarefas que degradam o desempenho do
sistema.

Assim, a coleção de dados isola dos clientes das camadas acima, o acesso às referências
remotas dos entity beans, uma vez que repassa para as camadas superiores os clones das
classes básicas em vez de referências remotas. Isto pode trazer problemas de inconsistência
dos dados acessados por clientes concorrentes. No entanto este aspecto pode ser facilmente
solucionado com a introdução de mecanismos como timestamp.

A interface IRepositorioConta é a interface negócio-dados. Esta interface é imple-
mentada pela classe RepositorioDeContasEJB.

public interface IRepositorioConta {

public Conta procurar(String numero)

throws RepositorioException;

public void atualizar(Conta conta)

throws RepositorioException;

public void inserir(Conta conta)

throws RepositorioException;

public Boolean existe (String numero)

throws RepositorioException;

}



A classe coleção de negócio corresponde, no exemplo, à classe CadastroDeContas. Esta
classe representa uma coleção de objetos da aplicação e fornece serviços para manipular
um cadastro de contas. Esta classe utiliza os serviços da coleção de dados através da
interface IRepositorioConta e seu código é apresentado a seguir.

public class CadastroDeContas {

private IRepositorioConta repConta;

public CadastroDeContas(IRepositorioConta rep) {

repConta = rep;

}

O construtor de CadastroDeContas recebe como argumento um objeto que imple-
menta a interface negócio-dados. A partir do atributo repConta, a coleção de negócio
invoca os métodos da coleção de dados.

Duas das operações para esta classe são apresentadas. O método cadastrarConta é
utilizado para inserir um objeto Conta no sistema. Para tal, primeiramente é verificado
se um objeto de mesmo número já existe, lançando a exceção ContaJaExisteException

em caso positivo. Caso o objeto a ser cadastrado ainda não exista no sistema, o método
da coleção de negócio invoca o método inserir da coleção de dados, através da interface
negócio-dados.

public void cadastrarConta(Conta conta)

throws ContaJaExisteException, RepositorioException{

if (repConta.existe(conta.getNumero()))

throw new ContaJaExisteException();

else

repConta.inserir(conta);

}

O método creditar consulta o sistema para uma determinada conta e, se a consulta
for bem sucedida, um valor é adicionado ao saldo da conta e as informações são atualizadas
na coleção de dados. Todavia, se a conta não existe, uma exceção é lançada.

public void creditar(String numero,double valor)

throws ContaNaoExisteException, RepositorioException {

if (repConta.existe(numero)){

Conta c = repConta.procurar(numero);

c.creditar(valor);

repConta.atualiza(c);

}

else throw new ContaNaoExisteException();

}

...

}



A implementação dos demais métodos da coleção de negócio é feita de forma similar,
e são omitidos aqui por questões de brevidade.

A classe Banco (fachada do sistema) contém todos os serviços oferecidos pela aplicação.
Esta classe possui uma referência à classe CadastroDeContas. O construtor cria um
objeto do tipo coleção de negócio e o atribui ao atributo cadConta. A partir deste ponto,
a fachada pode invocar os métodos da coleção de negócio.

class Banco {

private CadastroDeContas cadConta;

Banco(){

cadConta =

new CadastroDeContas(new RepositorioDeContasEJB());

}

Dois dos métodos da fachada são apresentados. O método cadastrarConta invoca o
método cadastrarConta da coleção de negócio.

void cadastrarConta(Conta conta)

throws RepositorioException, ContaJaExisteException {

cadConta.cadastrarConta(conta);

}

O mesmo acontece com o método creditar

void creditar(String numero, double saldo)

throws RepositorioException, ContaNaoExisteException {

cadConta.creditar(numero, saldo);

}

...

}

que também utiliza o atributo cadConta para invocar métodos da coleção de negócio,
no caso, o método de mesmo nome creditar. As exceções ContaJaExisteException e
ContaNaoExisteException são exceções espećıficas da aplicação.

Usos Conhecidos

Como parte do padrão DAP-EJB, o PDC-EJB é também utilizado nos mesmos sistemas
que este.

Para o sistema de informação do serviço público de saúde, o PDC-EJB é utilizado tal
como descrito nesta seção. Esta aplicação tem como funcionalidade, receber e controlar as
denúncias, notificações, além de fornecer informações importantes sobre o sistema público
de saúde, que sejam do interesse da população.

O PDC-EJB é também utilizado no sistema que fornece serviços para o gerenciamento
de contabilidade, controle de acesso e serviços financeiros. Neste sistema, a coleção de
negócio da aplicação é opcional em algumas partes da aplicação. Nos casos onde a coleção
de negócio é opcional, o adaptador destino, acessa a coleção de dados, através da interface
negócio-dados do sistema.

Outros posśıveis usos do PDC-EJB:



• Um sistema para gerenciar clientes de uma empresa de telecomunicação. O sistema é
capaz de registrar telefones móveis, gerenciar informações de clientes e a configuração
dos serviços de telefonia. Este sistema pode ser utilizado via Web.

• Um sistema para provas interativas. Este sistema tem sido utilizado para fornecer
diferentes tipos de provas, tais como simulados baseados em exames de seleção para
a universidade, ajudando os alunos a avaliar seus conhecimentos antes de realizarem
exames reais.

• Um sistema de supermercado complexo. Este sistema será usado em vários super-
mercados e já está sendo utilizado em outras empresas do mesmo ramo.

Padrões Relacionados

• Persistent Data Collections (PDC) [11]. Este padrão também foi adaptado para o
padrão apresentado nesta seção. O PDC promove código modular fornecendo um
conjunto de classes e interfaces que separam o código de acesso a dados do código
de negócio e interface com o usuário [11]. O padrão para EJB também observa
tais aspectos com a diferença que não faz uso de uma classe auxiliar (MecanismoD-
ePersistencia) para gerenciamento das transações e conexão com banco, como faz
o PDC. Além disso, a classe básica é associada a um entity bean. Neste padrão,
a primeira possui métodos get e set e métodos de negócio, enquanto a segunda
possui somente métodos de acesso ao banco e métodos que permitem obter clones
dos objetos das classes básicas associadas.

• Value Object [6]. É similar à classe básica apresentada no PDC-EJB. Este padrão
tem como função encapsular os dados do negócio, ou seja, em vez de um cliente fazer
várias requisições remotas a métodos get e set para obter os dados da entidade, ele
o faz através de um único método que é utilizado para encapsular todos os dados
necessários à requisição do cliente.

Apesar de fornecer um mecanismo que melhora consideravelmente o desempenho
do sistema, uma vez que evita o fluxo de chamadas remotas à métodos get e set,
os métodos de negócio continuam sendo executados remotamente, uma vez que per-
manecem sendo declarados na interface remota do bean. Além disso, o método
ejbCreate recebe os atributos do bean como parâmetro e não o objeto correspon-
dente à sua classe básica, como sugere o padrão apresentado aqui.

• Facade [7]. A classe Fachada do PDC-EJB é a implementação direta do padrão
Facade.

• Singleton [7]. Por questões de eficiência, os objetos da classe Fachada são imple-
mentados como Singleton. Desta forma, geralmente somente um objeto fachada é
requerido na aplicação.

• Bridge [7]. A interface negócio-dados do padrão PDC-EJB é implementada como
Bridge. Desta forma, ela é utilizada para permitir a comunicação entre as camadas
de negócio e dados mantendo a primeira isolada da API de persistência da aplicação.



Agradecimentos

Nossos agradecinmentos especiais a Márcio Barros, nosso shepherd, pelos comentários e
sugestões importantes que proporcionaram melhorias no nosso padrão.

Referências

[1] Vander Alves. Desenvolvimento Progressivo de Programas Distribúıdos Orientados a Ob-
jetos. Master’s thesis, Centro de Informática – Universidade Federal de Pernambuco,
Fevereiro 2001.

[2] Vander Alves and Paulo Borba. Distributed Adapters Pattern: A Design Pattern for
Object–Oriented Distributed Applications. In First Latin American Conference on Pattern
Languages Programming, Sugarloaf PLoP, Rio de Janeiro, Brazil, 3th–5th October 2001.

[3] Grady Booch et al. The Unified Modeling Language User Guide. Object Technology.
Addison-Wesley, first edition, 1999.

[4] Paulo Borba, Saulo Araújo, Hednilson Bezerra, Marconi Lima, and Sérgio Soares. Progres-
sive implementation of distributed Java applications. In Engineering Distributed Objects
Workshop, ACM International Conference on Software Engineering, pages 40–47, Los An-
geles, USA, 17th–18th May 1999.

[5] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stal.
Pattern–Oriented Software Architecture:A System of Patterns, volume 1. John Wiley &
Sons, 1996.

[6] John Crupi DeepPAK Alur and Dan Malks. core J2EE Patterns –Best Practices and Design
Strategies. Prentice Hall, first edition, 2001.

[7] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Ele-
ments of Reusable Object–Oriented Software. Addison–Wesley, 1994.

[8] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Specification.
Addison–Wesley, second edition, June 2000.

[9] Marty Hall. Core Servlets and JavaServer Pages. Prentice-Hall, second edition, 2000.

[10] Rosanna Lee and Scott Seligman. JNDI API Tutorial and Reference: Building Directory-
Enabled Java(TM) Applications. Addison-Wesley, 2000.

[11] Tiago Massoni, Vander Alves, Sérgio Soares, and Paulo Borba. PDC: Persistent Data Col-
lections pattern. In First Latin American Conference on Pattern Languages Programming,
Sugarloaf PLoP, Rio de Janeiro, Brazil, 3th–5th October 2001.

[12] Douglas Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann. Pattern–Oriented
Software Architecture: Patterns for Concurrent and Networked Objects, volume 2. John
Wiley & Sons, 2000.

[13] Sérgio Soares. Desenvolvimento Progressivo de Programas Concorrentes Orientados a Ob-
jetos. Master’s thesis, Centro de Informática – Universidade Federal de Pernambuco,
Fevereiro 2001.



[14] Sun Microsystems. The Enterprise JavaBeans 1.1 Specification. Dispońıvel em http://-
java.sun.com/products/ejb/docs.html, Outubro 2000.

[15] Seth White, Maydene Fisher, Rick Cattell, Graham Hamilton, and Mark Hapner.
JDBC(tm) API Tutorial and Reference: Universal Data Access for the Java(tm) 2 Plat-
form. Addison–Wesley, second edition, June 1999.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



PaDA: A Pattern for Distribution Aspects

Sérgio Soares∗

Universidade Católica de Pernambuco
Departamento de Estat́ıstica e Informática

Centro de Informática
Universidade Federal de Pernambuco

Paulo Borba†

Centro de Informática
Universidade Federal de Pernambuco

Abstract

This paper presents a pattern that provides a structure for implementing distribution using

AOP — aspect-oriented programming. The main goal is to achieve better separation of concerns

avoiding tangled code (code with different concerns interlacing to each other) and spread code

(code regarding one concern scattered in several units of the system). Therefore, system mod-

ularity, and hence, maintainability and extensibility are increased. The paper also presents an

example of distribution aspects using AspectJ, an aspect-oriented extension to Java.

Intent

PaDA (Pattern for Distribution Aspects) provides a structure for implementing distribu-
tion code by achieving better separation of concerns. This is obtained through the use of
aspect-oriented programming [7]. It increases system modularity, and hence, maintain-
ability and extensibility.

Context

When implementing a distributed system that requires high modularity, meaning that the
system should be independent of the distribution concern. To achieve better separation
of concern we should use aspect-oriented programming by applying PaDA. An aspect
defines a crosscutting concern, for example, distribution, which is automatically woven to
a system changing its original behavior. Therefore, the system should be implemented in
a programming language that has an aspect-oriented like extension. Examples of these
languages with the respective aspect-oriented extensions are the following:

• Java — AspectJ [10], HyperJ [12], DemeterJ [11], Composition Filters [3];

Copyright c©2002, Sérgio Soares and Paulo Borba. Permission is granted to copy for the Sugarloaf-
PLoP 2002 Conference. All other rights reserved.

∗Supported by CAPES. Emails: scbs@cin.ufpe.br, sergio@dei.unicap.br
†Partially supported by CNPq, grant 521994/96-9. Email: phmb@cin.ufpe.br



• C++ — AspectC [6], Composition Filters [3];

• Smalltalk — AspectS [9], Composition Filters [3].

Problem

Tangled code (code with different concerns interlacing to each other) and spread code
(code regarding one concern scattered in several units of the system) decrease system
modularity. Therefore, maintainability and extensibility are also decreased.

Forces

To distribute a system, PaDA balances the following forces:

• Remote communication. The communication between two components of a system
should be remote in order to allow several clients accessing the system, considering
that the user interface is the distributed part of the system.

• API independence. The system should be completely independent of the commu-
nication API and middleware to facilitate system maintenance, as communication
code is not tangled with business or user interface code. This also allows changing
the communication API without impacting other system code.

• A same system can use different middleware at the same time. This would allow, for
instance, two clients accessing the system, one using RMI and the other CORBA.

• Dynamical middleware changing. The system should allow changing the middleware
without changing or recompiling its source code.

• Facilitate functional tests. Functional tests are easier by testing the system with its
local version; therefore, distribution code errors will not affect the tests.

Solution

In order to solve the problem previously presented, PaDA uses aspect-oriented program-
ming [7] to define distribution aspects [16] that can be woven to the system core source
code. This separation of concern is achieved by defining aspects to implement a specific
concern. After identifying and implementing the crosscutting concerns of a system, they
can be automatically composed (woven) with the system source code, resulting on the
system version with the required concerns.

Figure 1 illustrates the aspectual decomposition, which identifies the crosscutting con-
cerns of a system, and the aspectual recomposition, or weaving, which composes the iden-
tified concerns with the system to obtain the final version with the required functions. In
our case, PaDA defines just one concern (distribution), which is implemented by three
aspects, as we show in next section.



Figure 1: AOP development phases.

Structure

The PaDA pattern defines three aspects: one to crosscut the target component (server),
another to crosscut the source components (client classes), and the third crosscuts both
target and source component to provide the exception handling, as shown in Figure 2. In
fact, the third aspect defines a concern that is crosscutting to distribution itself, namely
exception handling. In fact, the ServerSide aspect might crosscuts others classes that
are return types or arguments type of the target component methods.

Figure 2: PaDA’s structure.

Figure 3 presents a UML class diagram that shows the aspects and their with the
components to allow them to be remotely accessed. In that figure, TargeComponent is
the one to be remotely accessed by instances of SourceComponent.



Figure 3: PaDA class diagram.

Dynamics

Figure 4 shows a sequence diagram of what is the original system behavior: a SourceComponent
instance makes local calls to some methods of a TargetComponent instance.

Figure 4: Original system behavior.

Figure 5 is the sequence diagram that states what is the behavior after weaving the
aspects to the system: SourceComponent local calls are intercepted by the ClientSide

aspect that gets the reference to the remote instance and redirect the local call to it. Note
that the ServerSide aspect creates and makes the remote instance (a TargetComponent

instance) available to response remote calls.
If the remote call raises an exception, like in the n method call, the ExceptionHandler

aspect wraps the exception to an unchecked one and throws it, in the server-side. Note
that the message that wraps and throws the unchecked exception is a message to the
ExceptionHandler aspect itself, because the aspect is also responsible for catching the
unchecked exception providing the necessary handling in the client-side (SourceComponent).



Figure 5: System behavior after applying PaDA.

Consequences

The PaDA pattern has several benefits:

• Distributed Implementation. The pattern provides remote communication between
two components of a system;

• Modularity. PaDA structures the distribution code in aspects, which is completely
separated of the system code, making the system source code API-independent;

• Maintenance and extensibility. As the distribution code is completed separated of
the system code, changing the communication API is simpler and has no impact in
the system code. The programmers should just write another distribution aspects,
to the new specific API, or change the aspects already implemented to correct errors
and them woven it to the original system source code.

• Incremental implementation. PaDA allows incremental implementation [15]. The
system can be completely implemented and tested before implementing the distri-
bution aspects, since the distribution aspects are separated from the system source
code. This abstraction increases productivity, since the programmers should not
take care about distribution problems. This incremental implementation also al-
lows requirements validation without the impact of distribution.



• Additional separation of concern. PaDA structure defines exception handling as a
crosscutting concern, which is not done by object-oriented programming techniques.
Therefore, the exception handling can be changed without impacting in the original
system source code and in the distribution aspects, or in others aspects that can be
implemented, as the system requires.

• Facilitate testing of functional requirements. Tests of the functional requirements
can be done easily if made using the system without the distribution. The full sep-
aration of concerns preserves the original system source code. This means that the
distribution aspect is added to the system just if the composition process (weaving)
is executed. Therefore, to obtain the monolithic system, just use the original source
code, or remove the distribution aspects from the weaving, in case of the need of
another concern, like data management.

The PaDA pattern also has the following liabilities:

• New programming paradigm. The pattern uses a new programming technique that
implies in learning a new programming paradigm to use the pattern. Another
impact of being a new programming paradigm is regarding the separation of code
that usually was together in the same module. The programmer of the functional
requirements cannot see the resultant code that will implement the required concern,
decreasing code legibility.

• Increased number of modules. PaDA adds three new modules into the system,
increasing the modules management complexity.

• Increased bytecode. Each aspect definition will result in a class after woven it into
the system, which will increase the system bytecode.

• Name dependence. The aspects definition depends of the system classes, methods,
attributes, and argument names, which decreases the aspects reuse. However, tools
can mostly automate the aspects definition, increasing the aspects productivity and
reuse.

• Dynamic change of middleware. At the moment, the AOP languages do not allow
dynamic crosscutting, which does not allow changing the distribution protocol at
execution time. This can be done by other design pattern, DAP [1], however,
without achieving the separation of concerns we achieve with PaDA.

• Allow using a same system through different middleware. The idea of AOP is gen-
erate versions of a system including concerns. The feature of using a same system
through different middleware can be achieved if several versions of the system were
generated. However, this implies in having several instances of the system (server-
side) executing, beside a single one, which may affect or invalidate concurrency
control. On the other hand, DAP [1] can do this easily.



Implementation

The PaDA pattern implementation is composed of four major steps:

• Identify the components, server and client, to have the communication between
them distributed.

• Write the server-side aspect. The server-side aspect is responsible to use specific dis-
tribution API code changing the server component, making it available to response
remote calls. This aspect may also have to change others components used as pa-
rameters or return values of the server component, depending of the distribution
API.

• Write the client-side aspect. The client-side aspects are responsible to intercept the
original local calls made by the client component redirecting them to remote calls
made to the remote component (server).

• Write the exception handler aspect. The exception handler aspect is responsible
handle with new exceptions added by the aspects definition. These exceptions raised
in the server-side are wrapped to an unchecked exception to throw them without
changing the signature of the original system source code. Therefore, the exception
handler aspect should also provide the necessary handling in the client-side classes.

Example

To exemplify the pattern we now consider a banking application and the RMI API to
distribute the communication. Figure 6 presents a UML class diagram that models the
banking example.

The BankServlet class is a servlet Java that provides a HTML and JavaScript user
interface making requests to the Bank object. This is the communication to be distributed,
therefore the ServerSide aspect should crosscuts the Bank class and the ClientSide

aspect should crosscuts the BankServlet class. The Bank class is the system Facade [8]
and has attributes like accounts and customers records

public class Bank {

private AccountRecord accounts;

public void deposit(String number, double value)

throws AccountNotFoundException {

accounts.deposit(number,value);

} ...

}

and the operations to manipulate them.
In AspectJ the aspects can affect the dynamic structure of a program changing the

way a program executes, by intercepting points of the program execution flow, called
join points, and adding behavior before, after, or around (instead of) the join point.
Examples of join points are method calls, method executions, instantiations, constructor



Figure 6: Class diagram of a banking application using PaDA.

executions, field references (get and set), exception handling, static initializations, others,
and combinations of these by using the !, && or || operators. Usually, an aspect defines
a pointcut that selects some join points and values at those join points. Then an advice
defines the code that is executed when a pointcut is reached. The advice is who defines
what code should execute before, after, or around the pointcut.

Server-side aspect

The ServerSide aspects should make the Bank instance available to remote calls. Besides
being the system facade, the Bank class also implements the Singleton [8] design pattern.
The server-side aspect should intercept the Bank initialization to make it available to
be remotely accessed. The first step is defining a pointcut to identify the Bank object
initialization, which is shown in following piece of code

public aspect ServerSide {

pointcut bankInit(Bank b): execution(Bank.new(..)) && this(b);

where the pointcut designator execution join points when any constructor of Bank is
executed, and the this designator join points when the currently executing object is an
instance of the type of b (Bank).

This pointcut is used by the following advice



1: after(Bank b): bankInit(b) {

2: try {

3: UnicastRemoteObject.exportObject(b);

4: java.rmi.Naming.rebind("/BankingSystem", b);

5: } catch (Exception rmiEx) { ... }

6: }

that adds some code (lines 2 to 5) after the pointcut, i.e., after the execution of any Bank

constructor. The added code is responsible to make the Bank instance available to be
remotely accessed, through the name “BankingSystem”.

The server-side aspect has to define a remote interface that has all facade methods
signatures adding a specific RMI API exception (java.rmi.RemoteException).

public interface IRemoteBank extends java.rmi.Remote {

void deposit(String number, double value)

throws AccountNotFoundException, java.rmi.RemoteException;

...

}

The aspect also has to modify the classes whose objects will be remotely transmitted
over the distributed communication channel. They just have to use the Java Object
Serialization mechanism, by implementing the java.io.Serializable interface. We use
the AspectJ’s introduction mechanism that can modify the static structure of programs
to do it, as in the following piece of code

declare parents: Bank implements IRemoteBank;

declare parents: Account || Client implements java.io.Serializable;

Client-side aspect

The client-side aspect should define a pointcut to identify all executions of the Bank

methods (lines 3 and 4), and advices to redirect local calls to facade’s remote instance,
like the one in lines 6 to 13

1: public aspect ClientSide {

2: private IRemoteBank remoteBank;

3: pointcut facadeCalls(): within(HttpServlet+) &&

4: call(* Bank.*(..));

5:

6: Object around(double value) throws /* ... */:

7: facadeCalls() && call(void deposit(double)) && args(value) {

8: Object response = null;

9: try {

10: response = remoteBank.deposit(value);

11: } catch (RemoteException ex) { ... }

12: return resposta;

13: } ...

14: }



where remoteBank (lines 2 and 10) references the facade remote instance whose local
call will be redirected to. In this case the around advice executes its code instead the
code identified by the pointcut facadeCalls and the additional join points (line 7), that
identify calls to the deposit methods that gets a double as argument, which should be
used as argument to the remote call (line 10).

Exception handling

The AspectJ police to handle with exceptions introduced by the aspects definition is
encapsulating them in to an unchecked exception, called soft exception. To do it we use
the declare soft declaration to wrap the NewException that gets thrown at any join
point picked out by the pointcut mightThrowNewException

public aspect ExceptionHandler {

declare soft: NewException: mightThrowNewException();

Therefore, this unchecked exception (SoftException) should be handled in the user
interface class. Note that exception handling is a natural crosscutting concern, usually
spread in the system units. To handle this exception we should define an after throwing

advice that runs after the join points defined by the pointcut facadeCalls if it throws
the SoftException

after() throwing (SoftException ex): facadeCalls() {

// exception handling, for example, messages to the user

}

}

providing the convenient exception handling.

Variants

An extension of this pattern can define other aspects to provide additional non-functional
requirements, such as fault-tolerance, caching, and object transmission on demand to
increase both system robustness and efficiency. Aspects can also provide functional re-
quirements.

Another extension can define the three aspects as a single one that crosscuts source
and target components and other classes that are return types or arguments type of the
target component methods.

Known Uses

This pattern was used in an experiment to implement distribution in a system that allows
citizens to complain about health problems and to retrieve information about the public
health system, such as the location or the specialties of a health unit. The client-side
aspect was defined to the system servlets, and the server-side aspect was defined to the
facade class. The system facade was not in the web server due to security and performance
reasons.



Another use of PaDA in Web based information systems can define the client-side
aspect to an applet, but we have not implemented or seen that.

Developers have been using patterns [17, 2] similar to PaDA to implement distribution.
In particular, the pattern in the first work is similar to PaDA’s client-side aspect, and the
pattern in the second work is similar to the PaDA’s server-side aspect.

In fact, we know several real software projects that implement distribution and could
use this pattern. Some of these systems are the following:

• The real system for registering health system complaints.

• A system to manage clients of a telecommunication company. The system is able
to register mobile telephones and manage client information and telephone services
configuration. The system can be used over the Internet.

• A system for performing online exams. This system has been used to offer differ-
ent kinds of exams, such as simulations based on previous university entry exams,
helping students to evaluate their knowledge before the real exams.

• A complex supermarket system. A system that is responsible for the control of sales
in a supermarket. This system will be used in several supermarkets and is already
been used in other kinds of stores.

In addition, PaDA can be used as one of the basic patterns of the Progressive Im-
plementation Method (Pim) [4]. Pim is a method for the systematic implementation of
complex object-oriented applications in Java. In particular, this method supports a pro-
gressive approach for object-oriented implementation, where persistence, distribution and
concurrency control are not initially considered in the implementation activities, but are
gradually introduced, preserving the application’s functional requirements. The PaDA
design pattern can be applied for dealing with distribution.

See Also

• DAP — Distributed Adapters Pattern [1]. This pattern and PaDA has the same
objectives, however, DAP uses plain object-oriented programming techniques and
others design patterns, which do not provide full separation of concerns. Another
difference is that DAP does not separate the exception handling as a crosscutting
concern like PaDA does.

• Reflection [5]. This pattern is related to aspect-oriented programming. It provides
a mechanism for changing structure and behavior of software systems dynamically.
This pattern splits the application into two levels. A base level that implements the
functional requirements, and a meta level that can modify the base level behavior.
Comparing it with PaDA the base level is analog to the functional requirements,
for example, implemented in Java, and the meta level is analog to the aspects, for
example, implements in AspectJ.

• Distributed Proxy Pattern [14]. This pattern and PaDA have similar objectives, like
making the incorporation of distribution transparent. However, as the previous one,
this pattern does not provide full separation of concerns.



• Wrapper-Facade [13]. Like PaDA this pattern has the goal of minimizing platform-
specific variation in application code. However, Wrapper-Facade encapsulates exist-
ing lower-level non-object-oriented APIs (such as operating systems mutex, sockets,
and threads), whereas PaDA encapsulates object-oriented distribution APIs, such as
RMI and CORBA. Again, this pattern does not provide full separation of concerns.

• Broker and Trader [5]. These architectural patterns focus mostly on providing
fundamental distribution issues, such as marshalling and message protocols. There-
fore, they are mostly tailored to the implementation of distributed platforms, such
as CORBA. PaDA provides a higher level of abstraction: distribution API trans-
parency to both clients and servers.

• Chain of Responsibility [8]. Similar to PaDA this patterns decouples the sender of a
request from its receiver. However, it does not perform isolation of the distribution
platform’s API.

• Model-View-Controller (MVC) [5] is used in the context of interactive applications
with a flexible human-computer interface. Its goal is to make changes to user inter-
face easy and even possible at run time. PaDA is used in the context of distributed
applications and aims at making changes to the distribution platform a simple task,
not impacting in other parts of the system.

Acknowledgments

We would like to give special thanks to Jorge L. Ortega Arjona, our shepherd, for his im-
portant comments, helping us to improve our pattern. We also thanks Rossana Andrade,
Jonivan Lisbôa, Marcos Quináia, and Rubens Ferreira for the suggestions made at the
conference.

References

[1] Vander Alves and Paulo Borba. Distributed Adapters Pattern: A Design Pattern for
Object-Oriented Distributed Applications. In First Latin American Conference on Pattern
Languages Programming — SugarLoafPLoP, Rio de Janeiro, Brazil, October 2001. UERJ
Magazine: Special Issue on Software Patterns.

[2] Dan Becker. Design Networked Applications in RMI Using the Adapter Design Pattern.
Java World, May 1999.

[3] L. Bergmans and M. Aksit. Composing crosscutting concerns using composition filters.
Communications of the ACM, 44(10):51–57, October 2001.

[4] Paulo Borba, Saulo Araújo, Hednilson Bezerra, Marconi Lima, and Sérgio Soares. Progres-
sive Implementation of Distributed Java Applications. In Engineering Distributed Objects
Workshop, ACM International Conference on Software Engineering, pages 40–47, Los An-
geles, EUA, 17th–18th May 1999.

[5] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stal. A
System of Patterns: Pattern-Oriented Software Architecture. John Wiley & Sons, 1996.



[6] Yvonne Coady, Gregor Kiczales, Mike Feeley, and Greg Smolyn. Using aspectc to improve
the modularity of path–specific customization in operating system code. FSE, 2001.

[7] Tzilla Elrad, Robert E. Filman, and Atef Bader. Aspect–Oriented Programming. Commu-
nications of the ACM, 44(10):29–32, October 2001.

[8] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Ele-
ments of Reusable Object-Oriented Software. Addison-Wesley, 1994.

[9] R. Hirschfeld. AspectS: AOP with Squeak. In OOPSLA’01 Workshop on Advanced Sepa-
ration of Concerns, Tampa FL, 2001.

[10] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and William G.
Griswold. Getting Started with AspectJ. Communications of the ACM, 44(10):59–65,
October 2001.

[11] Karl Lieberherr and Doug Orleans. Preventive program maintenance in Demeter/Java. In
International Conference on Software Engineering, pages 604–605, Boston, MA, 1997.

[12] Harold Ossher and Peri Tarr. Hyper/J: multi–dimensional separation of concerns for Java.
In 22nd International Conference on Software Engineering, pages 734–737. ACM, 2000.

[13] Douglas Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann. Pattern–Oriented
Software Architecture, Vol. 2: Patterns for Concurrent and Networked Objects. Wiley &
Sons, 2000.

[14] Antonio Rito Silva, Francisco Rosa, and Teresa Goncalves. Distributed proxy: A design
pattern for distributed object communication. In PLoP’97, Monticello, USA, September
1997. http://jerry.cs.uiuc.edu/˜plop/plop97/Proceedings/ritosilva.pdf.

[15] Sérgio Soares and Paulo Borba. Progressive implementation with aspect–oriented program-
ming. In Springer Verlag, editor, The 12th Workshop for PhD Students in Object–Oriented
Systems, ECOOP02, Malaga, Spain, June 2002.

[16] Sérgio Soares, Eduardo Laureano, and Paulo Borba. Implementing distribution and persis-
tence aspects with AspectJ. In Proceedings of OOPSLA’02, Object Oriented Programming
Systems Languages and Applications. ACM Press, November 2002. To appear.

[17] Gregg Sporar. Retrofit Existing Applications with RMI. Java World, January 2001.



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



 
Copyright © 2002, Edson Luiz Recchia; Rosângela Penteado. Permission is granted to copy for SugarloafPLoP 
2002 Conference. All other rights reserved. 
 

FaPRE/OO: Uma Família de Padrões para Reengenharia Orientada a 
Objetos de Sistemas Legados Procedimentais  

 
 

Edson Luiz Recchia Rosângela Penteado 
DC - Universidade Federal de São Carlos  / DC - Universidade Federal de São Carlos   

Universidade Anhembi Morumbi  
erecchia@terra.com.br rosangel@dc.ufscar.br 

 
 

Resumo 
 
Padrões de engenharia reversa e de reengenharia registram como profissionais experientes conduzem esses 
processos em sistemas legados. A Linguagem de Padrões de Engenharia Reversa encontrada na literatura 
conduz esse processo no contexto da orientação a objetos. Com sua aplicação a sistemas legados 
procedimentais não se consegue realizar plenamente o processo de engenharia reversa. Neste trabalho, uma 
Família de Padrões de Reengenharia é elaborada, para conduzir esse processo a partir de sistemas legados 
procedimentais para sistemas alvos orientados a objetos. Sistemas legados implementados em Clipper são 
utilizados para ilustrar, passo a passo, o uso dessa Família. 
 
 

Abstract 
 
Reengineering Patterns, including reverse engineering patterns, record how experienced software engineers 
conduct these processes in legacy systems. The Pattern Language for Reverse Engineering found in the 
literature conducts this process in an object-oriented context. With its application to procedural legacy systems, 
one cannot wholly conduct the reverse engineering process. In this paper, a Family of Patterns for 
Reengineering is proposed to conduct this process from procedural legacy systems to object-oriented target 
systems. Legacy systems implemented in the Clipper language are used to illustrate, step by step, the usage of 
the Family. 
 
 
1. Introdução 
 

Segundo Chikofsky et al. [5], o termo engenharia reversa teve origem na análise de 
hardware. Afirmam que engenharia reversa, usada com tecnologia de desenvolvimento de 
software, pode fornecer ganhos significativos em termos de produtividade. Definem 
engenharia reversa como um processo de análise de um sistema existente, que identifica seus 
componentes e os representa em um nível mais alto de abstração. 

A engenharia reversa tem um ótimo potencial de retorno econômico e é importante 
organizar e disseminar essas técnicas a fim de oferecer uma documentação comprovada para 
problemas comuns. 

Dewar et al. [7], relatam que pretendiam entender como profissionais experientes 
conduziam a reengenharia de sistemas legados, a fim de desenvolver técnicas e materiais para 



 
 
 

transferir essa experiência. Em particular, queriam tratar o problema de sintetizar experiência 
com reengenharia de sistemas e de organizações, para ajudar engenheiros de software a 
adquiri-las, em paralelo. 

Estamos interessados em elaborar padrões para o processo de reengenharia, 
especialmente para engenharia reversa orientada a objetos de sistemas legados 
procedimentais, particularmente no domínio de sistemas de informação, bem como, para 
técnicas de condução desse processo. 

Nossa abordagem para resolver esse problema é uma Família de Padrões de 
Reengenharia, denominada  FaPRE/OO, contendo um conjunto de três clusters de padrões 
para o Processo de Engenharia Reversa. A maior contribuição da FaPRE/OO é que ela conduz 
o engenheiro de software a gerar conjuntos de padrões para os processos de engenharia 
reversa e de engenharia avante especializados em uma particular linguagem de programação 
procedimental. 

Neste trabalho mostramos como a FaPRE/OO foi elaborada a partir de sistemas legados 
em Clipper [15] e Cobol [3], para sistemas alvo em Delphi [15] e Java [3]. Os padrões da 
FaPRE/OO foram aplicados a casos concretos de elaboração de orçamentos de obras da 
construção civil [15], controle de material em uma mineradora [3] e controle contábil [8]. 

Este trabalho está organizado da seguinte forma: na Seção 2 são introduzidos os padrões 
para o processo de engenharia reversa, propostos pela Família de Padrões de Reengenharia 
(FaPRE/OO); na Seção 3 são apresentados exemplos de como se gera conjuntos de padrões a 
partir dessa família; na Seção 4 é apresentada uma comparação da FaPRE/OO com outros 
trabalhos, finalmente, na seção 5 são apresentados os comentários finais. 
 
2. Padrões para o Processo de Engenharia Reversa da Família de Padrões de 

Reengenharia - FaPRE/OO 
 

A FaPRE/OO é uma Família de Padrões de Reengenharia para gerar processos de 
engenharia reversa e de engenharia avante orientados a objetos, a partir de sistemas legados 
procedimentais.  É composta de quatro clusters, cada um agrupando os padrões relacionados a 
situações similares da reengenharia, sendo três clusters para o processo de engenharia reversa 
e um para o processo de engenharia avante. A Figura 1 ilustra graficamente os clusters e os 
padrões existentes em cada um deles. 

Cluster 1:  Modelar os Dados do Legado: agrupa padrões que extraem informações a 
partir dos dados e do código fonte do sistema legado gerando o MER [15] - Modelo Entidade 
Relacionamento (visão procedimental dos dados) e o MASA [11] - Modelo de Análise do 
Sistema Atual - Diagrama de Pseudo-Classes (visão orientada a objetos dos dados). Esses 
padrões conduzem as ações do engenheiro de software quando se tem o primeiro contato com 
um sistema de software. Fazem parte desse cluster os seguintes padrões: Iniciar Análise dos 
Dados; Definir Chaves; Identificar Relacionamentos; Criar Visão OO dos Dados. 

Cluster 2:  Modelar a Funcionalidade do Sistema: agrupa padrões para obter a 
funcionalidade do sistema, criando modelos que recuperem as Regras de Negócio da 
Empresa, contidas no sistema legado. Esses padrões habilitam o engenheiro de software a 
obter um entendimento detalhado dos componentes (partes) do sistema de software, 
aprofundando, assim, sua compreensão sobre o sistema legado. Fazem parte desse cluster os 
seguintes padrões: Obter Cenários; Construir Diagramas de  Use Cases; Elaborar a Descrição 
de  Use Cases; Tratar Anomalias. 

Cluster 3:  Modelar o Sistema Orientado a Objetos: agrupa padrões para se obter o 
Diagrama de Classes e os Diagramas de Seqüência do sistema, através da interação dos 



 

  

produtos obtidos pelos padrões dos clusters anteriores. Esses padrões habilitam o engenheiro 
de software a obter o MAS [11] - Modelo de Analise do Sistema, sendo o modelo orientado a 
objetos a servir de suporte ao processo de engenharia avante. Fazem parte desse cluster os 
seguintes padrões: Definir as Classes; Definir Atributos; Analisar Hierarquias; Definir 
Métodos; Construir Diagramas de Seqüência. 

Cluster 4: Gerar o Sistema Orientado a Objetos: agrupa padrões que completam o 
processo de reengenharia do sistema, transformando o sistema legado, do paradigma 
procedimental para o paradigma orientado a objetos. Fazem parte desse cluster os seguintes 
padrões: Definir a Plataforma; Converter o Banco de Dados; Implementar os Métodos; 
Realizar Melhorias na Interface. 

 

     Figura 1:  FaPRE/OO - Família de Padrões para Reengenharia Orientada a Objetos [15] 
 

O leitor observará que muitos padrões terão como entrada a saída de algum padrão 
aplicado anteriormente, exigindo então sua aplicação seqüencial. No entanto, como se pode 
observar na Figura 1, o modelo é evolutivo, podendo-se, de qualquer padrão, avançar ou 
retroceder após a sua aplicação. A aplicação seqüencial somente será necessária durante o 

Processo  de  Reengenharia

E
n
t
e
n
d
i
m
e
n
t
o

d
o

S
i
s
t
e
m
a

Modelar o Sistema Orientado a Objetos
• Definir  as  Classes
• Definir  Atributos
• Analisar  Hierarquias
• Definir  Métodos
• Construir  Diagramas  de  Seqüência

Modelar  a  Funcionalidade  do  Sistema
• Obter  Cenários
• Construir  Diagramas  de  Use  Cases
• Elaborar  a  Descrição de  Use  Cases
• Tratar  Anomalias

Gerar  o  Sistema  Orientado  a  Objetos
• Definir  a  Plataforma.
• Converter  o  Banco  de  Dados.
• Implementar  os  Métodos.
• Realizar  Melhorias  na  Interface.

Modelar  os  Dados  do  Legado
• Iniciar  Análise  dos  Dados
• Definir  Chaves
• Identificar  Relacionamentos
• Criar  Visão  OO  dos  Dados



 

  

primeiro ciclo. Como exemplo, pode-se citar o caso de sistemas legados com centenas de 
arquivos de dados, divididos em módulos funcionais. Inicia-se a engenharia reversa a partir de 
um módulo qualquer, aplicando-se todos padrões apresentados na Figura 1, construindo-se 
assim todos os modelos envolvidos. Com isso, vai-se dominando paulatinamente o sistema, 
podendo-se incorporar outros módulos, num processo cíclico e progressivo. 

Embora a FaPRE/OO seja composta de padrões para tratar tanto a engenharia reversa 
como a engenharia avante, somente os padrões referentes ao processo de Engenharia Reversa 
são considerados neste trabalho. 

Os padrões apresentados a seguir obedecem o seguinte formato proposto originalmente 
por Demeyer [6]: Nome, Intuito, Problema, Contexto (Influências), Solução, Avaliação, 
Justificativa, Usos Conhecidos, Padrões Relacionados e Produtos Obtidos. O item 
correspondente à Solução a ser adotada é apresentado na forma de passos, sempre que 
necessário. Os itens que tratam da Avaliação (Trade-off) e Justificativa não são apresentados 
por não serem pertinentes, uma vez que devem conter a opinião dos engenheiros de software 
quando da utilização desses padrões em seus processos de engenharia reversa. Finalmente, o 
item Usos Conhecidos é explicitado a seguir, por ser comum a todos os padrões. 
Usos Conhecidos dos Padrões Propostos: 
• O uso dos conceitos de cada padrão, sem estarem na forma de padrão, foram reconhecidos 

nos processos de engenharia reversa realizados em [1] [2] [3] [8] [10] [11] [14] [17]. 
• Procedimentos utilizados para solucionar problemas análogos, já sob a forma de padrões, 

foram usados em [4] [15]. 
 
2.1.  Cluster 1:   Modelar os Dados do Legado 
 

Sistemas legados desenvolvidos de forma procedimental e implementados em linguagens 
como Clipper, Cobol, etc., têm, geralmente, as seguintes informações como documentação: 
código fonte, arquivos de dados, arquivos de índices e o próprio sistema num arquivo 
executável. No entanto, esses arquivos em sua maioria, representam entidades importantes do 
sistema, sendo possível, por meio deles, gerar um modelo de dados do sistema. 
 
1.  Nome:  Iniciar Análise dos Dados 

Intuito: 
Iniciar a construção do MER, Modelo Entidade Relacionamento, utilizando uma tabela 

que relaciona todos os programas/módulos que fazem parte do sistema, com seus respectivos 
arquivos de dados. 

Problema: 
Existe uma relação de programas/módulos e de arquivos de dados na Organização, porém 

não se sabe como eles se relacionam. 
Influências: 

• Ausência de documentação, exceto o código fonte (programas) e os arquivos de dados. 
• Em sistemas complexos, há grande quantidade de arquivos de programas e de dados, 

dificultando o seu entendimento. 
Solução: 

1. Construir uma tabela, denominada Programas x Arquivos, com duas colunas. A primeira 
coluna contém os nomes dos programas e, a segunda, o nome dos arquivos de dados a 
que esses programas têm acesso. O nome original desses arquivos deve ser mantido. 

2. Iniciar a construção do MER, a partir da tabela construída no passo 1. Considere cada 
arquivo de dados do sistema legado como uma entidade do MER. 

 Padrões Relacionados: 
Esse padrão é a entrada para o padrão Identificar Relacionamentos. 



 

  

 Produtos Obtidos: 
Tabela Programas x Arquivos; 
MER – Modelo Entidade Relacionamento Inicial. 

 
2.  Nome:  Definir Chaves 

Intuito: 
Obter as chaves primárias e estrangeiras para cada entidade identificada pelo padrão 

Iniciar Análise dos Dados, a partir de arquivos de dados do sistema legado, a fim de 
identificar os relacionamentos entre as entidades que compõem o MER, iniciado no passo 
anterior. 

Problema: 
Em sistemas procedimentais não existe o conceito de chaves primárias e estrangeiras. 

Nesses sistemas as chaves podem estar em arquivos separados ou em cláusulas especiais 
dentro do próprio arquivo de dados. 

Influências: 
• Sistemas implementados em linguagens como Clipper, Cobol, etc., utilizam arquivos para 

persistir os dados. 
• Para obter a chave primária, a partir dos arquivos de dados, é necessário analisar arquivos 

de índices (por exemplo, Clipper) ou o próprio arquivo (por exemplo, Cobol). 
• Para obter a chave estrangeira, necessita-se fazer uma análise dos arquivos de dados e do 

código fonte. 
• O engenheiro de software tem à sua disposição utilitários que acompanham a linguagem 

de implementação, os quais viabilizam a análise dos arquivos de dados e de índices. 
• Têm-se todos os índices de acesso aos dados do sistema, nos quais estão identificadas as 

chaves de acesso aos dados. 
Solução: 

1. Construir a Tabela Entidades x Chaves, com duas colunas. A primeira coluna contém os 
nomes das entidades e, a segunda, as chaves primárias identificadas para essas entidades.  

2. Utilizar o código fonte e uma ferramenta apropriada, se existir, para identificar as chaves 
estrangeiras das entidades, adicionando-as na Tabela Entidades x Chaves em uma nova 
coluna (chaves estrangeiras).  

 Padrões Relacionados: 
Esse padrão é a entrada para o padrão Identificar Relacionamentos. 

 Produto Obtido: 
Tabela Entidades x Chaves. 

 
3.  Nome:  Identificar Relacionamentos 

Intuito: 
Identificar os relacionamentos entre as entidades do MER.  
Problema: 
Não se sabe como os arquivos de dados do sistema legado estão relacionados entre si. 
Influências: 

• Sistemas implementados em linguagens como Clipper, Cobol, etc., em geral não utilizam 
banco de dados relacional, no qual os relacionamentos entre as tabelas são explícitos. 

• A partir da inspeção dos dados e da análise do código fonte é possível reconstruir o 
modelo de dados do sistema legado. 

 Solução: 
1. Utilizando-se a Tabela Entidades x Chaves e trechos do código fonte que auxiliaram na 

elaboração dessa tabela, pode-se identificar os relacionamentos entre entidades. Sempre 
que o campo de um arquivo de dados, que representa a chave primária de alguma 
entidade, for atribuído a um campo de um outro arquivo de dados, que representa a chave 



 

  

estrangeira de outra entidade (ou dela mesmo, no caso de auto-relacionamento), há um 
relacionamento entre essas entidades, sendo esse representado no MER. 

2. Para explicitar a cardinalidade deve-se observar, nos trechos de código fonte, se há 
condição restritiva quanto à gravação da informação. Caso haja, a própria condição 
informa a cardinalidade mínima e a máxima. Caso não haja, a cardinalidade mínima é 
“Zero” e a máxima é “N”. 

 Padrões Relacionados: 
Esse padrão tem como entrada os seguintes padrões: Iniciar Análise dos Dados e Definir 

Chaves. 
 Produto Obtido: 

MER – Modelo Entidade Relacionamento do sistema legado. 
 
4.  Nome:  Criar Visão OO dos Dados 

Intuito: 
Criar uma visão orientada a objetos dos dados. 
Problema: 
Transformar um modelo de dados desenvolvido de forma procedimental em um modelo 

de dados orientado a objetos. 
Influências: 

• Reconhecer classes/objetos e seus relacionamentos a partir do código procedimental é 
difícil. 

• O engenheiro de software tem conhecimento dos conceitos da UML, Linguagem 
Unificada de Modelagem, para gerar um modelo Orientado a Objetos, a partir do MER. 
Solução: 
A partir do MER, construir o Diagrama de Pseudo-Classes (candidatas a classes) do 

sistema legado, gerando, assim, o MASA, Modelo de Análise do Sistema Atual. O nome 
original das entidades do MER deve ser mantido. 
1. Considerar cada entidade do MER como uma pseudo-classe.  
2. Buscar pares de relacionamentos n-para-n, no MER, que podem ser representados como 

link de atributo no modelo orientado a objetos, de acordo com a funcionalidade do 
sistema legado e com os conceitos da orientação a objetos. 

3. Buscar nos relacionamentos um-para-n, no MER, aqueles que podem representar o 
Princípio Todo-Parte (Agregação por: Referência ou Valor), considerando a 
funcionalidade do sistema legado e os conceitos da orientação a objetos. 

4. Casos de Especialização serão tratados no padrão Analisar Hierarquias. 
 Padrões Relacionados: 

Esse padrão é a entrada para o padrão Tratar Anomalias. 
 Produto Obtido: 

MASA - Modelo de Analise do Sistema Atual: Diagrama de Pseudo-Classes. 
 
2.2.  Cluster 2:   Modelar a Funcionalidade do Sistema 
 

Os padrões desse cluster recuperam a funcionalidade do sistema, com o enfoque de 
orientação a objetos, criando modelos que representam as regras de Negócio. 
 
5.  Nome:  Obter Cenários 

Intuito: 
Obter os Cenários do Sistema através da análise das interfaces do sistema em operação.  
Problema: 



 

  

Há grande variedade de interfaces nos sistemas legados. No entanto, é necessário 
identificar os Cenários do Sistema para obter um modelo que represente a sua funcionalidade.  

Influências: 
• Sistemas implementados em linguagens como Clipper, Cobol, etc., utilizam telas de 

menus para o acesso à funcionalidade. 
• Não existe uma forma padronizada para a construção desses menus. 
• Cada Cenário, em sistemas legados como Clipper, Cobol, etc., é representado por um 

Menu e cada opção do menu corresponde a um ou mais programas fonte.  
Solução: 
Construir a Tabela denominada Cenários do Sistema, com duas colunas. A primeira 

coluna contém as opções do menu principal e, a segunda, os submenus de cada opção do 
menu principal. Para essa construção, obter os cenários do sistema através da observação do 
sistema legado em operação. 
 Informações Adicionais: 
• Quando sistemas legados possuem interface poluída (não possuindo menus e submenus) 

contendo todas as opções do sistema em uma tela, o engenheiro de software deve usar sua 
experiência para extrair Cenários de forma análoga aos menus. 

• Para submenus que contenham outros submenus, como por exemplo um submenu Manter 
Clientes que possua submenu com as opções de Incluir, Alterar, Excluir, etc., o 
engenheiro de software deve registrar essas opções secundárias juntamente com o 
primeiro submenu: Manter Clientes (Incluir, Alterar, Excluir, etc.). 

• Quando a interface possuir poucos menus, a Tabela Cenários do Sistema pode ser 
construída a partir de botões, links, ou qualquer outro meio de acesso à informação. 

 Padrões Relacionados: 
Esse padrão é a entrada para o padrão Construir Diagramas de Use Cases. 

 Produto Obtido: 
Tabela Cenários do Sistema. 

 
6.  Nome:  Construir Diagramas de Use Cases 

Intuito: 
Construir todos os Diagramas de Use Cases do sistema a partir da Tabela Cenários do 

Sistema elaborada pelo padrão Obter Cenários. 
Problema: 
Documentar as informações da funcionalidade de um sistema legado procedimental, 

durante a engenharia reversa orientada a objetos. 
Influências: 

• Obter os Use Cases a partir do código procedimental é difícil.  
• Os cenários obtidos a partir das opções de menu, viabilizam a construção dos respectivos 

diagramas de use cases. 
Solução: 
Considerar como Use Case cada item da segunda coluna da Tabela Cenários do Sistema. 

O engenheiro de software deve usar sua experiência para definir nomes para cada Use Case, 
bem como definir os eventos associados a cada um deles, pela observação do sistema legado 
em operação, quando da ativação de cada opção do Menu correspondente. Obtêm-se as 
especializações uses e extends/includes por observação do código fonte de cada item da 
segunda coluna (Conteúdo), dessa tabela, que chama ou é chamado por outro 
programa/módulo, que corresponde a outro item dessa mesma coluna. 
 Padrões Relacionados: 

Esse padrão deve ser aplicado em conjunto com o padrão Entrevistar o Usuário Durante o 
Sistema em Operação (Interview During Demo) proposto por Demeyer [6] e é utilizado como 



 

  

entrada para o padrão Elaborar a Descrição de Use Case. 
 Produto Obtido: 

Diagramas de Use Cases do sistema. 
 
7.  Nome:  Elaborar a Descrição de Use Cases 

Intuito: 
Elaborar a Descrição correspondente a cada Use Case obtido pelo padrão Construir 

Diagramas de Use Cases. 
Problema: 
É necessário registrar a lógica da funcionalidade do sistema para facilitar sua futura 

reengenharia. 
Influências: 

• Há falta de documentação do sistema que registre a lógica da funcionalidade. 
• Tem-se o código fonte disponível para obter a lógica da funcionalidade. 
• O engenheiro de software tem experiência de uso da linguagem de programação.  

Solução: 
Para cada Use Case obtido pelo padrão Construir Diagramas de Use Cases, elaborar a sua 

Descrição a partir do código fonte do sistema legado. 
 Padrões Relacionados: 

Esse padrão tem como entrada o padrão Construir Diagramas de Use Cases e é utilizado 
como entrada para o padrão Tratar Anomalias. 
 Produto Obtido: 

Descrição de cada Use Case do sistema. 
 
8.  Nome:  Tratar Anomalias 

Intuito: 
Analisar as Descrições de Use Cases para tratar as anomalias, definindo, assim, os 

possíveis métodos das pseudo-classes (candidatas a classe) do sistema, obtidas pelo padrão 
Criar Visão OO dos Dados. 
Anomalia: Quando a Descrição do Use Case faz acesso/atualização a arquivos de dados que 
não pertencem à pseudo-classe a que ele se relaciona, então infere-se que esse procedimento 
(Descrição do Use Case) é anômalo. A anomalia pode ser do tipo: 
o+ Quando o procedimento é observador de duas ou mais classes; 
c+ Quando o procedimento é construtor de duas ou mais classes; 
oc Quando o procedimento é observador de uma classe e construtor de outra; 
o+c Quando o procedimento é observador de duas ou mais classes e construtor de outra; 
oc+ Quando o procedimento é observador de uma classe e construtor de duas ou mais 

classes; 
o+c+ Quando o procedimento é observador de duas ou mais classe e construtor de duas ou 

mais classe; 
i Quando o procedimento é dependente da implementação e que não se refere a classe 

alguma. 
Problema: 
Em sistemas construídos de forma procedimental pode existir um número elevado de 

anomalias em cada procedimento (código fonte). Deve-se eliminar essas anomalias uma vez 
que, em sistemas orientados a objetos, os métodos estão associados a uma única classe. Então, 
é necessário transformar o código fonte correspondente ao procedimento anômalo (Descrição 
do Use Case) em métodos. 

Influências: 



 

  

• Quando o sistema não tem implementação orientada a objetos, a análise dos 
procedimentos pode ser complexa. 

• Requer do engenheiro de software experiência para extrair as anomalias a partir da 
Descrição do Use Case.  

• Têm-se as Descrições de Use Cases geradas a partir do código fonte. 
Solução: 
Para cada Descrição de Use Case, obtida pelo padrão Elaborar a Descrição de Use Cases, 

construa a Tabela Detalhes de Implementação, com seis colunas: 
• A  primeira coluna contém o nome do Use Case; 
• A segunda coluna contém o nome de todos os programas/módulos (códigos fontes) 

utilizados na construção do Use Case; 
• A terceira coluna contém o nome das pseudo-classes do MASA correspondentes aos 

arquivos de dados a que se tem acesso em cada programa/módulo; 
• A quarta coluna contém a classificação quanto ao tipo de acesso ao arquivo de dados, 

realizado pelo procedimento; 
• A quinta coluna contém os nomes dos possíveis métodos quando as anomalias forem 

eliminadas; 
• A sexta coluna contém os nomes das pseudo-classes revisadas, a que os respectivos 

métodos estão associados. 
1. Iniciar a construção da Tabela Detalhes de Implementação, verificando para cada 

Descrição de Use Case o tipo de acesso aos arquivos. Transformar o trecho fonte que 
consulta/altera diversos arquivos em possíveis métodos, eliminando assim o múltiplo 
acesso a arquivos. A parte do código que somente consulta um arquivo é retirada desse, e 
uma chamada a esse método é feita para que a funcionalidade do sistema seja mantida. 

2. Continuar a construção da Tabela Detalhes de Implementação, renomeando as pseudo-
classes que não representam completamente a informação dentro do contexto do sistema. 
Por exemplo, uma pseudo-classe com o nome ITPedido poderá ser renomeada para 
ItensPedido. 

3. Acrescentar na Tabela Detalhes de Implementação, os nomes de entidades do MER 
(arquivo de dados) existentes no código fonte que foram usados apenas para atender a 
necessidades de implementação. Esses arquivos são temporários e não fazem parte da 
funcionalidade do sistema. Portanto, toda pseudo-classe que é criada por algum 
procedimento classificado com a anomalia i deve ser desconsiderada. 

4. Acrescentar na coluna pseudo-classes revisadas, da Tabela Detalhes de Implementação, 
as pseudo-classes correspondentes a trechos do código fonte usados para implementar 
informações adicionais em memória. Por exemplo, tabelas de descontos em função da 
quantidade comprada, que foram implementadas em trechos de código ao invés de 
estarem persistidas em arquivos de dados. Em sistemas procedimentais esses artifícios 
eram comuns para melhorar o desempenho do sistema. Como essas pseudo-classes são 
geradas diretamente do código fonte, elas não aparecem como entidades do MER e, 
conseqüentemente, como pseudo-classes do MASA, pelo fato de não existir um arquivo 
de dados correspondente. 

 Informações Adicionais: 
Na abordagem Fusion/RE [11] [12] [13] são analisados procedimentos verificando-se 

qual estrutura de dados está associada a cada um. Além disso, analisa-se a forma de 
associação entre classes e procedimentos. Para isso, Fusion/RE adota a convenção 
denominada de anomalias. No padrão Presumir Prováveis Objetos (Speculate about Domain 
Objects), Demeyer [6] utiliza adaptações no modelo de classes tais como: renomeando, 
remodelando e estendendo para resolver inconsistências. 



 

  

 Padrões Relacionados: 
Esse padrão tem como entrada o padrão Elaborar a Descrição de Use Cases e é utilizado 

como entrada para os padrões do Cluster Modelar o Sistema Orientado a Objetos. 
 Produto Obtido: 

Tabela Detalhes de Implementação. 
 
2.3.  Cluster 3:   Modelar o Sistema Orientado a Objetos 
 

Os padrões desse cluster são aplicados para concluir o processo de engenharia reversa do 
sistema legado. Nesse momento, a documentação levantada da engenharia reversa é 
consultada para fins de consolidação das informações.  
 
9.  Nome:  Definir as Classes 

Intuito: 
Iniciar a construção do Diagrama de Classes do sistema.  
Problema: 
Existem várias informações levantadas pelo processo de engenharia reversa: MER, 

MASA, Diagramas de Use Cases, Descrições de Use Cases e Tabela Detalhes de 
Implementação. No entanto, elas precisam ainda ser consolidadas e apresentadas na visão de 
orientação a objetos. 

 Padrões Relacionados: 
Esse padrão tem como entrada o padrão Tratar Anomalias e serve como entrada para o 

padrão Definir Atributos. 
 Produto Obtido: 

Diagrama de Classes (Inicial) do sistema: classes definidas. 
 
10.  Nome:  Definir Atributos 

Intuito: 
Definir os atributos das classes pertencentes ao Diagrama de Classes em construção.  
Problema: 
Identificar os atributos das classes a partir dos arquivos de dados do sistema legado. 
Influências: 

• Transformar os campos dos arquivos de dados em atributos das classes pode requerer 
uma análise complexa das estruturas de dados. 

 Influências: 
• As Pseudo-Classes Revisadas, da Tabela Detalhes de Implementação, são fortes 

candidatas às classes do modelo orientado a objetos, pois já passaram por diversos 
refinamentos durante a aplicação do padrão Tratar Anomalias. 

• O mesmo ocorre em relação aos relacionamentos entre as pseudo-classes. 
Solução: 

1. Transformar cada pseudo-classe revisada, da Tabela Detalhes de Implementação, em uma 
classe no Diagrama de Classes. 

2. Gerar os relacionamentos no diagrama de classes a partir dos relacionamentos existentes 
do MASA. Além disso, para as pseudo-classes que foram geradas diretamente do código 
fonte, criar relacionamentos que representam o Princípio Todo-Parte (Agregação por: 
Referência ou Valor), bem como link de atributo, conforme os conceitos da orientação a 
objetos, discutidos pelo padrão Criar Visão OO dos Dados. 



 

  

• Existem ferramentas que auxiliam a análise das estruturas dos dados do legado. 
Solução: 

1. Os campos dos arquivos de dados, representados como pseudo-classes no MASA são, na 
sua maioria, transformados em atributos das classes correspondentes. Dessa forma, 
representar esses atributos das classes, no Diagrama de Classes. 

2. Os casos em que não há correspondência direta deverão ser tratados em paralelo 
avaliando-se as questões de hierarquias abordadas pelo padrão Analisar Hierarquias. 

 Padrões Relacionados: 
Esse padrão tem como entrada o padrão Definir as Classes e serve como entrada para o 

padrão Definir Métodos. Pode ser aplicado, se necessário, em paralelo ao padrão Analisar 
Hierarquias. 
 Produto Obtido: 

Diagrama de Classes (continuação) do Sistema: classes e atributos definidos. 
 
11.  Nome:  Analisar  Hierarquias 

Intuito: 
Fornecer um mecanismo para descobrir possíveis papéis (mais de uma função) e 

hierarquias de herança que possam estar contidas nos arquivos de dados do sistema legado.  
Problema: 
Encontrar papéis e hierarquias de herança que possam estar persistidos como campos em 

vários arquivos de dados do sistema legado. 
Influências: 

• Hierarquias de Herança podem estar contidas nos arquivos de dados das seguintes formas: 

• Hierarquias de Herança podem também estar contidas em relacionamentos do tipo um-
para-um, ligando várias pseudo-classes do MASA. 

• Papéis podem estar contidos nos arquivos de dados, por exemplo, por meio da cláusula 
Redefines do Cobol. 

• O engenheiro de software possui experiência para definir super-classes e transformar 
super-classes em várias subclasses, a partir de pseudo-classes do MASA. 
Solução: 

1. Encontrar, no sistema legado, os arquivos de dados com campos opcionais. Isso indica 
uma situação em que uma hierarquia de classe completa está representada em um único 
arquivo de dados. Nesse caso, transformar esse arquivo de dados numa super-classe e 
gerar tantas classes quantas forem necessárias para representar esse conjunto de 
informações. 

2. Encontrar, no sistema legado, os arquivos de dados com campos semelhantes. Isso indica 
que a hierarquia de classe está distribuída entre vários arquivos de dados. Nesse caso, 
definir uma super-classe movendo os campos comuns para ela e, os não comuns, 
continuam pertencendo às respectivas subclasses. 

3. Encontrar, no MASA, as pseudo-classes nas quais a chave primária também serve como 
chave estrangeira de outra pseudo-classe. Isso pode representar um relacionamento um-

a) Por meio de conjuntos de campos opcionais (campos que assumem valores 
dependendo de um contexto. Por exemplo, um arquivo de dados de nome Cliente 
possui os campos CPF e CGC, sendo que para cada cliente, somente um desses 
campos assumirá valor, dependendo do tipo do cliente – pessoa física ou jurídica); 

 

b) Por meio de conjuntos de campos semelhantes (mesmos campos em diferentes 
arquivos de dados). 



 

  

para-um, indicando, talvez, um relacionamento de herança. Nesse caso, deve-se analisar a 
funcionalidade do sistema legado e representar esse conjunto de pseudo-classes como 
uma Hierarquia de Herança entre Classes, quando a essa característica for validada. 

4. Encontrar, no sistema legado, os arquivos de dados com campos possuindo um ou mais 
papéis. Nesse caso, para cada papel gerar uma nova classe no Diagrama de Classes. 

 Padrões Relacionados: 
Esse padrão tem como entrada os padrões Definir Classes e Criar Visão OO dos Dados. 

Pode ser aplicado, se necessário, em paralelo ao padrão Definir Atributos. 
 Produto Obtido: 

Diagrama de Classes (continuação) do Sistema: classes e atributos definidos. 
 
12.  Nome:  Definir  Métodos 

Intuito: 
Definir os métodos das classes pertencentes ao Diagrama de Classes em construção.  
Problema: 
Identificar métodos de cada classe de forma a implementar toda a funcionalidade 

requerida por tal classe. 
Influências: 

• Definir cada um dos métodos a partir dos procedimentos anômalos existentes no código 
fonte legado é difícil. 

• Existe indício dos prováveis métodos na Tabela Detalhes de Implementação. 
Solução: 
Representar os métodos que estão relacionados na coluna Possíveis Métodos, da Tabela 

Detalhes de Implementação, nas classes respectivas às pseudo-classes, especificadas na 
coluna Pseudo-Classes Revisadas, da mesma tabela. Assim, obtêm-se os métodos das classes 
no Diagrama de Classes em construção por meio da Descrição do Use Case correspondente. 

Informações Adicionais: 
O engenheiro de software deve observar trechos do código fonte que possam ser 

caracterizados como Polimorfismo, gerando tantos métodos quantos forem necessários, 
consolidando, assim, o diagrama de classes do sistema orientado a objetos. 
 Padrões Relacionados: 

Esse padrão tem como entrada o padrão Tratar Anomalias. 
 Produto Obtido: 

Diagrama de Classes do Sistema. 
 
13.  Nome:  Construir  Diagramas  de  Seqüência 

Intuito: 
Documentar as Regras de Negócio do sistema legado para facilitar a sua futura 

reengenharia.  
Problema: 
Necessidade de explicitar as Regras de Negócio, muitas vezes embutidas no código fonte. 
Influências: 

• Representar a interação dos métodos obtidos no padrão Definir Métodos, pode ser 
complexo. 

• Métodos já definidos a partir das Descrições de Use Cases, viabilizam o problema. 
Solução: 
Construir todos os Diagramas de Seqüência, a partir de cada Descrição de Use Case, 

obtida pelo padrão Elaborar Descrição de Use Cases. Considere, para a sua construção, o 



 

  

processo de eliminação de anomalias efetuado pelo padrão Tratar Anomalias, quando foram 
gerados tantos métodos quantos foram necessários, para manter a mesma funcionalidade do 
sistema legado. Agora, no Diagrama de Seqüência, é apresentada graficamente a interação 
desses métodos. 
 Padrões Relacionados: 

Esse padrão tem como entrada os padrões Elaborar Descrição de Use Cases, Definir 
Métodos e Tratar Anomalias. 
 Produtos Obtidos: 

Diagramas de Seqüência do Sistema. 
 
3.   Exemplos de Uso 
 

Para ilustrar como se geram conjuntos de padrões a partir da FaPRE/OO, foram 
especializados, para a linguagem Clipper, todos os padrões do processo de engenharia reversa 
dessa família. Dessa forma, gerou-se um conjunto completo de todos padrões dos três clusters 
iniciais, derivando, assim, um processo de engenharia reversa orientada a objetos a partir da 
linguagem procedimental Clipper. 
 
3.1.  Cluster 1:  Modelar  os  Dados  do  Legado 
 
1.  Nome:   Iniciar Análise dos Dados 

Intuito: 
Iniciar a construção do MER, Modelo Entidade Relacionamento, utilizando uma tabela 

que relaciona todos os programas que fazem parte do sistema, com seus respectivos arquivos 
de dados. 

Solução: 
1. Construir a Tabela Programas x Arquivos.  

A Tabela 1 ilustra esse passo, sendo que a coluna 1 mostra os programas e a coluna 2 os 
arquivos de dados, tratados em cada programa. 

Tabela 1:  Tabela Programas x Arquivos 
Programa (.prg) Arquivos (.dbf) 
 
ManterCliente.prg 

Cliente.dbf 
CLI_Sort.dbf 
Pais.dbf 
PS_Sort.dbf 

 
 
 

RegistrarPedido.prg 

Pedido.dbf 
Cliente.dbf 
CLI_Sort.dbf 
Produto.dbf 
PRD_Sort.dbf 
ItPedido.dbf 

��� ��� 
2. Iniciar a construção do MER, a partir da tabela construída no passo 1. Considere cada 

arquivo de dados do sistema legado (.dbf) como uma entidade do MER, Figura 2. 



 

  

Figura 2:   MER  –  Modelo Entidade Relacionamento ( Inicial ) 
 
2.  Nome:   Definir Chaves 

Intuito: 
Obter as chaves primárias e estrangeiras para cada entidade identificada pelo padrão 

Iniciar Análise dos Dados, a partir de arquivos de dados do sistema legado (.dbf), a fim de 
identificar os relacionamentos entre as entidades que compõem o MER, iniciado no passo 1. 

Solução: 
1. Construir a Tabela Entidades x Chaves, inicialmente com duas colunas. 

Por meio do comando USE, da linguagem Clipper, é possível obter todos os arquivos de 
índices (.ntx) para cada arquivo de dados (.dbf). Um arquivo .dbf  pode ter até 15 
arquivos de índices. 
Por exemplo: USE Cliente INDEX CliCod, CliNom sendo CliCod.ntx e CliNom.ntx 
arquivos de índices do arquivo de dados Cliente.dbf. 
Identifica-se a chave primária para cada entidade analisando o respectivo arquivo de 
dados .dbf com a ferramenta DBU [15], que acompanha a linguagem Clipper, 
observando-se a linha que contém a palavra Key. A Figura 3 ilustra as telas da 
ferramenta DBU para o comando USE descrito anteriormente. 

Figura 3:  Identificação da Chave Primária utilizando o DBU 
 

 

Cliente 

Pedido 

Produto 

Pais 

ItPedido 

PS_Sort 

CLI_Sort PRD_Sort 

    USE  Cliente   INDEX   CliCod, CliNom 
 
 
                                     Arquivo  .dbf          Arquivos  .ntx  
 
 
 
 
 
Structure  of  CLIENTE.DBF 
Filed Name  Type    Width Dec 
CODIGO Numeric 7 0 
NOME Character 30  
ENDERECO Character 40  
CODPAIS Numeric 7 0 

 

(a) Aba Files do DBU 
 

                                                            (b) Aba Index do DBU 

Index CLIENTE.DBF to
 
File   CLICOD.NTX 
 
Key    STR(CODIGO,7)
 
 
      Ok    Cancel 

Index CLIENTE.DBF to 
 
File    CLINOM.NTX 
 
Key     NOME 
 
 
      Ok     Cancel 



 

  

Analisando a aba index, Figura 3(b), conclui-se que o campo CODIGO, do arquivo de 
dados CLIENTE.DBF, é a chave primária da entidade Cliente, uma vez que o campo 
NOME não identifica univocamente um registro desse arquivo de dados. 
Repete-se esse passo para cada comando USE encontrado no código fonte. Um exemplo 
do resultado obtido nesse passo é a Tabela 2. 
 

Tabela 2:  Tabela Entidades x Chaves  ( Inicial ) 

Entidades Chave Primária 
Cliente CODIGO 
Produto CODIGO 

Pais CODIGO 
��� ��� 

 
2. Utilizar o código fonte e a ferramenta DBU para identificar as chaves estrangeiras das 

entidades, adicionando-as na Tabela Entidades x Chaves em uma nova coluna (chave 
estrangeira). A Figura 4 ilustra a construção da Tabela 3. 

Figura 4:  Identificação da Chave Estrangeira utilizando o DBU 
Analisando-se: 
1) O arquivo CLIENTE.DBF,  já com a chave primária definida para a entidade Cliente, 

o campo CODIGO; 
2) O arquivo PEDIDO.DBF, cuja chave primária para a entidade Pedido é a 

concatenação dos campos CODIGO e NUMERO; 
3) O trecho de código exibido na Figura 4(d). 

     USE  Pedido   INDEX   PedCod 
 
 

                              Arquivo  .dbf            Arquivo  .ntx  
 
 
 

Structure  of  PEDIDO.DBF 
Filed Name  Type    Width Dec 
CODIGO Numeric 7 0 
DATA_PED Date 8  
VLR_TOT Numeric 10 2 
NUMERO Numeric 7 0 

 

         (a) Aba Files do DBU 
 
                                                                         (b) Aba Index do DBU 

Structure  of  CLIENTE.DBF 
Filed Name  Type    Width Dec 
CODIGO Numeric 7 0 
NOME Character 30  
ENDERECO Character 40  
CODPAIS Numeric 7 0 

 

         (c) Aba Files do DBU 
 

                                                                    (d) Trecho do Código Fonte 

 
nCodigo := nCodigo + 1 
if Pedidoèè ( dbAppend() ) 
   Pedidoèè Codigo   := nCodigo          (1) 
   Pedidoèè Data_Ped := cDataSistema 
   Pedidoèè Vlr_Tot  := nTotal 
   Pedidoèè Numero   := Clienteèè Codigo  (2) 

endif 

Index  PEDIDO.DBF  to ... 
 
 
File  PEDCOD.NTX 
 
 
Key STR(CODIGO,7) + STR(NUMERO,7)
 

 
          Ok           Cancel 



 

  

Tem-se que NUMERO é chave estrangeira da entidade Pedido, definido pelo comando 
(2) da Figura 4(d). O campo CODIGO, que participa da chave primária, não é, também, 
uma chave estrangeira porque esse campo é do arquivo de dados PEDIDO.DBF, sendo 
atualizado pelo comando (1) da Figura 4(d). 
Dessa forma, completa-se a Tabela Entidades x Chaves, contendo três colunas, sendo que 
a última contém a chave estrangeira, Tabela 3. 

 
Tabela 3:  Tabela Entidades x Chaves 

Entidades Chave Primária Chave Estrangeira 
Cliente CODIGO — 
Produto CODIGO — 

Pais CODIGO — 
Pedido CODIGO + NUMERO NUMERO 

ItPedido CODPEDIDO + CODPRODUTO CODPEDIDO, CODPRODUTO 
��� ��� ��� 

 
3.  Nome:   Identificar  Relacionamentos 

Intuito: 
Identificar os relacionamentos entre as entidades no MER.  
Solução: 
Utilizando-se a Tabela Entidades x Chaves e trechos do código fonte que auxiliaram na 

elaboração dessa tabela, pode-se identificar os relacionamentos entre entidades. Sempre que o 
campo de um arquivo de dados, que representa a chave primária de alguma entidade, for 
atribuído a um campo de um outro arquivo de dados, que representa a chave estrangeira de 
outra entidade, há um relacionamento entre essas entidades, sendo esse representado no MER. 
Para explicitar a cardinalidade deve-se observar, nos trechos de código fonte, se há condição 
restritiva quanto à gravação da informação. 

Por exemplo, considere a chave estrangeira NUMERO, Tabela 3, e o trecho de código da 
Figura 4(d). Note que o comando (2) PedidoèNumero := ClienteèCodigo atribui a 
chave primária da entidade Cliente à chave estrangeira da entidade Pedido. 

Quando se encontra a chave estrangeira de uma entidade, deve-se gerar um 
relacionamento entre entidades do MER. Por exemplo, o comando (2) da Figura 4(d) gera o 
relacionamento faz, denotado por (a) na Figura 5, que relaciona as entidades Cliente e Pedido. 
Dessa forma, determinam-se todos os relacionamentos entre entidades, gerando o Modelo 
Entidade Relacionamento (MER) correspondente ao sistema legado. 

Figura 5:  MER do Sistema Legado 

ItPedido

PRD_Sort

Produto

1..*

1

1..*

1
está

0..1

1

0..1

1

gera

Pedido

1..*

1

1..*

1
tem

1..*1..* 1..*1..* tem

CLI_Sort

Cliente
1..*1 1..*1 faz

0..1

1

0..1

1

gera

PS_SortPais

1

1..*

1

1..*

pertence

0..11 0..11 gera

(a)



 

  

4.  Nome:   Criar Visão OO dos Dados 
Intuito: 
Criar uma visão orientada a objetos dos dados. 
Solução: 
A partir do MER, construir o Diagrama de Pseudo-Classes (candidatas a classes) do 

sistema legado, gerando, assim, o MASA, Modelo de Análise do Sistema Atual. O nome 
original das entidades do MER deve ser mantido. A Figura 6 apresenta o MASA para o MER 
do Sistema Legado (Figura 5). 
1. Considerar cada entidade do MER como uma pseudo-classe.  
2. Buscar pares de relacionamentos n-para-n, no MER, que podem ser representados como 

link de atributo no modelo orientado a objetos, de acordo com a funcionalidade do 
sistema legado e com os conceitos da orientação a objetos. 

3. Buscar nos relacionamentos um-para-n, no MER, aqueles que podem representar o 
Princípio Todo-Parte (Agregação por: Referência ou Valor), considerando a 
funcionalidade do sistema legado e os conceitos da orientação a objetos. 

 

 
 

 
3.2.  Cluster 2:  Modelar  a  Funcionalidade  do  Sistema 
 

5.  Nome:   Obter Cenários 
Intuito: 
Obter os Cenários do Sistema através da análise das interfaces do sistema em operação.  
Solução: 
Construir a Tabela Cenários do Sistema, com duas colunas. A primeira coluna contém as 

opções do menu principal e, a segunda, os sub-menus de cada opção do menu principal. Para 
essa construção, obter os cenários do sistema através da observação do sistema legado em 
operação. 

Considere, como exemplo, a execução de um sistema hipotético de Gestão 
Administrativa, denominado GEST_ADM, implementado na linguagem Clipper. A Figura 7 
exibe a interface inicial desse sistema, estando o Prompt do DOS posicionado em: menu de 
VENDAS, opção 1> Pedidos. A Tabela 4 mostra os cenários obtidos dessa interface. 
Informações Adicionais: 

Quando sistemas legados possuem interface poluída (não possuindo menus e submenus) 
contendo todas as opções do sistema em uma tela, o engenheiro de software deve usar de sua 
experiência para extrair Cenários da forma análoga aos menus, como na do caso da Figura 8. 

ItPedido

PRD_Sort

Produto

0..1

1

0..1

1

gera

Pedido 1..*1..* 1..*1..* tem

CLI_Sort

Cliente 1..*1 1..*1 faz

0..1

1

0..1

1

gera

PS_SortPais

1

1..*

1

1..*

tem

0..11 0..11 gera MASA
Diagrama de Pseudo-Classes

Figura 6:   MASA do Sistema Legado 



 

  

Como a interface da Figura 8 possui as mesmas opções mostradas na Figura 7, a Tabela 
de Cenários do Sistema é a exibida na Tabela 4. Não há garantia que diferentes engenheiros 
de software gerem a mesma Tabela de Cenários do Sistema. 

Figura 7:  Menu de Abertura do Sistema de Gestão Administrativa ( GEST_ADM ) 
 

Tabela 4:  Tabela Cenários do Sistema 
Cenários 

(opções do menu principal) 
Conteúdo 

(opções do sub-menus de cada opção principal) 
 
Cadastros 

Clientes 
Produtos 
Paises 

 
 

Vendas 

Pedidos 
Pedidos Pendentes 
Liberação de Pedido 
Bloqueio de Pedido 

 
Compras 

Fornecedores 
Condições de Pagamento 
Ordem de Compra 

 

Financeiro 
Lançamento de Pagamentos 
Pagamentos por Vencimento 

Finalizar Sair do Sistema 
 
 

Figura 8:  Menu de Abertura do Sistema GEST_ADM ( Interface Poluída ) 

GEST_ADM   SISTEMA DE GESTÃO ADMINISTRATIVA   Versão 1.0 
 
CADASTROS    VENDAS    COMPRAS   FINANCEIRO    FINALIZAR 

1> Pedidos 
2> Pedidos Pendentes 
3> Liberação de Pedido 
4> Bloqueio de Pedido 

Rotina de Manutenção em Pedidos 

GEST_ADM       SISTEMA  DE  GESTÃO  ADMINISTRATIVA        Versão 1.0 
• Cadastrar Cliente 
• Cadastrar Produto 
• Cadastrar País 
• Manutenção de Pedidos 
• Pedidos Pendentes 
• Liberação de Pedido 
• Bloqueio de Pedido 
• Manutenção de Fornecedores 
• Condições de Pagamento 
• Manutenção de Ordem de Compra 
• Lançamento de Pagamentos 
• Pagamentos por Vencimento 
• Sair 



 

  

 
6.  Nome:   Construir Diagramas de Use Cases 

Intuito: 
Construir todos os Diagramas de Use Cases do sistema a partir da Tabela Cenários do 

Sistema elaborada no padrão Obter Cenários. 
Solução: 
Considerar como Use Case cada item da coluna “Conteúdo” da Tabela Cenários do 

Sistema. Observar que cada item da coluna “Cenários” possui um Conteúdo com várias 
opções, conforme mostra a Tabela 4. Cada opção do Conteúdo de um Cenário passa a 
corresponder a um Use Case no Diagrama em construção. 

 

Figura 9:  Diagrama de Use Cases do Sistema GEST_ADM 
 
A Figura 9 exibe o Diagrama de Use Cases do Sistema de Gestão Administrativa 

GEST_ADM para os Cenários CADASTROS e VENDAS.  
 
7.  Nome:   Elaborar a Descrição de Use Cases 

Intuito: 
Elaborar a Descrição correspondente a cada Use Case obtido no padrão Construir 

Diagramas de Use Cases. 
Solução: 
Para cada Use Case obtido no padrão Construir Diagramas de Use Cases, elaborar a sua 

Descrição a partir de trechos do código fonte correspondente à opção do Menu ativada, 
quando da construção do respectivo Use Case. A Figura 10 mostra a Descrição do Use Case 
Registrar Pedidos, do Cenário VENDAS, apresentado na Figura 9(b). 

Manter Clientes

Usuario

Dados Cliente

Cliente Atualizado

Manter Produtos

Dados Produto

Produto Atualizado

a) Cenário:   CADASTROS

b) Cenário:   VENDAS

Cliente

Registrar Pedidos

Dados Pedido

Orçamento



 

  

Figura 10: Descrição do Use Case Registrar Pedidos 
 
8.  Nome:   Tratar Anomalias 

Intuito: 
Analisar as Descrições de Use Cases para tratar as anomalias, definindo, assim, os 

possíveis métodos das pseudo-classes (candidatas a classe) do sistema, obtidas pelo padrão 
Criar Visão OO dos Dados.  

Solução: 
Para cada Descrição de Use Case, obtida pelo padrão Elaborar a Descrição de Use Cases, 

construir a Tabela Detalhes de Implementação. 
1. Iniciar a construção da Tabela Detalhes de Implementação, verificando para cada 

Descrição de Use Case o tipo de acesso aos arquivos. Transformar o trecho fonte que 
consulta/altera diversos arquivos em possíveis métodos, eliminando assim o múltiplo 
acesso a arquivos. A parte do código que somente consulta um arquivo é retirada desse, e 
uma chamada a esse método é feita para que a funcionalidade do sistema seja mantida. 

A Tabela 5 exemplifica o caso de anomalia o+c+ para a Descrição do Use Case 
Registrar Pedidos, apresentada na Figura 10. 

2. Continuar a construção da Tabela Detalhes de Implementação, renomeando as pseudo-
classes que não representam completamente a informação dentro do contexto do sistema. 
Por exemplo, a pseudo-classe ITPedido (correspondente ao arquivo de dados 
ITPedido.dbf e a entidade ITPedido) poderá ser renomeada para ItemPedido, conforme 
pode ser visto na Tabela 5. 

1 - Cliente solicita um Pedido 
2 - Sistema solicita a Identificação do Cliente 
3 - Cliente fornece a Identificação (seu Nome) 
4 - Sistema usa parte da Identificação para gerar, a partir do arquivo Cliente.dbf ,  uma relação 

de todos Clientes semelhantes, gravando esses dados no arquivo CLI_Sort.dbf  
5 - Sistema seleciona o Cliente associado com a Identificação 
6 - Sistema mostra os dados do Cliente 
7 - Cliente confirma seus dados 
8 - Sistema grava o cabeçalho do Pedido no arquivo Pedido.dbf 
9 - Para cada Item do Pedido 
     9.1 - Cliente informa o Produto e a Quantidade 
     9.2 - Sistema usa parte da Descrição do Produto para gerar, a partir do arquivo Produto.dbf,  

uma relação de todos Produtos semelhantes, gravando esses dados no arquivo 
PRD_Sort.dbf 

     9.3 - Sistema seleciona o Produto informado pelo Cliente 
     9.4 - Cliente confirma o Item do Pedido 
     9.5 - Sistema grava o Item do Pedido no arquivo ITPedido.dbf, aplicando o seguinte 

desconto: 
• Para Quantidade Comprada < 10, Conceder Desconto de 3 % 
• Para Quantidade Comprada entre 10 e 20, Conceder Desconto de 7 % 
• Para Quantidade Comprada > 20, Conceder Desconto de 10 % 

Se o País do Cliente for diferente do Brasil, atualizar o Desconto, de acordo: 
ü Para o País = 1,   Brasil,        não tem índice de alteração do Desconto; 
ü Para o País = 2,   Argentina,  multiplicar o Desconto pelo índice 0.95; 
ü Para o País = 3,   Uruguai,     multiplicar o Desconto pelo índice 0.92; 

                        • • •  
ü Para o País = 15, México,      multiplicar o Desconto pelo índice 0.79; 

                        • • •  
10 - Sistema solicita confirmação do Pedido 
11 - Cliente confirma o Pedido 
12 - Sistema emite Cópia do Pedido para ser enviada ao Cliente 



 

  

Tabela 5:  Tabela Detalhes de Implementação 
 
Use Case 

Códigos 
Fontes 

Correspondentes 

Pseudo  
Classes 
(MASA) 

Tipo 
da 

 Anomalia 

 
Possíveis  
Métodos 

Pseudo  
Classes 

Revisadas  
Pedido c Pedido() Pedido 
Cliente o SelecionarCliente() Cliente 
Produto o SelecionarProduto() Produto 

   
Registrar 
Pedidos 

 
RegPed.prg 

(o+c+) 

ITPedido c ItemPedido() ItemPedido 
��� ��� ��� ��� ��� ��� 

 
3. Acrescentar na Tabela Detalhes de Implementação, os nomes de entidades do MER 

(arquivo de dados) existentes no código fonte que foram usados apenas para atender a 
necessidades de implementação, como é o caso das entidades CLI_Sort e PRD_Sort da 
Tabela 6. Esses arquivos são temporários e não fazem parte da funcionalidade do sistema. 
Portanto, toda pseudo-classe que é criada por algum procedimento classificado com a 
anomalia i deve ser desconsiderada. 

4. Acrescentar na coluna pseudo-classes revisadas, da Tabela Detalhes de Implementação, 
as pseudo-classes correspondentes a trechos do código fonte usados para implementar 
informações adicionais em memória. Por exemplo, tabelas de descontos em função da 
quantidade comprada, que foram implementadas em trechos de código ao invés de 
estarem persistidas em arquivos de dados. Em sistemas procedimentais esses artifícios 
eram comuns para melhorar o desempenho do sistema. Como essas pseudo-classes são 
geradas diretamente do código fonte, elas não aparecem como entidades do MER e, 
conseqüentemente, como pseudo-classes do MASA, pelo fato de não existir um arquivo 
de dados (.dbf) correspondente. 
 

Tabela 6:  Tabela Detalhes de Implementação 
 
Use Case 

Códigos 
Fontes 

Corresponde ntes 

Pseudo  
Classes 
(MASA) 

Tipo 
da 

Anomalia 

 
Possíveis  
Métodos 

Pseudo  
Classes 

Revisadas  
Pedido c Pedido() Pedido 
Cliente o SelecionarCliente() Cliente 
Produto o SelecionarProduto() Produto 

ITPedido c ItemPedido() ItemPedido 
CLI_Sort i — — 
PRD_Sort i — — 

   
 
 

Registrar 
Pedidos 

 
 
 

RegPed.prg 
(o+c+) 

— — AplicarDesconto() Desconto 
��� ��� ��� ��� ��� ��� 

 
Por exemplo, na Descrição do Use Case Registrar Pedidos, Figura 10, o Passo 9.5 é uma 
funcionalidade que foi implementada em código fonte, pois não existe no sistema legado 
um arquivo de dados (.dbf) contendo os descontos concedidos. Portanto, será criada a 
pseudo-classe Desconto, representando essa funcionalidade, conforme ilustrado na 
Tabela 6. 

 
3.3.  Cluster 3:  Modelar  o  Sistema  Orientado  a  Objetos 
 
9.  Nome:   Obter as Classes 

Intuito: 
Iniciar a construção do Diagrama de Classes do sistema.  



 

  

Solução: 
1. Transformar cada pseudo-classe, da coluna Pseudo-Classe Revisada, da Tabela Detalhes 

de Implementação, em uma classe no Diagrama de Classes, conforme mostra a Figura 11. 
2. Gerar os relacionamentos no diagrama de classes a partir dos relacionamentos existentes 

do MASA. Além disso, para as pseudo-classes que foram geradas diretamente do código 
fonte, como é o caso da pseudo-classe Desconto, criar relacionamentos que representam o 
Princípio Todo-Parte (Agregação por: Referência ou Valor), bem como link de atributo, 
conforme os conceitos da orientação a objetos, discutidos pelo padrão Criar Visão OO 
dos Dados. A Figura 12 ilustra os respectivos relacionamentos. 

Figura 11:  Diagrama de Classes ( Construção das Classes ) 
 

10.  Nome:   Definir Atributos 
Intuito: 
Definir os atributos das classes pertencentes ao Diagrama de Classes em construção.  
Solução: 

1. Os campos dos arquivos de dados (.dbf), representados como pseudo-classes no MASA 
são, na sua maioria, transformados em atributos das classes correspondentes. Dessa 
forma, representar esses atributos das classes, no Diagrama de Classes. A Figura 13 
ilustra o Diagrama de Classes com os atributos. 

2. Os casos em que não há correspondência direta deverão ser tratados em paralelo 
avaliando-se as questões de hierarquias abordadas pelo padrão Analisar Hierarquias. 

             Tabela Detalhes de Implementação 
 
 
 
 
 
 
 
 
 
 

              Diagrama de Classes 
 
 
 
 
 
 
 
 

 
Use Case 

Códigos 
Fontes 

Correspondentes 

Pseudo  
Classes 
(MASA) 

Tipo 
da 

 Anomalia 

 
Possíveis  Métodos 

Pseudo 
 Classes 

Revisadas 
Pedido c Pedido() Pedido 
Cliente o SelecionarCliente() Cliente 
Produto o SeleciionarProduto() Produto 

ITPedido c ItemPedido() ItemPedido 
CLI_Sort i — — 
PRD_Sort i — — 

— — AplicarDesconto() Desconto 

   
 
 

Registrar 
Pedidos 

 
 
 

RegPed.prg  
(o+c+) 

��� ��� ��� ��� 

 

Pais

Cliente ProdutoPedido

DescontoItemPedido



 

  

 

Figura 12:  Diagrama de Classes ( Construção dos Relacionamentos ) 
 

Figura 13:  Diagrama de Classes ( Definição dos Atributos das Classes ) 
 
11.  Nome:   Analisar  Hierarquias 

Intuito: 
Fornecer um mecanismo para descobrir possíveis papéis (mais de uma função) e 

hierarquias de herança que possam estar contidos nos arquivos de dados (.dbf) do sistema 
legado.  

Solução: 
1. Encontrar, no sistema legado, os arquivos de dados com campos opcionais. A Figura 

14(a) mostra outro sistema legado no qual o arquivo de dados Cliente.dbf (entidade 

 
 
 
 
 
 
 
 
 
 
 
 
 
                                           Diagrama de Classes 
 
 
 
 
 
 
 

ItPedido

PRD_Sort

Produto

0..1

1

0..1

1

gera

Pedido 1..*1..* 1..*1..* tem

CLI_Sort

Cliente 1..*1 1..*1 faz

0..1

1

0..1

1

gera

PS_SortPais

1

1..*

1

1..*

tem

0..11 0..11 gera MASA
Diagrama de Pseudo-Classes

Pais

Cliente

1

1..*

1

1..*

tem

ProdutoPedido1..*1 1..*1 faz 1..*1..* 1..*1..* tem

DescontoItemPedido 11 11 tem

Pais
Codigo_Pais
Descrição

Cliente
Codigo_Cliente
Nome
Endereço
Codigo_Pais

1

1..*

1

1..*

tem

Produto
Codigo_Produto
Descrição
Unidade

Pedido
Codigo_Pedido
Data_do_Pedido
Valor_Total
Codigo_Cliente

1..*1 1..*1 faz 1..*1..* 1..*1..* tem

Desconto
Quantidade_Comprada
Desconto_Concedido

ItemPedido
CodIgo_Pedido
Codigo_Produto
Quantidade

11 11 tem



 

  

Cliente) é considerado um arquivo com atributos opcionais, contendo informações tanto 
de Cliente Pessoa Física, como de Cliente Pessoa Jurídica. Portanto, esse arquivo de 
dados é definido como uma super-classe, sendo criadas as subclasses Pessoa Física e 
Pessoa Jurídica, Figura 14(b). 

2. Encontrar, no sistema legado, os arquivos de dados com campos semelhantes. A Figura 
15(a) mostra, em um outro sistema legado, que foram encontrados dois arquivos de dados 
(.dbf) com campos semelhantes, trata-se dos arquivos: PessoaFísica e PessoaJurídica. 
Nesse caso, é definida a super-classe Cliente, a qual terá como atributos os atributos 
repetidos dos dois arquivos de dados encontrados, Figura 15(b). 

 

Figura 14:  Arquivos de Dados com Atributos Opcionais 
 
3. Encontrar, no MASA, as pseudo-classes nas quais a chave primária também serve como 

chave estrangeira de outra pseudo-classe. A Figura 16(a) mostra, para outro sistema 
legado, que foram encontradas, no respectivo MASA, três pseudo-classes relacionadas 
(por relacionamentos um-para-um), trata-se das pseudo-classes Cliente, Pessoa Física e 
Pessoa Jurídica. Nesse caso, após analisar a funcionalidade do sistema legado, representa-
se diretamente esse conjunto de pseudo-classes como uma hierarquia de herança entre 
classes, Figura 16(b). 
O engenheiro de software deverá observar, no MASA, situações de relacionamentos 
desse tipo, devendo sempre representá-los como uma hierarquia de herança entre classes 
no diagrama de classes em construção, para, assim, consolidar cada vez mais esse 
diagrama no conceito de orientação a objetos. 

Cliente
Codigo_Cliente
Nome
Endereço
Codigo_Pais

SelecionarCliente()
ValidarCliente()

PessoaFísica
CPF

PessoaJurídica
CGC

PRD_Sort

ItPedido

Produto

1..*

1

1..*

1
está

0..1

1

0..1

1

gera

Pedido

1..*

1

1..*

1
tem

1..*1..* 1..*1..* tem

CLI_Sort

Cliente
Codigo
Nome
Endereço
Tipo_do_Cliente
CGC
CPF
Codigo_Pais

1..*1 1..*1 faz

0..1

1

0..1

1
gera

PS_SortPais

1

1..*

1

1..*

pertence

0..11 0..11 gera

(a)  Sistema Legado (representado pelo MER) 

(b)  Diagrama de Classes, em construção 



 

  

 

Figura 15:  Arquivos de Dados com Atributos Semelhantes 

Figura 16:  Pseudo-Classes com Relacionamentos Um-Para-Um 
 
4. Encontrar, no sistema legado, os arquivos de dados (.dbf) com campos possuindo um ou 

mais papéis. Nesse caso, para cada papel gere uma nova classe no Diagrama de Classes. 

Cliente
Codigo_Cliente
Nome
Endereço
Codigo_Pais

SelecionarCliente()
ValidarCliente()

PessoaFísica
CPF

PessoaJurídica
CGC

PRD_Sort

ItPedido

Produto

1..*

1

1..*

1
está

0..1

1

0..1

1

gera

Pedido

1..*

1

1..*

1 tem

1..*1..* 1..*1..* tem

Pessoa Física
Codigo
Nome
Endereço
CPF
Código_País

1..*1 1..*1 faz

PS_SortPais

1

1..*

1

1..*

pertence

0..11 0..11 gera

Pessoa Jurídica
Codigo
Nome
Endereço
CGC
Código_País

1..*

1

1..*

1
faz

1

1..*

1

1..*

pertence

(a)  Sistema Legado (representado pelo MER) 

(b)  Diagrama de Classes, em construção 

Cliente
Codigo_Cliente
Nome
Endereço
Codigo_Pais

SelecionarCliente()
ValidarCliente()

PessoaFísica
CPF

PessoaJurídica
CGC

(a)  MASA

(b)  Diagrama de Classes, em construção 

ItPedido

ProdutoPedido 1..*1..* 1..*1..* tem

Pais

PessoaFísica

Codigo
CPF

PessoaJurídica

Codigo
CGC

Cliente
Codigo
Nome
Endereço
Codigo_País

1..*1 1..*1 faz

1

1..*

1

1..*

tem

1

1

1

1

pode ser

1

1

1

1

pode ser



 

  

Essa situação ocorre com freqüência em programas Cobol (cláusula Redefines), no 
entanto, nos programas em Clipper os campos de cada arquivo de dados possui 
unicamente um papel, logo, esse passo não requer detalhamento nesta Especialização 
para Clipper da  FaPRE/OO. 
 

12.  Nome:   Definir Métodos 
Intuito: 
Definir os métodos das classes pertencentes ao Diagrama de Classes em construção.  
Solução: 
Representar os métodos que estão relacionados na coluna Possíveis Métodos, da Tabela 

Detalhes de Implementação, nas classes respectivas às pseudo-classes, especificadas na 
coluna Pseudo-Classes Revisadas, da mesma tabela. Assim, obtém-se os métodos das classes 
no Diagrama de Classes em construção por meio da Descrição do Use Case correspondente. A 
Figura 17 ilustra o Diagrama de Classes já com os métodos representados. 

Informações Adicionais: 
O engenheiro de software deve observar trechos do código fonte que possam ser 

caracterizados como Polimorfismo, gerando tantos métodos quanto forem necessários, 
consolidando, assim, o diagrama de classes do sistema no paradigma de orientação a objetos. 
A Figura 18 ilustra um trecho do código fonte em que uma situação de Polimorfismo foi 
observada. 

Figura 17:  Diagrama de Classes ( Definição dos Métodos das Classes ) 
 

Tabela Detalhes de Implementação 
 
 
 
 
 
 
 
 
 
 
 

           Diagrama de Classes 
 
 
 
 
 
 
 
 
 
 

Pais

Codigo_Pais
Descrição

SelecionarPais()
ValidarPais()

Cliente

Codigo_Cliente
Nome
Endereço
Codigo_Pais

SelecionarCliente()
ValidarCliente()

1

1..*

1

1..*

tem

Produto

Codigo_Produto
Descrição
Unidade

SelecionarProduto()

Pedido

Codigo_Pedido
Data_do_Pedido
Valor_Total
Codigo_Cliente

Pedido()

1..*1 1..*1 faz 1..*1..* 1..*1..* tem

Desconto

Quantidade_Comprada
Desconto_Concedido

AplicarDesconto(Qtd)
AplicarDesconto(Qtd, País)

ItemPedido

CodIgo_Pedido
Codigo_Produto
Quantidade

ItemPedido()

11 11 tem

 
Use Case  

Códigos 
Fontes 

Correspondentes 

Pseudo  
Classes 
(MASA) 

Tipo 
da 

 Anomalia 

 
Possíveis  Métodos 

Pseudo  
Classes 

Revisadas 
Pedido c Pedido() Pedido 
Cliente o SelecionarCliente() Cliente 
Produto o SeleciionarProduto() Produto 
ITPedido c ItemPedido() ItemPedido 
CLI_Sort i — — 

PRD_Sort i — — 
— — AplicarDesconto() Desconto 

   
 
 

Registrar 
Pedidos 

 
 
 

RegPed.prg 
(o+c+) 

��� ��� ��� ��� 
��� ��� ��� ��� ��� ��� 

 



 

  

Figura 18:  Trecho do Código Fonte, com características de Polimorfismo 
 
13.  Nome:   Construir Diagramas de Seqüência 

Intuito: 
Documentar as regras de Negócio do legado para facilitar a sua futura engenharia avante.  
Solução: 
Construir todos os Diagramas de Seqüência, a partir de cada Descrição de Use Case, 

obtida pelo padrão Elaborar Descrição de Use Cases. Considere, como exemplo, a Descrição 
do Use Case Registrar Pedidos, Figura 10, que passou pelo processo de eliminação de 
anomalias efetuado pelo padrão Tratar Anomalias, Tabela 6, tendo sido gerados diversos 
métodos de forma a manter a mesma funcionalidade do legado. Agora, no Diagrama de 
Seqüência, Figura 19, é apresentada a interação desses métodos, mostrando graficamente a 
lógica da Regra do Negócio (Registrar Pedidos), no conceito de orientação a objetos. 

 
4.   Comparação Com Outros Trabalhos 
 

Usando como suporte a abordagem Fusion/RE [11] [12] [13] e a linguagem de padrões de 
engenharia reversa, proposta por Demeyer et al [6], elaborou-se os padrões de engenharia 
reversa da Família de Padrões de Reengenharia - FaPRE/OO, para que possam ser gerados 
processos, passo a passo, para conduzir a engenharia reversa de sistemas legados 
implementados em linguagens procedimentais.  

Os padrões de Demeyer foram pesquisados e avaliados durante a realização dos estudos 
de casos quanto à sua aplicabilidade em sistemas procedimentais [16]. Embora não se consiga 
realizar plenamente a engenharia reversa de sistemas procedimentais com esses padrões, eles 
deram suporte para a elaboração dos padrões de engenharia reversa da FaPRE/OO em 
sistemas legados procedimentais. A Tabela 7 mostra quais os padrões de Demeyer foram 
utilizados durante a construção dessa família. 

A abordagem Fusion/RE auxilia o processo de engenharia reversa orientada a objetos, a 
partir de sistemas legados procedimentais. A Tabela 8 apresenta os padrões para o processo de 
engenharia reversa onde são feitas as atividades incluídas nos passos do Fusion/RE. 

É importante observar que os resultados obtidos com a especialização dessa família em 
uma determinada linguagem de programação procedimental, gera um conjunto de padrões que 
irão fornecer modelos de análise e projeto orientados a objetos, viabilizando a reengenharia 
orientada a objetos desses sistemas. 

if     Qtd < 10  //   Qtd. Comprada 
         Desconto  :=  3 //   3% 
elseif Qtd < 20 
         Desconto  :=  7 //   7%    Método: 
else       AplicarDesconto 
         Desconto  :=  10 //   10%     (Qtd) 
endif 
 
if  ClienteèCodPais <> 1    // 1: Brasil     Método: 
    if     ClienteèCodPais = 2   // 2: Argentina 
             Desconto := Desconto * 0.95                   AplicarDesconto 
    elseif ClienteèCodPais = 3   // 3: Uruguai  ( Qtd, País ) 
             Desconto := Desconto * 0.92 
    ��� 
    elseif ClienteèCodPais = 15   // 15: México 
             Desconto := Desconto * 0.79 
    endif 
endif 



 

  

Figura 19:  Diagrama de Seqüência do Use Case Registar Pedidos 
 

Os modelos orientados a objetos produzidos são baseados em regras que vão do sistema 
implementado até modelos abstraídos. Seguem estritamente a notação UML [18] e fazem 
parte de um conjunto maior de padrões de reengenharia que inclui um cluster de padrões para 
o processo de engenharia avante com mudança de paradigma de desenvolvimento e de 
linguagem de programação para o orientado a objetos. 
 
 
 

 
 
 

 : Cliente
Interface 

Pedido
Cliente Pedido Produto Item Pedido Desconto

Solicita um Pedido

Solicita Identificação

Identificação

Exibir Cliente

Confirma Dados

Solicita Itens do Pedido

            Produto e Quantidade [Para cada Item Pedido]

Solicita a Confirmação do Item

Confirma Item

Solicita Confirmação do Pedido

Confirma Pedido

Cópia do Pedido

Selecionar Cliente (Identificação)

Pedido ()

Validar Produto ()

 Item Pedido ()   [Para cada Item do Pedido] Aplicar Desconto ( Qtd )



 

  

Tabela 7: Padrões de Engenharia Reversa de Demeyer utilizados durante a Construção 
dos Padrões de Engenharia Reversa da FaPRE/OO 

Demeyer FaPRE/OO 
Clusters Padrões Padrões Clusters 

. Ler Todo o Código em uma Hora  — — 

. Estudar Superficialmente a Documentação — — 
Iniciação  

ao 
Sistema 

Legado 

 

. Entrevis tar o Usuário Durante o Sistema 
   em Operação 

.  Construir Diagramas 
   de Use Cases  
.  Obter Cenários 

Modelar a  
Funcionalidade 

do Sistema  

. Definir as Classes  
Modelar o Sistema  

Orientado a Objetos 
 

. Presumir Prováveis Objetos 
. Tratar Anomalias  

Modelar a Funcionalidade 
do Sistema  

. Iniciar Análise dos 
   Dados 
. Definir Chaves  

Modelar os 
Dados do 
Legado 

 

. Examinar a Base de Dados 

. Analisar Hierarquias 
Modelar o Sistema  

Orientado a Objetos 
. Inspecionar as Maiores Co nstruções  — — 

 
 
 
 
Entendimento 

 
Inicial 

. Explorar Possíveis Modificações  — — 

. Verificar as Invocações dos Métodos — — Detalhamento 
do  Sistema  . Observar a Execução dos Componentes  — — 

Preparação da 
Reengenharia  

. Refazer para Entender . Tratar Anomalias  
Modelar a Funcionalidade 

do Sistema  

 
  

Tabela 8:  Especialização da Abordagem Fusion/RE 
Fusion/RE 

Passos Produtos 
Padrões para o Processo de 

Engenharia Reversa da FaPRE/OO 
1) Revitalização da 

 Arquitetura 
. Lista E/S 
. Estrutura de Programas 

. Iniciar Análise dos Dados 

. Definir Chaves 

. Identificar Relacionamentos 
2) Recuperação do 

Modelo do  
Sistema Atual 

(MASA) 

. Temas 

. Modelo de Objetos 

. Modelo do Ciclo de Vida 

. Modelo de Operações 

. Criar Visão OO dos Dados 

. Obter Cenários 

. Construir Diagramas de Use Cases 

. Elaborar a Descrição de Use Cases 

. Tratar Anomalias 
3) Abstrair o 

Modelo de Análise 
do Sistema  (MAS) 

. Modelo de Objetos 

. Modelo do Ciclo de Vida 

. Modelo de Operações 

. Definir as Classes 

. Analisar Hierarquias 

. Construir Diagramas de Seqüência  
4) Mapear o 
MAS dentro do 

MASA 

. Atributo/Elementos de   
  Dados 
. Métodos/Procedimentos 

. Definir Atributos 

. Definir Métodos 

. Tratar Anomalias 

 
5.   Comentários  Finais 
 

A realização do processo de reengenharia de sistemas legados é considerada como um 
desafio para os engenheiros de software, pois esse processo envolve muitos fatores de risco. 
Então, há interesse em tornar os engenheiros de software especialistas nesse processo. Para 
isso, surgem os padrões de engenharia reversa e de engenharia avante com o objetivo de 



 

  

registrar as técnicas e mecanismos que os engenheiros de software experientes utilizam para 
conduzir  esses processos. 

Este trabalho apresentou todos os padrões para o Processo de Engenharia Reversa da 
FaPRE/OO, para realizar a engenharia reversa orientada a objetos de sistemas legados 
desenvolvidos de forma procedimental e implementados em linguagens como Algol, Clipper, 
Cobol, RPG II, etc.  

Um sistema, originalmente desenvolvido de forma procedimental e implementado na 
linguagem Clipper [15], foi submetido ao processo de engenharia reversa seguindo, passo a 
passo, todos os padrões conforme proposto nesta Família. Assim, é realizada a engenharia 
reversa procedimental do sistema legado e, a partir dos resultados dessa atividade, efetua-se a 
engenharia reversa orientada a objetos do legado. Em outras palavras, na primeira fase obtém-
se uma documentação procedimental e, na segunda fase, com base na anterior, constrói-se a 
documentação de análise orientada a objetos. 

Outro sistema, originalmente desenvolvido de forma procedimental e implementado na 
linguagem Cobol [4], foi submetido ao processo de engenharia reversa usando esta Família. 
Nesse trabalho a engenharia reversa é realizada diretamente, isto é, sem a necessidade do 
produto intermediário. A documentação de análise orientada a objetos é obtida diretamente do 
código procedimental a fim de identificar possíveis objetos. Assim, a FaPRE/OO  dá plena 
cobertura para conduzir a engenharia reversa diretamente orientada a objetos a partir do 
sistema legado procedimental. A única diferença é a ordem de aplicação dos vários padrões da 
Família. Como o modelo do processo é evolutivo, isso só fortalece o seu potencial em questão 
do domínio de sistemas de informação. 

Ainda um outro sistema, desenvolvido na linguagem Delphi [9], foi submetido, com 
pleno sucesso, ao processo de engenharia reversa seguindo, passo a passo, os padrões 
propostos nesta Família. Embora o ambiente de desenvolvimento desse trabalho tivesse sido 
Delphi, o qual viabiliza a construção de sistemas orientados a objetos, o sistema envolvido 
nesse estudo de caso foi originalmente implementado sem os conceitos da orientação a 
objetos. 

A FaPRE/OO tem as seguintes características: 
• Possui quatro clusters de padrões claramente definidos, com regras para guiar a 

passagem de um padrão para outro; 
• Cada padrão é dirigido a documentos que devem ser produzidos; 
• Tem uma forma cíclica e evolutiva de aplicação, podendo-se, de qualquer padrão, 

avançar ou retroceder à sua aplicação; 
• O resultado produzido é baseado, principalmente, no sistema atual e os requisitos são 

mínimos: o sistema executável e o código fonte; 
• É um processo global que incorpora estratégias específicas para os processos de 

engenharia reversa e de engenharia avante, como partes do processo de reengenharia. 
 
 
Agradecimentos 
 
Agradecemos ao Shepherd Fernão Germano pelas sugestões e acompanhamento dado a este 
trabalho.  
 

 

 



 

  

Referências Bibliográficas 
 
[1] Bianchini, C. de P.; Morais, R. M. de, “Engenharia Reversa e Reengenharia Orientada a 

Objetos”, Documento de Trabalho, PPGCC-DC. Universidade Federal de São Carlos, 2000. 
 
[2] Cagnin M. I., “Avaliação das Vantagens quanto à facilidade de Manutenção e Expansão de 

Sistemas Legados submetidos a Engenharia Reversa e Reengenharia”, São Carlos-SP, 1999. 
Dissertação de Mestrado. Universidade Federal de São Carlos. 

 
[3] Camargo, V., “Reengenharia Orientada a Objetos de Sistemas COBOL com a Utilização de 

Padrões de Projetos e Servlets”, São Carlos-SP, 2001. Dissertação de Mestrado. Universidade 
Federal de São Carlos. 

 
[4] Camargo, V.; Recchia, E. L.; Penteado, R. – “Aplicabilidade da Família de Padrões de 

Reengenharia FaPRE/OO na Engenharia Reversa Orientada a Objetos de Sistemas 
Legados COBOL” , Artigo apresentado no The Second Latin American Conference on Pattern 
Languages of Programming – Software Pattern Applications. (SugarLoafPLoP–SPA), Itaipava-
RJ, Agosto/2002. 

 
[5] Chikofsky, J. E.; Cross, J. H. - “Reverse Engineering and Design Recovery: A Taxonomy”, 

IEEE Software, v. 7, n. 1, p. 13-17, Jan. 1990. 
 
[6] Demeyer, S.; Ducasse, S.; Nierstrasz, O.,  “A Pattern Language for Reverse Engineering. 

Proceedings”,  of the 5th European Conference on Pattern Languages of Programming and 
Computing, (EuroPLOP'2000), Andreas Ruping(Ed.), 2000. 

 
[7] Dewar, R.; Lloyd, A.D.; Pooley, R.; Stevens, P.  “Identifying and Communicating Expertise in 

Systems Reengineering: a patterns approach”. IEEE Proceedings – Software, v.146, n.3, 
pp.145-152, 1999.  

 
[8] Kulk, E.; Camargo, V. V.; Masiero, P. C.; Penteado, R.; Germano, F., “Reengenharia Orientada 

a Objetos de um Sistema Contábil Implementado em Cobol para Java”, Documento de 
Trabalho, 2002. Universidade de São Paulo – SP. 

 
[9] Lemos, G. S., “Garantia de Qualidade no Processo de Reengenharia Orientada a Objetos”, 

São Carlos-SP. Dissertação de Mestrado apresentada ao PPGCC-DC. Universidade Federal de 
São Carlos, em Agosto/2002. 

 
[10] Magalhães, L. F.; Soares, C. L., “SALV – Reengenharia de um Sistema de Automação de 

Locadora de Vídeo de Visual Basic para Java”, Documento de Trabalho, PPGCC-DC. 
Universidade Federal de São Carlos, 2000. 

 
[11] Penteado, R. A. D., “Um Método para Engenharia Reversa Orientada a Objetos”, São 

Carlos, 1996. 237 p. Tese (Doutorado em Física Computacional) - Instituto de Física de São 
Carlos, Universidade de São Paulo. 

 
[12] Penteado, R., Germano, F., Masiero, P. C., “An Overall Process Based on Fusion to Reverse 

Engineering Legacy Code”,  In: Working Conference Reverse Engineering,  3,  1996, 
Monterey-California. Anais. IEEE, p. 179-188. 

 
[13] Penteado, R., Braga, R.T.V., Masiero, P.C., “Improving the Quality Legacy Code by Reverse 

Engineering”, Trabalho submetido ao 4th International Conference on Information Systems 
Analysis and Synthesis, ISAS/98, a ser realizado em Julho/1998, Orlando-Flórida. 



 

  

 
[14] Recchia, E. L.; Lemos, G. S.; Deo, M. A., “Locadora de Vídeo – Engenharia Reversa e 

Reengenharia”, Documento de Trabalho, PPGCC-DC. Universidade Federal de São Carlos, 
2000. 

 
[15] Recchia, E. L., “Engenharia Reversa e Reengenharia Baseadas em Padrões”, São Carlos-SP. 

Dissertação de Mestrado apresentada ao PPGCC-DC. Universidade Federal de São Carlos, em 
Junho/2002. 

 
[16] Recchia, E. L.; Penteado, R. – Avaliação da Aplicabilidade da Linguagem de Padrões de 

Engenharia Reversa de Demeyer a Sistemas Legados Procedimentais , Artigo apresentado no 
The Second Latin American Conference on Pattern Languages of Programming – Software 
Pattern Applications. (SugarLoafPLoP–SPA), Itaipava-RJ, Agosto/2002. 

 
[17] Tavares, D. P. D.; Marucci, R. A., “Engenharia Reversa e Reengenharia de um Sistema 

Legado em CLIPPER para CLIPPER OO”, Documento de Trabalho, PPGCC-DC. 
Universidade Federal de São Carlos, 2000. 

 
[18] Unified Modeling Language, 2002.  URL:http//www.rational.com/uml/index.jtmpl. Consultado 

em 03/2002. 
 



DCDP: A Distributed Component Development Pattern 1   

Eduardo Santana de Almeida∗ 
Calebe de Paula Bianchini 

Antonio Francisco do Prado 
Luis Carlos Trevelin  

Computing Departament – Federal University of São Carlos 
Rod. Washington Luiz, km 235 – São Carlos/SP - Brazil 

P.O box 676 – Zip.Code 13565-905 
Phone/Fax: + 55-16-260-8232 

{ealmeida, calebe, prado, trevelin}@dc.ufscar.br   

Abstract 

This paper presents a Distributed Component Development Pattern (DCDP) that integrates different known 
technologies to support the process of Distributed Component-Based Development. The involved technologies 
are: the Catalysis method used as a Component-Based Development (CBD) method to define, specify and design 
the distributed components, through CORBA architecture. The CORBA architecture to support components 
distribution and accessing, components frameworks for interfaces creation, guide the distribution of the 
developed problem domain components and facilitate the database access. A CASE tool is the main mechanism 
to apply this pattern, supporting the code generation of developed components.   

1. Context 
The proposed pattern is in the Distributed Component-Based Development (DCBD) 

context, which aims distributed components creation for diferent domain applications.  

2. Motivation 
In spite of the recent and constant researches in the Component-Based Development 

(CBD) area, there is still a lack of strategies, metodologies and patterns that effectively 
support both the development and the components reuse, in certain applications domain. 
Although different technologies exist to support the CBD, many difficulties are faced when 
trying to integrate those technologies to cover the whole CBD process, from the components 
creation to their use in the applications. If considering the distributed components, as they 
happen in the Internet with client-server platform, the problem turns even worse.  

3. Problem  
In the software development, the reuse is characterized by the use of software 

products, in a different situation for which these products were built [1]. The CBD cares about 
the components creation which can be reused in other applications. As a solution for this 
problem, the researches [1, 2, 3, 4, 5] show, as a fundamental step, the systematization of the 
process of analysis and components creation to a certain application domain. 
                                                          

 

1 Copyright  2002, Eduardo Santana de Almeida and et al. Permission is granted to copy for the SugarloafPLoP 
2002 Conference. All other rights reserved. 
∗ This work is supported by Fundação de Amparo à Pesquisa do Estado da Bahia (Fapesb). 



In order to make the reuse effective, it must be considered in all the phases of the 
software development process. Therefore, the Component-Based Development must offer 
methods, techniques and tools that support from the components identification and 
specification, in a problem domain level, to their project and implementation in an object-
oriented language. Besides, the CBD must use interrelations among components already 
existing, which have been previously tested, aiming to reduce the complexity and software 
development costs [2, 4].  

4. Solution  
Combining the Component-Based Development Catalysis method [2] principles, the 

CORBA architecture [6] for distributed component specification, the pattern-based 
frameworks and the MVCase [7, 8] tool, it was defined a Distributed Component 
Development Pattern (DCDP). 

The pattern supports the three levels of Catalysis, and it is accomplished in four steps: 
Define Problem, Specify Components, Project Components and Implement Components, 
according to Figure 1. 

It is followed a presentation of each step of the pattern, used to develop components 
for a Service Order domain, which belongs to a bigger domain, the Business Resources 
Administration, as shown in Figure 2. Although the Service Order domain is not complete, 
the example can show details of used techniques, and the main artifacts generated in each step 
of the pattern.       

Figure 1 – DCDP: A Distributed Component Development Pattern. 



 

4.1 Define Problem 
The Service Order (SO) domain applications are divided in three big modules: the first 

one, Customers, is responsible for registering and notifying customers of a certain service 
order; the second one, Employees, is responsible for registering employees and controlling 
service order tasks; the third one, Reports, is responsible for emitting reports, related to 
accomplished and pending tasks consultation, service orders of a certain client, and of 
employees responsible for each task. 

In the first step of the pattern, the emphasis in the problem understanding, specifying 
“what” the components must do to solve the problem. Initially, the domain requirements are 
identified, using techniques as storyboards or mind-maps [2], aiming to represent the different 
situations and domain problem sceneries. Next, the identified requirements are specified in 
Collaboration Models [2, 9], representing the action collections and the participant objects. 
Finally, the collaboration models are refined in Use Cases Model [2, 9]. 

The first step of DCDP is summarized in Figure 3, where a mind-map, defined in the 
Service Order domain requirements identification, is specified in an Collaboration Models, 
and, later, refined and partitioned in a Use Cases Model, aiming to reduce the complexity and 
improve the problem domain understanding. 

Figure 2 – General Structure of Business Resources Administration.

 

Figure 3 - First Step of Pattern: Define Problem. 



4.2 Specify Components 
This step supports the second level of Catalysis, where the system external behavior is 

described in a non ambiguous way. In the CASE tool, the software engineer refines the 
previous steps specifications, aiming to obtain the components specifications.    

This step begins refining the problem domain models. The Model of Types [2] is 
specified, according to Figure 4, showing attributes and object type operations, without 
worrying about implementation. Still in this step, the data dictionary can be used to specify 
each type found, and the Object Constraint Language (OCL) [2] to detail the objects 
behavior, with no ambiguity.   

According to Figure 5, the Model of Types is organized in the Model Framework [2], 
with their attributes and relationships. The framework is reused through the Framework 
Application [2], representing the dependences of the framework types, with the extended 
types in the application. The Use Cases Models, from the previous step, are refined into 
Interaction Models represented by sequence diagrams [9] to detail the components scenaries 
utility in different applications of the problem domain.  

Figure 4 – Model of Types from Specify Components step. 

       Figure 5 – Second Step of Pattern: Specify Components.

 



Summarizing, the activities from this step, accomplished by the software engineer, in 
the MVCase tool, include the specifications of: 

a) Model of Types; 
b) Model Framework; 
c) Framework Application, based on the Model Framework; and 
d) Interaction Models, represented by sequence diagrams, based on Use Cases 

Model.   

These models are used in the next step of the pattern, to obtain the components inner 
project.  

4.3 Project Components 
In this step, the software engineer does the components inner project, according to the 

third level of Catalysis. Now, the implementation details become important, standing out: 
safety, persistence, distributed architecture and the implementation language. 

As a first step, the Model of Types are refined into components Classes Models [9], 
where the classes are modeled with their relationships, taking into consideration the 
components definitions and their interfaces, according to Figure 6. The Interaction Models, 
represented by sequence diagrams techniques are refined to show design details of the 
methods behavior in each class.  

Starting from Classes Model, the Components Model may be designed [9], where the 
organizations and dependencies between components are shown. The Components Model may 
reuse components from other existing frameworks. Thus, components from related domains 
with non-functional requirements can be reused, as well as interface creation (GUI) [10], 
database persistence (Persistence) [11] and components distribution (Broker) [12]. Figure 7 
shows the Components Model obtained from the Classes Model of Figure 6, reusing the 
components of frameworks GUI, Persistence and Broker. 

Figure 6 – Class Model obtained from Model of Types.

 



 

Figure 8 shows, for example, the GUI framework components, which use some 
Design Patterns from Gamma’s catalog [10], which are Abstract Factory, Factory Method, 
and Singleton. The AbstractToolkit component allows to create basic widgets components, as 
frames, textfields, labels, buttons, and other elements that compose the user interface. For a 
better view of the interfaces, there are, also, other widgets that compose the user interface, 
such as: combobox, panel, and textarea that are not in the figure, as well as the swing library 
components [13] from Java. The components LinToolkit and WinToolkit implement the 
methods defined by the AbstractToolkit component for Linux and Windows platform, 
respectively, maintaining the application portability for different environments. The GUI 
framework, has interfaces for each type of widget, like: IFrame, ITextField, ILabel, and 
IButton. The components WinFrame, LinFrame, WinTextField, LinTextField, WinLabel, 
LinLabel, WinButton, and LinButton implement the widgets according to the interface 
execution platform.   

In the same way, we have the components of other frameworks, as in the case of 
Persistence framework, which supports the information persistence in a relational database. 

Figure 7 – Components Model. 

 

Figure 8 – Framework GUI. 



They are based on design patterns from Gamma’s catalog which are, Singleton, Facade and 
others, like PersistentObject [11] e ObjectPool [11].  

Figure 9 shows the framework Persistence components. The ConnectionPool 
component, through its IConnectionPool interface, does the management and connection with 
the database used in the application. The DriversUtil component, based on eXtensible Markup 
Language (XML) [14], has information from supported database drivers, available through its 
interface IDriversUtil. The TableManager component manages the mapping of an object into 
database tables, making their methods available by the ITableManager interface. The 
persistent component of the FacadePersistent structure, through its IPersistentObject 
interface, makes the values which must be added to the database available, passing parameters 
to the TableManager component.  

The components in the Broker framework use the Distributed Adapters Pattern (DAP) 
[12] to implement remote communication between two components. The technique adopted 
by DAP to offer this functionality is to insert a pair of adapter components, seeking a better 
component unjoining in a distributed architecture. The adapters, basically, encapsulate the 
API needed to remote access Target components. This way, Sources components of an 
application in relation to the distributed aspects, and any change on this aspects does not 
cause impact on it autonomous. Figure 10 shows the Broker framework structure. The Source 
and Target components abstract business rules, from a problem domain. The TargetInterface 
interface abstracts the Target component behavior in a distributed scenary. Both this interface, 
and the Source and Target components, do not have communication code. These three 
elements make an independent distribution layer. 

The main components of framework Broker are SourceAdapter and TargetAdapter. 
They are connected to a specific distribution API and encapsulate the communication details. 
SourceAdapter is an adapter that isolates the Source component from distributed code. It is 
located in the same machine than Source and works as a proxy to TargetAdapter. 
TargetAdapter is located in an other machine, isolating the Target component from 
distributed code. SourceAdapter and TargetAdapter, usually, are located in different 
machines, and do not directly interact. TargetAdapter implements RemoteInterface used to 
connect with SourceAdapter. The Initializer component is located in the same computer as 
Target and TargetAdapter components, and it is responsible for the creation of Target and 
TargetAdapter components [12] as can be seen in the Figure 10.  

Figure 9 – Framework Persistence. 



Figure 11 summarizes the main artifacts and the sequence of the Project Components 
activities, which include: 

a) Refining Model of Types into Classes Models; 
b) Refining the Interaction Models; and 
c) Creating the Components Models reusing existents components.   

4.4. Implement Components 
At last, the software engineer uses a code generator, from MVCase to implement the 

designed components. As the components are distributed, the code is generated using 
CORBA. For each component, there are the stubs and skeletons and their interfaces that makes 
its services avaliable. 

Figure 12 shows part of the Service Order domain components designed, and the 
respective Interface Definition Laguage (IDL) [6] and Java code generated. The code 
generation is done through the idlj utilitary, native from Java Development Kit (JDK) 
avaliable in the tool.  

Figure 10 –Broker Framework structure. 

Figure 11 – Third step of Pattern: Project Components. 



 

Summarizing, the main activities of the Implement Components step, accomplished by 
the software engineer, in the MVCase tool, are the generation of the IDL an Java code the 
distributed components.  

5. Consequences 
DCDP offers the following benefits: 
• Modularity: the pattern allows to separate distribution aspects from interface and 

database persistence; 
• Reuse: through the modularity aspects offered, separating the tiers, the developers 

can reuse the components for several applications of the created domain, reducing 
the code redundancy; 

• Partial Automation: with the MVCase tool support, great part of the activities 
posed in the pattern can be executed automatically.  

Even having the advantages listed above, the following disadvantages can be 
presented: 

• Incremental class number [12]: using the DAP pattern, using a pair of adapters, 
initialization and nomination components are necessary; anyway, these structures 
can be generated through partial automation, using the MVCase tool;  

• Knowledge about other technologies: using the Persistence framework, the 
software engineer needs to know technologies, like XML, for definition of 
information related to database management systems, as connection port, 
username, password, and others.  

6. Implementation 
To support the pattern proposed to Distribution CBD, different methods, techniques 

and tools are used, which are presented next.  

6.1 Catalysis Method 

The pattern is based on the Catalysis method for CBD, which has three levels: 
Problem Domain Definition, where it is put emphasis in the problem understanding, 
specifying “what” the system must do to solve the problem; Components Specification, 

Figure 12 – Fourth step of Pattern: Implement Components.

 



where the system behavior is described in a non ambiguous way; and the Components Inner 
Project, where it is defined “how” the specified requirements will be implemented. 

Catalysis is based on the principles of abstraction, precision and “plug-in” 
components. The abstraction principle guides the developer in search of essential aspects of 
the system, sparing details that are not relevant for the context of the system. The precision 
principle has as objective to detect errors and inconsistency in modeling. The “plug-in” 
components principle supports components reuse to construct other systems.  

6.2 Common Object Request Broker Architecture (CORBA) 

In the CBD it is necessary to establish a formal relation among the components and 
the application that uses them, through well-defined interfaces. To meet these requirements, 
the DCDP is based on the CORBA [6] architecture, which is a pattern established by Object 
Management Group (OMG) to support distributed objects. CORBA presents well-defined 
interfaces and independent of applications, through the IDL [6], that fits perfectly in the CBD 
context. 

Other aspects that motivated the use of CORBA were: the programming language 
independence, due to the possibility of mapping from IDL to several languages; the portability 
among computational environments and services of Safety, Nomination and Notification, 
offered by the specification.  

6.3 Frameworks and Patterns 

To construct software components safer, more reliable, easier to maintain and use, the 
CBD uses frameworks techniques based on Patterns [10]. Framework is a set of related 
classes that make reuse of a project for specific software classes [10] The use of patterns in 
complex software systems allows previously tested solutions to be reused, making the system 
more comprehensible, flexible, easy to develop and maintain. The objective of using software 
patterns is the spread of the software developing solutions already existing.  

6.4 MVCase Tool 

CASE tools have been used, with success, in the project and re-project of systems to 
be reconstructed. Among the CASE tools, stands out MVCase [7, 8], which supports system 
specification using UML techniques, generates code, automatically, in an object-oriented 
programming language, starting from high-level specifications, using distributed components 
specified in IDL. 

MVCase implements a three-tier architecture to construct the components. The three 
tiers allow that the software engineer separate the client applications from the remote client 
(thin client) interface, business rules, and from the database storing services or another way of 
storing. 

The components of these tiers can be distributed in different platforms, supporting 
client-server applications, which can be executed by the Internet.       



7. Related Patterns 
• Abstract Factory, Factory Method and Singleton. The GUI framework is 

implemented using the Design Patterns [10] Abstract Factory, Factory Method and 
Singleton. 

• Broker and Trader. Well known patterns for structuring distributed systems 
already exist. The Broker [15] and Trader [15] patterns are examples. These are 
architectural patterns and focus mostly on providing fundamental distribution 
issues, such as marshalling and message protocols. Therefore, they are mostly 
tailored to the implementation of distributed platforms, such as CORBA. DAP uses 
these fundamental patterns and provides a higher level of abstraction: distribution 
API transparency to both clients and servers [12]. 

• Wrapper-Facade [15] and DAP have the common goal of minimizing platform-
specific variation in application code. However, Wrapper-Facade encapsulates 
existing lowerlevel non-object-oriented APIs (such as sockets, and threads), 
whereas DAP encapsulates object-oriented distribution APIs, such as RMI and 
CORBA [12]. 

• Facade, PersistentObject and ObjectPool. Framework Persistence is implemented 
using the Design Patterns Singleton and Facade, and, patterns for database 
persistence [11], like PersistentObject and ObjectPool.  

8. Acknowledgements 
The authors woul like to thank to Shepherd Dr. Jugurta Lisboa Filho for sugestions 

received during the process and Rosana Teresinha Vaccare Braga for all contribution. This 
work is supported by Fundação de Amparo à Pesquisa do Estado da Bahia (Fapesb).  

9. References  

[1] Jacobson, I., Griss, M., Jonsson, P., 1997. Software Reuse: Architecture, Process and Organization 
for Business Sucess, Addison-Wesley. Longman. 

[2] D’Souza, D., F., Wills, A., C., 1999. Objects, Components, and Frameworks with UML, The 
Catalysis Approach, Addison-Wesley. USA. 

[3] Heineman, G., T., Councill, W., T., 2001. Component-Based Software Engineering, Putting the 
Pieces Together, Addison-Wesley. USA. 

[4] Szyperski, C., 1998. Component Software: Beyond Object-Oriented Programming, Addison-
Wesley. USA. 

[5] Cheesman, J., Daniels, J., 2000. UML Components: A Simple Process for Specifying Component-
Based Software. Addison-Wesley. USA, 1nd edition. 

[6] The Common Object Request Broker Architecture, 1996. Object Management Group. Avaliable in 
10/04/2001, URL: http:// www.omg.org. 

[7] Almeida, E., S., Bianchini, C., P., Prado, A., F., Trevelin, L., C., 2002. MVCase: An Integrating 
Technologies Tool for Distributed Component-Based Software Development. In APNOMS’2002, 
The Asia-Pacific Network Operations and Management Symposium,Poster Session. Proceedings of 
IEEE.  

[8] Almeida, E., S., Lucrédio, D., Bianchini, C., P., Prado, A., F., Trevelin, L., C., 2002. MVCase 
Tool: An Integrating Technologies Tool for Distributed Component Development (in portuguese). 
In SBES’2002, 16th Brazilian Symposium on Software Engineering, Tools Session.  

[9] Rumbaugh, J., et al., 1998. The Unified Modeling Language Reference Manual, Addison-Wesley. 
USA. 

[10] Gamma, E., et al., 1995. Elements of Design Patterns: Elements of Reusable Object Oriented 
Software, Addison-Wesley. 

[11] Yoder, J., Johnson, R., E., Wilson, Q., D., 1998. Connecting Business Objects to Relational 
Databases. In PLoP’1998, Pattern Language of Progamming.  

[12] Alves, V., Borba, P., 2001. Distributed Adapters Pattern (DAP): A Design Pattern for Object-
Oriented Distributed Applications. In SugarLoafPlop’2001, The First Latin American Conference 
on Pattern Languages of Programming. 



[13] Horstmann, C., S., Cornell, G., 2002. Core Java 2: Volume II, Advanced Features, Prentice Hall. 
[14] eXtensible Markup Language, 2000. World Wide Web Consortium. Avaliable in 10/04/2001, 

URL: http:// www.w3.org/xml. 
[15] Buschmann, F., et al, 1996. Pattern Oriented Software Architecture: A System of Patterns. John 

Wiley & Sons. 



O Uso de Padrões na Integração de Visões Modeladas com UML

Vânia M. P. Vidal
Departamento de Computação

Universidade Federal do Ceará – UFC
Campus do Pici Bloco 960

Fortaleza, CE – Brasil
vvidal@lia.ufc.br

Fabiana G. Marinho∗

Instituto Atlântico
Rua Chico Lemos 946

Cidade dos Funcionários
Fortaleza, CE – Brasil

fabiana@atlantico.com.br

Resumo

Durante o projeto conceitual de um banco de dados, as visões dos usuários são abstráıdas e
representadas. Em seguida, essas visões são integradas em um esquema conceitual global (esquema
integrado) que satisfaz os requisitos de toda a organização. Neste artigo, apresentamos uma
metodologia para integração de visões modeladas com UML[1]. O processo de integração proposto
em nossa metodologia usa o catálogo de padrões desenvolvido por Marinho[8].

Abstract

During database conceptual project, user views are represented and integrated in a global con-
ceptual schema (integrated schema) that completely satifies the organization requirements. In
this article, we discuss an view integration methodology using UML[1]. The integration process
proposed in our methodology uses the patterns catalog developed by Marinho[8].

1 Introdução

O projeto de um banco de dados é composto de duas fases principais - projeto conceitual e pro-
jeto lógico. No projeto conceitual, o projetista especifica o banco de dados em termos do modelo
semântico adotado. O resultado dessa fase constitui o esquema conceitual da aplicação. No pro-
jeto lógico, o esquema conceitual é traduzido em um dos modelos tradicionais de implementação,
resultando no esquema lógico da aplicação.

Durante o projeto do esquema conceitual, as visões dos vários usuários são abstráıdas e repre-
sentadas. Essas visões, além de proteger o acesso aos dados, ajudam a alcançar um certo grau de
independência lógica, uma vez que é posśıvel alterar o esquema do banco de dados sem alterar uma
visão. As visões são então integradas em um esquema conceitual global que satisfaz os requisitos de
toda a organização, denominado esquema integrado.

Observamos que pouco trabalho tem sido feito com UML no sentido de aprimorar sua capacidade
de construir esquemas conceituais globais que representem adequadamente os requisitos dos usuários
e aplicações. Definir uma metodologia que facilite e que, de certa forma, padronize o processo de
integração desses esquemas é necessário.

Neste trabalho, propomos uma metodologia para integração de visões modeladas com UML. O
processo de integração de visões proposto está baseado no uso de padrões de modelagem. Esses
padrões têm como objetivo auxiliar os projetistas nas atividades que compõem o processo de inte-
gração de visões, de modo a assegurar que essa tarefa seja realizada de forma segura e eficiente.

A motivação para o desenvolvimento desse estudo foi encontrada na ineficácia existente nas
atuais práticas de integração de visões, quando aplicadas a situações espećıficas do mundo real. A

∗Este trabalho foi suportado pelo Instituto Atlântico (www.atlantico.com.br).

Copyright c© 2002, Fabiana Gomes Marinho. Permissão de cópia concedida para a Conferência Sugarloaf-
PLoP 2002. Todos os outros direitos reservados.



UML foi utilizada por se tratar de uma linguagem de modelagem unificada, tendo mostrado todos
os sinais de se tornar a linguagem de modelagem padrão para especificar, visualizar, documentar e
construir aplicações orientadas a objeto. Nosso estudo tomou como ponto de partida vários trabalhos
realizados para integração de visões e modelagem conceitual dos dados ([14], [7], [11], [3], [9], [2],
[10], [5], [4], [12]).

Neste artigo, também formalizamos algumas restrições de integridade e elementos do modelo de
objetos da UML. Esse formalismo é necessário para validar as soluções propostas no catálogo de
padrões adotado.

Nas seções a seguir descrevemos nossa abordagem para o processo de integração de visões e
como o catálogo de padrões é utilizado nesse processo. Na seção 2, descrevemos a metodologia
desenvolvida para a integração de visões. Na seção 3, formalizamos o significado dos elementos
do modelo de objetos da UML. Na seção 4, apresentamos as restrições de integridade utilizadas
na validação dos padrões descritos. Na seção 5, apresentamos alguns dos padrões que compõem o
catálogo de padrões. Na seção 6, apresentamos as conclusões e direcionamentos futuros do nosso
trabalho.

2 Caracteŕısticas Gerais da Metodologia

Nesta seção, descrevemos as caracteŕısticas gerais da metodologia proposta para tratar o processo
de integração de visões utilizando o diagrama de classes da UML.

Conforme ilustrado na Figura 1, nosso enfoque consiste em 4 fases:

(i) Primeiramente, cada grupo de usuários analisa seus requisitos de dados e especifica as visões
dos dados na forma de um esquema conceitual.

(ii) Em seguida, essas visões individuais são combinadas em um esquema conceitual global e a
definição conceitual das visões é criada. A definição conceitual das visões consiste dos es-
quemas das visões originais e de um conjunto de assertivas de correspondência (ACs) que
especifica como cada visão é definida em termos do esquema conceitual global obtido. Usamos
as assertivas de correspondência para especificar o relacionamento das visões dos usuários com
o esquema integrado. Esse passo é bastante complexo devido às diversas representações uti-
lizadas pelos projetistas na modelagem das visões. Todo o processo de integração das visões
proposto em nossa metodologia está baseado no uso de padrões de modelagem.

(iii) Após a integração das visões, o esquema conceitual global é mapeado para o esquema lógico.
Esse esquema lógico é representado em termos do modelo de dados espećıfico do sistema de
gerenciamento de banco de dados adotado.

(iv) Neste último passo, as definições conceituais das visões são traduzidas em definições lógicas em
termos do esquema lógico obtido. As ACs também são mapeadas do esquema conceitual para
o esquema lógico. Esse passo não é abordado em nosso trabalho.

2.1 O Processo de Integração de Visões

O processo de integração de visões proposto em nossa metodologia consiste em 5 etapas. Cada etapa
está baseada no uso de padrões de modelagem. Nesta seção, descrevemos como esses padrões são
usados em cada passo do processo de integração de visões.

(i) Decomposição: certas formas de dependências funcionais (DFs) sugerem a presença de re-
dundâncias no esquema conceitual. O padrão P1 remove essas DFs indesejáveis, de modo a
minimizar a redundância do esquema conceitual.



Visões


Modelagem

das


visões


Integração

das


visões


Definição

conceitual

das visões


Esquema

conceitual


global


Projeto lógico


Esquema

lógico


Projeto

lógico das


visões


Definição

lógica das


visões


Esquemas

das


visões


Figura 1: Projeto de Banco de Dados Através da Integração de Visões

(ii) Combinação I: durante a etapa de combinação I, as várias visões dos usuários são analisadas
e comparadas para determinar correspondências entre extensões de classes. O resultado desse
processo é o esquema combinado inicial, o qual contém todas as visões originais e um conjunto
de ACs de extensão. Os padrões P2 e P3 são usados para auxiliar na identificação dessas ACs.

(iii) Otimização I: uma vez identificada a equivalência entre extensões das classes, aplicamos ao
esquema combinado inicial uma série de transformações, de modo a obter um esquema global
otimizado. Os padrões P10, P11 e P21 têm como objetivo reduzir o tamanho do esquema
através da fusão de classes e atributos comuns.

(iv) Combinação II: o objetivo dessa segunda etapa de combinação é identificar relacionamentos
semânticos entre classes de associação e entre associações. O resultado da fase de combinação
II é um novo esquema combinado composto por todas as visões originais e um novo conjunto de
ACs que expressam o relacionamento entre classes de associação e associações. Os padrões P4,
P5, P6, P7, P8 e P9 são utilizados para identificar os relacionamentos semânticos citados.

(v) Otimização II: nessa etapa, os padrões P12, P13, P14, P15 ,P16, P17, P18, P19 e P20
reestruturam os esquemas novamente, de forma a eliminar redundâncias identificadas na etapa
(iv).



3 Os Elementos de Modelagem da UML

Nesta seção formalizamos alguns elementos de modelagem que compõem o diagrama de classes da
UML. Esse formalismo é necessário porque possibilita a validação das soluções propostas nos padrões
adotados.

Os elementos básicos do diagrama de classes são classe, atributo, associção e classe de associação.
A seguir apresentamos as extensões propostas para o diagrama de classe da UML envolvendo as
definições de ligações monovaloradas e ligações multivaloradas, caminho e classe de associação.

Pedido


data: String

número: String

preço: Money


Item-Pedido


quantidade: Integer

preço: Money


Cliente


nome: String

endereço: String

telefone: set <String>


Empregado

Produto


Pessoa Jurídica


nome-contato: String

limite-crédito: Money


Pessoa Física


#cartão: String


1


*


*
 1


*
 1


*


0..1


Associação


Multiplicidade


Classe


Generalização


linha de item


Ligação

ou papel


Departamento


Gerente


1..*
 1


depto


ger
1..*


1


Agregação


Figura 2: Exemplo - Diagrama de Classes da UML

Para cada direção de navegação de uma associação é associada uma ligação ou papel. Usaremos
a notação l : A → B para indicar que as instâncias da classe A estão relacionadas com instâncias
da classe B através da ligação l. Neste caso, dizemos que l é uma ligação da classe A. Por exemplo,
na Figura 2, temos que as instâncias da classe Item-Pedido estão associadas a uma instância da
classe Pedido através da ligação linha de item (linha de item: Item-Pedido → Pedido).

As ligações também possuem uma multiplicidade. Se o valor máximo da multiplicidade especifi-
cada para uma ligação for 1, então dizemos que a ligação é monovalorada; caso seja maior que 1, a
ligação é multivalorada.

Dado uma classe de associação C entre as classes C1, ..., Cn, então existe uma ligação mono-
valorada li : C → Ci, para 1 ≤ i ≤ n. Em geral, nomeamos a ligação li com o nome da classe Ci.
Por exemplo, no esquema da Figura 3, a classe de associação Gerência captura o fato de que um
empregado e trabalha em um projeto p que é gerenciado pelo gerente g. Existe uma ligação da
classe de associação Gerência para cada uma de suas classes participantes cuja multiplicidade é 1.

Instâncias de uma classe podem estar associadas com instâncias de outras classes através da
composição de duas ou mais ligações. Considere, o diagrama da Figura 2. De acordo com as ligações
definidas entre as classes Empregado, Departamento e Gerente, temos que um empregado está
relacionado com o gerente do seu departamento de forma indireta através da composição das ligações
depto e ger, ou seja, existe um caminho entre as classes Empregado e Gerente (depto • ger). Uma
definição formal de caminho é apresentada a seguir.

Definição 3.1 (Caminho) Sejam C1,C2, . . . Cn+1 classes de um esquema tais que existe uma
ligação li de Ci para Ci+1 (li : Ci → Ci+1), 1 ≤ i ≤ n. Assim sendo, δ = l1 • l2 • ... • ln é
um caminho de C1.



Gerente


1

1..*
 1..*


gerencia
 pertence
trabalha


Gerência


Empregado
 Projeto


S
1


gerente
 projeto


empregado


Figura 3: Exemplo - Classe de Associação

Um caminho é monovalorado se todas as ligações que o compõem são monovaloradas. Um
caminho é multivalorado se pelo menos uma das ligações que o compõe é multivalorada.

Definição 3.2 (Estado de Classe e de Objeto) Suponha o diagrama de classes S = (C, I), onde C
representa um conjunto finito de classes e I um conjunto de restrições de integridade definidas sobre
as classes em C. O estado de uma classe C é o conjunto de objetos que pertencem à extensão de C,
ou seja, o conjunto de objetos que são instâncias de C em um determinado instante. O estado de
um objeto é definido pelos valores de suas propriedades (atributos e ligações) em um determinado
instante. Considere c uma instância da classe C. Para qualquer atributo a de C, c.a retorna o valor
do atributo a para a instância c no estado corrente. Para qualquer ligação l: C → C′, c.l retorna as
instâncias de C′ que estão associadas com c através da ligação l no estado corrente. Para qualquer
caminho δ = l1 • l2 • ... • ln de C, onde l1 : C → C1 e li : Ci−1 → Ci, 2 ≤ i ≤ n, c.δ retorna as
instâncias de Cn que estão associadas com c através do caminho δ no estado corrente.

4 Restrições de Integridade em UML

As restrições de integridade capturam a semântica do mundo real representada nos esquemas con-
ceituais. A UML, no entanto, não define uma sintaxe expĺıcita para descrever essas restrições.
Nesta seção, definimos uma notação espećıfica para representar restrições de chave, restrições de
dependência funcional, restrições de dependência existencial e assertivas de correspondência.

Uma restrição de chave especifica a unicidade nos valores dos atributos de uma classe. A seguir
definimos formalmente a restrição de chave.

Definição 4.1 (Chave) Seja C uma classe e a1, a2, ..., an atributos de C. A restrição de chave
a1, a2, ..., an ∈ Chaves(C) especifica que para quaisquer instâncias e1 e e2 de C se e1.ai = e2.ai,
1 ≤ i ≤ n, então e1 ≡ e2 (e1 e e2 são semanticamente equivalentes, isto é, representam o mesmo
objeto do mundo real).

O diagrama de classes da UML não possui uma definição precisa para restrições de dependência
funcional. A seguir, propomos uma notação formal para esse tipo de restrição.

Definição 4.2 (Dependência Funcional) Seja C uma classe de S e p1,p2, ...,pn, q propriedades
de C. A dependência funcional C[p1,p2, ...,pn → q] especifica que para quaisquer instâncias c1 e
c2 de C, se c1.pi = c2.pi, 1 ≤ i ≤ n, então c1.q ≡ c2.q.

As restrições de dependência existencial (DEs) são importantes para dar suporte à reestruturação
de esquemas conceituais, pois permitem expressar formalmente a equivalência semântica de compo-
nentes de esquemas. A seguir, definimos formalmente alguns tipos de DEs utilizadas nos padrões
apresentados neste artigo. Suponha C1 e C2 classes, p1,p2, ...,pn propriedades de C1 e q1,q2, ...,qn

propriedades de C2.



Definição 4.3 (DE de Subconjunto) A restrição de DE C1[p1,p2, ...,pn] ⊂ C2[q1,q2, ...,qn] es-
pecifica que para qualquer instância c1 de C1 existe uma instância c2 de C2 tal que c1.pi = c2.qi,
1 ≤ i ≤ n.

Definição 4.4 (DE de Equivalência) A restrição de DE C1 [p1,p2,. . . ,pn] ≡ C2 [q1,q2,. . . ,qn]
especifica que C1 [p1,p2,. . . ,pn] ⊂ C2 [q1,q2,. . . ,qn] e C2 [q1,q2,. . . ,qn] ⊂ C1 [p1,p2,. . . ,pn].

As assertivas de correspondência são tipos especiais de restrições de integridade usadas para
especificar a correspondência entre componentes de esquemas. Existem vários tipos de ACs, depen-
dendo dos elementos envolvidos e da natureza da correspondência. No presente trabalho, consider-
amos apenas as assertivas de correspondência de extensão (ACEs) e assertivas de correspondência
de caminhos (ACCs).

As ACEs representam os diferentes tipos de relacionamentos existentes entre as extensões das
classes de um ou mais esquemas. Em Marinho[8] são definidos nove tipos de ACEs. A seguir
definimos os dois tipos de ACEs mais comuns e que são usados nos padrões apresentados neste
artigo. Suponha C1 e C2 classes de um esquema.

Definição 4.5 (ACE de Subconjunto) A ACE de subconjunto C1 ⊂ C2 especifica que para qualquer
instância e1 de C1, existe uma instância e2 em C2, tal que e1 ≡ e2.

Definição 4.6 (ACE de Equivalência) A ACE de Equivalência C1 ≡ C2 especifica que C1 ⊂ C2

e C2 ⊂ C1.

As ACCs especificam relacionamentos entre caminhos de classes semanticamente relacionadas.
As classes C1 e C2, são semanticamente relacionadas quando suas instâncias podem representar
objetos semanticamente equivalentes. A seguir definimos os dois tipos de ACCs mais comuns e que
são usadas nos padrões apresentados neste artigo.

Definição 4.7 (ACC de Equivalência) Sejam δ1 e δ2 caminhos (monovalorados ou multivalorados)
das classes C1 e C2 respectivamente, onde C1 e C2 são classes semanticamente relacionadas. A
ACC de equivalência C1.δ1 ≡ C2.δ2, especifica que para quaisquer e1, e2 instâncias de C1 e C2,
respectivamente, se e1 ≡ e2 então e1.δ1 ≡ e2.δ2.

Definição 4.8 (ACC de Subconjunto) Sejam δ1 e δ2 caminhos multivalorados das classes C1 e C2

respectivamente, onde C1 e C2 são classes semanticamente relacionadas. A ACC de subconjunto
C1.δ1 ⊂ C2.δ2, especifica que para quaisquer e1, e2 instâncias de C1 e C2, respectivamente, se e1

≡ e2 então e1.δ1 ⊂ e2.δ2.

5 O Catálogo de Padrões

Nesta seção descrevemos brevemente o catálogo de padrões para integração de visões modeladas
com UML. Os padrões estão agrupados em três categorias principais, classificadas de acordo com a
etapa do processo de integração de visões que eles tratam (ver seção 2.1): Padrão de Decomposição,
Padrões de Combinação e Padrões de Otimização.

Padrão de Decomposição

P1. Decompondo Classes para Eliminar DFs Indesejáveis - identifica no esquema conceitual
a presença de classes embutidas representadas por restrições de dependência funcional.

Padrões de Combinação

P2. Identificando Correspondências entre Extensões de Classes - identifica ACs entre ex-
tensões de classes de um esquema conceitual.



P3. Identificando Associações Ocultas - identifica associações ocultas a partir da análise do
esquema conceitual.

P4. Identificando Correspondências entre Classes de Associação - identifica restrições de DE
entre classes de associação.

P5. Identificando Correspondências entre uma Classe de Associação e uma Classe Partici-
pante da Classe de Associação - identifica ACs entre extensões de uma classe de associação
e uma das classes participantes da classe de associação.

P6. Identificando Correspondências entre Associações - identifica restrições de DE entre as-
sociações.

P7. Identificando Associações Derivadas - verifica se uma associação é derivável da com-
posição de duas ou mais associações.

P8. Identificando Correspondências entre uma Classe de Associação e uma Associação -
identifica DEs entre uma classe de associação e uma associação definida entre duas classes
participantes da classe de associação.

P9. Identificando Classes de Associação Derivadas - verifica se uma classe de associação é
derivável da composição das associações existentes entre as classes participantes da classe
de associação.

Padrões de Otimização

P10. Integrando Classes Equivalentes - reestrutura o esquema conceitual de modo a capturar
as ACEs de equivalência.

P11. Eliminando Redundâncias Capturadas por ACEs de Subconjunto - reestrutura o esquema
conceitual de modo a capturar as ACs de subconjunto entre extensões das classes.

P12. Representando Correspondências entre uma Classe de Associação e uma Classe Par-
ticipante da Classe de Associação - reestrutura o esquema conceitual a partir das corres-
pondências semânticas identificadas entre extensões de uma classe de associação e uma
das classes participantes da classe de associação.

P13. Integrando Associações Equivalentes - reestrutura o esquema conceitual capturando as
ACs de equivalência entre associações.

P14. Eliminando ACs de Subconjunto entre Associações - reestrutura o esquema conceitual
capturando as ACs de subconjunto entre associações.

P15. Removendo Associações Derivadas - reestrutura o esquema conceitual de modo a re-
mover associações deriváveis da composição de duas ou mais associações.

P16. Removendo Classes de Associação Derivadas - reestrutura o esquema conceitual para
remover classes de associação deriváveis da composição das associações existentes entre
as classes participantes da classe de associação.

P17. Integrando Classes de Associação Equivalentes - reestrutura o esquema conceitual
visando remover restrições de DE de equivalência entre classes de associação.

P18. Eliminando Redundâncias Capturadas por DEs de Subconjunto entre Classes de Asso-
ciação - reestrutura o esquema conceitual visando remover restrições de DE de subcon-
junto entre classes de associação.

P19. Integrando Classes de Associação e Associações Equivalentes - reestrutura o esquema
conceitual para capturar as restrições de DE de equivalência entre classes de associação
e associações.

P20. Eliminando DEs de Subconjunto entre uma Classe de Associação e uma Associação -
reestrutura o esquema conceitual para capturar as restrições de DE de subconjunto entre
classes de associação e associações.



P21. Adicionando Associações Ocultas - reestrutura o esquema conceitual adicionando asso-
ciações ocultas identificadas.

A Figura 4 apresenta a classificação geral dos padrões, assim como seus inter-relacionamentos.
As elipses representam respectivamente as categorias dos problemas abordados. Os padrões são rep-
resentados por retângulos. As setas implicam na existência de um relacionamento entre os padrões,
ou seja, implicam que um padrão usa ou depende dos resultados obtidos com a aplicação do outro.

Devido à limitação de espaço, selecionamos alguns padrões mais relevantes do catálogo de padrões
utilizado. Os padrões P2 e P11 estão relacionados com a integração de classes semanticamente
relacionadas. Os padrões P4 e P18 focalizam a integração de classes de associação. Já os padrões
P7 e P15 abordam a remoção de associação derivadas do esquema conceitual. Nosso objetivo é
mostrar como os padrões podem contribuir para a qualidade das atividades presentes no processo
de integração de visões de um banco de dados.



C1. Decomposição
 C2. Combinação


P1. Decompondo

classes para eliminar


FDs indesejáveis


P2. Identificando

correspondências

entre extensões


P3. Identificando

associações ocultas


P4. Identificando

correspondências


entre CAs


P5. Identificando

corespondências


entre CAs e classe


P6. Identificando

correspondências

entre associações


P7. Identificando

associações


derivadas


P8. Identificando

correspondências

entre uma CA e


associação


P9. Identificando

CAs derivadas


C3. Otimização


P10. Integrando

classes equivalentes


P18. Eliminando

DEs de subconjunto


entre CAs


P14. Eliminando

ACs de subconjunto


entre associções


P11. Eliminando

ACs de subconjunto


entre extensões


P12. Representando

correspondências


entre uma CA e uma

classe


P13. Integrando

associações

equivalentes


P17. Integrando CAs

equivalentes


P15. Removendo

associações


derivadas


P16. Removendo

CAs derivadas


P19. Integrando CAs

e associações

equivalentes


P20. Eliminando

DEs de subconjunto

entre uma CA e uma


associação


P21. Adicionando

associações ocultas


Legenda


Categoria


Padrão


Classificação


Uso


Complemento


Figura 4: Classificação dos Padrões para Integração de Visões com UML



P2. Identificando Correspondências entre Extensões de Classes

O padrão P2 é usado durante a fase de combinação I e identifica uma situação de posśıvel corres-
pondência entre extensões de classes.

Contexto: Considere o esquema S1 mostrado na Figura 5.

A

x
1


x
2
...

x
n


S
1


B

x
1


x
2
...

x
n


Figura 5: Classes com Atributos em Comum

Sejam A e B classes. Suponha que x1, x2,..., xn sejam atributos em comum das classes A e B.

Problema: Verificar se existe um relacionamento semântico entre as extensões das classes A e B.

Solução: A semântica da aplicação deve ser analisada para verificar se:

1. existe uma ACE de subconjunto dada por A ⊂ B ou

2. existe uma ACE de equivalência dada por A ≡ B.

Exemplo P2.1: Considere o esquema S2 mostrado na Figura 6. Analisando as classes EMPRE-
GADO e GERENTE, verificamos que elas possuem um conjunto de atributos em comum: os
atributos cpf, nome e salário. Essa situação sugere a existência de um relacionamento semântico
entre as extensões das classes EMPREGADO e GERENTE.

Empregado


cpf

nome

salário


Projeto


#projeto

nome


 trabalha


Gerente


cpf

nome

salário

data-cargo


Departamento


#departamento

nome


pertence


S
2


Departamento'


#departamento

nome


depto


Figura 6: Exemplo - Classes com Atributos Similares

Analisando a semântica associada ao esquema S2, identificamos que todo gerente é um empre-
gado. Isso significa que para toda instância g de GERENTE existe uma instância e de EMPRE-
GADO, tal que g = e. Esse relacionamento é formalmente capturado pelas ACs abaixo:

Assertiva de Correspondência de Extensão:

(i) GERENTE ⊂ EMPREGADO

Assertivas de Correspondência de Caminho:

(ii) GERENTE.cpf ≡ EMPREGADO.cpf



(iii) GERENTE.nome ≡ EMPREGADO.nome

(iv) GERENTE.salário ≡ EMPREGADO.salário

(v) GERENTE.pertence ≡ EMPREGADO.depto

Usos Conhecidos: Uma discussão relacionada à identificação de correspondências semânticas
entre extensões pode ser encontrada em Storey[13].

Padrões Relacionados: No padrão P11, propomos a reestruturação dos esquemas conceituais
de forma a capturar as ACEs identificadas.

P4. Identificando Correspondências entre Classes de Associação

O padrão P4 é utilizado durante a fase de combinação II e identifica situações de posśıveis corres-
pondências entre classes de associação.

Contexto: Suponha o esquema S mostrado na Figura 7.

S


C
1
 C
2
 C
n


A


...

C
1
 C
2
 C
n


B


...


l
A1


l
A2

l
An


l
B1


l
B2


l
Bn


Figura 7: DE entre Classes de Associação

Sejam A e B classes de associação. Suponha que C1, C2, ..., Cn sejam classes em comum
participantes das classes de associação A e B. Considere lAi : A → Ci e lBi : B → Ci, 1 ≤ i ≤ n.

Problema: Verificar se existe uma restrição de dependência existencial entre as classes de asso-
ciação A e B.

Solução: A semântica deve ser analisada para verificar se:

1. existe uma restrição de DE de subconjunto entre A e B, dada por A [lA1 , lA2 , ..., lAn ] ⊂ B
[lB1 , lB2 , ..., lBn ] ou

2. existe uma restrição de DE de equivalência entre A e B, dada por A [lA1 , lA2 , ..., lAn ] ≡ B
[lB1 , lB2 , ..., lBn ].

É importante observar que as ACEs são casos especiais de DEs. No caso de A [lA1 , lA2 , ..., lAn ]
⊂ B [lB1 , lB2 , ..., lBn ] e [lA1 , lA2 , ..., lAn ] conter a chave de A e [lB1 , lB2 , ..., lBn ] conter a chave de B,
então existe uma ACE de subconjunto entre A e B dada por A ⊂ B.

No caso de A [lA1 , lA2 , ..., lAn ] ≡ B [lB1 , lB2 , ..., lBn ] e [lA1 , lA2 , ..., lAn ] conter a chave de A e
[lB1 , lB2 , ..., lBn ] conter a chave de B, então existe uma ACE de equivalência entre A e B dada por
A ≡ B.



Exemplo P4.1: Considere os esquemas S1 e S2 da Figura 8. A existência de uma instância
na classe de associação MATRÍCULA associando uma disciplina d e um professor p, requer
a existência de uma instância na classe de associação OFERTA associando d e p. Essa re-
strição é capturada pela assertiva de DE de subconjunto MATRÍCULA[disciplina, professor] ⊂
OFERTA[disc, prof].

Disciplina
 Professor


Oferta


sala


1..*
 1..*

Estudante
 Disciplina
 Professor


Matrícula


1..*


1..*


1..*

estudante
 professor


disciplina


S
1


S
2


disc
 prof


Figura 8: Exemplo - DE de Subconjunto entre Classes de Associação

Exemplo P4.2: Suponha os esquemas S3 e S4 da Figura 9. As classes de associação ALOCAÇÃO
e MATRÍCULA relacionam um mesmo conjunto de classes: as classes SEMESTRE, DISCI-
PLINA e PROFESSOR.

Semestre
 Disciplina
 Professor


Matrícula


1


1..*


1..*

semestre
 professor


disciplina


S
4


Semestre
 Disciplina
 Professor


Alocação


1


1..*


1..*

semestre
 professor


disciplina


S
3


Figura 9: Exemplo - DE de Equivalência entre Classes de Associação

A existência de uma instância na classe de associação ALOCAÇÃO associando um semestre
s, uma disciplina d e um professor p, requer a existência de uma instância na classe de associação
MATRÍCULA associando s, d e p e vice-versa. Essa restrição é formalmente capturada pela as-
sertiva de DE de equivalência ALOCAÇ~AO[semestre, disciplina, professor] ≡ MATRÍCULA[semestre,
disciplina, professor].

Usos Conhecidos: A identificação de restrições de dependência existencial a partir da análise dos
esquemas conceituais pode ser encontrada em Vidal[14].

Padrões Relacionados: Certas formas de restrições de dependência existencial capturam re-
dundânciacs no esquema conceitual. O padrões P13 e P14 reestruturam os esquemas de modo a
remover essas redundâncias.

P7. Identificando Associações Derivadas



O padrão P7 é usado durante a etapa de combinação II e ajuda a identificar associações derivadas
no esquema conceitual. Uma associação derivada (ou redundante) é aquela cujas instâncias podem
ser inferidas a partir de instâncias de outras associações.

Contexto: Suponha o esquema S da figura 10.

C
1
 C
2
 C
3
l
1
 l
2


l
n


...
 C
n-1

l
n-1
 C
n


S


Figura 10: Associação Derivada

Existem dois caminhos ligando as classes C1 e Cn: o caminho l1 e o caminho l1 • ... • ln−1 .
Identificamos, portanto, a presença de um ciclo. Existe um ciclo em um esquema quando existe mais
de um caminho ligando duas classes no esquema conceitual.

Problema: Verificar se a ligação ln é derivável da composição das ligações l1 • ... • ln−1 .

Solução: Um ciclo no esquema conceitual sugere a presença de uma associação derivada. Ao
detectar a existência de um ciclo, é necessário verificar a compatibilidade das multiplicidades que
compõem esse ciclo. As multiplicidades de dois caminhos são compat́ıveis se os valores mı́nimo e
máximo das multiplicidades desses caminhos são iguais. Além disso, a semântica deve ser analisada.
Pela análise da semântica associada ao esquema S, temos que ln é derivada da composição dos
caminhos l1 • ... • ln−1 se para qualquer instância c1 de C1, então c1.ln = c1.(l1 • ... • ln−1 ). Nesse
caso, existe uma ACC de equivalência dada por ln ≡ (l1 • ... • ln−1 ).

Exemplo P7.1: Considere o esquema S1 mostrado na figura 11. Existem dois caminhos ligando as
classes PEÇA e FORNECEDOR: o caminho é-fornecida e o caminho está-contida • é-preenchido.
Identificamos, portanto, a presença de um ciclo.

Peça
 Pedido
 Fornecedor
está-contida
 é-preenchido


fornece
é-fornecida


*
1..*
 *
 *


*
 *


S
1


Figura 11: Exemplo - Associação derivada

As multiplicidades do ciclo da figura 11 são compat́ıveis, pois uma peça pode estar associada a
zero ou mais fornecedores pelo caminho é-fornecida e pode estar associada a zero ou mais fornecedores
pelo caminho está-contida • é-preenchido.

É necessário agora verificarmos se os caminhos representam o mesmo fato do mundo real. No
contexto do exemplo mostrado na figura 11, temos que o caminho é-fornecida é derivável da com-
posição dos caminhos está-contida e é-preenchido, pois para qualquer instância p de PEÇA, então
p.é-fornecida = p.(está-contida • é-preenchido). Esta restrição é formalmente capturada pela ACC
de equivalência é-fornecida ≡ está-contida • é-preenchido.



Usos Conhecidos: Uma discussão relacionada à existência de derivação em esquemas conceituais
pode ser encontrada em Fowler[6].

Padrões Relacionados: No padrão c mostramos como remover associações derivadas do esquema
conceitual.

P11. Eliminando Redundâncias Capturadas por ACEs de Subconjunto

O padrão P11 é utilizado durante a fase de otimização I e propõe uma reestruturação do esquema
conceitual de forma a eliminar redundâncias capturadas por ACEs de subconjunto.

Contexto: Suponha o esquema S mostrado na Figura 12.

A'


B'
A


S


B


S'


Figura 12: Eliminando AC de Subconjunto entre Extensões de Classes

Sejam A e B classes, At(A) o conjunto de atributos da classe A, At(B) o conjunto de atributos
da classe B, Lg(A) o conjunto de ligações da classe A e Lg(B) o conjunto de ligações da classe B.
Existe uma ACE de subconjunto entre A e B, dada por A ⊂ B.

Problema: Remover do esquema conceitual a redundância capturada pela ACE de subconjunto
A ⊂ B.

Solução: O esquema S deve ser transformado no esquema S’ como mostrado na Figura 12. No
esquema S’, a classe B’ é equivalente à classe B e a classe A’ é definida como uma subclasse da
classe B’. Os atributos e ligações de A’ são distribúıdos como segue:

- At(A’) = At(A) - At(B), onde - (diferença de conjuntos) significa que os atributos da classe A’
são aqueles atributos de A que não possuem atributos semanticamente equivalentes em B.

- Lg(A’) = Lg(A) - Lg(B), onde - (diferença de conjuntos) significa que as ligações da classe A’
são aquelas ligações de A que não possuem ligações semanticamente equivalentes em B.

O mapeamento entre o esquema original S e o esquema transformado S’ é formalmente especifi-
cado pelas ACs abaixo:

(i) A ≡ A’

(ii) B ≡ B’

(iii) os atributos de B são mapeados diretamente nos atributos de B’

(iv) os atributos de A que não possuem atributos semanticamente equivalentes em B são mapeados
diretamente em atributos de A’



Exemplo P11.1: Suponha o esquema S1 mostrado no exemplo P2.1.
De acordo com a AC (i), verificamos uma generalização impĺıcita entre as classes GERENTE

e EMPREGADO que não está devidamente representada no esquema S1. Nesse caso, propomos
reestruturar o esquema S1 como sugerido no esquema S2 da Figura 13. No esquema S2, definimos
duas novas classes EMPREGADO’ e GERENTE’ e definimos uma generalização entre essas
classes. Os atributos e ligações da nova classe EMPREGADO’ correspondem aos atributos e
ligações da classe EMPREGADO. Os atributos da classe GERENTE’ correspondem aos atrib-
utos da classe GERENTE que não possuem atributos semanticamente equivalentes em EMPRE-
GADO. As ligações de GERENTE’ correspondem às ligações de GERENTE que não possuem
ligações semanticamente equivalentes em EMPREGADO.

O mapeamento entre o esquema original S1 e o esquema transformado S2 é formalmente especi-
ficado pelas assertivas de correspondência abaixo:

Assertivas de Correspondência de Extensão:

(i) EMPREGADO ≡ EMPREGADO’

(ii) GERENTE ≡ GERENTE’

Assertivas de Correspondência de Caminho:

(iii) GERENTE.cpf ≡ EMPREGADO’.cpf

(iv) GERENTE.nome ≡ EMPREGADO’.nome

(v) GERENTE.salário ≡ EMPREGADO’.salário

(vi) GERENTE.data-cargo ≡ GERENTE’.data-cargo

(vii) GERENTE.pertence ≡ EMPREGADO’.depto

Empregado'


cpf

nome

salário


Projeto


#projeto

nome


Gerente'


data-cargo


  trabalha


S
2


Departamento


#departamento

nome


depto


Figura 13: Exemplo - Eliminando AC de Subconjunto entre Extensões de Classes

Usos Conhecidos: Uma discussão relacionada a reestruturação de esquemas a partir das ACEs
pode ser encontrada em Vidal[14].

Padrões Relacionados: No padrão P2 mostramos como identificar ACEs de subconjunto.

P15. Removendo Associações Derivadas

O padrão P15 é utilizado durante a fase de otimização II e propõe uma reestruturação do esquema
conceitual de forma a eliminar redundâncias capturadas pela presença de associações derivadas no
esquema conceitual.



C
1
 C
2
 C
3
l
1
 l
2


l
n


...
 C
n-1

l
n-1
 C
n


S


Figura 14: Associação Derivada

Contexto: Suponha o esquema S da figura 14.
Pela análise da semântica de S, temos que ln é derivada da composição dos caminhos l1 • ...• ln−1 ,

isto é, ln ≡ l1 • ... • ln−1 .

Problema: Reestruturar o esquema conceitual de modo a remover a associação derivada ln .

Solução: O esquema S deve ser transformado no esquema S’ como mostrado na figura 15.

C

1


C

2


C

3
l
1
 l
2


...
 C

n-1


l
n-1
 C

n


S'


Figura 15: Removendo Associação Derivada

O mapeamento entre o esquema original S e o esquema transformado S’ é formalmente especifi-
cado pelas assertivas de correspondência abaixo.

(i) Ci ≡ C ′
i, 1 ≤ i ≤ n

(ii) C1.ln ≡ C ′
1.(l1 • ... • ln−1)

(iii) Ci.li ≡ C ′
i.li, 1 ≤ i ≤ n

Exemplo P15.1: Considere o esquema S1 do exemplo P7.1. De forma a remover a redundância
identificada, sugerimos reestruturar esse esquema como mostrado no esquema S2 da figura 16. No
esquema S2, removemos a associação é-fornecida, já que esta pode ser obtida a partir da composição
das associações está-contida e é-preenchido. Vale a pena ressaltar que o projetista pode decidir
permanecer com a associação derivada no esquema durante a implementação do banco de dados por
motivos relacionados ao desempenho das operações a serem executadas sobre o banco de dados.

Peça
 Pedido
 Fornecedor
está-contida
 é-preenchido


*
1..*
 *
 *


S
2


Figura 16: Exemplo - Removendo Associação Derivada

O mapeamento entre o esquema original S1 e o esquema transformado S2 é formalmente especi-
ficado pelas assertivas de correspondência abaixo:

Assertivas de Correspondência de Extensão:



(i) PEÇA ≡ PEÇA’

(ii) PEDIDO ≡ PEDIDO’

(iii) FORNECEDOR ≡ FORNECEDOR’

Assertivas de Correspondência de Caminho:

(iv) PEÇA.é-fornecida ≡ PEÇA’.(está-contida • é-preenchida)

(v) PEÇA.está-contida ≡ PEÇA’.está-contida

(vi) PEDIDO.é-preenchido ≡ PEDIDO’.é-preenchido

Usos Conhecidos: Fowler[6] aborda o problema de associações derivadas no esquema conceitual.

Padrões Relacionados: No padrão P7 discutimos como identificar a presença de associações
derivadas no esquema conceitual.

P18. Eliminando Redundâncias Capturadas por DEs de Subconjunto entre Classes de
Associação

O padrão P18 é utilizado durante a fase de otimização II e propõe uma reestruturação do esquema
conceitual de forma a eliminar redundâncias capturadas por DEs de subconjunto entre classes de
associação.

Contexto: Suponha o esquema S mostrado na Figura 17.

S


C
1
 C
2
 C
n


A


...

C
1
 C
2
 C
n


B


...

C
n+1
 C
p


p>n


Figura 17: DE de Subconjunto entre Classes de Associação

Sejam A e B classes de associação, At(A) o conjunto de atributos de A, At(B) o conjunto de
atributos de B, Lg(A) o conjunto de ligações de A e Lg(B) o conjunto de ligações de B. Existe uma
restrição de DE entre A e B dada por textttA [lA1 , lA2 , ..., lAn ] ⊂ B [lB1 , lB2 , ..., lBp ].

Problema: Remover do esquema conceitual a redundância causada pela restrição de DE de sub-
conjunto existente entre as classes de associação A e B dada por A [lA1 , lA2 , ..., lAn ] ⊂ B [lB1 , lB2 , ..., lBp ].



S'


C'
1
 C'
2
 C'
n


B'


...


C'
n+1


A'


C'
q

...


p>n


Figura 18: Removendo DE de Subconjunto entre Classes de Associação

Solução: O esquema S deve ser transformado no esquema S’ como mostrado na Figura 18. No
esquema S’, a classe B’ é equivalente à classe B e a classe A’ é modelada como uma associação
entre as classes B’,C′

n+1 e C′
p.

Os atributos e ligações da nova classe de associação A’ são distribúıdos como segue:

- At(A’) = At(A)

- Lg(A’) = Lg(A) - Lg(B), onde - (diferença de conjuntos) significa que as ligações da classe A’
são aquelas ligações de A que não possuem ligações semanticamente equivalentes em B.

O mapeamento entre o esquema original S e o esquema transformado S’ é formalmente especifi-
cado pelas assertivas de correspondência abaixo:

(i) A ≡ A’

(ii) B ≡ B’

(iii) Ci ≡ C ′
i, 1 ≤ i ≤ n

(iii) os atributos de A são mapeados diretamente em atributos de A’

(iv) os atributos de B são mapeados diretamente em atributos de B’

Exemplo P18.1: Considere os esquemas S1 e S2 do exemplo P4.1.
Sugerimos reestruturar os esquemas S1 e S2 como mostrado no esquema S3 da Figura 19. No es-

quema integrado S3, definimos as classes de associação MATRÍCULA’ e OFERTA’. Os atributos
e ligações da classe de associação OFERTA’ correspondem aos atributos e ligações da classe de asso-
ciação OFERTA. Os atributos da classe de associação MATRÍCULA’ correspondem aos atributos
de MATRÍCULA. As ligações de MATRÍCULA’ correspondem às ligações de MATRÍCULA
que não possuem ligações semanticamente equivalentes em OFERTA.

O mapeamento entre o novo esquema S3 e os esquemas originais S1 e S2 é formalmente especi-
ficado pelas assertivas de correspondência abaixo:

Assertivas de Correspondência de Extensão:



Disciplina
 Professor


Oferta'


sala


1..*
 1..*


Estudante


Matrícula'


1..*
 1..*


S
3


disc
 prof


ofta
 est


Figura 19: Exemplo - Representando DE de Subconjunto entre Classes de Associação

(i) OFERTA ≡ OFERTA’

(ii) MATRÍCULA ≡ MATRÍCULA’

Assertivas de Correspondência de Caminho:

(iii) MATRÍCULA.estudante ≡ MATRÍCULA’.est

(iv) MATRÍCULA.disciplina ≡ MATRÍCULA’.ofta’.disc

(v) MATRÍCULA.professor ≡ MATRÍCULA’.ofta’.prof

Usos Conhecidos: Restrições de dependência existencial são abordadas em Vidal[14].

Padrões Relacionados: No padrão P4 mostramos como identificar, a partir da análise da semântica
do mundo real, as restrições de dependência existencial entre classes de associação.

6 Conclusões

Segundo Navathe[12], dois motivos justificam a necessidade de integração de visões durante o projeto
de um banco de dados: (i) a estrutura de um banco de dados para grandes aplicações é bastante
complexa de ser modelada por um único projetista em uma única visão; (ii) em geral, os grupos de
usuários trabalham de forma independente nas organizações e possuem seus próprios requisitos dos
dados, que podem conflitar com os interesses de outros grupos. Neste artigo, abordamos o problema
da integração de visões modeladas com UML durante o projeto conceitual de um banco de dados.

O processo de integração proposto em nossa metodologia usa o catálogo de padrões definido
em Marinho[8]. A idéia associada a esse catálogo é propor uma série de soluções individuais para
problemas de integração que, em conjunto, mostram como construir um esquema conceitual global
de forma correta.

Como trabalhos futuros, pretendemos incorporar o catálogo de padrões proposto a um tuto-
rial para ensino de modelagem conceitual utilizando o diagrama de classes da UML. Esse tutorial
possibilitará, através de exemplos, questionamentos e textos explicativos, o aprendizado de forma
didática de importantes técnicas de modelagem conceitual, auxiliando os projetistas de banco de
dados no desenvolvimento de projetos conceituais consistentes, mesmo em situações não facilmente
capturadas por um esquema conceitual.



Agradecimentos: Agradecimento especial ao shepherd, Jerffeson Teixeira de Souza, pela co-
operação e tempo dispensados na realização deste trabalho e ao Instituto Atlântico pelo apoio
financeiro que viabilizou a apresentação deste artigo na SugarloafPLoP’02.

Referências

[1] Grady Booch, Ivar Jacobson, and James Rumbaugh. The UML specification document. Tech-
nical report, Rational Software Corporation, 1997. Dispońıvel em www.rational.com.

[2] M. Casanova and Vânia Maria Ponte Vidal. Towards a sound view integration methodology.
In 2nd ACM SIGACT/SIGMOD Conference on Principles of Database Systems, 1983.

[3] E. Codd. Further normalization of the data base relational model. In Data Base Systems, 1972.

[4] Deb Dey, Veda Catherine Storey, and Terence M. Barron. Improving database design through
the analysis of relatioships. Draft Only, Maio 1997.

[5] Martin Fowler. Analysis Patterns. Reusable Object Models. Object Technology Series. Addison-
Wesley, 1997.

[6] Martin Fowler. UML Distilled. Object Technology Series. Addison-Wesley, 1997.

[7] T. W. Ling. A normal form for entity-relationship diagrams. In International Conference on
the Entity-Relationship Approach, 1985.

[8] Fabiana Gomes Marinho. Padrões para integração de visões modeladas com uml. Master’s
thesis, Universidade Federal do Ceará, 2001.

[9] R.J. Miller, Y. E. Ioannidis, and R. Ramakrishman. The use of information capacity in schema
integration and translation. In 19th International Conference on Very Large Databases, 1993.

[10] S.B. Navathe and S.G. Gadgil. A methodology for view integration in logical database design.
In 8th International Conference on Very Large Data Bases, 1982.

[11] Michael Schrefl. A comparative analysis of view integration methodologies. In GI-Fachtagung
EMISA, 1987.

[12] R. Shamkant Navathe, Elmasri and J. Larson. Integrating user views in database design. Data
Engineering, 1986.

[13] Veda C. Storey. Relational database design based on the entity-relationship model. Data e
Knowledge Engineering, 1991.

[14] Vânia Maria Ponte Vidal. Preservando a Semântica de Atualizações na Integração de Visões.
PhD thesis, Universidade Federal do Rio de Janeiro, 1994.



 

Special Session on Software 
Pattern Applications 
 

SPA is dedicated to explore applications that involve software patterns. It provides a 
forum for researchers and practitioners in the area to meet and exchange research ideas 
and results. 

We want to spread the use of patterns in Latin America, stimulating not only new 
patterns to be written, but also disseminating the culture of patterns among our software 
developers. This can be obtained if we show that patterns are a powerful reuse 
technique that has evolved in the last decade and is being used more and more in 
concrete projects. 
 
The SPA Session Dynamics 
 

SPA sessions were about 30 minutes each, with 25 minutes for authors' presentation  
and 5 minutes for questions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



A tool and a formalism to design and apply patterns1 

 

Agnès Conte1, José-Celso Freire Junior1,2, Jean-Pierre Giraudin1,  
Ibtissem Hassine1, Dominique Rieu1 

 
1LSR-IMAG, SIGMA 

BP 72, 38402 SAINT MARTIN D’HERES CEDEX – France 
 

2UNESP/FEG/DEE  
12500-000 - CP 205 - Guaratingueta/SP Brazil B 

 
E-mail : Agnes.Conte@imag.fr, Jose-Celso.Freire@imag.fr, 
 Jean-Pierre.Giraudin@imag.fr, Ibtissem.Hassine@imag.fr, 

 Dominique.Rieu@imag.fr  

Abstract 
 
Pattern systems are becoming more and more numerous. They offer product patterns or process patterns of 

varied range and cover (analysis, design or implementation patterns, and general, domain or enterprise 

patterns). New application development environments have been developed together with these pattern-oriented 
approaches. These tools address two kinds of actors: patterns engineers who specify pattern systems, and 

applications engineers who use these systems to specify information systems. Most of the existing development 

environments are made for applications engineers; they offer few functionalities allowing definition and 
organization of pattern systems. This paper presents AGAP, a development environment for defining and using 

patterns, which distinguishes pattern formalisms from pattern systems. Not only does AGAP address 

applications engineers, but it also allows patterns engineers to define pattern systems. The same formalisms or 
items of existing formalisms may either be used in order to facilitate the engineering of pattern systems or to 

increase the level of reuse. We illustrate the use of AGAP by the presentation of P-Sigma, a common formalism 

for pattern representation. P-Sigma expresses a semantics common to most of the existing formalisms and 
standardizes the expression of product patterns and process patterns. It allows to clarify the patterns selection 

interface and facilitates the organization of pattern systems. Two pattern systems developed during industrial 

experimentation validate the P-Sigma formalism and were implemented in AGAP. 
 
Keywords: pattern, pattern system, reuse, product pattern, process pattern, pattern formalism, pattern-based 

development environment.  

 

 
1 Introduction 
  
A wide variety of reusable component models have already been proposed to integrate reuse 
in all applications development processes: business objects [20], generic domain models [16], 
analysis patterns [8] [9], design patterns [11], frameworks [15], etc. In all cases, a component 
                                                                 
1 Copyright   2002, Agnès Conte et al. Permission is granted to copy for the SugarloafPLoP 2002 Conference. 
All other rights reserved. 



 

is considered as a tested and accepted solution to a problem which occurs frequently in 
information systems development.  
In this paper, particular interest is given to the pattern approach [1]. Different criteria may be 
used to compare component models [10] [7]. Some of them are particularly interesting to 
characterize patterns.  

• Type of knowledge. A pattern capitalizes products – a product corresponds to a goal to 
reach - or capitalizes processes - a process corresponds to a way to reach a result.  

• Coverage. A pattern coverage may be generic (resp. domain, enterprise) if it solves a 
problem frequently occurring in several domains (resp. in an application domain, in a 
particular enterprise).  

• Range. The pattern range may be analysis, design or implementation depending on the 
stage of the engineering process it addresses. 

The best known pattern systems (P. Coad [8], E. Gamma [11], etc.) propose general product 
patterns dedicated to only one stage of the development process (analysis for P. Coad’s 
patterns, design for E. Gamma’s patterns). S.W. Ambler’s patterns [2] are general process 
patterns covering all the stages of the engineering process. They provide collections of 
techniques, actions and/or tasks for software development. Finally, the pattern system 
proposed by L. Gzara [13] concerns a specific domain (the Product Information Systems2 –
PIS- or the Product Data Management). Patterns cover the stages of analysis and design of 
the PIS development and integrate product patterns and process patterns. In this pattern 
system, process patterns aim to specify a PIS development process which makes easier the use 
of product patterns (selection, application, composition, etc.). 
Whatever their coverage, range or type may be, patterns have to be integrated in development 
environments. Pattern-based tools are dedicated to two kinds of actors: 
• The applications engineer’s goal is to apply patterns and to combine these patterns 

applications in order to model an information system.   
• The patterns engineer’s goal is to define new patterns by identifying recurrent problems 

and solutions to these problems.    
The majority of existing tools only integrates E. Gamma’s pattern system [GAM 95] and 
don’t take into account the patterns engineers needs ([4] [19] [17] [18] [21] [6] [12]). Section 
2 presents AGAP, a development environment, which combines the needs of the applications 
engineers and the needs of patterns engineers. Section 3 introduces the P-Sigma formalism, a 
pattern representation formalism which intends to resolve some limits of the existing pattern 
formalisms. P-Sigma aims to express a common semantics for the majority of existing 
formalism, to standardize the expression of product patterns [8] [11] [9] and process patterns 
[2] [GZA13R00], to make explicit the patterns selection interface to facilitate their reuse, and 
finally to propose patterns relationships to better organize pattern systems and to increase 
their reuse. To conclude, section 4 presents two industrial experiences using AGAP and P-
Sigma and proposes future prospects of our research. 
 
 
 

                                                                 
2 Product Information Systems (PIS) support all types of engineering data used to define, manufacture and support products. 
They may include definitions, specifications, CAD drawings, manufacturing process plans and routings, project plans, 
control records, etc. 



 

2 AGAP  
 
2.1. Actors 

 
AGAP (in french « Atelier de Gestion et d’Application de Patrons ») offers solutions to 
combine the various needs of two kinds of actors: applications engineer and patterns engineer.  
 

2.1.1. Patterns engineer  
The patterns engineer’s goal is to define pattern formalisms and pattern systems described 
according to these formalisms. Several use cases are allocated to him (see Figure 1): for 
example, a patterns engineer must be able to create, modify, validate and visualize a pattern 
formalism or a pattern system. The validation of a pattern formalism (respectively a pattern 
system) implies that it is not modifiable, but allows it to be used to create pattern systems 
(respectively information systems). The patterns engineer is also authorized to manipulate 
applications domains and targeted technologies: a pattern system is applied to a given domain 
(for example banking IS) according to a given technology (for example, relational or object-
oriented technology). Finally, AGAP allows a classification of items: the patterns engineer 
can define, modify and visualize the types of the fields (text, UML diagrams, etc.). 

 
 Formalism Patterns system 

Create_patterns system 

Modifiy_patterns system 

Visualize_patterns system 

Validate_ patterns system 
Create_formalism 

Visualize_formalism 

Modify_formalism Validate_formalism 

Field type 

Create_field_type 

Visualize_field_type 

Patterns engineer 

Domain 

Visualize_domain 

Enrich_domain 

Create_domain
e 

Technology 

Visualize_technology 
Enrich_technology 

Create_technology 

Modify_field_type  

Figure 1: Patterns engineer’s use cases 

2.1.2. Applications engineer  
The goal of the applications engineer is to apply patterns in order to model and design 
information systems. This application is based on one or more pattern systems available in 
AGAP. The main needs of the applications engineer can be summarized by UML use cases 
(see Figure 2): an applications engineer must be able to create or modify an information 
system, to visualize a pattern system and to visualize an information system trace. An 
information system trace shows the patterns selection and patterns application processes by 



 

preserving the patterns applications, the patterns from which they result, and the successive 
integrations of patterns applications.  

Information system

Patterns system

Visualize_information_system_trace Create_information_system

Modify_information_ system

Visualize_patterns_system

Applications
engineer

 
Figure 2: Applications engineer’s use cases 

2.2. Components 
 
AGAP is composed of 7 business components: Tool, Information System, Pattern system, 
Domain, Technology, Formalism and Field-type. Only two components will be described here 
(Formalism and Pattern system). 
The structure of each component conforms the business components structuring of the 
Symphony process [14]. This structuring is inspired by CRC (Class-Responsibility-
Collaboration) [24]. According to this method, a business component is modeled by a package 
composed of three parts (see Figure 3): an interface part (what I can do), a structural part 
(what I am) and a collaboration part (what I use). The three parts of a component are 
represented by four object types stereotyped by: 

s Master object: it is the main object of the component for which the services are 
carried out. It is identifiable by any external actor.  

s Part object: the part-object is complementary to the master object. It is identified by 
its attachment with the master object to which it is linked by a relation of composite 
type.  

s Role object: it is an object servant. All the services of the other components are called 
through this object. 

s Interface: it represents the services contract of the component. It supports the 
operations of the component responsibility.  

 
2.2.1. Component « Formalism » 

A formalism (see Figure 3) contains one or more items which can be shared with other 
formalisms. Some of them are mandatory, and others are optional. Three types of items exist: 
Interface item in order to facilitate patterns selection, Realization item in order to express 
patterns solution and Relations item in order to organize pattern systems. Each item is 
composed of one or more fields which may be optional.  



 

F o r m a l i s m

F o r m a l i s m  s e r v i c e

< < I n t e r f a c e > >

I n t e r f a c e  i t e m

< < P a r t > >

R e a l i z a t i o n  i t e m

< < P a r t > >

R e l a t i o n  i t e m

< < P a r t > >
Fie ld

< < P a r t > >

I tem

< < P a r t > >

1

1..*

1

1..*

P a t t e r n s  s y s t e m

< < R o l e > >

F i e l d  t y p e

< < R o l e > >

F o r m a l i s m

< < M a s t e r > >

0..1

1..*

0..1

1..*

0..*

1

0..*

1

0..*0..* 0..*0..*

( W h a t  I  c a n  d o ) ( W h a t  I  a m ) ( W h a t  I  u s e )

C r e a t e _ f o r m a l i s m ( )

M o d i f y _ f o r m a l i s m ( )

V a l i d a t e _ f o r m a l i s m ( )

V i s u a l i z e _ f o r m a l i s m ( )

f n a m e
F a u t h o r
val id

 
Figure 3: Component «Formalism» 

 
2.2.2. Component « Pattern system » 

A pattern system (see Figure 4) is composed of patterns. Its representation is described in a 
given formalism. Each pattern has a given number of items whose fields are defined in the 
associated formalism. A domain (banking IS, geographic IS, etc.) and a technology (object-
oriented, relational, etc.) are associated to each pattern system.  

Pat terns system serv ice

Create _pat terns_system()
M o d i f y_pat terns_system()
Validate _pat terns_system()
Visual ize _pat terns_system()

<<Inter face>>

Pat te rn
<<Par t>>

Formal ism
< < Role > >

Doma in
< < Role > >

Patterns system
< < Mas te r> >

0..10..1

1

0..*

1

0..*

1
0..*

1
0..*

T e c h n o l o g y
< < Role > >1

0..*0..*

1

I tem value
(f r o m  L o g i c a l  V i e w)

<<Par t>>

11

I tem
< < Role > >

F ie ld  va lue
<<Par t>>

1..n1..n

Field
< < Role > >

(W h a t I can d o ) (W h a t I am ) (W h a t I use)

Patterns system

 
Figure 4: Component « Pattern system » 

 
We describe the use case « Visualize_patterns_ system » with a scenario (see Figure 5).  
 
 
 



 

Scenario: Visualize_ patterns_ system 
1- Search for the pattern systems 
2- Choose a pattern system 
3- Display information (name, formalism, domain, technology, etc.) of the chosen pattern 

system 
4- Optionally visualize patterns and the relationships between them 
5- Optionally select a pattern and visualize its information (items values). 
6- Terminate the scenario or go to 5. 
 

Figure 5: A scenario of the use case « Visualize_ patterns_system » 

Figure 6 displays the screen proposed to the user to visualize a pattern system. The formalism, 
the domain and the technology associated to a pattern system are showed (for example in 
Figure 6, for the Symphony pattern system).  

The button « See » allows the user to reach all the patterns composing this pattern system: he 
can then visualize the relationships between the patterns of the chosen pattern system (see 
Figure 7). The pattern system is represented by a graph whose nodes symbolize the different 
patterns of the system and whose arcs represent the relationships between patterns. The user 
can then select a pattern and get its information. Finally, when the user clicks on a pattern, he 
reaches the information on the pattern itself (see Figure 8). 

 

 

 
Figure 6: Visualizing a pattern system  

 
Figure 7: Visualizing the relationships between the 
patterns of a pattern system  

 



 

 

 
 

 

 

Figure 8 : Visualizing the information on a pattern in AGAP 



 

2.3. Meta-Model and implementation   
 
Building on the seven business components described above, we propose a model containing 
the essential information on the patterns managed by AGAP. This model is considered as the 
meta-model of AGAP (see Figure 9).  

AGAP is implemented in Java with the RAD JBuilder3. Human interfaces are designed using 
the graphical library Swing. XML files are manipulated by the IBM parser. The 
communication between AGAP and Rational Rose is done by Microsoft COM technology.  

The meta-model of AGAP is thereafter instantiated to produce pattern systems description 
formalisms and pattern systems. We present in the next section the formalism P-Sigma, a 
common pattern representation formalism, and an instantiation of the meta-model of AGAP.  
 

Product
( from IS)

<<Part>>

Interface item
(from Formalism )

<<Part>>

Realization item
(from Formalism )

<<Part>>

Relation item
(from Formalism )

<<Part>>

Domain
(from Domain)

<<Master>>

Technology
(from Technoloy)

<<Master>>

Information system
(from IS)

<<Master>>

Pattern application
(from IS)

<<Part>>
**

**

Tool
( from Tool)

<<Master>>

**

**

**

Patterns system
(from Patterns system)

<<Master>>
0..n

1

0..n

1 0..*

*

0..*

*

*

*

*

**

Pattern
(from Patterns system)

<<Part>>

0..10..1

11

Formalism
( from Formalism )

<<Master>>
**

0..*

1

0..*

1

Field

<<Part>>

Item value
<<Part>>

11

Item
( from Formalism )

<<Part>>

1..*

0..1

1..*

0..1

1..*

1

1..*

1

*

Field value
( from patterns system)

<<Part>>
*

1

+imitation of>

*

1

1..*1..*

Field type
( from Field-Type)

<<Master>>

0..*

0..*

0..*

0..*

( from Patterns system)

 

Figure 9: AGAP’s meta-model 
 
3 The formalism P-Sigma 
 
3.1. Goals 
 

P-Sigma main objectives are: 
• Standardization of product and process pattern representation.  
                                                                 
3 http://www.borland.fr/produits/jbuilder/  



 

A single pattern system must integrate product and process patterns and therefore must offer a 
unique formalism to facilitate the combined expression of model and process solutions. A 
pattern expressed in P-Sigma can then: 

ü Offer only a Model Solution. It is the case when this model adaptation does not 
require any specific methodological assistance. The pattern’s application is then 
obtained by cloning and adapting the proposed model. 

ü Offer only a Process Solution. It is the case of patterns whose objective is to 
decompose a process into elementary fragments, also described by patterns. The 
pattern’s application consists in performing the proposed process. 

ü Offer a model (Model Solution) as a solution to the given problem as well as the way 
to obtain such a model (Process Solution). The Process Solution consists then in a 
methodological guide assisting the designer to adapt the model. The pattern’s 
application consists in performing the process proposed by the Process Solution in 
conformity with the model proposed by the Model Solution. 

Globally, all patterns could be expressed in a more homogeneous way, therefore facilitating 
its communication and its combination. 

• Better formalization of the pattern’s selection interface  

Contrary to the existing representation formalisms, where the items allowing pattern’s 
selection are not explicit, P-Sigma distinguishes five items helping to select patterns. These 
items are grouped in the formalism Interface part. 
• Pattern system organization  

Most pattern formalisms express all types of relationships in a unique item. As an example, 
the “Combination” item of P. Coad’s formalism [8] gives the possible combinations of the 
pattern with other patterns. The “Related Patterns” item of E. Gamma’s formalism [11] gives 
patterns using or used by the given pattern. S.W. Ambler’s “linked patterns” item [2] includes 
patterns composing the studied pattern, patterns composed of the studied pattern and patterns 
associated with it. The semantics of these items is therefore not clearly defined. P-Sigma 
formalism aims to make explicit the different relations among patterns. The Relation part 
enables to organize a pattern system thanks to clear relations: uses, requires, alternative, 
refines, etc. 

 
3.2. General Structure   
 

P-Sigma is composed of three parts: Interface, Realization and Relation. Interface part 
contains all elements allowing pattern’s selection. Realization part gives the solution in terms 
of Model Solution and Process Solution. Finally, Relation part organizes relationships 
between patterns. 

Each part contains a certain number of items (see Figure 10). Each item is composed of one or 
several typed fields (text, UML diagram, keywords logical expression, etc.). Figure 10 
underlines for each item the number and the type of its different fields. It also shows the 
mandatory items: Identification, Classification, Context, Problem and Solution (Process or 
Model). 



 

P-Sigma

2 - Realization

Application case
♦Text 1..1

Process Solution
♦Text 1..1

♦Activities diagrams 0..1

Consequence
♦Text 1..1

Model Solution
♦Text 1..1

Sequences diagrams *

♦Classes diagram 1..1

Problem
♦Text 1..1

Context
♦Text 1..1

♦Pattern *

Identifier
♦ Text 1..1

Classification
♦Text 1..1

♦ Domain term 0..1

Force
♦Text 1..1

♦Quality term 0..1

1 - Interface 3 - Relationship

Refines
♦Pattern *

Alternative
♦Pattern *

Uses
♦Pattern *

Requires
♦Pattern *

♦

Sequences diagrams *

♦Classes diagram 1..1

♦ At least one item solution 

must be instantiated

Figure 10: General Structure of P-Sigma formalism 

Figure 8 partially illustrates the interface part and the solution part of P-Sigma by the pattern 
“What I am” Specification of the Symphony pattern system. In the following, Relation part is 
detailed.  

3.3. Relation part 

The Relation part is composed of four items corresponding to the four types of relationships 
between patterns: Uses, Refines, Requires and Alternative. In P-Sigma, each relation is 
expressed by an item giving the patterns linked to the pattern described (see Figure 10).The 
meaning of each relation is based mainly on the items of the Interface part.  

• Uses: If a pattern P1 uses a pattern P2, then: 
ü P1’s Process Solution must be expressed using P2. 

ü P2’s Classification may be enriched with respect to P1’s one: new keywords may be 
added in P2’s Classification. 

ü P2’s Context may be enriched with respect to P1’s one. 

P1 uses P2 P1 P2 
Classification M1 M1 ∧  M2 
Context C1 C1 ∧  C2 
Process Solution Apply P2  

 
 
Example:  

Business Component Specification Uses {« What I Am » Specification, « What I use » 
Specification, « What I can do » Specification} 
The Business Component Specification pattern uses 3 patterns in order to model the BC. 



 

"What I use" Specification

"What I can do" Specification

Business Component 
Specification

"What I am" Specification
<<use>>

<<use>>

<<use>>

 
 

• Refines: If a pattern P1 refines a pattern P2, then: 
ü P1’s Problem must be a specialization of P2’s one. 

ü P1’s Classification may be enriched with respect to P2’s one. 

ü P1’s Force may be enriched with respect to P2’s one.. 

ü P1’s Context may be enriched with respect to P2’s one.  

 

P1 refines P2 P1 P2 
Classification M1 ∧  M2 M2 
Context C1 ∧  C2 C2 
Force F1 ∧  F2 F2 
Process Solution  Pb1 is a specialization 

of Pb2 
Pb2 

 
• Requires: If a pattern P1 requires a pattern P2, then:  

ü P2’s application is required in P1’s one. 

ü P2 must appear in P1’s Context. 

P2 must have been executed before executing P1. 

P1 requires P2 P1 P2 
Context P2 must have 

been applied 
C2 

 
Example:  
 
“What I am” Specification Requires {Use Cases affectation to BC}  



 

Use Cases affectation to BC

"What I am" Specification

<<require>>

 
• Alternative: A pattern P1 is an alternative of a pattern P2 if P1 and P2 have different 

force items justifying different solutions to the same problem: 
ü P1 and P2 have the same Classification, the same Context and the same Problem. 

ü Only the Force of the two patterns is different. 

 
P1 alternative of P2 P1 P2 

Classification M M 
Context C C 
Problem P P 
Force F1 ≠≠ F2 F2 

 
4 Conclusion  
 

This article presented AGAP, a development environment suited to two types of actors, 
applications engineers and patterns engineers. AGAP addresses therefore two types of 
processes:  
• a process by reuse allowing the applications engineer to define information systems by 

selecting, applying and integrating patterns applications, 
• a process for reuse allowing the patterns engineer to define and to organize pattern 

systems. 

AGAP clearly establishes a distinction between formalisms and pattern systems. It is therefore 
possible to define several pattern systems by using the same formalism or by reusing items of 
existing formalisms. An expected improvement of the meta-model consists in managing the 
synonymies between items having a similar meaning in different formalisms (for example, E. 
Gamma’s Intention item and P-Sigma’s Problem item). AGAP enables as well to capitalize 
item fields types. For example, specifying P-Sigma implies the definition of a great number of 
types. Thus, the application of class diagrams and sequence diagrams is achieved and can be 
reused to define items fields of others formalisms.  

However, several use cases mentioned in the article have not yet been implemented (for 
example the patterns selection use cases) because the specificity of the “Interface” items is not 
currently taken into account in the tool. An ongoing study based on information research 
techniques should resolve it [3]. Another problem is due to the use of traces linked to patterns 
application. Patterns applications are indeed “naturally” preserved and keep a link with the 



 

patterns from which they are issued. These imitations are represented by instances of AGAP‘s 
“Information System” component classes. These traces are nevertheless not yet exploited to 
facilitate the evolution and the maintenance of IS specifications. 

AGAP was used to specify two formalisms (P-Sigma and E. Gamma’s formalism), and two 
pattern systems written in P-Sigma. These pattern systems result from applied researches on 
two projects in collaboration with industrial companies. The first one focuses on the 
engineering of Product Information Systems (PIS) of industrial enterprises [13] and was 
developed in collaboration with Schneider Electric company (project CNRS PROSPER-
POSEIDON). The goal was to propose an engineering process based on reuse of 
specifications of industrial products. Patterns technology offers a framework to consider a PIS 
engineering process as a set of process fragments, in order to design PIS models thanks to a 
set of model fragments. A pattern system was developed and validated; it is a significant 
evolution of existing pattern systems for it explicitly introduces a combination of process 
patterns and product patterns as well as a differentiation of inter-patterns relationships 
semantics [7].  

The second pattern system developed in AGAP concerns the specification of Symphony, a 
development process based on business components proposed by the UMANIS company. 
UMANIS uses a pragmatic development process for business component oriented information 
systems. Coupled with this process, UMANIS wishes to develop an environment in which the 
engineers could be efficiently guided in their design activities, while taking into account 
different specific situations of targeted information systems as well as former expertise. In a 
first step, this goal led us to finalize P-Sigma in order to get patterns capitalizing knowledge 
and consensual expertise in engineering field, where decision and process aspects are 
important. P-Sigma’s "Interface" part was in particular improved thanks to the selection of 
patterns to be applied according to the running context. A pattern system was then developed 
in which patterns are essentially process patterns modeling process fragments. This 
development process was also used to specify AGAP.  

From these first validated results, other research works were initiated to facilitate reuse in 
information systems engineering field and to guaranty a traceability between design choices 
and software products resulting from the design. These works require either improvements of 
P-Sigma, or the definition of a meta-process to combine use of several formalisms. These 
formalisms would take into account others patterns, architectures and components forms: 
situational patterns [23] [22], frameworks [5], distributed objects on a CORBA bus, etc. 

We would like to underline that these industrial experimentations showed the difficulty to 
enrich such pattern systems. In these experimentations, new patterns were found and 
formalized by researchers and not by application domain experts. One meets the same 
difficulties in the domain of knowledge bases building. 

 

References: 

[1]  C. Alexander, The Timeless Way of Building, Oxford University Press, 1979.  

[2]  S.W. Ambler, Process Patterns building Large Scale Systems using Object technology, 
SIGS Books, Cambridge University Press, December 1998.  



 

[3] C. Berrut, A. Front-Conte, Patterns retrieval system: first attempt, 5th International 
Conference on Applications of Natural Language to Information Systems (NLDB'2000), 
Versailles, June 2000. 

[4] I. Borne, N. Revault, Comparaison d’outils de mise en oeuvre de design patterns, 
Object-oriented Patterns, Vol5, num2, 1999.  

[5] F. Buschmann, R. Meunier & al., Pattern-Oriented Software Architecture: A System of 
Patterns, Wiley & Sons, 1996. 

[6] C. Casati, S Castano, M.G. Fugini, I. Mirbel, B. Pernici , WERDE: a pattern-based 
tool for exception design in workflows, proceedings of SEBD 98, Ancona, 1998.  

[7] C. Cauvet, D. Rieu, P. Ramadour, et A. Front-Conte, Réutilisation dans l’ingénierie 
des systèmes d'information, Chapitre de l’ouvrage Ingénierie des systèmes d’information du 
Traité IC2 – Information – Commande – Communication, Hermès, Février 2001. 

[8] P. Coad, D North et M Mayfield, Object Models – Strategies, Patterns and 
Application, Yourdon Press Computing Series, 1995.  

[9] M. Fowler, Analysis Patterns – Reusable Object Models, Addison-Wesley, 1997.  

[10]  A. Front-Conte, J.P. Giraudin, D. Rieu, C. Saint-Marcel, Réutilisation et patrons 
d’ingénierie, Chapitre de l’ouvrage Génie Objet: Analyse et Conception de l’Evolution, 
Editeur M. Oussalah, Hermès, 1999. 

[11] E. Gamma, R. Helm, R.E. Johnson, J. Vlissides, Design patterns: Elements of 
Reusable Object-Oriented Software, Addison-Wesley, 1995.  

[12] Dennis Gruijs: A Framework of Concepts for Representing Object-Oriented Design 
and Design Patterns, Masters Thesis, Utrecht University, CS Dept., INF-SCR-97-28, 
November.  

[13] L. Gzara, D. Rieu, M. Tollenaere, Pattern Approach To Product Information Systems 
Engineering, Requirements Engineering Journal, Editors: Peri Loucopoulos & Colin Potts, 
Springer- Verlag, London, LTD., 2000. 

[14] I. Hassine, D. Rieu, F. Bounaas, O. Seghrnouchni, Symphony : a Conceptual Model 
based on Business Component, IEEE SMC’02, Hammamet, Tunisia, October 2002. 

[15] R.E. Johnson, Documenting Frameworks using Patterns, OOPSLA'92, 1992. 

[16] N. Maiden, A. Sutcliffe, C. Taylor, D. Till, A set of formal problem abstractions for 
reuse during requirements engineering, ISI, Hermes, vol. 2, n° 6, pp. 679-698, 1994.  

[17] M. Meijers, Tools Support for Object-Oriented Design Patterns, Master's Thesis, 
Utrecht University, 1996.  

[18] T.D. Meijler, S. Demeyer, R. Engel, Making design patterns explicit in face, in 
European Software Engineering Conference (ESEC/FSE 97), 1997.  

[19] L’Objet, Numéro spécial Patrons orientés objet, Coordonnateurs D. Rieu et J-P. 
Giraudin, Vol. 5, n° 2, Hermès, 1999.  

[20] OMG Business Object Concept, BODTF, White Paper, Fred Cummings eds, BOM/99-
01-01. 

[21] B. Pagel, M Winter, Toward pattern-based tools, EuroPLoP'96,1996. 



 

[22] C. Rolland, N. Prakash, A. Benjamen, A multi-model view of process modeling, 
Requirements Engineering Journal, pp 169-187, 1999. 

[23] R.J. Welke, K. Kumar, Method Engineering: a proposal for Situation-specific 
Methodology Construction, in Systems Analysis and Design: a Research Agenda, Cotterman 
and Senn (eds), Wiley, pp 257-268, 1992. 

[24] R. Wirfs-Brock, B. Wilkerson, L. Weiner, Designing Object-Oriented Software 
Prentice-Hall, Englewood Cliffs, New Jersey, 1990. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



Copyright © 2002, Edson Luiz Recchia; Rosângela Penteado. Permission is granted to copy for 
SugarloafPLoP 2002 Conference. All other rights reserved. 
 

Avaliação da Aplicabilidade da Linguagem de Padrões de Engenharia 
Reversa de Demeyer a Sistemas Legados Procedimentais 

 
 

Edson Luiz Recchia 
DC - Universidade Federal de São Carlos / 

Universidade Anhembi Morumbi 
erecchia@terra.com.br 

Rosângela Penteado 
DC - Universidade Federal de São Carlos 

 
rosangel@dc.ufscar.br 

 
 

Resumo 
 

A Linguagem de Padrões de engenharia reversa existente na literatura conduz esse processo no contexto de 
orientação a objetos. Sua aplicação a sistemas legados procedimentais não fornece resultados expressivos para 
todos os padrões aplicados. Assim, para que a engenharia reversa de sistemas legados procedimentais seja 
realizada plenamente há necessidade de aprimorar a Linguagem de Padrões existente. Este trabalho tem por 
objetivo analisar cada um dos padrões de Demeyer quanto à sua aplicabilidade para sistemas legados 
procedimentais. Ressalta-se, entretanto, que essa análise foi necessária para que outros padrões pudessem ser 
elaborados de forma a atender a reengenharia orientada a objetos a partir de sistemas legados procedimentais. 
 
 

Abstract 
 

The Pattern Language for reverse engineering found in the literature conducts this process in an object-
oriented context. Its application to procedural oriented legacy systems does not provide expressive results for all 
the patterns. Thus, it is necessary to improve this Pattern Language in order to realize wholly the reverse 
engineering process for procedural legacy systems. In this paper, the Pattern Language written by Demeyer is 
analyzed in a procedural context. However this analysis was necessary so that others patterns could be 
elaborated in order to became possible the reengineering object-oriented process from the procedural legacy 
systems. 
 
 
1. Introdução 
 

O interesse em transformar um sistema legado procedimental em um orientado a objetos, 
pelo processo de reengenharia, existe em diversas empresas. Isso ocorre devido à necessidade 
de alterar o ambiente e/ou a linguagem de programação para mais atual, alterar a interface 
para que se tenha maior usabilidade e o interesse em melhorar a manutenibilidade do sistema. 
Com essa preocupação surgem diversas abordagens, ferramentas e métodos para auxiliar o 
engenheiro de software no processo de reengenharia.  

A Linguagem de Padrões de Demeyer [1] foi projetada para auxiliar no processo de 
engenharia reversa de sistemas orientados a objetos, porém suas idéias podem ser adaptadas 
para permitir a engenharia reversa de sistemas legados procedimentais, conforme proposto na 
Família de Padrões de Reengenharia - FaPRE/OO [3].  

Assim, este trabalho discute a Linguagem de Padrões de Demeyer aplicada a sistemas 
legados procedimentais, apresentando o comportamento de cada um dos padrões que a 
compõem, quando aplicados para a realização da engenharia reversa de um sistema legado 



 

procedimental. Essa discussão fornece os argumentos que incentivaram a criação da 
FaPRE/OO. 

Este trabalho está organizado da seguinte forma: na Seção 2 apresenta-se a Linguagem de 
Padrões de Engenharia Reversa de Demeyer, na Seção 3 avalia-se cada padrão dessa 
linguagem de padrões para sistemas procedimentais, na Seção 4 a FaPRE/OO é brevemente 
descrita e são apresentadas as considerações finais. 
 
2. Linguagem de Padrões de Engenharia Reversa proposta por Demeyer 
 

A linguagem de padrões de engenharia reversa proposta por Demeyer [1] é o resultado do 
trabalho realizado com apoio do Governo Suíço sob o Projeto no. NFS-2000-46947.96 e 
BBW-96.0015 e, também, com o apoio da União Européia sob o programa ESPIRIT Projeto 
no. 21975 (FAMOOS). Essa linguagem resume a experiência no processo de engenharia 
reversa obtida como parte do Projeto FAMOOS, que teve como objetivo principal investigar 
técnicas de engenharia reversa e de reengenharia de sistemas orientados a objetos. 

Essa linguagem de padrões tem como objetivo apoiar diferentes fases quando se realiza 
engenharia reversa em um sistema de software, desde quando não há familiaridade com o 
sistema até quando se está preparando a reengenharia em si. Essa linguagem de padrões foi 
dividida em clusters (Figura 1), cada qual resumido nas sub-seções seguintes.  

Figura 1: Linguagem de Padrões de Engenharia Reversa (extraída de Demeyer [1] ) 
 
2.1 - Cluster:  Iniciação ao Sistema Legado  (First Contact)  
 

Esse cluster agrupa os padrões que mostram o que fazer quando se tem o primeiro contato 
com um sistema de software. É composto dos seguintes padrões: Ler Todo o Código em Uma 

E
n
t
e
n
d
i
m
e
n
t
o

d
o

S
i
s
t
e
m
a

Recursos Gastos

Iniciação ao Sistema Legado
Ler Todo o Código em Uma Hora

Estudar Superficialmente a Documentação
Entrevistar o Usuário Durante o Sistema em Operação

Entendimento Inicial
Presumir Prováveis Objetos
Examinar a Base de Dados

Inspecionar as Maiores Construções
Explorar Possíveis Modificações

Detalhamento do Sistema
Verificar as Invocações de Métodos

Observar a Execução dos Componentes

Preparação da Reengenharia
Refazer para Entender



 

Hora, Estudar Superficialmente a Documentação e Entrevistar o Usuário Durante o Sistema 
em Operação. 
 
1.  Nome:  Ler Todo o Código em Uma Hora  (Read All the Code in one Hour) 
Intuito: Fazer uma avaliação inicial da condição do sistema através da leitura do código num 
tempo limitado.  
Problema: Precisa-se de uma avaliação inicial da condição interna do sistema para planejar 
os esforços da engenharia reversa. 
Contexto: (a) A condição interna do sistema varia muito, dependendo dos engenheiros de 
software envolvidos no desenvolvimento e na sua manutenção; (b) Em sistemas com milhares 
de linhas de código, existe muita informação a ser inspecionada, tornando-se difícil uma 
avaliação correta; (c)  A falta de familiaridade do engenheiro de software com o sistema, 
dificulta filtrar o que é de fato necessário; (d) Tem-se o código fonte disponível, sendo uma 
informação confiável; (e) O engenheiro de software têm boa habilidade com a linguagem de 
implementação usada no sistema legado, assim pode-se identificar regras de negócio em 
trechos de códigos. 
Solução: Ler o código fonte sem ser interrompido (sem atender telefonemas, sem barulho de 
colegas, etc.). Leia o código fonte por aproximadamente uma hora. Anote pouca coisa para 
maximizar seu contato com o código. Após esse tempo de leitura, gaste o mesmo tempo (uma 
hora) para produzir um relatório contendo suas constatações, incluindo: (1) Entidades 
importantes (classes, packages); (2) Linguagem do código; (3) Estilo de código de difícil 
interpretação; (4) Elabore esse relatório dando nomes às entidades, de acordo como essas são 
mencionadas no código fonte. 
Padrões Relacionados: Os padrões Ler Todo o Código em Uma Hora e Estudar 
Superficialmente a Documentação maximizam a chance de se obter uma visão coerente do 
sistema. Para melhor compreender a documentação do sistema, pode-se preceder esse padrão 
com o padrão Entrevistar o Usuário Durante o Sistema em Operação. 
 
2.  Nome:  Estudar Superficialmente a Documentação  (Skim the Documentation) 
Intuito: Supor, inicialmente, a funcionalidade do sistema por meio da leitura da sua 
documentação existente, num espaço limitado de tempo. 
Problema: Planejar os esforços necessários para a realização da engenharia reversa a partir da 
idéia inicial do sistema. 
Contexto: (a) A funcionalidade do sistema muda com o passar do tempo e muitas dessas 
mudanças podem não estar documentadas; (b) Em sistemas com milhares de linhas de código, 
existe muita informação a ser inspecionada, tornando-se difícil uma avaliação correta; (c) A 
falta de familiaridade do engenheiro de software com o sistema, dificulta filtrar o que é de 
fato necessário; (d) Tem-se a documentação disponível,  assim há, pelo menos, uma descrição 
correta de como o sistema se comportou no passado; (e) O engenheiro de software é capaz de 
interpretar especificações formais (por exemplo, statecharts) e semi-formais (por exemplo, 
use cases) contidas na documentação, então ele é capaz de compreender o sistema. 
Solução: Ler a documentação sem ser interrompido. Estude a documentação num curto 
espaço de tempo (aproximadamente uma hora). Faça pouca anotação para maximizar o 
contato com a documentação. Após esse tempo de leitura, gaste o mesmo tempo (uma hora) 
para produzir um relatório contendo suas constatações, incluindo: (1) Requisitos importantes; 
(2) Características importantes; (3) Limitações importantes; (4) Referências para informações 
relevantes do projeto. 



 

Padrões Relacionados: O padrão Entrevistar o Usuário Durante o Sistema em Operação 
pode ajudar a coletar uma lista de entidades que se deseja analisar na documentação.   
 
3.  Nome:  Entrevistar o Usuário Durante o Sistema em Operação  (Interview During Demo) 
Intuito: Obter a idéia inicial da funcionalidade do sistema observando-o em operação e 
entrevistando a pessoa que o está demonstrando. 
Problema: Dimensionar os esforços necessários para a realização da engenharia reversa a 
partir dos cenários típicos de uso e das características principais do sistema. 
Contexto: (a) A variação do uso de cenários entre diferentes usuários dificulta o seu 
entendimento; (b) Obter, a partir do usuário, o que há de errado com o sistema é difícil; (c) O 
engenheiro de software tem acesso a pessoas chaves na organização (usuários, gerentes e 
aqueles que dão manutenção no sistema), os quais podem demonstrar e explicar os cenários 
do sistema. 
Solução: Observar o sistema em operação através de sua demonstração e entrevistar o usuário 
que o está demonstrando. Após essa demonstração produza um relatório contendo suas 
constatações, incluindo: (1) Alguns cenários típicos; (2) Características principais oferecidas 
pelo sistema e se elas são apreciadas ou não; (3) Componentes (encapsulamento) do sistema e 
suas responsabilidades. 
Padrões Relacionados: Para se obter um resultado satisfatório deve-se aplicar esse padrão 
diversas vezes, com diferentes tipos de usuários. Dependendo da complexidade do sistema, 
pode-se exercitar esse padrão antes, depois ou durante o uso dos padrões Ler Todo o Código 
em Uma Hora e Estudar Superficialmente a Documentação.   
 
2.2 - Cluster:  Entendimento Inicial  (Initial Understanding)  
 

Esse cluster agrupa os padrões que descrevem como obter um entendimento inicial de um 
sistema de software documentado, principalmente, com diagramas de classes. É composto dos 
seguintes padrões: Presumir Prováveis Objetos, Examinar a Base de Dados, Inspecionar as 
Maiores Construções e Explorar Possíveis Modificações. 
 
4.  Nome:  Presumir Prováveis Objetos  (Speculate about Domain Objects) 
Intuito: Refinar, progressivamente, um modelo de objetos de acordo com o código fonte, 
definindo hipóteses sobre quais objetos devem ser representados no sistema. 
Problema: Não se sabe como os conceitos do negócio estão mapeados em classes no código 
fonte. 
Contexto: (a) Existem muitos conceitos no sistema, assim há várias maneiras de representá-
los na linguagem de programação utilizada; (b) Muito das linhas de código não tem relação 
com a representação dos conceitos do sistema, mas sim com temas relacionados à solução de 
implementação (interface do usuário, banco de dados, etc.); (c) Entende-se a funcionalidade 
do sistema, portanto pode-se ter uma idéia sobre o que o sistema representa; (d) Devido à 
experiência do engenheiro de software, ele pode imaginar como modelar o sistema. 
Solução: Idealizar um modelo hipotético de classes que represente o sistema. Refinar esse 
modelo inspecionando se os nomes das classes ocorrem no código fonte e adaptando-o 
adequadamente. Repita o processo até que o modelo se estabilize. 
1. Com o entendimento dos requisitos e os cenários de uso, desenvolver um modelo de 

classes que sirva como hipótese inicial do que se espera do código fonte. Dar nomes às 
classes, operações e atributos tomando por base sua experiência e nas convenções de 
nomenclatura adotadas. 



 

2. Relacionar os nomes num diagrama de classes e tentar encontrá-los no código fonte, 
usando qualquer ferramenta que esteja disponível. Tomar cuidado com nomes existentes 
no código fonte, eles nem sempre representam o conceito desejado. 

3. Manter anotados os nomes que aparecem no código fonte (confirma suas hipóteses) e 
aqueles que não combinam com o que foi identificado no código fonte (contradiz suas 
hipóteses). Note que as discordâncias são positivas, elas são motivo para o refinamento. 

4. Adaptar o modelo de classes baseado nas discordâncias: 
(a) renomeando as classes, quando se descobre que os nomes no código fonte não 

combinam com suas hipóteses; 
(b) remodelando as classes, quando se descobre que a representação do código fonte não 

corresponde com o que se tem no modelo. Por exemplo, pode-se transformar uma 
operação em classe, ou um atributo em uma operação. 

(c) estendendo as classes, quando elementos importantes são observados no código 
fonte e não aparecem no diagrama de classes; 

(d) procurando alternativas, quando os conceitos de funcionalidade não são encontrados 
no código fonte. Isso pode implicar em colocar em teste sintomas quando existem 
algumas contradições, mas podem também implicar em definir um modelo de classes 
completamente diferente quando existem muitas contradições.  

Padrões Relacionados: Todos os padrões do cluster Iniciação ao Sistema Legado auxiliam 
na construção do modelo hipotético de classes. O padrão Observar a Execução dos 
Componentes, do cluster Detalhamento do Sistema, pode ajudar a melhorar esse modelo. 
 
5.  Nome:  Examinar o Banco de Dados  (Reconstruct the Persistent Data) 
Intuito: Adequar o modelo de objetos, obtido pelo padrão anterior, com o banco de dados do 
sistema legado. 
Problema: Não se conhece quais os objetos que são críticos para a funcionalidade do sistema. 
Contexto: Reconstruir o modelo de classes a partir das tabelas do banco de dados relacional. 
Solução: Derivar um modelo de classes representando as entidades que estão armazenadas 
em forma de tabelas no banco de dados do sistema legado. Considerando-se um Banco de 
Dados Relacional genérico os seguintes passos devem ser aplicados: 
1. Construir um modelo de classes, considerando cada tabela como uma classe, preservando 

o seu nome. 
2. Selecionar como atributos os nomes das colunas correspondentes à cada tabela. 
3. Selecionar todos os relacionamentos de chave estrangeira entre tabelas, considerando uma 

associação entre as classes correspondentes.  
Após esses passos, tem-se um modelo de classes que representa as entidades que estão 
armazenadas num banco de dados relacional. Contudo, banco de dados relacional não 
pode armazenar relacionamento de herança. Para isso são acrescentados os passos de 4 a 
6. 

4. Verificar as tabelas onde a chave primária também serve como chave estrangeira de outra 
tabela. Isso pode identificar um relacionamento um-para-um, indicando um 
relacionamento de herança. Neste caso, represente esse conjunto de tabelas como uma 
hierarquia de herança entre classes.  

5. Verificar as tabelas com definições de campos semelhantes, indicando que provavelmente 
a hierarquia de classe está distribuída em várias tabelas. Neste caso, defina uma super-
classe movendo os campos comuns para essa super-classe. 



 

6. Verificar as tabelas com atributos opcionais. Isso pode indicar uma situação em que uma 
hierarquia de classe completa está representada em uma única tabela. Neste caso, 
transforme essa tabela em uma super-classe e gere várias subclasses para representar esse 
conjunto de informações. 

Padrões Relacionados: O padrão Examinar o Banco de Dados requer um entendimento 
inicial da funcionalidade do sistema, o qual é obtido com o padrão Presumir Prováveis 
Objetos. 
 
6.  Nome:  Inspecionar as Maiores Construções  (Identify the Largest) 
Intuito: Identificar trechos importantes de código utilizando ferramentas de determinação de 
métricas, inspecionando as maiores construções. 
Problema: Não se sabe onde está implementada uma funcionalidade importante em milhares 
de linhas de código fonte. 
Contexto: (a) Não existe uma maneira fácil de saber o que é mais ou menos importante no 
código fonte; (b) Em sistemas com milhares de linhas de código, existem muitos dados a ser 
inspecionados, tornando-se difícil uma avaliação correta; (c) Através da utilização de 
ferramentas de determinação de métricas é possível quantificar o tamanho das entidades no 
código fonte e verificar quais são importantes. 
Solução: Usar ferramentas de determinação de métricas para coletar um conjunto limitado de 
medidas sobre as entidades dentro do sistema (por exemplo, hierarquias de herança, packages, 
classes e métodos). Represente os resultados de tal forma que se possa avaliar facilmente 
diferentes medidas para uma mesma entidade. 
Exemplo:  Identificar hierarquias de herança: 
Identifique as maiores sub-árvores na hierarquia de herança como candidatas potenciais para 
fornecer funcionalidade importante. Para isso, construa uma lista de classes com as métricas: 
NDC (Number of Descendent Class), HNL (Hierarchy Nesting Level),  NOM (Number of 
Methods for Class) e NOA (Number of Attributes for Class). Valores grandes de NDC, NOM 
e NOA e valores pequenos (~= 0) de HNL indicam que a funcionalidade importante está na 
raiz da hierarquia de herança. Valores pequenos de NDC, NOM e NOA (~= 0) e valores 
grandes de HNL indicam que a funcionalidade importante está nas folhas da hierarquia de 
herança. 
Padrões Relacionados: O padrão Explorar Possíveis Modificações pode ser usado para focar 
nas partes do sistema que mudaram com as diferentes versões geradas, identificando assim 
funcionalidade importante. 
 
7.  Nome:  Explorar Possíveis Modificações  (Recover the Refactorings) 
Intuito: Reconstruir o processo iterativo da construção do sistema, pela comparação de 
subseqüentes versões, observando o quanto o sistema cresceu ou decresceu, por meio de 
trechos de código fonte que foram alterados. 
Problema: Recuperar o que os desenvolvedores do sistema alteraram durante o 
desenvolvimento e subsequentes manutenções. 
Contexto: (a) O sistema tem sido modificado através de novas atualizações de versão e a 
comparação das várias versões é bastante trabalhosa; (b) Através de ferramentas é possível 
percorrer o código fonte, assim pode-se analisar as alterações realizadas nas diferentes versões 
do sistema; (c) Através da utilização de ferramentas de determinação de métricas é possível 
quantificar o tamanho das entidades no código fonte; (d) Devido à experiência do engenheiro 
de software, ele pode inferir porque certas modificações foram aplicadas. 



 

Solução: Usar ferramentas de determinação de métricas para comparar medidas de 
subsequentes versões do sistema legado, encontrando entidades cujos valores de medidas 
aumentaram ou diminuíram. Assim, descobre-se onde funcionalidade foi incluída ou 
removida, respectivamente. 
Padrões Relacionados: O padrão Inspecionar as Maiores Construções pode ser usado para 
descobrir partes do sistema que mudaram com as diferentes versões geradas. 
 
2.3 - Cluster:  Detalhamento do Sistema  (Detailed Model Capture)  
 

Esse cluster agrupa os padrões que mostram como obter um entendimento detalhado de 
um determinado componente (encapsulamento) em seu sistema de software. Esse cluster é 
composto dos seguintes padrões: Verificar as Invocações de Métodos e Observar a Execução 
dos Componentes. 
 
8.  Nome:  Verificar as Invocações de Métodos  (Derive Public Interface) 
Intuito: Saber como uma classe está relacionada com outra verificando os parâmetros 
definidos nos métodos da interface da classe.  
Problema: Obter o relacionamento entre classes no sistema legado. 
Contexto: (a) No estágio final da engenharia reversa tem-se uma visão global da 
funcionalidade do sistema e baseado nesse entendimento pode-se selecionar classes para uma 
inspeção futura; (b) Com uma ferramenta adequada, para percorrer o código, é possível 
identificar onde o método está definido a partir de sua chamada. 
Solução: A partir da inspeção de uma chamada do método, encontrar a sua assinatura na 
interface da classe aonde ele foi definido, descobrindo informações por meio da conexão de 
mensagens. 
Padrões Relacionados: Os padrões Inspecionar as Maiores Construções e Explorar Possíveis 
Modificações podem ser usados para descobrir funcionalidade importante a ser avaliada. 
 
9.  Nome:  Observar a Execução dos Componentes  (Step Through the Execution) 
Intuito: Obter um entendimento detalhado do comportamento de uma parte do código, 
através da execução de seus componentes (encapsulamento). 
Problema: É preciso obter o entendimento detalhado de uma parte encapsulada do código. 
Contexto: (a) Baseado no entendimento do sistema pode-se selecionar trechos de código para 
inspeção; (b) Com uma ferramenta para depurar o código, é possível inspecionar estruturas de 
dados e interagir com a execução, passo a passo, de pedaços de código.  
Solução: Alimentar, com um conjunto representativo de massa de teste, a entrada do pedaço 
de código fonte para se obter uma seqüência normal de operações. Usar um depurador para 
acompanhar a execução passo a passo e inspecionar o estado interno do pedaço de código. 
Padrões Relacionados: Os padrões Inspecionar as Maiores Construções e Explorar Possíveis 
Modificações podem ser usados para descobrir funcionalidade importante a ser avaliada. 
 
2.4 - Cluster:  Preparação da Reengenharia  (Prepare Reengineering)  
 

Esse cluster possui um padrão que ajuda a preparar os passos subsequentes de 
reengenharia: Refazer para Entender. 
 
10.  Nome: Refazer para Entender (Refactor To Understanding) 
Intuito: Obter um melhor entendimento de uma parte específica do código fonte, refazendo-a.  



 

“Refazer para Entender” é o processo de modificar um sistema de software, de tal 
maneira que o comportamento externo do código não seja alterado, mas sua estrutura 
interna seja melhorada. É uma forma disciplinada de colocar em ordem o código, 
minimizando as possibilidades de introduzir “bugs”.  Na essência, quando se realiza esse 
processo se está melhorando o projeto do código, depois dele ter sido escrito. 

Problema: Compreender um particular trecho de código que aparenta ser importante mas é 
muito difícil de analisá-lo completamente. 
Contexto: (a) Código sem documentação é difícil de se ler, então é difícil, também, de se 
entender; (b) Alterar código sem documentação pode causar efeitos colaterais. 
Solução: Renomear interativamente e refazer o código para introduzir nomes significativos e 
se certificar de que a estrutura do código reflete o que o sistema está fazendo de fato. 
1. Remover código duplicado: Quando se identifica código duplicado, tentar refazê-lo num 

simples local. Por exemplo, transformar o trecho de código num método e, nos locais 
onde foi encontrado o código duplicado, substituí-lo por uma chamada do Método. 

2. Substituir trechos condicionais por Métodos: Quando se encontra grande construção 
condicional, transformar os trechos de código de cada condição em novos métodos dando 
a eles nomes baseados nas condições. Continue o processo até que se tenha o 
entendimento completo da estrutura do código. 

3. Substituir trechos de código longo por Métodos: Longos trechos de código com 
comentários separando blocos de código violam a regra de que todos os comandos num 
simples trecho de código deveriam ter o mesmo nível de abstração. Refazer cada bloco 
introduzindo um novo método. 

4. Renomear atributos com nomes significativos: Procurar por atributos com nomes 
obscuros. Procurar saber sobre o seu contexto e dar nomes significativos. 

5. Renomear métodos com intuito significativo:  Procurar por métodos que não tem nomes 
relacionados com a sua funcionalidade. Recupere os seus objetivos, investigue todas as 
chamadas desses métodos de acordo com os seus objetivos. 

6. Renomear classes com propósitos significativos: Encontrar  classes cujos nomes não 
são representativos com a funcionalidade. Encontrar seus objetivos e então renomeá-las 
de acordo com esses objetivos.  

Padrões Relacionados: Para ajudar a entender a funcionalidade, pode-se usar o padrão 
Observar a Execução dos Componentes. 
 
 
3. Avaliação da Aplicabilidade da Linguagem de Padrões de Engenharia Reversa de 

Demeyer a Sistemas Legados Procedimentais 
 

A seguir é apresentada a avaliação da aplicabilidade de cada padrão da Linguagem de 
Padrões de Demeyer a sistemas legados procedimentais. O objetivo desta avaliação não é de 
criticar tais padrões, visto que foram propostos com objetivos diferentes, mas justificar a 
necessidade da criação da FaPRE/OO [2] [3]. 

Para a avaliação da aplicação de cada padrão muitos itens do formato apresentado 
anteriormente não serão novamente apresentados. Serão descritos, apenas, os itens Avaliação 
(Trade off) e Justificativa, conforme sugerido por Demeyer, pois esses devem conter a opinião 
dos engenheiros de software quando da utilização dos padrões em seus processos de 
engenharia reversa, além dos itens Nome e Intuito de cada padrão. 
 
 



 

3.1 - Cluster:  Iniciação ao Sistema Legado  (First Contact)  
 
1.  Nome :  Ler Todo o Código em Uma Hora  (Read All the code in one Hour) 
Intuito: Fazer uma avaliação inicial da condição do sistema através da leitura do código num 
tempo limitado. 
Avaliação (Trade-off): 

Prós: 
O código fonte de sistemas orientados a objetos e, também implementados em linguagens 
orientadas a objetos, possibilita uma análise rápida devido às próprias características 
desse contexto. Sendo assim, com a aplicação desse padrão o engenheiro de software 
obtém algumas informações (classes, objetos, métodos, etc.) para poder dimensionar os 
esforços que terá que despender durante o processo de engenharia reversa. 
Contra: 
O código fonte de sistemas procedimentais implementados em linguagens tais como, 
CLIPPER, COBOL, RPGII, etc., é, em geral, seqüencial e dividido em módulos 
funcionais. Com a aplicação desse padrão consegue-se obter poucas informações 
relevantes sobre um sistema legado procedimental. 

Justificativa: Esse padrão não é aplicado em sistemas legados procedimentais porque nesses 
sistemas não se constata o encapsulamento que é uma característica dos sistemas orientados a 
objetos. Dessa forma pode-se inferir, num curto espaço de tempo, poucas informações tais 
como, as entidades mais importantes, estilo de programação realizada, etc.  
 
2.  Nome:  Estudar Superficialmente a Documentação  (Skim the Documentation) 
Intuito: Supor, inicialmente, a funcionalidade do sistema por meio da leitura da 
documentação existente do sistema, num espaço limitado de tempo. 
Avaliação (Trade-off): 

Prós: 
Independente do contexto no qual o sistema legado foi desenvolvido (orientado a objetos 
ou procedimental),  a documentação existente pode contribuir na análise inicial da sua 
funcionalidade. Em sistemas legados orientados a objetos, a documentação existente pode 
ser produzida com ajuda de ferramenta Case. A partir dessa documentação consegue-se 
obter a funcionalidade inicial do sistema legado num curto espaço de tempo. 
Contra: 
Segundo estudos de casos realizados em sistemas legados procedimentais, sabe-se que 
esses sistemas possuem, em geral,  pouca documentação. Na sua maioria o que existe, de 
fato, são, código fonte, estruturas de arquivos de dados e sistema executável. Com a 
análise dessa documentação não se consegue obter a funcionalidade inicial do sistema 
legado num curto espaço de tempo. 

Justificativa: Este padrão não é aplicado em sistemas legados procedimentais por não ser 
possível obter informações relevantes no curto espaço de tempo sugerido. 
 
3.  Nome:  Entrevistar o Usuário Durante o Sistema em Operação  (Interview During Demo) 
Intuito: Obter a idéia inicial da funcionalidade do sistema observando-o em operação e 
entrevistando a pessoa que o está demonstrando. 
Avaliação (Trade-off): 

Prós: 
A observação do sistema em execução permite ao engenheiro de software o 
conhecimento de sua funcionalidade.  



 

Contra: 
Geralmente, sistemas grandes e integrados envolvem mais do que um usuário, por 
exemplo, sistemas do tipo ERP – Entrerprise Resource Planning, em que existem vários 
sub-sistemas interagindo entre si. Esse padrão deve ser aplicado a todos os usuários 
envolvidos para se conseguir a maioria dos cenários típicos. Além disso, deve-se ter a 
preocupação de obter informações das interfaces de Negócios entre os subsistemas. Na 
maioria das vezes isso é feito através de reuniões coletivas com todas as áreas envolvidas 
da organização. Sendo assim, nesse contexto de sistema integrado, não se consegue obter 
as informações necessárias num curto espaço de tempo. 

Justificativa: Esse padrão foi utilizado na elaboração da FaPRE/OO, para os padrões: 
Construir Diagramas de Use Cases e Obter Cenários. Pois, entrevistar usuários quando estão 
operando o sistema e engenheiros de software que participaram do desenvolvimento do 
sistema legado é essencial para se obter informações da funcionalidade e dos cenários típicos 
de uso. 
 
 

3.2 - Cluster:  Entendimento Inicial  (Initial Understanding)  
 
4.  Nome :  Presumir Prováveis Objetos  (Speculate about Domain Objects) 
Intuito: Refinar, progressivamente, um modelo de objetos de acordo com o código fonte, 
definindo hipóteses sobre quais objetos devem ser representados no sistema. 
Avaliação (Trade-off): 

Prós: 
Este padrão concebe um modelo hipotético de classes, que representa o sistema a partir 
das classes/objetos, de acordo com a suposição das informações levantadas pelos padrões 
anteriores. Refina-se esse modelo inspecionando se os nomes dessas classes/objetos 
ocorrem no código fonte e adaptando-as adequadamente ao modelo. 
Contra: 
Em sistemas procedimentais não existem classes/objetos claramente definidas no código 
fonte. Assim, não é possível fazer suposição de um modelo de classes/objetos somente a 
partir desse código fonte. No entanto, é possível elaborar um modelo inicial a partir dos 
dados e do código fonte do sistema legado.  

Justificativa: Este padrão foi usado duas vezes durante a elaboração da FaPRE/OO, 
utilizando-se como hipótese de possíveis classes as entidades do MER, Modelo Entidade 
Relacionamento, da seguinte forma: 
1) Com base no código fonte elabora-se a Tabela Detalhes de Implementação, usando o 

padrão Tratar Anomalias. 
2) Com base na Tabela Detalhes de Implementação e no MER foram efetuados refinamentos 

gerando o diagrama de classes do sistema, por meio do padrão Definir as Classes. 
Durante a aplicação desse padrão nos estudos de caso, em sistemas procedimentais, pôde-se 
aproveitar a essência da concepção desse padrão adaptando-o ao contexto procedimental, da 
seguinte forma: utilizou-se como hipótese de possíveis classes os arquivos de dados, uma vez 
que esses arquivos em sistemas procedimentais representam, na sua maioria, entidades 
importantes do sistema. A partir daí um modelo de dados procedimental, e não de classes, é 
obtido com refinamentos sucessivos a partir dos dados e do código fonte. 
 



 

5.  Nome:  Examinar o Banco de Dados  (Reconstruct the Persistent Data) 
Intuito: Adequar o modelo de objetos, obtido pelo padrão anterior, com o banco de dados do 
sistema legado. 
Avaliação (Trade-off): 

Prós: 
Em sistemas orientados a objetos, implementados em bancos de dados relacionais, 
existem tabelas em que as regras de acesso são bem definidas. Portanto, consegue-se 
derivar um modelo de classes representando as entidades que estão armazenadas no 
banco de  dados. 
Contra: 
Em sistemas procedimentais, em geral, não existem arquivos de dados definidos 
claramente como as tabelas dos bancos de dados relacionais. Sendo assim, não é possível 
elaborar um modelo somente com a análise dos dados, tem-se que analisar também o 
código fonte para encontrar as regras de acesso. Portanto, é possível elaborar um modelo 
de classes a partir dos dados e do código fonte do sistema.  

Justificativa: Este padrão foi usado duas vezes durante a elaboração da FaPRE/OO: 
1) Este padrão contribuiu, em parte, para a elaboração dos padrões, Iniciar a Análise dos 

Dados e Definir Chaves, na construção do MER do sistema legado. 
2) Este padrão também contribuiu para a elaboração do padrão Analisar Hierarquias na 

construção do Diagrama de Classes do sistema.  
É comum em sistemas orientados a objetos ter um banco de dados relacional contendo os 
dados persistentes. Já para sistemas procedimentais têm-se arquivos de dados. No entanto, os 
conceitos de banco de dados podem ser aplicados nesses sistemas, gerando modelos 
representativos das informações do Negócio. Durante a aplicação desse padrão nos estudos de 
caso, em sistemas procedimentais, pôde-se aproveitar a essência da sua concepção adaptando-
o ao contexto procedimental, da seguinte forma: como possíveis classes foram utilizados os 
arquivos de dados, uma vez que, esses nos sistemas procedimentais representam, na sua 
maioria, entidades importantes do sistema. A partir daí um modelo de pseudo-classes é obtido 
sendo refinado sucessivamente a partir do código fonte e da análise dos arquivos de dados. 
 
6.  Nome:  Inspecionar as Maiores Construções  (Identify the Largest) 
Intuito: Identificar trechos importantes de código utilizando ferramentas de determinação de 
métricas, inspecionando as maiores construções. 
Avaliação (Trade-off): 

Prós: 
Em sistemas orientados a objetos pode-se usar ferramentas de determinação de métricas 
para coletar um conjunto limitado de medidas sobre as entidades do sistema (por 
exemplo: hierarquia de herança, packages, classes, métodos, etc.). Pode-se representar os 
resultados de tal forma que seja possível avaliar, facilmente, diferentes medidas para uma 
mesma entidade. 
Contra: 
Não é possível implementar os conceitos de, hierarquia de herança, packages, etc., em 
sistemas procedimentais. 

Justificativa: Este padrão não foi utilizado na elaboração da FaPRE/OO, mas o uso de 
métricas pode ser explorado para auxiliar a engenharia reversa de sistemas procedimentais.  
 



 

7.  Nome:  Explorar Possíveis Modificações  (Recover the Refactorings) 
Intuito: Reconstruir o processo iterativo da construção do sistema, pela comparação de 
subseqüentes versões, observando o quanto o sistema cresceu ou decresceu, por meio de 
trechos de código fonte que foram alterados. 
Avaliação (Trade-off): 

Prós: 
Para sistemas legados orientados a objetos pode-se usar ferramentas de determinação de 
métricas, propostas pelo padrão anterior, para comparar medidas de versões subsequentes 
a fim de  encontrar entidades onde funcionalidade pode ter sido incluída ou removida. 
Contra: 
Não é possível implementar os conceitos de, hierarquia de herança, packages, etc., em 
sistemas procedimentais 

Justificativa: Este padrão não foi utilizado na elaboração da FaPRE/OO, mas o uso de 
métricas pode ser explorado para auxiliar a engenharia reversa de sistemas procedimentais.  
 
 
3.3 - Cluster:  Detalhamento do Sistema  (Detailed Model Capture)  
 
8.  Nome:  Verificar as Invocações de Métodos  (Derive Public Interface) 
Intuito: Saber como uma classe está relacionada com outra verificando os parâmetros 
definidos nos métodos da interface da classe.  
Avaliação (Trade-off): 

Prós: 
Em sistemas orientados a objetos é possível encontrar informações através da assinatura 
dos métodos, constantes da interface da classe, descobrindo-se como uma classe está 
relacionada com outra por meio dos parâmetros (conexão de mensagens). 
Contra: 
Em sistemas procedimentais a implementação dos conceitos de conexão de mensagens 
não é como em sistemas orientados a objetos. A comunicação entre arquivos de dados 
nos sistemas procedimentais pode ser obtida através da análise do código fonte.  

Justificativa: Este padrão não é aplicado em sistemas legados procedimentais porque nesses 
sistemas não se constata os conceitos da orientação a objetos.  
 
9.  Nome:  Observar a Execução dos Componentes  (Step Through the Execution) 
Intuito: Obter um entendimento detalhado do comportamento de uma parte do código, 
através da execução de seus componentes (encapsulamento). 
Avaliação (Trade-off): 

Prós: 
Esse padrão tem uma proposta muito interessante para se entender parte do código 
através da execução dos componentes. Seu conceito é também bastante utilizado, na 
prática, pelos engenheiros de software. Esse processo pode ser comparado à fase de teste 
nos sistemas procedimentais. 
Contra: 
Em sistemas procedimentais o encapsulamento, existente em orientação a objetos, não é 
realizado quando da implementação de sistemas, ou seja, essa implementação é realizada 
por meio de um conjunto de linhas seqüenciais de código. 



 

Justificativa: Este padrão não foi utilizado devido à formação do código fonte dos sistemas 
legado procedimentais, uma vez que o padrão Refazer para Entender pode ser melhor 
aplicado no contexto de sistemas procedimentais. 
 
 
3.4 - Cluster:  Preparação da Reengenharia  (Prepare Reengineering) 
 
10.  Nome:  Refazer para Entender (Refactor To Understanding) 
Intuito: Obter um melhor entendimento de uma parte específica do código fonte, refazendo-a.  
 
Avaliação (Trade-off): 

Prós: 
Com este padrão consegue-se modificar partes do código fonte, de tal maneira que o 
comportamento externo do código não seja alterado, mas a sua estrutura interna seja 
melhorada. 
Contra: 
Em sistemas procedimentais esse padrão requer profundo conhecimento da linguagem de 
programação utilizada na implementação do sistema legado.  

Justificativa: Este padrão foi utilizado, em parte, na elaboração do padrão Tratar Anomalias, 
da FaPRE/OO. Com a aplicação desse padrão, apesar da necessidade do conhecimento da 
linguagem, é possível eliminar inconsistências (anomalias) comumente encontradas em 
sistemas procedimentais. 
 
4. Considerações Finais 
 

Este trabalho apresentou, primeiramente, a linguagem de padrões proposta por Demeyer 
[1] justificando, em seguida, que não é suficiente utilizá-la para processos de engenharia 
reversa de sistemas legados procedimentais. Para solucionar esse problema, foi construída a 
FaPRE/OO, contendo padrões para conduzir processos de reengenharia orientada a objetos de 
sistemas legados procedimentais [2] [3].  

A FaPRE/OO é composta de quatro clusters, cada um agrupando os padrões relacionados 
a situações similares da reengenharia, sendo os três primeiros para o processo de engenharia 
reversa e o último para o processo de engenharia avante: 
§ Cluster 1 - Modelar os Dados do Legado - agrupa os seguintes padrões: Iniciar Análise 

dos Dados, Definir Chaves, Identificar Relacionamentos e Criar Visão OO dos Dados;  
§ Cluster 2 - Modelar a Funcionalidade do Sistema - agrupa os seguintes padrões: Obter 

Cenários, Construir Diagramas de Use Cases, Elaborar a Descrição de Use Cases e Tratar 
Anomalias; 

§ Cluster 3 - Modelar o Sistema Orientado a Objetos - agrupa os seguintes padrões: Definir 
as Classes; Definir Atributos, Analisar Hierarquias, Definir Métodos e Construir 
Diagramas de Seqüência; e 

§ Cluster 4 - Gerar o Sistema Orientado a Objetos - agrupa os seguintes padrões: Definir a 
Plataforma, Converter o Banco de Dados, Implementar os Métodos e Realizar Melhorias 
na Interface. 
 
 



 

Tabela 1 - Padrões de Demeyer utilizados na elaboração dos Padrões para o Processo de 
Engenharia Reversa da FaPRE/OO 

 

Linguagem de Padrões de Demeyer 
Padrões para o Processo de Engenharia Reversa da 

FaPRE/OO 
Clusters Padrões Padrões Clusters 

. Ler Todo o Código em uma Hora — — 

. Estudar  Superficialmente  a 
  Documentação 

— — 

 
Iniciação 

ao 
Sistema 
Legado 

 

. Entrevistar o Usuário Durante o 
  Sistema em Operação 

. Construir Diagramas  de 
  Use Cases 
. Obter Cenários 

 

Modelar a Funcionalidade 
do Sistema  

 

. Definir as Classes 
Modelar o Sistema 

Orientado a Objetos 
 
 

. Presumir Prováveis Objetos  

. Tratar Anomalias  
Modelar a Funcionalidade 

do Sistema  
. Iniciar Análise dos Dados 
. Definir Chaves 

Modelar os Dados do 
Legado 

 
 
. Examinar a Base de Dados  

. Analisar Hierarquias  Modelar o Sistema 
Orientado a Objetos 

. Inspecionar as Maiores Construções — — 

 
 
 
 

Entendimento 
 

Inicial 

. Explorar Possíveis Modificações — — 

. Verificar as Invocações dos Métodos — —  

Detalhamento 
do  Sistema . Observar  a  Execução  dos 

  Componentes  

 

— 
 

— 

Preparação da 
Reengenharia 

 

. Refazer para Entender 
 

. Tratar Anomalias Modelar a Funcionalidade 
do Sistema  

 
 

Tabela 2 - FaPRE/OO x Padrões de Demeyer 

Padrões para o Processo de Engenharia Reversa da 
FaPRE/OO 

Linguagem de Padrões de Demeyer 

Clusters Padrões Padrões Clusters 
. Iniciar Análise dos Dados . Examinar a Base de Dados Entendimento Inicial 
. Definir  Chaves . Examinar a Base de Dados Entendimento Inicial 
. Identificar  Relacionamentos — — 

 

Modelar os 

Dados do 

Legado . Criar Visão OO dos Dados — — 
. Entrevistar  o  Usuário 
  Durante  o  Sistema  em 
  Operação 

 

Iniciação ao Sistema 
Legado . Obter  Cenários 

. Presumir Prováveis Objetos Entendimento Inicial 

. Construir Diagramas de Use Cases 
. Entrevistar  o  Usuário 
  Durante  o  Sistema  em 
  Operação 

 

Iniciação ao Sistema 
Legado 

. Elaborar a Descrição de Use Cases — — 

 
 

Modelar 

a 

Funcionalidade 

do 

Sistema 
 

. Tratar  Anomalias  
. Presumir Prováveis Objetos 
. Refazer para Entender 

— 

. Definir as Classes  . Presumir Prováveis Objetos — 

. Definir Atributos — — 
 

. Analisar  Hierarquias  
 

. Examinar a Base de Dados Preparação  da 
Reengenharia 

. Definir  Métodos — — 

 

Modelar o 

Sistema 

Orientado a 

Objetos 
. Construir Diagramas de Seqüência — — 



 

A Tabela 1 mostra os padrões de Demeyer utilizados para a elaboração da FaPRE/OO. Por 
exemplo, do primeiro cluster da linguagem de padrões de Demeyer, somente o padrão 
Entrevistar o Usuário durante o Sistema em Operação é utilizado. Os padrões Inspecionar as 
Maiores Construções, Explorar Possíveis Modificações, Verificar as Invocações dos Métodos 
e Observar a Execução dos Componentes não foram utilizados, mas podem ser úteis em 
futuros refinamentos do processo. Cabe ressaltar que alguns padrões da linguagem de 
Demeyer foram utilizados, algumas vezes, para a elaboração de mais do que um padrão da 
FaPRE/OO, como mostra a Tabela 1. 

A Tabela 2 complementa a Tabela 1 mostrando o relacionamento existente entre os 
padrões para o processo de engenharia reversa da FaPRE/OO e a linguagem de padrões de 
Demeyer. 
 
Referências 
 
[1] Demeyer, S.; Ducasse, S.; Nierstrasz, O., “A Pattern Language for Reverse Engineering”. 

Proceedings of the 5th European Conference on Pattern Languages of Programming and 
Computing, (EuroPLOP'2000), Andreas Ruping(Ed.), 2000. 

 
[2] Recchia, E. L., Engenharia Reversa e Reengenharia Baseadas em Padrões, São Carlos-SP, 

Junho/2002. Dissertação de Mestrado apresentada ao PPGCC - Universidade Federal de São 
Carlos. 

 
[3] Recchia, E. L.; Penteado, R. – FaPRE/OO: Uma Família de Padrões para Reengenharia 

Orientada a Objetos de Sistemas Legados Procedimentais. Artigo apresentado no 
SugarloafPLoP2002 – The Second Latin American Conference on Pattern Languages of 
Programming – Agosto/2002, Itaipava – RJ. 

 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



 

Analyzability and Changeability in Design Patterns1 

Javier Garzás1 and Mario Piattini2 

1 ALTRAN SDB Senior Consultant 
Projects Engineering Research Group  

ALTRAN SDB  
C/ Ramírez de Arellano, 15, 28043, Madrid - SPAIN 

jgarzas@altransdb.com  
 

2 Alarcos Research Group 
Escuela Superior de Informática,  
University of Castilla-La Mancha 

Ronda de Calatrava, s/n. 13071, Ciudad Real – SPAIN 
Mario.Piattini@uclm.es 

Abstract 

 It has been a long time since the appearance of the Object Oriented (OO) paradigm. From that moment, the 
designers have accumulated much knowledge in the design and construction of OO systems. However, at the 
present time the exclusive use of patterns is not sufficient to guide a design in a formal way. Two important 
quality parameters for Object Oriented (patterns) Design exist: Analyzability and Changeability. Principles 
permit to us to analyze an easier manner in which to introduce design patterns. Indirections provide 
changeability to the pattern. With all the former, we can obtain a metric to answer how much Changeability we 
can apply in order not to lose the design's Analyzability. 

1. Introduction 

 
In the late eighties, the application of patterns in OO appeared and was consolidated, 

among others, by the work of Coad (1992), Gamma et al. (1995), Buschmann et al. (1996), 
Fowler (1996) and Rising (1998). The motivation was to transfer a type of Object Oriented 
Design Knowledge (OODK) (Garzás and Piattini, 2001), knowledge accumulated during 
years of experience. Since then, designers have been reading and using patterns, reaping 
benefit from this experience.  
 

However, at the present time the exclusive use of patterns is not sufficient to guide a design 
in a formal way, the designer's experience being necessary to avoid overload, non-application 
or the wrong use of patterns due to ignorance, or any other problems that may give rise to 
faulty and counteractive use of the patterns. When patterns are used, several types of 
problems may occur (Wendorff, 2001; Schmidt, 1995): 

 

- Difficult Application.  

- Difficult Learning. 
                                                                 
1 Copyright   2002, Javier Garzás and Mario Piattini. Permission is granted to copy for 
the SugarloafPLoP 2002 Conference. All other rights reserved. 



 

- Temptation to Recast everything as a pattern 

- Pattern overload.  

- Ignorance. 

- Deficiencies in catalogues: Search and Complex Application, High Dependence of the 
Programming Language, Comparatives, etc. 

 
In principle, using design patterns increments design quality. In this sense, there are many 

works about metrics and design quality, for example (Genero et al., 2000), (Brito e Abreu and 
Carapuça, 1994), (Briand et al., 1999), (Henderson-Sellers, 1996), etc. Since design quality 
can be measured by quality metrics, the use of design patterns should lead to better 
measurements. However, many common object-oriented design metrics indicate lower quality 
if design patterns are used. In this sense, Reibing (2001) comments that if we have two similar 
designs A and B for the same problem, B using design patterns and A not using design 
patterns, B should have a higher quality than A. However, if we apply “classic” object-
oriented design metrics to both designs, the metrics tell us that design A is better – mostly 
because it has less classes, operations, inheritance, associations, etc. Who is wrong? The 
metrics or the pattern community? Do we have the wrong quality metrics for object-oriented 
design? Or does using patterns in fact make a design worse, not better? So what is the cause 
of the contradiction between the supposed quality improvement by design patterns and the 
measured quality deterioration? (Reibing, 2001) 

 
First, in the following section, we will analyze the maintenance and design patterns and 

relationship with analyzability and changeability in more detail. Later, we will show a 
measurement of the impact of the patterns used. In the last sections, we present 
acknowledgments, our conclusions and future projects, and references. 

2. Maintenance and design patterns  

According to the ISO/IEC 9126 – 1999 “Software Product Evaluation – Quality 
characteristics and Guidelines for their use” standard maintainability is subdivided into 
Analyzability, Changeability, Stability, Testability and Compliance.  

 
Software maintenance consumes the largest part of the overall lifecycle cost (Pigoski, 1997; 

Bennett and Rajlich, 2000). The incapacity to change software quickly and reliably means 
that organizations lose business opportunities. Thus, in recent years we have seen an 
important increase in research directed at addressing these issues. 

 
If we obtain a correct OO design, we will obtain better maintenance. Considering the 9126 

standard, two important parameters for quality maintenance of Object Oriented Design 
(patterns) exist:  

 

- Changeability allows a design to be able to change easily, an important requirement at the 
time of extended functionality into an existing code.  

- Analyzability allows us to understand the design. This is an essential requisite in order to be 
able to modify the design in a realistic period of time. 



 

 
To be specific, at the time of applying patterns to a software design, two opposites forces 

appear and these forces are directly related to maintainability. On the one hand, we put 
together a common terminology to the applying patterns, we have proven solutions, but we 
have the inconvenience that the solution, once obtained, can be very complex, and this means 
that the design is less comprehensible, and modifying the design is more difficult (Prechelt, 
2000). Thus, to continue with the previous concepts, a curious relation between Changeability 
and Analyzability appears: If we increase the design's Changeability then we will decrease the 
design's Analyzability, and vice versa. 
 
 
 

 
Fig. 1. The Relationship between Changeability and Analyzability. The Breaking Point determines the “Optimal 

Patterns Number”, where the best maintenance is in relation to Patterns. 
  

Figure 1 shows graphically the relationship between Changeability and Analyzability when 
patterns are applied. As the figure shows: 

 

- If a design has a lot of design patterns this design will have a great amount of Changeability 

- If a design has few design patterns this design will have a great amount of Analyzability 

2.1 Analyzability issues  

In general, the pattern introduction is a complex task. In this epigraph, we show how to 
introduce design patterns to the design from design principles. This method permits us to 
analyze an easier way to introduce design patterns.  

 
Garzás and Piattini (2001) comment that an OOD principle can be defined as a set of 

proposals or truths based on experience that form the foundation of OOD and whose purpose 
is to control this process. Some principles are the following (other principles apart from those 
described here may exist but we are limited by the length of this paper):  

Number of Patterns 
+ 

+ 

- 

Changeability 

Analyzability 

Quantity 

- 

Breaking Point 
Optimal Patterns Number 

Maintainability 



 

 
§ Open-Closed Principle (OCP): A module should be open for its extension and closed for 

its modification. 
§ Substitution Principle (SP): The subclasses must be substitutable by their base classes. 
§ Dependency Inversion Principle (DIP): Depend upon abstraction. Do not depend upon 

specifications. 
§ Interface Segregation Principle (ISP): Many clients specific interfaces are better than 

one general purpose interface. 
§ Default Abstraction Principle (DAP): Introduces an abstract class that makes the 

implementation in default of most of the interface operations between the interface and the 
class that implements it.  

§ Interface Design Principle (IDP): “Program” an interface, not an implementation. 
§ Black Box Principle (BBP): Favor the object composition over class inheritance. 
§ Do not Concrete Superclass Principle (DCSP): Avoid maintaining concrete superclass. 
 

In general, we can state that in order for an OO system to be of a certain quality it should 
not violate any principles. On the other hand, patterns contribute to an efficient design, but in 
general the exact relationship between principles and patterns is unknown or more specifically 
we do not know which principle(s) ensure(s) each pattern. 

 
Therefore, for example, in order to conform to the DIP, one of the strategies could be to use 

the abstract Factory pattern. The purpose of other patterns such as Prototype, Factory method, 
etc. is more to perform the Abstract Factory than to directly conform to a principle. Therefore, 
we can conclude that there are patterns that directly allow a principle to be complied with, 
whilst other patterns are more related to patterns than to principles. Consequently, patterns 
could be classified according to the principles they follow. The principles would even enable 
us to create a different catalogue of patterns to that currently existing (in most cases they are 
simply presented in alphabetical order). Checklists of principles could also be drawn up which 
assess the design and offer us solution patterns that ensure that they are complied with.  We 
may specify more and consider their relationship with the patterns, so that the principles can 
be one or several of the following types: 

 

 
Table 1 shows an analysis of the principles mentioned in the previous epigraphs and their 

relationship with each pattern of those detailed by Gamma et al. (1995) in function of the 
previous types.  
 
 
We can observe that the relationship of patterns has been ordered alphabetically. In this way, 
we can obtain an objective order and later, based on the principles, we will be able to obtain 
analogies. 

Type 1, the pattern 
contributes to a good solution 
to the resulting model of the 
application of the principle 

(“from the principle towards 
the pattern”). 

Type 2, the pattern 
completes or contains the 

principle. 

Type 3, the principle can 
improve a solution to 
which a pattern has 

previously been applied 
(“from the pattern towards 

the principle”). 



 

 
Principle OCP SP DIP ISP DAP IDP BBP DCSP 
Pattern 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 

Abstract F.                         
Class                         Adap. 
Obje.                         

Bridge                          
Builder                          
Chain R.                         
Command                          
Composite                          
Decorator                          
Facade                          
Factory M.                          
Flyweight                          
Interpreter                          
Iterator                          
Mediator                          
Memento                          
Observer                          
Prototype                          
Proxy                          
Singleton                          
State                          
Strategy                          
Template M.                         
Visitor                          

 
Table 1. Principles and their relationship with each pattern of those detailed by Gamma et al. (1995) 

 
Several considerations, uses and investigation lines can be extracted. Some examples are 

the following: 
 
§ It allows us to break down each one of the patterns into smaller forces, facilitating the 

study of elements common to all the patterns of their own character: “patterns within the 
patterns” or “meta-patterns”. 

§ It allow us to guide the use of patterns, since it is easier to know how to apply a pattern 
that a principle in a correct way, and once the principle is applied, it is easy to arrive at the 
pattern. This facilitates the pattern's good use. For example, the use of NSCP implies the 
use of creational patterns and this assures us that our system is written in function of 
interfaces and not in function of implementations. 

§ It allows a formal study of micro architectures. 
§ It allows us to obtain the forces (principles) that conform the pattern and how, depending 

in its manner of incidence within the pattern (type 1, 2 or 3), this can be of different 
characteristic. For example: 
- We can observe that Abstract Factory, Builder, Factory Method and Prototype 

maintain an almost identical kernel of principles while Singleton does not complete 
any principle. Singleton is not a micro architecture (it only describes one class). 
Singleton deals with the creation of objects but it does not do this with the same 
characteristic and the same abstraction as the other four creational patterns, we are 
according to Buschmann et al. (1996) whereon this pattern is an Idiom. With regard to 



 

the four remaining creation patterns, we observe that they complete the same 
principles with the exception of Builder, since this has the same character as the 
previous ones but by means of a composition strategy. As we see, the study of the 
principles that intervene in a pattern allows us, among many other things, a finer and 
based classification. 

- We observe that any micro architecture with some hierarchy whose design pattern we 
want to consider should complete (type 2) at least the following principles: OCP, SP, 
DIP, IDP and DCSP. 

- We observe that in patterns structurally identical to State and Strategy the same 
principles are completed and with the same characteristics. 

- All patterns that complete OCP, SP, DIP, IDP and DCSP in type 2, ISP and DAP in 
type 3 and do not fulfill the BBP it is classified (according to Gamma’s book) as of 
behavior. 

§ We will be able to look for and/or to validate new design patterns observing whether they 
complete certain meta-patterns. 

 
The principles allow us to extract good practical OO, observing how the patterns are based 

and how they are connected with the design.  

2.2 Changeability issues 

The element that provides changeability to the pattern is what it is called indirection. 
Nordberg (2001) comments that “at the heart of many design patterns is an indirection 
between service provider and service consumer. With objects the indirection is generally via 
an abstract interface”. Unfortunately each level of indirection moves the software farther from 
the real world or analysis level view of the problem and deeper into relatively artificial 
mechanism classes that add overhead to both design comprehension and implementation 
debugging. With respect to the previous factors, we have observed the following: 

- Every time that a pattern is introduced at least one indirection appears in the design and 
these elements are not of dominion or business logic, such as notifications, observer 
classes, updates methods, etc.  

- Every time that we add an indirection the software moves around further away form the 
analysis. Upon adding indirections or design classes the design becomes less semantic, less 
comprehensible or less analyzable.  

- Every time that an indirection is added it increases the design changeability.  

3. Metrics for Optimal Patterns Number 

With all the former, we have a problem: how much Changeability can we apply in order not 
to lose the design's Analyzability? Obtaining metrics to answer the previous question would 
be a great contribution.   

We can define a parameter that quantifies how changeable a design is in relation to 
indirections: 

 



 

Changeability Number (CN) = Indirection Classes Number (ICN) (1) 

On the other hand, a value that measures the design's analyzability must consider the 
number of design classes introduced: these are classes that simplify, reusing (such as the 
subject class into observer pattern) or indirection (such as the observer class into observer 
pattern). Thus: 

 

Analyzability Number (AN) = Domain Classes Number (DCN) – 
Indirection Classes Number (ICN) – Simplify Classes Number 

(SCN) 

(2) 

 
We may observe in the last formula, that when we have an analysis diagram its 

analyzability is maximum. When we introduce artifacts into the designing phase on the 
analysis diagram the model's analyzability decreases. We also may observe, as certain 
patterns will have a larger impact in the analyzability than other ones, depending on the 
classes that the patterns introduce. 

 
Now, we may calculate the Optimal Patterns Number (OPN) as follow: 

 

Changeability Number (CN) = Analyzability Number (AN) (3) 

Indirection Classes Number (ICN) = Domain Classes Number 
(DCN) – Indirection Classes Number (ICN) – Simplify Classes 

Number (SCN) 
(4) 

Indirection Classes Number (ICN) = [Domain Classes Number 
(DCN) – Simplify Classes Number (SCN)] / 2 (5) 

 
Considering in the previous formula that the DCN parameter is a fixed value in design 

phase, the rest of parameters depend of the kind of pattern or design artifact introduced. 
 
Shortly, we will add to the measures a bigger refinement level considering aspects such as 

the quality of methods. 

3.1. Example 

The following example (figure 2) shows us the Metrics for Optimal Patterns Number 
application (Changeability Number (CN) and Analyzability Number (AN)). 
 

At first, we have three Domain entities (D1, D2 and D3). At this point we have not 
introduced some patterns, we do not have indirection classes, therefore, CH = 0. With three 
Domain Classes we have AN = 0 (we do not have Indirection Classes Number (ICN) or 
Simplify Classes Number (SCN), we only have Domain Classes Number (DCN)). 

 



 

We introduce the Observer Pattern at a later moment (b in figure). This pattern has an 
indirection class (observer class), and this introduces one Simplify Class (subject class). With 
the previous CH = 1 and AN = 3 – 1 – 1 = 1.  

 
Fig. 2.  This example shows the CH and AN variation at the moment of applying patterns 

 
Finally, we introduce the State Pattern and this has an indirection class (State class) and, for 

our example, it introduces two Simplify Classes (StateA and StateB). With the previous CH = 
2 and AN = 3 – 2 – 3 = -2.  

 
At this moment the CH number is bigger than the AN number (figure 3). According to the 

former, at this moment we should not introduce more patterns if we want to maintain the 
analyzability of design. Perhaps at a later date it may be essential to add more patterns, but at 
this moment, if we are only improving the design, in a preventive phase, we do not have an 
explicit need to introduce a pattern. The relationship between CH and AN gives us a rational 
way to control the patterns’ use. 

4. Acknowledgments 

This research is a part of the DOLMEN project supported by CICYT (TIC 2000-1673-C06-
06). We would also like to thank to ALTRAN SDB for the support shown towards this 
investigation at all times. 

D 1D 1 D 3D 3D 2D 2
CN = 0
AN = 3-0-0 =3

CN = 0
AN = 3-0-0 =3

D 1D 1 D 3D 3D 2D 2

S u b j e c tS u b j e c tO b s e r v e rO b s e r v e r

CN = 1
AN = 3-1-1 =1

CN = 1
AN = 3-1-1 =1

D 1D 1 D 3D 3D 2D 2

S u b j e c tS u b j e c tO b s e r v e rO b s e r v e r

S t a t eS t a t e

S t a t e BS t a t e BS t a t e AS t a t e A

CN = 2
AN = 3-2-3 =-2

CN = 2
AN = 3-2-3 =-2

a)

b)

c)



 

5. Conclusion and future projects 

The experts have always used proven ideas. It is in recent years when these ideas, 
materialized into the pattern concept, have reached their greatest popularity and diffusion, 
thanks to the concern of the community to discover, to classify and to diffuse all types of 
patterns.  
 

-3
-2
-1
0
1
2
3
4

a b c

CN AN
 

 
Fig. 3. The graph shows CN and AN evolution 

 
The patterns are useful elements but there are still many elements to be studied if we want 

to apply them in a rational manner. The first thing that we must make clear is the word quality 
for design patterns; this word must be used with great care when we apply it to patterns. An 
appropriate notion of quality should result if the quality definition includes many views. In 
maintenance quality two appropriate views could be changeability and analyzability. 

 
On the other hand, more knowledge exists apart from that related to patterns, although it 

would be true to say that this other knowledge is frequently “hidden”. We denominate, 
distinguish and classify the following categories in OODK: principles, heuristic, patterns and 
refactorings (Garzás and Piattini, 2001). But there is much uncertainty with regards to the 
previous elements. In fact, the previous knowledge elements have never been studied as a 
whole, neither its compatibility has been studied nor does a method based on this knowledge 
exist. There is still a lot of work to be done in order to systematize and offer this OO Design 
knowledge to designers in such a way that it can be easily used in practical cases.  

6. References 

Bennet K. H. and Rajlich V. T. Software Maintenance and Evolution: a Roadmap, in 
Finkelstein A. (Ed.) The future of Software Engineering, ICSE 2000, June 4-11, Limerick, 
Ireland, pp 75-87. 
 



 

Brito e Abreu F. and Carapuça R. Object-Oriented Software Engineering: Measuring and 
controlling the development process. 4th Int Conference on Software Quality, USA, 1994. 
 
Briand L., Morasca S. and Basili V. Defining and Validating Measures for Object-Based 
high-level design. IEEE Transactions on Software Engineering, 25(5), 722-743, 1999. 
 
Buschmann F., Meunier R., Rohnert H., Sommerlad P. and Stal M., A System of Patterns: 
Pattern-Oriented Software Architecture, Addison-Wesley, 1996. 
 
Coad P., “Object-Oriented Patterns”, Comm. ACM, Vol. 35, No 9, Sep. 1992, pp. 152-159. 
Fowler M. Analysis Patterns. Addison Wesley, 1996. 
 
Gamma E, Helm R, Johnson R and Vlissides J.  Design patterns: Elements of Reusable Object 
Oriented Software. Addison-Wesley, 1995. 
 
Garzás J., Piattini M. Principles and Patterns in the Object Oriented Design, OOPSLA 2001 - 
Workshop “Beyond Design: Patterns (mis) used”. Octubre 14-18, 2001. Tampa Bay, Florida, 
USA. 
 
Genero M., Piattini M. and Calero, C. Early Measures For UML class diagrams. L´Objet. 
6(4), Hermes Science Publications, 489-515, 2000. 
 
Henderson-Sellers B. Object-oriented Metrics - Measures of complexity. Prentice-Hall, Upper 
Saddle River, New Jersey, 1996. 
 
Nordberg M. E. Aspect-Oriented Indirection – Beyond OO Design Patterns. OOPSLA 2001 - 
Workshop “Beyond Design: Patterns (mis)used”. Octubre 14-18, 2001. Tampa Bay, Florida, 
USA. 
 
Prechelt L., Unger B., Tichy W. Bossler P. A controlled Experiments in Maintenance 
Comparing Design Patterns to Simpler Solutions. IEEE Transactions on Software 
Engineering, September 2000. 
 
Pigoski, T. M. Practical Software Maintenance. Best Practices for Managing your 
Investements. Ed. John Wiley & Sons, USA, 1997.  
 
Reibing R. The impact of Pattern Use on Design Quality. OOPSLA 2001 - Workshop 
“Beyond Design: Patterns (mis)used”. Octubre 14-18, 2001. Tampa Bay, Florida, USA. 
 
Rising L., The Patterns Handbook: Techniques, Strategies, and Applications, Cambridge 
University Press, 1998. 
Schmidt D. C., Experience Using Design Patterns to Develop Reusable Object-Oriented 
Communication Software, Communications of the ACM 38,10, October 1995, pp 65-74. 
 
Wendorff P., “Assessment of Design Patterns during Software Reengineering: Lessons 
Learned from a Large Commercial Project”, Procedings of the Fifth European Conference on 
Software Maintenance and Reengineering , CSMR 2001, IEEE Computer Society. 



Designing Websites by Using Patterns 
 

Francisco Montero, María Lozano, Pascual González, Isidro Ramos† 

                                                 
Copyright © 2002, Francisco Montero, María Lozano, Pascual González, Isidro Ramos. Permission is 
granted to copy for the SugarloafPLoP 2002 Conference. All other rights reserved. 

 
LoUISE Research Group 

Escuela Politécnica Superior de Albacete  
University of Castilla–La Mancha  

Campus Universitario 
02071 – Albacete  – Spain 

http://www.info-ab.uclm.es/louise 
{fmontero, mlozano, pgonzalez}@info-

ab.uclm.es 

 
†Departamento de Sistemas Informáticos y 

Computación 
Universidad Politécnica de Valencia 

Camino de Vera s/n 
E-46071 Valencia - Spain 

iramos@dsic.upv.es 

 

Abstract 
This paper contains a resumed collection of patterns for designing web sites. Traditionally, the Web 

is mainly seen as a medium used to exchange information and that is the main reason why most web sites are 
designed like a book in which you can jump back and forth. Usability criteria should be considered when we 
are developing a web site [8]. This set of patterns is established under these criteria. 

 

1. Introduction 

The World Wide Web has rapidly become the dominant Internet tool, combining 
hypertext and multimedia to provide a network of multidisciplinary resources. It is 
important to make sure that all parts of a web site are useful. A user will come to a site 
expecting to be able to perform a particular task, or read a particular piece of information. 
When we are designing a web site we want to make sure that the user can find that 
resource quickly and easily. If they can't find the information quickly then they may leave 
our site, and proceed to another site where they can find the resource. The Web is a new 
medium and requires a new approach [8]. 

We should begin by asking, as in any user interface design process, Who are the 
users? and What are the tasks? But answer these questions is not easy. Anybody can visit 
our web site, kids, seniors, older or disabilities people. All information and resources 
should be accessible to them [3]. Everybody should be able to navigate with no problem. 
The idea is that, no matter what you're doing, there's a user-centred way of doing it. Users 
should be considered throughout the web site design process. Usability should not be an 
afterthought. Testing and fixing a web site after it has been built is inefficient and unlikely 
to produce good results.  

Shneiderman [10] commented that “It will take a decade until sufficient experience, 
experimentation, and hypothesis testing clarify issues” and warned that meanwhile “the 
paucity of empirical data to validate or sharpen insight mean that some guidelines are 
misleading”. Nevertheless, many sets of web design guidelines have been published. There 
are many guidelines [14] that can be used to improve the design of our web sites. Most of 

 



these recommendations for web site designers are however not based on research but on 
intuition. They are based in the designer’s experience.  

Traditionally, interface design experiences are gathered with guidelines but patterns 
can be used too. The concept of a pattern language has been developed by Christopher 
Alexander and his colleagues in architecture and urban design [1, 2]. In brief, a pattern 
language is a network of patterns of varying scales; each pattern is embodied as a concrete 
prototype, and is related to larger scale patterns, which it supports, and to smaller scale 
patterns which support it. The goal of a pattern language is to capture patterns in their 
contexts, and to provide a mechanism for understanding the non-local consequences of 
design decisions [4]. 

2. A Web Design Patterns Language 

This patterns language describes the usability-desired result unlike a prescriptive 
pattern language or guidelines. The patterns in this language are grouped into three levels.  

 
• Web site level, people expect a web site to provide information, be interactive and 

fulfill their requirements. web sites have to be visually pleasing, download quickly, be 
helpful, easy to use and explore, in addition to presenting a professional appearance. A 
web site is made up of a collection of documents, images, sounds and other files. These 
usually reside in a unique place on the Internet. We can find this collection of web 
pages because they have an address.  

• Web page level, a web page is a single page on any specific web site. A page is 
specially important, the home page, due to it identifies the web site.  

• Ornamentation level. There are several elements that usually are on a web page. 
These elements give useful support to user for performing his/her tasks. These 
elements improve usability of the web site. 

 
This taxonomy of three levels is based on [1]. The Alexander’s language contains 

253 patterns split into three broad categories, towns, buildings and construction. The first 
94 patterns are collected together under the heading of "Towns". However, they cover far 
more than just urban planning and begin by examining the responsibilty of the designer 
from a global perspective. Moving on from the study of areas and collections of buildings, 
Alexander examines the buildings which make up the urban landscape and suggests over 
100 patterns which define his position on what constitutes good building design. Alexander 
finishes his collection of patterns by defining the right way to construct buildings. The 
patterns in this final section of the language show how the need for careful thought and 
creative effort are required throughout the design process. The main objective of 
Alexander was improving a quality without name and planning cities, towns and buildings. 
Alexander wanted to create structures that are good for people and have a positive 
influence on them by improving their comfort and their quality of life. When we are 
developing a web site that’s our goal too. We are interested in designing web sites with 
quality. But what is quality?. Quality is perhaps usability, understandability, learnability, 
operability, adaptability, accessibility, etc. We think that quality is everything mixed 
together.  

The proposed web pattern language will be introduced by using a particular 
example. The patterns in the entire collection are depicted graphically in Figure 1 and 
summarised at the end of this section by using three tables, one of them for each level of 
patterns. 



A problem is presented by each pattern and, under a context and a set of forces, a 
solution is proposed [7]. Problems are associated with user requirements and solutions look 
for improving usability web site. Usability is [ISO/IEC 9126-1] learnability, 
understandability and operability and these elements are improving by providing 
navigation, functionality, control, language, feedback, consistency, error prevention and 
visual clarity facilities.  

 
Figure 1. Proposed pattern language 

Figure 1 shows the proposed pattern language. It has a structure of a network, in the 
left column there are patterns of web site level, in the centre column there are patterns of 
web page level and, finally, in the right column there are patterns of ornamentation level. 

The following tables summarise the patterns in this pattern language for reference 
purposes. These patterns could be integrated on a methodology to develop user interfaces 
like IDEAS [5]. There are patterns at requirements level, like these, that can be used in the 
beginning of an usability-based iterative life cycle. So patterns can be used to improve a 
participatory design, evaluate web site under usability criteria and facilitate communication 
between stakeholders involved in web site development. 
 

Web site patterns 
Problem Solution Pattern name 

How does the user know 
where he is? 

Set up a reception point where 
user finds information about the 
web site 

Welcome 

How does the user know 
where he can go and what 
will he find there? 

Web site musts provide the 
needs mechanisms that allow 
any user to move from one place 
to another places 

Where can I go? 

How can the user do a Speak user’s language is We speak your language 



useful use of the web site 
and access information at 
your own pace? 

“design for all” 

How does the user know 
where he is? How does the 
user know that he is 
visiting the same web site? 

Web site should be designed by 
using the same criteria: colours, 
fonts, navigation location and 
layout. 

Everything is similar 

How does the user know if 
he needs anything else for 
visiting a web site? 

The user should be informed of 
what he need for visiting a web 
site. 

Have you got everything 
you need? 

 
Web page patterns 

Problem Solution Pattern name 
How does the user know 
where the user is? 

Provide a checkpoint where the 
user feels like at home. Home sweet home 

How can the user access 
the content of the web page 
in a simple and proper 
way? 

Keep your language clean and 
inoffensive. Keep your language 

How does the user know 
when his operations have 
finished or what is their 
current state? 

Show the user a status 
information of some kind, 
indicating how far along the 
process is in real time. 

Still working 

How can the user visit the 
web site to his/her own 
pace? 

Provide return approaches. A second opportunity 

How can the user provide 
preformatted information? 

Provide appropriate “blanks” 
to be filled in, which clearly and 
correctly indicate what 
information should be provided. 

The form 

How can the user visit the 
web site without be 
interrupted or disoriented 
by unnecessary effects? 

Design for all people, 
technology and knowledge level 
in a possible manner. 

Be careful! 

 
Ornamentation patterns 

Problem Solution Pattern name 
How does the user know 
what the main feature of 
the web site owner is? 

Include a tag line that explicitly 
summarise what the site or 
company does. 

Notable quotation 

How can the user get a 
suitable print of 
information? 

Provide a text version of web 
pages directly printable Could you write it for me? 

How can the user have got 
access to additional and 
periodic information? 

Provide an approach to user 
cans book on-line Subscribe here 

How can the user get 
additional information on 
products or documents? 

Include a “Contact Us” link on 
the homepage Contact us 



How can the user find 
specified information? Offer a search engine Search 

How does the user know 
where he/she has been? 

Use an approach to maintain 
state variables on the Web, like 
cookies 

I saw you before 

How can the user access to 
the content of web site in a 
suitable way? 

Use suitably colours Everything depends on 
colour... 

How can the user access 
the content of web site in a 
suitable way? 

Provide on-demand Size is important 

How can provide private 
information in secure way? Implement security in web site Nobody must know it! 

How does the user know 
what are the news in the 
web site? 

Include at homepage news and 
suggestions sections News and suggestions 

How does the user know 
where he/she is? 

Include location references in 
web site You are here 

How does the user know 
who the owner of web site 
is? 

Include a link to an “About Us” 
section About this 

 
In the next section, we will describe some of these patterns by using them to solve 

problems related with the creation of a web site where usability degree should be high. 
This task helps us to introduce some of these patterns with more detail than this section. 

When each pattern is introduced a last field, examples and implementation details, 
provides references (urls) and brief considerations on how this pattern can be recognised 
when we are navigating across the Web.  

3. Example of use: Applying the Web Pattern Language 

Suppose than you have to promote an institution, a business or a research group. An 
interesting possibility could be the creation of a web site where users can find out about 
services, products, latest news supplied by that institution.  

You are a beginner designer and know that having a good web site is important, but 
you have not got enough experience in web design. There are guidelines, experiences and 
knowledge gathered in web site design field but it is difficult to use and in some occasions 
can be contradictory. However, a language is the most powerful tool of communication, 
but in a language there are words, sentences and relationships between words and 
sentences. On the other hand, patterns are a way of documenting design expertise. A 
pattern language can be useful in two senses: firstly as a tool to document the experience 
and secondly, as a tool to communicate between stakeholders of the project (end-user 
included). 
 
How could I use this collection? 

1. Read the resumed list of patterns. 
2. Scan down the list, and find the pattern, which best describes the overall 
scope of the project or the problem that you want to solve. 
3. Read the starting pattern. Tick all of the low order patterns and ignore all 
the high order patterns.  



4. Turn to each pattern and now tick only relevant low order patterns. 
5. Keep going like this, until you have ticked all the patterns you want for 
your project.  
6. Adjust the sequence by adding your own material where you haven't 
found a corresponding pattern.  
7. Change any patterns where you have a personal version, which is more 
relevant.  

 
As an example, and after of reading the list of patterns, we could select some of them, for 
instance, Welcome, Home sweet home, Notable quotation, About this, Search, News and 
suggestions, Contact us, or Subscribe here. These patterns are related like shown figure 1 
and they are of different levels. Then we can read them in more detail. 

Welcome 
Motivation: 
When a user arrives at a web site, like he/she arrives at a city, town or any important 
building needs to know where he/she is, what can he do there, and what he need for 
visiting that web site. 
Problem: 
How does the user know where he/she is? How does the user know where he can go? 
Who does the site manage? What is the purpose of the site?  
Forces: 
• Users need know where they are  
• User wants to know where they can go next 
• A complex web site can be very disorienting for users 
• Users who are familiar with the structure and content of a web site should be able to 

jump straight to the space where they want to go 
Solution: 
Set up a reception point where the user finds information about the web site. From this 
welcome point, user will be able to enter to home page (Home sweet home). User’s 
information, such as language or monitor size should be gathered to the provision of web 
site’s services to user (We speak your language). In its defect, the user should be 
informed about the best conditions for the visiting web site (Have you got everything you 
need?). User finds information about content (About this) and owner (Contact us) of the 
web site in this page. Welcome and homepage is the same in many occasions. 
Consequences: 
Provide improvements on the navigation, functionality and feedback 
Examples & 
implementation 
details:  

http://www.aosa.es, http://www.alanismorissette.com These web 
sites, and many others on the Web, have got a initial page where 
users are received. These web pages have as main features their low-
load time, offer the possibility to customise the language or browser 
properties, and provide information on who, what, when and where 
the user can find on the web site.  

http://www.aosa.es/
http://www.alanismorissette.com/


Home Sweet Home 
Motivation: 
A web site can be achieved by random way, but always must have a point of reference. 
When an user arrives at a web site, like he/she arrives at a city, town or any important 
building needs to know where he/she is, what he can do there, and what he need for 
visiting that web site. The homepage is an essential component of a web site. Questions 
such as: who?, what?, when? and where? should have answer on it. 
Problem: 
How does the user know where the user is? How does the user know where he will go? 
Who does the site manage? What is the purpose of the site? 
Forces: 
• Users need know where they are  
• User wants to know where they can go next 
• A complex web site can be very disorienting for users 
• Users who are familiar with the structure and content of a web site should can jump 

straight to the space where they want to go 
Solution: 
Provide a checkpoint where the user feels like at home. Homepage is a place where the 
user can go back if he is disoriented. Its layout puts important information at top (News 
and suggestions), includes logos (Notable quotation), search approaches (Search) and 
information contact (Contact us, About this, Subscribe here) . 
Consequences: 
Provide improvements on the functionality, control and navigation 
Examples & 
Implementation 
details: 

http://www.apple.com, http://www.ieee.org Any web site has a 
homepage. It is a specific page that introduces distinctive features. It 
has links to different sections of the web site, such as news, contact, 
about us, search etc. References to homepage should be included in 
every pages of the web site (A second opportunity). 

 

 

http://www.apple.com/
http://www.ieee.org/


Notable quotation 
Motivation: 
When you are designing a web site you should provide information about its purpose.  
Problem: 
How does the user knows what is the main feature of the web site owner?  
Forces: 
• Users are in a hurry 
• Users don’t read web pages, they have a look at pages 
Solution: 
Include a tag line that explicitly summarise what the site or company does. Its should be 
brief, simple and to the point. Include a short description of the site in the window. 
Consequences: 
Provide improvements on visual clarity, functionality and feedback 
Examples & 
Implementation 
details: 

http://www.coolhomepages.com, http://www.bbva.es These web 
pages has images or taglines that implements this pattern. A tagline 
is a short phrase that communicates the "who" and "why' of your 
Web site. 
The following elements create effective taglines: 
subject + audience + organization. 
 

 

About this 
Motivation: 
All business web sites need to provide a clear way to find information about the company 
no matter how big or small the company is. 
Problem: 
How does the user know who the owner of web site is? 
Forces: 
• People like to know with whom they are doing business 
• Getting company information might be the sole reason that users come to the site 
• Many users want to know who is behind the service 
Solution: 
Include a link to an “About Us” section that gives users an overview about the web site 
owner and links to any relevant details about your products, services, company values, 
business proposition, management team, and so forth. 
Consequences: 
Provide improvements on functionality and feedback. 
Examples & 
Implementation 
details: 

http://www.sunspot.net, http://www.ireland.com This pattern is 
implemented by adding a page or a section where information about 
owner of the page can be found. Normally a link to this section is 
situated in the homepage.  

 

http://www.coolhomepages.com/
http://www.bbva.es/
http://www.sunspot.net/
http://www.ireland.com/


Search 
Motivation: 
Search is one of the most important elements of a homepage (Home sweet home), and it 
is essential that users be able to find it easily and use it effortlessly.  
Problem: 
How can the user find specified information? 
Forces: 
• User wants to know if the searched information is on the web site 
• User doesn’t read web site. He/she has a look at it. 
Solution: 
Offer a search engine. Give users an input box on the homepage to enter search queries, 
instead of just giving them a link to a search page [9]. Search on the homepage should 
search the entire site default [12]. 
Consequences: 
Provide improvements on functionality and control. 
Examples & 
Implementation 
details: 

http://www.paginasamarillas.es, http://www.microsoft.com This 
pattern is implemented by providing a search form. Search forms are 
the user interface of the search engine. It can consist on a very 
simple form with just a text field and a button, it can be a page and 
add a lint to it in your navigation. Advanced search capabilities can 
be worth adding. An advanced search page with options for phrases, 
multiple fields, special collections or zones, and date ranges allows 
them to perform more precise searches. 

  
 

News and suggestions 
Motivation: 
Users want to know if there are new features in the web site. Users admit suggestions and 
want to know offers and promotions. 
Problem: 
How does the user know what the news in the web site are? 
Forces: 
• User doesn’t read web site. He/she has a look at it 
• Users are in a hurry 
Solution: 
Include news and suggestions sections at the homepage where users will have rapid 
access to new services offered by Web site 
Consequences: 
Provide improvements on functionality and navigation 
Examples & 
Implementation 
details: 

http://www.microsoft.com, http://www.terra.es This pattern is 
implemented by placing latest news or suggestions in an outstanding 
place in the homepage (Subscribe here).  

http://www.paginasamarillas.es/
http://www.microsoft.com/
http://www.microsoft.com/
http://www.terra.es/


Contact us 
Motivation: 
All business web sites need to provide a clear way to contact with web site owner. 
Problem: 
How can the user get additional information on products or documents? 
Forces: 
• People like to know with whom they are doing business 
• Getting company information might be the sole reason that users come to the site 
• Many users want to know how is behind the service 
Solution: 
Include a “Contact Us” link on the homepage that goes to a page with all contact 
information for your company (About this). 
Consequences: 
Provide improvements on feedback. 
Examples & 
Implementation 
details: 

http://www.intel.com, http://www.lucent.com This pattern is 
implemented by including a page or a section where user can find 
contact information, in many occasions this information is included 
at the bottom of all the pages of the web site. In others cases, a form 
is provided to the user. This form contains features like a text area or 
text fields for the user can provide his email and other comments. 
 

 

Subscribe here 
Motivation: 
Users want not to visit a web site everyday, they prefer to be informed when new 
products or news arrive. 
Problem: 
How can the user have got access to additional and periodic information? 
Forces: 
• User is in a hurry 
• User wants to be informed  
Solution: 
Provide an approach where users  can book on-line by providing an e-mail. So, the web 
site owner can send information to registered users about news and suggestions (News 
and suggestions). 

http://www.intel.com/
http://www.lucent.com/


Consequences: 
Provide improvements on feedback. 
Examples & 
Implementation 
details: 

http://www.prenhall.com, http://www.sun.es This pattern is 
implemented by using a simple form where user usually only have to 
provide an email. In other occasions is necessary provide more 
information related with the user’s profile and preferences, so it is 
possible provide personalised information. Unsubscribe option 
should be provided too. 
 

 
 
In this moment, we have a departure point to start the development of the web site. With a 
language, the redaction of pattern includes references to others patterns of low order. If in 
this moment, our beginner designer identifies the need of getting  information from the 
user, could read The form pattern and related ones – Still working, Search, Contact us, 
Subscribe here, Nobody must know it and I saw you before. Next, some of them are 
explained 

The form 
Motivation: 
The user has to provide information, usually short answers to questions 
Problem: 
How can the user provide preformatted information? 
Forces: 
• The user needs to know what kind of information to provide 
• Users generally do not enjoy supplying information this way 
• It should be clear what is required, and what is optional 
• The user is in a hurry 
Solution: 
Provide appropriate “blanks” to be filled in, which clearly and correctly indicate what 
information should be provided [11]. Search, Subscribe here, Contact us are examples of 
forms. In occasions, a form fills a complete page. The user needs know if his/her submit 
was correctly processed (Still working). In some situations, we need to get confidential 
information of the users then must to provide additional security (Nobody must know it!) 
Consequences: 
Provide improvements on the functionality 
Examples & 
Implementation 
details: 

http://www.iomega.com, http://www.iberia.es These web pages and 
some others like them, where the user can provide information 
implement this pattern. An HTML form is a section of a document 
containing normal content, markup, special elements called controls 
(checkboxes, radio buttons, menus, etc.), and labels on those 

http://www.prenhall.com/
http://www.sun.es/
http://www.iomega.com/
http://www.iberia.es/


controls. Users generally complete a form by modifying its controls 
(entering text, selecting menu items, etc.), before submitting the 
form to an agent for processing (e.g., to a web server, to a mail 
server, etc.) 

 
 

Particular examples of this patterns are Contact us, Subscribe here. 

Still Working 
Motivation: 
Web sites are places where users can download information, images, files or applications, 
but this downloading can take a lot of time, create significant delays or be accomplished 
in different ways.  
Problem: 
How does the user know when his/her operations have finished or what is their current 
state? 
Forces: 
• The user wants to know how long they have to wait for the process to end 
• The user wants to know how fast the progress is being made, especially if the speed 

varies 
• Sometimes its impossible to tell how long the process is going to take 
Solution: 
Show the user a status information of some kind, indicating how far along the process is 
in real time. Images, files and any element that the user can download should have got 
information about size, so users can know how long have to wait for the download 
process. Images and text should be downloaded on-demand (Size is important). 
Consequences: 
Provide improvements on the functionality, feedback and error prevention 
Examples & 
Implementation 
details: 

http://www.google.com, http://www.acrobat.com Many web pages 
needs load a plug-ing to get a correct visualisation, a progress bar is 
used to provide such information. Sometimes a task running within a 
web site might take a while to complete. A web page with usability 
provides some indication to the user about how long the task might 
take and how much work has already been done. If you don't know 
or don't want to indicate how complete the task is, you can use a 
cursor or an animated image to indicate that some work is occurring. 
If, on the other hand, you want to convey how complete the task is, 
then you can use a progress bar like this one (
 

http://java.sun.com):  

 
 



Sometimes, you can't immediately determine the length of a long-
running task. You can show this uncertainty by putting the progress 
bar in indeterminate mode. In this mode, the progress bar displays 
animation to indicate that work is occurring. In the Java look and 
feel, indeterminate progress bars look like this:  
 

 
 

Nobody must know it! 
Motivation: 
If user provides private information, he/she will need to have the right to expect 
confidentiality. Rapid advances in communication technology have accentuated the need 
for security in the Internet.  
Problem: 
How can provide private information in secure way? 
Forces: 
• Users want to security 
• Users do not need to know technical aspects 
Solution: 
Implement security in web site. Users should be registered in order to access to private 
sections on the web site, but sometimes only a login and password is not enough [13]. 
Consequences: 
Provide improvements on feedback and control 
Examples & 
Implementation 
details: 

http://www.bankofamerica.com, http://www.cdnow.com This pattern 
is implemented with login form where we’ll ask the user for their 
username and password by using php or asp. But unless your form is 
located on a secure server, the information is transmitted in cleartext, 
and encryption won’t occur until the php script runs. 
 

 

I saw you before 
Motivation: 
When a user comes back to a web site he needs know what places he has visited, what 
documents he has downloaded and if there are modifications from last visit. 
Problem: 
How does the user know where he/she has been? 
Forces: 
• User does not want to loose his time 
• User wants to receive personalised information 

http://www.bankofamerica.com/
http://www.cdnow.com/


Solution: 
Use an approach to maintain state variables on the Web like cookies. Since HTTP is a 
non-persistent protocol, it is impossible to differentiate between visits to a web site, 
unless the server can somehow mark a visitor. 
Consequences: 
Provide improvements on feedback and error prevention 
Examples & 
Implementation 
details: 

http://www.kinkos.com, http://www.americanairlines.com This 
pattern is implemented by using cookies. Web cookies are simply 
bits of software placed on your computer when you browse web 
sites, so the web site will recognise the user’s computer when he 
comes back to visit again. Cookies have some beneficial things. For 
example, when you log on or purchase online to certain sites, did 
you ever notice that when you return again you do not have to sign 
on the next time? That’s because it stored your password and id on 
your machine in a cookie. So user’s workload is reduced. 

4. Conclusions 

This paper presents a first approach of a web design pattern language. Its main goal 
is to gather the experience on web design and provides a communicative tool than can be 
used by every stakeholder in a project. The pattern language distinguishes between three 
design levels: the web site, a web page and the ornamentation. The recurring principle 
through the pattern language is supporting users to achieve usability improvement.  

Web site patterns are associated with common features that can be found on many 
web sites and are extrapolated from another different context. The user requires know 
where he/she is (Welcome) and where he/she can go (Where can I go?). The user wants to 
visit the web site in a suitable way (We speak your language [6], Have you got everything 
you need?, Everything is similar). 

Web page patterns introduce design patterns related with web page design. They 
are usual and considered features when we are designing web sites. In these hierarchical 
structure a homepage is necessary (Home sweet home). In some occasions, the user needs 
provide information then he/she must fill a form (The form) and always the user wants to 
have the control (Still working, A second opportunity) and to visit web sites to his/her own 
pace (Keep your language, Be careful!). 

Ornamentation patterns introduce decoration features of a web site. These features 
provide improvements on the general usability of any web site. They are related with the 
use of colours (Everything depends on colour...), sizes (Size is important), security 
(Nobody must know it!) and providing location references (You are here, Contact us) and 
information (I saw you before, News and suggestions, Subscribe here). 

Patterns can be used in web design to improve a human-centred design, as a 
communicative tool and as checklist to evaluate the usability of a web site, this last idea is 
in progress. This pattern language is been shepherd in this time in other paper that was sent 
to VikingPLoP. 

5. Acknowledgements 

This work is supported in part by the Spanish  CICYT TIC 2000-1673-C06-06 and 
CICYT TIC 2000-1106-c02-02 grants.  

http://www.kinkos.com/
http://www.americanairlines.com/


 

6. References 

[1]. Christopher Alexander. “A Pattern Language”, Oxford University Press, 1977.  
[2]. Christopher Alexander. “The Timeless Way of Building”, Oxford University Press, 1979.  
[3]. Constantine Stephanidis, Anthony Savidis. “Universal Access in the Information Society: 

Methods, Tools and Interaction Technologies.” Springer-Verlang. 2001. 
[4]. Thomas Erickson, “Supporting Interdisciplinary Design: Towards Pattern Languages for 

Workplaces”. 1997. Http://www.pliant.org/personal/Tom_Erickson 
[5]. María Lozano, Isidro Ramos, Pascual González. “User interface Specification and 

Modeling in an Object-Oriented Environment for Automatic Software Development”. 
IEEE 34th International Conference on TOOLS USA. 2000. 

[6]. Fernando Lyardet, Gustavo Rossi. “Web Usability Patterns”. EuroPLoP, 2001. 
http://hillside.net/patterns/EuroPLoP2001/papers.html 

[7]. Gerard Meszaros, Jim Doble, “A Pattern Language for Pattern Writing”, in Martin, Riehle, 
Buschmann, PloP Design 3. Reading, Mass: Addison-Wesley, 1994. 

[8]. Jakob Nielsen, “Designing Web Usability: The Practice of Simplicity”. New Riders 
Publishing. 2000. 

[9]. Jakob Nielsen, Marie Tahir. “Homepage Usability: 50 Websites deconstructed”. New 
Riders. 2002. 

[10]. Ben Shneiderman. “Designing the User Interface: Strategies for Effective Human-
Computer Interaction”. Addison Wesley. 1998. 

[11]. Jenifer Tidwell. “Common Ground: A Pattern Language for Human-Computer 
Interaction”. http://www.mit.edu/~jtidwell/. 1998/99 

[12]. Martijn van Welie. Interaction design patterns. http://www.welie.com/. 2001 
[13]. Joseph Yoder, Jeffrey Barcalow. “Arquitectural Patterns for Enabling Application 

Security”. PloP’97 D-4 book. 1998. 
[14]. Yale C/AIM WWW Style Manual http://info.med.yale.edu 

Apple’s Web Design Guide http://applenet.apple.com 
IBM Web Design Guidelines http://www.ibm.com/IBM/HCI/guidelines 
Mary Evans. “Web Design: An Empiricist’s Guide”. University of Whasington, Seatle, 
Washington. 1998. 

 

http://www.pliant.org/personal/Tom_Erickson/Patterns.Chapter.html
http://hillside.net/patterns/EuroPLoP2001/papers.html
http://www.mit.edu/~jtidwell/
http://www.welie.com/
http://info.med.yale.edu/
http://applenet.apple.com/
http://www.ibm.com/IBM/HCI/guidelines


 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



 
Software Decisions with Pattern Relations 

 
 

Martin Auer Wolfgang Zuser Valter Vieira de Camargo 
  

Vienna University of Technology University of São Paulo 
Institute of Software Technology Instituto de Ciências Matemáticas 

Research Industrial Software Engineering e de Computação (ICMC/USP) 
1040 Vienna, Austria Cep 13560-970 São Carlos, SP, Brasil 

{m.auer, zuser}@swt.tuwien.ac.at valtercamargo@hotmail.com 
 
  

 
 
Abstract 
The concept of patterns is gaining widespread acceptance in the software community--in un-
derstanding domains, in reusing elegant solutions’ designs and in communicating efficiently. 
Several types of patterns (for example, analysis patterns, design patterns or idioms) cover 
different aspects of software solutions. Other patterns describe important issues of the soft-
ware development process.  

Despite recent efforts, many patterns or pattern languages remain isolated and don’t re-
late well to each other. While analysis patterns are widely used to support domain under-
standing, other powerful ways to use them remain unexploited. 

In this paper, applications of patterns and idioms are described to support software deci-
sions. First, existing analysis patterns are transferred to a new domain, and modified wher-
ever necessary due to the target domain’s requirements. Then, analysis patterns are related to 
concrete ways of designing and implementing working solutions, expressed by design patterns 
and idioms. Finally, these relations are used to support software decisions. 

The proposed approach of translating existing analysis patterns to new domains and re-
lating them to solution-oriented patterns substantially eases domain understanding and soft-
ware decision making. 
 
 
 
 

1. Introduction 
 
The concept of patterns is becoming ubiquitous in software engineering and development. 
Originally introduced in [AIS77] in the context of architecture, it gained widespread accep-
tance with [GHJ95], which cover design patterns. Other pattern families include analysis, 
process and architectural patterns [Fow97, Amb98, BMR96]. 
 

Patterns are short, simple solutions to common problems arising time and again in compa-
rable situations, or, as [CNM97] put it, “templates worthy of emulation”. They help to 

- understand domain-related problems; 

 
Copyright © 2002, Martin Auer, Wolfgang Zuser, Valter Camargo.  
Permission is granted to copy for the SugarloafPLoP 2002 Conference. 



- find existing and working solutions;  
- communicate consistently and thus more efficiently by defining an instrumental 

vocabulary, a pattern language. 
 

Yet many possible applications of patterns remain unexploited. This paper proposes the 
usage of patterns to  

- efficiently reach domain understanding by applying existing patterns from similar do-
mains and modifying them according to the target domain’s requirements; 

- connect analysis issues (expressed in analysis patterns) directly to design and imple-
mentation issues (design patterns, language idioms, or commercial off-the-shelf solu-
tions) in order to collect and document possible design and implementation decisions 
along with their implications; 

- support software decisions which have to take into account high-level and non-
functional requirements as maintainability, understandability, stability etc. 

 
This application of software patterns is being investigated in an on-going research effort at 

the Institute of Software Technology at the Vienna University of Technology, which tries to 
use analysis patterns and pattern relations to assess the domain of software measurement and 
to improve software measurement infrastructure with protocols and data formats.  
 

Especially the design of protocols and data formats (as in this case) or the design of data-
base structures which should be stable with regards to future changes can benefit from the 
proposed approach. 
 

Section 2 points out related work. Section 3 describes the process of collecting a possibly 
extensive set of analysis patterns. Section 4 describes relations between patterns at different 
software development life-cycle stages. Section 5 shows the application of pattern relations 
with regard to software decision making. Section 6 summarizes the benefits of the proposed 
approach. 
 
 
 
 

2. Related Work 
 
[AIS77] defined many patterns in the context of architecture. [GHJ95] used similar templates 
in describing software design patterns. Other patterns families include analysis patterns 
[CNM97, Fow97], process patterns [Amb98] and architectural patterns [BMR96, HBH99]. 
 

This paper has several different points of contact to patterns-related issues. 
 

1. Domain understanding and coverage. Analysis patterns have been used successfully 
to devise domain-specific applications and to share domain knowledge by acting as a 
common vocabulary [Fer98]. Examples include: 

- [Kel98] presents several patterns from the domain of insurance systems. 
- [WH98] describe analysis patterns for e-commerce transactions and proposes a 

component library based on these patterns. 

 



-  [Fer98] points out the similarity of a health-care solution to a commercial da-
tabase application. 

 
2. Relations between patterns. Right from the first pattern-related publications, patterns 

were described as to be closely related to other patterns. This fact was expressed in 
[GHJ95] by a dedicated section “related patterns” for each pattern’s descriptions and 
by an overview chart describing common relations between different design patterns. 

[Zim95] goes one step further and organizes pattern relationships in different cate-
gories like “X uses Y in its solution”, “variant of X uses Y in its solution”, “X is simi-
lar to Y”. Some limitations of existing approaches are: 

- Usually, relations are described between patterns of the same type (e.g. analy-
sis patterns, design patterns,..) only. 

- Relations are described between patterns of the same publication only. Al-
though recently authors tend to establish relations to existing patterns, these are 
mostly limited to well known patterns like those from [GHJ95].  

 
3. Making software decisions. When building software systems, many decisions have to 

be made, for example, whether a solution should be “strong” (i.e., very specialized and 
efficient) or “weak” (i.e., more general and flexible, yet less efficient [VG98]). Other 
issues involve reusability, maintainability, simplicity, understandability etc. Especially 
architectural patterns [BMR96] consider typical high-level trade-off decisions.  

It remains difficult to reuse software decisions because of the strong dependency 
between the domain/initial requirements and these decisions. Even in the case of simi-
lar domains and requirements, software decisions usually can’t be reused because of 
the lack of documentation and missing mappings to domain issues or requirements.  

 
These three points of contact build the elements of a process which uses analysis patterns 

and pattern relations to support software decisions. 
 
 
 
 

3. Create Analysis Pattern Set 
 
[Fow97], who applies patterns from the health care domain to the corporate finance one and 
modifies them according to the specific needs, states: “By allowing patterns to migrate like 
this, I hope that more and more useful patterns will emerge, […]”. 
 

Indeed, many patterns proposed by [Fow97] can be transferred with little or no change to 
other domains.  
 

This transfer of analysis patterns to new domains substantially eases the creation of an ini-
tial set of patterns which describe the new domain. The resulting patterns can then be modi-
fied according to the target domain’s needs. 
 

Thus, the creation of the analysis pattern set for a new domain, the target domain, can be 
performed with the following steps: 

 



 
1. Identify similar domains. Many domains have a lot of similarities which allows adopt-

ing many of their analysis patterns to the new domain. 
2. Identify those patterns which can be transferred to the new domain without any 

changes. 
3. Identify those patterns which can not be transferred to the new domain due to the new 

domain’s context. 
4. Identify those patterns which have to be modified in order to be applicable to the new 

domain, modify them and document the rationale of the modifications. 
5. Create new patterns which are not covered by the existing and modified patterns or 

which should replace the omitted ones. 
 

This approach has several benefits: 
- Working solutions are applied to similar problems (this benefit is the one usually ob-

tained by applying patterns). 
- Analysis issues are less likely to be forgotten or underestimated. For example, when 

going through a list of analysis problems from a similar, well-explored domain some 
analysis patterns which may not have been considered important or considered at all 
may come to the attention of the new domain’s analyst. 

- Using this approach several times, and updating the set of patterns over time makes it 
far more likely to reach a very extensive and maybe even complete coverage of the 
domain with analysis patterns. 

 
By documenting the rationale of the transfer decisions, the new domain’s analysis steps 

can be discussed and considered when changes or updates have to be made, maybe by differ-
ent persons. A lot of background and domain information, as well as trade-off decisions are 
encoded in an easily accessible format for future usage. 
 
 
 
 
Example 
The step of creating a set of analysis patterns for the (target) domain of software metric col-
lection is currently being investigated at the Institute of Software Technology at the Vienna 
University of Technology. In order to devise a set of “software metric analysis patterns”, 
well-known analysis patterns from the domains of observation and measurement in health 
care and corporate finance (described extensively in [Fow97]) are transferred to the target 
domain. Some patterns are changed, if necessary, according to specific software metric do-
main requirements. 
 

The main differences between the source and target domains (health care/corporate fi-
nance and software metrics, respectively) are: 

- The source domain environment is quite stable; 
- The source domain has rigid restriction on data security and history; 
- The target domain of software metric collection operates in the ever-changing and 

highly heterogeneous software development environment; 
- The target domain has less rigid restrictions on data security and archives. 

 

 



Despite the differences, the similarity of the two domains allows to reuse many existing 
patterns and considerations. 
 

In our example, from the approximately 16 measurement patterns proposed in [Fow97],  
- 4 can be transferred without changes (the basic patterns Quantity, Measurement, Pro-

tocol, Phenomenon With Range); 
- 8-10 can be applied to the new domain with minor changes (for example, Conversion 

Ratio, Active Observation/Hypothesis/Projection); 
- 2-4 can be omitted in the new domain (for example, the Subtyping Observation pat-

tern). 
- Furthermore, 4-6 new patterns have to be introduced to specifically address software 

metric issues not covered in the existing patterns (for example, to handle distance met-
rics like coupling between classes). 

 
Examples for some transferred and/or modified patterns: 

 
Pattern Explanation 
 
Observation, 
Category Observa-
tion 

 
Fowler proposes several patterns to handle qualitative ob-
servations in addition to quantitative observations. 

We propose to reuse and transfer the pattern using Phe-
nomenon objects [Fow97, page 45] to the target domain 
and omit the one using Category objects [Fow97, page 43]. 

A concrete occurrence of this pattern in the domain of 
software metrics would be the measurement of complexity. 
Complexity can be measured using McCabe’s metrics 
(which would be an object of the class Measurement in the 
diagram below); alternatively it can be assessed “manu-
ally” by visually interpreting the graphical complexity of a 
program’s flow graph and mapping this impression on an 
ordinal scale, i.e.,  to different perceived complexity levels 
like “simple”, “complex”, “very complex”. The latter 
mapping can be expressed with objects of the class Phe-
nomenon. 
 
Original pattern: 
 
 
 
 
 
 
 
 
 
 
 
 

0..nPhenomenon 
Type 

Measurement 

Observation 

0..n 

Phenomenon 
 

Category Obs. 

0..n

 



If rules of thumb are used to map McCabe values to 
complexity classes (for example, McCabe>15 => “very 
complex”) then in order to specifically address this de-
pendency between quantitative and qualitative observa-
tions, the Associated Observation pattern [Fow97, page 
50] can be applied. 

 
Dual Time Record 

 
Fowler’s original Dual Time Record pattern includes two 
Time Record objects: one for the applicability on an ob-
servation and one for the recording time. Each object can 
be either a Time Point or a Time Period object. 

We propose to explicitly make the applicability a Time 
Period and the recording time a Time Point object. This 
could avoid problems in the semantics of Time Point-type 
observation applicability. 
Original Dual Time Record pattern: 
 
 
 
 
 
 
 
 
 
 
Modified Dual Time Record pattern: 
 
 
 
 
 
 
 
 
 

In the original pattern’s description, support for ap-
proximate time points is mentioned as potentially valuable 
(when for example medical information is recorded by the 
doctor, the patient might not remember the exact time 
point of a certain event). This should not be necessary in 
the (usually time-stamped) context of software artifacts. 

Time Period 

Time Point 

Observation 

Time Record 

1 1

1

Time Period Time Point 

Observation 

1

 
A detailed list of the transferred analysis patterns and the changes made to them is shown 

in [Aue02b]. 
 
 
 

 



 

4. Patterns Relations 
 
After constructing a possibly extensive set of analysis patterns for the domain, each pattern 
should be related to elements of the solution, namely to design patterns or language idioms. 
While there are several approaches to support the transition form analysis to design (even a 
pattern language is proposed to support it, see [Ker95]) we think that the simple concept of 
relation is sufficient to document possible analysis-design transitions. 
 

We don’t interpret the mathematical notation of “relation” strictly. We propose this meta-
phor to connect two or more elements of different sets, where the relation should express 
“Pattern A can be expressed or implemented by pattern or idiom or solution B in some way”.  
 
 
 
 
Examples 
The analysis pattern Associated Observation [Fow97, page 50] records the chain of events in 
a diagnosis procedure. The idea of the pattern is to allow links between different observations 
(as an example, the link “thirst and weight loss indicate diabetes” is given). 
 

Such associated observations can lead to different designs and implementations. First, let 
us take a look at different ways of designing the solution of this pattern: 
 

- The analysis pattern Associated Observation could be expressed by the design pattern 
Observer [GHJ95] at the design level, yielding the analysis/design relation (Associ-
ated Observation, Observer). 
The Observer design pattern describes objects that are notified whenever the object 
they are depending on changes its state. One could think of a “Diabetes Observer” 
class which changes state when certain conditions are met in the primary diagnosis 
data. 

- Another, less obvious design approach would be to use the design pattern Interpreter 
[GHJ95]. This pattern interprets languages defined by a representation grammar.  
One could express diagnoses as sentences of a grammar-based language, which serve 
as input to an interpreter. A “Diabetes Interpreter” would then try to assess whether 
certain conditions are met by a specific diagnosis sentence. 

 
At the implementation level, there are many idioms that might be used to implement the 

analysis pattern. 
 

- Triggers could be used at the database level to implement the pattern. 
- Alternatively, it could be implemented using some Java idiom for dynamically inter-

preting rules or formulas encoded in strings. This way, a concrete associated observa-
tion would be defined in the software system by a rule or formula (a string like “if 
some_attribute=’x’ then diabetes_observation=’true’”) which is easy to customize, as 
it is not hard-coded in Java.  

 



- Another way of implementing the concept would be to use some OLAP (online ana-
lytical processing) tool’s dynamic formula capability. Hand in hand with this idiom, a 
whole solution context is proposed -- the use of a COTS tool instead of custom cod-
ing. 

 
All relations express that the analysis patterns’ solution part can be designed or imple-

mented using a specific approach. Such relations describing possible future designs or imple-
mentations can affect software decisions in very early life-cycle stages (see next section). 
 

An example of an application of pattern relations is the development of a metric data ex-
change format at the Institute of Software Technology at the Vienna University of Technol-
ogy. Analysis patterns are related to XML idioms which can express the analysis patterns’ 
structure. For example, there are dedicated data types in the XML schema language which 
support range information encoding and verification including whether a range or interval is 
open or closed1. This makes it the ideal idiom to be related to the Range analysis pattern (de-
scribed in [Fow97, page 76]). 
 
 
 
 

The transition between analysis and design/implementation has always been of interest to 
software engineers. Basing transition decisions on known sets of design patterns and idioms 
may ease this process. 
 

Several benefits can be derived from mapping analysis patterns to possible design patterns 
and idioms early in the software life-cycle: 

- People tend to implement solutions in their preferred languages and methods. If forced 
to document these transition decisions early, sub-optimal decisions can be easily de-
tected in a very early life-cycle stage. 

- The overall process (create a set of analysis patterns, then relate its elements to possi-
ble designs and implementations) lets developers proficient in different design para-
digms and programming languages easily compare and weigh their different propos-
als. 

- By documenting not only one proposed design or implementation, but also other pos-
sible variants, the factors affecting the implementation decision become an integral 
part of the documentation. 

- The tracing of the domain model to its implementation details is improved. Changes to 
the domain model can be easily propagated into the design model and implementation 
details. 

                                                 
1 The following XML schema snippet defines a range type based on the built-in primitive data type “integer” by 
setting the so-called facets “minInclusive” and “maxInclusive”. Facets allow to customize schema elements in a 
wide variety of ways. 
 
<xsd:simpleType name=”myInteger”> 
  <xsd:restriction base=”xsd:integer”> 
    <xsd:minInclusive value=”1000”/> 
    <xsd:maxInclusive value=”9999”/> 
  </xsd:restriction> 
</xsd:simpleType> 
 

 



 
Certainly there are some problems in this approach as well:  
- Sometimes there will be no adequate design pattern for a certain analysis issue, espe-

cially if the analysis pattern is large and its solution design counterpart therefore 
unlikely to be of general interest--thus being no design pattern by itself. An example 
for such a large analysis pattern is the Portfolio analysis pattern [Fow97, page 183] 
consisting of 10 classes and 10 relations. Yet in such cases the solution design can 
usually be split up into several smaller parts of general applicability, into real design 
patterns. One part of the Portfolio pattern, for example, expresses a range of dates, 
which can be mapped to an XML range idiom (see the example above). 

- The design patterns given in [GHJ95] can’t cover all analysis patterns. Many other 
pattern languages must be considered as well, but collecting, learning, refining and 
classifying the large number of patterns is an immense task--in fact, we very much 
doubt if there will be anything close to a “unified design pattern language” any time 
soon. Yet notwithstanding such gaps, existing pattern sets offer a good starting point 
for possible transitions, whereas a gap might indicate the need for a new design pat-
tern. 

 
Another interesting issue in this context is how non-functional requirements can be ex-

pressed with pattern relations. Although some analysis patterns are concerned about later non-
functional implications of the model they provide (for example, in the description of the 
Measurement analysis pattern [Fow97, page 41] it is indicated that this pattern’s approach can 
avoid a class to expose too large a number of operations in its interface), they mostly focus on 
structural or dynamic domain aspects from a functional point of view. 
 

Design patterns and idioms, on the other side, usually are aware of such non-functional is-
sues like performance, understandability and maintainability. 
 

By using relations between analysis patterns striving for a simple model on one hand and 
design patterns or idioms solving problems under constraints on the other, non-functional 
implications can be attached to the analysis model. 
 
 
 
 

5. Software Decision Support 
 
Once a set of pattern relations is obtained, it can be used effectively to support early life-cycle 
software decisions. 
 

A first step might be to depict the relations between analysis patterns to design patterns 
and idioms expressing similar problems or to idioms expressing the same problem in different 
programming languages in a tabular form. This can point out sets of design patterns and/or 
idioms according to several criteria: 

- Are there any analysis patterns that can only be implemented with one single imple-
mentation idiom or design solution? Are there any idioms, whose related analysis pat-
terns can all be expressed with other idioms as well? 

 



- What is the minimal set of design patterns and idioms that cover (i.e., express, imple-
ment) all analysis patterns? 

- How many design patterns and idioms are necessary in different contexts (for exam-
ple, using two different programming languages or object frameworks) to express all 
analysis patterns? 

- Will newly introduced analysis patterns (maybe some already known patterns for the 
next release of the software) still be expressible with the set of idioms or design solu-
tions? Will a database design be stable when requirements slightly change? Can a data 
format or protocol encode all identified analysis issues? 

 
 
 
 
Example 
Pattern relations between analysis patterns and XML idioms are currently being used at the 
Institute of Software Technology at the Technical University of Vienna to specify and for-
mally verify the expressiveness of the metric data exchange format SIMDEF (whose initial 
draft is described in [Aue02])2. 
 

The analysis patterns obtained by transferring and modifying existing patterns, as well as 
by introducing new ones are related to XML idioms able to encode software metric data struc-
tures. The final version of the metric data exchange format SIMDEF will be a subset of all 
possible idioms and strives to encode metric data in a light-weight and human-readable way.  
 

Several high-level requirements influence the final software implementation decisions: 
- Although a very small set of XML idioms could be used to express all software meas-

urement value types, or patterns, some additional idioms are likely to be used to en-
hance the formats understandability, for example, by specifically supporting the com-
mon case of multiple selection measurement values, instead of modeling it using a set 
of single selection values. 

- Those XML idioms are preferred that can easily and transparently be mapped to flat 
database structures for later analysis operations. 

- Those XML idioms are preferred that support automatic verification of data formats, 
therefore XML schemas are used to define the data structure. 

 
 
 
 
 

                                                 
2 SIMDEF (SImple Metric Data Exchange Format) is an XML data format defined entirely by XML schema 
expressions to exchange typical metric information (like work report data, questionnaire data, etc.) between 
metric data providers (like IDEs, static source code analyzers,..) and a central metric hub which is implemented 
as a Web service to a central repository, a relational database. The data is communicated as SOAP (Simple Ob-
ject Access Protocol) messages to the hub. The format and the corresponding protocol’s technological choices 
are aimed to support heterogeneous and ever-changing software environments, thus reducing data collection 
costs. 

 



6. Conclusions 
 
The proposed approach of creating a domain-covering set of analysis patterns, possibly by 
starting off with patterns from similar domains, of relating analysis patterns directly to design 
or even implementation patterns/idioms which can express the analysis patterns, and of select-
ing those relations for implementation which satisfy some high-level requirements like reus-
ability, maintainability, stability etc. has several benefits: 
 

- Working solutions are used as a starting point (this is pattern intrinsic). 
- Using this approach repeatedly in the same domain makes it more likely to reach a 

very extensive and maybe even complete coverage of a domain with analysis patterns. 
- By documenting the rationale of the analysis to design/implementation transitions, the 

domain’s analysis steps can be traced back, and domain information and trade-off de-
cisions are encoded in an easily accessible format. 

- Sub-optimal design decisions can be detected in early life-cycle stages. 
- Developers with different backgrounds can easily compare and weight their different 

approaches. 
 

Especially database structure or protocol design can benefit from this approach, which 
substantially enhances the construction of stable software solutions. The approach is currently 
being adapted to the domain of software metric collection at the Institute of Software Tech-
nology at the Vienna University of Technology.  
 
 
 
 

7. References 
 
[AIS77] C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson, I. Fiksdahl-King, S. Angel, 
A Pattern Language, Oxford University Press, 1977 
[Amb98] Scott W. Ambler, Process Patterns: Building Large-Scale Systems Using Object 
Technology, Cambridge University Press, 1998 
[Aue02] M. Auer, Measuring the Whole Software Process: A Simple Metric Data Exchange 
Format and Protocol, Proc. of 6th ECOOP Workshop on Quantitative Approaches in Object-
Oriented Software Engineering (QAOOSE 2002), Málaga, June 11th, 2002 
[Aue02b] M. Auer, Translating Measurement Patterns to Software Metrics, Tech. Report 02-
08, Institute of Software Technology, Vienna University of Technology 
[BMR96] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, Michael Stal, 
Pattern Oriented Software Architecture - A System of Patterns, Wiley, 1996 
[CNM97] Peter Coad, David North, Mark Maryfield, Object Models: Strategies, Patterns, and 
Applications, Yourdon Press, New Jersey, 2nd ed., 1997 
[GHJ95] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of Reus-
able Object-Oriented Software, Addison-Wesley, 1995 
[HBH99] J. Hall, L. Barroca, P. Hall, editors, Software Architectures - Advances and Appli-
cations, Springer-Verlag, 1999 

 



[Fer98] Eduardo B. Fernandez, Building systems using analysis patterns, in Proceedings of 
the third international workshop on Software architecture, ACM, pages 37-40, Orlando, Flor-
ida, 1998 
[Fow97] Martin Fowler, Analysis Patterns: Reusable Object Models, Addison-Wesley, 1997 
[Kel98] Wolfgang Keller, Some Patterns for Insurance Systems, PLoP’98, 
http://www.objectarchitects.de/ObjectArchitects/papers/index.htm 
[Ker95] Normal L. Kerth, Caterpillar’s Fate: A Patterns Language for the Transformation 
from Analysis to Design, in: James O. Coplien, Douglas C. Schmidt, ed., Patterns Languages 
of Program Design, pp 293--324, Addison-Wesley, 1995 
[VG98] Iris Vessey, Robert L. Glass, Strong Vs. Weak Approaches to Systems Development, 
CACM 41(4), pp 99--102, 1998 
[WH98] Hans Weigand, Willem-Jan van den Heuvel, Meta-Patterns for Electronic Commerce 
Transactions based on FLBC, Hawaii Int Conf on System Sciences (HICSS'98), IEEE Press, 
1998 
[Zim95] Walter Zimmer, Relationships Between Design Patterns, in: James O. Coplien, 
Douglas C. Schmidt, ed., Patterns Languages of Program Design, pp 345--364, Addison-
Wesley, 1995 

 



Copyright © 2002,  Valter Vieira de Camargo; Edson Luiz Recchia; Rosângela Penteado. Permission is granted 
to copy for SugarloafPLoP 2002 Conference. All other rights reserved. 
 

Aplicabilidade da Família de Padrões de Reengenharia FaPRE/OO na 
Engenharia Reversa Orientada a Objetos de Sistemas Legados COBOL 

 
 

Valter Vieira de Camargo 
Fundação Educacional de 

Fernandópolis - FEF 
valtercamargo@hotmail.com 

Edson Luiz Recchia 
PPGCC-DC-UFSCar / 

Universidade Anhembi Morumbi 
erecchia@terra.com.br 

Rosângela Penteado 
Departamento de Computação 
Universidade Federal de São 

Carlos 
rosangel@dc.ufscar.br 

 
 

Resumo 
 

FaPRE/OO é uma família de padrões desenvolvida para conduzir processos de reengenharia orientada a objetos de 
sistemas legados procedimentais. Este artigo trata a aplicabilidade de forma evolutiva e complementar dos padrões 
relativos à fase de engenharia reversa a sistemas legados desenvolvidos em Cobol. Por evolutiva, entende-se que o 
processo de aplicação é em ciclos, isto é, padrões que são aplicados no início do processo, podem ser reutilizados 
posteriormente, a fim de aumentar o entendimento e refinar os produtos obtidos. Por complementar, entende-se que 
os padrões podem se complementar uns aos outros para a resolução de um problema. O processo de engenharia 
reversa é exemplificado pela aplicação em um sistema de controle de estoque, implementado em Microfocus 
COBOL 85, com 74 Kloc.  
 

Abstract 
 
FaPRE/OO is a pattern family developed to conduct object oriented reengineering processes of procedural legacy 
systems. This paper deals with the applicability, in an evolutionary and complementary form, of  the patterns related 
to the reverse engineering phase, to legacy systems developed in COBOL. As evolutionary we mean that the 
application process is in cycles, that is, patterns that are applied at the beginning of the process, can be reused in 
subsequent phases, so as to improve understanding and refine the products obtained. As complementary we mean 
that the patterns can complement each other for the solution of a problem. The reverse engineering process is 
exemplified through its application to an inventory control system, implemented in Microsoft COBOL 85, with 74 
Kloc. 
 
 
1. Introdução 
 

A engenharia reversa consiste em analisar um sistema existente, identificando seus 
componentes e representando-os em um nível mais alto de abstração [6]. Existem duas 
alternativas para realizar a engenharia reversa orientada a objetos de um sistema legado 
procedimental, como pode ser visto na Figura 1. A primeira, mais tradicional, é realizar a 
engenharia reversa procedimental do sistema legado e, a partir dos resultados dessa atividade, 
efetuar a engenharia avante orientada a objetos. Em outras palavras, na primeira fase obtém-se a 
documentação procedimental e, na segunda, com base nela, constrói-se a documentação de 
análise orientada a objetos. A documentação obtida na primeira fase reflete exatamente como o 
sistema legado está implementado e, mesmo que inconsistências sejam encontradas, não devem 
ser solucionadas, pois o serão na segunda fase. A segunda alternativa, que foi objeto de vários 
trabalhos já publicados [1, 2, 3, 4, 9, 10, 11, 12], é realizada identificando-se diretamente 
possíveis objetos no código legado procedimental. Dessa forma, busca-se, logo no início, 
identificar e solucionar possíveis inconsistências do código legado. Não se obtém documentação 



 

 

que represente exatamente como o legado está implementado, mas sim uma documentação que 
está mais próxima da documentação orientada a objetos final.  

A Família de Padrões para reengenharia orientada a objetos de sistemas legados 
procedimentais (FaPRE/OO), proposta em [14], possui padrões para conduzir a engenharia 
reversa, que resulta em modelos de análise orientados a objetos. O exemplo mostrado pelos 
autores da FaPRE/OO utiliza a primeira alternativa da Figura 1, enquanto que este trabalho 
utiliza a segunda alternativa, por meio de uma variação na ordem em que os padrões da 
FaPRE/OO são aplicados.  

Assim, o objetivo deste trabalho é de mostrar que a FaPRE/OO pode ser utilizada de forma 
evolutiva e complementar, para obter o modelo de análise orientado a objetos diretamente a 
partir do sistema legado procedimental. Além disso, é feita a aplicação dos padrões da 
FaPRE/OO, instanciando-os para o caso específico da linguagem COBOL. 

 
 
 
 

 
 
 
 
 
 
 
 

 
 

Figura 1 - Alternativas para condução do Processo de Engenharia Reversa OO 
  

Este trabalho está organizado da seguinte forma: na Seção 2 apresenta-se, resumidamente, os 
padrões para a realização da engenharia reversa da Família de Padrões para a Reengenharia 
Orientada a Objetos de Sistemas Legados Procedimentais, FaPRE/OO. Na seção 3, o uso dos 
padrões da FaPRE/OO é exemplificado para um sistema de controle de estoque implementado 
em COBOL, e na Seção 4 são apresentadas as considerações finais. 
 
2. Família de Padrões para Conduzir Processos de Reengenharia Orientada a Objetos de 

Sistemas Legados Procedimentais 
 

Os padrões da FaPRE/OO foram divididos em clusters, cada um agrupando os padrões 
relacionados a situações similares. A Figura 2 ilustra graficamente os clusters e os padrões 
existentes em cada um deles. No primeiro cluster, “Modelar os Dados do Legado” extraem-se 
informações a partir dos dados e do código fonte do sistema legado gerando o MER - Modelo 
Entidade Relacionamento (visão procedimental dos dados) e o MASA - Modelo de Análise do 
Sistema Atual - Diagrama de Pseudo-Classes (visão orientada a objetos dos dados). Esses 
padrões guiam o engenheiro de software quando se tem o primeiro contato com um sistema 
legado. Fazem parte desse cluster os seguintes padrões: 

• Iniciar Análise dos Dados 
• Definir Chaves 
• Identificar Relacionamentos 

Modelos de Projeto 
Orientados a 

Procedimentos 

Modelos de Análise 
Orientados a Objetos 

Legenda: 
Alternativa 1 
 
Alternativa 2   

Sistema Legado 
Procedimental 



 

 

• Criar Visão OO dos Dados 
No segundo cluster “Modelar a Funcionalidade do Sistema”, os padrões são agrupados 

para obter a funcionalidade do sistema, criando modelos que recuperem as regras de negócio da 
empresa contidas no sistema legado. Esses padrões habilitam o engenheiro de software a obter 
um entendimento detalhado dos componentes do sistema, aprofundando sua compreensão sobre 
o mesmo. Fazem parte desse cluster os seguintes padrões: 

• Obter Cenários 
• Construir Diagramas de Use Cases 
• Elaborar a Descrição de Use Cases 
• Tratar Anomalias 

No terceiro cluster, “Modelar o Sistema Orientado a Objetos”, padrões são agrupados 
para se obter o diagrama de classes e os diagramas de seqüência do sistema, através da interação 
dos produtos obtidos pelos padrões dos clusters anteriores. Esses padrões habilitam o engenheiro 
de software a obter o MAS-Modelo de Analise do Sistema, sendo o modelo orientado a objetos a 
servir de suporte ao processo de reengenharia. Fazem parte desse cluster os seguintes padrões: 

• Definir as Classes 
• Definir Atributos 
• Analisar Hierarquias 
• Definir Métodos 
• Construir Diagramas de Seqüência 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figura 2 - Padrões do Processo de Engenharia Reversa da FaPRE/OO 

 

 

Processo  de  Reengenharia   

E 
n 
t 
e 
n 
d 
i 

m 
e 
n 
t 
o 

d 
o 

S 
i 
s 
t 
e 
m 
a 

Modelar  a  Funcionalidade  do  Sistema 
• 

  Obter  Cenários 
• 

  Construir  Diagramas  de  Use  Cases 
• 

  Elaborar  a  Descrição de  Use  Cases 
• 

  Tratar  Anomalias 

Modelar  os  Dados  do  Legado 
• 
  Iniciar  Análise  dos  Dados 

• 
  Definir  Chaves 

• 
  Identificar  Relacionamentos 

• 
  Criar  Visão  OO  dos  Dados 

Modelar o Sistema Orientado a Objetos 
• 
  Definir  as  Classes 

• 
  Definir  Atributos 

• 
  Analisar  Hierarquias 

• 
  Definir  Métodos 

• 
  Construir  Diagramas  de  Seqüência 

Processo  de 
Engenharia  Avante 



 

 

Como a FaPRE/OO é para a reengenharia, a Figura 2 apresenta quatro clusters, sendo que os 
três primeiros são para a engenharia reversa e o último para a engenharia avante, completando o 
processo de reengenharia. Como o enfoque deste trabalho é apenas a engenharia reversa, 
somente os três clusters iniciais é que são detalhados e que serão apresentados nas próximas 
seções. 

  
3. Estudo de Caso 
 

Utilizou-se como estudo de caso um sistema de controle de estoque, implementado em 
COBOL Microfocus 85, composto por 498 módulos, sendo que 69 são programas e o restante 
CopyFiles1. O sistema possui setenta e quatro (74) Kloc e sua função principal é cadastrar 
materiais, fornecedores, contas, previsão de compras e alguns documentos, como: requisição de 
material, solicitação de material, comunicado de recebimento, devolução de materiais ao 
fornecedor e correção de estoque físico. Esse sistema faz parte de um maior, que integra 
contabilidade (quatrocentos e doze (412) Kloc), e folha de pagamento (cinqüenta e dois (52) 
Kloc). O engenheiro de software responsável pela aplicação dos padrões não conhecia e nem 
teve contato com os mantenedores e/ou desenvolvedores do sistema. 

O objetivo desse estudo de caso é comprovar a viabilidade de aplicação da FaPRE/OO de 
forma evolutiva e complementar. Como evolutiva entende-se que o processo de aplicação é em 
ciclos, isto é, padrões que são aplicados no início do processo, podem ser utilizados novamente, 
em fases posteriores a fim de elevar o entendimento e refinar os produtos obtidos. Como 
complementar entende-se que os padrões podem interagir entre si para a resolução de um 
problema. 

Os resultados obtidos com a aplicação da FaPRE/OO durante o processo de engenharia 
reversa são comentados a seguir. Cada sub-seção representa a aplicação de um dos seus padrões. 

 

3.1. Padrão: Iniciar Análise dos Dados 
 
 Deve-se analisar os arquivos de dados do sistema e verificar os papéis que esses arquivos 
representam no mundo real. Geralmente um arquivo de dados possui um papel principal e pode 
ou não possuir papéis secundários. Cada um desses papéis deve ser considerado como uma 
entidade no DER (Diagrama Entidade Relacionamentos).  

A identificação de papéis nos arquivos de dados do sistema faz com que se obtenha um 
DER sem inconsistências e redundâncias, eliminando, assim, essa preocupação em fases 
posteriores. Esse tipo de identificação foi utilizado, pois se objetiva avaliar a viabilidade da 
FaPRE/OO para a segunda alternativa apresentada pela Figura 1. 

Se a primeira alternativa tivesse sido escolhida, o produto seria um DER representando o 
sistema legado procedimental como ele é. A identificação das possíveis classes (pseudo-classes), 
seria realizada pelo padrão Tratar Anomalias e Analisar Hierarquias. Quando da adoção da 
segunda alternativa, antecipam-se as consolidações que devem ocorrer posteriormente. Dessa 
forma, pode-se dizer que os padrões Iniciar Análise dos Dados, Tratar Anomalias e Analisar 
Hierarquias podem ser utilizados de forma complementar durante a análise dos dados. 

A utilização desse padrão para o domínio da linguagem COBOL considerou as três 
formas de utilização do comando REDEFINES identificadas por Camargo [5]. A primeira forma 
sugere a criação de um relacionamento de agregação cuja cardinalidade do relacionamento é 1 
para 1, pois, ocorre redefinição de um item elementar para um item de grupo simples. A segunda 
ocorre quando determinado item de grupo é redefinido em outro, fornecendo similaridade ao 

                                                 
1 Trechos de código que são copiados para dentro de um programa durante a compilação. 



 

 

comportamento de hierarquias de generalização/especialização da orientação a objetos. A 
terceira forma ocorre quando um item de grupo de nível geral é redefinido em outro, sendo 
assim, o registro possui dois comportamentos bem distintos e representa dois papéis bem 
distintos no mundo real. A Figura 3 apresenta um exemplo da segunda forma. O trecho de 
código mostra que o arquivo de dados COBOL possui como papel principal empregado, e como 
papéis secundários: secretaria, operador e engenheiro. Além disso, um relacionamento de 
herança pode ser identificado analisando-se que os itens elementares NRO-EMP, SALARIO e 
ENDERECO são gerais e comuns a todos papéis que o arquivo venha a assumir. 

As tabelas obtidas como produto da aplicação desse padrão são: 
a) Tabela 1, com três colunas, mostra na primeira coluna os programas que foram 

considerados durante a engenharia reversa; na segunda os arquivos de dados utilizados 
por cada programa e, na terceira, o papel principal de cada arquivo.  

b) Tabela 2, mostra os papéis secundários que alguns arquivos possuem. Nota-se um 
número elevado de papéis secundários para o arquivo FDES030. Isso ocorre porque esse 
arquivo armazena dados de vários documentos e todos eles compartilham dados comuns. 
Para cada papel identificado uma entidade deve ser criada no DER. 

 

Figura 3 – Segunda Forma de Utilização do Comando REDEFINES 
 
Durante a análise, pode-se identificar arquivos de dados cujo papel é relacionado à 

implementação e que não devem ser considerados como entidades do DER. Exemplos desse tipo 
de arquivos são aqueles que lidam com impressão de relatórios e a exibição de telas. 

 
    Tabela 1 – Papéis Principais              Tabela 2 – Papéis Secundários 

Programas Arquivos Papel Principal   Arquivos Papéis Secundários  
ESFO2010 FDES010 

FDES020 
FDSP020 
FPES2010 

Material 
Conta 

Fornecedor 
Implementação 

 FDES010 Fornecimento 
Estoque 

Almoxarifado 

ESFO3000 FDES010 
FDES030 
FDES033 
FDSA001 
FDSA002 
FDSP010 
FDSP020 
FPES3000 

Material 
Movimento 
Movimento 

Conta de aplicação  
Conta de aplicação  

Compra 
Fornecedor 

Implementação 

 FDES030 Estoque 
Almoxarifado 

Requisição de material 
Devolução de material 

Devolução de material ao fornecedor 
Transferência entre estoques  

Solicitação de material 
Correção de estoque físico 

Comunicado de recebimento tipo 1 
... ... ...  ... ... 

 
Por meio de inspeções ao código notou-se que, uma das decisões de projeto do 

engenheiro de software responsável pelo desenvolvimento do sistema, foi a de não criar arquivos 
separados para estoque e almoxarifado. A solução foi adicionar campos representando essa 
funcionalidade em todos os arquivos do sistema como parte da chave primária. Porém, durante o 
processo de engenharia reversa com a aplicação da FaPRE/OO no sistema COBOL optou-se por 

01 EMPREGADO 
 02 NRO-EMP    PIC X(5). 
 02 SALARIO  PIC 9(4). 
 02 ENDERECO PIC X(30). 
 02 SECRETARIA. 
  03 FORMACAO  PIC X(10). 
 02 OPERADOR REDEFINES SECRETARIA. 
  03 TURNO   PIC X(10). 
 02 ENGENHEIRO REDEFINES OPERADOR. 
  03 ESPECIALIDADE   PIC X(10). 

Campos sem redefinição. 
Comuns a todas as formas que 
o registro possa assumir 

Itens de grupo redefinidos. 
Secretária ou operador ou 

engenheiro. 



 

 

criar as entidades Estoque e Almoxarifado, por representarem diferentes papéis no domínio de 
aplicação do sistema. A identificação dos programas e arquivos de dados foi realizada com o 
auxílio computacional da ferramenta Legacy Aid [8]. 

 
3.2. Padrão: Definir Chaves 
 

O padrão sugere a criação de apenas uma tabela, porém, optou-se por criar duas, uma 
para as chaves primárias e outras para as estrangeiras. Uma coluna adicional, com mnemônicos 
mais significativos para as chaves, guiou essa decisão. 

Deve-se, primeiramente, analisar as entidades que foram geradas a partir da Tabela 1, que 
mostra os papéis principais. Para cada uma delas deve-se inspecionar o FD (File Description) 
que a gerou e, em seguida, a INPUT-OUTPUT SECTION do programa correspondente. Isso 
deve ser feito porque programas COBOL possuem, nessa seção, a declaração RECORD KEY que 
indica a chave primária do arquivo de dados. Dessa forma, identifica-se a chave primária para o 
papel principal do arquivo.  

Após a análise de todas as entidades geradas, através de papéis principais, deve-se iniciar 
a análise das entidades geradas por papéis secundários. A identificação das chaves primárias para 
essas entidades consiste em analisar o trecho de código da FD responsável pelo papel secundário 
e inferir uma chave primária com base na sua funcionalidade em relação ao papel principal que o 
arquivo possui. 

A Figura 4 apresenta um trecho de código do FDES030, um FD que possui como papel 
principal o movimento de materiais e, como papéis secundários, outros documentos apresentados 
pela Tabela 2, entre eles, Requisição de Material, delimitado com linha tracejada na Figura 4. A 
chave primária para o papel principal é o item de grupo ES030CHAVE-PRINCIPAL, que pode 
ser identificado analisando-se a INPUT-OUTPUT SECTION para esse FD. Porém, identificar 
uma chave primária para o item de grupo ES030-RM, que representa um papel secundário desse 
arquivo, necessita de análise adicional. Esse papel corresponde a uma requisição de material que 
só existe se o papel principal existir. Isto é, pode-se inferir que uma requisição de material é uma 
entidade fraca que depende da existência da entidade Movimento, representada pelo papel 
principal do arquivo. Sendo assim, a chave primária da entidade gerada pelo papel secundário é a 
chave primária da entidade gerada pelo papel principal do arquivo. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figura 4 – Identificação de Chaves Primárias 

 

          05  ES030CHAVE-PRINCIPAL. 
               10  ES030CHAVE-SECUNDARIA. 
                   15  ES030ESTOQUE        PIC  9(01). 
                   15  ES030ALMOXARIFADO   PIC  9(02). 
                   15  ES030LOTE           PIC  9(02). 
                   15  ES030TIPODODOC      PIC  9(02). 
                   15  ES030NUMERODOC      PIC  9(04). 
               10  ES030SEQUENDOC          PIC  9(02). 
           05  ES030MATERIAL-COD. 
               10  ES030MATERIAL           PIC  9(05). 
               10  ES030MATERIAL-DV        PIC  9(01). 
           05  ES030-RM. 
               10  ES030-RM-QTDEREQUIS     PIC  9(06)V99. 
               10  ES030-RM-QTDEFORNEC     PIC  9(06)V99. 
               10  ES030-RM-FILLER1        PIC  X(04). 
               10  ES030-RM-APLICACAO      PIC  X(15). 
               10  ES030-RM-VALOR-SISTEMA  PIC  9(12)V99. 
               10  ES030-RM-DEM-NAO-ATEND  PIC  X(01). 
               10  ES030-RM-FILLER2        PIC  X(41). 
            05  ES030-DM                   REDEFINES ES030-RM. 
          ... 

Requisição 
de Material 
é um papel 
secundário 

para do 
FDES030 

Redefinição 



 

 

Porém, outros fatores também podem influenciar na identificação da chave primária para 
uma entidade gerada por meio de um papel secundário. Optou-se por definir como chave 
primária da entidade RequisicaoMaterial os itens elementares ES030LOTE, 
ES030TIPODODOC e ES030NUMERODOC. Nem todos os itens elementares da chave primária 
do papel principal foram utilizados para definir a chave do papel secundário. Isso ocorre devido 
ao conhecimento do engenheiro de software sobre o sistema que está sendo analisado. Inspeções 
no código e a análise da funcionalidade mostraram que ES030ESTOQUE e 
ES030ALMOXARIFADO são itens elementares existentes em todos os outros arquivos. Essa 
decisão de projeto foi utilizada para que não fossem criados arquivos que representassem essas 
funcionalidades. Sendo assim, como o DER criado conterá uma entidade Estoque e uma 
Almoxarifado, esses itens de dados podem ser desconsiderados. A última linha do trecho de 
código fonte apresentado pela Figura 4 mostra a redefinição do item de grupo que representa a 
requisição do material. Desse ponto em diante, um novo papel secundário é identificado. 

O primeiro produto obtido da aplicação desse padrão é a Tabela 3. A primeira coluna 
exibe o nome das entidades identificadas, a segunda exibe as chaves primárias com a mesma 
nomenclatura do código fonte e, a terceira, apresenta as chaves com a nomenclatura alterada para 
mnemônicos mais significativos. 

 
   Tabela 3 - Tabela de Chaves Primárias 

Entidades Chaves Primárias Mnemômicos Significativos 
Material ES010CHAVE codigo 
Produto Acabado ES018CHAVE codigo 
PrevisaoCompra ES080CHAVE codigo 
Fornecimento ES010CHAVE + SP020CHAVE cod_material + cod_fornecedor 
Movimento COD_ESTOQUE + COD_ALMOXARIFADO + 

NUMERO + TIPO_DOC + NUMERO_DOC + LOTE 
cod_estoque + cod_almoxarifado + 

numero + lote 
RequisicaoMaterial TIPO_DOC + NUMERO_DOC + LOTE tipo_doc  + numero_doc + lote 
... ... ... 

 
O processo de identificação de chaves estrangeiras inicia-se com a análise de programas 

que contenham dois arquivos, depois três e assim sucessivamente. O fato de um programa lidar 
com mais de um arquivo é um forte indício de relacionamento entre eles.  

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figura 5 – Identificação de Chaves Estrangeiras 
 

 ... 
         05  ES010MATERIAL-CLASSE  PIC  X(02). 

           05  ES010MATERIAL-DESCR   PIC  X(50). 
           05  ES010MATERIAL-UN      PIC  X(02). 

               05  ES010CLASSIFI-CONTA. 
               10  ES010CONTA3       PIC  9(02). 
               10  ES010CONTA4       PIC  9(02). 
               10  ES010CONTA5       PIC  9(04). 

           05  ES010MATERIAL-LOCAL. 
               10  ES010DEPOSITO     PIC  X(02). 
               10  ES010PRATELEIRA   PIC  X(03). 
          
        ... 
           05  ES020CHAVE. 
               10  ES020ESTOQUE         PIC  9(01). 
               10  ES020ALMOXARIFADO    PIC  9(02). 
               10  ES020CONTA. 
                   15  ES020CONTA3      PIC  9(02). 
                   15  ES020CONTA4      PIC  9(02). 

             15  ES020CONTA5      PIC  9(04). 
           05  ES020CONTA-DESCR         PIC  X(30). 
           05  ES020CONTA-DBDIA         PIC  9(11)V99. 
            

FDES010 (Material) 
Campos que representem a 

chave do arquivo de 
Contas 

FDES020 (Conta) 
Chave do arquivo de 

Contas  

(a) 

(b) 



 

 

Deve-se iniciar o processo de análise para os papéis principais. Por meio da Tabela 1 
pode-se identificar alguns dos programas que lidam com mais de um arquivo. O programa 
ESFO2010, responsável pelo cadastro de materiais, têm três arquivos: associados FDES010, 
FDES020 e FDSP020, que possuem como papel principal “material”, “conta” e “fornecedor”, 
respectivamente.  Analisando-se o código fonte do FDES010 nota-se a presença de campos que 
representam, semanticamente, a chave primária do arquivo de contas, FDES020. A Figura 5 
apresenta, na parte superior rotulada com a letra (a), o trecho de código do FDES010 e, na parte 
inferior rotulada com (b), o trecho de código do FDES020. Nota-se que no FDES010, cujo papel 
principal é material, há campos que provavelmente representam semanticamente a chave do 
arquivo FDES020, cujo papel principal é contas. Para certificar-se disso deve-se verificar se o 
tipo e o tamanho dos campos são os mesmos. Além disso, também se deve analisar o código 
fonte a fim de verificar se, em determinado ponto do fluxo de execução, há uma atribuição dos 
dados que representam a chave primária do arquivo de contas para os campos do arquivo de 
material que representam a chave estrangeira. 

A análise do fluxo de execução foi realizada com o auxílio computacional de um recurso 
da ferramenta Legacy Aid [8] denominado code Walkthrough. Esse recurso permite simular a 
execução do código e, paralelamente, visualizar o grafo de fluxo de controle à medida que o 
controle passa de nó para nó. Esse recurso permite, também, que a interação do usuário 
respondendo sim/não em condições de seleção. 

Tendo realizado o processo de identificação de chaves estrangeiras para os papéis 
principais, deve-se, em seguida, analisar as entidades que foram geradas por meio de papéis 
secundários. Como citado anteriormente, alguns papéis secundários darão origem a entidades 
fracas. Sendo assim, para esses tipos de papéis, o processo de identificação de chaves 
estrangeiras já está pronto. Porém, vale a pena revisar os trechos de código responsáveis pela 
geração de papéis secundários, para verificar possíveis chaves estrangeiras escondidas sob 
muitas decisões de projeto.  

A Tabela 4 representa parte do segundo produto obtido da aplicação do padrão Definir 
Chaves para o sistema de controle de estoque COBOL. A primeira coluna tem o nome das 
entidades, a segunda, as chaves estrangeiras com a mesma nomenclatura do código fonte e, a 
terceira, as chaves estrangeiras alteradas para mnemônicos mais significativos. 

 
    Tabela 4 – Tabela de Chaves Estrangeiras 

Entidades Chaves Estrangeiras  Mnemônicos Significativos 
Material ES010CLASSIF-CONTA 

ES010NUMEROFORN 
cod_conta 

cod_fornecedor 
Produto Acabado ES018CDMATERIAL cod_material 
Compra SP010PREVISAO-COMPRAS 

SP010MATERIAL 
cod_previsaoCompras  

cod_material 
Fornecedor --- --- 
PrevisaoCompra  ES080MATERIAL cod_material 
RequisicaoRessuprimento SP050-MATERIAL 

SP050-PREVISAOCOMPRAS 
cod_material 

cod_previsaoCompras  
Movimento ES030MATERIAL cod_material 
RequisicaoMaterial ES030NUMERODOC  

ES030MATERIAL 
numero_documento 

cod_material 
... ... ... 

 
3.3. Padrão: Definir Relacionamentos 

 
Com base na tabela de chaves estrangeiras pode-se desenvolver o Diagrama Entidade 

Relacionamento (DER - Figura 6) com suas entidades e respectivos relacionamentos. A 
cardinalidade dos relacionamentos é obtida verificando o número de repetições de uma chave 



 

 

MaterialContas

Fornecedores

Produto
Acabado

PrevisaoCompras

Movimento

Compra
Almoxarifado

Requisicao
Material

Devolucao
Material

Solicitacao
Material

DevolucaoMaterial
Fornecedor

CorreçãoEstoque
Fisico

Comunicado
Recebimento1

Comunicado
Recebimento2

Transferencia
Estoques

Correcao
Lancamento

Estoque

Requisicao
Ressuprimento

possui_c1 n
contem1 0..n

envolve

1

0..n

possui_p1

contem

0..n

1

fornecimento

0..n

0..n

contem

1

0..n

gera

0..n

1

armazena

1

0..n

pertence_e

1..n

movimenta

estrangeira dentro de um arquivo de dados. O DER não representa a estrutura de arquivos 
existentes no sistema legado. Durante a aplicação do primeiro padrão já se preocupou em 
resolver inconsistências de projeto representadas no código fonte. Dessa forma, elimina-se carga 
de responsabilidade dos padrões posteriores. Outra vantagem disso é utilizar a segunda 
alternativa de realização da engenharia reversa, apresentada pela Figura 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figura 6 – Diagrama Entidade Relacionamento 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figura 7 – Modelo de Análise da Solução Atual  

ProdutoAcabado

Compra

Movimento

P r e v i s a o C o m p r a s

11 11

p o s s u i

R e q u i s i c a o R e s s u p r i m e n t o

0..*

1

0..*

1

g e r a

Fornecedores

Contas

Estoque

Material1 1..*1 1..*
p o s s u i

0..*

1

0..*

1
c o n t é m

0 . . *

1

0 . . *

1

p a r t i c i p a c o n t é m

1

0..*

1

0..*

r e q u i s i t a

0..*

0..*

0..*

0..*

Almoxarifado

1

1 . . *

1

0..*

1

0..*

1

1 . . *

CorrecaoLancamento DevolucaoMaterial ComunicadoRecebimento1 ComunicadoRecebimento2 D e v o l u c a M a t e r i a lSolicitacaoMaterial

T r a n s f e r e n c i a E s t o q u e s C o r r e c a o E s t o q u e F i s i c oRequisicaoMaterial

fornecimento

Modificação dos 
nomes dos 

relacionamentos 
para mnemônicos 

mais significativos 
 

Identificação 
de Agregações 

 

Criação de classe de 
associação para 

relacionamentos n para n  
 



 

 

3.4. Padrão: Criar Visão Orientada a Objetos dos Dados 
 
Deve-se mapear cada entidade identificada anteriormente para uma pseudo-classe do 

Modelo de Análise da Solução Atual (MASA), como proposto pelo método de engenharia 
reversa Fusion/RE [9]. Durante o mapeamento, deve-se identificar possíveis relacionamentos de 
agregação e, também, criar classes de associação para relacionamentos com cardinalidade n para 
n. Além disso, também é aconselhável, sempre que possível, alterar o nome dos relacionamentos 
para mnemônicos mais significativos. 

A Figura 7 apresenta o produto obtido da aplicação desse padrão.  Utilizando a segunda 
alternativa de engenharia reversa mostrada pela Figura 1, esse pseudo-modelo de classes se 
aproxima do modelo final. Isso ocorre porque, no processo de resolução, as inconsistências e 
redundâncias existentes no código fonte procedimental são distribuídas ao longo de todo o 
processo de engenharia reversa e não são concentradas em poucas fases. A concentração de 
esforços em algumas fases de um processo aumenta a probabilidade dos engenheiros de software 
se desmotivarem e, conseqüentemente, realizarem tarefas mal feitas.  
 

3.5. Padrão: Obter Cenários 
  

Esse padrão foi aplicado como sugerido pela Família, não havendo necessidade de 
instanciá-lo para a linguagem COBOL, pois a maioria dos sistemas legados apresenta interfaces 
com menus e submenus. A Tabela 5 é parte do produto obtido da análise de interfaces do sistema 
legado COBOL. 
Tabela 5 - Tabela de Cenários do Sistema 

Cenários 
(Opções do Menu Principal) 

SubOpções do Menu Principal 

Atualização de Cadastros Materiais  
Compras  
Previsão de Compras  
Fornecedores  

Consultas  Cadastro de Materiais  
Arquivo do Movimento 
Cadastro de Fornecedores  
Cadastro de Contas  
Cadastro de Compras  
Cadastro de Especificações  

... ... 

 
3.6. Padrão: Construir Diagramas de Use Case 

 
Esse padrão, como o anterior, foi aplicado como sugerido pela Família, não havendo 

necessidade de especializá-lo para a linguagem COBOL. Ele utiliza, de forma complementar, o 
padrão Iniciar Análise dos Dados, pois, os diagramas devem ser elaborados levando em 
consideração os papéis que são manipulados pelo sistema. 

 
 
 
 
 
 
 

Figura 8 – Diagrama de Use Case 
 

atorGerente

dados  mov imen to

atual izarMovimentos

< < u s e s > >

M s g 0 2

atual izarRequis icaoMater ia l



 

 

A Figura 8 apresenta um diagrama de Use Cases, especificado em UML, que demonstra a 
funcionalidade do sistema referente à movimentação dos materiais. Apesar do comportamento 
do Use Case atualizarMovimentos ser composto por vários outros Use Cases, esse diagrama 
apresenta apenas um, o atualizarRequisicaoMaterial. O diagrama mostra que o ator Gerente 
interage com o Use Case atualizarMovimento enviando a ele dados da movimentação do 
material. Esse, por sua vez, invoca o Use Case atualizarRequisicaoMaterial a fim de manipular 
dados da requisição. 

 
3.7. Padrão: Elaborar a Descrição dos Use Cases 
  

A descrição de cada Use Case identificado no padrão Construir Diagramas de Use Case 
deve ser elaborada analisando-se o código fonte correspondente a ele. 
 Esse padrão também utiliza o padrão Iniciar Análise de Dados complementarmente, pois, 
durante a descrição de um Use Case deve-se considerar os papéis que foram identificados 
anteriormente. 
 
3.8. Padrão: Tratar Anomalias 
  

Esse padrão considera a construção de uma tabela que solucione as anomalias 
encontradas no código fonte procedimental. A elaboração dessa tabela, denominada Detalhes de 
Implementação, leva em consideração a descrição dos Use Cases obtida no padrão Elaborar a 
Descrição dos Use Cases. Deve-se analisar se a descrição do Use Case faz acesso a mais de uma 
entidade (papel) no DER, pois se fizer, o princípio de encapsulamento da orientação a objetos 
está sendo violado e essa anomalia deve ser solucionada. A classificação de anomalias utilizada é 
a mesma definida pelo método Fusion/RE. 

Como o sistema do estudo de caso foi desenvolvido utilizando o paradigma 
procedimental, é comum a existência de sentenças que fazem acesso a dados de diferentes 
papéis. A Figura 9 apresenta um trecho de código de um parágrafo que quebra o princípio de 
encapsulamento ao escrever (gravar) dados em dois arquivos distintos. O parágrafo de nome 
10-00-INCLUSAO utiliza o comando MOVE para mover o conteúdo da variável REG10-
MATCOD para o campo ES010MATERIAL, do arquivo de dados FDES010-FD, e o conteúdo da 
variável REG10-FORNECEDOR para o campo SP020FORNECEDOR, do arquivo de dados 
FDSP020-FD. O Use Case correspondente a esse parágrafo será categorizado como C+ 
(FDES010-FD/FDSP020-FD). 
 É provável que um Use Case dê origem a tantos métodos quantos forem seus acessos a 
entidades diferentes, isto é, um Use Case que faz acesso a três arquivos será transformado no 
mínimo em três métodos um para cada entidade a que tem acesso. Os nomes dos novos métodos 
devem utilizar mnemônicos significativos e seguirem a padronização da UML [15]. 

 
 
 
 
 
 
 
 
 

Figura 9 – Parágrafo Anômalo 
 

10-00-INCLUSAO 
. . . 

MOVE REG10-MATCOD  TO  ES010MATERIAL 
PERFORM   40-00-LE-MATERIAIS  

. . . 
MOVE REG10-FORNECEDOR  TO  SP020FORNECEDOR 
PERFORM  55-00-LE-FORNECEDOR 

. . .  

Nome do Parágrafo 

Pseudo-atributos de 
pseudo-classes diferentes 



 

 

A Tabela 6 apresenta parte do produto obtido da aplicação desse padrão. A primeira linha 
da tabela, destacada em negrito, mostra que o Use Case AtualizarMateriais, correspondente ao 
programa ESFO2010, possui acesso de leitura (O) a duas entidades e de escrita (C) a uma única 
entidade. Sendo assim, o código fonte correspondente a esse Use Case deve ser analisado a fim 
de solucionar a anomalia encontrada. A solução consiste em criar três métodos, com 
funcionalidades distintas de leitura e gravação e, colocá-los em suas classes correspondentes.  
 Vale ressaltar que esse padrão foi utilizado de forma complementar pelo padrão Iniciar 
Análise de Dados, pois a identificação das classes parte daqui. 
 
Tabela 6 – Tabela Detalhes de Implementação 

Use Case Programas Pseudo-Classes Tipo de 
Anomalia 

Possíveis Métodos Pseudo-Classes 
Revisadas 

Material  c incluir Material  
Contas o selecionarConta Conta 

atualizarMateriais  ESFO2010 

Fornecedor o selecionarFornecedor  Fornecedor 
Material o selecionarMaterial Material 
Movimento o incluir Movimento 

AtualizarRequisicao
Material 

ESFO3000 

RequisicaoMaterial c incluir Requisicao 
Material 

atualizarConta ESFO2020 Contas  c incluir Conta 
... ... ... ... ... ... 

 

3.9. Padrão: Definir as Classes 
 
A elaboração do diagrama de classes do sistema possui como base o MASA obtido no 

padrão Criar Visão Orientada a Objetos dos Dados. A regra geral é que cada pseudo-classe no 
MASA seja mapeada para uma classe no Modelo de Análise do Sistema (Figura 10). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figura 10 - MAS (Modelo de Análise do Sistema) 
 

MovimentoMesesAnteriores

CorrecaoLancamento DevolucaoMaterial ComunicadoRecebimento1 ComunicadoRecebimento2 DevolucaMaterialSolicitacaoMaterial

TransferenciaEstoques CorrecaoEstoqueFisicoRequisicaoMaterial

fornecimento

Movimento

fornece

PrevisaoCompras

Estoque

Contas ProdutoAcabado

Compra

1
1

1
1

possui

RequisicaoRessuprimento

0..*

1

0..*

1

gera

Almoxarifado

1

1..*

1

1..*

AnoAtualMesAtual

Fornecedores

Localizacao

Movimento

Material1 1 . . *1 1 . . *
tem

0..*1 0..*1
contém

0..*

1

0..*

1
participa

1

0..*

1

0..*

requisita

0..*

0..*

0..*

0..*

1

0..*

1

0..*
1

1

1

1
está

Novas classes 
identificadas no 
sistema legado 



 

 

 Relacionamentos que envolvem entidades fracas determinam que a existência dessa 
entidade depende da existência de uma entidade forte relacionada, isto é, o tempo de vida da 
entidade fraca depende do tempo de vida da entidade forte. Sendo assim, há uma similaridade 
semântica com relacionamentos de agregação da orientação a objetos, também conhecidos como 
Todo-Parte. As entidades que foram geradas por meio de papéis secundários geralmente são 
fracas e, sendo assim, devem fazer parte de um relacionamento de agregação no diagrama de 
classes do sistema.  

O MAS apresentado na Figura 10, foi obtido em duas etapas. Na primeira, fez-se um 
mapeamento direto das classes do MASA. Posteriormente, observou-se que, como o sistema foi 
desenvolvido sem a utilização de técnicas de projeto adequadas, algumas classes e 
relacionamentos poderiam ser melhorados. Sendo assim, iniciou-se um processo de refinamento 
que a preocupação foi a de tornar o modelo de classes o mais orientado a objetos possível, sem 
redundâncias ou inconsistências. Esse processo de refinamentos considera a utilização evolutiva 
dos padrões: Definir Atributos, Definir Métodos e Analisar Hierarquias, descritos a seguir.  

As classes representadas em cinza na Figura 10 foram identificadas por meio da aplicação 
deste padrão. Nota-se que houve pouca alteração nas classes já existentes no modelo. 

 

3.10. Padrão: Definir Atributos 
  

Deve-se analisar os trechos de código dos papéis principais dos arquivos de dados a fim 
de obter os atributos das classes existentes no MAS. A identificação dos atributos não apresenta 
muitas dificuldades, pois, como os papéis já foram identificados, o esforço concentra-se na 
identificação dos trechos de códigos geradores dos papéis. Tendo feito essa identificação, obter 
os itens elementares, que representam os atributos, é algo relativamente fácil. 
  

3.11. Padrão: Definir Métodos 
  

Representar os métodos relacionados na coluna Possíveis Métodos da Tabela Detalhe de 
Implementação (Tabela 6) nas respectivas classes especificadas na coluna PseudoClasses da 
mesma tabela. Assim, obtém-se os métodos das classes no Diagrama de Classes por meio da 
Descrição do Use Case correspondente.  
  

3.12. Padrão: Analisar Hierarquias de Herança 
 
Sistemas legados implementados em COBOL, freqüentemente, apresentam a utilização 

do comando REDEFINES. Esse comando, como já citado anteriormente, confere a um registro 
COBOL comportamentos distintos. Camargo e Penteado [5] identificaram três alternativas de 
utilização do comando REDEFINES e como podem se tratadas durante o mapeamento para um 
modelo de classes orientado a objetos. Na segunda alternativa, determinados campos do registro 
sempre são utilizados para qualquer uma das formas assumidas por ele, enquanto que os outros, 
que são redefinições, são utilizados apenas em algumas. Esse comportamento que o comando 
REDEFINES confere a um registro COBOL aproxima-se do conceito de 
generalização/especialização de orientação a objetos, em que vários tipos de objetos 
compartilham informações comuns. A Figura 3 apresenta um trecho de código que mostra essa 
segunda alternativa de REDEFINES. Esse tipo de utilização do comando REDEFINES deve ser 
tratado como sugere a Figura 11. O nível 01 do FD dá origem à classe Todo, tendo como 
atributos os campos comuns. Já os itens de grupo tornar-se-ão classes Parte. A multiplicidade 
deve ser 0..1 em relação às classes Parte, representando que elas podem ou não serem utilizadas.



 

 

 Como o processo de engenharia reversa descrito aqui utiliza a segunda alternativa 
apresentada pela Figura 1, pouco trabalho foi gasto nesse cluster para solucionar problemas de 
redundâncias e inconsistências, pois esses já foram distribuídos ao longo do processo. Os 
problemas encontrados nesta fase decorrem de decisões de projeto mal formuladas que foram 
feitas pelo engenheiro de software responsável pela implementação do sistema legado. 

O MAS obtido após a fase de refinamentos possui poucas diferenças em relação ao 
MASA obtido no padrão Criar Visão Orientada a Objetos dos Dados. Isso ocorre porque durante 
a aplicação do padrão Iniciar Análise dos Dados cuidou-se da identificação de papéis, que são 
representações do mundo real que o sistema manipula. Os refinamentos realizados restringem-se 
à eliminação de relacionamentos redundantes, identificação de outros papéis obscuros no código 
fonte, devido a muitas decisões de projeto, e alteração de nomes para mnemônicos mais 
significativos. 

 
 
 
 
 
 
 
 
 
 
 

Figura 11 – Criação de Relacionamentos de Herança a partir de REDEFINES 
 

Deve-se ressaltar que esse padrão foi utilizado de forma complementar durante a 
aplicação do padrão Iniciar Análise de Dados. Isso ocorre, pois, quando se utiliza a segunda 
alternativa de engenharia reversa, a preocupação com relacionamentos de herança já é tratada 
desde a aplicação dos primeiros padrões. 

 

3.13. Padrão: Construir Diagramas de Seqüência 
 
Deve-se elaborar os diagramas de seqüência a partir da descrição dos Use Cases. A 

Figura 12 apresenta o diagrama de seqüência para o Use Case AtualizarRequisicaoMaterial  
mostrado na Figura 8. A construção desse diagrama não apresenta complicações, já que se baseia 
na descrição dos Use Cases já identificados. 

 
4. Considerações Finais 
 

Este trabalho mostrou a aplicação da FaPRE/OO [14] para processos de engenharia 
reversa orientada a objetos de sistemas legados procedimentais de forma evolutiva e 
complementar. A aplicabilidade da FaPRE/OO usando a segunda alternativa para o processo de 
engenharia reversa orientada a objetos (ver Figura 1) pôde ser plenamente constatada. Nesse 
processo, papéis são identificados logo no seu início. Sendo assim, não se obtém um DER que 
represente as estruturas de dados do sistema legado, mas um que já se aproxima bastante do 
modelo de análise orientado a objetos final. Nessa alternativa, alguns padrões são utilizados de 
forma a interagir para a resolução de um problema e de modo evolutivo, destacando o poder da 
FaPRE/OO e distribuindo as consolidações ao longo de todo o processo. 

A Tabela 7 mostra os padrões que foram utilizados de forma complementar para a 
realização do processo de engenharia reversa de sistemas COBOL apresentados neste trabalho. 

Classe Todo 

Classes Parte S E C R E T A R I A

F O R M A C A O

O P E R A D O R

TURNO

ENGENHEIRO

E S P E C I A L I D A D E

E M P R E G A D O

N U M E R O

S A L A R I O

E N D E R E C O

0. .10. .1 0 . . 10 . . 1 0. .10. .1

c a n d i d a t o  à  

general ização/

espec ia l i zação



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Figura 12 – Diagrama de Seqüência 
 
Tabela 7– Padrões Complementares 

Cluster Padrões Padrões complementares 
Modelar os Dados do Legado Iniciar Análise dos Dados Tratar Anomalias  

Analisar Hierarquias  
Modelar a Funcionalidade do Sistema Construir Diagramas de Use Cases 

Elaborar a Descrição dos Use Cases 
Iniciar Análise dos Dados 

Modelar o Sistema Orientado a Objetos Definir as Classes  Obter Visão Orientada a Objetos dos Dados 

 
O padrão Iniciar Análise dos Dados utiliza, complementarmente, os padrões Tratar 

Anomalias e Analisar Hierarquias. Isso ocorre porque durante a identificação dos papéis é 
preciso analisar as hierarquias (itens de grupo) existentes em arquivos de dados COBOL. O 
padrão Tratar Anomalias é utilizado de forma complementar porque é durante a sua aplicação, 
que as pseudo-classes (papéis) são identificadas. Os padrões Construir Diagramas de Use Cases 
e Elaborar a Descrição dos Use Cases utilizam, complementarmente, o padrão Iniciar Análise 
dos Dados porque tanto a identificação, quanto a descrição dos Use Cases, são baseadas nos 
papéis que foram identificados nesse padrão. O padrão Definir Classes utiliza 
complementarmente o padrão Obter Visão Orientada a Objetos dos Dados, pois a definição das 
classes do modelo final deve considerar o modelo que mais se aproxima dele, que é o MASA. 

As duas alternativas apresentadas na Figura 1 fornecem diretrizes bem definidas para que 
engenheiros de software possam realizar com segurança o processo de engenharia reversa. O 
engenheiro de software familiarizado com sistemas procedimentais tem, na FaPRE/OO [14], 
diretriz segura para que o processo de engenharia reversa seja passo a passo realizado e validado, 
primeira alternativa da Figura 1. Caso o engenheiro de software esteja familiarizado com 

atorGerente : 
atorGerente

Interface  : MovimentoMateriais  : RequisicaoMaterial m1 : Material

dados Documento

localizarDocumento( )

dados Requisicao

RequisicaoMaterial( )

localizarRequisicao( )

MovimentoMateriais( )

cadastrar( )

localizar( )

[para cada item requisicao]

Mensagem

Material( )



 

 

linguagens orientadas a objetos a alternativa 2 permite que, no início do processo de engenharia 
reversa, pela aplicação de forma complementar e evolutiva da FaPRE/OO, um modelo orientado 
a objetos do sistema legado procedimental seja obtido com facilidade.  
 
Referências Bibliográficas 
 
[1] Braga, R. T. V., “Padrões de Software a partir da Engenharia Reversa de Sistemas Legados”, 

São Carlos-SP, 1998. Dissertação de Mestrado. Universidade de São Paulo. 
[2] Cagnin, M.I.; “Avaliação das vantagens quanto à facilidade de manutenção e expansão de sistemas 

legados sujeitos a engenharia reversa e a reengenharia”, SãoCarlos – SP, 1999. Dissertação de 
Mestrado. Universidade Federal de São Carlos. 

[3] Cagnin, M. I.; Penteado, R.; Masiero, P.C; “Reengenharia com o uso de Padrões de Projeto”. 
Florianópolis - Santa Catarina, 1999a. In: Simpósio Brasileiro de Engenharia de Software, 
SBES'99, 13, Anais. 

[4] Camargo, V.V., “Reengenharia Orientada a Objetos de Sistemas COBOL com a utilização de 
Padrões de Projeto e Servlets”, São Carlos-SP, 2001. Dissertação de Mestrado. Universidade 
Federal de São Carlos. 

[5] Camargo, V.V.; Penteado, R.D. Diretrizes para a Realização da Engenharia Reversa de Sistemas 
COBOL utilizando Fusion/RE. In Proceedings do CLEI 2001 - México, (CD-ROM). 

[6] Chikofsky, E. Reverse Engineering and Design Recovery - A Taxonomy. IEEE Software. v. 7, n. 1, 
p. 13-17. 1990. 

[7] Demeyer, S.; Ducasse, S.; Nierstrasz, O., “A Pattern Language for Reverse Engineering”. 
Proceedings of the 5th European Conference on Pattern Languages of Programming and Computing, 
(EuroPLOP'2000), Andreas Ruping(Ed.), 2000. 

[8] Legacy Aid. www.casemaker.com. Consultado em 5/2002. 
[9] Penteado, R. A. D., “Um Método para Engenharia Reversa Orientada a Objetos”, São Carlos, 

1996. 237 p. Tese (Doutorado em Física Computacional) - Instituto de Física de São Carlos, 
Universidade de São Paulo. 

[10] Penteado, R., Germano, F., Masiero, P. C., “An Overall Process Based on Fusion to Reverse 
Engineering Legacy code”,  In: Working Conference Reverse Engineering,  3,  1996a, Monterey-
California. Anais. IEEE, p. 179-188. 

[11] Penteado, R., Braga, R.T.V., Masiero, P.C., “Improving the Quality Legacy code by Reverse 
Engineering”. 4th International Conference on Information Systems Analysis and Synthesis, 
ISAS/98, págs 364-370, Julho/1998, Orlando-Flórida. 

[12] Penteado, R.D.; Masiero, P.C.;Cagnin, M.I. – “An Experiment of Legacy Code Segmentation to 
Improve Maintenability”. In Proceedings of 3 rd European Conference on Software Maintenance 
and Reengineering. CSMR 99, Amsterdan, The Netherlands. IEEE, P91-1000, 1999. 

[13] Recchia, E. L., “Engenharia Reversa e Reengenharia Baseadas em Padrões”, São Carlos-SP, 
2002. Dissertação de Mestrado apresentada ao PPGCC - Universidade Federal de São Carlos. 

[14] Recchia, E. L.; Penteado, R. – FaPRE/OO: Uma Família de Padrões para Reengenharia 
Orientada a Objetos de Sistemas Legados Procedimentais . Artigo a ser  apresentado no The 
Second Latin American Conference on Pattern Languages of Programming. (Sugarloaf Plop, a ser 
realizado em Itaipava-RJ, agosto 2002) 

[15] Unified Modeling Language. http//www.rational.com/uml/index.jtmpl. Consultado em 03/2002. 



 

Special Session on Writing  
Patterns 
 
 

WP wants to provide newcomers an opportunity to write their first pattern. There is no 
better way to learn what patterns are all about than by writing one yourself. After having 
done the  tutorial about "Software patterns", in the first day of the Conference, the WP 
sessions aim at guiding newcomers to get started with their patterns. 

 
The WP Session Dynamics 
 

WP sessions were about 1 hour each. All participants were invited to read the papers in 
advance, so that they could contribute, during the session, with constructive criticism 
about the pattern. The patterns discussed in these sessions are beginning to emerge, so 
authors have heard about the format, the adequacy of notations, what to include in the 
several pattern elements, etc. 

The session dynamics was similar to the Writers' workshop, but the author could 
interact with questions and clarifications during the session, rather than only in the last 
10 minutes. 

Papers of this session are candidates to be submitted to future PloP's, where they will be 
shepherded and workshoped. 

 

 

 

 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



Padrão Arquitetural para Sistemas 
Computacionais de Controle Supervisório 

 

 

Centro Federal de Educação Tecnológica do Paraná  
Programa de Pós-Graduação em Eng. Elétrica e Informática Industrial  
Av. Sete de Setembro, 3165 - CEP 80.230-901 - Curitiba-PR – Brasil 

 
 

Jean Marcelo Simão, Marcos Antonio Quináia, Paulo Cézar Stadzisz 
{simao, quinaia, stadzisz}@cpgei.cefetpr.br 

 

 

Resumo 
Padrões de software representam uma área de pesquisa promissora em razão dos benefícios advindos da sua 
aplicação, principalmente em termos de produtividade alcançada com a reutilização. Em automática, padrões 
arquiteturais podem ser aplicados a problemas recorrentes envolvendo diversos tipos de sistemas 
computacionais. Uma aplicação complexa, para a qual padrões arquiteturais podem trazer grande contribuição, é 
o Controle Supervisório de Sistemas Automatizados de Manufatura (CS-SAM).  

Este artigo propõe um padrão arquitetural para CS-SAM que atende a requisitos funcionais obtidos através da 
análise por diagramas de casos de uso. Esta análise considera diagramas específicos de casos de usos cujas 
recorrências são apresentadas em diagramas genéricos de casos de uso, empregando como notação uma extensão 
da UML. A concepção dos componentes do padrão arquitetural é realizada com um certo grau de generalização, 
uma vez que os requisitos funcionais genéricos estão estabelecidos. Estes componentes do modelo são, 
primeiramente, especializados de forma a atender requisitos específicos e, subseqüentemente, generalizados para 
comportar elementos recorrentes em maior grau de abstração.  

Como características particulares, o padrão arquitetural apresenta um modelo de Monitoração/Comando, 
concebido em uma hierarquia de classes, e um modelo de Decisão/Coordenação que estabelece, em termos 
genéricos, uma lógica causal, na qual a avaliação e correlação de estados (observados na monitoração) implicam 
em uma seqüência de ordens (ativando comandos). A lógica causal no padrão arquitetural é expressa na forma de 
um Sistema Baseado em Regras genérico para CS-SAM. Cada sistema de Controle Supervisório instanciado a 
partir do padrão arquitetural proposto apresenta grupos de objetos entendidos como agentes, constituindo-se, 
portanto, em um Sistema Especialista realizado por agentes reativos e cooperativos. 

Palavras-Chaves: Padrões Arquiteturais, Reuso de Software, Controle Supervisório, Sistemas Automatizados de 
Manufatura, Sistemas Baseados em Regra, Agentes. 

 

Abstract 
Software patterns represent a promising research area in reason of the subsequent benefits of its application, 
mainly in terms of productivity reached with the reuse. In automatic, architectural patterns can be applied in 
recurrent problems involving diverse types of computational systems. A complex application, for which 
architectural patterns can bring great contribution, is the Supervisory Control of Automated Manufacturing 
Systems (SC-AMS). 

Copyright (c) 2002, Jean Marcelo Simão, Marcos Antonio Quináia, Paulo Cézar Stadzisz. Permission is granted to copy for the
SugarloafPLoP 2002 Conference. All other rights reserved. 



This article proposes an architectural pattern for SC-AMS that takes care of the functional requirements gotten 
through the analysis by use cases diagrams. This analysis considers specific use cases diagrams whose 
recurrences are presented in generic use cases diagrams, employing an UML extension as notation. The 
conception of the architectural pattern components is carried out with a certain generalization degree, since that 
the generic functional requirements are established. These components of the model are firstly specialized 
aiming to solve specific requirements and, subsequently, they are generalized to comprise recurrent elements in a 
wide abstraction degree. 

As particular feature, the architectural pattern presents a model of Monitoring/Command, conceived in a class 
hierarchy, and a model of Decision/Coordination that establishes, in generic terms, a causal logic in which the 
evaluation and correlation of states (observed in the monitoring) implies in a sequence of orders (activating 
commands). The causal logic in the architectural pattern is expressed in the form of a generic Rule Based System 
for SC-AMS. Each system of Supervisory Control instantiated from the considered architectural pattern presents 
groups of objects understood as agents, therefore consisting in an Expert System carried out by reactive and 
cooperative agents.  

 

Keywords: Architectural patterns, Software Reuse, Supervisory Control, Automated Manufacturing Systems, 
Rule Based Systems, Agents. 

1 Problema 

Conceber, Instanciar e Realizar Controle Supervisório de Sistemas Automatizados de 
Manufatura (CS-SAM) via padrão arquitetural de software.  

2 Contexto 

O enfoque deste trabalho é a apresentação de um padrão arquitetural para CS-SAM no 
qual os elementos constituintes são genéricos e aplicáveis a uma certa classe de fábricas. 

Nesta seção é apresentada uma célula de manufatura que serve como objeto de 
compreensão do macro-contexto, bem como dos requisitos para a concepção do padrão em 
questão. A obtenção dos requisitos se dá pela compreensão e generalização do funcionamento 
desta célula e da estruturação e relacionamento entre os componentes que implementam o 
Controle Supervisório. 

2.1 SAM / CS-SAM 

Um SAM é um complexo sistêmico envolvendo sistemas eletromecânicos (i.e. 
equipamentos) e elementos computacionais (e.g. sistemas computacionais) integrados e 
cooperativos no sentido de produzirem manufaturas. O SAM faz parte de um contexto de 
automação maior intitulado automática. A automática consiste  de uma sinergia de elementos 
de computação e automação voltada para a automatização de sistemas.  

A Figura 1 apresenta um exemplo de SAM simulado na ferramenta ANALYTICE II 
(Koscianski et al., 1999) (Simão, 2001) que permite expressar as características fundamentais 
de sistemas industriais reais. Esta célula de manufatura é composta por diversos equipamentos 
e sua função é produzir peças fictícias dos tipos A e B. 



 

Centro de  Centro de  Usinagem Usinagem Centro de  Centro de  Usinagem Usinagem 
Torno Mecânico

Robô ER III 

Robô Kuka 386 

Mesa 2 – posição 2

Mesa 2 – posição 1

Mesa 1 – posição 2 
Mesa 1 – posição 1 

           Mesa3 – posição 2 
            Mesa3 – posição1 

                Armazém

     Robô Puma 560 

      AGV com manipulador

 
Figura 1 – Célula de Manufatura simulada em ANALYTICE II 

Cada peça processada neste SAM possui um plano de processo gerado em um outro 
sistema de decisão chamado de Planejamento. O plano dita quais máquinas a peça deve visitar 
e quais operações devem ser realizadas sobre ela (Künzle, 1990) (Bongaerts, 1998). Omitindo 
as operações, oO plano de processo para peças A é {<armazém> <mesa 1> <centro-de-
usinagem> <mesa 2>} e para peças B é {<mesa3> <torno> <mesa3>}. Poderiam existir ainda 
alternativas de fabricação no plano de processo, caso existisse um escalonador dinâmico para 
realizar as seleções em tempo de execução.  

O papel do software de Controle Supervisório é fazer com que os elementos 
constituintes do SAM (e.g. tornos e robôs) trabalhem de forma harmônica para realizarem a 
fabricação das peças segundo os planos de processo (Mendes, 1995) (Miyagi, 1996). De uma 
forma geral, os elementos de um SAM podem ser classificados em equipamentos, elementos 
de hierarquia e elementos de processo. 

Uma divisão comum para equipamentos é classificá-los como de atuação (realizam 
operações sobre as peças), de transporte (realizam o translado de peças) e de armazenagem 
(realizam o armazenamento de peças). No exemplo proposto, o Torno e o Centro de 
Usinagem são classificados como equipamentos de atuação, o Puma, o Kuka e o ERIII como 
de transporte e o Armazém e as Mesas como de Armazenagem. 

Os elementos de hierarquia são subsistemas da planta industrial, como a estação de 
trabalho (i.e. grupo de equipamentos), a célula de manufatura (i.e. grupo de equipamentos e 
estações de trabalho) e a planta (i.e. grupo de equipamentos, estações e células). Como 
exemplo, o SAM ilustrado na figura 1, poderia conter três estações {<torno> <mesa3> 
<ERIII>}, {<centro-de-usinagem> <mesa 2> < Kuka>} e {<armazém> <mesa 1> <Puma>}. 

 



O SAM como um todo poderia ser considerado como uma célula composta pelas três estações 
e pelo equipamento de transporte <AGV>. 

  Esta divisão hierárquica propicia o desenvolvimento do CS-SAM em diversos níveis, 
conhecido como Controle Supervisório Hierárquico (Künzle, 1990). Por exemplo, um CS 
Hierárquico pode determinar que algumas peças vão para uma célula e não para outra. Uma 
vez na célula, outro nível de coordenação deste CS-SAM determinará quais elementos 
daquela célula processarão as peças. 

Quanto aos elementos de processo, eles englobam as peças, os lotes de peças e os 
paletes. Um lote de peças consiste em um grupo de peças de um mesmo tipo que avançam em 
conjunto no sistema de manufatura. Um lote tem uma prioridade de processamento e um 
plano de produção, permitindo escopos mais amplos de controle supervisório, como saber 
qual lote deve visitar qual célula. Por fim, um palete é um elemento sobre o qual uma ou mais 
peças (dependendo do modelo) são colocadas para fins de proteção e padronização no 
transporte. Os paletes são recursos limitados no SAM. Dependendo da morfologia das peças, 
certos SAMs podem não empregar paletes, como ocorre no exemplo estudado. 

3 Forças 

Em automática, padrões podem ser utilizados no desenvolvimento de software para 
Controle Supervisório de Sistemas Automatizados de Manufatura (CS-SAM). 

Apesar dos numerosos estudos envolvendo CS-SAM (Chaar et al., 1993) (Mendes, 
1995) (Miyagi, 1996) (Cury et al., 2001), nota-se uma carência de pesquisas específicas ao 
desenvolvimento de padrões arquiteturais para estes sistemas computacionais (Schmid, 1995). 
Considerando-se a complexidade e dimensão típica de sistemas CS-SAM, o desenvolvimento 
e emprego de padrões arquiteturais poderiam trazer uma contribuição importante para os 
desenvolvedores. 

Um padrão de software é a materialização de uma solução genérica e reutilizável em 
diversos problemas recorrentes, baseado na observação de experiências de desenvolvimentos 
passados. Um padrão pode ser aplicado a uma classe de problemas análogos, diminuindo o 
esforço de concepção (Gamma et al., 1994). 

Os padrões são alvo de várias discussões e estudos, caracterizando-se como uma nova 
área de pesquisa. Existem padrões em vários níveis de abstração e extensão, como por 
exemplo: padrões arquiteturais (Buschmann et al., 1996), de análise (Fowler, 1996), de 
projeto (Gamma et al., 1994), de programação (Coplien et Schmidt., 1995), de persistência e 
padrões para hipertexto/hipermídia (Vlissides et al., 1996) (Martin et al., 1997). Os padrões 
podem ser utilizados em diversos domínios de aplicação como em telecomunicações, sistemas 
de informação e automática. 

Mais especificamente, um padrão arquitetural expressa uma organização ou esquema 
estrutural fundamental para sistemas de software. Este tipo de padrão prevê um conjunto 
predefinido de subsistemas, especificando suas responsabilidades e inclui regras e linhas 
gerais para a organização e relacionamento entre eles (Buschmann et al., 1996).  

O processo de concepção de uma arquitetura computacional genérica robusta (e.g. 
padrão arquitetural) para CS-SAM não é, entretanto, uma tarefa simples pois além de se 
conceber uma estratégia de controle da fábrica, é necessário generalizá-la a um conjunto de 

 



situações de controle de fábricas semelhantes. Algumas abordagens têm sido propostas na 
literatura (Schmid, 1995) (Bongaerts, 1998) (Langer et al., 2000) (Simão, 2001). 

4 Solução 

Este artigo tem como objetivo apresentar um padrão arquitetural aplicável na 
construção de software para CS-SAM. A solução começa com a análise funcional (específica 
e genérica) de uma fábrica fictícia, modelada na ferramenta de simulação ANALYTICE II 
(Koscianski et al., 1999) (Simão, 2001). A partir desta análise, sintetiza-se, na forma de um 
padrão, uma arquitetura genérica aplicável a outros sistemas de controle semelhantes.  

Em síntese, o Padrão Arquitetural proposto para CS-SAM tem como essência uma 
arquitetura de software genérica no formato de um Sistema Genérico Baseado em Regras, 
modelado sob o paradigma da Orientação a Objetos, onde as instâncias constituem-se em 
Sistemas Especialistas realizados por Agentes Computacionais reativos e cooperativos que 
implementam uma técnica eficiente de inferência. 

4.1 Notação Utilizada 

Para a proposição de um padrão arquitetural para CS-SAM utiliza-se uma análise de 
requisitos funcionais seguida de uma análise estrutural. A análise de requisitos funcionais 
primeiramente define as responsabilidades de um Controle Supervisório para o sistema de 
manufatura proposto na Figura 1 e, então, as generaliza para uma classe maior de CS-SAM. 
Na análise estrutural definem-se as classes para este sistema realizando-se, a seguir, a 
generalização do modelo. 

Neste trabalho, diagramas específicos permitem definir responsabilidades e localizar 
recorrências que são então expressas em diagramas genéricos, segundo um formalismo 
estabelecido. Os diagramas genéricos definem o padrão arquitetural e a notação utilizada para 
compô-los pode ser considerada uma extensão da UML.  

A análise de requisitos funcionais específicos baseia-se em diagramas de casos de usos 
comuns e a análise de requisitos funcionais genéricos baseia-se em uma extensão de 
diagramas de casos de uso. Esta extensão é denominada Diagrama de Caso de Uso Genérico 
que contém casos e subcasos de usos genéricos e atores genéricos, além das primitivas da 
UML. 

Atores genéricos são representados acrescentando-se um círculo cinza ao fundo do 
ícone típico da UML, o que equivale à definição de um estereótipo <<genérico>> (Figura 2). 
Um ator genérico representa um ator que pode ter múltiplas ocorrências em um diagrama de 
casos de uso derivado. Considerando-se, como exemplo, o ator genérico Equipamento de um 
sistema CS-SAM, quando a arquitetura genérica fosse derivada para um sistema em 
particular, este ator poderia ser mapeado em mais de um ator representando os diferentes 
equipamentos da fábrica. Pode-se entender que um ator genérico possui uma cardinalidade 
indicando o número de ocorrências que podem existir deste ator em um mesmo diagrama de 
casos de uso. Na notação proposta, a cardinalidade é indicada no interior da elipse do caso de 
uso usando a notação padrão da UML. 

 



Os casos de uso genéricos têm como representação gráfica uma elipse com uma faixa 
cinza à sua esquerda (Figura 2), o que equivale à definição de um estereótipo <<genérico>>. 
Um caso de uso genérico representa um caso de uso que pode ter múltiplas ocorrências em 
um diagrama de casos de uso derivado do modelo genérico. Assim como para atores, um caso 
de uso genérico possui uma cardinalidade indicando o número de ocorrências. Como 
exemplo, pode-se considerar o caso de uso genérico Monitorar Equipamento que poderia ter 
várias ocorrências como: Monitorar Robô Puma, Monitorar Centro de Usinagem, etc. 

As análises estruturais específica e genérica empregam diagramas com classes 
instanciáveis e abstratas conforme a notação original da UML. 

 

 

Ator Genérico Caso de Uso Genérico  
Figura 2 – Notação utilizada 

4.2 Requisitos Funcionais do Padrão Arquitetural 

Para que o Controle Supervisório consiga controlar a fabricação de peças é necessário 
monitorar os estados de elementos da fábrica (equipamentos, peças, paletes, hierarquias), 
decidir como coordenar estes elementos segundo os estados monitorados e, então, comandá-
los segundo uma coordenação apropriada.  

A análise de requisitos funcionais para o CS-SAM pode ser dividida nos aspectos 
relacionados ao Comando, à Monitoração e à Decisão/Coordenação dos elementos de um 
Sistema Automatizado de Manufatura.   

A atividade de Comando consiste em enviar comandos a equipamentos ou a elementos 
de hierarquia (e.g. “robô transporte peça” ou “célula processe o lote de peças”). A atividade 
de Monitoração consiste em acompanhar os estados discretos dos elementos do SAM (e.g. 
“robô parado”, “estação de trabalho ocupada”, “peça na etapa três do plano de processo”). A 
Decisão/Coordenação é responsável pela análise dos estados dos elementos do SAM, de 
forma a decidir quando coordená-los (i.e. instigar comandos em uma determinada seqüência) 
para que realizem o processo produtivo segundo planejamento prévio e protocolos específicos 
(Simão, 2001). 

Durante a análise de requisitos funcionais, são criados os diagramas de casos de uso 
específicos que são, então,  generalizados obtendo-se os diagramas de casos de uso genéricos. 
Na análise de requisitos são considerados apenas os aspectos de software, uma vez que o CS-
SAM é essencialmente um sistema computacional.  

4.2.1 Requisitos Funcionais do Comando 
Um serviço importante em CS-SAM é o envio de comandos aos equipamentos. Por 

exemplo, o Controle Supervisório deve ser capaz de comandar o robô Puma para realizar a 

 



tarefa de pegar uma determinada peça do Armazém e pô-la na Mesa-1. Este serviço é, então, 
mapeado no subcaso de uso Comandar Puma no diagrama da Figura 3.  

A Figura 3 ainda traz os casos de uso Comandar AGV, Comandar Centro de 
Usinagem e Comandar Armazém para melhor exemplificar a atividade de comando dos 
equipamentos.   

 
 

Comandar AGV 
Mesa1 

Comandar Puma 
Puma 

Centro de Usinagem 
Comandar 

Armazém
Comandar Armazém 

Comandar AGV 
Mesa1 

Comandar Puma 
Puma 

Centro de Usinagem 

Armazém
Comandar Armazém 

 
Figura 3 - Comando de Equipamentos 

A partir da observação dos diagramas específicos (Figura 3), obtém-se um diagrama 
de caso de uso genérico para qualquer equipamento (Figura 4).  Neste diagrama observa-se o 
requisito funcional genérico necessário à concepção de um padrão arquitetural no tocante ao 
Comando de equipamentos no CS-SAM. 

 

 
Figura 4 – Comando de Equipamento 

Uma técnica possível de generalização é analisar se uma solução aplicada a um grupo 
de elementos do sistema aplica-se também a um conjunto maior de elementos. Por exemplo, 
quando se comanda um equipamento, está se executando esta operação sobre um subsistema 
fabril, portanto indaga-se a “genericidade” dos requisitos funcionais de Comando para outros 
subsistemas ou elementos da fábrica. 

Analisando os requisitos funcionais para comandar os elementos de hierarquia, nota-se 
a similaridade para com os equipamentos. O diagrama da Figura 4 pode ser generalizado para 
suportar estes elementos (Figura 5). 

 

 
Figura 5 - Comando de Elemento Fabril 

4.2.2 Requisitos Funcionais da Monitoração 

É função do CS-SAM estabelecer os momentos apropriados para o envio de 
comandos. Por exemplo, um comando não pode ser dado ao robô Puma enquanto ele se 

 



encontrar em um estado de quebra ou em um estado de execução de outra atividade. Portanto, 
um serviço que precede o Comando é a observação dos estados discretos dos equipamentos. 
Os casos de uso Monitorar Puma, Monitorar Centro de Usinagem, Monitorar AGV e 
Monitorar Armazém exemplificam esta funcionalidade (Figura 6).  

Processos de Monitoração incluem tanto o registro quanto a disponibilização dos 
estados de cada atributo do objeto observado (e.g. monitorar cada posição do Armazém que 
pode estar ocupada ou desocupada), sendo que o estado geral é dado pela composição dos 
estados específicos. Desta forma, Monitorar inclui, genericamente, dois subcasos de usos 
chamados Registrar Estados e Disponibilizar Estados (Simão, 2001).  

 
 

Centro de Usinagem

Monitorar Máquina-Ferramenta 

AGV 

Registrar Estados 
do AGV 

Disponibilizar
Estados do Armazém

Registrar Estados 
do Armazém 

Registrar Estados 
do Puma 

Disponibilizar
Estados do AGV

Puma 

Registrar Estados do
Centro de Usinagem

Monitorar Armazém 

Monitorar AGV 

Disponibilizar Estados 
do Centro de Usinagem 

Monitorar Puma 

Disponibilizar
Estados do Puma

Armazém
<<include>> <<include>><<include>> <<include>>

<<include>> <<include>> <<include>> <<include>> 
Monitorar Centro de Usinagem 

AGV 

Registrar Estados 
do AGV 

Disponibilizar
Estados do Armazém

Registrar Estados 
do Armazém 

Registrar Estados 
do Puma 

Disponibilizar
Estados do AGV

Puma 

Monitorar Armazém Monitorar Puma 

Disponibilizar
Estados do Puma

Armazém
<<include>> <<include>><<include>> <<include>>

<<include>> <<include>> <<include>> <<include>> 

 
Figura 6 - Monitoração/Comando de Equipamentos 

A partir da observação dos diagramas específicos de Monitoração (Figura 6), obtém-se 
um diagrama de casos de uso genérico para qualquer equipamento (Figura 7).  Neste diagrama 
observa-se os requisitos funcionais genéricos necessários à concepção de um padrão 
arquitetural no tocante a Monitoração de equipamentos no CS-SAM. 

 

 
Figura 7 - Monitoração de Equipamento Genérico 

Analisando os requisitos funcionais para monitorar os elementos de hierarquia, nota-se 
a similaridade com os equipamentos. O diagrama da Figura 7 pode ser generalizado para 
suportar estes elementos. 

Em um SAM existem ainda outros elementos fabris que devem ser considerados na 
Monitoração. Estes elementos são as peças, o lote de peças e os paletes, chamados de 
elementos de processo. No que diz respeito às peças e lotes de peças, é necessário 
acompanhar seus estados em relação a seus planos de processo e, também, a suas prioridades 

 



de produção. Com relação aos paletes, seus estados são determinados pela existência de peças 
nas suas posições e, também, pela sua posição na planta. 

Propõe-se, então, uma generalização ainda maior do caso de uso para Monitoração de 
forma a comportar tanto elementos de processo quanto elementos de hierarquia (Figura 8). 

 

 
Figura 8 - Monitoração de Elemento Genérico 

4.2.3 Requisitos Funcionais da Decisão/Coordenação 
No que diz respeito à atividade de Decisão/Coordenação, os requisitos funcionais 

estão relacionados com a tomada de decisão baseada nos estados dos elementos monitorados e 
com a coordenação destes elementos segundo uma lógica de comandos.  

Estas funcionalidades da Decisão/Coordenação podem ser observadas nas interações 
entre os equipamentos para a realização do beneficiamento das peças. Um exemplo é  o 
transporte realizado pelo robô Puma, entre o Armazém e a Mesa-1. Para que se possa realizar 
esta atividade, é necessário haver uma peça no Armazém, que a Mesa-1 esteja com uma 
posição livre para receber a peça e que o Puma esteja disponível. Além disso, é necessário 
saber se o plano de processo da peça considerada prevê, neste momento, que ela seja 
transportada para a Mesa-1. Em suma, antes de decidir se o Puma realizará o transporte, é 
necessário avaliar os estados dos elementos envolvidos conforme demonstra o caso de uso da 
Figura 9. 

 

Decidir e Coordenar Transporte de Peça do Armazém para a Mes

Obter estado
de produçao
da Peça

Decidir momento de transporte Coordenar o transporte

Ordenar o Puma
a pegar peça do
Armazém e
depositá-la na
Mesa1

Atualizar
estado do
Arrmazém

Atualizar
o estado
da Mesa1

Obter
estado da
Mesa1

Obter
estado
do Puma

Obter
estado do
Armazém

<<include>>

<<include>>

<<include>>

<<include>> <<include>>

<<include>>
<<include>>

<<include>><<include>>

 
Figura 9 – Decisão/Coordenação do transporte de Peça do Armazém para a Mesa1 

De mesma forma, se for avaliado o caso do transporte de peças da Mesa-1 para a 
Mesa-3, via AGV, encontram-se similaridades com o caso anterior. Para que este transporte 
ocorra, também são necessárias algumas condições sobre os elementos envolvidos (i.e. “ter 
uma peça na Mesa-1”, “o AGV estar livre”, “a Mesa-3 dispor de uma posição vaga para 
receber a peça” e “o plano de processo da peça prever a Mesa-3, neste momento, como a 
próxima visitação”). Ainda analisando o transporte das peças de Mesa-1 para o Centro de 

 



Usinagem ou o transporte da Mesa-3 para o Torno, verificam-se similaridades funcionais. 
Também, em todos os casos de uso, nota-se que, além de realizar estas avaliações, é 
necessário tomar decisões a respeito dos estados discretos observados e, se pertinente, enviar 
ordens para que os equipamentos realizem suas tarefas. 

Do estudo do diagrama de casos de uso específico, obtém-se o caso de uso genérico, 
retratado na Figura 10. Este diagrama comporta a interação entre os diversos elementos do 
SAM (i.e. de processos, de hierarquia e equipamentos). 

 

 
Figura 10 - Decisão e Coordenação das atividades dos elementos fabris 

4.3 Padrão Arquitetural para CS-SAM 

Tendo como base a análise específica e genérica de requisitos funcionais, esta seção 
apresenta diagramas de classes específicos e genéricos, utilizados na descrição do padrão 
arquitetural para CS-SAM. Os diagramas são apresentados em duas etapas. A primeira etapa 
envolve a atividade de Monitoração e a atividade de Comando (quando esta for pertinente), 
uma vez que estas atividades são realizadas sobre os elementos fabris. A segunda etapa visa 
as atividades de Decisão/Coordenação.  

Ressalta-se que, em termos de engenharia de software, cada uma destas atividades 
pode ser classificada como um padrão de projeto. Um padrão de projeto consiste de um ou 
vários elementos de projeto de software, tais como módulos, interfaces, classes, objetos, 
métodos, relações entre elementos, e uma descrição do seu comportamento. (Buschmann et 
al., 1996) (Gamma et al., 1994). 

Os diagramas de classes para Monitoração/Comando são, inicialmente, concebidos 
com um nível de genericidade intermediário (e.g. como diagramas genéricos para qualquer 
equipamento, para qualquer elemento de hierarquia ou para qualquer elemento de processo). 
A seguir, são incluídas especializações refinando as classes até o nível de classes  
instanciáveis, projetadas para tratar os elementos do SAM. Esta etapa constitui-se na parte 
descendente (top-down) do processo de concepção do modelo de Monitoração/Comando. A 
próxima etapa da concepção da Monitoração/Comando se dá pela definição de uma classe 
base para as classes mais abstratas existentes, reunindo-as em uma raiz de herança única. Esta 

 



segunda etapa caracteriza-se como a parte ascendente (bottom-up) do processo de concepção 
da Monitoração/Comando.  

Os diagramas de classes para Decisão/Coordenação são concebidos de forma que as 
instâncias possam avaliar e correlacionar quaisquer estados observados na Monitoração, bem 
como coordenar quaisquer comandos predeterminados no Comando. Para reduzir a 
complexidade no tratamento dos diferentes estados e no envio dos diferentes comandos aos 
elementos fabris, define-se um conjunto de classes padronizadas para a Decisão/Coordenação.  

O padrão arquitetural apresenta colaborações de classes fortemente acopladas cujas 
especializações permitem, portanto, criar instâncias em grupos de objetos coesos. Cada um 
destes grupos é considerado um agente computacional. Esta abstração na forma de agente 
facilita a compreensão das interações entre os grupos de objetos. 

Os conceitos relativos a agentes, encontrados na literatura, são variados. Neste 
trabalho considera-se um agente como um módulo de software com alto grau de coesão, com 
escopo bem definido, com autonomia e pertencendo a um certo contexto, no qual seu 
comportamento atual pode e, provavelmente, influenciará na sua existência futura (Franklin et 
Graesser, 1996) (Müller, 1998) (Rich et Knight, 1991) (Russell et Norvig, 1995). 

O padrão arquitetural proposto é orientado a objetos e o conceito de agente é aplicado 
com reservas. De fato, pretende-se identificar entidades mais abstratas nas instâncias das 
especializações do padrão, através do conceito de agentes cooperativos e reativos. Estas 
instâncias não se classificam necessariamente como um sistema multi-agente, embora 
pudessem ser consideradas como tal (Franklin et Graesser, 1996) (Müller, 1998) (Rich et 
Knight, 1991) (Yufeng et Shuzhen, 1999). 

Uma vez estabelecida a parte estrutural do padrão arquitetural e apresentadas classes 
que permitam instanciar agentes para o SAM, um diagrama de atividades demonstra, 
genericamente, a dinâmica de interações entre os elementos da Monitoração/Comando com a 
Decisão/Coordenação. 

4.3.1 Diagramas de Monitoração/Comando 
Para atender aos requisitos funcionais da Monitoração/Comando, propõe-se um agente 

computacional associado a cada elemento do SAM. Em termos de Monitoração, o agente é 
responsável por padronizar o registro e a disponibilização dos estados do elemento 
representado. Quanto ao Comando, cabe ao agente comunicar-se com o elemento fabril  para 
estimular a realização de alguma atividade, gerando uma provável mudança de estado. Desta 
forma, cada agente de Monitoração/Comando inclui o protocolo específico de comunicação 
com o elemento fabril associado. 

Monitoração/Comando de Equipamentos 
Cada equipamento do SAM (e.g. robô, torno ou esteira) possuirá um agente para o 

representar, monitorar e comandar. Este agente é designado como um cae (comando ativo de 
equipamento) e a classe principal de seu modelo é a CAE. Um cae ainda tem como objetos 
associados um conjunto de ats e um conjunto de mts, que provêm respectivamente das classes 
Atributo e Metodo.  

Um at representa e mantém o estado discreto de uma característica de um cae. Como 
exemplo, um at para acompanhar os estados de uma posição de um armazém (i.e. com peça 

 



ou sem peça) ou um at para registrar o estado do atuador de um robô (i.e. fechado ou aberto). 
O acompanhamento de estado é feito pelo cae através do interfaceamento com os dispositivos  
(via rede local ou porta de comunicação) ou por inferência através de algum artifício dedutivo 
como temporizadores. Cada at ainda tem como função notificar a mudança de estados a 
elementos de monitoração e decisão apropriados.  

Um mt é responsável por alterar o valor de um at. Um cae ainda pode se associar a um 
ou mais cms (i.e. agentes cuja classe principal é denominada Comando, derivada da classe 
Metodo). Um cm tem como responsabilidade adicional comandar, via o cae associado, o 
equipamento representado. Cada cm ainda apresenta a capacidade de inferir informações (e.g. 
qual ferramenta usar numa operação) e, normalmente, recebe parâmetros para realizar suas 
atribuições. 

Para melhor representar os equipamentos, pode-se ter hierarquias de classes derivadas 
de CAE, de Atributo e de Metodo. Um bom nível de especialização a partir de CAE é definir 
conjuntos de classes para equipamentos de armazenagem, transporte e atuação, nos quais se 
especifica elementos mais refinados mas ainda genéricos e aplicáveis a cada escopo.  

A Figura 11 apresenta um conjunto de classes para representar individualmente 
equipamentos de armazenagem. A classe CAEArmazenagem possui uma relação de 
agregação com a classe ATPosicao concebida para tratar posições de armazenamento. Para 
cada objeto do tipo ATPosicao existe um objeto do tipo MTAlEstPos para realizar sua 
mudança de estado. A classe CAEArmazenagem é especializada em CAEArmazem e 
CAEMesa para instanciar, respectivamente, agentes responsáveis pela monitoração e 
comando do Armazém e das Mesas da célula de manufatura exemplo.  

1..*1..*

1..*1 Altera

CAE
CAEArmazenagem

CAEArmazem CAEMesa

ATPosicao MTAltEstPos

Atributo

ATBoleano MTAltAtrBol

Metodo

 
Figura 11 – CAE especializado para equipamentos de armazenagem 

A Figura 12 apresenta uma hierarquia especializada para representar equipamentos de 
transporte. A classe CAETransporte é associada à classe ATLivre (criada para especificar a 
disponibilidade dos equipamentos representados pelos agentes instanciados). CAETransporte 
é especializada em CAETranpFixo e CAETranspMóvel. Para CAETranspFixo há um 
CMMoverAtuador que trata a movimentação do atuador e um CMAbrirFecharAtuador para 
tratar sua abertura e fechamento. CAETranpFixo é ainda especializada em CAEPUMA560, 
CAEKuka e CAEBraçoMec que servem para instanciar os objetos responsáveis por 
equipamentos da célula exemplo. Para CAETranspMóvel existe o CMMover para tratar 
movimentações na fábrica. Esta subclasse CAETranspMovel é especializada 

 



CAETranspMvAtivo e CAETranspMvPassivo (i.e. com ou sem atuador). 
CAETranspMvAtivo permite derivar uma classe para representar o AGV. 

1..*1

1

1..* 1

1

CAEKuka

CAETranspMvAtivo

ATBoleano
ATLivre

CMMoverAtuado

CAE
CAETransporte

CAEPUMA560

CAETranspFixo

CAEBracoMec

CAETranspMove

CMAbrirFecharAtuado

CAEAGV

CAETranspMvPassivo

ATBoleano
ATPosicao

CMMover

Metodo
Comando

 
Figura 12 - CAE especializado para equipamentos de transporte 

A Figura 13 traz uma classe especializada para equipamentos de processamento de 
peças, chamada CAEExecução. Esta classe relaciona-se com a classe ATLivre, bem como 
com a classe CMTrabalharPeça voltada ao comando do processamento da peça. 

 

1..*

1CAECentrodeUsinagemCAETorno 
ATBoleano 

ATLivre 

Comando 
CMTrabalharPeca 

CAE 
CAEExecucao 

 
Figura 13 - CAE especializado para equipamentos de processamento de peças 

Para que estes diagramas de classe representem equipamentos reais, é necessária uma 
maior especificação de detalhes de funcionamento interno das classes, bem como 
interfaceamento com os equipamentos fabris. De fato, para projetar um CAE para 
equipamento real, é necessário conhecimento multidisciplinar. Estes diagramas de classe têm 
como principal objetivo expressar as interfaces padronizadas para com a decisão e não 
detalhes de implementação. 

Os elementos comuns às classes CAETransporte, CAEArmazenagem e 
CAEExecução são agrupados ou associados à classe CAE. Um exemplo é a associação com a 
classe ATListaPecaPlanoProcesso. A função de cada instância desta classe é indicar o 
próximo destino de cada peça segundo seu plano de processo.  

A Figura 14, além de sintetizar os diagramas das figuras 11, 12 e 13, define a parte de 
Monitoração/Comando de equipamentos para o padrão arquitetural de CS-SAM. Em todos 
estes diagramas de classe, as únicas classes passíveis de instanciação são as que representam 

 



equipamentos específicos, assim como as derivações de Atributo e Método relacionadas. 
Portanto, todas as demais classes são consideradas como classes abstratas. 

 

1

0..*

1..* 

1..* 

1

1

1

1..* 

1..* 1..* 

1
1..* 

1

CAEExecucao 

ATBoleano 
ATPosicao 

CMAbrirFecharAtuador 

CAEArmazenagem

CAETranspFixo

MTAltAtrBol 
MTAltEstPos 

CMMover

Metodo
Comando

CAETransporte

CMTrabalharPeca 

ATBoleano 
ATLivre 

BaseFatos
CAE

ATBoleano
ATOperante

Atributo 
ATListaPecaPlanoProcesso

CAETranspMovel 

CAETranspMvAtivo

CMMoverAtuador

CAETranspMvPassivo 

1

0..*

1..* 

1..* 

1

1

1

1..* 

1..* 1..* 

1
1..* 

1

CAEExecucao 

ATBoleano 
ATPosicao 

CMAbrirFecharAtuador 

CAEArmazenagem

CAETranspFixo

MTAltAtrBol 
MTAltEstPos 

CMMover

Metodo
Comando

CAETransporte

CMTrabalharPeca 

ATBoleano 
ATLivre 

BaseFatos
CAE

ATBoleano
ATOperante

Atributo 
ATListaPecaPlanoProcesso

CAETranspMovel 

CAETranspMvAtivo

CMMoverAtuador

CAETranspMvPassivo 

 
Figura 14 - Hierarquia de Equipamentos 

 

Monitoração de Elementos de Processo (Peças, Lotes e Paletes) 
Para realizar o CS-SAM é necessário monitorar os estados das peças, lotes e paletes 

que transitam no SAM. Com este intuito, definem-se classes de monitoração chamadas 
ElPrPalete, ElPrPeça e ElPrLote. Estas classes (Figura 15) são especializações da classe 
ElPr (Elemento de Processo) e cada qual também pode possui derivações de Atributo, para 
registrar estados, e de Método, para alterá-los. 

Para a classe ElPrPeca existe uma classe ATPlanoProcesso para registrar o estado da 
peça representada com relação ao seu Plano de Processo. A classe ElPrPalete relaciona-se 
com a classe ATPosicao. Ainda, para a classe ElPrPalete, são definidas duas classes 
chamadas MTReceberLiberarPeça e MTFixarDesfixarPeça, relacionadas a ATPosicao. 
ElrPrLote representa um lote de peças e os estados de suas instâncias influenciam-se pelas 
instâncias de ElPrPeça relacionadas. Por fim, a classe base ElPr possui um atributo 
especificando sua prioridade de processamento.  

As peças não fazem parte do SAM, elas são processadas por ele. Por isto, os elementos 
de processo não são focados diretamente pela Decisão/Coordenação, mas sim de forma 
indireta, uma vez que servem para compor o estado dos demais elementos do SAM passíveis 
de monitoração e comando. Por exemplo, um objeto do tipo ATListaPecaPlanoProcesso tem 
seu valor em função do estados de objetos do tipo ATPlanoProcesso. 

 



1

11..*
Composto

1..*

1..* *
Comporta

0..1

1..*

ElPrPecaElPrPalete

Atributo
ATPlanoProcesso

Metodo
MTReceberLiberarPec

Metodo
MTFixarDesfixarPeca

ATBoleano
ATPosicao

BaseFatos
ElPr

-prioridade1:int

ElPrLote

 
Figura 15 - Diagrama de Classes para Elementos Processuais 

 

Monitoração/Comando de Níveis Hierárquicos 
Para representar, decidir, monitorar e comandar níveis hierárquicos existe uma classe 

denominada ElHi (Elemento de Hierarquia). Esta classe especifica a capacidade de suas 
instâncias agregarem objetos dos tipos ElHi, ElPr e CAE (Figura 16), assim como agregarem 
elementos de decisão. 

Cada instância ElHi mantém ats cujos estados advém de monitoração própria (e.g. 
realizada via interfaceamento com sensores) e em função dos valores dos ats de seus 
agregados. 

Uma instância ElHi, similarmente aos caes, pode associar-se a cms especializados, 
chamados de cmcp (comandos compostos). Um cmcp tem como função induzir o início da 
atividade de controle supervisório no escopo do elemento de hierarquia representado. Por 
exemplo, o comando “produzir lote de peças na célula” ativa os agentes responsáveis pelo 
controle supervisório no escopo da célula comandada.  

BaseFatos
ElPr

BaseFatos
CAE

BaseFatos
ElHi

ElHiPlanta

ElHiEstacao

ElHiCelula

 
Figura 16 - Diagrama de Classes para ElHi 

 

Monitoração/Comando no Padrão Arquitetural 
Todos os agentes de Monitoração/Comando analisam estados de elementos do SAM e 

têm a capacidade de alterá-los. Cada estado que ocorre no sistema pode ser considerado como 

 



um fato. Portanto, cada um dos agentes trata a mudança de fatos ocorridos sobre o elemento 
que ele representa. 

Genericamente, CAE, ElHi ou ElPr é considerado do tipo BaseFatos. As instâncias 
(agentes) de qualquer derivado da classe abstrata BaseFatos são designadas como abf (agente 
da base de fatos) (Figura 17). Na BaseFatos são encapsuladas características comuns às suas 
especializações (e.g. identificador).  

Conforme observado, toda derivação da BaseFatos compõe-se com derivados de 
Atributo e Método. Em última análise, a classe Atributo é uma interface padrão de saída e 
Método é uma interface padrão para entrada de informações nas derivações da BaseFatos. 
Assim, a classe BaseFatos é uma forma de expressão comum (ou um padrão) para monitorar 
e comandar os elementos que possam influenciar a decisão. 

A essência da Monitoração/Comando para este padrão arquitetural encontra-se nas 
figuras 14, 15, 16 e 17. Para conceber a Monitoração/Comando de CS-SAM especializam-se 
estes diagramas para tratar o caso específico e fazem-se as instanciações necessárias que, 
então, realizarão a atividade de Controle Supervisório. 

 

1..* 1 
Altera 

0..* 

1..* 1..* BaseFatos 

-Identificador:int

ElPr ElHi CAE 

Atributo Metodo 

Comando 

 
Figura 17 - Diagrama de Classes - Monitoração e Comando 

4.3.2 Decisão/Coordenação 

Para compor a parte do padrão arquitetural relativo à Decisão/Coordenação é 
necessário um conjunto de classes que modele os relacionamentos com a 
Monitoração/Comando, bem como a lógica causal existente entre a Decisão e a Coordenação. 
O modelo deve prever que a Decisão ocorre pela avaliação e correlação dos fatos observados 
nos ats dos abfs, enquanto a Coordenação envolve um conjunto de ordens sobre mts e cms 
dos abfs, em resposta à decisão tomada, alterando estados de ats. 

Por conseqüência, observa-se que o CS-SAM trabalha sob a forma de um Sistema de 
Produção (SP) (Simão, 2001). Um modelo utilizado freqüentemente para realizar SPs é o de 
Sistema Baseado em Regras (SBR) (Pan et al., 1998) (Rich et Knight, 1991). 

A Decisão/Coordenação, no padrão arquitetural proposto, toma a forma de um 
diagrama de classes que modela um SBR genérico. Portanto, cada instância criada, a partir da 

 



especialização do padrão arquitetural, constitui-se de um Sistema Especialista, realizado por 
agentes, aplicado sobre um determinado sistema de produção industrial. 

Instância de Decisão/Coordenação 
Para que cada CS-SAM constituído, segundo o padrão arquitetural proposto, possa 

realizar uma lógica de Decisão/Coordenação, ela pode ser expressa em regras tais como as 
descritas nas Figuras 18 e 19.  

A Figura 18 apresenta uma Regra expressando o conhecimento necessário para 
realizar o transporte de peças do Armazém para a Mesa-1. A regra dita o seguinte: se existe 
uma ou mais peça no Armazém cujos plano de processo indicam a Mesa-1 como próximo 
equipamento a ser visitado, se o Puma está livre e se a Mesa-1 tem alguma posição livre, 
então o Puma deve transportar uma das peças do Armazém para a Mesa-1, segundo 
parâmetros específicos. Quando mais de uma peça é passível de transporte, a escolha é feita 
pelo escalonador dinâmico. 

REGRA Transporte Armazém - Mesa-1

Agente CAEPuma1           Comando CMMoverAtuador(CAEArmazem1, CAEMesa1).

SE
Agente CAEArmazem1     Atributo ATListaPecaPlanoProcesso = CAEMesa1 E
Agente CAEPuma1            Atributo ATLivre =  Verdade     E
Agente CAEMesa1            Atributo ATPosicaoLivre =  Verdade

ENTÃO
Ordem

Condição

Ação

PremissasREGRA Transporte Armazém - Mesa-1

Agente CAEPuma1           Comando CMMoverAtuador(CAEArmazem1, CAEMesa1).

SE
Agente CAEArmazem1     Atributo ATListaPecaPlanoProcesso = CAEMesa1 E
Agente CAEPuma1            Atributo ATLivre =  Verdade     E
Agente CAEMesa1            Atributo ATPosicaoLivre =  Verdade

ENTÃO
OrdemOrdem

CondiçãoCondição

AçãoAção

PremissasPremissas

 
Figura 18 – Regra para decidir e coordenar transporte de peças entre Armazém e Mesa-1 

A Figura 19 apresenta outra instância de Regra responsável pela Decisão/Coordenação 
de transporte de peça da Mesa-1 para o Centro de Usinagem, bem como o processamento da 
peça neste último equipamento. O conhecimento desta Regra é: se existe uma ou mais peças 
na Mesa-1 cujos planos de processo indicam o Centro de Usinagem como próximo 
equipamento a ser visitado, se o Centro de Usinagem está livre e se o KUKA386 está livre, 
então o KUKA386 deve transportar uma das peças da Mesa-1 para o Centro de Usinagem e 
esta deve processar a peça segundo parâmetros específicos. 

REGRA Transporte Mesa-1 - Máquina-Ferramenta

Agente CAEKuka386-1 Comando CMMoverAtuador(CAEMesa1,CAEMaquinaFerramenta1).
Agente CAEMaquinaFerramenta1-1Comando CMTrabalharPeca().

SE
Agente CAEMesa1 Atributo ATListaPecaPlanoProcesso = CAEMaquinaFerramenta1 E
Agente CAEMaquinaFerramenta1 Atributo  ATLivre =  Verdade      E
Agente CAEKuka386-1   Atributo ATLivre =  Verdade

ENTÃO

REGRA Transporte Mesa-1 - Máquina-Ferramenta

Agente CAEKuka386-1 Comando CMMoverAtuador(CAEMesa1,CAEMaquinaFerramenta1).
Agente CAEMaquinaFerramenta1-1Comando CMTrabalharPeca().

SE
Agente CAEMesa1 Atributo ATListaPecaPlanoProcesso = CAEMaquinaFerramenta1 E
Agente CAEMaquinaFerramenta1 Atributo  ATLivre =  Verdade      E
Agente CAEKuka386-1   Atributo ATLivre =  Verdade

ENTÃO

 
Figura 19 - Regra para decidir e transportar peca da Mesa-1 para Centro de Usinagem. 

Cada Regra é composta por uma Condição e uma Ação. Na Condição há uma série de 
Premissas e na Ação uma série de Ordens. A Premissa pode ser: (i) Premissa Simples, que 
compara (ou avalia) o at de um abf com um determinado valor via algum operador; ou (ii) 
Premissa Composta, que correlaciona valores de ats. A Ordem tem a função de instigar um mt 
ou um cm de um abf para realizar suas atribuições. 

 



Em termos de Controle Supervisório, cada Condição representa a parte da Decisão, 
enquanto cada Ação representa parte da Coordenação. Portanto, a regra representa a relação 
causal entre estas partes. Todo o conhecimento pertinente a Decisão/Coordenação advém do 
conjunto de Regras do CS-SAM. 

Para especificar um diagrama de classes genérico para comportar a 
Decisão/Coordenação, seguindo os princípios de SBR, pode-se observar regras específicas e 
delas obter elementos que comportem as funcionalidades genéricas desejadas. 

Neste trabalho propõe-se uma estrutura de classes que permita instanciar objetos que 
comportem o conhecimento expresso em regras no formato apresentado. Os relacionamentos 
expressos no diagrama de classes devem permitir aos agentes realizarem uma inferência 
rápida e eficiente, uma vez que o CS-SAM pode necessitar de tempo curto de resposta.  

Decisão/Coordenação no Padrão Arquitetural 
O modelo da Decisão/Coordenação possui uma classe Regra para representar cada 

regra do SBR. As instâncias desta classe são chamadas de ars (agentes regra). A Regra agrega 
duas classes, a Condicao e a Acao, cujas instâncias são designados por acs (agentes condição) 
e aas (agentes ação). Cada ac apresenta uma relação causal com um aa (Figura 20).  

O ac faz o cálculo lógico do ar que o possui. Cada ac é conectado a um ou mais aps 
(agentes premissa) oriundos da classe Premissa. Um ap possui: (i) um valor booleano sobre si 
mesmo, (ii) um apontamento a um único at (a Referência), (iii) um operador lógico (o 
Operador) e (iv) um valor ou um limite de valores (o Valor). O ap calcula seu valor booleano 
comparando o Valor e a Referência por meio do Operador (i.e. Premissa Simples). Outro 
recurso do ap é o Valor ser referência a um outro at, permitindo correlações (i.e. Premissa 
Composta). Enfim, o ac faz o cálculo lógico através da conjunção dos valores booleanos dos 
aps conectados. 

O aa realiza coordenações por meio de uma seqüência de aos (agentes ordem) 
associados que, além de serem instâncias da classe Ordem, comandam assincronamente abfs 
citados no respectivo ac, via mts ou cms, para realizarem suas atribuições. Um aa só é 
passível de execução se o respectivo ac estiver em estado de verdade.  

Outras características de um ar são: (i) autodestruição se um dos agentes referenciados 
no seu ac deixar de existir; (ii) modularidade de escopo (i. e. os ars de uma instância de um 
ElHi não enxergam os ars de outra instância); (vi) aps, conectados ao seu ac, compartilhados 
com acs de outros ars, quando pertinente; e (vii) aos conectados ao seu aa, compartilhados 
com aas de outros ars, também quando pertinente (estes compartilhamentos colaboram no 
processo de inferência). 

 



1
1

1..*1
Altera

1..20..*
Notifica

1..*

1..*
Notifica

11..* Resolucao

Relacao Causal

0..*1
Instiga

1..*

1..*
Notifica

1..* 1..*

Condicao
Acao

ResolutorConflito

Premissa Atributo OrdemMetodo

BaseFatos

Regra

 
Figura 20 - Diagrama de classes para Decisão/Coordenação 

A dinâmica de interações entre os agentes pode gerar conflitos. Um conflito ocorre 
quando um ap tem a Referência oriunda de um abf exclusivo (i.e um abf para recurso 
compartilhado, como um robô que atende a dois equipamentos) e está sendo utilizado por ars 
em estado de verdade (elegíveis). Por exemplo: a Premissa “Agente CAEKUKA386-1 
Atributo ATLivre = Verdade” que hipoteticamente colabora para ars serem elegíveis, sendo 
o CAEKUKA386-1 exclusivo. Para resolver o impasse, escolhe-se um ar para ser ativado (o 
eleito), tomando como base alguns parâmetros de decisão (e.g. um escalonador dinâmico ou 
políticas de controle). Tendo o eleito, os demais até então elegíveis passam a ser considerados 
falsos ou inelegíveis. Toda a política de resolução de controle, neste padrão arquitetural, é 
encapsulada em uma agente do tipo ResolutorConflito (Figura 20). 

A dinâmica de interações entre os agentes ainda permite uma inferência robusta em 
comparação com o modelo usual, em SBR, de pesquisar toda a base de fatos (Rich et Knight, 
1991) ou mesmo com os modelos mais avançados, como por exemplo a eficiente abordagem 
proposta por Forgy (Forgy, 1982), intitulada RETE network. 

Os agentes realizam a inferência utilizando notificações: o abf avisa aos ats que 
devem mudar de valor quando percebem alguma mudança que os interessa no elemento 
monitorado (n1 na Figura 21). O at, que sabe quais aps têm interesse na mudança de seu 
estado, notifica os aps interessados quando a mudança de estado ocorre (n2). Os aps 
notificados recalculam, então, seus valores lógicos. Cada ap sabe quais acs têm interesse na 
sua mudança de valor booleano. Portanto, quando um ap muda de estado, ele notifica os acs 
interessados (n3). Cada ac notificado reavalia seu valor lógico e em caso de alteração avisa 
seu ar. O ar em estado de “verdade” habilita seu aa a ser executado. 

O relacionamento dos agentes cria um grafo de conexões, permitindo uma inferência 
ágil, sem buscas através de propagações de mensagens. Esta inferência consiste na dinâmica 
principal das instâncias criadas a partir deste padrão arquitetural. 

 



ABF 1

ABF 2

AC 1

at2 n
AR 1AC 2

AR 2AA 1

AA 2
AO 3mt2.1

mt1. 1

abf

ap

ar

ao

acat

am aa

n1 n2 n3 n4

AO5

AO 1

APN

AP3

AP2

AP1

mt1..n

mt2.n

at2 1

at1.n

at1.1

AO 2

ABF 1

ABF 2

AC 1

at2 n
AR 1AC 2

AR 2AA 1

AA 2
AO 3mt2.1

mt1. 1

abf

ap

ar

ao

acat

am aa

n1 n2 n3 n4

AO5

AO 1

APN

AP3

AP2

AP1

mt1..n

mt2.n

at2 1

at1.n

at1.1

AO 2

 
Figura 21 - Princípio de Notificações em Diagrama de Objetos 

5 Conseqüências 

Este artigo apresentou um padrão arquitetural para Controle Supervisório de Sistema 
Automatizados de Manufatura. Definiu-se uma extensão da UML para tratar a genericidade 
na análise de requisitos para a composição do padrão arquitetural. Esta extensão traz como 
benefício a capacidade de expressão genérica de requisitos funcionais através da qual vários 
diagramas de casos de uso específicos podem ser representados em um único modelo. 

O padrão arquitetural proposto pode ser classificado como: (i) multicamada, com uma 
camada de Monitoração/Comando e uma camada de Decisão/Coordenação; (ii) baseado em 
regras, uma vez que o padrão é modelado segundo um SBR genérico; (iii) orientado a objetos; 
(iv) orientado a agentes, uma vez que grupos coesos de objetos são apresentados como 
agentes; e (v) dirigido a eventos, pois os agentes reagem e cooperam por estímulo de eventos.  

O artigo apresentou um padrão arquitetural para uma área importante em computação 
relacionada com a automação industrial. Contribuições para concepção de sistema de controle 
supervisório são necessárias em razão da complexidade de desenvolvimento de sistemas 
computacionais para este fim. 

O padrão arquitetural apresentado inclui conceitos de inteligência artificial, uma vez 
que o modelo de solução adotado é o de um sistema baseado em regras genérico para realizar 
CS-SAM. Este modelo emprega o conceito de agentes na instanciação das classes e adota um 
mecanismo avançado de inferência por meio de notificações.   

A robustez do padrão arquitetural constituído, bem como a eficácia dos sistemas 
instanciados a partir do padrão, têm sido observados em sistemas de Controle Supervisório 
aplicados sobre simulações de plantas industriais em ANALYTICE II, incluindo a planta 
apresentada como exemplo neste trabalho. Também se pretende aplicar este padrão 
arquitetural a sistemas reais.  

Como trabalhos paralelos, está sendo definida uma metodologia para a concepção de 
padrões arquiteturais segundo a abordagem apresentada e a definição de um padrão genérico 

 



para concepção e realização de sistemas baseados em regras, consistindo basicamente, do uso 
dos níveis mais genéricos do padrão arquitetural proposto em outras áreas de aplicação.  

Trabalhos futuros incluem a definição de um modelo de distribuição computacional do 
padrão arquitetural, desenvolvimento de um ambiente para instanciação de sistemas 
especialistas segundo o padrão, e enquadramento dos módulos constituintes do padrão 
arquitetural segundo os padrões de projeto existentes na literatura. Prevê-se, também, o 
desenvolvimento de padrões arquiteturais para a concepção e realização de outros sistemas de 
gestão de informação voltados a SAM, tais como o Planejamento, o Escalonamento e a 
Supervisão, de forma integrada ao padrão de Controle Supervisório proposto. 

6 Padrões Relacionados 

A literatura especializada em arquiteturas de software para CS-SAM não é vasta. 
Existem várias políticas para composição de CS-SAM, mas são muito específicas, não 
podendo ser consideradas como arquiteturas de software.  

Dentre as arquiteturas propostas existem as holônicas. A arquitetura holônica é 
considerada uma arquitetura ágil. Uma arquitetura ágil para manufatura é aquela na qual 
encontram-se propriedades acentuadas de autonomia, organização, tolerância à falhas, 
adaptação, comunicação, dentre outras que permitem a concepção de sistemas de manufatura 
mais flexíveis e ativos. Estes sistemas têm sido inspirados em sistemas naturais (e.g. 
biológicos e sociais) que possuem as características citadas e envolvem os conceitos de 
hierarquia, heterarquia, agentes e multi-agentes (Bongaerts, 1998) (Sorensen et Langer, 1998) 
(Wyns, 1999).  

No caso específico de Controle Supervisório, há a proposta de Sorensen (Sorensen et 
Langer, 1998) que consiste de uma hierarquia de classes tratando da divisão em subconjuntos 
similares aos apresentados (i.e. monitoração/comando e decisão/coordenação). Entretanto, 
não é explicitada uma forma padronizada de interação entre os módulos, a dinâmica entre eles 
é abordada em termos mais abstratos, necessitando de especializações que resolvam a questão 
(como por exemplo o padrão arquitetural proposto). Esta abordagem consiste-se, de fato, em 
uma arquitetura de software importante no tocante ao modelo holônico, porém não a 
apresentada na forma de um padrão arquitetural. 

Uma solução encontrada na literatura é o artigo apresentado por Schmid (Schmid, 
1995). Similarmente à proposta de Sorensen, naquele artigo são tratados os aspectos de 
divisão estrutural dos constituintes genéricos de um Controle Supervisório de Manufatura, 
porém com um grau de especialização maior.  Apesar de ser um pouco mais detalhado, ainda 
não são dadas soluções efetivas para a modelagem, instanciação e realização da dinâmica de 
interação dos elementos.  Por fim, a abordagem de Schmid ainda não é apresentada na forma 
de um padrão arquitetural, mas sim na forma de uma arquitetura de software composta por 
padrões de projeto. 

Aarsten (Aasten et al., 1995) apresenta um framework, quase no formato de um padrão 
arquitetural, muito robusto e aplicado a CS-SAM. Nesta abordagem já é tratada a questão do 
relacionamento dinâmico entre os constituintes do CS-SAM, apresentando uma forma 
detalhada de concepção, de instanciação e de realização do controle. Um ponto positivo da 
proposta de Aarsten é a preocupação com detalhes observada desde a análise até a 

 



implementação do controle supervisório, tanto no tocante a simulações quanto a aplicações 
reais. Ainda no que tange a implementação, há detalhes importantes de integração, como 
questões relativas à banco de dados e distribuição computacional. Todavia, não é tratada uma 
forma de expressão da decisão e nem mecanismos que permitam esta decisão apresentar 
inferências avançadas. 

Aaesten (Aarsten et al., 1996) apresenta uma aplicação especializada de um padrão 
apresentado em (Aarsten, 1995). Em suma o trabalho consiste da uma especialização e 
respectiva aplicação do referido padrão para a situação de controle supervisório de robôs 
móveis. 

Brugali (Brugali et al., 1997) apresenta algumas considerações e evoluções (no sentido 
de aplicações) dos trabalhos apresentados por eles e seus parceiros em artigos prévios 
(Aersten, 1995) (Aersten, 1996). 

7 Referências Bibliográficas 

Aarsten, A., Brugali, D. e Menga, G. Designing Concurrent and Distributed Control Systems: an 
Approach Based on Design Patterns. In Communications of the ACM - Special Issue on Design 
Patterns. 1996. 

Aarsten, A., Elia, G. e Menga, G. G++: A Pattern Language for the Object Oriented Design of 
Concurrent and Distributed Information Systems, with Applications to Computer Integrated 
Manufacturing  . In J. Coplien and D. Schmidt (eds.) Pattern Languages of Program Design. 
Addison-Wesley, 1995. 

Bongaerts, L. Integration of Scheduling and Control, In Holonic Manufacturing Systems. Ph.D. Thesis 
- KatholiekeUniversiteit Leuven, 1998. 

Brugali, D., Menga, G e Aarsten, A.. The Framework Life Span: A Case Study for Flexible 
Manufacturing Systems. In Communications of the ACM. Outubro 1997. 

Buschmann F., Meunier R., Rohnert H., Sommerlad P. e Stal, M. Pattern-Oriented Software 
Architecture - A System of Patterns. Wiley and Sons Ltd., 1996. 

Chaar, J. K., Teichroew, D. e Volz, R. A. Developing Manufacturing Control Software: A Survey and 
Critique, The International Journal of Flexible Manufacturing Systems, Kluwer Academic 
Publishers, 1993. pp. 053-088. 

Cheesman, J. e Daniels, J.  UML Components – A Simple Process for Specifying Component-Based 
Software. Addison Wesley, 2001.  

Coplien, J. e Schmidt, D. (eds.) Pattern Languages of Program Design, Reading-MA. Addison-
Wesley, 1995. 

Cury, J. E. R., de Queiroz, M. H. e Santos, E. A. P. Síntese Modular do Controle Supervisório em 
Diagrama Escada para uma Célula de Manufatura. V Simpósio Brasileiro de Automação 
Inteligente, Canela, RS, Brasil, 2001. 

Forgy, C. L. RETE: A Fast Algorithm for the Many Pattern/Many Object Pattern Match Problem. 
Artificial Intelligence, v.19,1982. p. 17-37. 

Fowler, M. Analysis Patterns: Reusable Object Models. Addison-Wesley, 1996. 
Franklin, S. e Graesser, A. Is it an Agent, or Just a Program? A Taxonomy for Autonomous Agents,  

Proceedings of the 3th International Workshop on Agent Theories, Architectures and Languages, 
Springer-Verlag, 1996. 

 



Gamma, E. et al. Design Patterns: Elements of Reusable Object-Oriented Software. Addison Wesley, 
1994. 

Koscianski, A., Rosinha, L. F., Stadzisz, P. C., Künzle, L. A. FMS Design and Analysis: Developing a 
Simulation Environment In: Proceedings of the 15th International Conference on CAD/CAM, 
Robotics and Factories of the Future, Águas de Lindóia, v.2. 1999. p.RF25 - RF210. 

Künzle, L. A. Controle de Sistemas Flexíveis de Manufatura - Especificação dos níveis equipamento e 
estação de trabalho, Dissertação de Mestrado, CEFET/PR, 1990. 

Langer, G., Sorensen, C., Schnell, J. e Alting, L. Design of a Holonic Shop Floor Control System for a 
Steel Plate Milling-Cell, In : 2000 Int. CIRP Design Seminar on Design with Manufacturing: 
Intelligent Design Concepts Methods and Algorithms, Israel, 2000. 

Martin, R.C.; Riehle, D. e Buschmann, F. (eds.) Pattern Languages of Program Design 3. Reading-
MA. Addison-Wesley, 1997. 

Mendes, R. S. Modelagem e Controle de Sistemas a Eventos Discretos - Manufatura integrada por 
computador, Belo Horizonte, Fundação CEFET-MG, 1995. 

Miyagi, P. E. Controle Programável – Fundamentos do Controle de Sistemas a Eventos Discretos, 
Edgard Blücher, 1996. 

Müller, J. P. Architectures and Applications of Intelligent Agents: A Survey. International House. 
Ealing London W5 5DB. Knowledge Engineering Review, 1998. 

Pan, J., DeSouza G. N., Kak, A. C. FuzzyShell: A Large-Scale Expert System Shell Using Fuzzy Logic 
for Uncertainty Resoning. IEEE Transactions on Fuzzy Systems, Vol. 6. No 4, 1998. 

Rich, E. e Knight, K. Artificial Intelligence, McGraw-Hill, 1991. 

Rumbaugh, J., Jacobson, I. e Booch, G. The Unified Modelling Language Reference Manual. Addison 
Wesley Longman, 1999. 

Russell, S. e Norvig, P., Artificial intelligence: A Modern Approach. Prentice Hall, 1995. 
Schmid, H. A. Creating the Architecture of a Manufacturing Framework by Design Patterns. 

Fachbereich Informatik, Fachhochschule konstanz. OOPSLA’95, 1995. 
Simão, J. M. Proposta de uma Arquitetura para Sistemas Flexíveis de Manufatura Baseada em 

Regras e Agentes. Dissertação de mestrado. CPGEI/CEFET-PR, 2001. 
Sorensen C., Langer C. G. Developing a System Architecture for Holonic Shop Floor Control. 

International Federation of Automatic Control – Preprints of The 5th IFAC Workshop On 
Intelligent Manufacturing Systems, Gramado - RS, Brazil, November. 1998. 

Vlissides, J.; Coplien, J.; Kerth, N (eds.). Pattern Languages of Program Design 2. Addison-Wesley, 
1996. 

Wyns J. Reference Architecture for Holonic Manufacturing Systems - The Key to Support Evolution 
and Reconfiguration. Ph. D. Thesis PMA/Katholieke Universit Leuven. 1999. 

Yufeng, L. e Shuzhen, Y. Research on the Multi-Agent Model of Autonomous Distributed Control 
System, In 31 International Conference Technology of Object-Oriented Language and Systems. 
IEEE Press. China. 1999. 

 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



A Queue-based Algorithmic Pattern

Marcos C. d’Ornellas1

ornellas@inf.ufsm.br

Grupo de Pesquisas em Processamento de Imagens (PIGS)
Laboratório de Ciências Espaciais de Santa Maria (LACESM)

Universidade Federal de Santa Maria (UFSM)

Abstract

This paper briefly discuss the general class of algorithms that can be imple-
mented using queue-based constructions. Common characteristics of these algo-
rithms are also described in order to provide a generic representation for queue-
based algorithms. In addition it describes the queue-based pattern in terms of
wavefront propagation and its relationship within mathematical morphology. Such
a pattern is essential for the development of morphological operators and oper-
ations. Examples of pattern usage are contour processing, morphological recon-
struction, and watersheds for grey-scale and color images to name a few.

Keywords: mathematical morphology, software development, implementation
techniques, algorithmic patterns, and generic programming.

1 Name

Queue-based

2 Intent

Serve as a foundation to provide a generic representation for queue-based algorithms. Queue-
based provides flexibility in terms of requirements for queue-based algorithms and govern their
effective implementation. In addition it enhances morphological algorithm reusability.

3 Also Known As

Wave-front propagation or just propagation.

4 Motivation

In parallel implementations, computational power is wasted because, at each iteration, only
a small fraction of the processed pixels actually change values. This is even the case for the
sequential ones. Although it is more efficient for operator iterations than the parallel pattern is
[5]. Apart from that, morphological image operators implemented this way, are often iterated
several times to achieve stability, which make them inefficient in practice. Therefore, reasonable

1Financial support from FAPERGS Process n. 02/0287.0



solutions not only in the algorithmic design but also in the implementational techniques are
needed.

Algorithms that incorporate image scanning techniques based on queues have been proposed
in the literature [8] [9] [28] [24] [27] to overcome the implementation constraints related to parallel
and sequential implementations. Queue-based algorithms take advantage of the fact that the
image data are finite and totally ordered. The algorithms guarantee that pixels that effectively
contribute for the output results are processed only once. Queue-based algorithms can also be
treated as a specialization of sequential implementations where the scanning order is derived
from a predefined ordering relationship on the pixel intensities.

A priority-based queue is accomplished by first placing all pixel addresses related with a
given intensity value into a large array of pixels. Then, a distributive procedure makes use of
address calculations to get the frequency distribution of image intensities. This method allows
for breadth-first propagation2 at any pixel intensity with the use of a single queue. Another
alternative for the data structure relies on hierarchical queues [1] [3] which make use of a dou-
ble ordering relation for every pixel in the image. Consequently, queue-based data structures
improve significantly the efficiency of morphological algorithms.

5 Applicability

The queue-based pattern may be used whenever a morphological operator can be imple-
mented using a wavefront propagation interpretation from a set of seeds or markers. This
operator is geared towards efficiency since relevant pixels that actually contribute for the output
results are processed only once.

Algorithms that use a queue-based pattern share a certain number of characteristics, which
are listed in the following:

• Total Ordering Relation: algorithms presume that the image data to be processed is
totally ordered and finite. Every image pixel may contain additional information other
than its pixel position and intensity, which might be used to order the image data;

• Queue-based Data Structure: algorithms utilize a queue-based data structure to speed
up computations. Such queue-based structure contains only the relevant pixels, which are
needed to be processed. In other words, image pixels are processed only once;

• Two-step Algorithms: an algorithm contains two steps namely initialization and data-
driven propagation. The first step selects the pixels for the initial wavefront. The second
step propagates the wavefront based on the image data and is bound to produce the result;

• Wavefront Propagation: wavefront propagation implies that the action of the morpho-
logical operator is closely associated with the notion of connectivity. The basic operation
is the updating of all neighboring pixels based on the value of the propagated pixel;

• Iteration Until Stability: the data-driven propagation step after the initialization pro-
cess assures that the algorithm will reach stability after a number of iterations (governed
by a while . . . do loop) or when a certain condition is met;

2The propagation is known since long as an iterative procedure until stability is reached. The computation
is a growing process and is based on the propagation of sets of pixels called markers through a mask image.
Algorithms using this approach have been described by a number of authors in the literature leading to efficient
implementations [15] [21].



• Origin Included in the Support: algorithms assume that the origin is included in the
structuring element support, which is important because only anti-extensive erosions and
extensive dilations are considered.

6 Structure

The generic representation for queue-based algorithms given in figures 1 and 2 contain ele-
mentary information that needs to be described in order to make the queue-based pattern.

So far, the discussion is focused on the application of wavefront propagation in mathematical
morphology. Indeed, there are two generic design structures for the queue-based algorithms [14].
These structures are characterized by whether the data-driven propagation is embedded or not
in the initialization step.

The case of queue-based algorithms are shown in figure 1 and 2. Morphological applications
related to the algorithm in figure 1 are: contour processing methods, morphological reconstruc-
tion, area opening and area closing, dynamics, levelings, fast marching methods, and watersheds
to name a few. Connectivity analysis and extrema detection are examples of applications related
to the algorithm in figure 2.

Figure 1: Queue-based algorithm showing a generic representation of the wavefront propagation.
Note that the algorithm includes two steps: an initialization and a data-driven propagation.

Initialization:
· · ·
for all (pixel p ∈ Df ) do

if (condition1) then
q.enq(f(p), p)
· · ·

end if
end for

Data-driven Propagation:
while (!(q.empty()) do

p = q.deq()
for all (p′ ∈ N(p)) do

if (condition2) then
· · ·
region settings
q.enq(f(p′), p′)

end if
end for

end while



Figure 2: Queue-based algorithm showing an alternative generic representation of the wavefront
propagation. Note that the data-driven propagation is mixed in the initialization step.

for all (pixel p ∈ Df ) do
if (condition1) then

q.enq(f(p), p)
· · ·
while (!(q.empty()) do

p = q.deq()
for all (p′ ∈ N(p)) do

if (condition2) then
· · ·
region settings
q.enq(f(p′), p′)

end if
end for

end while
end if

end for

7 Participants

The queue-based pattern includes the following elements:

• Iterator: an iterator is a fundamental structure that abstracts the process of moving
through a finite set of elements [7]. Iterators in the generic representation for queue-based
algorithms are highly influenced by the queue-based data structures used in the wavefront
propagation since these structures provide a mechanism to control the scanning order of
pixels in the image. A priority queue is the data structure chosen for this pattern;

• Pixel Lattice: the pixel lattice L includes, among other elements like those that the value
set V and the ordering ≤, the notions of the supremum operator

∨
and infimum operator∧

working on subsets of V . The largest of all elements in V is called lattice supremum,
denoted as

∨
L while the smallest of all elements in V is called lattice infimum, denoted

as
∧

L. All these elements must be explicitly defined by L = (V,≤,
∨

,
∧

,
∨

L,
∧

L);

• Adjunction: the adjunction is represented by A = (N) since algorithms using the wave-
front propagation interpretation are extensions of flat morphology, using flat and symmet-
ric structuring elements. Note that N specifies the connectivity, i.e. the number of pixels
needed in neighborhood operations for every pixel in the priority queue.

These three elements form the building block representation of the generic queue-based
pattern. The computational complexity of algorithms using a queue-based pattern is linear
with the number of pixels put in the priority queue, which is responsible for the data-driven
propagation.

8 Collaborations

• Iterator is coupled with queue-based data structures involved. All the data must be
accessed by the iterator when an algorithm is implemented in both initialization and
data-driven propagation. In addition, the pixel lattice serves as a framework for the
development of the algorithms;



• Pixel Lattice defines the value set used for the data involved. In other words, it deter-
mines a set of common rules to be used in the wave-front propagation for a family of data
types;

• Adjunction is closely related with the way a propagation step is conducted. Therefore,
it works together with the iterator.

9 Consequences

• Some algorithms share a certain number of characteristics, which are listed as follows: total
ordering relation, queue-based data structure, two-step algorithms, wavefront propagation,
iteration until stability, and origin included in the support. An algorithm that has these
characteristics is termed a queue-based algorithm. The set of characteristics serves as a
basis to provide a generic representation for queue-based algorithms;

• A generic representation for queue-based algorithms utilizes wavefront propagation. It
implies that the action of the morphological operator is closely associated with the notion
of connectivity and is based on a kind of growing process, where the information is propa-
gated through the image. Two possible generic representations for queue-based algorithms
were introduced in order to describe the queue-based pattern. These representations are
characterized whether the data-driven propagation is embedded or not in the initialization
step;

• A queue-based pattern is constructed in order to provide flexibility in terms of requirements
for queue-based algorithms and govern their effective implementation;

• A generic programming approach might be applied to morphological image operators based
on wavefront propagation like contour processing methods, morphological reconstruction,
and watersheds. Generic programming tools as C++ with STL applies a more evolutionary
and experimental approach to morphological algorithm development. The proposed queue-
based pattern enhances morphological algorithm reuse.

• Care must be taken when a wavefront propagation interpretation is applied to an image
with too many constraints (e.g. lines, areas, or polygons). In this case, the time complexity
is proportional to the number of steps needed to end up the propagation process.

10 Implementation

Morphological operator design must comply with the complete lattice framework theory, i.e.
algorithmic implementations must be tied to the generic pattern representation that includes
the iterator, the pixel lattice, and the adjunction. Iterators in the generic representation for
queue-based algorithms are highly influenced by the queue-based data structures used in the
wavefront propagation since these structures provide a mechanism to control the scanning order
of pixels in the image. This section gives an overview of common queue-based data structures
like ordinary queues, priority queues and hierarchical queues. Later, the iterator is combined
with the pixel lattice and the adjunction, producing the queue-based pattern.

The following implementation issues are relevant for the queue-based pattern:

Data Structures: Queues are often used in the implementation of efficient and reliable mor-
phological image operators [22] [24]. Items stored in the queue are pixel addresses or pixel



values, but the queue must be able to handle other features according to the implementa-
tion. The size of the queue can be fixed [28] or be controlled dynamically [19]. There are
various ways to implement priority queues. The easiest one is to use linked lists, consis-
tently keeping the elements in the list in order of descending priority. A faster approach is
to store the data in binary trees, with an ordering property imposed to make sure that the
highest-priority element is always easily accessible. The appropriate ordering property is
that the element stored at any node of the binary tree should have a priority greater than
or equal to that of any element stored in either one of its subtrees. A binary tree that has
this property is called a heap.

C++ and STL: The STL is a relatively small library which achieves a remarkable degree
of reuse through its basis in the principles of generic programming and its use of C++
templates. Because of this, it has a particularly clear shape. The distinction between
containers, iterators and algorithms is its most striking structural feature: dynamically,
the way a container delivers iterators which are then used by algorithms is a consistent
and fundamental pattern of use.

11 Algorithm Samples and Usage

This section deals with examples of morphological operators and operations constructed
using a queue-based pattern. The examples covered are contour processing, morphological re-
construction, and watersheds.

Contour Processing Operations: The contour processing approach was introduced in math-
ematical morphology in [8] [9] [28]. Given a binary image X, it is processed using a raster
scanning order and transitions from white (background) to black (foreground) are detected.
Pixels belonging to the contour of X, denoted by ∂(X), are then stored in a simple queue,
which contains their coordinates and other additional information like pixel intensity.

Efficient implementations for dilations can also be obtained by following that X ⊕ A =
X

⋃
(∂(X) ⊕ A). This is valid for any connected structuring element that contains the

origin. Figure 3 shows the original algorithms proposed in [28] for the erosion algorithm
based on contour processing.

The queue-based pattern for the contour processing is given as follows:

• Iterator: iterators are highly influenced by the priority queue used in the wavefront
propagation since it provides a mechanism to control the scanning order of pixels in
the image;

• Pixel Lattice: all the elements must be explicitly defined by L = (V,≤,
∨

,
∧

,
∨

L,
∧

L).
For instance:

L = ([0, 1],≤,
∨

,
∧

, 1, 0)

• Adjunction: the adjunction is represented by A = (N). Erosions and dilations are
given by:

(εf)(x) =
∧

y∈N(x)

{f(y)} (1)

(δf)(x) =
∨

y∈N(x)

{f(y)} (2)



Figure 3: A queue-based algorithm representation using the contour processing method for the
erosion.

Note(s): f - input image; q1, q2 - auxiliary queues, N(p) - neighborhood of p.
Queue Initialization:
border = 0
Q q1, q2
for all (pixel p ∈ Df ) do

if (f(p)! = 0 and (∃(p′) ∈ N(p) : f(p′) == 0)) then
q1.enq(p)

end if
end for
for all (pixel p ∈ q1) do

f(p) = 0
end for

Data-driven Propagation:
while (!(q1.empty())) do

p = q1.deq()
for all (pixel p ∈ q1) do

for all (p′ ∈ (N(p) ∩ Df )) do
if (f(p′) == 1) then

f(p′) = 0
q2.enq(p)

end if
end for

end for
q1 = q2

end while

Morphological Reconstruction: Many algorithms have been proposed in the literature for
image segmentation, but just a few have shown widespread applicability. One method that
often guides the segmentation process within mathematical morphology is morphological
reconstruction. This algorithm takes a segmentation that has too many small regions
and uses a heuristic evaluation function to combine regions with low local contrast. This
contrast measure is computed as a function of the minimum-edge height values of regions
and their boundaries. Thresholding the contrast measure at different levels produces
segmentations at various scales of detail [19].

Definition 1 (Morphological Reconstruction) The reconstruction by dilation of a mask
image g from a marker image f (Df = Dg and f ≤ g) is defined as the geodesic dilation
of f with respect to g until stability is reached and is denoted by ρg(f):

ρg(f) =
∨

n≥1

δn
g (f) (3)

Definition 2 (Dual Morphological Reconstruction) The dual reconstruction or re-
construction by erosion of a mask image g from a marker image f (Df = Dg and f ≥ g)
is defined as the geodesic erosion of f with respect to g until stability is reached and is
denoted by ρ∗g(f):

ρ∗g(f) =
∧

n≥1

εn
g (f) (4)



When dealing with binary semantics, a morphological reconstruction is easily obtained by
applying the wavefront propagation interpretation along with a queue-based data struc-
ture. In such case, it works like contour processing algorithms since pixels belonging to
the contour(i.e. the marker image) are put in the queue in the initialization process. A
second step is the data-driven propagation, where these pixels are propagated according to
their connected components. The algorithm for binary reconstruction using a queue-based
pattern is given in figure 4.

Figure 4: Binary reconstruction algorithm using a queue-based pattern.

Note(s): g - binary mask image, f - binary marker image, f ⊆ g. The result is given in f .
Initialization:
for all (pixel p ∈ Dg) do

if ((f(p) == 1) and ( ∃q ∈ N(p) | f(q) == 0) and (g(p) == 1)) then
q.enq(p)

end if
end for

Data-driven Propagation:
while (!(q.empty()) do

p = q.deq()
for all (q ∈ N(p)) do

if ((f(q) == 0) and (g(q) == 1)) then
f(q) = 1
q.enq(p)

end if
end for

end while

It was shown in [3] [26] that the extension to grey-scale semantics can be achieved in a
similar manner. Instead of propagating the contours of feature objects, propagation starts
from the regional maxima of the image. The grey-scale reconstruction algorithm using a
queue-based pattern is given in figure 5.

The queue-based pattern for the morphological reconstruction is given as follows:

• Iterator: iterators are highly influenced by the priority queue used in the wavefront
propagation since it provides a mechanism to control the scanning order of pixels in
the image;

• Pixel Lattice: all the elements must be explicitly defined by L = (V,≤,
∨

,
∧

,
∨

L,
∧

L).
For binary and grey-scale reconstruction, the pixel lattice is given by:

L = ([0, 1],≤,
∨

,
∧

, 1, 0)

L = ([0, 255],≤,
∨

,
∧

, 255, 0)

• Adjunction: the adjunction is represented by A = (N). Erosions and dilations are
given by:

(εf)(x) =
∧

y∈N(x)

{f(y)} (5)

(δf)(x) =
∨

y∈N(x)

{f(y)} (6)



Figure 5: Grey-scale reconstruction algorithm using a queue-based pattern.

Note(s): g - grey-scale mask image, f - grey-scale marker image (regional maxima), f ⊆ g. The result
is given in f .
Initialization:
for all (pixel p ∈ Dg) do

if ((f(p)! = 0) and ( ∃q ∈ N(p) | f(q) == 0)) then
q.enq(p)

end if
end for

Data-driven Propagation:
while (!(q.empty()) do

p = q.deq()
for all (q ∈ N(p)) do

if ((f(q) ≤ f(p)) and (g(q)! = f(q))) then
f(q) = min(f(p), g(q))
q.enq(p)

end if
end for

end while

Watershed Segmentation: Watershed analysis has proven to be a powerful tool for many
image segmentation problems. In the flooding scheme [20], water slowly rises within the
topographic surface represented by an image, so that all points below water level are
immersed. Holes are punched in the regional minima and the topography is flooded from
below. As the water rises, more surface minima are pierced, which in turn starts more
catchment basins. The catchment basins expand as the water rises and floods more points.
When two floods from different catchment basins meet, a dam is built at these points to
prevent the catchment basins from merging. After the surface is completely flooded, only
the tops of the dams are visible and are treated as dividing lines. These watershed lines
separate the surface into catchment basins [2] [3] [26].

Two steps can compose the bare-bones watershed implementation: initialization step,
and data driven propagation. Its algorithmic representation is given in figure 6. Similar
versions of this algorithm can be found in [3] [6] [12] [13] [15] [16].

The queue-based pattern for watersheds when applied to grey-scale images, is given as
follows:

• Iterator: iterators are highly influenced by the priority queue used in the wavefront
propagation since it provides a mechanism to control the scanning order of pixels in
the image;

• Pixel Lattice: all the elements must be explicitly defined by L = (V,≤,
∨

,
∧

,
∨

L,
∧

L).
For instance:

L = ([0, 255],≤,
∨

,
∧

, 255, 0)

• Adjunction: the adjunction is represented by A = (N). Erosions and dilations are



Figure 6: A Watershed algorithm for grey-scale images implementing a queue-based pattern.

Initialization:
PQ q

for all (pixel p ∈ Df ) do
if (M(p)! = 0 and( ∃(p′) ∈ N(p) : M(p′) == 0)) then

q.enq(f(p), p)
end if

end for

Data-driven Propagation:
while (!(q.empty()) do

p = q.deq()
for all (p′ ∈ (N(p) ∩ Df )) do

if (M(p′) == 0) then
M(p′) = M(p)
q.enq(f(p′), p′)

end if
end for

end while

given by:

(εf)(x) =
∧

y∈N(x)

{f(y)} (7)

(δf)(x) =
∨

y∈N(x)

{f(y)} (8)

12 Known Uses

Efficient algorithms in image processing are known to be designed and implemented using
queue-based data structures. Several queue-based operators and operations have been proposed
in the literature leading to a large collection of applications, which are characterized as follows:

contour processing methods: Contour processing methods were introduced in [9] [28] [21]
with applications for fast binary neighborhood operations including erosion, dilation, dis-
tance transforms, and skeletons. Other possible applications of contour processing methods
like contour filling and object labeling become available by slightly modifications of the
basic operations.

morphological reconstruction: Reconstruction is a powerful morphological tool. The ob-
servation that the reconstruction operator could be implemented using design techniques
based on queues gave birth to another important application of queue-based algorithms.
With respect to binary images, reconstruction has been used to remove object features
connected to the image border, hole filling, image labeling, skeleton pruning, and ultimate
erosion to name a few [19]. Other applications involving grey-scale images have been pro-
posed by [22] [25] like connected filtering, extrema detection, dome and basin extraction,
minima imposition, and hole filling.

area opening and area closing: Area opening and area closing find its applicability in
image filtering tasks and image segmentation [23]. Area opening and area closing are
also used in the construction of more complex morphological operators. An example is



the morphological attribute openings and closings, which are generalizations of the area
opening and area closing, and allow filtering of images based on a wide variety of shape or
size based criteria [4].

levelings: In complex image-segmentation problems, it is possible to use a composition of
morphological transformations such as geodesic opening and closing operations, in order
to enhance marker selection. The composition of opening and closing operations by mor-
phological reconstruction may be considered as a recently formalized technique, called
levelings [10] [11]. Applications involving marker selection like watersheds take advantage
that, after the levelings, an image has homogeneous regions (i.e. flat zones), and that the
levelings can be applied to the original image at different levels of simplification using any
criterion like size, shape, or contrast.

fast marching methods: A fast marching level set method is presented for monotonically
advancing fronts, which leads to an extremely fast scheme for solving the Eikonal equa-
tion [18]. This technique has been applied to a wide collection of problems, including
construction of geodesics on surfaces, computer vision, and shape-from-shading [17].

watersheds: One of the most useful methods among the mathematical morphology algorithms
is a watershed transform. It is the classical morphological method for segmentation and
has been used in several applications like medical imaging, robot vision, image sequences,
and so forth [3]. The idea of using the watershed method for image segmentation is that
the watershed of the surface tends to follow the high ground of the original image in terms
of the intensity level. Therefore, finding the watershed of the magnitude of the gradient of
an image ensures these lines will follow the edges (or regions of high ground) in the image.
This achieves a useful result for image segmentation;

polygon filling: Polygon filling is often executed in the image or frame buffer. It is assumed
that a polygon with proper closed borders are given and that inside the polygon no pixel
has the colour value with which it is to be filled. For the seed fill algorithm we need a
starting point which is inside the polygon. Starting at this seed position, the algorithm
proceeds in all directions and sets each pixel to the required fill colour until the border is
reached;

robot planning: Research in robot planning has considered the interleaving of planning and
execution for example, as well as the issue of planning sensor actions as a way of gaining
information for planning. A major theme in robot planning is also the integration of
predictive and reactive planning as a way of making activity more resilient in the face
of a changing environment. Predictive planning often applies the queue-based pattern
in the configuration space using a visibility graph and through free space decomposition
techniques.

13 Related Patterns

Parallel and Sequential patterns [5] are also used in mathematical morphology. Although
these patterns are less eficient than the queue-based pattern, they are essential for several
applications ranging from distance transforms to morphological reconstruction. A queue-based
pattern can only be used when the notion of propagation is embedded in the solution.



References

[1] S. Beucher. Segmentation d’Images et Morphologie Mathématique. PhD thesis, Ecole Na-

tionale Supérieure des Mines de Paris, Fontainebleau, 1990.

[2] S. Beucher. Watershed, hierarchical segmentation and waterfall algorithm. In J. Serra and

P. Soille, editors, Mathematical Morphology and Its Applications to Image Processing, pages

69–76. Kluwer Academic Publishers, The Netherlands, 1994.

[3] S. Beucher and F. Meyer. The morphological approach to segmentation: the watershed

transformation. In E. R. Dougherty, editor, Mathematical Morphology in Image Processing,

chapter 12, pages 433–481. Marcel Dekker, New York, 1993.

[4] Edmond J. Breen and Ronald Jones. Attribute openings, thinnings, and granulometries.

Computer Vision and Image Understanding, 64(3):377–389, 1995.

[5] M. C. d’Ornellas. Algorithmic Patterns for Morphological Image Processing. PhD thesis,

Univesiteit van Amsterdam, 2001.

[6] M. C. d’Ornellas and R. v.d. Boomgaard. Generic algorithms for morphological image

operators - a case study using watersheds. In H. J. A. M. Heijmans and J. B. T. M. Roerdink,

editors, Mathematical Morphology and Its Applications to Image Processing, pages 323–330.

Kluwer Academic Publishers, The Netherlands, 1998.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: Abstraction and reuse

of object-oriented design. In O. M. Nierstrasz, editor, ECOOP’93: Object-Oriented Pro-

gramming - Proceedings of the 7th European Conference, pages 406–431. Springer, Berlin,

Heidelberg, 1993.

[8] F. C. A. Groen and N. J. Foster. A fast algorithm for cellular logic operations on sequential

machines. Pattern Recognition Letters, 2:333–338, 1984.

[9] L. Ji, J. Piper, and J. Tang. Erosion and dilation of binary images by arbitrary structuring

elements using interval coding. Pattern Recognition Letters, 9:201–209, 1989.

[10] F. Meyer. From connected operators to levelings. In H. J. A. M. Heijmans and J. B.

T. M. Roerdink, editors, Mathematical Morphology and Its Applications to Image Process-

ing, pages 191–198. Kluwer Academic Publishers, The Netherlands, 1998.

[11] F. Meyer. The levelings. In H. J. A. M. Heijmans and J. B. T. M. Roerdink, editors,

Mathematical Morphology and Its Applications to Image Processing, pages 199–206. Kluwer

Academic Publishers, The Netherlands, 1998.

[12] L. Najman and M. Schmitt. Watershed of a continuous function. Signal Processing, 38:99–

112, 1994.

[13] L. Najman and M. Schmitt. Geodesic saliency of watershed contours and hierarchical seg-

mentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(12):1163–

1173, 1996.

[14] D. Noguet. A massively parallel implementation of the watershed based on cellular au-

tomata. In IEEE Conference on Application Specific Array Processors, July 1997.



[15] D. Noguet, A. Merle, and D. Lattard. A data dependent architecture based on seeded region

growing strategy for advanced morphological operators. In P. Maragos, R. W. Schafer, and

M. A. Butt, editors, Mathematical Morphology and Its Applications to Image and Signal

Processing, pages 235–243. Kluwer Academic Publishers, 1996.

[16] J. B. T. M. Roerdink and A. Meijster. The watershed transform: definitions, algorithms,

and parallellization strategies. Fundamenta Informaticae, 41:187–228, 2000.

[17] J. A. Sethian. A fast marching level set method for monotonically advancing fronts. National

Academy of Sciences Journal, pages 1591–1595, 1996.

[18] J. A. Sethian. Theory, algorithms, and applications of level set methods for propagating

interfaces. Acta Numerica, pages 309–395, 1996.

[19] P. Soille. Morphological Image Analysis. Springer-Verlag, Barcelona, 1999.

[20] P. Soille and L. Vincent. Determining watersheds in digital pictures via flooding simulations.

Visual Communications and Image Processing ’90, pages 240–250, 1990.

[21] B. J. H. Verwer. Distance Transform: Metrics, Algorithms and Applications. PhD thesis,

Delft University of Technology, 1991.

[22] L. Vincent. Algorithmes Morphologiques à Base de Files d’Attente et de Lacets. Extension

aux Graphes. PhD thesis, Ecole Nationale Supérieure des Mines de Paris, 1990.

[23] L. Vincent. Morphological area openings and closings for grey-scale images. In Y-L. O,

A. Toet, D. Foster, H. J. A. M. Heijmans, and P. Meer, editors, Proceedings of the Workshop

“Shape in Picture”, 7–11 September 1992, Driebergen, The Netherlands, pages 197–208,

Berlin, 1992. Springer.

[24] L. Vincent. Morphological algorithms. In E. R. Dougherty, editor, Mathematical Morphology

in Image Processing, chapter 8, pages 255–288. Marcel Dekker, New York, 1993.

[25] L. Vincent. Morphological grayscale reconstruction in image analysis: Applications and

efficient algorithms. IEEE Transactions on Image Processing, 2:176–201, 1993.

[26] L. Vincent and E. R. Dougherty. Morphological segmentation for textures and particles. In

E. R. Dougherty, editor, Digital Image Processing Methods, pages 43–102. Marcel Dekker,

New York, 1994.

[27] L. Vincent and P. Soille. Watersheds in digital spaces: An efficient algorithm based on

immersion simulations. IEEE Transactions on Pattern Analysis and Machine Intelligence,

13(6):583–598, 1991.

[28] L. J. Van Vliet and B. J. H. Verwer. A contour processing method for fast binary neigh-

bourhood operations. Pattern Recognition Letters, 7:27–36, 1988.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



 

FEM Simulator Skeleton 
 

Maria Lencastre (mlpm@cin.ufpe.br)1 
Felix C. G. Santos (fcgs@demec.ufpe.br)  

Isledna Rodrigues (ira2@cin.ufpe.br) 
Mechanical Engineering Department, Federal University of Pernambuco 

Rua Acadêmico Hélio Ramos, S/N, Recife, PE 50740-530 – Brazil 
 
 

Abstract 
 

This paper proposes a pattern, called FEM Simulator Skeleton, which describes a general set of classes, and 
their interactions, for guiding the development of Simulators Models based on the Finite Element Method 
(FEM). This pattern is intended to help the design and implementation of simulators based on what is here 
called algorithm skeletons, defined in section 6. By simulators we call a computational system, aimed at 
obtaining approximate solutions to systems of coupled partial differential equations, together with a set of 
restrictions (differential-algebraic relationships involving one or more vector fields). The problem is first 
divided into different pre-defined levels of abstraction (global solution, blocks of groups, groups of phenomena, 
phenomena) where the simulator designer must supply algorithm skeletons for each one of those levels. A simple 
example is shown in section 8 of this paper, which describes the pattern applicability in the development of a 
simulator for the dynamics of a rigid body attached to an elastic beam (with temperature dependent constitutive 
relation), where both are also submitted to thermal loads. The main advantage of the pattern is its high level of 
abstraction, reusability and modularity in the design of simulators for several coupled multi-physics phenomena. 

 
 

1. Introduction 
 

A Simulator can be defined as an indispensable problem-solving tool, which can be used 
for obtaining an approximate solution of many real world problems. In [17], Banks defines 
some steps that guide the model builder in a thorough simulation study process: (a) Statement 
of the problem; (b) Identification of questions that are to be answered by the simulation study, 
including the various scenarios that will be investigated; (c) Model conceptualisation, where 
the real world system under investigation is abstracted by: a conceptual model; a series of 
mathematical and logical relationship, concerning the components and the structure of the 
system; (d) Data Collection; (e) Model Translation, where the conceptual model constructed 
in step c is coded into a computer–recognizable form, an operational model; (f) Verification, 
which is concerned at whether the operational model is performing properly; (g) Validation, 
which measure the accuracy of the conceptual model as a representation of the real system.  

One of the most complex problems with which scientists and engineers are concerned 
nowadays, related to simulation software, is the lack of tools which could fulfil their research 
requirements in terms of: flexibility in building different solution strategies; providing support 
for implementation of more suitable numerical methods; guarantee of superior quality on 
software component’s design, implementation and analysis. The main issue behind this is the 
fact that, due to the increasing complexity of the models and numerical methods, the building 
of simulation software has become a major part of the scientists’  and engineer's work. As a 
consequence, the tasks of method validation and verification and  
shifting from one method to another require considerably more time spent in the development 
and implementation of the software than in just some years ago. The same is also true in the 

                                                     
1 Copyright 2002, [Maria Lencastre, Felix Santos, Isledna Rodrigues] . Permission is granted to copy for 
SugarloafPLoP 2002 Conference. All other rights reserved. 



 

software industry, and even more dramatically there, due to the needed sophistication required 
by a very competitive market [8].  

Nowadays simulation systems supporting coupled multi-physic phenomena can be 
important predictive tools in many industrial activities. However, the need for more suitable 
numerical tools, which could more appropriately simulate a large amount of coupled 
phenomena, and the need for computational environments, which could help the building of 
those tools, is still a reality. Simulations using FEM can become very complex, particularly 
when the designer wants to guarantee high level of abstraction and reuse of the developed 
solutions. Those requirements comprise the main strategies in saving the production costs of 
high quality simulation software. This paper shows that a simulation implementation 
complexity for coupled phenomena can be greatly reduced with the use of predefined 
structures, due to FEM polymorphism. Of particular importance for us is the simulation of 
chemo-thermo-mechanical interactions (including control mechanisms), which occur inside a 
given system and between such a system and its surrounding environment. 

The FEM Simulator Skeleton considers four levels of computation for FEM simulator 
conception. It supports abstractions for different phenomena coupling in a single strategy, 
identifying which parts can be more reusable than others and proposing a hierarchical and 
modular solution. The pattern also suggests a physical phenomenon abstraction, called here 
computational phenomenon. The main objective with such an abstraction is to make it easier 
the representation of data sharing and dependence between different phenomena.  

The pattern’s description is based on suggestions found in [16]. In section 2 the pattern 
name is supplied. Section 3, details the context in which existent problems might inhibit 
further developments, and to which the pattern solution applies.  Section 4 presents the design 
challenge through a question. Section 5 shows pattern forces, that is, the patterns design trade-
offs, what pulls the problem in different directions, towards different solutions. Section 6 
explains how to solve the problem. Section 7 describes the pattern applicability. Section 8 
presents an example of usage, that is, a general simulator scenery and a possible problem that 
can be solved by the defined simulator. Section 9 details the resulting context, telling which 
forces the pattern resolves and which forces remains unresolved by the pattern, and it points 
to other patterns that might be the next ones to be considered. Section 10 talks about known 
users. Finally, section 11 presents some conclusions and references. 

 
2. Name  

 
FEM Simulator Skeleton, which means a pattern for modelling FEM simulators based on 

algorithm skeletons for coupled phenomena. 
 

3. Context 
 

When a designer defines a computational model for a mathematical formalism, using the 
FEM in the context of coupled phenomena, he has to deal with problems like data dependence 
and data sharing (Figure 3.1). Such issues are not so trivial to treat in a homogeneous way 
because it is strongly dependent on the specific problem being considered. Thus it becomes 
difficult to provide reasonable high levels of abstractions, which could represent the main 
components, properties, relationships and operations involved. Without that, even when 
making use of sophisticated FEM libraries, the tasks involved in building and assessing the 
performance of new methods could become very costly and time consuming due to the lack of 
modularity and reuse. Also as far as we are concerned, there is no standardized solution for 



 

the control of coupled phenomena simulations, making the integration of reusable 
components a very difficult task in this context.  

 
 
 
 
 
 
 
There are 4 steps frequently identified in a FEM simulation process: Model, Pre-

processing, Simulation and Post-processing [18]. Here we give a brief description of the 
function considered for each step [8,9]:  
1) Modelling, where the simulator structure conceptualisation is defined, based on the 

designer strategies (skeleton algorithms, global scenery and so on); 
2) Pre-processor, where the simulator is built, that is, where the simulator dynamic data 

structures are generated and assembled, based on the designer definitions, in order to 
create the required simulator, for the desired mathematical and computational formalism; 

3) Simulation Processor, represents the simulation run, where the main computation effort 
would be, in general, the computation of the discrete vector fields for all phenomena, 
which means the solution of several coupled systems of (frequently non-linear) algebraic 
equations for each time step (if time dependent).  In this step, different groups of input 
data are processed on the pre-defined simulator. The output from this processor allows for 
the model verification.  

4) Post-processor, where the solution is processed in order to obtain the quantities of interest 
for the user and for the needed visualization.  

 
 
 
 
 
 
 

In this pattern we are concerned with the conception of the Simulation Processor, the 
Modelling phase. We assume that the simulator building and assembling will be based on a 
variable designer data model, which describes: the initial scenery, algorithm skeletons and 
numerical methods, phenomena, geometry and so on. The initial scenery defines the class of 
problems that the simulator will be able to tackle in a broad sense. The simulator model is 
able of considering the use of many procedures (for instance: Time Loop; Adaptation 
Iteration; Time Step Estimation; Solution of Algebraic Systems; Error Estimation; etc), which 
may be either present or not, depending on the configuration of the initial Scenery. Thus the 
simulator model is provided with a global solution strategy, several phenomena details and 
their inter-relationships, together with iterations on solution schemes for blocks, groups, and 
so on. Those pieces of data for the simulator model will then be mapped to appropriate 
structures during the Pre-processor phase. The result of the Pre-Processor is the final 
Simulator, which will be activated, when desired, to compute the approximate solutions and 
to send them to the Post-Processor. The Post-Processor will generate the final results in the 
way designed and implemented by the user. 

Phenomenon 1 …. 

Data dependence 
 

Data Sharing 
 

Phenomenon n 

Figure 3.1  Phenomena relationship 

Figure 3.2 Simulation Process 

 

PRE-PROCESSOR POST-PROCESSOR SIMULATOR MODELLING 



 

4. Problem  
 

How a complex simulator for coupled multi-physics phenomena based on the Finite 
Element Method (FEM) can be structured in such a way that guarantees high level of reuse 
and modularity?  

 
5. Forces 

 
The FEM Simulator Skeleton pattern tries to solve forces, which are related to high costs 

in complex simulation systems development, especially in the direction of complexity 
management and software quality achievement. Nevertheless, this pattern also considers the 
automatic articulation of solution strategies for coupled multiphysic phenomena and their 
possible replacement. In what follows we describe the evolved forces in the context of FEM 
coupled phenomena simulators modelling: 
a) High complexity: there is a lack of standard abstractions that help the simplification and 

organization of complex structures of data and code related to coupled phenomena 
simulations in the FEM context. The relationships among phenomena are strongly 
problem-dependent and solution algorithm dependent. 

b) Reusability: numerical experiments are complex constructs, based on pieces of 
information such as strategies, auxiliary methods and pieces of data. They can be strongly 
reusable for large classes of problems. 

c) Adaptability: due to the frequent improvement of auxiliary numerical methods or due to 
the need of comparing different methods, the simulator architecture must guarantee that it 
can suffer adaptations (to some extent) to support the required modifications without 
heavy reprogramming. 

d) Strategy Independence: in order to allow the designer to specify the simulator features and 
strategies, there must exist flexibility in building different solution strategies. 

e) Integrability: there is a need for an integral piece of software, which is able of 
monolithically solving a specified set of coupled phenomena. Some problems simply do 
not allow for an independent solution for each phenomenon. Furthermore, whenever 
different software components have to be used together for the simulation of coupled 
phenomena (for instance, in a partitioned, staggered way), problems concerning data 
transfer and integration frequently appear. 

 
6. Solution 

 
The main structure of the pattern for representing a general FEM simulator is composed 

of Simulator, Block of Groups, Group of Phenomena, Phenomenon and Algorithm Skeletons 
and MathMethods, see Figure 6.1. The FEM Simulator Skeleton pattern suggests a FEM 
simulator algorithms organization with 4 levels of computational demands: Global Skeleton, 
Block Skeletons, Group Skeleton and Phenomenon. These levels were defined due to the high 
number of repeated (similar) structures and the degree of reusability of the involved 
algorithms (see example in section 8).  



 

Algorithm Skeleton

Block Skeleton

GolbalSkeleton Phenomenon

Simulator

1..*1..*

Block

1..*

1..1

1..*1..*
1..*

MathMethod

1..*1..*

GroupSkeleton

Group 1.. *1.. *

1..*1..*
1..*1..*

1..*1..*1..*

1..*

1..1

 
Figure 6.1 Participants of the Simulator Pattern 

6.1 Participants 

 
The FEM Simulator Skeleton pattern is composed of the following participants: 

�� Simulator represents a class of possible simulations and it is responsible for the control of 
the main process flow; thus it maintains the core of simulation through the Global 
Skeleton.  

�� Algorithm Skeletons are algorithms described by the simulator designer, corresponding to 
one of the levels of computation (Global, Block, Group), using the pattern-defined 
abstractions. 

�� MathMethod is a tool with a very specific purpose and is used by either Algorithm 
Skeletons or encapsulated procedures inside a Phenomenon. For instance, MathMethods 
are defined for numerical integration, mesh adaptation, error estimation and other tasks. 

�� Global Skeleton is the highest level of the solution scheme and it articulates the action of 
all Blocks. It is supposed to be strongly reusable. 

�� Block is a set of Groups of phenomena. Each Block has a set of skeletons called Block 
Skeletons. More than one block is justified, for instance, in the case where a problem can 
be partitioned into either independent or one-side dependent sets of groups of phenomena. 

�� Block Skeletons, where the Groups are required to perform a certain number of categories 
of procedures (for instance, partitioned - staggered - solution procedures involving groups 
of phenomena). When a Group is asked to execute a category of procedures (for instance, 
to compute a solution for its group of phenomena), it executes a very specific algorithm, 
which is a member of that category. Block Skeletons are supposed to be strongly reusable. 

�� A Group is a set of phenomena, which are going to be solved monolithically. A Group is 
provided with a set of Group Skeletons. 

�� Group Skeletons represent very specific procedures. Due to its problem- and method-
specific definition and organization, the Group Skeletons are the less reusable among all 
Skeletons. Nevertheless, it may be implemented in such a way that it becomes able of 
considering a varying number of phenomena, depending on the requirements from the 
simulation design. 

�� A Phenomenon represents a complex system composed of data and tools. Its primary 
responsibility is to provide the contributions of each phenomenon to a Group System to be 
solved in each instant of the solution process. This level is the place where the couplings 
and other processes of data sharing and dependence are considered in the formation of 



 

the needed vectors and matrices. It is the lowest level of the procedures in the solution 
schemes and thus it represents a tremendous effort in terms of programming, testing and 
validation. Therefore, the reusability of the tools located in the classes, which compose 
what we call a Phenomenon is fundamental in the saving of time and cost whenever one is 
programming new simulations. 

 
6.2 Levels of Computation 

 

The 4 levels of computation demands (skeletons and methods) are detailed in what 
follows. 

a) Global Skeleton is the first level of computation and represents the global algorithm 
skeleton (the core of the simulator). The global algorithm skeleton articulates the 
procedures involving all blocks. The procedures here deals with a higher level of the 
simulation execution, like time loops, adaptive iterations, and so on. It also includes 
general requirements such as asking the blocks to obtain the block solution or to perform 
an adaptation procedure. There is no need for matrices and vectors manipulations in this 
level. The building of a Global Skeleton depends on a series of decisions about the whole 
classification of the simulation. A Global Algorithm Skeleton is unique for each 
simulator, but may be replaceable, producing another simulator. Global Algorithm 
Skeleton is the procedural structure representing the algorithm to be performed with 
demands defined still in a higher level. It does not make any requirements directly neither 
to a Group of phenomena nor to any phenomenon.  

b) Block Skeletons are made in order to articulate the Groups of Phenomena in the execution 
of tasks demanded by the Global Skeleton. Each block has a set of skeletons (Block 
Skeletons), which satisfies the demands from the Global Skeleton by decoding them into 
demands for the groups in a previously defined order. A simulator may have a Block 
Skeleton changed without needing to change its Global Skeleton. Nevertheless, a well-
designed Block Algorithm Skeleton is also very reusable and it is not supposed to be 
substituted even in the case of very severe changes in the solution algorithm in the level of 
the Group of phenomena. Block Skeleton defines solution procedures such as iterations in 
the case of operator splitting solution strategies (which involves all Groups), iterations in 
the case non-linear solvers (involving one or more Groups) and so on. It also transfers 
directly to its Groups some of the demands coming from the Global Skeleton (time step 
estimation, error estimation, etc.) and possibly post-processing the output from the 
Groups. 

c) Group Skeletons are made in order to articulate the Phenomena in the execution of tasks 
demanded by the Block Skeletons. A Group is provided with a set of Group Skeletons, 
which represent very specific procedures and may not be very reusable. Its purpose is to 
segment (encapsulate) the parts from the solution scheme, which are specific of the 
particular solution method being used for a group of phenomena. Usually, the more 
reusable parts of the solution scheme are best located either in a Block Skeleton or in the 
Global Skeleton. In the Group Skeletons the quantities produced by the Phenomena 
Skeletons are manipulated in the way required by the solution method, which 
characterizes the Group. Thus the Group becomes specialized in the solution of any subset 
of a set of possible phenomena and so, all vectors and Matrices used in the solution are 
located in the Groups. The Group also needs to have knowledge of the couplings of its 



 

Phenomena whenever building coupled terms. This is so because the coupled terms are 
built using a possibly already computed discrete vector field (possibly related to other 
group), which should be appropriately defined. Frequently, Group Skeletons make use of 
MathMethods, whenever there is a task, which can be encapsulated representing either a 
reusable or a replaceable procedure (solution of an algebraic system of equations, for 
instance). 

d) Phenomenon Procedures represent the lowest level of all procedures in the simulation and 
are specific of all possible contributions its Phenomenon can provide to any solution 
scheme. Starting from the computation of the Global Skeleton and going through the two 
other levels of articulation, what remains to be defined are the contributions of each 
phenomenon to its Group solution scheme in a uniform parameterised way. The 
phenomena classes will be composed of phenomenon data and a group of numerical 
methods (MathMethods), which are replaceable (can be modified by the users through 
input data, like integration rules, for instance). 

  
6.3 Computational Phenomenon Abstraction 

 
A computational phenomenon, or simply a phenomenon (see Figure 6.2), is defined by 

it’s vector field and weak forms defined in its geometric entity together with boundary 
conditions information. The boundary conditions are also implemented as fictitious 
phenomena, defined on the respective geometric entity of the boundary of its domain. A 
phenomenon has also MathMethods which implement, for example, Mesh generation, 
Integration Rules, Shape Functions, etc.  

A computational phenomenon is considered as a set of processes, which produces 
matrices and vectors related to a specific weak form (as a whole or only parts of it) defined on 
a specific geometric domain. Each one of those matrices and vectors may be dependent on 
vector fields from other phenomena. The reference adopted in the definition of a 
computational phenomenon is based on the simulation region in which it is defined. 
Phenomenon is an abstraction and may also be used to represent restrictions (involving one or 
more phenomena), boundary conditions and other types of relationships and processes. 

GeometryMeshGeometryEnt ity
1..*1..*

PhenFinite Ele mNode

GeometryFiniteElm

1.. *1.. *

Geometry

1..*1..*
PhenFiniteElem

1..*1..*

1..11..1

Phenomenon

0 ..10 ..1

Integrat ionRule

VectorField

PhenMesh

1..*1..*

WeakForm

Math Meth od ShapeFunction

Ph enEnti ty

1 ..*1 ..*

1..11..1

1..*1..*

1..11..1

1..11..1

1..*1..* 0..*0..*

1..*1..*

Coupling

 
Figure 6.2 Phenomena classes 

 
An original phenomenon may generate several computational phenomena by the time the 

modelling is finished. The generated phenomena are related to boundary conditions, which 



 

are defined for the original one and implemented as fictitious phenomena. Fictitious 
phenomena defined in order to implement boundary conditions inherit many pieces of 
information from the original phenomenon, such as vector field, geometric and phenomenon 
mesh, etc. 

 
6.4 Interaction 
 

We can summarize the pattern major interaction in the following way: (a) the Global 
Skeleton articulates the procedures involving all blocks; it does not make any requirements 
directly neither to a Group of phenomena nor to any Phenomenon; (b) the Block Skeletons 
then define the activities of the groups; (c) the Group Skeletons in turn articulate the 
phenomena in their computations. This produces more clean and reusable Global and Blocks 
algorithm Skeletons leaving to the Groups algorithm Skeletons the responsibility of defining 
the specific problem dependent (non-reusable) procedures of the whole solution algorithm. 

 
7. Applicability 

 
We can say that the proposed pattern has great applicability in FEM simulation modelling 

especially when the following situation is very frequent: 
��Several phenomena defined on the same geometric region, with either different 

meshes and different adaptation criteria or sharing meshes and other data; 
��Interchange of data between phenomena is very frequent (data dependence) 
��Assessment of solution quality may be different and sometimes interdependent (error 

estimation, adaptation, approximation properties) from one phenomenon to another 
��The desired solution algorithms articulate separate groups of phenomena and those 

groups, in turn, consider sets of phenomena in the computation procedures (as it is the 
case in operator splitting (staggered) schemes). 
 

8. Example of Usage 
 
In order to make clear why the pattern was proposed, in section 8.1 we show the general 

scenery of a simulator model, which is described to the extent that it is needed for our 
explanation purposes. Many details will not be mentioned in the pursuing of explanation 
clarity. Section 8.2 details the pattern application to the proposed simulator scenery. The 
objective of this example is to give a better comprehension of the involved pattern 
participants, providing an illustration of the interaction between the computation levels of 
FEM Simulator Skeleton pattern. Section 8.3 provides some considerations related to the 
pattern application. In section 8.4 we show one real example, of problem formulation, that can 
be solved by the defined simulator. 

 
8.1 A Simulator description 

 
We consider the following global scenery example for a FEM simulator specification: a 

simulator capable of solving problems involving transient Phenomena; the phenomena 
context includes linear temperature-dependent elasticity, rigid body motion and linear heat 
transfer; Dirichlet restrictions are considered through Lagrange multipliers; the simulator 
process does not include estimation error and adaptation processes (see Figure 8.1).  



 

 

 

 

 

Figure 8.1 Simulator specification (global scenery) 
  
The Block Scenery for each Block considers an iteration between the solution for the 

Lagrange multipliers and the solution for the phenomena themselves (assumes stabilization). 
Also, it assumes that there are two blocks: one for temperature and its Lagrange multipliers 
and other for the elasticity, rigid body motion and their Lagrange multipliers. This type of 
choice for the number of blocks is due to the fact that the present model of heat transfer does 
not depend on the result of the elasticity problem. Thus the heat transfer problem (and 
respective Lagrange multipliers) can be solved before solving the elasticity/rigid body motion 
problem (and respective Lagrange multipliers), which depends on the temperature. 

The Group Scenery for the Groups of Phenomena is with matrix assembling; the inner 
procedure for each solver group is linear and iterative with Pre-conditioning and Equation 
type in each group is linear.  No Front tracking. 

 
8.2 Pattern Application 

 
Usually, it is observed that an algorithm defined for the solution of a problem by the 

FEM method has repeated (similar) structures. Thus in the pursuing of a high degree of 
reusability, four levels of demands in the algorithm were devised: Global Skeleton, Block  
Skeleton, Group Skeleton, and Phenomena procedures. In the Block Skeleton we will assume 
that Ni

g is the number of groups for the ith -block. In what follows we present the algorithm 
Skeleton and the Global skeleton.  

Figure 8.2 describes the Global Algorithm Skeleton for the proposed Simulator. As it 
involves, for example, transient phenomena it includes tasks to compute initial time steps for 
blocks and also the computation of the next time step.  

    I. From Blocks i = 1 until 2  
I.0) Retrieve initial state for Block i 
I.I) Compute initial time step ∆t i  for Block i  
I.II) Compute initial auxiliary data for Block i  

    II. Compute initial ∆ t = min 1 ≤ i  ≤ 2 {∆t i} and set time instant t1 = 0 
    III. While t1 ≤ Tmax do:  

III.0) Set t0  = t1  and t1  = t0  + ∆ t  
III.I) For Block i = 1 until 2 

III.I.0) Solve for Block i 
III.I.I) Compute next time ∆t i for Block i  

 III.II) Compute next time step ∆ t = min 1 ≤ i ≤ 2   {∆ t i } 
III.III) Continue with time iteration 

    IV. End of the simulation 
 

Figure 8.2 Global Algorithm Skeleton 

In Figure 8.3, we represent a graph in order to help the understanding of the algorithms 
that compose the global skeleton. In the graph-like structure, each node on the graph means 

Simulator 
�� Transient phenomena in the context of linear temperature-dependent 

elasticity, rigid body motion and linear heat transfer; Dirichlet 
restrictions are considered through Lagrange multipliers; 

�� Equation type in each group is linear 



 

either the definition of a loop, an iteration or a procedure. Figure 8.4 details the Block 
Skeleton for the proposed Simulator.  It is composed of sub-skeletons that implement for 
example: Initial state for the Block (I.0), the solver for the block (III.0), and so on. 

Figure 8.3 Global Algorithm Skeleton Graph 

Is-Br) Initial State for Block r (see (I.0)): 
Is-Br.0) For i = 1 until Nr

g 
Is-Br.0.0) Ask Group i to compute Initial state for its phenomena 

It-Br) Initial time step for Block r (see (I.I)): 
It- Br.0) For i = 1 until Nr

g 
It- Br.0.0) Ask Group i to compute Initial time step ∆i  

It-B1.I) Set ∆t1 = min  1≤ i ≤ N
1
p {∆ i }  

Id-Br) Compute initial auxiliary data for Block r (see (I.II))  
Id-Br.0) For i = 1 until Nr

g 
Id-Br.0.0) Ask Group i to compute its auxiliary data. 

Sl-Br) Solve for Block r (see (III.0)) 
Sl-Br.0) Initialise iteration state k = 0 for Block i  
Sl-Br.I) Set k = 0. While convergence for Block r is not achieved, do:   

Sl-Br.I.0) Compute the (k+1)th-solution  based on the k th-solution for Block r 
Sl-Br.I.I) Compute error between the solutions k and k+1 for Block r  
Sl-Br.I.II) Compute auxiliary data for next step and increment k = k+1  

Sl-Br.II) Accept last solution from iteration loop for Block r 
Sk-Br) Initialise iteration state k = 0 for Block r (see (Sl-Br.0)): 

Sk-Br.0) For i = 1 until Nr
g 

Sk-Br.0.0) Ask Group i to initialise iteration state k= 0  
Sl-Br) Compute the (k+1) th-solution from the kth -solution for Block r (see (Sl-Br.I.0)):  

Sl-Br.0) For i = 1 until Nr
g 

Sl-Br.0.0) Ask the Group i to compute the (k+1)th -solution from the kth –solution 
 for Group i 

Er-Br) Compute error between the (k+1)th -solution and the kth -solution for Block r (see (Sl-Br.I.I)): 
Er-Br.0) For i = 1 until Nr

g 
Er-Br.0.0) Ask Group i to compute error Eik  for Group  

Er-Br.I) Compute Block error Er,k based on the Group errors { Eik} 1≤ j≤ N1
g 

Ad-Br) Compute auxiliary data for Block r at kth -iteration (see (Sl-Br.I.II)):  
Ad-Br.0) For i = 1 until Nr

g 
Ad-Br.0.0) Ask Group i to compute the auxiliary data for this Group. 

As-Br) Accept last solution obtained in the iteration for Block r (see (Sl-Br.II)): 
As-Br.0) For i = 1 until Nr

g 

 As-Br.0.0) Accept last solution obtained for Group i and store it. 
Nt-Br) Compute next time step for Block r (see (III.I.I)): 

Nt-Br.0) Ask group i to compute next time step ∆ i  
Nt-Br.I) Set ∆tr = min 1 ≤ i  ≤ N

r
g {∆ i }  

Figure 8.4 Block Skeleton for any Block r 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
In Figure 8.5, a part of the Block Skeletons is described in graph-like structures. So, the 

number of Block algorithms is ten, which are the same for both blocks in the current setting. 
Observe that those Block Skeletons articulate the groups in a very simple way, almost only 
sending to the groups the requests made by the Global Skeleton. Nevertheless, it should be 
noted that the decision of providing an iterative scheme involving the Groups was made and 
defined by the Block Skeleton. In this sense such a procedure is transparent to the Global 
skeleton and to the Group Skeletons. 

The Group Skeletons is subtler in what concerns the articulation of their phenomena for 
providing the demands of the original solution algorithm. The detailed description of Group 
Skeletons is beyond the objectives of this example. However, it can be seen from the 
algorithm that each Phenomenon should provide Matrices and vectors for assembling. In 
order to make it simpler and uniform, consider that, for each matrix (let us say, C) a given 
phenomenon may provide at the finite element level, it will offer the following indexed 
options 

0. C 
1. C . Vec 

If more than one matrix is provided (let us say C1 and C2) linear combinations will also 
be provided like, for instance, 

2. a C1 + b C2 

In the above Vec is a given vector and a and b are given scalars. Each one of those quantities 
a phenomenon offers to its Group may depend on vector fields from other phenomena (either 
from its Group or not). It is the responsibility of the current Group to indicate: (i) the quantity 
to be computed by its phenomena and (ii) in the case of coupling, what is the vector field 
(either from the current Group or not) the coupled phenomena should use in order to provide 
what is needed for the computation of the coupled quantity. With such an organization, 
demands to the Phenomena become very uniform, making them extremely reusable. 

A final remark is related to the fact that this pattern was made possible by the way the 
data and tools are built in the Phenomenon level. It is in this level that the data dependence 
and sharing between phenomena are defined, leaving the Global Skeleton and the Block 
Skeletons free from those details. However, it is the Group Skeletons, which are the agents 
responsible to map the need of a phenomenon for quantities from other phenomena to the 
actual quantities, which are stored either in the current Group or in other Groups. 

 

Figure 8.5 Example of subgraphs of the Block Skeleton Graph 



 

8.3 Considerations 
 
This pattern considers that the class of problems, which define the applicability of a 

simulator, can be defined in a somehow clear way. For instance, considering only its Global 
Skeleton, the Simulator built in the example (section 8.2) is able of solving simulations in the 
class of dynamic problems with neither adaptation nor error estimation. Now, considering its 
Block Skeletons, it is able of solving only linear (or very mild non-linear) problems with 
Dirichlet type of restrictions and using a staggered stabilized methodology. Those restrictions 
may involve one or more vector fields. The Group Skeletons are very specific to the solution 
scheme used and even slight modifications may cause a need to redesign and re-program 
them. As it was said just before, the couplings and other process of data sharing and 
dependence are considered in the phenomenon level leaving the Global Skeleton and the 
Block Skeletons free of having to consider them. Since the Group Skeletons are the least 
reusable, it may (and frequently does) deal with specifying the right quantities a coupled 
phenomenon should retrieve from its own Group. This reflects a coupling between Groups, 
which has been described earlier and is related to the specifics of the solution methodology 
being used by the Group. 

 
8.4 Example of the Simulator Applicability 

 
An example of a problem that can be solved by the defined simulator (section 8.1 and 

8.2) is described in what follows. Consider the geometry defined in Figure 8.6. It is composed 
of two sub-domains Ω1 and Ω2. The physical phenomena defined therein are (transient state): 
linear elasticity with temperature dependent constitutive equations in Ω1; rigid body motion of 
Ω2 (this body has a certain distributed density ρM) and heat transfer in Ω1 and Ω2. Let a point 
ρM ∈ Ω2 be a reference point for the rigid body. It is very convenient if such a point could be 
the centre of mass of Ω2, because the weight and inertia terms will not generate moments 
around ρM. The proposed simulator will build the global linear system related to all the 
geometric mesh elements, for each phenomenon, and solve this system. 

 

 
 

Figure 8.6 Whole domain 
 

For the present example of problem formulation, to be applied to the defined FEM 
simulator we can consider the following defined [10]: 
a) Blocks: block 1, composed of groups 1 and 2; block 2, composed of groups 3 and 4. 
b) Groups: group 1, phenomena represented by vector fields T1 and T2 (heat transfer in Ω1 

and Ω2); group 2, phenomena represented by vector field µq (Lagrange multiplier in Γ7, 
due to restrictions between T1 and T2); group 3, phenomena represented by their vector 
fields w1 and w2 (elasticity in Ω1 and rigid body motion in Ω2); group 4, composed of the 
phenomena represented by their vector fields µ and µf (Lagrange multipliers in Γ2 and Γ7, 
respectively, due to restrictions in w1). 



 

9. Consequences 
 

It is worthwhile observing that a FEM Simulator Skeleton pattern is not restricted to a 
given implementation of Blocks, Groups and Phenomena. Their abstract behaviour and 
interaction are independent of a specific implementation. When dealing with the building of a 
specific Simulator, the implementation of the Global Skeleton and of the Blocks Skeletons 
should reflect the needs for the solution of a large class of problems, which constitutes its 
strategy. Thus each built Simulator, based on the proposed pattern, should be able of solving 
completely different problems, defined on completely different geometries and considering 
completely different sets of phenomena, provided the problem is still within its applicability 
range.  

 
9.1 Forces solved by the pattern  

 
The FEM Simulator Skeleton pattern supports:  
�� Higher level of abstraction for the main concepts of FEM Simulation Skeleton pattern 

modelling, reducing the complexity and improving the correctness of the systems 
(simulators) that will be developed. 

�� Higher level of hierarchical modularity for the system process organization, by the use 
of global skeletons, blocks and group skeletons. 

�� A solution, which may consider monolithic coupled phenomena simulation. 
�� The higher levels of code reusability are found in the Phenomena, Global and Block 

skeleton structures, followed by Group of phenomena. The less reusable is the group 
of phenomena, because it is the place more sensitive to modifications, whenever 
changes in the numerical method and type of simulation are desired. 

�� Reliability of the computer-generated predictions is improved by the use of pre-
defined strategies, numerical methods and templates. 

�� A higher level of maintainability is acquired once the pattern: separates different 
levels of computation and high reusability of the first two levels of computation is 
guaranteed.  

 
9.2 Negative Consequences 

 
In the FEM Simulator Skeleton pattern some negative consequences can be identified: the 

model builders require special training, that is, the designer must understand the proposed 
abstractions; designers will only achieve higher levels of reusability if they know how to 
articulate their strategies and problems; the simulator performance can decrease due to the 
extra imposed levels of abstraction. 

 
9.3 Forces unsolved by the pattern 

 
Some forces are still not solved or not even treated in the present work:  

a) Automatic programming: this is desired due to the great volume of code that must be 
reprogrammed in a single application of coupled phenomena. 

b) Expertise level: there are lots of standard situations and states, which are neither 
assisted nor guaranteed. 

c) Performance: generally the simulations are very computer time consuming. So the 
performance must be taken seriously into consideration.  



 

d) Scalability: simulations frequently require large volume of data, which can be 
partitioned and processed by many processors in a distributed memory environment. 
So, scalability with respect to the number of processors is important. 

e) Portability: the simulations code should have high levels of reusability. So, it is 
important for it to be portable in order to take advantage of different existing expertise, 
using different computational environments, which frequently should interact in 
building multi-physics simulations. 

f) Reliability: the reliability of computer-generated predictions is a great concern to 
specialists. 

g) Simulation Pre-processing: pre-processing of input data is an important task, since the 
simulator structures require a complex mapping of the real input data. Also, the data 
structure may ease the burden on the global algorithms complexity in what concerns 
data sharing and data dependence between different phenomena.  

 
9.4 Patterns that might be the next ones 

 
Patterns that might be the next ones to be considered are related to: 
�� Pre-processing of input data (it was considered in [11]); 
�� Support for solution independence, in order to allow the designer to specify the system 

features and strategies; 
�� Automatic Programming. 
 

9.5 Related patterns 
 

The authors did not find any pattern that is specifically about algorithm hierarchical 
modularisation for simulations based on FEM. There are some works, however, which present 
some level of abstraction and modularisation [3,4,7]. Specifically, in the simulation of 
coupled phenomena based on FEM, there are some works under development [8,9,10], but 
not yet in a pattern form.  

 
10. Known users 

 
Computational Mechanics has had a profound impact on science and technology over the 

past three decades, due to its effectiveness in solving problems of interest to society and on 
providing deeper understanding of natural phenomena. The field has been enormously 
successful to date because of its unprecedented predictive powers, making it possible the 
simulation of complex physical events and the use of these simulations in the design of 
engineering systems [10]. This is done through the so called “computer modelling” : the 
development of discretized versions of theories of physics (and other fields), which are 
amenable to digital computation, together with complex processes of manipulating these 
digital representations to produce abstractions of the way real systems behave [1]. The Finite 
Element Method (FEM) has been frequently used in the field of Computational Mechanics, 
which has come to rely heavily on this technique. Gradually FEM is becoming the most 
popular analysing procedure within various fields of design [2]. 

Thus due to tremendous ongoing activity in the fields of application of the FEM, there is 
a need for tools which could help the development of simulators with a high reusability 
degree in both the academic and industrial worlds. The expected users of this pattern are 



 

scientists and engineers who already deal with development of FEM codes in some level, or, 
at least, have a basic knowledge of that method. 

 
11. Conclusion 

  
The FEM Simulator Skeleton pattern gives support in the conception of FEM simulators. 

This pattern makes it possible to separate complex procedures from simpler ones and strongly 
re-usable software components from less re-usable ones. Besides, it opens the way to 
automatic programming of FEM simulators for coupled phenomena. One immediate benefit is 
the enhancement of re-usability. 
 
References 

 
[1] Committee on Theoretical and Applied Mechanics, “Research Directions in Computation al 

Mechanics”, a report of the United States, September 2000.  
[2] Tworzydlo, Oden T. J. “Knowledge- Based Methods and Smart Algorithms in Computational 

Mechanics”, Engineering Facture Mechanics, Vol.60 No5/6, 1995. 
[3] Langtangen et al, “ Increasing the Efficiency and Reliability of Software Development for System 

PDEs” , Modern Software Tools for Scientific Computing, pages 247-268 Birkauser, 1997 . 
[4] Langtangen et al, “Finite Element Pre-processors in Diffpack”, Report 1999-01. 
[5] OMG, “Unified Modelling Language Specification Version 1.4”, September 2001. 
[6] Oren T., King D., “Requirements for a Repository Based Simulation Environment”, Proceedings of 

the 1992 Winter Simulation Conference. ed. Swain, Goldsman,  et, 1992. 
[7] Parker S., Weinstein D. and Christopher J. “The SCIRUN Computational Steering Software 

System”, Modern Software Tools for Scientific Computing, 1997 
[8] Santos F., Lencastre M. and Almeida I. “Data and Process Management in a FEM Simulation 

Environment for Coupled Multi-physics Phenomena”, Fifth International Symposium on 
Computer Methods in Biomechanics and Biomedical Engineering Rome, 2001  

[9] Santos F., Lencastre M. et al. “FEM Simulation Environment for Coupled Multi-Physics 
Phenomena”, Simulation and Planning In High Autonomy Systems - AIS’2002; Theme: Towards 
Component-Based Modelling and Simulation, Lisboa, Portugal, 2002.   

[10]Santos F., Lencastre M. and Araújo J. “A Process Model for FEM Simulation Support 
Development” , Summer Computer Simulation Conference - SCSC’2002, US Grant Hotel- San 
Diego, California, July, 2002  

[11]Tanir and Servic “A Standard Simulation Environment: A Review of Preliminary Requirements”, 
Proceed. Winter Simulation Conf. ed. Swain, Goldsman et al, 1994. 

[12]Rucki and Miller “An Algorithm Framework for Flexible Finite Element-based Modelling”, 
Computer Methods Application Mechanic  Engineering, 136 (1996) 363-384. 

[13]Tworzydlo and Oden “Knowledge- Based Methods and Smart Algorithms in Computational 
Mechanics. “  Engineering Facture Mechanics. Vol.60 No5/6, 1995. 

[14]Kortright “Modeling and Simulation with UML and Java” , Nicholls State Univ. LA, 1997. 
[15]Gamma, E. et al. “Design Patterns – Elements of reusable object-oriented software” . Addison-

Wesley, 1994. 
[16]Coplien, J. “Foundation of Pattern Concepts and Pattern Writing”. Bell Labs / USA and 

University of Manchester / UK.  Simpósio Brasileiro de Engenharia de Software –SBES’2001, 
Brazil, 2001. 

[17]Banks, J. “Handbook of Simulation - Principles, Methodology, Applications and Practice” . John 
Wiley & Sons, Inc. Georgia Institute of Technology, Atlanta, Georgia. 1998. 

[18] Cook R. D. “  Finite Element Modeling for Stress Analysis” , by John Wiley and Sons, Inc., 1995 
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



 

 

APPENDIX 
 
 
 

This appendix presents the following paper "PDC: Persistent Data Collections Pattern". 
PDC is a design pattern that contains a set of classes to obtain a better maintenance and 
reuse levels when using persistence mechanisms to develop an object-oriented 
application. This paper was submitted and workshopped in the first version of the 
SugarloafPLoP conference (SugarloafPLoP'2001). Unfortunately, we could include it in 
the SugarloafPLoP'2001 hard copy proceedings, but we are glad to publish its final 
version in the SugarloafPLoP'2002 proceedings. 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



PDC: Persistent Data Collections pattern

Tiago Massoni Vander Alves Sérgio Soares Paulo Borba∗

Centro de Informática

Universidade Federal de Pernambuco

Introduction

The object–oriented applications layer architecture [2, 3] allows the distribution of classes
into well–defined layers, according to each crosscutting concern of an application (busi-
ness, communication, data access, etc.) to obtain separation of concerns. Elements from
different layers communicate only through interfaces. However, we have to refine these
layers by filling them with specific classes. The complete set of these classes, related to
business and data access concerns, was transformed into a design pattern, called PDC
(Persistent Data Collections), which is presented in this paper.

Brief

Provide a set of classes and interfaces in order to separate data access code from business
and user–interface code, promoting modularity.

Context

When developing persistent object–oriented information systems applications using spe-
cific Application Programming Interfaces (APIs) that lead to interwoven code making
maintenance and reuse difficult.

Problem

Obtain better maintenance and reuse levels when using persistence mechanisms to develop
an object–oriented application.

Forces

• Developers should be able to address the business aspects of an application inde-
pendently from persistence operations.

∗Supported in part by CNPq, grant 521994/96–9. Electronic mail: {tmasson,vralves}@us.ibm.com,
{scbs,phmb}@cin.ufpe.br. Av. Professor Luis Freire s/n Cidade Universitária 50740–540 Recife PE
Brazil.



• Ad hoc implementations directly using specific Application Programming Interfaces
(APIs) usually lead to interwoven code that is hard to maintain. For example, a
Java [8] program can use the JDBC API (Java Database Connectivity API [14]) for
manipulating persistent data within business code.

• The type of persistent storage or vendor may change over the life of an application.

• Business classes may be reused by other applications.

• It may be non-trivial to deal with some aspects from persistent systems, such as
enabling connections to database platforms and managing transactions efficiently.

• The system performance should not be affected.

Solution

The basic idea of PDC is to avoid mixing data access code with business code from
domain-related objects, leading to extensibility and reusability. For this purpose, we
propose the separation of design classes in two types:

• classes describing business logic objects.

• classes for data manipulation and storage, with specific persistence code.

The communication between these two types of classes is carried out through inter-
faces, which guarantee independence between the business layer and the data access layer.
Business code will be the same, regardless of how data access operations are implemented.

PDC suggests the use of persistent data collections, which contain code for manipu-
lating a group of persistent objects of an application. These collections represent a clear
distinction between the ”data” and the ”data set”, being the core of our solution. Our so-
lution is complemented by ideas taken from other well-defined design patterns, as Facade,
Abstract Factory and Bridge [7]. The goal is to reduce the impact caused by modifications
in the system functional and non–functional requirements.

As in the example in Figure 3, for each important domain object which will be persis-
tent in the application (like Account), we create two other classes: the business collection
(AccountRecord) and the data collection (AccountRepositoryJDBC) classes, represent-
ing business and persistent collections of domain objects, respectively. Furthermore, each
persistent domain class must inherit from the PersistentObject class, indicating that
its objects will be stored persistently.

The Bank class encapsulates all services offered by the application (applying the Facade
pattern [7]). The object from this class calls methods on all business collection objects
of the application (as AccountRecord), in order to implement the services. The business
collection in turn uses persistence-related services from its corresponding persistent data
collection (as the insert and search methods).

The PersistenceMechanismJDBC class is used by Bank and persistent data collections
(as AccountRepositoryJDBC) for performing database platform services, such as connec-
tion and transaction management. These issues are addressed by specific methods in the
persistence mechanism.



In order to request services from the data access layer, the business objects send mes-
sages to data access objects only through interfaces, which provides extensibility for the
design of the application. In the example, the IAccountRepository interface separates
business collections from persistent data collections, and the IPersistenceMechanism

interface isolates specific persistence mechanism services from its business clients, such as
the Bank class.

As in the example above, we can use PDC to structure the application using a set
of specific classes, separating business and user–interface concerns from persistence con-
cerns. Such application is easier to maintain and to extend, since its core functionality
is decoupled from data access code. In addition, classes from the application can also be
reused by other applications.

Structure

Figure 1 details the structure of PDC, using an UML class diagram [4]. The class names
denote the element of the pattern itself, including classes with the ”Interface” stereotype,
which denote interfaces containing only method signatures to be implemented by the
indicated classes.

Figure 1: Class diagram of PDC.

The participants of the pattern are presented as follows, along with their matching
elements of the example presented in Figure 3:



• Facade. This class provides a simple interface to all services of a complex sys-
tem [7]. A facade offers a simple default view of the system that is useful for most
clients. It keeps references to the several BusinessCollection objects of the ap-
plication, and delegates calls to them. Additionally, it implements the Singleton
pattern, thus exactly one instance of this class will be active during execution. This
element is represented by the Bank class in the example.

• BusinessBasic. This class represents a business basic concept, reflecting clearly
the problem domain (for instance, account, client, investment). If we choose this
class to inherit from an abstract class containing abstract data access methods (see
Implementation Section), the BusinessBasic class has to implement those methods.
Using this approach, although some data access code is placed within a business
class, the business code of the class does not depend on the data access code. Such
code on a business basic class can be easily removed or replaced, with no impact on
business code. In the example, this class is represented by the Account class.

• BusinessCollection. This class represents a grouping of objects from a sig-
nificant business basic class, on the business’ perspective. It contains methods
for inserting, querying, updating, and deleting business objects, with verification
and tests of preconditions related to the object manipulation. Furthermore, the
BusinessCollection class also contains methods directly related to the application
domain. This element is represented by the AccountRecord class in the example.

• PersistentDataCollection. This class contains methods for manipulating per-
sistent objects of a specific business basic class. The code for these methods de-
pends on a specific API for accessing some persistence platform, thus any changes
to this platform will cause direct impact on this class, but absolutely no impact
on business code (since the IBusiness–Data interface isolates these changes). The
PersistentDataCollection class implements methods from a IBusiness–Data in-
terface and depends on services from the PersistenceMechanism class in order
to perform database operations, more specifically for finer granular transactions
and database connections. In the example, the role of this class is played by the
AccountRepositoryJDBC class.

• IBusiness–Data. This interface establishes a communication protocol between
BusinessCollection objects and PersistentDataCollection objects. A business
collection class depends on this interface for storing and retrieving objects from the
database. This approach promotes modularity, since changes to the data access code
do not have impact on business code. In the example, this interface is represented
by IAccountRepository.

• PersistenceMechanism. This class contains methods that implement specific ser-
vices related to a database platform, such as connecting to and disconnecting from
the database, and transaction management. Methods related to connection manage-
ment open and maintain a database connection for a service from the application,
making this connection available to one or more PersistentDataCollection ob-
jects involved in the accomplishment of the service. Methods related to transaction
management open, confirm or abort transactions, in order to provide consistency
among all operations used to accomplish an application service. The code of these



methods depends on a specific persistence API. This class is represented by the
PersistenceMechanismJDBC class in the example.

• IPersistenceMechanism. This interface is defined in order to provide indepen-
dence between the business classes and the PersistenceMechanism class (which
implements this interface). Therefore, if we change the database platform, we have
to replace the old PersistenceMechanism object by a new object, but this modifi-
cation does not have impact on business classes. The Facade class depends on this
interface for invoking transaction methods. The example presents an interface with
the same name.

Dynamics

Figure 2 shows a sequence diagram [4] of a typical scenario for the use of PDC, using the
approach of data access methods encapsulated into a business basic class (see Implementa-
tion Section). The Facade object creates a PersistenceMechanism object, whose services
will be requested during execution. Next, a service on the Facade object is called, which
in turn begins a transaction (invoking a method on the PersistenceMechanism object)
and delegates the call to a BusinessCollection object in order to perform this service
(a querying operation that retrieves data from the database). The BusinessCollection

object performs all validation and tests on the input data, then invokes an operation
to manipulate persistent data on the corresponding PersistentDataCollection ob-
ject (through the corresponding business–data interface). The latter creates an empty
BusinessBasic instance and fills it with database information (calling deepAccess, which
in turn executes queries through services offered by the PersistenceMechanism object,
as the executeQuery method), returning the resulting object to the Facade object. In
the end of the operation, the Facade object confirms the end of a database transaction,
invoking commitTransaction on the PersistenceMechanism object.

Consequences

The use of PDC offers the following benefits:

• Support for independent implementation. PDC’s layer architecture allows to address
the business aspects independently from persistence operations. This abstraction is
promoted by interfaces between the business layer and the data access layer.

• Maintainability. The pattern’s structure increases the system maintainability by
separating business code from data access code. Therefore, changes in the data
access classes should not interfere in the business classes.

• Extensibility. The pattern makes it easier to seamlessly change the database tech-
nology or vendor, minimizing or even eliminating impact on business code. In-
terfaces between the business layer and the data access layer promote the desired
extensibility for the application.

• Use of several persistence platforms. The resulting code is able to support stor-
ing objects into several persistence platforms, such as files, relational and object–
oriented databases, by creating a number of implementations for the persistence



Figure 2: Dynamics of PDC.

mechanism class and for each persistent data collection class; all of these classes
must implement the corresponding interfaces.

• Reuse. Due to the structure provided by the pattern, business classes can be easily
reused by another application based on other database technologies. In addition,
changes to data access issues are simpler, since they are restricted to data access
code.

• Abstraction. As the pattern abstracts the persistence problem by using interfaces,
persistence implementation may use complex algorithms or APIs to deal with some
non-trivial aspects from persistent systems, such as enabling connections to database
platforms and managing transactions efficiently.

• Support for progressive implementation. During early phases of the application
development, functionally complete prototypes are constructed, where business col-
lection classes depend on business–data interfaces, but the latter are implemented
by volatile data collections (storing objects in memory only). Later, data access
code can be added seamlessly, replacing volatile data collections by specific per-
sistent data collection objects, then adding a persistence mechanism object. Such
approach enables addressing the business problems independently from persistence
operations, simpler validation of user requirements, and simplification of tests [9].



The liabilities of the pattern are:

• Increased number of classes. For each significant business basic class, we have to
create up to three additional classes and one interface. However, their structure is
simple and their generation can be simply automated by tools.

• Increased indirection. In order to introduce the layer architecture we must use dif-
ferent kinds of classes that delegate some calls to others, which may decrease system
performance. In fact, this lost of efficiency is minimal, since these indirections are
locally executed, and the additional execution time is irrelevant when compared
to the overhead of the IO operations that read from and write to the persistence
mechanism.

Implementation

Here we consider how to implement PDC using JDBC as the data access API for using
relational database services. Consider the following implementation issues:

• Java platform. The pattern elements must be implemented in the Java program-
ming language, since JDBC is part of the Java platform.

• Inheritance in the business basic class. Most code for manipulating objects using
JDBC can be contained in business basic classes, within methods inherited from an
abstract class (PersistentObject in our banking example). It can be considered
a miscellaneous of business and data access code, even though those inherited data
access methods are not invoked by business code (as mentioned earlier). One alter-
native for such situation is to transfer all code for manipulating persistent business
basic objects to the persistent data collection classes. The disadvantage of such ap-
proach is that changes in a business basic class will also reflect in the corresponding
persistent data collection class; it is necessary to implement a new persistent data
collection for each new platform. On the other hand, in this approach changes in
the persistent platform will not affect the business basic classes.

• Transactions. Using JDBC, we can easily implement transactions using database
services. We must use the setAutoCommit, commit and rollback methods on the
Connection class in order to implement a transaction when implementing a sequence
of operations, which must be executed as a single one.

• Business basic subclasses. A business basic class can be specialized in business
basic subclasses, depending on the business rules. In the case of business collection
and persistent data collection classes (including business–data interfaces), we can
choose from two design alternatives: one is to create a class for each business basic
subclass; another is to use only one class, in order to avoid duplicate code. A
detailed discussion about this topic is presented in a related work [15].

• Concurrency control. One concurrency problem arises when using a connection pool
to manage the connections with the persistence mechanism. Each execution flow
(thread) must obtain a connection from the connection pool before communicating



with the persistence mechanism. Usually there is a single connection pool contain-
ing all the connections of the system, and thus this poll is accessed concurrently.
Moreover, we need to apply some concurrency control to the system. Examples of
others situations in which concurrency control should be addressed are interference
by business rules (system policies), unsafe data types, and other race conditions [12].

• Volatile data collections. We can use this type of class for storing objects in a
non–persistent manner, in order to support progressive implementation. Using this
approach, we can abstract from persistence or any other non–functional requirement,
when implementing functional prototypes for the application. These prototypes
can be useful for validating user requirements and simplifying tests. This class
also implements its corresponding business–data interface, but its methods use in–
memory data structures like arrays or lists to manipulate business objects.

• Abstract factories. Variations of PDC can include classes which represent abstract
factories [7], in order to increase extensibility and reusability of business classes.
An abstract persistence factory class can be introduced, containing a method for
creating a persistence mechanism object, and such method can be implemented by
a subclass of the abstract factory, the concrete factory. The facade object can call
this method to instantiate the persistence mechanism, without making a explicit
call to its constructor method. The same idea can be used for creating persistent
data collections, isolating the business classes (facade and business collection classes)
from the instantiation code. In both cases, the information needed by the concrete
factories to instantiate the objects is placed in simple text or XML configuration
files.

Sample Code

We now provide a brief sketch of the implementation of the main elements of PDC using
Java and the JDBC API, in the banking application example introduced in Figure 3.
First, we present a business basic class, Account, which reflects directly the problem
domain. The public modifier in classes and methods is omitted by brevity.

class Account extends PersistentObject {

private Number number;

private double balance;

void credit(double value) { balance = balance + value; }

...

/* Data access operations */

void insert() throws StoringException {

try {

String sql = "insert into account values (";

sql += "ID = "+super.getId(); // get the object id

sql += "NUMBER = "+this.getNumber();

sql += "BALANCE = "+this.getBalance();

super.pm.executeUpdate(sql);

} catch (SQLException e) { throw new StoringException(); }

}



Figure 3: Example of PDC applied to a banking application.

Two of the attributes and one business operation, credit (containing only business code
and not invoking any data access method), are presented above. In another portion of
the class, there are data access methods inherited from the PersistentObject class,
containing specific code for database operations in this class (as the insert method).
Any exception related to the data access API (SQLException) is replaced by a general
database exception (StoringException).

In addition, this class contains methods with the deep prefix, which are special op-
erations for manipulating attributes which are references to other objects or collection
of objects (as the number attribute). The deepInsert method in the Account class has
an IPersistenceMechanism interface parameter receiving a reference to a persistence
mechanism object in order to perform the corresponding database operation:

void deepInsert (IPersistenceMechanism pm)

throws StoringException {

super.pm = pm;

this.number.deepInsert(pm);

this.insert();

}

...

}



Notice that deepInsert is called first for the attribute, before the insert for the Account
object. This order is followed in operations to write data to the database, due to a
restriction of relational databases, which forces the code to insert rows in auxiliary tables
first (number attribute), then insert a row in the main table (Account object). In this
way, the relationships can be established with no errors. This order does not need to be
followed in operations querying the database. Operations deleting data from the database
depend on the referential integrity defined for the tables involved.

Although there is business code along with data access code in the same class, the
business methods do not depend on the data access methods, since the former do not
invoke the latter. Therefore, we can insert and remove data access methods with no
impact on business code (a process easily automated by tools). The PersistentObject

class is presented below:

abstract class PersistentObject {

protected long id;

protected IPersistenceMechanism pm;

abstract void insert() throws StoringException;

abstract void deepInsert(IPersistenceMechanism pm)

throws StoringException;

abstract void access() throws StoringException;

abstract void deepAccess(IPersistenceMechanism pm)

throws StoringException;

...

}

where the id and the pm attributes denote the object identity of a persistent object
and a persistence mechanism object to perform database operations, respectively. The
abstract data access methods in this class must be implemented by all business basic
classes, which will be made persistent. The StoringException exception is raised when
a problem occurs in any database operation.

In order to represent a set of business basic objects on the business’ vision, we use a
business collection class. We present the class AccountRecord, which represents a set of
bank accounts:

class AccountRecord {

private IAccountRepository accountsRep;

AccountRecord(IAccountRepository accountsRep) {

this.accountsRep = accountsRep;

}

where the constructor of AccountRecord receives as argument an object which implements
a business–data interface, and two of the business operations for this class, addAccount
and credit, are also presented. The first method inserts an Account object into the
database, raising an exception if an account with the same number already exists.



void addAccount(Account account)

throws StoringException, DuplicateAccountException {

if (this.accountsRep.exists(account.getAccountNumber()))

throw new DuplicateAccountException();

else this.accountsRep.insert(account);

}

The second method queries the database for a given account. If the query is successful,
a value is added to the account’s balance and the account is updated in the database.
However, if the account does not exist in the database, an exception is raised.

void credit(Number accountNumber, double value)

throws StoringException, UnknownAccountException {

if (accountsRep.exists(accountNumber)) {

Account account = accountsRep.search(accountNumber);

account.credit(value);

this.accountsRep.update(account);

}

else throw new UnknownAccountException();

}

...

}

The database is represented by the attribute accountsRep, a business–data interface with
data access operations. This interface is as follows:

interface IAccountRepository {

void insert(Account account) throws StoringException;

Account search(Number accountNumber) throws StoringException;

void update(Account account) throws StoringException;

boolean exists(Number accountNumber) throws StoringException;

...

}

where the update method is important to maintain consistency between in–memory
(volatile) and persistent objects. Other methods on this interface could be complex queries
(for instance, returning a set of objects) and methods for sequential querying.

A class implementing a business–data interface is a persistent data collection class. In
our example, this class implements its methods invoking data access methods defined in
the business basic classes. In our example, the AccountRepositoryJDBC class is presented
as follows:

class AccountRepositoryJDBC implements IAccountRepository {

private PersistenceMechanismJDBC pm;

void insert(Account account) throws StoringException {

account.deepInsert(this.pm);

}

Note that the pm attribute stores a persistence mechanism object, which is passed as an
argument for the database operations on Account objects, as in the search method.



Account search(Number accountNumber) throws StoringException {

Account ac = new Account(accountNumber);

ac.deepAccess(this.pm);

return ac;

}

...

}

On the other hand, if it is desired to develop a functional prototype first, we can
implement a business–data interface using a volatile data collection. In the banking
application, we can create a class which stores and retrieves Account objects from an
array. The objects will be maintained in the array only during the current execution.

The facade class of the pattern is represented by the Bank class in this application:

class Bank {

private IPersistenceMechanism pm;

private AccountRecord accounts;

Bank() throws PersistenceMechanismException {

PersistentFactory factory = PersistentFactory.getFactory();

this.pm = factory.createPersistenceMechanism();

this.accounts = new AccountRecord(

AccountDataFactory.getFactory().createDataCollection(pm));

}

void addAccount(Account account)

throws StoringException, AccountAlreadyExistsException {

this.pm.beginTransaction();

try { this.accounts.add(account); }

catch (Exception e) {

this.pm.cancelTransaction();

throw e;

}

this.pm.commitTransaction();

}

void credit(String accountNumber, double value)

throws StoringException, UnknownAccountException {

this.pm.beginTransaction();

try { this.accounts.credit(accountNumber,value); }

...

}

...

}

This persistence mechanism object is instantiated in the Bank’s constructor, in order to
initialize the system, being stored in an IPersistenceMechanism interface attribute. All
the initialization process is performed using a PersistenceFactory class, which reads a
configuration file and creates the right specific persistence factory object for the applica-
tion. This object will then create the specific persistence mechanism object for the Bank

class, promoting extensibility of the business code (the facade class does not instantiate
the persistence mechanism object directly). See the Implementation section.



Bank uses services from its AccountRecord attribute, delegating calls to the latter in
its methods. This attribute is initialized by passing as argument a new persistent data
collection object, which implements a business–data interface and receives a persistence
mechanism object. In order to maintain separation between business and data access
code, this persistent data collection object is instantiated by a specific data factory for
JDBC, which in turn was first instantiated by a static method (getFactory) in an abstract
AccountDataFactory class (see Implementation section). In the addAccount and credit

methods, the Facade class invokes methods on the persistence mechanism object for
beginning and confirming a transaction, or canceling it if some exception occurs.

The IPersistenceMechanism interface, which is used by Bank, is presented as follows:

interface IPersistenceMechanism {

void beginTransaction() throws PersistenceMechanismException;

void commitTransaction() throws PersistenceMechanismException;

void cancelTransaction() throws PersistenceMechanismException;

void connect() throws PersistenceMechanismException;

void disconnect() throws PersistenceMechanismException;

...

}

where PersistenceMechanismException is the exception raised when some error occurs
in one of those operations. A persistence mechanism class implements this interface using
specific database API operations, as in the following example:

class PersistenceMechanismJDBC implements IPersistenceMechanism {

void beginTransaction() throws PersistenceMechanismException {

try {

// requests a connection from a connection pool

Connection conn = this.requestConnection();

conn.setAutoCommit(false);

}

catch (SQLException e) {

throw new PersistenceMechanismException();

}

}

...

}

This class implements the beginTransaction method using services from the JDBC
API. First, a connection to the database is requested from a connection pool (allowed by
JDBC). If there is not any opened connection, a new one is created. Then a transaction
is initialized in the context of the connection. Any SQLException raised is replaced by a
general exception, in order to guarantee isolation between business and data access code.

Known Uses

Several organizations have been using PDC as a design pattern for many real software
projects. Most of these projects have aimed at developing from simple to complex ap-



plications, and satisfactory results have been collected in such situations. Some of these
systems are presented as follows:

• A system to manage clients of a telecommunication company. The system is able
to register mobile telephones and manage client information and telephone services
configuration. The system can be used over the Internet.

• A system for performing online exams. This system has been used to offer differ-
ent kinds of exams, such as simulations based on previous university entry exams,
helping students to evaluate their knowledge before the real exams.

• A complex supermarket system. A system that is responsible for the control of sales
in a supermarket. This system will be used in several supermarkets and is already
been used in other kinds of stores.

• A system for registering health system complaints. The system allows citizens to
complaint about health problems and to retrieve information about the public health
system, such as the location or the specialties of a health unit.

• This pattern is also used in undergraduate and graduate courses on object–oriented
programming at the Center of Computer Science of the Federal University of Per-
nambuco. Several kinds of systems (such as games, academic control systems, and
sales systems) have been developed in these courses.

In addition, the pattern is one of the basic patterns of the Progressive Implementa-
tion Method (Pim) [5]. Pim is a method for the systematic implementation of complex
object–oriented applications in Java. In particular, this method supports a progressive
approach for object–oriented implementation, where persistence, distribution and con-
currency control are not initially considered in the implementation activities, but are
gradually introduced, preserving the application’s functional requirements [1, 9, 11, 15].
Pim relies on the use of specific architectural and design patterns for structuring object–
oriented applications, in order to promote modularity and separation of concerns [10].
PDC is the design pattern applied for dealing with persistence.

Related Patterns

• Crossing Chasms [6]. In their set of patterns for object–relational integration,
Brown and Whitenack deal with the definition of database schemas for relational
databases, supporting the object model. These patterns can be useful in PDC (for
setting up the database tables), since they have distinct objectives (PDC aims at
structuring the application in layers for a seamless introduction of persistence).

• Persistent Layer and other patterns [16]. Yoder’s patterns and PDC have very
similar objectives in obtaining separation of concerns between business and data
access code. Many of the ideas presented in the Yoder’s patterns can be combined
into elements of PDC in a practical way (for instance, Transaction Manager and
Connection Manager can be instantiated as the PDC’s persistence mechanism class).
However, Yoder’s patterns do not separate definitions of “data” and “data set”, as
defined in our persistent data collections, and assuming to be applied specifically



to relational databases. We believe that PDC can be applied almost directly to a
number of persistence platforms, including object databases and files.

• Abstract Factory [7]. This pattern is applied in PDC to implement a persistence
factory class for creating persistence mechanism objects, which is used by a facade
class. Factories also can be used for creating persistent data collection objects
transparently for the business collection classes (see Implementation section).

• Facade [7]. The facade class of PDC is a direct implementation of the Facade
pattern.

• Singleton [7]. Usually only one facade object is required in an application. Thus
facade objects are often implemented as Singletons.

• Bridge [7]. This pattern is used in PDC as the business–data and persistence
mechanism interfaces, which play the role of a bridge between the business and the
data access layers.

• Concurrency Manager [13]. This pattern can be used in PDC to control concurrent
situations, such as interferences by business rules (system policies), unsafe data
types, and other race conditions.

Acknowledgements

We would like to give special thanks to our shepherd in this paper, Rosana Teresinha
Vaccare Braga, from ICMC-USP, for making important suggestions for improving this
pattern. We also thanks Jorge L. Ortega Arjona and Gunter Mussbacher for the sugges-
tions made at the conference.

References

[1] Vander Alves. Progressive Development of Distributed Object-Oriented Programs.
Master’s thesis, Centro de Informática – Universidade Federal de Pernambuco, Febru-
ary 2001.

[2] Scott Ambler. Building Object Applications that Work. Cambridge University Press
and Sigs Books, 1998.

[3] Scott Ambler. The Object Primer. Cambridge University Press, 2001.

[4] Grady Booch et al. The Unified Modeling Language User Guide. Object Technology.
Addison-Wesley, 1999.

[5] Paulo Borba, Saulo Araújo, Hednilson Bezerra, Marconi Lima, and Sérgio Soares.
Progressive implementation of distributed Java applications. In Engineering Dis-
tributed Objects Workshop, ACM International Conference on Software Engineering,
pages 40–47, Los Angeles, USA, 17th–18th May 1999.



[6] K. Brown and B. Whitenack. Crossing Chasms: A Pattern Language for Object-
RDBMS Integration. In J. Vlissides et. al. (eds.), Pattern Languages of Program
Design 2. Addison-Wesley, 1996.

[7] Erich Gamma et al. Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1994.

[8] James Gosgling, Bill Joy, and Guy Steele. The Java Language Specification. Addison-
Wesley, 1996.

[9] Tiago Massoni. A Software Process with Support to Progressive Implementation
(in portuguese). Master’s thesis, CIn – Federal University of Pernambuco, February
2001.

[10] David L. Parnas et al. On the Criteria to be Used in Decomposing Systems into
Modules. Communications of ACM, 15(12):1053–1058, December 1972.

[11] Sérgio Soares. Progressive Development of Concurrent Object-Oriented Programs
(in portuguese). Master’s thesis, Centro de Informática – Universidade Federal de
Pernambuco, February 2001.

[12] Sérgio Soares and Paulo Borba. Concurrency Control with Java and Relational
Databases (in portuguese). In V Brazilian Symposium of Programming Languages,
23th–25th May 2001.

[13] Sérgio Soares and Paulo Borba. Concurrency Manager. Technical report, State
University of Rio de Janeiro—UERJ, Rio de Janeiro, Brazil, 3th–5th October 2001.
To appear.

[14] Sun Microsystems. Java Database Conectivity Specification, 2000. Available at
ftp://ftp.javasoft.com/pub/jdbc.

[15] Euricélia Viana. Integrating Java with Relational Databases (in portuguese). Mas-
ter’s thesis, Centro de Informática, UFPE, 2000.

[16] J.W. Yoder, R.E. Johnson, and Q.D. Wilson. Connecting Business Objects to Rela-
tional Databases. In Proceedings of the 5th Conference on the Pattern Languages of
Programs, Monticello-IL-EUA, August 1998.




