

1

Padrões para Apoiar o Projeto de Material Instrucional
para EAD

Americo Talarico Neto, Junia C. Anacleto, Vânia P. de Almeida Neris

Departamento de Computação – Universidade Federal de São Carlos (UFSCar)
Caixa Postal 676 – CEP.13565-905 – São Carlos – SP – Brasil

{americo,junia,vania}@dc.ufscar.br

Abstract. This work presents a pattern collection aiming at supporting
teachers to design instructional material for Distance Learning Systems. Such
patterns were identified and written based on a selected set of Cognitive
Strategies, in order to better organize the content displayed as instructional
material presented to students, in an attempt to facilitate their learning
process.

Resumo. Este trabalho apresenta uma coleção de Padrões com a finalidade
de apoiar o professor durante o projeto de material instrucional para sistemas
de Educação à Distância (EAD). Tais Padrões foram identificados e escritos a
partir de um conjunto de Estratégias Cognitivas, selecionadas com o objetivo
de melhor organizar o conteúdo visto pelo aluno, visando facilitar o seu
processo de aprendizado.

1. Introdução
A disseminação da informação, associada ao desenvolvimento das mídias interativas,
vem colocando recursos como o computador e a Internet a serviço da educação, e tem
gerado uma grande transformação nos processos de ensino e aprendizagem, relacionada
principalmente ao uso da Educação à Distância (EAD) como forma de atingir novos
públicos e desenvolver novas metodologias de ensino.

 O projeto de cursos em ambientes WEB pode ser uma tarefa difícil para os
professores que têm pouca experiência em interação e projeto de material instrucional
em ambiente computacional. Essa dificuldade acaba gerando uma produção de cursos
deficientes que impedem ou dificultam o processo de aprendizagem dos alunos [Frizell,
2001].

 Este artigo explora a questão do projeto de material instrucional para EAD,
sintetizando algumas propostas disponíveis na literatura da ciência cognitiva, que tenta
explicar como ocorre o processo de ensino e aprendizagem no ser humano, expressa
aqui em um conjunto adotado de Estratégias Cognitivas [Liebman, 1998],
documentando tais práticas em forma de Padrões para apoio adequado ao processo de
geração do material instrucional.

 Espera-se que tais Padrões possam gerar um vocabulário comum entre os
diversos participantes (professores, autores, educadores, profissionais da computação, e
web designers) do projeto multidisciplinar de material instrucional para EAD, extraindo
e estruturando abstrações de qualidades comuns, identificando soluções e apresentando

2

a relevância de tais soluções para ajudar os professores a melhor organizar o material
instrucional e assim favorecer o aprendizado dos alunos que venham a utilizá-lo.

 Neste trabalho utiliza-se o termo professor para designar o profissional
responsável pelo projeto de material instrucional para ambiente Web e utiliza-se o
termo aluno para designar o usuário que irá interagir com a interface elaborada nesse
projeto (o material instrucional).

 Este trabalho está organizado da seguinte forma: na seção 2 são apresentadas as
Estratégias Cognitivas adotadas como base para este trabalho, na seção 3 são mostradas
as principais características dos padrões identificados e na seção 4 os padrões são
apresentados em detalhes. Por fim, na seção 5 são feitas as considerações finais.

2. Estratégias Cognitivas para Apoio ao Ensino
Gagné (1974) aborda os processos internos de aprendizagem por meio de itens que
foram denominados domínios. Um desses domínios é constituído pelas Estratégias
Cognitivas, que segundo ele são capacidades internamente organizadas que o aluno usa
para guiar seus próprios processos de atenção, aprendizagem, memória e pensamento. O
aluno usa uma Estratégia Cognitiva, por exemplo, ao prestar atenção nas diversas
características daquilo que está lendo. O leitor usa certas Estratégias Cognitivas para
selecionar e codificar o que aprende, valendo-se de outras estratégias para recuperar
posteriormente essas informações [Almeida e Silva, 2004].

 As Estratégias Cognitivas são, portanto, os meios que o aluno dispõe para
administrar seus próprios processos de aprendizagem. Gagné relaciona tais estratégias
com os conceitos de "aprender a aprender" e "aprender a pensar".

 Beckman (2002) define as Estratégias Cognitivas como “uma estratégia ou um
grupo de estratégias ou procedimentos que os alunos usam para cumprir tarefas
acadêmicas ou melhorar habilidades sociais. Normalmente, mais do que uma Estratégia
Cognitiva é utilizada, dependendo do esquema de aprendizado do aluno”. As estratégias
citadas por Beckman são: Visualização, Verbalização, Associações, Particionamento,
Questionamento, Inspeção, Sinalização, Uso de mnemônicos, Auto-verificação e
Monitoramento.

 Rosenshine (1997) reforça que a melhor maneira de saber que estratégia utilizar
é observar como os alunos mais experientes resolvem os problemas e que estratégias
utilizam. Algumas das estratégias citadas em seu trabalho são: Quebra de tarefas,
Suporte, Feedback e Mapa de Conceitos.

 West et al. (1991) sugerem o uso de mais algumas Estratégias Cognitivas. As
atividades apresentadas por West et al. (1991) e utilizadas, com sucesso, por Liebman
(1998) no ensino presencial são listadas a seguir: Organização, Estruturação, Mapa de
Conceitos, Metáforas e analogias, Ensaios e Organizadores de avanço.

 Neste trabalho foram adotadas as estratégias de Liebman (1998). Essa decisão
foi tomada após uma análise minuciosa das estratégias anteriormente mencionadas na
qual pôde-se perceber que o grupo de estratégias de Liebman reflete quase todas as
estratégias citadas anteriormente. Nesse sentido, as estratégias de Liebman são
detalhadas a seguir:

3

 Organização: na literatura sobre psicologia cognitiva é chamada de
particionamento, inclui a aplicação de taxonomias, listagem de semelhanças e
diferenças, análise de forma e função, listar vantagens e desvantagens e
identificar causa e efeito;

 Estruturação: são organizações visuais da estrutura básica da informação em
questão; um exemplo de estruturação é a elaboração de uma tabela na qual as
linhas representam objetos e as colunas representam as propriedades. O
professor fornece a estrutura e pede aos aprendizes que preencham algumas ou
todas as informações. Essa estruturação pode ser de dois tipos. No tipo 1 os
aprendizes preenchem a estrutura usando a informação que têm disponível, e no
tipo 2 eles usam o raciocínio para desenvolver a informação a ser colocada na
estrutura;

 Mapa de Conceitos: diagramas usados para expressar relacionamentos
temporais, por categoria, causais, hierárquicos, etc;

 Uso de metáforas e analogias;

 Ensaios: são estratégias para manter a informação sendo processada na memória
de trabalho dos aprendizes o tempo suficiente para que seja melhor estabelecida
na memória de longa duração. Incluem repetição, perguntas e respostas, prever e
esclarecer, redefinir ou parafrasear a informação, revisar e resumir, selecionar
qual a informação importante, tomar notas e enfatizar (sublinhar);

 Organizadores de avanço: são observações feitas pelo professor para ajudar o
aprendiz a passar para um novo tópico, podendo ser entendidos como conectores
ou pontes, fazendo associações entre um tópico que está por vir e o
conhecimento já adquirido;

 Outro ponto interessante que correlaciona este trabalho com o de Liebman é que
ela também reconhece que os professores podem utilizar as Estratégias Cognitivas para
facilitar o processo de ensino e aprendizagem do aluno. Aqui, neste trabalho, as
estratégias são selecionadas e utilizadas pelos professores no projeto do material
instrucional com o objetivo de melhor organizar o conteúdo pela interface, em uma
tentativa de facilitar o processo de aprendizado do aluno.

3. Características dos Padrões para EAD Identificados neste Trabalho
O objetivo de Alexander na publicação de sua Linguagem de Padrões [Alexander et al.,
1977] era permitir aos usuários leigos, os habitantes, a capacidade de participar do
projeto de seus ambientes. Essa preocupação é similar às idéias encontradas em
Engenharia de Software, no Projeto Centrado no Usuário e no Design Participativo,
cujo objetivo é envolver usuários finais em todos os estágios do ciclo de
desenvolvimento de software [Borchers, 2001].

 Uma Linguagem de Padrões para EAD deve conter Padrões que orientem os
instrutores em como elaborar o curso, ajudem na concepção de um projeto para elaborar
a seqüência de ações em um curso e forneçam auxílio durante a realização do curso com
estratégias de acesso [PPP, 2005].

4

 Tais benefícios estão presentes nesta pesquisa que se propõe a apresentar uma
coleção de Padrões para apoiar o professor na tarefa de projetar o material instrucional
para ser inserido em sistemas de EAD. Nesse contexto, o professor pode desempenhar
os papeis de:

Usuário: quando atua em conjunto com uma equipe multidisciplinar para o
projeto do material instrucional, podendo assim utilizar os Padrões como
ferramenta para estabelecer uma comunicação mais eficiente e participar mais
ativamente do projeto, utilizando terminologia e conhecendo os problemas do
domínio da EAD.

Projetista: quando ele mesmo projeta e disponibiliza o material instrucional,
utilizando os Padrões como ferramenta para avaliação, projeto e validação e para
divulgar seus conhecimentos para pessoas menos experientes.

 Os Padrões identificados nesta pesquisa foram obtidos por meio de estudos de
caso (Almeida e Silva, 2004) cujos objetivos principais foram verificar se o conjunto
selecionado de seis Estratégias Cognitivas [Liebman, 1998], apresentado na seção
anterior, aumenta a usabilidade de materiais instrucionais para EAD, verificando em
que momento essas Estratégias Cognitivas são inseridas no material instrucional e se
elas podem ser vistas como soluções para problemas recorrentes nesse contexto e, desse
modo, se podem ser escritas na forma de Padrões.

 O formato e o estilo de escrita desses Padrões para EAD foram baseados na
“Linguagem de Padrões para escrita de Padrões” de Meszaros e Doble (1996), que
mostra que os Padrões são mais fáceis de compreender e aplicar quando os elementos
Nome, Forças, Contexto, Problema e Solução estão presentes no formato utilizado.
Esses autores comentam que outros elementos podem ser incluídos no formato do
Padrão, mas são opcionais (Exemplos, Raciocínio, etc). Segundo esses autores, os
elementos opcionais devem ser escolhidos pelo autor para tornar mais fácil a
compreensão do Padrão ou para relacionar os Padrões.

 Neste trabalho, oito elementos foram considerados como sendo de alta
importância para o entendimento dos Padrões formalizados, conforme descrito a seguir:
Nome do Padrão, Contexto, Forças, Problema, Solução, Raciocínio, Exemplos e
Padrões Relacionados. Cada um dos Padrões identificados foi escrito seguindo-se essa
estrutura.

 Os relacionamentos entre os Padrões da coleção obtida são mostrados na Figura
1, construída baseada na teoria de Linguagem de Padrões de Alexander et al. (1977),
que relaciona os Padrões visualmente na forma de um grafo, no qual as caixas (nós)
representam os Padrões e as linhas (arestas) representam os relacionamentos entre eles.

5

Figura 1. Relacionamentos entre os Padrões para EAD, identificados neste
trabalho.

 A seguir serão apresentados todos os Padrões que foram obtidos a partir das
Estratégias Cognitivas apresentadas na seção 2.

4. Padrões Identificados a partir das Estratégias Cognitivas

4.1. O Padrão Planejamento

Contexto:
A primeira tarefa do professor é planejar a aula estruturando os conteúdos e criando um
ambiente que motive o aluno. Esta fase define a fundação necessária para conduzir uma
boa aula.

Forças:
A preparação de uma aula completa envolve o entendimento de uma série de
conceitos e interesses, bem como o entendimento de que os diferentes públicos
têm habilidades e conhecimentos únicos.
O professor geralmente tem familiaridade com o tema da aula, entretanto ele
pode esquecer de mencionar tópicos que são importantes para o entendimento do
tema pelo aluno.
O Planejamento auxilia o professor a melhor organizar uma aula e facilita o
processo de transferência do conhecimento.

Problema:
Como planejar a transferência de conhecimento do professor para o aluno?

Solução:
Formalize o problema a ser resolvido, definindo o objetivo final, que o ajudará a
determinar as estratégias para uma aula. Especifique um ou mais sub objetivos que seu
material instrucional deve contemplar e que aspectos você quer focalizar.

Legenda:

Padrão:

Associação entre 2 padrões:

Gancho
Estruturação do
Conhecimento

Contextualização Hierarquização

Correlação
Padrão A

Sedimentação
Planejamento

6

Identifique o conhecimento inicial necessário que o aluno deve ter e siga os seguintes
passos:

1- Definição dos resultados de aprendizagem desejados (quando esses resultados
forem muito complexos, dividi-los em resultados mais simples)

2- Estabelecimento de uma hierarquia de resultados,

3- Identificação das condições internas requeridas,

4- Identificação das condições externas requeridas,

5- Planejamento dos meios de aprendizagem em função do contexto de
aprendizagem e das características do grupo,

 6- Planejamento da motivação

Raciocínio:
Um bom planejamento é resultado de experiência. Esteja atento para adaptar o
planejamento para próximas versões da mesma aula, incorporando assim novas
experiências.

Exemplos:
Considere o projeto de um material instrucional que aborda o tema “A Camada de
Ozônio”. O professor estabelece o seguinte plano de ensino com objetivos de
aprendizado para seus alunos, durante o contato com o material instrucional. A partir do
plano de Ensino o professor elabora um Mapa de Conceitos para organizar as idéias e
conceitos que ele gostaria de transmitir à seus alunos, na forma de conteúdo:

Plano de Ensino

Identificação Aula: “A Camada de Ozônio”

Disciplina: Biologia – Meio ambiente

Pré-requisitos Conhecer os conceitos de Meio Ambiente, atmosfera e as
condições para preservação das formas de vida na Terra.

Ementa: Apresentação da Camada de Ozônio, sua composição, localização
e os problemas biológicos causados pela sua destruição

Objetivos: Como a camada de ozônio se forma?

Por que ela é importante?

Como a camada de ozônio vem sendo destruída?

Quais as conseqüências biológicas dessa destruição?

7

Mapa de
Conceito

Referências Enciclopédia Britânica

Padrões Relacionados: Gancho.

4.2. O Padrão Gancho

Contexto:
O professor realizou o planejamento da sua aula e já tem os objetivos de ensino e
aprendizado bem consolidados. Agora é necessário dar início ao que foi planejado,
mostrando ao aluno o que ele irá aprender.

No início de uma aula é interessante mostrar ao aluno o conceito principal do assunto
que ele irá aprender e se tal conceito é relacionado com algum outro previamente
conhecido, para que o aluno possa estabelecer relacionamentos entre tais conceitos.

Para preparar o aluno para a integração do conhecimento é necessário construir uma
ponte entre o material novo e as idéias existentes.

Forças:

A introdução de um novo conceito pode fazer com que o aluno se sinta
desorientado durante o início de uma aula virtual e consequentemente tenha seu
aprendizado dificultado. Ao estimular o aluno a relembrar conceitos que ele já
domina e a relacioná-lo com o conceito que será apresentado, o professor atua
como facilitador do aprendizado do aluno.

Na aula, ao final da apresentação de um conceito, este pode ser usado como uma
introdução ao próximo conceito a ser aprendido, preparando o aluno para
receber um novo tema com base em um conceito já assimilado.

Problema:
Como o professor pode apresentar uma nova aula ao aluno?

Solução:
Utilize a Estratégia Cognitiva Organizadores de Avanço.

8

Um organizador de avanço é uma Estratégia Cognitiva proposta por David Ausubel
(1968) que serve como tópico ou categoria nos quais os fatos e os detalhes podem ser
organizados e subseqüentemente aprendidos. Os organizadores de avanço são
importantes para auxiliar o aluno a aprender, recordar, e relacionar o material que já
estudou. Podem incluir observações feitas pelo professor para ajudar o aluno a iniciar
um novo tópico.

Apresente material introdutório que ajude o aluno a relacionar informação nova com
esquemas de conhecimentos existentes. Novas idéias e conceitos devem ser
potencialmente significativos para o aluno. Ajude-o a relacionar novas idéias com
conhecimento existente.

Estimule o aluno a responder perguntas tais como:
O que você quer descobrir?
Que ações você deve fazer para chegar lá?
O que você já sabe?

Raciocínio:
Os Organizadores de avanço, propostos por David Ausubel (1968), ajudam a construir
uma fundação. Uma inspeção prévia do material a ser estudado e aprendido forma uma
estrutura de conhecimento prévio sobre os quais o conhecimento novo e a compreensão
podem ser construídos.

Os tipos de Organizadores de Avanço são:

Organizadores de Avanço Expositores: pode simplesmente fornecer aos alunos o
significado e a finalidade do que deve seguir. Por outro lado, pode apresentar aos alunos
informação mais detalhada do que estarão aprendendo especialmente a informação que
pode ser difícil de compreender.

Organizadores de Avanço Narrativos: tem o formato de uma história. Aqui o professor
fornece as idéias essenciais de uma aula ou de uma unidade que planeja ensinar
contando uma história que incorpore as idéias.

Organizador de avanço superficial: o professor fornece aos alunos uma oportunidade de
inspecionar a informação importante que encontrará mais tarde focalizando os títulos,
os subtítulos, e as informações destacadas. Utilize a Estratégia Cognitiva Ensaios para
selecionar a informação importante, sublinhar ou destacar. Ensaio é definido como
atividades que ajudam processar o material na memória de curta duração deixando-o
ativo na consciência do aluno para que ele possa ser recuperado mais tarde [Mayer,
1987].

Organizadores gráficos: fornecem aos alunos a orientação de qual informação
importante uma lição ou uma unidade é composta. Dão a alunos o sentido e fornecem
também uma representação visual da informação importante.

Exemplos:

No início de uma aula sobre “a Camada de Ozônio” é apresentado um Organizador de
Avanço Narrativo para explicar o fato de que a Terra possui um escudo que filtra os
raios solares que são maléficos aos seres humanos, estimulando o aluno a relembrar os

9

conceitos de atmosfera e raios ultravioletas e que esse filtro é composto pelo gás
ozônio, que vem sendo destruído ultimamente.

Figura 2. Exemplo da Estratégia Cognitiva Organizador de Avanço.

Padrões Relacionados: Estruturação do Conhecimento

4.3. O Padrão Estruturação do Conhecimento

Contexto:
O professor estimulou o conhecimento prévio do aluno que agora sabe como o tópico
que ele irá aprender se relaciona com conceitos que ele já conhece. Agora o professor
deve mostrar os conceitos principais, bem como o conteúdo que deve ser aprendido.

 Forças:
Para manter o estudante ativo durante uma aula virtual, o professor pode mostrar
como o conceito que vai ser apresentado será explorado e detalhado, pois os
alunos geralmente se lembram melhor do que eles aprendem inicialmente e têm
a necessidade de saber o tamanho da aula, seus tópicos principais e o progresso.
O professor pode introduzir as idéias importantes no início da aula, mesmo que
elas não sejam completamente exploradas de imediato. Dessa forma o aluno terá
uma visão geral do conhecimento que ele irá aprender.

Problema:
Como podemos introduzir novos conceitos aos alunos?

Solução:
Utilize Mapa de Conceitos como ferramenta para a indexação dos conteúdos envolvidos
em um ambiente virtual de aprendizagem. O ambiente deve conter uma página para

10

cada nó (Conceito) do Mapa de Conceitos e um índice, que serve como "link" para elas.
Os Mapa de Conceitos são úteis por diversas razões: são um registro observável da
compreensão de um indivíduo; demonstram como a informação é significativa; forçam
um indivíduo a pensar sobre seus próprios processos de pensamento e estruturação do
conhecimento.

Mapa de Conceitos podem ser utilizados como ferramenta instrucional para:
Organizar o índice do curso: construindo um mapa de todas as idéias de um
curso, os professores podem usar tal estrutura para organizar o índice do curso.
Isto fornece uma maneira para o instrutor ver conexões entre o material do curso
e como melhor apresentar as conexões aos alunos
Preparar aulas específicas: melhor que mapear o índice de um curso inteiro, um
instrutor pode focalizar na tarefa mais específica de traçar o índice de somente
uma aula para questões de melhor organização.
Apresentar o material aos alunos: um instrutor pode escolher ensinar o material
do curso com o uso de Mapa de Conceitos para mostrar claramente as conexões
entre conceitos.

Utilize a Estratégia Cognitiva Ensaios para selecionar informações importantes, para
facilitar a localização dos itens e sua identificação no texto. Ensaio é definido como
atividades que ajudam a processar o material na memória de curta duração, deixando-o
ativo na consciência do aluno para que ele possa ser recuperado mais tarde [Mayer,
1987].

Utilize a Estratégia Cognitiva Estruturação (na forma de listas), que são organizações
visuais da estrutura básica da informação em questão.

Raciocínio:
A técnica de Mapa de Conceitos, desenvolvida pelo Prof. Joseph D. Novak (1977), está
embasada na teoria construtivista, entendendo que o indivíduo constrói seu
conhecimento e seus significados a partir da sua predisposição para realizar essa
construção, e servem como instrumentos para facilitar o aprendizado do conteúdo
sistematizado em conteúdo significativo para o aprendiz.

Exemplos:
A figura abaixo apresenta um exemplo de um índice para a aula sobre “a Camada de
Ozônio”, baseado na Estratégia Cognitiva Mapa de Conceito utilizada como indexador
de conteúdos durante o Planejamento da Aula (veja padrão Planejamento). O projeto
navegacional do material instrucional foi feito de tal forma que cada página Web desse
material representasse um conjunto de conhecimento (tópicos) que se queria transmitir.

11

Figura 3. Exemplo da Estratégia Cognitiva Mapa de Conceitos utilizado como
indexador de conteúdos.

Padrões Relacionados: Correlação, Contextualização, Hierarquização, Sedimentação.

4.4. O Padrão Contextualização

Contexto:
Os alunos estão estudando o material instrucional e em certo ponto gostariam de saber
como os conceitos que estão aprendendo se relacionam com o ambiente em que vivem e
como podem aplicá-lo.

Forças:
Para manter o aluno mais engajado em uma aula virtual é necessário fazê-lo
visualizar como o conceito que está aprendendo pode ser aplicado no seu dia a
dia, ou em seu ambiente de trabalho e as motivações para que ele possa utilizar
tais conceitos para resolver seus problemas.

Problema:
Como aplicar o conceito recentemente mostrado ao ambiente do aluno?

Solução:
O conteúdo não deve ser apresentado apenas de forma expositiva e descritiva. Sempre
que possível, o tema deve ser introduzido por alguma atividade em que se resgatem os
conhecimentos e as informações que o aluno traz, criando-se, assim, um contexto que
irá dar um "significado" ao tema em questão, justificando ainda o fato do por que tal
tema está sendo estudado.

Utilize a Estratégia Cognitiva Ensaios para selecionar a informação importante, para
facilitar a localização dos itens e sua identificação no texto. Ensaio é definido como
atividades que ajudam processar o material na memória de curta duração deixando-o

12

ativo na consciência do aluno para que ele possa ser recuperado mais tarde [Mayer,
1987].

Utilize a Estratégia Cognitiva Organizações que na psicologia cognitiva é também
conhecida como particionamento e sugere a aplicação de taxonomias, listagem de
semelhanças e diferenças, análise de forma e função, listar vantagens e desvantagens e
identificar causa e efeito.

Utilize a Estratégia Cognitiva Mapa de Conceitos para expressar relacionamentos entre
os conceitos apresentados em forma de diagrama

Exemplos:
A figura abaixo apresenta parte de um Material Instrucional sobre a aula “A Camada de
Ozônio” elaborado com as Estratégias Cognitivas: Ensaios para selecionar a informação
importante e facilitar a sua localização e identificação no texto e Estruturação para
identificar as causas e os efeitos da exposição moderada e excessiva ao Sol. Tais
conceitos são úteis para o aluno e a forma como são apresentados reforça a sua
importância.

Figura 4. Material Instrucional elaborado com as Estratégias Cognitivas
Estruturação e Ensaios.

Padrões relacionados: Correlação, Sedimentação

4.5. O Padrão Hierarquização

Contexto:
Os tópicos em um curso são divididos em fragmentos e os fragmentos são introduzidos
em uma ordem que facilite resolver um problema do aluno. Muitos dos fragmentos
introduzem um conceito, mas não o cobrem em detalhes. Inicialmente, o tratamento
dado é suficiente apenas para formação de uma compreensão básica dos conceitos que
serão reforçados e detalhados posteriormente em seqüências adicionais.

13

Forças:
É necessário que o aluno conheça todos os tópicos que ele irá estudar antes de
aprender cada conceito individualmente, pois o cérebro aprende melhor quando
ele consegue associar novos assuntos com assuntos aprendidos e quanto mais
associações forem feitas pelo cérebro, mais fácil será recuperar o conhecimento
adquirido e aplicá-lo em certo ambiente.
Tópicos extensos, requerem muitos fragmentos com diversos conceitos
envolvidos. O material instrucional necessário para explicar todos os conceitos
envolvidos pode ser facilmente expandido em subitens causando poluição
textual. É necessário que os alunos saibam de antemão quais são os conceitos
importantes antes de saber suas explicações.

Problema:
Como podemos introduzir um conceito que tem um grande número de subitens?

Solução:
As idéias mais gerais de um assunto devem ser apresentadas primeiramente e depois
progressivamente diferenciadas em termos de detalhes. Organize o novo material por
coordenação, subordinação e superordenação.

Segundo a idéia de diferenciação progressiva, se o objetivo é ensinar os itens X, Y e Z,
deve-se, primeiro, ensinar os 3 itens num nível geral, depois os 3 itens num nível de
maior detalhe e assim por diante; o oposto seria ensinar tudo sobre X, depois tudo sobre
Y e depois tudo sobre Z. De início, serão apresentadas as idéias mais gerais que serão,
progressivamente, detalhadas em termos de detalhe e especificidade. Importante nesse
processo é, a cada passo, destacar o que os itens têm em comum e o que os diferencia.

Utilize a Estratégia Cognitiva Ensaios para selecionar a informação importante, para
facilitar a localização dos itens e sua identificação no texto..

Utilize a Estratégia Cognitiva Estruturação, que são organizações visuais da estrutura
básica da informação em questão.

Raciocínio:
A diferenciação progressiva vê a aprendizagem significativa como um processo
contínuo no qual adquirem significados mais abrangentes à medida que são
estabelecidas novas relações entre os conceitos.

Exemplos:
A figura abaixo apresenta uma página de um material instrucional sobre “A Camada de
Ozônio” elaborado utilizando-se a diferenciação progressiva, na qual todos os itens são
apresentados antes de suas explicações para se ter uma visão geral do que será
aprendido. A Estratégia Cognitiva Estruturação foi usada para organizar visualmente a
informação em questão.

14

Figura 5. Exemplo de material Instrucional elaborado com Diferenciação
Progressiva.

Padrões relacionados: Correlação, Contextualização, Sedimentação

4.6. O Padrão Correlação

Contexto:
Ao ensinar um tópico complexo fora da experiência normal do aluno, encontre uma
metáfora complexa e consistente para o tópico que está sendo ensinado. O contexto base
da metáfora necessita ser de conhecimento dos alunos.

Forças:
Os alunos precisam de uma estratégia poderosa e consistente para pensar sobre
algum tópico complexo. A estratégia deve relacionar o tópico que está sendo
ensinado ao contexto que o aluno vivencia.
Os alunos podem ficar perdidos nos detalhes facilmente e podem não ver como
as peças se relacionam. Isto é válido quando os detalhes são estranhos ou novos
aos alunos.

Problema:
Como fazer com que os alunos vejam rapidamente como o tópico se relaciona com os
objetivos maiores da aula e entendam como os conceitos se relacionam?

Solução:
Utilize a Estratégia Cognitiva Metáforas e Analogias. Crie uma Metáfora que seja
consistente com o tópico que está sendo ensinado. Forneça aos alunos uma maneira
rápida de pensar sobre o tópico.

Exemplos:
Durante uma aula sobre “A camada de Ozônio” o professor cria uma analogia entre a
Camada de Ozônio e um escudo que protege a Terra dos raios nocivos do Sol, com o
objetivo de trabalhar a informação de maneira diferente na memória do aluno. Durante a

15

mesma aula é apresentada uma metáfora para relacionar a destruição da camada de
ozônio com o lançamento de gases tóxicos na atmosfera.

Figura 6. Exemplo de Metáforas e Analogias inseridas no material instrucional.

Padrões relacionados: Sedimentação.

4.7. O Padrão Sedimentação

Contexto:
O aluno estudou uma quantidade razoável do material instrucional e precisa que essa
informação seja trabalhada por mais tempo em sua memória, enquanto ele se prepara
para adquirir novos conhecimentos.

Forças:
O cérebro consegue se concentrar em um determinado tópico por um período
limitado. Após esse período os alunos não conseguem aprender eficientemente.
É preciso manter o conhecimento novo na memória do aluno e fazer com que ele
estabeleça relações com o que já conhece, bem como exercitá-lo em problemas
reais.

Problema:
Como fazer com que o novo conhecimento adquirido fique sendo trabalhado na
memória de curta duração do aluno, enquanto ele se prepara para adquirir novos
conhecimentos?

Solução:
Integre o novo conhecimento a outras áreas de conhecimento.

Os materiais instrucionais devem tentar integrar o material novo com informação
previamente apresentada por meio de comparações que referenciem idéias novas e
velhas, considerações, tabelas, conclusão e exercícios.

Para facilitar esse processo, o material instrucional deve procurar integrar qualquer
material novo com material anteriormente apresentado (referências, comparações etc.),

16

inclusive com exercícios que exijam o uso do conhecimento de maneira nova (por ex:
formulação de questões de maneira não familiar).

Raciocínio:
Reconciliação Integradora é o processo pelo qual a pessoa reconhece novas relações
entre conceitos até então vistos de forma isolada.

Exemplos:
A figura abaixo apresenta parte do material instrucional sobre “A Camada de Ozônio”,
cuja Retenção de Conhecimento foi elaborada com um exercício do tipo “selecione”,
com o objetivo de manter o conhecimento recentemente adquirido na memória de longa
duração do aluno e fazer com que ele estabeleça relações com o que já conhece.

Figure 7. Exercício do tipo “selecione” projetado para realizar a Retenção de
Conhecimento

5. Considerações Finais
A coleção de Padrões para EAD proposta neste trabalho foi decorrência do estudo da
aplicação das Estratégias Cognitivas utilizadas por Liebman (1998) como uma forma de
apoio aos professores na tarefa de projetar material instrucional para EAD com
qualidade. Os estudos de caso realizados [Almeida e Silva, 2004] proporcionaram a
identificação e escrita dos Padrões para EAD apresentados aqui e permitiram verificar
que as Estratégias Cognitivas aumentam a usabilidade do material instrucional para
EAD e, consequentemente, sua qualidade.

 Como trabalho futuro, espera-se organizar a coleção de Padrões para EAD
obtida nesta pesquisa, visando a criação de uma Linguagem de Padrões para EAD que
capture princípios pedagógicos e boas práticas de projeto de interação, abordando
questões relativas ao projeto do layout e utilização de multimídia de uma forma que
englobe um maior número de problemas encontrados pelos professores durante o
projeto e a geração de materiais instrucionais para ambientes Web.

17

6. Agradecimentos
 Agradecemos ao apoio recebido do projeto TIDIA-Ae da FAPESP (processo
03/08276-3). Agradecemos ao nosso shepherd, o professor Paulo Cesar Masiero, pela
valiosa contribuição na melhoria dos padrões apresentados nesse trabalho.

Referências
Alexander, C. et al. “A Pattern Language”. Oxford University Press, N.Y., 1977.

Almeida, V. P.; Silva, J. C. A. (2004) Estratégias Cognitivas para Aumento da
Qualidade do Hiperdocumento que Contém o Material Instrucional para EAD. In:
IHC 2004 - VI Simpósio sobre Fatores Humanos em Sistemas Computacionais. 17-
20 de Outubro de 2004. Curitiba

Ausubel, David P. (1968). Educational Psychology, a Cognitive View. New York: Holt,
Rinehart and Winston, Inc.

Beckman, P. Strategy Instruction. ERIC Clearinghouse on Disabilities and Gifted
Education. http://ericec.org/digests/e638.html

Borchers, J. A Pattern Approach to Interaction Design. John Wiley & Sons Ltd, 2001.

Frizell, Sherri S. “A Pattern-Based Design Methodology for Web-based Instruction”.
Thesis Research. Auburn University, September, 2001.

Gagné, R. M. The Conditions of Learning. 3rd editon. Holt, Rinehart e Winston, 1974.

Liebman, J. Teaching Operations Research: Lessons from Cognitive Psychology.
Interfaces, 28 (2), 1998. 104-110.

Meszaros G. and Doble J. (1996) “MetaPatterns: A Pattern Language for Writing
Patterns”, in Proceedings of the Conference on Pattern Languages of Programming
PloP 1996, Allerton Park, Illinois, Sept. 4-6, 1996,
http://www.hillside.net/patterns/writing/patternwritingpaper.htm.

Mayer, R.E. (1987). Educational Psychology: A cognitive approach. Boston: Little,
Brown.

Novak, J. D. (1977). A Theory of Education. Ithaca, NY: Cornell University Press.

PPP. Pedagogical Patterns Project. Website visited in 30/01/2005
http://www.pedagogicalpatterns.org.

Rosenshine, B. (1997) The Case for Explicit, Teacher led, Cognitive Strategy
Instruction. Annual Meeting of the American Educational Research Association.
Chicago. http://www.epaa.asu.edu/barak/barak1.html

18

A Pattern Language for Adaptive Distributed Systems

Francisco José da Silva e Silva1, Fabio Kon2, Joseph Yoder3, Ralph Johnson3

1Department of Informatics - Federal University of Maranhão
2Department of Computer Science - University of São Paulo

3Department of Computer Science - University of Illinois at Urbana-Champaign

fssilva@deinf.ufma.br, kon@ime.usp.br,
joe@joeyoder.com, johnson@cs.uiuc.edu

Introduction

Modern computing environments are characterized by a high level of dynamism. Two
major kinds of dynamic changes occur frequently. The first refers to structural changes
such as hardware and software upgrades, protocol and API updates, and operating
system evolution. The second refers to dynamic changes in the availability of memory,
CPU, network bandwidth and, in mobile systems, connectivity and location. Drastic
changes may occur in a few seconds, impacting the performance of user applications
profoundly. Among existing production software systems few offer support for
managing, adapting, and reacting to these changes; most of the times, all the work is left
to users and system administrators who must take care of them manually.

Fortunately, this scenario is gradually changing as researchers in academia and
industry investigate elegant and robust ways to build self-adaptive systems for the
dynamic, distributed environments of the future. In this paper we present a pattern
language that captures some of the most relevant problems and solutions faced by
developers who accept the challenge of building automatically configurable and
adaptive distributed systems.

Dynamic Reconfiguration

Services must grow to meet increasing usage, new requirements, and new applications.
However, flexibility usually conflicts with availability. In conventional systems, the
service provider must often shut down, reconfigure, and restart the service to update or
reconfigure it. In many cases, it is unacceptable to disrupt the services for any period of
time. Disruption may result in business loss, as in the case of electronic commerce, or it
may put lives in danger, as in the case of mission critical systems delivering disaster
information, for example. Research in dynamic reconfiguration seeks solutions to this
problem.

By breaking a complex system into smaller components and by allowing the
dynamic replacement and reconfiguration of individual components with minimal
disruption of system execution, it is possible to combine high degrees of flexibility and
availability.

Self-Adaptation

Highly heterogeneous platforms and varying resource availability motivates the need for
self-adapting software. Applications can improve their performance by using different

19

algorithms in different situations and switching from one algorithm to another according
to environmental conditions. Significant variations in resource availability should
trigger architectural reconfigurations, component replacements, and changes in the
components' internal parameters.

Consider, for example, the network connectivity of a mobile computer as its user
commutes from work to home. As the user switches from a wired connection at the
office, to a wireless WAN using a cellular phone, and finally, to a modem connection at
home, the available bandwidth changes by several orders of magnitude. The movement
is also accompanied by changes in latency, error rates, connectivity, protocols, and cost.

Ideally, we would like to have a system capable of maintaining an explicit
representation of the dependencies among the network drivers, transport protocols,
communication services, and the application components that use them. Only then,
would it be possible to inform the interested parties when significant changes occur.
Upon receiving the change notifications, applications and services would be able to
select different mechanisms, replace components, and modify their internal
configuration to adapt to the changes, optimizing performance.

Designing Self-Adaptive Systems

The design of a self-adaptive system must answer three key questions:

1. When to adapt? How can the system detect that it is time to adapt (change its
behavior) so that its performance will improve or that changes in the
environment will not harm system correct functioning.

2. What do adapt? Which parts, elements, components of the system (e.g.,
mechanisms, algorithms and protocols) are subject to being adapted or replaced?

3. How to adapt? What are the mechanisms that allow for change in behavior?
Given a certain system and environmental state, which adaptations would be
more beneficial?

Only by addressing the three key questions above, a software framework can
provide a comprehensive solution to the problem of building effective self-adaptive
systems. In the remaining of this paper we present a pattern language that addresses the
most important aspects of dynamic reconfiguration and adaptation in distributed
systems.

Note, however, that there are other important non-functional aspects that are
orthogonal to the patterns in this language. Aspects such as Security, Fault-Tolerance,
and Real-Time can be essential factors for consideration depending upon the different
environments the system will be deployed. In these cases, the reader should refer to
patterns specific to these domains.

20

Figure 1: Pattern Language Structure

Figure 1 illustrates the pattern language structure, which is composed of three
parts: monitoring, event detection, and dynamic configuration. Part I helps answer the
"When" question. These patterns are related to monitoring distributed environments.
The Distributed Monitor (1) and the Adaptive Monitor (2) patterns describe
monitoring solutions for applications that must obtain a global view of the state of
distributed resources to decide when adaptations should be performed. The
Distributed Monitor (1) provides a simpler solution while the Adaptive Monitor

(2) describes an extension that supports dynamic reconfiguration of the monitor. Both
monitors provide monitoring data to event detection mechanisms. Part II presents the
Event Detector (3), which helps detect when an adaptation should be performed and
decides "What" adaptations should be performed. When the need for an adaptation is
detected (with the information provided by the monitors), the Event Detector (3)

notifies the mechanisms responsible for the dynamic reconfiguration of the system.

Part III shows "How" adaptation can be performed with the Automatic

Reconfigurator (4) and the Adaptive Reconfigurator (5) patterns. Again, the
former pattern describes a simpler solution while the latter describes an extension that
supports dynamic reconfiguration of the reconfiguration process, leading to a
"reconfigurable reconfigurator".

These patterns work together to solve the problem of describing what resources
we are concerned about, when to adapt and how to adapt. We now present the five
patterns of the pattern language. The patterns are presented in the same order in which
information in the system flows, i.e., the monitors collect information, passing it to the
detector, which, in its turn, notifies the reconfigurators.

21

1. Distributed Monitor

Motivation:

In order to improve its performance by means of dynamic configuration, a system must
be aware of the dynamic state of the environment in which it is executing. In a
distributed system, the environment is spread throughout a collection of, possibly
heterogeneous, machines linked by, possibly heterogeneous, network links. Monitoring
resource availability can help detect when the system reaches a state in which dynamic
reconfiguration would improve application performance or avoid its breakage

Problem:

How to monitor the resources of a distributed system efficiently?

Forces:

• The state of a distributed system is composed of many variables distributed
across many machines in various locations. The communication delays and
relative speeds of computations of asynchronous distributed systems make it
difficult to detect a global state in which dynamic adaptation would be desirable.

• Trying to detect opportunities for dynamic adaptation by looking at isolated
machines is easier but this approach cannot provide optimal solutions; it is very
likely that relevant global information will be missing.

• Having a single centralized node be aware of the state of the entire system might
be infeasible since this compromises scalability (the central node becomes a
bottleneck as the system grows) and fault-tolerance (the central node becomes a
single point of failure). One can approximate a centralized view of the global
state by sending messages from all the nodes to the central node at a high rate.
But this may impose an extremely high communication cost and make the
central node a single point of failure.

• On the other hand, replicating the central node to avoid a single point of failure
increases system complexity and network usage.

• Adopting a lazy protocol in which the state of individual nodes is sent to the
central server at a slow rate could solve the network congestion problem but
would probably make the data in the central node stale and therefore of little use.

Solution:

Organize the distributed system as a hierarchy of clusters, as illustrated in Figure 2, so
that each cluster includes the machines in a local area network, typically containing
from a few to approximately one hundred machines (this number can vary depending
upon requirements and the environment). Provide a single (possibly replicated)
Monitoring Server for each cluster. Have the cluster nodes send periodic information
about their local state to the Monitoring Server, as illustrated in Figure 3. These
messages may be sent by multicast to all replicated copies of the Monitoring Server
(e.g., using the IP-Multicast protocol) so that the network load is not increased by an
increase in the number of replicas.

22

Figure 2 – Hierarchy of computer clusters

Figure 3 – Distributed Monitoring within a single cluster of machines

To avoid unnecessary messages in the network, the frequency with which the
messages are sent to the Monitoring Server cannot be high. Thus, have each node
monitor its resources locally at a higher rate (e.g., once per minute) and only send
update messages to the Monitoring Server when a significant change in the local state
occurs. If no changes occur during a long period (e.g., 5 minutes) then send an update
message to the Monitoring Server as a keep-alive. If it is not important whether the
nodes are alive or not, then this keep-alive message is not necessary.

23

The Monitoring Servers of different clusters may be organized in a hierarchy so
that consolidated information about cluster state can be exchanged across clusters in a
lazy fashion. The farther a Monitoring Server is from a certain machine, the less
accurate this monitoring information will be for this machine since changes might have
happened to the machine by the time the Server processes the information.

Example:

A distributed system is composed of several distributed resources, such as CPUs,
memory, disks, and network links. For each resource, one would like to know the
current usage level. Resource usage can be expressed by several properties. For a
network link, for instance, properties could be available bandwidth, current latency,
number of collisions, etc. In such a system, it would be desirable to have a load
balancing mechanism that would migrate tasks from one machine to another depending
on resource availability on the distributed system.

Consequences:

+ Network usage is limited (can be fine tuned through the periodicities).

+ One can have a good approximation of the system global state.

_ Implementation in the hierarchical case can be complex, compared to a single
centralized server.

_ To implement the monitoring service component that collects the state of local
resources in each node one must define, in advance, which machine resources
will be monitored.

Resulting Context:

By applying this pattern, a collection of machines, possibly organized in a hierarchy of
machine clusters, can be monitored with low network and processor overheads. Thus, it
is possible to get an approximate view of the global state of the resources in the
distributed system. This pattern requires that the kinds of resources to be monitored be
defined a priori; if there is a need for adding new types of resources to be monitored at
runtime, then one should use the Adaptive Monitor (2) instead. This pattern describes
how to collect information about “When” to adapt, which will be used by the Event

Detector (3) for triggering the adaptations.

Related Patterns:

• The Publisher-subscriber pattern [Buschmann:1996] describes a mechanism for
objects in a distributed system to declare interest in receiving information about
a certain topic and for publishing information to be sent to the interested objects.

24

Known Uses:

• Grid computing systems instantiate this pattern to monitor the geographically
distributed machines of the Grid. The Globus toolkit [Foster:1997], for example,
uses the LDAP protocol for communicating information about resource
availability and status of Grid nodes; a federation of LDAP servers plays the
roles of the monitoring servers of this pattern. The InteGrade Grid middleware
[Goldchleger:2003] also instantiates the pattern but uses CORBA for

communication and a new service, called Global Resource Manager, as the
monitoring server.

• The 2K operating system [Kon:2000, Kon:2005] instantiates this pattern to
maintain an approximate view of the state of machines in the distributed system
and uses this view as a hint for remote execution of user applications.

• The Framework for Adaptive Distributed Systems [Silva:2003] developed by
Silva in his PhD work provides a generic object-oriented framework for
instantiating this pattern based on CORBA distributed objects. Communication
is performed with the CORBA event service, which is an instantiation of the
Publisher-Subscriber pattern [Buschmann:1996].

Variant:

For some adaptive distributed applications there is no need for a centralized view of the
state of distributed resources (e.g., a video client retrieving a movie from a video
server). Instead, the application is only concerned with the state of resources located in
the path between its components. In such a case, there is no need for a Monitoring
Server. Each software component responsible for monitoring a resource should
implement an interface through which the state of the resource can be queried. It should
also implement a notification service through which applications can register interest in
being notified about changes on the state of the monitored resource.

Implementation:

To implement this pattern, a system developer must implement and deploy Local
Resource Monitors for each of the resources to be monitored. When implementing
monitors for resources such as CPU and memory, almost always it is necessary to deal
with the specificities of each operating system as there are no widespred standards for
getting this kind of information. In Linux systems, for example, it is common to use the
/proc pseudo-filesystem to get information about resource usage such as CPU and

memory. In Windows systems, it is common to rely on Win32 API functions such as
GlobalMemoryStatus to obtain memory information and RegQueryValueEx to

get CPU consumption information from the Windows registry.

Local Resource Monitors must send data updates to the Monitoring Server
periodically. This one-way communication can be implemented in various ways: from
rudimentary sockets (using UDP, TCP or IP-Multicast channels) to higher level
middleware mechanisms such as Java RMI, CORBA IIOP, or SOAP.

25

2. Adaptive Monitor

Motivation:

In very dynamic systems, we may not know a priori which objects and resources should
be monitored. As new applications are installed in a system, we may need to monitor
information that was previously irrelevant or not available.

Problem:

How to monitor system objects and resources that are not known at the design phase of
the monitoring system?

Forces:

• Limiting the types of objects and resources that are monitored makes it easier to
develop adaptive strategies because there is less information to be managed and
analyzed. However, it is hard to predict ahead of time which objects and
resources are available or needed as a system or demands on the system evolves.

• Systems, services, and resources change often as the requirements evolve. The
monitoring system must cope with such changes by starting to monitor new
things and stopping the monitoring of things that are no longer relevant.

• A distributed system is composed of several distributed resources, such as
workstations, network links, and application servers. The usage of a resource can
be expressed by different properties that adaptive applications might be
interested in monitoring. For a network link, for instance, properties could be
available bandwidth, current latency, and number of collisions. Therefore, a
flexible way to describe distributed resources and their monitoring properties is
needed.

Solution:

Define an Object Monitor responsible for gathering the state information of a single
resource property and allow dynamic loading and unloading of these monitors in the
various nodes of the distributed system. Each resource property could be defined with
three attributes: resource name, property name and value type (e.g., <“Network Link”,
“Available Bandwidth”, “Mbps”> <“CPU”, “CPU load”, “percentage”>).

Define a standard Object Monitor interface regardless of the property to be
monitored and define a standard protocol and message format to be supported by the
Monitoring Server. Each Object Monitor registers itself with the Monitoring Server as
part of its instantiation process. Object Monitors send a message to the Monitoring
Server whenever there is a significant change on the state of the resource properties they
monitor, as illustrated in Figure 4.

26

Figure 4 – Monitoring different kinds of resources

Example:

Consider the example described in the Distributed Monitor (1) pattern, where the
CPU and memory of distributed machines are monitored to provide load balancing.
When a machine becomes congested, with high CPU or memory usage, the load is
balanced by migrating tasks to a machine with lower load. If new applications
composed of several collaborative tasks must now be executed, a new resource property
(available bandwidth) should also be monitored to avoid allocating collaborative tasks
to different machines connected by low bandwidth links. Therefore, a new Object
Monitor must be implemented (and dynamically loaded into the system) to monitor the
available bandwidth.

As another example, consider a Web application for a bookstore. The load
balancing among application servers can be based on CPU load. If, during the
application execution, the administrator realizes that the network (and not the CPU) has
become the bottleneck, an Object Monitor can be dynamically loaded into the
application servers to redistribute the load based on the number of network connections
rather than using just the CPU load as the scheduling parameter.

Consequences:

+ New or different resource properties can be monitored without affecting the code
of the monitoring infrastructure

+ The monitoring service can start monitoring new or different resource properties
without interrupting the service

_ New resource properties should apply to the standard Object Monitor interface,
which can limit the expressiveness of the resource property to be monitored

27

Implementation:

To implement such monitoring functionality, define a Resource Monitoring Object
(RMO) that monitors a specific resource property. Each RMO monitors a single
resource property that can correspond to physical resources such as memory, CPU, disk,
and network links, but it can also monitor software parameters, such as the number of
open threads in a server object.

Every resource property has a set of associated operation ranges, which are
defined by the application developer. For example, one could use the following
operation ranges for monitoring percentage of processor utilization: [0%, 10%), [10%,
25%), [25%, 50%), [50%, 75%), and [75%, 100%].

In all hosts containing resources that must be monitored, instantiate a Resource
Monitoring Object for each resource property to be monitored. The RMO periodically
verifies the current operation range of the resource property and only notifies registered
components about changes on the operation range, limiting the number of monitoring
messages in the distributed system. Figure 5 shows the RMO interface using CORBA
IDL.

Figure 5 - Resource Monitoring Object interface

The parameter()method returns a reference to the resource property being

monitored while me() returns a reference to the monitored entity.

current_range() returns the current operation range of the monitored property,

allowing the developer to use, optionally, a pull approach in complement to the push
mechanism described above. As an example, consider the operation ranges described
above for monitoring percentage of processor utilization. The method
current_range() would return 2 if a monitored processor usage is in the range

[10%, 25%). The RMO interface also allows temporary suspension of the monitoring
process (s u s p e n d ()) as well as its resumption (r e s u m e ()) .

change_frequency() alters the frequency used for verifying the operation range

and shutdown() stops the monitoring process.

Figure 6 presents the class diagram for a Resource Monitoring Object
responsible for monitoring the CPU usage on a host. The design is extensible, allowing
the developer to construct easily new RMOs for monitoring other resource properties.
To do so, the developer has to rewrite two classes, fully reusing the other five ones.

The RMOImpl class implements the Resource Monitoring Object interface

illustrated in Figure 5. CpuMonitor and RmoCpuImpl are specific for the CPU

usage property. The CpuMonitor class contains the code that actually verifies the

28

CPU usage with a given frequency encapsulated by the Frequency object. The user

can change the frequency value through the change_frequency()method of the

RMOImpl object. This method calls a set()method of the Frequency object. The

user can also suspend or resume the monitoring by calling the suspend() and

resume() methods of the R M O I m p l object. These methods call the

SuspendMonitor object that implements a monitor used by the CpuMonitor

thread to verify if it must continue the CPU monitoring at the end of every monitoring
interaction. A CurrentRange object encapsulates the value of the latest CPU usage

calculated. The user can check the current CPU operation range by calling the
RMOImpl current_range() method. The Notifier thread is responsible for

sending a message to the Monitoring Server whenever there is a change on the CPU
usage operation range.

Figure 6 - Resource Monitoring Object monitoring CPU usage on a host

Resulting Context:

By applying this pattern, a collection of machines can be monitored with low overheads,
enabling the construction of an approximate view of the global state of distributed
resources. With the Adaptive Monitor (2), the set of resources and the type of
resources that are monitored can be reconfigured at runtime, enabling the monitoring of
resources that were not anticipated at design time. This solution provides a large degree
of flexibility. The data provided by the monitor will be processed by the Event

Detector (3), which will trigger the adaptation actions.

29

Related Patterns:

• The Component Configurator pattern [Schmidt:2000] describes a mechanism for
dynamically loading and configuring components into a running execution
environment. This pattern can be used to load new monitoring objects
dynamically.

• The TypeSquare pattern commonly used in Adaptive Object-Models (AOM) can
be used for implementing the resource properties that can monitored
[Yoder:2001; Yoder:2002]. The resource properties can be stored in a XML file
that can be read at run-time in order to dynamically build the objects responsible
for monitoring new defined resource properties without the necessity of
recompiling and restarting the LocalResourceManager. AOM describes how to
read the metadata file and dynamically build these objects using the Interpreter
and Builder patterns [Gamma:1994].

• The Properties Pattern can be used for implementing different types of resource
properties that are monitored [Foote:1998; Yoder:2001; Yoder:2002].

Known Uses:

• The Framework for Adaptive Distributed Systems [Silva:2003] allows
specifying which resources will be monitored and how they will be monitored
dynamically. This is achieved by dynamically loading new monitoring objects
into the system runtime.

• The QuO Quality Objects Framework [Zinky:1997, Vanegas:1998, BBN:2002]
provides a powerful CORBA-based framework for building quality of service
aware, distributed applications. It instantiates this pattern using "system
condition objects" as adaptable monitors.

• A mechanism for providing network environmental information in mobile
wireless networks [Sudame:1997].

• An environment to support dynamic adaptation of distributed applications using
the LuaORB system [Moura:2002].

30

3. Event Detector

Motivation:

By analyzing the data provided by a distributed monitoring system, it is possible to
identify relevant changes on resource availability that would impact application
performance. By sending notifications to interested parties, it is possible to allow
adaptive applications to reconfigure themselves to improve their performance in face of
environmental changes.

Problem:

How to detect and notify applications about changes in the environment?

Forces:

• Tightly coupling the code responsible for detecting environmental changes with
the application code adds unnecessary complexity, making the application code
harder to implement, debug, and maintain. It also does not allow sharing the
code with other environment-aware applications executing on the distributed
system.

• On the other hand, each adaptive application can have specific needs concerning
which environmental changes are relevant for dynamically adapting it.

• The notification of some environmental changes should be treated differently
from others, leading to the need to apply different notification policies in
different cases.

Solution:

An adaptive application must be notified of relevant changes in resource availability.
These notifications can be implemented as asynchronous events. Expand the Monitoring
Server interface (from the Distributed Monitor (1)) to allow the definition of event
evaluators through conditional Boolean expressions. The Boolean expression indicates
changes on resource property state. For instance, a "heavy use" event can be triggered
when the percentage of the CPU usage on a host becomes greater than 80%.

Some applications need to correlate multiple events, such as the percentage of
CPU usage and the amount of main memory available on a host. If this is the case, the
definition of event evaluators must support composite events by allowing the Boolean
expression to be composed of several resource properties.

Define an Event Channel to bind the event producer (Extended Monitoring
Server) and event consumers (adaptive applications). The Event Channel implements
the event delivery policy. You can organize your system with more than one Event
Channel, each one responsible for notifying related events. For instance, a network
channel may be associated with all network related events while a hardware channel
may be associated with all events related to changes on hardware components. Figure 7
shows an abstract diagram of this architecture.

31

Figure 7 – Event Detector structure

Figure 8 illustrates the interactions between the pattern components. The
adaptive application registers itself with the Event Channel, passing the list of
environmental changes (events) in which it is interested. The resource monitoring
objects (RMOs) continuously monitor the distributed system resources. Each RMO
monitors a specific system parameter, notifying the Monitoring Server whenever a
significant change is detected. The Monitoring Server evaluates all Boolean expressions
containing the notified parameter and notifies the Event Channel whenever a Boolean
expression is evaluated to true, meaning that an event has been detected. The Event
Channel then notifies all adaptive applications that registered interest in the event that
was triggered.

Example:

Consider a distributed system whose goal is to provide load balancing by migrating
tasks from one machine to the other by looking at machines with congested CPUs and
high memory usage. In each machine, instantiate two Object Monitors for monitoring
the percentage of CPU load and the amount of memory available. Through the
Monitoring Server interface, define a new Boolean expression that triggers an event
every time a machine becomes congested, such as: CPU_load > 80% and

memory_available < 20MB. Define an event channel used to notify the

occurrence of events. The event channel abstraction is provided by some distributed
object middleware services, such as the CORBA event service [CORBA:2002]. The
channel uses a push approach, where the Monitoring Server registers itself as an event
producer and the components of adaptive applications responsible for the dynamic
reconfigurations register themselves as consumers.

32

Figure 8 - Event detection and notification

Consequences:

+ Applications can share event evaluator definitions but also define new ones.

+ Allows flexible, event-specific delivery policies.

– Separating the code responsible for detecting environmental changes from
application code adds complexity and can also lead to communication delays if
they are deployed on separate machines.

Implementation:

Define a Monitoring Server responsible for collecting notifications of changes on the
operation range of resource monitoring properties being monitored by Resource
Monitoring Objects (from the Adaptive Monitor (2)). The Monitoring Server must
allow the definition of events that are triggered based on a Boolean expression. Figure
9 shows a CORBA IDL interface for defining such resource events.

Figure 9 - IDL interface for an Event

33

duration_time specifies the amount of time that the Boolean expression

must hold true to trigger an event notification. This avoids the notification of false
events, based on temporary situations such as a short peak on CPU usage that occurs
when a heavy application is started.

Since in a distributed system it is not guaranteed that messages are delivered in
the same order that they were generated, each message from a RMO must include a
timestamp. The Monitoring Server must maintain the last timestamp received from each
RMO, discarding older messages without processing them.

Figure 10 shows the Monitoring Server interface. The register() method

allows registering an event type and starts its detection. The interface allows the
suspension and restart of the detection process though the suspend() and

resume() methods, respectively. The unregister() method stops the detection of

a given event type. An RMO notifies changes on the operation range of the resource
being monitored through the change_parameter() method. To do so, it has to be

previously registered through the rmo_register() method. If the execution of an

RMO is suspended, resumed, or stopped the Monitoring Server must be informed
through the rmo_suspend() , rmo_resume() and rmo_unregister()
methods, respectively. The reason to do so, is that if an RMO is suspended or stopped,
the Monitoring Server should not evaluate the event types whose Boolean expression
contains the resource property that is no longer being monitored.

Figure 10 - MonitoringServer interface

The MonitoringServer interface uses the following terminology: a monitored
distributed resource is called a monitored entity. An object representing every
monitored entity and all its monitored parameters must be previously created through an
Entity Repository. The Entity Repository will create a globally unique identifier for
monitored entities and parameters. In the MonitoringServer interface, eid stands

for event identification, meid stands for monitored entity identification and pid for

parameter identification.

Figure 11 shows the class diagram of the Monitoring Server implementation.
The MonitoringServerImpl class acts as a mediator. It receives information

about resource utilization from remote RMOs and maintains a local list of entities being

34

monitored (instances of the MonitoredEntity class, which contains a description of

the entity and its current value). MonitoringServerImpl also keeps a list of all

active events whose descriptions are instances of EventDescription. An instance

of the Calculator class performs the evaluation of the Boolean expressions defined

in the event descriptions. Each time a Boolean expression is evaluated to true, a
corresponding SatisfiedEvent is constructed. Once every second the

EventNotifier checks for events whose expression holds true for the duration

specified in the event definition. It then uses an Event Service (e.g., the CORBA one) to
send notifications on event channels to which adaptive applications can listen to receive
the notification of event occurrences.

Figure 11 - Structure of the Monitoring Server implementation including event detection

Resulting Context:

By applying this pattern, it is possible to detect the occurrence of events based on the
state of resources in a distributed system and to notify interested parties. In particular,
the Automatic Reconfigurator (4) and the Adaptive Reconfigurator (5) patterns
rely on this event notification for carrying out the dynamic reconfiguration to adapt the
applications.

Related Patterns:

• The instantiation of the Publisher-Subscriber pattern [Buschmann:1996] depends on
a mechanism for matching subscriptions descriptions and event descriptions. This
mechanism can be implemented by using the Event Detector (3) described here.

35

• The Observer design pattern [Gamma:1994] describes an even simpler notification
mechanism that can be used in some cases.

• The TypeSquare pattern described in Adaptive Object-Models (AOM) can be used
for implementing the set of events that can change at runtime [Yoder:2001;
Yoder:2002]. Event definitions can be stored in a XML file that can be read at run-
time in order to dynamically build the objects responsible for detecting new defined
events without the necessity of recompiling and restarting the MonitoringServer.
AOM describes how to read the metadata file and dynamically build these objects
using the Interpreter and Build patterns.

• The Interpreter design pattern [Gamma:1994] define a representation for a given
language grammar along with an interpreter that uses the representation to interpret
sentences in the language. It can be used for implementing the Boolean expression
evaluator.

Known Uses:

• The Framework for Adaptive Distributed Systems [Silva:2003] includes an engine
for event detection that instantiates this pattern faithfully.

• The QuO Quality Objects Framework [Zinky:1997] uses "delegates" and "contracts"
to instantiate this pattern. Delegates act as proxies [Gamma:1994,
Buschmann:1996] that intercept remote method calls; during interception, a delegate

evaluates a contract to detect possible contract violations, which can be seen as a
form of event detection.

• Moreto and Endler [Moreto:2001] describe a general purpose Event Processing
Service (EPS), which can be used to detect primitive and composite events.
Composite events are defined through an event expression based on primitive event
types combined by a set of operators, similarly to the Event Detector (3).

• Welling and Badrinath [Welling:1997] describes an architecture for exporting
environment awareness to mobile computing applications. In their architecture, a
change in the environment is modeled as an asynchronous event that includes
information related to the change. The architecture also allows alternate event
delivery policies by isolating the event delivery functionality within a channel, as
done in the Event Detector (3).

36

4. Automatic Reconfigurator

Motivation:

A distributed system has many resources whose availability and load vary intensely. To
cope with these variations, an adaptive application must be able to reconfigure itself as
relevant changes on resource availability occur. Changes on resource availability could
be notified through an event distribution mechanism. For each event, the set of adaptive
actions that must be performed may vary.

Problem:

Given event notifications indicating changes on resource availability, how can a system
apply dynamic reconfiguration actions automatically without the need for any human
interference?

Forces:

• Coupling the application functional code with the code responsible for dynamic
adaptation increases code complexity, making it harder to implement, debug,
and maintain.

• The application developer should concentrate on the application core
functionality, considering the adaptation issues as a separate aspect.

• Limiting which adaptation mechanisms can be applied (e.g., adjusting
application parameters, switching between algorithms and relocation or
replication of application components) restricts the solution applicability.

Solution:

Using a reflective model [Maes:1987], organize the application in two levels: a meta-
level composed of objects responsible for receiving notifications of events describing
environmental changes and for applying the reconfiguration actions and a base-level,
that deals with regular application functionality.

For each event type indicating environmental changes that requires adaptation,
describe the reconfiguration action(s) that your application must apply and code it into
objects (called Handlers) that will be part of the meta-level. Each Handler object must
implement a run() method, responsible for applying the reconfiguration actions when

called. As illustrated in Figure 12, the Event Handler registers itself with the Event
Channel (described in the Event Detector (3)). Through the Event Channel, it
receives notifications of environmental changes and reacts to them by applying the
reconfiguration actions coded in its run() method.

Adaptive actions can be based on several mechanisms, such as:

a) Adjusting parameters of base-level objects (e.g., changing the presentation rate
of video frames as network bandwidth varies);

b) Switching between algorithms used by base-level objects (e.g., changing a
compression algorithm as CPU usage and network bandwidth varies);

c) Relocating or replicating application components to other network nodes.

37

In the application meta-level, instantiate an active object that registers itself as a
consumer of the network event channel responsible for notifying environmental
changes. Upon the receipt of an event, it calls the run() method of the corresponding

Handler object.

Figure 12 – Automatic Reconfigurator structure

Example:

Consider again the load balancing problem based on machine load. In the application
meta-level, instantiate an object that registers itself as a consumer of the event channel
responsible for notifying environmental changes. The adaptive application must react to
a notification of an overloaded machine by migrating a subset of the tasks executing at
the congested location to a machine with better CPU and memory availability (if one is
available). The migration should be triggered by the run() method of the Handler

object. This reconfiguration can be done with the assistance of libraries that support the
reconfiguration of distributed applications [KonPhD:2000].

Consequences:

+ Leads to a clear separation of concerns between the application functional code
and the adaptation code. As a consequence, the resulting application becomes
easier to design, implement, and maintain.

_ The actions applied in reaction to an environmental change are hard-coded into
the application and cannot be dynamically changed.

_ Reflection adds complexity to the system which can make understanding and
maintaining the system harder.

Implementation:

To implement this pattern, first it is necessary to make the event handlers capable of
receiving event notifications by using a mechanism compatible with the notification
mechanism chosen in the implementation of the Event Detector (3).

38

Then, it is required to implement handlers capable of changing the internal
behaviour or structure of the application. Thus, normally the handler programmer must
have a very good knowledge of the application implementation. One way to mitigate
this requirement is to provide an interface in the application that programmers can use
to set some parameters that determine how the application works. In this case, the
application programmer would specify how the application could be configured (by
specifiying which parameters can be set) and the event handler programmer would
simply write the code that sets the proper values for the parameters.

Resulting Context:

By applying this pattern, the system is able to respond to changes in the environment by
reconfiguring the applications, allowing for the implementation of self-adaptive
applications. The set of reconfiguration actions to be taken are hard-coded and cannot
be modified without recompiling the application. If the ability to dynamically redefiny
the reconfiguration actions is desirable, then the Adaptive Reconfigurator (5)

pattern should be used instead.

Related Patterns:

• The Reflection architectural pattern [Buschmann:1996] describes how to
separate components of an adaptable system in a meta-level and a base-level.
Base-level components deal with functional aspects of the system while meta-
level components deal with non-functional aspects such as dynamic
reconfiguration.

• Foote and Yoder [Foote:1995] describe some common reflective patterns that
should be considered when building systems that need to be able to dynamically
adapt at runtime.

Known Uses:

• The Video Datagram Protocol used by the Vosaic system [Chen:1996] uses a
hard-coded adaptation algorithm that changes parameters of a video streaming
session based on the monitored rate of dropped network packets.

• Chang and Karamcheti [Chang:2000] describe a framework for automatic
configuration and run-time adaptation of distributed applications that hard-code
alternative execution paths (algorithms) that are dynamically selected by guard
expressions of control parameters.

• Noble and Satyanarayanan [Noble:1999] describes Odyssey, a platform for
mobile data access. The adaptive application is divided in client and server
components and the hard-coded adaptation mechanism allows to choose
between different versions of the data being retrieved, so as to be compatible
with the environment resource availability.

39

5. Adaptive Reconfigurator

Motivation:

An adaptive application must change its behavior in reaction to changes in its execution
environment. The application can consider several different events that signal
environmental changes; for each event, the adaptive actions that must be performed can
vary. More flexibility can be achieved if the developer is allowed to specify collections
of adaptive actions (adaptation policies) for each event, switching from one to another at
run time depending on the application context. The adaptation mechanism can also
evolve or be debugged without restarting the application if it allows dynamic loading
and unloading of adaptation policies.

Problem:

How to vary at run time the collection of adaptive actions?

Forces:

• On the one hand, statically configuring the adaptation policies into the
application code requires stopping, recompiling, and restarting the application
whenever new code for an adaptation policy or changes in an old one are
developed. These activities are infeasible for applications with high availability
requirements. Dynamic loading and unloading of adaptation policies not only
resolves this problem but also minimizes resource consumption, since only
policies that are in use need to be loaded into the application code. This is
particularly important if the computer on which the application is running has
memory and processing limitations.

• On the other hand, the dynamic loading and unloading of adaptation policies
implies application overhead.

Solution:

Decouple the Event Handler interface from its implementation by defining a uniform
interface for each Event Handler that applies adaptive actions for a given environmental
event. Develop one or more concrete Event Handlers that implement this interface. Each
concrete Event Handler implements an adaptation policy. As illustrated in Figure 13,
define for each application component a corresponding C o m p o n e n t

Configurator [KonPhD:2000]. The Component Configurator keeps track of

the dynamic dependencies between the component and other system or application
components and is also responsible for (1) disseminating events across inter-dependent
components, whenever they affect several correlated components and (2) carrying out
component-specific reconfiguration actions by calling component methods directly.
Through this mechanism, the Event Handler can propagate the adaptive actions required
to adapt the application to the new environmental state.

40

Figure 13 – Adaptive Reconfigurator structure

Example:

It is possible to design an application to be adaptable in ways that can be fully specified
at design time, but it is difficult, if not impossible, to anticipate all the ways in which it
may be required to adapt some applications. For instance, in mobile computing
environments, the characteristics of the network connections can range from an
inexpensive, very high bandwidth with low latency connection such as high-speed
LAN, to a very expensive, low bandwidth with high latency connection such as GSM or
infrared. Even the network address of the machine can change. Mobile applications
should also be able to handle periods of disconnection. The application and data
characteristics, and the user’s context requirements and limitations may all change
dynamically. Any of these contextual conditions can change without warning and to
values unknown and unforseen by the application designer. Thus, it might be necessary
to load new adaptation policies at runtime.

Consequences:

+ Several adaptation policies can be defined and reconfigured at run time for each
environmental event.

+ The adaptation policies can be loaded and unloaded dynamically, allowing the
adaptation mechanism to evolve or be debugged without restarting the
application. This also minimizes resource consumption.

_ The dynamic loading and unloading of adaptation policies generates overhead to
the adaptation mechanism.

_ The level of complexity increases making applications more difficult to develop
and maintain.

Implementation:

Organize application components in two layers: (1) a metalevel layer, responsible for
receiving event notifications describing changes on distributed resource usage and also

41

applying reconfiguration actions to adapt the application to the new environmental state;
and (2) a base level, that provides the application functionality.

Define, for each application component, a corresponding Component

Configurator object. As described in the Dynamic Dependence Manager pattern

[Domingues, 2005], the Component Configurator keeps track of the dynamic
dependencies between the component and other system or application components and
helps to maintain runtime consistency in the presence of reconfigurations.
Component Configurators are also responsible for disseminating events across

inter-dependent components. Examples of common events are the failure or migration
of a component, internal reconfiguration, or replacement of the component
implementation. The rationale is that those events affect all the dependent components.
This communication mechanism coordinates reconfiguration actions among the
application components. The Component Configurator contains the code to deal

with these configuration-related events. This approach provides a clear separation of
concerns between the application functional code and the code that deals with the
application reconfiguration.

As illustrated in Figure 14, create an EventReceiver that registers itself with

the event channels (described in the Event Detector (3)). The EventReceiver will

be notified of events that indicate relevant environmental changes. Depending on the
type of the event, it executes the appropriate actions required to adapt the application to
the new environment state, using the Component Configurators to coordinate

reconfiguration actions among the, possibly distributed, application components.
Organize the classes that handle each environment event as a set of Event Handler
strategies, using the Strategy design pattern. Figure 14 illustrates three strategies
(EventAHandler1, EventAHandler2, and EventAHandler3) that can

be triggered when an instance of EventA is notified.

Figure 14 - Architecture for handling events and reconfiguring the application

42

Concrete Event Handlers should be packaged into a suitable unit of
configuration that can be dynamically linked to the application, such as a dynamically
loaded library (DLL) or a Java class file. The dynamic loading and unloading of Event
Handlers can be controlled by specific configuration mechanisms such as the
Component Configurator (forming a metametalevel, not illustrated in Figure 15). Other
configuration operations, such as suspend and resume, can also be supplied. Suspending
the execution of an Event Handler implies not executing the reconfiguration actions
when the corresponding event is triggered. Resuming it, turns back the adaptive
behavior of the application for the corresponding event.

Resulting Context:

By applying this pattern, the system is able to respond to changes in the environment by
reconfiguring the applications, enabling the implementation of self-adaptive
applications. In addition, the set of adaptation actions is also reconfigurable, allowing
the application maintainer or operator to modify or add new reconfiguration strategies at
runtime. This permits the construction of highly flexible and reconfigurable applications
that can evolve and change radically at runtime without the need for shutdown and
restart.

Related Patterns:

• The Strategy design pattern [Gamma:1994] explains how to build a system such
that the algorithms it uses can be changed dynamically. The Adaptive

Reconfigurator (5) can be implemented by enhancing an implementation of
the Automatic Reconfigurator (4) with the Strategy pattern.

• The Component Configurator pattern [Schmidt:2000] (not to be confused with
the Component Configurator object [KonPhD:2000] used in the implementation
section of the pattern described here) describes a mechanism for dynamically
loading and configuring components into a running execution environment. This
pattern can be used to load new Event Handlers dynamically allowing new
forms of reconfiguring a system.

• The TypeSquare pattern described in Adaptive Object-Models (AOM) can be
used for implementing the set of events that an extended
ComponentConfigurator can handle [Yoder:2001; Yoder:2002]. Event
definitions can be stored in a XML file that can be read at run-time in order to
dynamically build the objects responsible for handling new defined events
without the necessity of recompiling and restarting the extended
ComponentConfigurator. AOM describes how to read the metadata file and
dynamically build these objects using the Interpreter and Build patterns.

Known Uses:

• The Framework for Adaptive Distributed Systems [Silva:2003] allows dynamic
loading new Component Configurators and new Event Handlers at runtime.

• The dynamicTAO reflective ORB [Kon&Roman:2000] allows dynamic loading
new ORB components at runtime, including components that take care of the
reconfiguration process itself.

43

Variant:

If the adaptation mechanism must provide more than one adaptation policy for a given
event but dynamic loading and unloading its code is unnecessary, the Strategy pattern
can be applied instead of the Component Configurator. Decouple the Event Handler
interface from its implementation and develop concrete Event Handlers that implement
the uniform interface. Each concrete Event Handler implements an adaptation policy
and corresponds to a Concrete Strategy using the Strategy pattern terminology. A
Context object must be configured with the concrete Handler to be used when the
corresponding event is triggered. If the adaptation mechanism must switch from one
adaptation policy to another at run time, all concrete Event Handlers must be
instantiated as part of the application initialization. If only one policy will be used in a
single application execution, it is only necessary to instantiate the Event Handler that
corresponds to the policy that will be applied.

Pattern Language Summary

Computing environments today require systems to adapt quickly to changes, which
often includes reconfiguring or adapting to an evolving environment. This paper
presented a pattern language for assisting with this requirement, specifically with the
problem of building automatically configurable and adaptive distributed systems. The
pattern language outlines an architecture for describing “When” should an adaptation
be done (monitors), “What” adaptation should be performed (event detection) and
“How” to adapt the system (reconfigurators).

The Distributed Monitor (1) provides a simpler solution for monitoring
distributed resources while the Adaptive Monitor (2) describes an extension that
supports dynamic reconfiguration of the monitor. The approach uses rules for triggering
events for when adaptations should be performed. The Event Detector (3), uses the
rules and notifies the mechanisms responsible for the dynamic reconfiguration of the
system. The reconfigurators provide a mechanism for actually adapting the system
safely according to the specified rules. The Automatic Reconfigurator (4)

describes a simpler solution while the Adaptive Reconfigurator (5) describes
dynamic reconfiguration of the reconfiguration process, thus making the reconfigurator
more adaptable and reconfigurable.

There are orthogonal issues that will need to be addressed while applying these
patterns such as Security, Fault-Tolerance, and Real-Time, which are beyond the scope
of this pattern language.

Acknowledgments

The authors would like to thank Eugene Wallingford, Paulo Borba, Linda Rising,
Giuliano Mega, and Eduardo Fernandez for their valuable thoughts and suggestions that
greatly contributed to this work. We would also like to thank the Software Architecture
Group from the University of Illinois at Urbana-Champaign and the
SugarLoafPLoP'2005 Araucaria group for their valuable feedback and comments.

44

References

[BBN:2002] BBN Technologies. QuO ToolKit User's Guide, release 3.0.10, April
2002. http://quo.bbn.com.

[Buschmann:1996] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad,
Michael Stal, Peter Sommerlad, Michael Stal. Pattern-Oriented
Software Architecture, Volume 1: A System of Patterns. John Wiley &
Sons, 1996.

[Chang:2000] Fangzhe Chang and Vijay Karamcheti. Automatic conguration and
run-time adaptation of distributed applications. In Ninth IEEE
International Symposium on High Performance Distributed
Computing, pp. 11-20, Pittsburg, Pennsylvania, August 2000.

[Chen:1996] Zhigang Chen and See-Mong Tan and Roy H. Campbell and
Yongcheng Li. Real-Time Video and Audio in the World Wide Web.
In World Wide Web Journal. 1(1). 1996.

[CORBA:2002] OMG - Object Management Group. The Common Object Request
Broker: Architecture and Specication, November 2002. version 3.0.1.

[Domingues:2005] Helves Domingues and Marco A. S. Netto. The Dynamic Dependence
Manager Pattern. Technical Report RT-MAC-2005-07, Department of
Computer Science, University of São Paulo. 2005.

[Foote:1995] Brian Foote and Joseph W. Yoder Evolution, Architecture, and
Metamorphosis. In Second Conference on Patterns Languages of
Programs (PLoP '95). Monticello, Illinois, September 1995. Also
Pattern Languages of Program Design 2 edited by John M. Vlissides,
James O. Coplien, and Norman L. Kerth. Addison-Wesley, 1996.

[Foote:1998] Brian Foote and Joseph Yoder. Metadata and Active Object-Models
Collected papers from the PLoP '98 and EuroPLoP '98 Conference,
Technical Report WUCS-98-25, Department of Computer Science,
Washington University, September 1998.

[Foster:1997] Ian Foster and Carl Kesselman. Globus: A Metacomputing
Infrastructure Toolkit. In International Journal of Supercomputer
Applications. 11(2), pp. 115-118. 1997.

[Gamma:1994] Erich Gamma, Richard Helm, John Vlissides, and Ralph Johnson.
Design Patterns: Elements of Reusable Object Oriented Software.
Addison-Wesley, 1994.

45

[Goldchleger:2003] Andrei Goldchleger, Fabio Kon, Alfredo Goldman, Marcelo Finger,
and Germano Capistrano Bezerra. InteGrade: Object-Oriented Grid
Middleware Leveraging Idle Computing Power of Desktop Machines.
In Concurrency and Computation: Practice & Experience. Vol. 16, pp.
449-459. March, 2004.

[Kircher:2004] Michael Kircher, Prashant Jain. Pattern-Oriented Software
Architecture, Patterns for Resource Management. John Wiley & Sons,
2004.

[Kon&Roman:2000] Fabio Kon, Manuel Roman, Ping Liu, Jina Mao, Tomonori Yamane,
Luiz Claudio Magalhães, and Roy H. Campbell. Monitoring, Security,
and Dynamic Conguration with the dynamicTAO Reflective ORB. In
Proceedings of the IFIP/ACM International Conference on Distributed
Systems Platforms and Open Distributed Processing
(Middleware'2000), number 1795 in LNCS, pages 121-143, New
York, April 2000. Springer-Verlag.

[Kon:2000] Fabio Kon, Roy Campbell, M. Dennis Mickunas, Klara Nahrstedt, and
Francisco J. Ballesteros. 2K: A Distributed Operating System for
Dynamic Heterogeneous Environments. In 9th IEEE International
Symposium on High Performance Distributed Computing. Pittsburgh.
August 1-4, 2000.

[KonPhD:2000] Fabio Kon. Automatic Conguration of Component-Based Distributed
Systems. PhD thesis, Department of Computer Science, University of
Illinois at Urbana-Champaign, May 2000.

[Kon:2005] Fabio Kon, Jeferson Roberto Marques, Tomonori Yamane, Roy H.
Campbell, and M. Dennis Mickunas. Design, Implementation, and
Performance of an Automatic Configuration Service for Distributed
Component Systems. In Software: Practice and Experience, 35(7), pp.
667-703, May 2005.

[Maes:1987] Maes P. Concepts and experiments in computational reflection. In
Proceedings of the ACM Conference on Object-Oriented
Programming Systems, Languages, and Applications Conference '87,
volume 22 of Sigplan Notices, pages 147-155. ACM, December 1987.

[Moreto:2001] Douglas Moreto and Markus Endler. Evaluating composite events
using shared trees. In IEEE Proceedings Software, 2001. ISSN 1462-
5970, 148(1).

[Moura:2002] Moura A, Ururahy C, Cerqueira R, and Rodriguez N. Dynamic support
for distributed auto-adaptive applications. In Proceedings of AOPDCS
- Workshop on Aspect Oriented Programming for Distributed
Computing Systems (held in conjunction with IEEE ICDCS 2002),
pages 451-456, Vienna, Austria, July 2002.

[Noble:1999] B. D. Noble and M. Satyanarayanan. Experience with adaptive mobile
applications in Odyssey. In Mobile Networks and Applications,
4(4):245-254, 1999. Kluwer.

46

[Schmidt:2000] Douglas Schmidt, Michael Stal, Hans Rohnert, Frank Buschmann.
Pattern-Oriented Software Architecture, Volume 2, Patterns for
Concurrent and Networked Objects. John Wiley & Sonss, 2000.

[Silva:2003] Francisco J. S. Silva, Markus Endler, and Fabio Kon. Developing
Adaptive Distributed Applications: a Framework Overview and
Experimental Results. In Proceedings of the International Symposium
on Distributed Objects and Applications. LNCS 2888, pp.1275-1291.
Catania, Sicily, Italy, November, 2003.

[Sudame:1997] Sudame P and Badrinath B. On providing support for protocol
adaptation in mobile wireless networks. Technical report, Department
of Computer Science, Rutgers Universit, June 1997.
http://www.cs.rutgers.edu/pub/technical-reports/dcstr-333.ps.Z.

[Vanegas:1998] Vanegas R, Zinky J, Loyall J, Karr D, Schantz R, and Bakken D.
QuO's runtime support for quality of service in distributed objects. In
Proceedings of the IFIP International Conference on Distributed
Systems Platforms and Open Distributed Processing (Middleware'98),
The Lake District, England, September 1998.

[Welling:1997] Girish Welling and B. R. Badrinath. A framework for environment
aware mobile applications. In Proceedings of the 17th International
Conference on Distributed Computing Systems (ICDCS'97), May
1997.

[Yoder:2001] Joseph Yoder, Federico Balguer and Ralph Johnson. Architecture and
Design of Adaptive Object-Models. In Proceedings of the 2001
Conference on Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA'01). ACM SIGPLAN Notices, December
2001.

[Yoder:2002] Joseph Yoder and Ralph Johnson. The Adaptive Object-Model
Architectural Style. In Proceedings of the Workshop IEEE/IFIP
Conference on Software Architecture 2002 (WICSA3 ‘02) at the World
Computer Congress in Montreal, August 2002. Software Architecture
System Design, Development and Maintenance Edited by Jan Bosch,
Morven Gentleman, Christine Hofmeister, and Juha Kuusela; Kluwer
Academic Publishers 2002.

[Zinky:1997] John A. Zinky, David E. Bakken, and Richard E. Schantz.
Architectural Support for Quality of Service for CORBA Objects. In
Theory and Practice of Object Systems. April, 1997.

47

Padrões de Requisitos para Especificação de Casos de Uso
em Sistemas de Informação

Gabriela T. de Souza1, 2, Carlo Giovano S. Pires 2 e Arnaldo Dias Belchior1

1Universidade de Fortaleza
Av. Washington Soares, 1321 – Fortaleza – CE – Brasil

2Instituto Atlântico
Rua Chico Lemos, 946 – 60 822-780 – Fortaleza – CE – Brasil
belchior@unifor.br, {gabi,cgiovano}@atlantico.com.br

Abstract. This work presents a set of requirement patterns for information
systems. These patterns are based on the use case concept and present
solutions for use cases specification problems, considering maintenance
operations (insert, update and delete), transaction and query functionalities,
which are a representative part of information systems scope.

Resumo. Este trabalho apresenta um conjunto de padrões de requisitos para
sistemas de informação. Esses padrões são fundamentados no conceito de
casos de uso e apresentam soluções para problemas de especificação de
requisitos funcionais, considerando operações de manutenção (inclusão,
alteração e exclusão), transação e consulta, que representam um volume
significativo do escopo de sistemas de informação.

1. Introdução
Este trabalho apresenta um conjunto de padrões de requisitos para sistemas de
informação, que são fundamentados no conceito de casos de uso. Esses padrões
abordam soluções para problemas de especificação de requisitos funcionais
considerando questões de operações de manutenção, consulta, relatório e operações de
transação. Isto representa um volume significativo do escopo de sistemas de
informação.

 O relacionamento entre os padrões apresentados pode ser visto na Figura 1.
Nesta figura, os retângulos representam os padrões e as setas representam que os
padrões que se encontram na origem da seta usam o padrão que se encontra no destino
da seta.

 Caso de uso é um conceito amplamente difundido e utilizado para a
documentação e o desenvolvimento de requisitos [3] [4] [5] [6] [7]. Segundo o RUP [2],
caso de uso é uma descrição de comportamento do sistema em termos de seqüências de
ações. Um caso de uso deve produzir um resultado de valor observável para um ator.
Ele contém todos os fluxos de eventos referentes à produção do "resultado de valor
observável". Mais formalmente, um caso de uso define um conjunto de instâncias de

1, 2 Copyright 2005, Gabriela T. de Souza, Carlo Giovano S. Pires e Arnaldo Dias Belchior. Permissão de
cópia concedida para a Conferência Sugarloaf-PLoP 2005. Todos os outros direitos reservados.

48

casos de uso ou cenários [2]. O CMMI indica que casos de uso podem ser usados na
elicitação e análise de requisitos para estabelecer os cenários operacionais do sistema
[1]. Ou seja, além de representar os requisitos, os casos de uso também descrevem uma
solução em alto nível.

 Este trabalho utiliza um formato de caso de uso definido pela Rational [2], que
compreende seções como fluxos básicos e alternativos, subfluxos de execução,
requisitos especiais e regras de negócio. Serão apresentados os seguintes padrões: (i)
padrão Caso de Uso CRUD; (ii) padrão Documentação de Atributos; (iii) padrão
Caso de Uso Relatório; (iv) padrão Caso de Uso Transação e (v) padrão Caso de Uso
Assistente.

Figura 1: Relacionamento entre os padrões apresentados

2. Caso de Uso CRUD

2.1. Contexto
Este padrão é utilizado para a documentação dos requisitos de operações de manutenção
em sistemas da informação, por meio do uso de modelos e especificações de casos de
uso. Os requisitos de operações de manutenção são caracterizados por operações de
Inclusão, Consulta, Alteração e Exclusão.

2.2. Problema
Como documentar os requisitos funcionais de inserção, atualização, exclusão e consulta
de dados por meio de especificações de casos de uso?

2.3. Forças
- Todo caso de uso deve demonstrar um valor observável [2]. Em alguns casos,

o usuário identifica o valor observável como a manutenção da entidade. Em
outros casos, o valor observável está nas operações individuais de Inclusão,
Consulta, Alteração e Exclusão.

- As operações de manutenção podem ocorrer tanto sobre entidades simples,
com poucos atributos, como em entidades complexas, com vários atributos e
relacionamentos.

- As operações de inclusão, alteração, remoção e consulta devem ser tratadas e
seus requisitos documentados. Esses requisitos incluem validação de
atributos e regras de negócio.

Caso de Uso
CRUD

Caso de Uso
Transação

Documentação
de Atributos

Caso de Uso
Relatório

Caso de Uso
Assistente

49

- Os atributos mantidos de cada entidade devem ser documentados.

- Os requisitos documentados devem ser de fácil entendimento para os
usuários e para a equipe de desenvolvimento.

- Uma quantidade grande de casos de uso dificulta a gestão dos requisitos e
pode indicar a existência de decomposição funcional.

2.4. Solução
Organizar o fluxo de eventos do caso de uso em cinco subfluxos (Fluxo básico, Incluir,
Alterar, Remover e Consultar) como se segue:

- O Fluxo básico descreve a condição de início e desvia o fluxo para um dos
subfluxos, de acordo com as operações disponíveis: Incluir, Alterar, Excluir e
Consultar. Condições de início indicam os eventos que provocam a execução
do caso de uso. Por exemplo, em que situação a entidade deve ser mantida, se
existe alguma periodicidade requerida ou alguma questão de permissão de
acesso.

- Cada subfluxo descreve o cenário operacional de uma das funcionalidades:
Incluir, Alterar, Remover e Consultar.

- O subfluxo Incluir apresenta os atributos para a inclusão e descreve o
comportamento da inclusão.

- O subfluxo Alterar apresenta os atributos atualizáveis, exibe seus valores e
descreve o comportamento da atualização. Se os atributos atualizáveis forem
os mesmos apresentados no subfluxo Incluir, pode-se referenciar este
subfluxo.

- O subfluxo Remover descreve o comportamento da remoção e documenta as
restrições da exclusão da entidade. Por exemplo, se alguma regra de negócio
deve ser acionada ou se uma confirmação para a exclusão é exigida.

- O subfluxo Consultar documenta requisitos para localização da entidade,
que atributos devem ser filtros para a consulta, quais são obrigatórios e quais
atributos são exibidos no resultado.

- As validações de atributos e regras de negócio são documentadas em uma
seção independente dos fluxos e subfluxos, ver o padrão Documentação de
Atributo. A decisão sobre o momento no qual as validações e regras são
executadas fará parte do projeto do caso de uso. No entanto, se esse momento
já for identificado como um requisito claro da aplicação, a regra ou validação
deve ser referenciada pelo subfluxo. As regras de negócio, tipicamente,
representam requisitos de cálculos e tratamento de relacionamentos com
outras entidades. As validações, tipicamente, documentam o tratamento para
a obrigatoriedade de atributos e o tratamento de formato de atributos (datas,
limites numéricos, entre outros).

50

2.4.1 Estrutura

Fluxo básico
1. O caso de uso inicia quando o <nome do ator> necessita fazer a manutenção

(inclusão, alteração, exclusão ou consulta) de uma <nome da entidade>.
<descrever a condição de início do caso de uso>

2. De acordo com o tipo de operação manutenção desejado pelo <nome do ator>,
um dos subfluxos é executado:

a. Se o <nome do ator> deseja incluir uma nova <nome do ator> , o
subfluxo Incluir <nome do ator> é executado.

b. Se o <nome do ator> deseja alterar informações de uma <nome do
ator> já cadastrada, o subfluxo Alterar <nome do ator> é executado.

c. Se o <nome do ator> deseja excluir uma <nome do ator> já
cadastrada, o subfluxo Remover <nome do ator> é executado.

d. Se o <nome do ator> deseja consultar informações sobre uma ou
mais <nome do ator> cadastradas, o subfluxo Consultar <nome do
ator> é executado.

Subfluxo Incluir <nome da entidade>
1. Este subfluxo inicia quando o <nome do ator> solicita incluir uma <nome da

entidade>;
2. O sistema solicita ao <nome do ator> o preenchimento dos seguintes atributos:

- <lista de atributos>.
3. O <nome do ator> preenche os atributos acima e confirma a inclusão;
4. O sistema realiza a inclusão dos dados informados pelo <nome do ator> no

passo 3;
5. O sistema exibe uma mensagem informando que a inclusão da <nome da

entidade> foi efetivada com sucesso;

Subfluxo Alterar <nome da entidade>
1. Este fluxo inicia quando o <nome do ator> solicita alterar uma <nome da

entidade>;
2. O <nome do ator> seleciona um único <nome da entidade>;
3. O sistema solicita a alteração dos seguintes atributos:

- <lista de atributos que podem ser alterados>
4. O <nome do ator> altera os dados desejados e confirma a alteração;
5. O sistema realiza a alteração dos dados informados no passo 4;
6. O sistema exibe uma mensagem de confirmação informando que a alteração do

<nome da entidade> foi efetivada com sucesso;

Subfluxo Remover <nome da entidade>
1. Este subfluxo inicia quando o <nome do ator> solicita remover uma ou mais

<nome da entidade>;
2. O <nome do ator> seleciona quais <nome da entidade> deseja remover e

solicita a remoção;

51

3. O sistema solicita a confirmação para a remoção;
4. O <nome do ator> confirma a remoção;
5. O sistema remove os <nome da entidade> confirmados;
6. O sistema exibe uma mensagem informando que a remoção dos <nome da

entidade> foi efetivada com sucesso;

Subfluxo Consultar <nome da entidade>
1. Este fluxo inicia quando o <nome do ator> solicita consultar <nome da

entidade>;
2. O sistema solicita o preenchimento dos seguintes filtros:

- <lista de filtros>.
3. O <nome do ator> preenche os filtros e solicita a consulta;
4. O sistema apresenta as seguintes informações dos <nome da entidade> obtidos

na consulta:

- <lista de atributos>.

Validações e regras de negócio
- Esta regra se aplica a todos os subfluxos. Atributos obrigatórios. Se algum

atributo obrigatório não tiver sido preenchido, <descrever que ações o
sistema deve tomar, por exemplo, “o sistema não completará a operação e
notificará ao <nome do ator>, solicitando o preenchimento”>;

- Esta regra se aplica a todos os subfluxos. Atributos com valores não
permitidos. Se algum atributo for preenchido com valor não permitido,
<descrever que ações o sistema deve tomar, por exemplo, “o sistema não
completará a operação e notificará ao <nome do ator>, solicitando o
preenchimento”>;

- No subfluxo Remover, o sistema valida os <nome da entidade>
selecionados de acordo com as seguintes regras:
o <regras de remoção>.

2.5. Exemplo
Este exemplo apresenta o caso de uso Manter Cliente de uma aplicação de CallCenter.

Incluir Cliente
1. Este subfluxo inicia quando o Operador de Telemarketing solicita incluir um

cliente;
2. O sistema solicita ao Operador de Telemarketing o preenchimento dos seguintes

atributos:

- * Nome;

- * Logradouro. Descreve a rua ou a avenida em que o cliente reside;

- * Número;

- * Bairro;

- * Cidade;

52

- * Estado (campo de escolha fechada. Valores possíveis: todas os estados
cadastrados no sistema);

- CPF;

- Sexo (campo de escolha fechada. Valores possíveis: feminino e masculino).
3. O Operador de Telemarketing preenche os atributos acima e confirma a

inclusão;
4. O sistema realiza a inclusão dos dados informados pelo Operador de

Telemarketing no passo 3;
5. O sistema exibe uma mensagem informando que a inclusão do cliente foi

efetivada com sucesso;

Alterar Cliente
1. Este fluxo inicia quando o Operador de Telemarketing solicita alterar um

cliente;
2. O Operador de Telemarketing seleciona um único cliente;
3. O sistema solicita a alteração dos atributos listados no passo 2 do subfluxo

Incluir.
4. O Operador de Telemarketing altera os dados desejados e confirma a alteração;
5. O sistema realiza a alteração dos dados informados no passo 4;
6. O sistema exibe uma mensagem de confirmação informando que a alteração do

cliente foi efetivada com sucesso;

Remover Cliente
1. Este subfluxo inicia quando o Operador de Telemarketing solicita remover um

ou mais clientes;
2. O Operador de Telemarketing seleciona quais clientes deseja remover e solicita

a remoção;
3. O sistema solicita a confirmação para a remoção;
4. O Operador de Telemarketing confirma a remoção;
5. O sistema remove os clientes confirmados;
6. O sistema exibe uma mensagem informando que a remoção dos clientes foi

efetivada com sucesso;

Consultar Cliente
1. Este fluxo inicia quando o Operador de Telemarketing solicita consultar

clientes;
2. O sistema solicita o preenchimento dos seguintes filtros:

- Nome;

- CPF.
3. O Operador de Telemarketing preenche os filtros e solicita a consulta;
4. O sistema apresenta as seguintes informações dos clientes obtidos na consulta:

- Nome;

- Logradouro;

- Número;

- Bairro;

53

- Cidade;

- Estado;

- CPF;

- Sexo.

Validações e regras de negócio
- Esta regra se aplica a todos os subfluxos. Atributos obrigatórios. Se algum

atributo obrigatório não tiver sido preenchido, o sistema não completará a
operação e notificará ao Operador de Telemarketing, informando quais
campos obrigatórios não foram preenchidos e solicitando o preenchimento
dos mesmos;

- Esta regra se aplica a todos os subfluxos. Atributos com valores não
permitidos. Se algum atributo for preenchido com valor não permitido, o
sistema não completará a operação e notificará ao Operador de
Telemarketing, informando quais campos foram preenchidos com valores
inválidos e solicitando o preenchimento correto;

- No subfluxo Remover, o sistema valida os clientes selecionados de acordo
com as seguintes regras:

o Cliente que tiver algum chamado em aberto não poderá ser removido.

2.6. Conseqüências
- As operações de manutenção e seus requisitos são documentadas de forma

padronizada e estruturada para os diversos tipos de entidade, melhorando o
entendimento do comportamento e dos requisitos, facilitando o
desenvolvimento de produtos de trabalho das fases seguintes, como por
exemplo, análise, projeto e casos de teste;

- As validações e regras de negócio são documentadas de maneira estruturada,
evitando omissões e destacando sua importância;

- Os atributos e informações requeridos em cada operação são documentados,
facilitando o entendimento da estrutura do sistema e facilitando a modelagem
de dados e prototipação de telas;

- Fornece suporte ao conceito de caso de uso definido em [2]: “todo caso de
uso deve demonstrar um valor observável”. A solução utiliza o conceito de
subfluxos para agrupar em um único caso de uso as operações de Inclusão,
Consulta, Alteração e Exclusão.

- Reduz o número de casos de uso do sistema por meio do agrupamento da
especificação das operações de manutenção em um único caso de uso,
facilitando a gestão dos requisitos.

2.7. Padrões relacionados
- Padrão Documentação de Atributos:

o Utilizado no subfluxo Inserir para listar os atributos da entidade; no
subfluxo Alterar, para descrever os atributos que podem ser alterados; e

54

no subfluxo Consultar, para descrever os filtros e atributos que serão
exibidos no resultado da consulta.

3. Documentação de Atributos

3.1. Contexto
Em sistemas de informação, os atributos das entidades possuem diversas características
como: nome, descrição, obrigatoriedade, validações, semântica, entre outras. Portanto, a
documentação desses atributos deve ser elaborada de forma que essas características
não sejam esquecidas.

3.2. Problema
Como definir e documentar de forma padronizada os diversos atributos das entidades,
que são informações necessárias durante operações CRUD?

3.3. Forças
- Atributos podem ser de tipos primitivos, enumerados, multivalorados ou de

relacionamentos. Os atributos enumerados podem assumir um valor dentro de
um domínio fixo de valores. Os atributos de relacionamentos podem assumir
como valor uma referência para outras entidades cadastradas no sistema. Os
atributos multivalorados podem assumir um ou mais valores referentes a
outras entidades cadastradas no sistema.

- Os atributos de entidades podem fazer parte de um conjunto de parâmetros ou
filtros de consulta.

- Alguns atributos podem ser opcionais e outros obrigatórios. Atributos
obrigatórios devem ter tratamento adequado em caso de não preenchimento
na inclusão, alteração ou consulta.

- Se os atributos não foram documentados com as informações necessárias, os
seguintes problemas poderão ocorrer: (i) dificuldade na validação dos
requisitos com o usuário final por falta de informações sobre os atributos e
(ii) inconsistência nos produtos de trabalho gerado nas fases de análise e
projeto, implementação e testes.

3.4. Solução
- Documente os atributos como uma lista itemizada associada a uma operação

de consulta, inclusão ou alteração. No caso da alteração, se os atributos que
podem ser alterados forem os mesmos da inclusão pode-se apenas fazer uma
referência aos atributos listados na inclusão.

- Uma descrição breve do atributo deve ser fornecida, quando necessário.

- Marque com um caractere especial os atributos obrigatórios (“*”, por
exemplo).

- Para atributos que indicam relacionamento, indique que é um campo de
escolha fechada e indique a fonte origem dos dados de escolha. Por exemplo:

55

Unidade federativa (campo de escolha fechada. Valores possíveis: todas as
unidades federativas cadastradas no sistema).

- Para atributos enumerados, indique que é um campo de escolha fechada e
indique os valores possíveis. Por exemplo: Sexo (campo de escolha fechada.
Valores possíveis: feminino e masculino).

- Para atributos multivalorados, indique que é um campo de escolha múltipla e
indique a fonte origem dos dados de escolha.

- Alguns atributos possuem restrição quanto aos valores aceitos. Neste caso,
deve-se documentar esta restrição juntamente com o atributo.

3.4.1 Estrutura
- <atributo>. <descrição do atributo>
- <caractere> <atributo obrigatório>
- <atributo> (Campo de escolha fechada. Valores possíveis: <entidade origem

dos dados>). <descrição do atributo>

- <atributo> (Campo de escolha fechada. Valores possíveis: <valor 1>,
<valor 2>, ... <valor n>). <descrição do atributo>

- <atributo> (Campo de escolha múltipla. Valores possíveis: <entidade
origem dos dados>). <descrição do atributo>

- <atributo>. <descrição da validação de valores aceitos>

3.5. Exemplo
Exemplo de atributo com descrição:

- Logradouro. Descreve a rua ou a avenida em que o cliente reside;

Exemplo de atributo obrigatório:

- * Nome

Exemplo de atributo de relacionamento:

- Estado (campo de escolha fechada. Valores possíveis: todos os estados
cadastrados no sistema);

Exemplo de atributo enumerado:

- Sexo (campo de escolha fechada. Valores possíveis: feminino e masculino).

Exemplo de atributo multivalorado:

- Autor do livro (campo de escolha múltipla. Valores possíveis: todos os
autores cadastrados no sistema).

Exemplo de atributo com restrição de valores:

- Temperatura corpórea do paciente. Só poderá assumir valor entre 35 e 42
graus.

56

3.6. Conseqüências
- Os diversos tipos de atributos são documentados de forma simples e

padronizada.

- Os atributos obrigatórios são declarados claramente, facilitando sua
identificação e tratamento da implementação e testes.

4. Caso de Uso Relatório

4.1. Contexto
Em sistemas de informação, uma grande quantidade de dados é armazenada
freqüentemente. Neste contexto, surge a necessidade de visualizar, exportar ou imprimir
dados armazenados com o objetivo de conferir, analisar e tomar decisões com base
nesses dados.

4.2. Problema
Como documentar os requisitos de relatórios que podem incluir a necessidade de
visualizar, exportar ou imprimir dados de entidades de acordo com filtros especificados,
agrupamentos, totalizações e informações a serem apresentadas?

4.3. Forças
- O sistema deve permitir extrair dados em diversos formatos (tela, arquivo e

impressão).

- O sistema deve tratar a estrutura do relatório, como por exemplo, disposição
dos campos, cabeçalho e rodapé, tamanho da fonte e orientação do papel.

- O sistema deve tratar as necessidades para exibição dos dados, como por
exemplo, se os dados devem ser agrupados, se devem ser apresentadas
totalizações e se existe a necessidade de algum filtro para restringir os dados
que serão apresentados.

4.4. Solução
- O Fluxo básico descreve que atributos devem ser filtros, quais são de

preenchimento obrigatório e quais atributos devem ser exibidos no cabeçalho,
corpo ou rodapé.

- O Fluxo básico descreve a condição de início. Condições de início indicam
os eventos que provocam a execução do caso de uso. Por exemplo: em que
situação o relatório deve ser visualizado ou impresso; ou se existe alguma
periodicidade requerida.

- Os requisitos especiais são documentados em uma seção independente dos
fluxos e subfluxos. Tipicamente, devem ser documentados requisitos de
exportação para diversos formatos, regras das seções (regras de agrupamento,
cálculo para totalização) e opções de ordenação. Um desenho esquemático do
relatório e suas seções pode também ser apresentado. Descrever também o
critério para filtro ou extração de dados.

57

4.4.1 Estrutura

Fluxo básico
1. Este fluxo inicia quando o <nome do ator> solicita gerar o relatório <nome do

relatório>. <descrever a condição de início do caso de uso>;
2. O sistema solicita o preenchimento dos seguintes filtros:

- <lista de filtros>.
3. Uma vez que o <nome do ator> forneça a informação solicitada, uma das

seguintes ações é executada:

- Se o <nome do ator> selecionar Imprimir, <descrever ação que deve ser
executada>;

- Se o <nome do ator> selecionar Visualizar, <descrever ação que deve ser
executada>;

- Se o <nome do ator> selecionar Exportar, <descrever ação que deve ser
executada>;

4. O sistema apresenta o resultado na seguinte forma:
- Cabeçalho. <descrever as informações que devem está contidas no

cabeçalho>;

- Corpo. <descrever as informações que devem estar contidas no corpo,
informando lista de atributos, seções de agrupamento, e quebra de seção>;

- Rodapé. <descrever as informações que devem estar contidas no rodapé>;

- Totalização. <descrever que totalizações devem ser exibidas>.

Requisitos especiais
- Exportar para diversos formatos. <descrever para que formatos o resultado do

relatório deve ser exportado, informando os requisitos necessários para a
exportação de cada formato>;

- Regras das seções. <descrever quais são as regras de agrupamento de seções
e as regras para o cálculo das totalizações>;

- Opções de ordenação. <listar as opções de ordenação disponíveis e descrever
os requisitos para essas ordenações>.

- Regra de extração. <expressão lógica descrevendo como os atributos de filtro
e outros critérios devem ser combinados para extrair os dados corretamente>

- Modelo de desenho esquemático:

<Logo><Sistema> <Título>

<Grupo1>

 <Campo 1> <Campo 2>

<Total grupo 1> <Soma campo 2>

 <Página x de y>

58

4.5. Exemplo
Este exemplo apresenta um relatório de cliente de uma aplicação de CallCenter. O
relatório possui totalizações por bairro.

Fluxo básico
1. Este fluxo inicia quando o Operador de Telemarketing solicita gerar o relatório

de clientes por bairro. Este relatório deve ser executado antes da avaliação da
carteira de clientes;

2. O sistema solicita o preenchimento dos seguintes filtros:
- Código da filial.

3. Uma vez que o Operador de Telemarketing forneça a informação solicitada,
uma das seguintes ações é executada:

- Se o Operador de Telemarketing selecionar Imprimir, o sistema deve
apresentar a janela de configuração de impressão;

- Se o Operador de Telemarketing selecionar Visualizar, o sistema deve
apresentar uma janela com a visualização do relatório;

- Se o Operador de Telemarketing selecionar Exportar, o sistema deve solicitar
o tipo de arquivo a ser exportado e gerar o arquivo solicitado conforme
padrão definido nos requisitos especiais;

4. O sistema apresenta o resultado na seguinte forma:
- Cabeçalho. Deve conter o nome do relatório, nome da empresa, nome da

filial e a data em que o relatório foi executado;

- Corpo. Os clientes devem ser agrupados por bairro e as seções devem conter
quebras de página a cada bairro. Os seguintes atributos devem ser
apresentados: nome do bairro, nome, telefone e data de cadastro do cliente;

- Rodapé. Deve conter o número da página;

- Totalização. As totalizações devem ser efetuadas por bairro, apresentando
quantos clientes existem em cada bairro.

Requisitos especiais
- Exportar para diversos formatos. Os dados deste relatório devem ser

exportados para o Excel, apresentado as informações em colunas;

- Opções de ordenação. O relatório deve ser ordenado por nome do bairro e
posteriormente por nome do cliente.

- Regra de extração. Devem ser apresentados no relatório todos os clientes
cadastrados no sistema e que são relacionados à filial selecionada no filtro. A
identificação da filial encontra-se no cadastro do cliente.

- Modelo de desenho esquemático:

59

Empresa de Telemarketing
Filial Norte América

Relatório de clientes por bairro
01/01/2005

Bairro: Varjota

Nome Telefone Data de Cadastro

Gabriela Souza 32678950 01/01/2004

Carlo Pires 29087654 23/04/2004

Total de clientes da Varjota: 2

 Página 1

4.6. Conseqüências
- As opções e formatos para extração são descritos.

- A estrutura do relatório e das seções é documentada de forma clara e
estruturada.

- Os requisitos para extração da informação são documentados.

4.7. Padrões relacionados
- Padrão Documentação de Atributos:

o Utilizado no Fluxo básico para listar os filtros.

5. Caso de Uso Transação

5.1. Contexto
Documentação dos requisitos de operações que são tratadas como um comando atômico
que processa várias transações. Tipicamente operações batch e operações que requerem
apenas um comando de inicio do caso de uso pelo usuário tendo pouca entrada de dados
e iteração com o sistema.

5.2. Problema
Como documentar os requisitos de operações que possuem a execução de longa duração
ou que são executadas em formato de comando atômico, dando ênfase para os requisitos
especiais dessas operações?

5.3. Forças
- Transações que ocorrem freqüentemente em sistemas de informação possuem

várias características em comum e é importante que fiquem documentadas de
forma uniforme para facilitar o entendimento dos casos de uso.

60

- O usuário necessita de informação sobre o progresso e o tempo estimado para
a conclusão da operação.

- O usuário pode não ter familiaridade com a complexidade da tarefa.

- Transações complexas podem envolver algoritmos e cálculos.

- Durante a operação o usuário pode decidir interrompê-la.

5.4. Solução
- Os requisitos devem documentar a duração média do tempo de execução da

operação.

- O Fluxo básico descreve que atributos devem ser fornecidos para a execução
da operação, indicando quais são obrigatórios.

- O Fluxo básico descreve a condição de início. Condições de início indicam
os eventos que provocam a execução do caso de uso. Por exemplo, em que
situação o caso de uso deverá ser executado ou se existe alguma
periodicidade requerida.

- O Fluxo básico deve indicar que existe uma opção de cancelamento que
pode ser solicitada a qualquer momento.

- Os requisitos especiais descrevem como o progresso da operação será
apresentado. O progresso é tipicamente o momento restante para o término, o
número das unidades processadas ou a porcentagem do trabalho feita.
Tipicamente deve ser fornecido para o usuário o status da execução da
operação, informando se a operação ainda está sendo executada, e quanto
tempo o usuário necessitará esperar.

5.4.1 Estrutura

Fluxo básico
1. Este fluxo inicia quando o <nome do ator> solicita executar a <nome da

transação>. <descrever a condição de início do caso de uso>;
2. O sistema solicita o preenchimento dos seguintes dados:

- <lista de atributos de parâmetro para a transação>.
3. O <nome do ator> preenche os dados solicitados no passo 2 e confirma a

execução da operação;
4. O sistema executa a operação:

- <Operações, indicações de algoritmos e de cálculos executados na operação>

Requisitos especiais
- O progresso da operação deverá ser apresentado em <descrever a unidade ou

formato em que será apresentado o progresso da operação>.

Regras de negócio
- Descrição de algoritmos e cálculos eventualmente utilizados na operação.

61

5.5. Exemplo
Este exemplo apresenta o caso de uso Transferir Chamado de um sistema de Call
Center. O objetivo deste caso de uso é transferir um chamado de um Operador de
Telemarketing para outro.

Fluxo básico
1. Este fluxo inicia quando o Operador de Telemarketing solicita transferir um

chamado;
2. O sistema solicita o preenchimento dos seguintes dados:

- * Número dos chamados. (Campo de escolha múltipla);

- * Nome do novo Operador de Telemarketing responsável pelo chamado.
(Campo de escolha fechada. Valores possíveis: todos os Operadores de
Telemarketing ativos cadastrados no sistema). Esse campo deve aparecer em
ordem alfabética pelo nome do Operador de Telemarketing;

- * Descrição. Este campo deve conter a descrição do histórico da
transferência.

3. O Operador de Telemarketing preenche os dados solicitados no passo 2 e
confirma a execução da operação;

4. O sistema executa as seguintes operações:
- Obtém o login do usuário corrente e atribui ao campo responsável pela

transferência dos chamados;

- Obtém a data e hora corrente e atribui ao campo data de criação do histórico;

- Atribui ao identificador do tipo do histórico o valor “transferência”;

- A aplicação realiza a transferência dos chamados salvando os dados
informados pelo Operador de Telemarketing no passo 2 e obtidos pela
aplicação no passo 4;

Requisitos especiais
- O progresso da operação deverá ser apresentado em % (percentual) que

deverá ser calculado considerando quantos chamados já foram transferidos
em relação ao total de chamados selecionado. Por exemplo: o Operador de
Telemarketing selecionou 10 (dez) chamados para serem transferidos.
Quando o sistema estiver efetuado a transferência de 2 (dois) chamados o
progresso da operação será 20% (vinte por cento).

Regras de negócio
- Não se aplica.

5.6. Conseqüências
- O retorno sobre o status da execução da transação é fornecido;

- Os passos da transação, algoritmos e cálculos são documentados de forma
clara.

62

5.7. Variantes
- Em transações curtas, o tratamento do progresso da operação pode ser

suprimido.

5.8. Padrões relacionados
- Padrão Documentação de Atributos:

o Utilizado no Fluxo básico para listar os filtros.

6. Caso de Uso Assistente

6.1. Contexto
Documentação dos requisitos de operações complexas que são executadas em diversos
passos, onde decisões ou dados necessitam serem informados em cada passo através da
iteração com o usuário.

6.2. Problema
Como documentar os requisitos de uma operação, na qual diversas decisões devem ser
tomadas antes que a operação possa ser concluída completamente?

6.3. Forças
- Para concluir a operação, diversos passos precisam ser realizados.

- Um determinado passo pode necessitar ser terminado antes que o passo
seguinte possa ser feito.

6.4. Solução
- O Fluxo básico descreve o objetivo da operação e quantos passos precisam

ser executados.

- O Fluxo básico descreve a condição de início. Condições de início indicam
os eventos que provocam a execução do caso de uso. Por exemplo: em que
situação o caso de uso deverá ser executado ou se existe alguma
periodicidade requerida.

- O Fluxo básico deve indicar que existe uma opção de cancelamento que
pode ser solicitada a qualquer momento.

- Cada Subfluxo Passo <n> deve determinar se o usuário não pode começar o
passo seguinte antes de terminar o atual.

63

6.4.1 Estrutura

Fluxo básico
1. O caso de uso inicia quando o <nome do ator> necessita <nome do caso de uso>.

<descrever a condição de inicio do caso de uso>;
2. O sistema informa tipicamente o objetivo da operação e quantos passos precisam

ser executados;
3. O sistema solicita que o <nome do ator> execute o Passo 1;
4. Uma vez que o <nome do ator> decida executar o Passo 1, subfluxo Passo 1 é

executado;
5. O caso de uso se encerra.

Subfluxo Passo 1
1. Este subfluxo se inicia quando o <nome do ator> solicita <descrever as ações

que serão executadas neste passo>;
2. O sistema solicita ao <nome do ator> o preenchimento dos seguintes atributos:

- <lista de atributos>.
3. O <nome do ator> preenche os atributos;
4. O sistema solicita que o <nome do ator> execute o Passo n;
5. Uma vez que o <nome do ator> decida executar o Passo <n>, subfluxo Passo

<n> é executado;

Subfluxo Passo <n>
1. Este subfluxo se inicia quando o <nome do ator> solicita <descrever as ações

que serão executadas neste passo>;
2. Para este subfluxo ser executado os subfluxos <Passo 1, Passo 2, ... Passo n>

devem ter sido executados. Se não existir requisitos de precedência para a
execução dos passos, esse item poderá ser omitido;

3. O sistema solicita ao <nome do ator> o preenchimento dos seguintes atributos:
- <lista de atributos>.

4. O <nome do ator> preenche os atributos;
5. O sistema solicita que o <nome do ator> execute o Passo <n+1> ou conclua a

operação;
6. Uma vez que o <nome do ator> decida executar o Passo <n+1>, subfluxo Passo

<n+1> é executado;

Subfluxo Passo <final>
1. Este subfluxo se inicia quando o <nome do ator> solicita <descrever as ações

que serão executadas neste passo>;
2. Para este subfluxo ser executado os subfluxos <Passo 1, Passo 2, ... Passo n>

devem ter sido executados. Se não existir requisitos de precedência para a
execução dos passos, esse item poderá ser omitido;

3. O sistema solicita ao <nome do ator> o preenchimento dos seguintes atributos:

- <lista de atributos>.
4. O <nome do ator> preenche os atributos;
5. O sistema solicita que o <nome do ator> conclua a operação;

64

6. O caso de uso retorna para o passo 5 do fluxo básico.

6.5. Exemplo
Este exemplo apresenta o caso de uso Submeter Proposta de Seguro de um sistema de
administração de seguros para automóveis, que deve ser realizado em três passos. No
passo inicial o proponente informa a cidade e o estado onde o veículo irá circular e os
dados do veículo. No segundo passo, o sistema apresenta uma lista de coberturas e
preços existentes de acordo com os dados informados no passo 1. O proponente
seleciona as coberturas desejadas e avança para o passo seguinte. No terceiro e último
passo o sistema apresenta o preço total do seguro e solicita a conclusão da operação.

Fluxo básico
1. O caso de uso inicia quando o Proponente necessita submeter uma proposta de

seguro;
2. O sistema informa que esta operação será executada em 3 passos;
3. O sistema solicita que o Proponente execute o Passo 1;
4. Uma vez que o Proponente decida executar o Passo 1, subfluxo Passo 1 é

executado;
5. O caso de uso se encerra.

Passo 1
1. Este subfluxo se inicia quando o Proponente solicita informar a cidade e o

estado onde o veículo irá circular e os dados do veículo;
2. O sistema solicita ao Proponente o preenchimento dos seguintes atributos:

- * Cidade. Indica a cidade onde o veículo irá circular;

- * Estado. Indica o onde o veículo irá circular;

- * Ano de fabricação do veículo;
- * Ano do modelo do veículo;
- * Modelo do veículo;
- * Marca do veículo.

3. O Proponente preenche os atributos;
4. O sistema solicita que o Proponente execute o Passo 2;
5. Uma vez que o Proponente decida executar o Passo 2, subfluxo Passo 2 é

executado;

Passo 2
1. Este subfluxo se inicia quando o sistema apresenta uma lista de coberturas e

preços existentes;
2. Para este subfluxo ser executado o subfluxo Passo 1 deve ter sido executado;
3. O sistema apresenta a lista de coberturas e preços existente e solicita ao

Proponente a seleção das coberturas desejadas;
4. O Proponente seleciona as coberturas;
5. O sistema solicita que o Proponente execute o Passo 3;
6. Uma vez que o Proponente decida executar o Passo 3, subfluxo Passo 3 é

executado;

65

Passo 3
1. Este subfluxo se inicia quando o Proponente solicita a conclusão da operação;
2. Para este subfluxo ser executado os subfluxos Passo 1 e Passo 2 devem ter sido

executados;
3. O sistema apresenta o preço total do seguro e solicita a conclusão da operação;
4. O Proponente conclui a operação;
5. O caso de uso retorna para o passo 5 do fluxo básico.

6.6. Conseqüências
- Organiza e documenta todos os passos que devem ser realizados para

concluir uma operação complexa.

- Permite que o usuário possa realizar intervenções, decisões e configurações
em estágios intermediários de uma operação complexa.

6.7. Padrões relacionados
- Padrão Documentação de Atributos:

o Utilizado no Fluxo básico e subfluxos para listar os atributos.

7. Usos conhecidos
Os padrões apresentados neste artigo têm sido utilizados na fase de elicitação de
requisitos em diversos sistemas, tais como um sistema Imobiliário, um sistema de Portal
web para administradção e publicação de informações de acervos culturais e um sistema
de CallCenter. Porém, por motivos de confidencialidade, mais detalhes dos usos
conhecidos não podem ser fornecidos.

 Em [2], os exemplos de casos de uso CRUD seguem estrutura similar a proposta
no padrão Caso de Uso CRUD.

8. Agradecimentos
Este trabalho foi suportado pelo Instituto Atlântico.

 Os autores agradecem aos responsáveis pelo processo de revisão, em especial a
Rosana Teresinha Vaccare Braga, pelas contribuições realizadas no aprimoramento do
artigo.

Referências
[1] Chrissis, M. B., Konrad, M., Shrum, S. CMMI Guidelines for Process Integration

and Product Improvement. Addison-Wesley, 2004.

[2] Rational Unified Process®, Version 2002.05.00. Rational Software Corporation,
2001.

[3] COCKBURN, A. Writing effective: use cases. Addison-Wesley Boston, 2001.

[4] SCHNEIDER, G.; WINTERS, J. Applying Use Case: A Practical Guide. 2nd ed.
Addison-Wesley, 2001.

[5] KRUCHTEN, P. The Rational Unified Process: an introduction. Addison-
Wesley, 2001.

66

[6] BITTNER, K., SPENCE, I. Use Case Modeling. Addison Wesley, 2002

[7] JACOBSEN; CHRISTERSON; OVERGAARD. Object-oriented software
engineering: a use case-driven approach. Addison-Wesley, 1992.

67

Patterns for Secure Operating System Architectures

Eduardo B. Fernandez and Tami Sorgente
Dept. of Computer Science and Engineering

Florida Atlantic University
Boca Raton, FL

 {ed, tami@cse.fau.edu}

Abstract
An operating system (OS) interacts with the hardware and supports the execution of
all the applications. As a result, its security is very critical. Most of the reported
attacks occur through the OS. The security of individual execution time actions such
as process creation and memory protection is very important and we have previously
presented patterns for these functions. However, the general architecture of the OS is
also very important. We present here patterns for the four basic OS architectures and
evaluate their use in different environments. We consider general aspects but we
emphasize those aspects that affect security.

1 Introduction
Operating systems (OS) act as an intermediary between the user of a computer and its
hardware. The purpose of an OS is to provide an environment in which users can
execute programs in convenient and efficient manner [Sil05]. OSs control and
coordinate the available resources to present to the user an abstract machine with
convenient features. The architecture of the OS organizes components to structure its
functional and non-functional aspects. The OS is the most critical of the software
layers because compromise can affect all applications and persistent data. Most of the
reported attacks occur through the OS [Fer01a]. The security of individual execution
time actions such as process creation and memory protection is very important and we
have presented patterns for these functions [Fer02, Fer03]. However, the general
architecture of the OS is also very important for the ability of the system to provide a
secure execution environment.

We present here patterns to help a designer select an architecture according to the
security requirements of the applications. Other aspects such as performance,
reliability, or real-time properties can also affect the choice. While we mention some
of those properties, we focus here on security aspects.

Most operating systems use one of five basic architectures [Sil05, Tan01]. One of
them, the monolithic architecture has little value for security and it is only mentioned
as a possible variant of the modular architecture. We present here patterns
representing an abstract view of the other four architectures from the point of view of
security The first pattern is the Modular Operating System Architecture which
describes the components of the operating system as communicating object-oriented
modules. In the Layered Operating System Architecture, the OS components are
assigned to a set of hierarchical layers. The Microkernel Operating System
Architecture assigns all its functions to servers that communicate through a common
module. The Virtual Machine Operating System Architecture provides virtual copies

68

of the underlying hardware that can be used for execution of different OSs. Figure 1
describes a pattern diagram of the OS architectures, indicating their relationships. The
figure shows also two variants of the basic patterns, corresponding to common
combinations of the three basic architectures.

Layered O pera ting
S ystem A rch itecture

M odu lar O pera ting
S ystem A rch itecture

M icrokerne l O pera ting
S ystem A rch itecture

V irtua l M ach ine
O pera ting

S ystem A rch itec ture

Layered M odu lar
O pera ting

S ys tem A rch itecture

Layered M icrokerne l
O pera ting

S ys tem A rch itecture

C an run

C an run

C an run

C an be com b ined

C an be com b ined

C an be com b ined

C an be com bined

Figure 1. Pattern diagram of OS Architectures

Opearting system functionality can be divided between the kernel (or OS proper),
components and the user applications or utilities. Typically, the kernel of an OS
includes the following functional units:

Process Management- handles creation and deletion of processes,
communication and scheduling.
Memory Management- keeps track of which parts of memory are used by
which processes, allocates and deallocates memory.
File Management- handles creation and deletion of files and directories, file
searches, and mapping files to secondary storage
I/O Management- provides interfaces to hardware device drivers , as well as
handling mass memory management components including buffering,
caching, and spooling.
Networking- controls communication path between two or more systems.
Protection System- includes authentication of users and file and memory
protection.

In addition, the OS includes a User Interface, which communicates between user and
OS through command interpreters, and a variety of utilities. These units may be
further divided for specific applications. In [Fer02] and [Fer03] we presented patterns
for the security of some of these functions. The four architectures we consider show
how the structure of the functional units affect security.

69

2 Modular Operating System Architecture
The OS services can be separated into modules each representing a basic function or
component. The core module of the kernel is always in memory, has the necessary
functionality to start itself, and the ability to load other modules. Modules are loaded
on demand when needed. Each module performs a function and may take parameters.

2.1 Example
Our group is building a new OS that should support various types of devices requiring
dynamic services with a large variety of security requirements. We want to
dynamically add OS components, functions, and services, as well as tailor their
security aspects according to the type of application. For example, a media player
may require support to prevent copying of the contents. We need a very flexible
architecture. .

2.2 Context
A variety of applications with diverse security requirements, but where the
requirements are not very strict.

2.3 Problem
We need to be able to add/ remove functions in the easiest way so we can
accommodate applications with a variety of security requirements. How do we
structure the functions for this purpose?

The possible solution is constrained by the following forces:
OSs for PCs and other types of platforms require a large variety of plug-ins.

New plug-ins appear frequently and we need the ability to add and remove them in a
convenient way.

Some of the plug-ins may contain malware and we need to isolate their
execution so they do not affect other processes.

We would like to hide security-critical modules from the direct visibility of
other modules to avoid possible attacks.

For performance and flexibility, active (loaded) modules can call each other,
which is a possible source of attacks.

2.4 Solution
Define a core module that can dynamically load and link modules as needed. By
loading only needed modules we can restrict visibility. We can also have different
versions of the modules with different degrees of security and load them according to
application security requirements. Critical modules can execute in their own
process/thread for better isolation but this may restrict flexibility. Calls between
modules can be checked.

Structure
Figure 2 shows a class diagram for this pattern. The KernelCore is the core of the
Modular OS. A set of LoadableModules is associated with the KernelCore, indicating
the modules that could be loaded. Any LoadableModule can call any other
LoadableModule.

70

KernelCoreModuleLoadableModule 1*
*

*

can call

LoadedModule

can load

Figure 2. Class diagram for the Modular Operating System Architecture pattern

2.5 Implementation
– Separate the functions of the OS into independent modules according to whether:

They are complete functional units.
They are critical with respect to security.
They should execute in their own process for security reasons or thread for
performance reasons.
They should be isolated during execution because they may contain malware.

– Define a set of loadable modules. New modules are later added at this point.
– Define a communication structure for the resultant modules. Operations should

have well defined call signatures and all calls should be checked. To prevent
incorrect commands or malformed parameters.

– Define a preferred order for loading some basic modules. Modules that are critical
for security should be loaded only when needed to reduce their exposure to
attacks.

2.6 Example resolved
We structured the functions of our system following the Modular Architecture pattern.
Because each module could have its own address space, we can isolate its execution.
Because each module can be designed independently, they can have different security
constraints in their structure. This structure gives us flexibility with a reasonable
degree of security.

2.7 Variants
Monolithic kernel. In this case the operating system is a collection of procedures.
Each procedure has a well defined interface in terms of parameters and results and
each one is free to call any other one [Tan01]. There is no structure between operating
system, components, services, and user applications. The difference between
monolithic and modular is that in the monolithic approach, all the modules are loaded
together at installation time, instead of being brought in on demand. As indicated
earlier, this approach is not very attractive for secure systems.

2.8 Known uses
The Solaris 10 Operating System (Figure 3) is designed in this way. Its kernel is
dynamic and composed of a core system that is always resident in memory [Sun04].
The types of Solaris 10 loadable modules are represented in Figure 3 as loaded by the
kernel core. This diagram does not represent the communication links between

71

individual modules. Another example is ExtremeWare from Extreme Networks [Ext].
Some versions of Linux are somewhat in between modular and monolithic, in that
some modules can be loaded when needed.

core Solaris
kernel

scheduling
classes

file systems

loadable
System calls

executable
formats

STREAMS
modules

miscellaneous
modules

device and
bus drivers

Figure 3. The modular design of the Solaris 10 Operating System [Sil03]

2.9 Consequences
The Modular Operating System Architecture Pattern has the following advantages:

The flexibility to add/ remove functions contributes to security in that we can add
new versions of modules with better security.
Each module is separate and communicates with other modules over known
interfaces. We can introduce controls in these interfaces.
It is possible to partially hide critical modules by loading them only when needed
and removing them after use.
By giving each executing module its own address space we can isolate the effects
of a rogue module.

The Modular Operating System Architecture Pattern has the following liabilities:
Any module can see all the others and potentially interfere with their execution.
Uniformity of call interfaces between modules makes it difficult to apply stronger
security restrictions to critical modules.

2.10 Related patterns
The Controlled Execution Environment pattern [Fer02] can be used to isolate
executing modules.

72

3 The Layered Operating System Architecture
The overall features and functionality of the OS are decomposed and assigned to
hierarchical layers. This provides clearly defined interfaces between each section of
the operating system and between user applications and the OS functions. Layer i uses
services of a lower layer i-1 and does not know the existence of a higher layer i+1.

3.1 Example
Our team is now handling an OS to support very complex applications. Complexity
brings along vulnerability so we need a way to separate concerns. We also want to
control the calls between OS components and services to improve security and
reliability. Finally, we would like to permanently hide critical modules. We tried a
modular architecture but it did not have enough structure to do all this systematically
and does not allow us to hide modules permanently.

3.2 Context
A variety of complex applications with diverse and stringent security requirements.
Flexibility is not an important concern.

3.3 Problem
Complex applications require separation of concerns for better understanding, errors
lead to security flaws. Unstructured modules as in modular architectures have the
problem that all modules know about the existence of all other modules, which
facilitates attacks. N many systems a good part of the units are stable and only some
of them need to be replaced.

The possible solution is constrained by the following forces:
Interfaces should be stable and well defined. Going through any interface
could imply authorization checks.
Parts of the system should be exchangeable or removable without affecting the
rest of the system. For example, we could replace some parts of the system
when we need more security.
Similar responsibilities should be grouped to help understandability and
maintainability. This contributes indirectly to improve security.
We should control module visibility to avoid possible attacks from other
modules.
Complex units need further decomposition. This makes the design simpler and
clearer and also improves security.

3.4 Solution
Define a hierarchical set of layers and assign functional components (units) to each
layer. Each layer presents an abstract machine to the layer above it, hiding
implementation details of the lower layers. Now we can hide modules by placing
them in the lower levels. Each level defines a set of services to the level above, these
services can apply security checks when invoked. A whole lower level can be
replaced by a more secure version.

73

Structure
Figure 4 shows a class diagram for the Layered Operating System Architecture
pattern. Layer N represents the highest level of abstraction, and Layer 1 is the lowest
level of abstraction. The main structural characteristic is that the services of Layer i
are used only by Layer i + 1. Each layer may contain complex entities consisting of
different units.

Figure 4. Class diagram for Layered Operating System Architecture pattern

Dynamics
In Figure 5, a user (at the application level) wishes to open a file located in a block of
a disk (at a lower level):

A user sends an openFile request to the OSInterface
The OSInterface interprets the openFile request.
The openFile request is sent from the OSInterface to the FileManager
The FileManager sends a readBlock request to the DiskDriver

<<actor>>
aUser:

openFile(…)

:OSInterface :FileManager :DiskDriver

openFile(…)
readBlock(…)

Figure 5. Sequence diagram for opening and reading a disk file

L a y e rN -1

L a y e r2

L a y e r1

L a y e rN

.

.

.

C lie n t

1

1

1

< < u s e s > >

74

3.5 Implementation
List all units in the system and define their dependencies.
Assign units to levels such that units in higher levels depend only on units of
lower levels. This may require a new unit decomposition.
Once the modules in a given level are assigned, define a language (interface)
for this level. This language includes the operations that we want to make
visible to the next level above. Add well-defined operation signatures and
security checks in these operations to assure the proper use of the level.
Hide in lower levels those modules that control critical security functions (this
will prevent direct attacks).

3.6 Example resolved
We structured the functions of our system as in Figure 6 and now we have a way to
control interactions and enforce abstraction. For example, the file system can use the
operations of the disk drives and enforce similar restrictions in the storage of data.
The user of the file cannot take advantage of the implementation details of the disk
driver to attack the system.

hardware

. . .

users

utilities

file system

I/O drives disk drives

UserApplication

Utilities

FileSystem

I/Odrives

Hardware

Layer 5

Layer 4

Layer 3

Layer 2

Layer 1

Figure 6. An example of the use of a Layered OS architecture.

3.7 Variants
Layered modules. The modules of the Modular architecture are assigned to different
layers. Now, in addition to visibility of modules due to activation, we have visibility
constraints due to layering. This could improve the security of the Modular
architecture.

Layer skipping. In this architecture there are special applications able to skip layers
for added performance (going directly to another layer reduces call overhead). This
structure implies a tradeoff between performance and security. By deviating from the
strict hierarchy of the layered system, there may not be enforcement of security
policies between layers for these applications.

75

3.8 Known uses
The Symbian OS (Figure 7) uses a variation of the layered approach [Sym01].

Connectivity framework Connectivity plug-ins

Application services

JavaPhone

JavaRuntime

Base
TelephonySerial

Comms
Connectivity

linkSecurityGraphics

Multimedia Comms infrastructure

NetworkingBluetoothInfrared

WAP
browser

Web
browserMessagingApplication

engines
Application
protocols

Web
Stack

WAP
Stack

Narrow
band

protocols
Application
framework

Figure 7. Symbian OS Layered Architecture [Sym01]

The UNIX operating system (Figure 8) is separated into 4 layers with clear interfaces
between the system calls to the kernel and between the kernel and the hardware.

Figure 8. UNIX OS Layered Architecture (from [Sil05])

IBM’s OS/2 also uses this approach [OS2].

user applications

76

3.9 Consequences
The Layered Operating System Architecture Pattern has the following advantages:

Lower levels can be changed without affecting higher layers. We can add or
remove security functions in the lower levels as needed.
Clearly defined interfaces between each OS layer and the user applications
improve security.
Control of information using layered hierarchical rules, using enforcement of
security policies between layers.
The fact that layers hide implementation aspects is useful for security in that
possible attackers cannot exploit lower level details.

The Layered Operating System Architecture Pattern has the following liabilities:
It may not be clear what to put in each layer; in particular related modules may
be hard to allocate. There may be conflicts between functional and security
needs when allocating modules.
Performance may decrease due to the indirection of calls through several
layers. If we try to improve performance we may sacrifice security.

3.10 Related patterns
This pattern is a specialization of the Layers architectural pattern [Bus96]. Security
versions of the Layers pattern have appeared in [Fer02] and in [Yod97].

77

4 The Microkernel Operating System Architecture
Move as much as possible of the OS functionality from the kernel and put it in
specialized servers, coordinated by a microkernel. The microkernel itself has a very
basic set of functions. OS functional components and services are implemented as
external and internal servers.

4.1 Example
We are building an OS for financial applications. This implies a range of applications
with different reliability and security requirements (some are very critical) and a
variety of plug-ins. We would like to provide OS versions with different types of
modules, some more secure, some less so.

4.2 Context
A variety of applications with diverse security requirements. Some of these
applications may be very sensitive and are constantly changing. The platform itself
may also change frequently.

4.3 Problem
In general purpose environments we need to be able to add new functionality with
variation in security and other requirements as well as provide alternative
implementations of services to accommodate different application requirements.

The possible solution is constrained by the following forces:
The application platform must cope with continuous hardware and software
evolution; these additions may have very different security or reliability
requirements.
Strong security or reliability requirements indicate the need for modules with
well-defined interfaces.
We may want to perform different types of security checks in different
modules, depending on their security criticality.
We would like a minimum of functionality in the kernel so we have a
minimum of processes running in supervisor mode. A simple kernel can be
checked and this is good for security.

4.4 Solution
The Microkernel is the central communication for the OS. Separate all functionality
into specialized services with well-defined interfaces and provide an efficient way to
route requests to the appropriate servers. Each server can be built with different
security constraints. The Microkernel mostly routes requests to servers and has
minimal functionality.

Structure
There is one Microkernel and several internal and external servers, each providing
a set of specialized services (Figure 9). In addition to the servers, an Adapter is used
between the Client and the microkernel or an external server. The Microkernel
controls the internal servers.

78

Microkernel

execute mechanism
init communication
find receiver
call internal server
send message
create handle (unique ID)

ExternalServer

receive request
dispatch request
execute service

1* calls

InternalServer

receive request
dispatch request
execute service

*

1

Adapter

1

1

calls service
creates request

Client

do task
11

*

sends request 1

calls service

calls

Initializes
communication

Figure 9. Class diagram for the Microkernel Operating System Architecture pattern

Dynamics
A client requests a service from an external server using the following sequence
(Figure 10):

The adapter receives the request and asks the microkernel for a
communication link with the external server.
The microkernel checks for authorization to use the server, determines the
physical address of the external server and returns it to the adapter
The adapter establishes a direct communication link with the external server.
The adapter sends the request to the external server using a procedure call or a
remote procedure call (RPC). The RPC can be checked for well-formed
commands, correct size and type of parameters (we can check signatures).
The external server receives the request, unpacks the message and delegates
the task to one of its own methods. All results are sent back to the adapter.
The adapter returns to the client, which in turn continues with its control flow.

4.5 Implementation
Identify the core functionality necessary for implementing external servers and
their security constraints. Typically, basic functions of the OS should be
internal servers, utilities, or user-defined services should go into external
servers. Each server can use the patterns from [Fer02] and [Fer03] for their
secure construction.
Define policies to restrict access to external and internal servers. Clients may
be allowed to call only some specific servers.
Find a complete set of operations and abstractions for every category
identified.

79

<<actor>>
:Client

call service

:Adapter :Microkernel :ExternalServer

create request

find receiver
check authorization

receive request

init communication

check signature

dispatch request

execute service

receiverHandle

returnResult
returnResult

Figure 10. Sequence diagram for performing an OS call through the microkernel

Determine strategies for request transmission and retrieval.
Structure the microkernel component. The microkernel should be simple
enough to make sure of its security properties (no malware for example).
Design and implement the internal servers as separate processes or shared
libraries. Add security checks in each server.
Implement the external servers. Add security checks in each service provided
by the servers.

4.6 Example resolved
By implementing our system using a microkernel we can have several versions of
each service, each with different degrees of security and reliability. We can replace
servers dynamically if needed. We can also control access to specific servers and
make sure that they are called in the proper way.

4.7 Variants
Layered Microkernel. The Microkernel OS Architecture Pattern can be combined
with the Layered OS Architecture pattern. In this case, servers can be assigned to
levels and a call is accepted only if it comes from a level above the server level.

4.8 Known uses
The PalmOS Cobalt (Figure 11). This OS has a preemptive multitasking kernel that
provides basic task management. Many applications in the PalmOS do not use the
microkernel services; they are handled automatically by the system. The microkernel
functionality is provided for internal use by system software or for certain special
purpose applications [PalmOS].

80

Microkernel

Licensee
Tasks

System

ARM Applications
68K Applications

PACE

Background

Data Manager

Graphics/ UI

Multimedia

HotSync

Exchange

Security

PIM

Media playback

Palm OS Application
Compatibility Environment

Internal storage

Networking Telephony
VFS Hardware

Driver Set

I/O Subsystem

Figure 11. PalmOS Microkernel combined with Layered OS Architecture [PalmOS].

The QNX Microkernel (Figure 12) is intended mostly for communication and process
scheduling [QNX].

IPC

Network
Interface

Scheduler
Interrupt

redirector

Process
A

Process
B Process

C

Network
Manager

Network media

Hardware
interrupts

Figure 12. QNX Microkernel Architecture [QNX]

Mach and Windows NT also use some form of microkernels [Sil05].

81

4.9 Consequences
The Microkernel Operating System Architecture Pattern has the following
advantages:

Flexibility and extensibility – if you need an additional function or an existing
function with different security requirements you only need to add an external
server. Extending the system capabilities or requirements only require addition
or extension of internal servers.
The Microkernel mediates all calls for services and can apply authorization
checks. In fact, the microkernel is in effect, a concrete realization of a
reference monitor [Fer01].
The well-defined interfaces between servers allow each server to check each
request for its services.
Can add even more security by putting fundamental functions in internal
servers.
Servers usually run in user mode, which further increases security.
The microkernel is very small and can be verified or checked for security.

The Microkernel Operating System Architecture Pattern has the following liabilities:
Communication overhead since all requests go through the Microkernel.
Some extra complexity.

4.10 Related patterns
This pattern is a specialization of the microkernel pattern [Bus96]. As indicated, the
microkernel itself is a concrete version of the Reference Monitor [Fer01]. The
Adapter is an example of the Adapter pattern {Bus96].

82

5 The Virtual Machine Operating System Architecture
Provides a set of replicas of the hardware architecture (Virtual Machines), which can
be used to execute (maybe different) operating systems with a strong isolation
between them.

5.1 Example
A web server is hosting applications for two competing companies. These companies
use different operating systems. We want to ensure that neither of them can access the
other company’s files or launch attacks against the other system.

5.2 Context
Mutually suspicious sets of applications that need to execute in the same hardware.
Each set requires isolation from the other sets.

5.3 Problem
Sometimes we need to execute different operating systems in the same hardware.
How do we keep those operating systems isolated from each other in such a way that
their executions don’t interfere with each other?

The possible solution is constrained by the following forces:
Each OS needs to have access to a complete set of hardware features to
support its execution.
Each OS has its own set of machine dependent features, e.g., interrupt
handlers. In other words, each OS uses the hardware in different ways.
When an OS crashes or it is penetrated by a hacker, the effects of this situation
should not propagate to other OSs in the same hardware.
There should be no way for a malicious user in a VM to get access to the data
or functions of another VM.

5.4 Solution
Define an architectural layer that is in control of the hardware and supervises and
coordinates the execution of each OS environment. This extra layer, usually called a
Virtual Machine Monitor (VMM) or Hypervisor presents to each operating system a
replica of the hardware. The VMM intercepts all system calls and interprets them
according to the originating OS.

Structure
Figure 13 shows a class diagram for the Virtual Machine Operating System
Architecture (VMOS). The VMOS contains one VirtualMachineMonitor and
multiple Virtual Machines (VM). Each VM can run a Local Operating System
(LocalOS). The Hypervisor supports each LocalOS and is able to interpret its system
calls. As a LocalProcess runs on a LocalOS the VM passes the OS system calls to the
Hypervisor, which executes them in the hardware.

83

V M O S

Virtua lM ach ineM onitor V M

LocalO SSupports *

*

1 *

*

*

C an run

<<controls>>

H ardware
1

LocalP rocess
*

Figure 13. Class diagram for the Virtual Machine Operating System pattern

Dynamics
In Figure 14 a local process wishing to perform a system operation uses the following
sequence:

A LocalProcess makes an OS call to the LocalOS.
The LocalOS maps the OS call to the VMM (by executing a privileged
operation).
The VMM interprets the call according to the originating OS from where it
came and it executes the operation in the hardware.
The VMM sends return codes to the LocalOS to indicate successful instruction
execution as well as results of the instruction execution.
The LocalOS sends the return code and data to the LocalProcess.

5.5 Implementation
Select the hardware that will be virtualized. All of its privileged instructions
must trap when executed in user mode (this is the usual way to intercept
system calls).
Define a representation (data structure) for describing OS features that map to
hardware aspects, e.g. meaning of interrupts, disk space distribution, etc. and
build tables for each operating system to be supported. .
Enumerate the system calls for each supported OS and associate them with
specific hardware instructions.

84

<<actor>>
:LocalProcess

OS call

:LocalOS :VirtualMachineMonitor :Hardware

OS call

interpretCall

performOperation

return(…)

return(…)

Figure 14. Sequence diagram for performing an OS call on a virtual machine

5.6 Example resolved
In the example of Figure 15, two companies using Windows and Linux can execute
their applications in different virtual machines. The VMM provides a strong isolation
between these two execution environments.

V M M (v ir tu a l m a c h in e m o n ito r)

h a rd w a re

W in d o w s
X P

L in u x

V M 1 V M 2

Figure 15. Virtual Machine OS example

5.7 Variants
This architecture is orthogonal to the other three architectures discussed earlier and
can execute any of them as local operating systems.

KVM/370 was a secure extension of VM/370 [Gol79]. This system included a
formally verified security kernel and its VMs executed in different security levels, e.g.
top secret, confidential, etc. In addition to the isolation provided by the VMM, this
system also applied the multilevel model secure flow control.

85

5.8 Known uses
IBM VM/370 [Cre81]. This was the first VMOS, it provided VMs for an
IBM370 mainframe.
VMware [Nie00]. This is a current system that provides VMs for Intel x86
hardware.
Solaris10 [Sun04] calls the VMs “containers” and one or more applications
execute in each container.
Connectix [Con] produces virtual PCs to run Windows and other operating
systems.
Xen is a VMM for the Intel x86 developed as a project at the University of
Cambridge, UK [Bar00].

5.9 Consequences
The Virtual Machine Operating System Architecture Pattern has the following
advantages:

The VMM intercepts and checks all system calls. The VMM is in effect a
Reference Monitor [Fer01] and provides total mediation on the use of the
hardware. This can provide a strong isolation between virtual machines
[Ros05].
Each environment (VM) does not know about the other VM(s), this helps
prevent cross-VM attacks.
There is a well-defined interface between the VMM and the virtual machines.
The VMM is small and simple and can be checked for security.

The Virtual Machine Operating System Architecture Pattern has the following
liabilities:

All the VMs are treated equally. If one needs virtual machines with different
levels of security, it is necessary to build specialized versions as done in
KVM370 (see Variants).
Extra overhead in use of privileged instructions.
It is rather complex to let VMs communicate with each other (if this is
needed).

5.10 Related patterns
Reference Monitor [Fer01]. As indicated, the VMM is a concrete version of a
Reference Monitor.
The operating system patterns in [Fer02] and [Fer03] can be used to
implement the structure of a VMOS.

86

Acknowledgements
This work was supported by a grant from the US Dept. of Defense (DISA),
administered by Pragmatics, Inc. The comments of our shepherd, Raphael Y. de
Camargo, were very useful in improving this paper. Finally, further improvements
came from the members of the Writers’ Workshop at SugarLoafPLoP 2005.

References
[Bar00] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.
Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of virtualization”, Procs. of
the ACM Symp. on Operating System Principles, SOSP’03.

[Bus96] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal. Pattern-
Oriented Software Architecture: A System of Patterns, Volume 1. Wiley, 1996.

[Con] Connectix Corp., “The technology of virtual machines”, white paper, San
Mateo, CA, http://www.connectix.com

[Cre81] R. J. Creasy, “The origin of the VM/370 Time-Sharing System”, IBM
Journal of Research and Dev., vol. 25, No 5, 1981, 483-490.

[Ext] Extreme Networks, http://www.extremenetworks.com/products/OS/

[Fer01] E.B.Fernandez and R. Pan “A pattern language for security models”,
http://jerry.cs.uiuc.edu/~plop/plop2001/accepted_submissions/

[Fer02] E.B.Fernandez, "Patterns for operating systems access control", Procs. of
PLoP
2002, http://jerry.cs.uiuc.edu/~plop/plop2002/proceedings.html

[Fer03] E. B. Fernandez and J. C. Sinibaldi, “More patterns for operating system
access control”, Proc. of the 8th European conference on Pattern Languages of
Programs, EuroPLoP 2003, http://hillside.net/europlop, 381-398.

[Gam95] E. Gamma, R. Helm,R. Johnson, and J. Vlissides, Design patterns –
Elements of
reusable object-oriented software, Addison-Wesley 1995.

[Gol79] B.D. Gold, R.R. Linde, R.J. Peeler, M. Schaefer, J.F. Scheid, and P.D. Ward,
“A security retrofit of VM/370”, Procs. of the Nat. Comp. Conf. (NCC 1979), 335-
344.

[Har02] H. Hartig, “Security Architectures Revisited”, Proceedings of the 10th ACM
SIGOPS European Workshop (EW 2002), September 22—25 2002, Saint-Emilion,
France, http://os.inf.tu-dresden.de/papers_ps/secarch.pdf

[Nie00] “Examining VMware”, Dr. Dobbs Journal, August 2000, 70-76.

[OS2] http://www-306.ibm.com/software/os/warp/

87

[Pfl03] C.P.Pfleeger, Security in computing, 3rd Ed., Prentice-Hall, 2003.
http://www.prenhall.com

[Pri04] T. Priebe, E.B.Fernandez, J.I.Mehlau, and G. Pernul, "A pattern system for
access control ", in Research Directions in Data and Applications Security XVIII, C.
Farkas and P. Samarati (Eds.), Procs of the 18th. Annual IFIP WG 11.3 Working
Conference on Data and Applications Security, Sitges, Spain, July 25-28, 2004, 235-
249.

[PalmOS] http://www.palmos.com/dev/tech/overview.html

[Phi03] Philips, “Current Trends in Operating System kernels”, July 2003.
http://db.ilug-bom.org.in/lug-authors/philip/docs/os-tech.html

[QNX] QNX Software systems, http://www.qnx.com

[Ros05] M. Rosenblum and T. Garfinkel, “Virtual machine monitors: Current
technology and future trends”, Computer, IEEE May 2005, 39-47.

[Sch00] D. Schmidt, M. Stal, H. Rohnert, and F. Buschmann, Pattern-oriented
software
architecture, vol. 2 , Patterns for concurrent and networked objects, J. Wiley & Sons,
2000.

[Sha02] J.S.Shapiro and N. Hardy, “EROS: A principle-driven operating system from
the ground up”, IEEE Software, Jan./Feb. 2002, 26-33. See also: http://www.eros-
os.org

[Sil05] A. Silberschatz, P. Galvin, G. Gagne, Operating System Concepts (7th Ed.),
John Wiley & Sons, 2003.

[Sun04] http://www.sun.com/software/whitepapers/solaris10/s10security.pdf

[Sym01] http://www.symbian.com/developer/

[Tan01] A. Tanenbaum, Modern Operating Systems (2nd Ed.), Prentice Hall, 2001.

[Yod97] J. Yoder and J. Barcalow, "Architectural patterns for enabling application
security". Procs. PLOP’97, http://jerry.cs.uiuc.edu/~plop/plop97 Also Chapter 15
in Pattern Languages of Program Design, vol. 4 (N. Harrison, B. Foote, and H.
Rohnert, Eds.), Addison-Wesley, 2000.

88

Architectural Patterns to Secure Applications with an
Aspect Oriented Approach.

Christian Paz-Trillo1, Vladimir Rocha1

1Department of Computer Science – Institute of Mathematics and Statistics
University of São Paulo

Rua do Matão, 1010 – 05508-090 São Paulo, SP

{cpaz, vmoreira}@ime.usp.br
Abstract. Today, security problems involving software are serious. Most se-
curity problems are caused by attacks through the so-called “security holes”.
Security holes usually appears because given that security is a crosscutting con-
cern, its Object-Oriented implementation results in systems tough to understand,
difficult to evolve and with intruder code in application domain classes. Aspect
Orientation is a technique created to deal with this kind of crosscutting con-
cerns, and there is some work using it for security implementation. We present
two security patterns with an Aspect-Oriented approach and show how they in-
teract with the application layer. These patterns handle functionality access and
put on the security issues on the architectural application level.

1. Introduction

The variety and increasing number of system attacks have generated serious problems
involving from subjective issues, as trust in the system, to objective issues as data in-
tegrity and privacy [Redwine and Davis, 2004]. Recently, in the software engineering
area, it has been recognized that the majority of these attacks are addressed to the so-
called “security holes” of a system. The significant characteristic of all these systems
is that security matters were considered only in latest phases of software development
process [Halkidis et al., 2004].

When security fixes are done in latest stages of the development process, fixed vulnerabil-
ities can remain hidden for all previous stages, making it difficult to identify the security
holes. For example, in the implementation phase it was necessary to add a method provid-
ing data encryption and this method which was not specified in the system architecture.
In this case, analysts might never know about the existence of an encryption service. To
prevent this kind of problem, security should be addressed in a phase where all the sys-
tem components and functionalities are being modeled, i.e., in system architecture phase
[Bass et al., 2003].

The most used paradigm to model the system architecture is the Object-Oriented (OO) ap-
proach, allowing the decomposition of complex systems in modular and functional com-
ponents found in the system domain. However, the OO paradigm has some deficiencies
when modeling concerns (functionalities) that interact with different system components.
These are called crosscutting concerns. Security is a classical example of this kind of
functionality.

One of the OO’s extensions that resolve the crosscutting concern problem is the Aspect-
Oriented approach. In this technique, behavior that affects the different classes is en-
capsulated in modular units, named Aspects, that improves clarity and understanding of
crosscutting concerns. We show this approach in the next Section.

89

In this paper we present two patterns that will help to construct secure applications
based in the aspect-oriented paradigm, to encapsulate the security and improve its leg-
ibility. The first pattern presented is responsible for access control to system func-
tionalities. The second pattern presented is responsible for applying security in each
system’s functionality. Finally, we show how the interaction of these two patterns
present solutions for the majority of security problems defined in other researches
[Scott, 2004, Redwine and Davis, 2004, Win et al., 2001].

These patterns had been implemented and applied to an Online Accounting System
(CETAV). In this system, small and medium size companies register purchases and sells,
and they can obtain prediction reports about future sells. We will use this system to illus-
trate the pattern examples.

2. Aspect Orientation

Aspect-Oriented approach [Elrad et al., 2001] is a recent technique that resolve crosscut-
ting concerns. Each concern is encapsulated in a modular unit, called Aspect, which has
associated behaviors that affect multiple classes. With that, aspects improve modulariza-
tion, present high cohesion and have a behavior similar to that of a class in the Object
Oriented approach. An aspect also has attributes, methods, etc.

2.1. Aspect-Oriented Programming

Aspect-Oriented Programming (AOP), allows for easier implementation code than
Object-Oriented Programming (OOP) when dealing with concerns that are traversal to
application code. It is important to point that AOP complements the OOP and in any way
replace it. In AOP there are four basic and essential components [Kiczales et al., 2001]:

• Join-Point: Well-defined points in a program execution where a behavior will be
added. This points might be constructor class, methods, exceptions, etc.

• Pointcut: Group a set of join points based on logics operator criteria.
• Advice: Responsible to add the behavior that will be executed when a point is

intercepted in the program. An advice can capture one or more Pointcuts.
• Aspect: Contain the three components mentioned above. It has a behavior similar

to that of a class and it is responsible to encapsulate the crosscutting functionalities
that otherwise would be spread across the system.

It is important to notice that Advice component can intercept code in three different mo-
ments:before is executed before the method call, around is like before but it allows to
cancel the method execution and, after is executed when finalized the method call.

Inside the advice, depending of the AOP languages, it is possible to have access to param-
eters of the intercepted method and to attributes or other methods of the class that contains
the intercepted method.

2.2. Aspect-Oriented Modeling

Aspect-Oriented Modeling (AOM) provides the way to describe and communicate the
specification of crosscutting concerns at analysis and design level. We use in our dia-
grams an extension to UML that avoid to change its metamodel and support AOM only
using UML standard extension mechanism [Groher and Schulze, 2003]. In this exten-
sion, the notation includes three essential packages: base package containing the appli-
cation domain classes intercepted by the aspects; connector package that encapsulates
the underlying core concepts implemented in the technology to be used (like AspectJ or
AspectC++), that means, this package is responsible to intercept the points where will be

90

implemented an behavior and; aspect package containing the crosscutting concern and
the implementation of the behavior associated to the intercepted points. Like Figure 1
shows, base and aspect package have not direct connection and the link between them is
given only by the connector.

Connector

<<pointcut>>

Pointcut

 pointProtClass1Met1(ProtClass1.method1)

<<advice>>

Advice

 <<when>> advProtClass1Met1(Aspect.applyBehavior)

<<use>> <<use>>

Base Package

ProtClass1

 method1()

Aspect Package

Aspect

 applyBehavior()

Figure 1: Aspect Oriented Modeling Example.

3. Patterns

In this section we describe two Aspect-Oriented architectural patterns that model se-
curity access control to application functionalities and put on the security issues on
the architectural application level. This patterns are presented in POSA1 format
[Buschmann et al., 1996] and the implementation code use AspectJ [Kiczales et al., 2001]
for the sake of simplicity.

3.1. Access Policy Control Pattern

The Access Policy Pattern provides a mechanism to abstract and encapsulate, in a modular
unit, the protection against inappropriate access to system functionalities, involving in this
process the organization’s policies.

3.1.1. Example

Some CETAV functionalities should be only accessed by certain groups of users according
to an organizational policy. For instance, electronic documents can be delivered only by
users registered with the Accountant Role in the system. Therefore, other users should
not be able to use this functionality.

In software development phases, these kind of situations, generally involve system func-
tionality accesses, are very difficult to model and to implement. This is because the func-
tionality is spread among various classes. For example, Figure 2 shows that the CETAV
sell functionality is spread in four classes (shaded ellipses) that include GUI, Application
Domain and Database layers. If all these four classes must control the access in order to

1Pattern-Oriented Software Architecture.
91

allow or deny the execution of a functionality, this control will be spread in these classes
with consequent problems including tracking, difficult classes reutilization, high coupling
between domain and security classes, and others.

Sell UI

Sell Logic

DB Facade

Item

Sell Functionality

Figure 2: CETAV Sell Functionality spread among various classes.

3.1.2. Context

The Access Policy Control Pattern can be used whenever an application embeds (or re-
quires to embed) security code to restrict access to system functionalities. This restriction
can be handled in any way, but the main idea is to protect against the inappropriate use
of system functionalities of inadequate users. It is important to highlight that this pattern
focuses on the application level of an architectural view of the system.

3.1.3. Problem

Imagine you are designing a system that needs to perform access validations in different
parts of the program. This is very common in systems with various users with different
roles and permissions. These users want to access some functionalities but these func-
tionalities are restricted for certain roles through the access policies established by the
organization.

The design of the system, specially the access policy control, has to consider the following
forces:

• The validation needs to be performed in a specific place and in a unified way,
allowing maintainability and reusability of security code.

• Such systems need to establish an access control to system functionalities based
on its organizational policies rules.

• The addition, modification and removal of access policies should be easily done
because a system is related with organizational policies which can vary in time.

• How to keep track security validations through the system, allowing to identify
security access holes.

92

3.1.4. Solution

Functionalities are accessed by method invocations. The solution is based on intercepting
method invocations of the functionalities to be secured, using the principles of aspect
oriented programming explained in Section 2.1.

The solution requires that each invocation to methods that need protection is intercepted.
All these interceptions will be validated, against the organizational policies, in an aspect.
The access validation code is abstracted from the application code by putting it into an
external class (Policy Figure 3) that match the method intercepted with the policy for this
method and returns to the caller if it is allowed or denied its access.

3.1.5. Structure

Application Domain

ProtClass1

 method1()

 method2()

ProtClass2

 method1()

 method2()

Policy Control Package

PolicyGuard

 policyControl()

Abstract Policy

 hasAccess(roles)

Concrete Policy

Connector

<<pointcut>>

Pointcut

 policyControl(ProtClass1.method1)

 policyControl(ProtClass1.method2)

 policyControl(ProtClass2.method2)

<<advice>>

Advice

 <<around>> policyControl(PolicyGuard.policyControl)

<<use>> <<use>>

PoliciesFactory

 getPolicy(method)

Figure 3: Access Policy Control Pattern.

Participants

We describe the participants involved in the structure of Figure 3.

Protected classes: Represent any classes in the application domain that require a control
when accessing its methods.

Policy: Validates whether the access to a functionality must be allowed or denied. We
used the Strategy Pattern2 because this validation can be implemented in different
ways.

2Strategy defines a family of algorithms, encapsulate each one, and make them interchangeable. Strategy
lets the algorithm vary independently from clients that use it [Gamma et al., 1994].

93

PoliciesFactory: Given a method, it returns the Policy object for it. We used the Factory
Method Pattern3 to create the Policy objects.

PolicyGuard: This aspect intercepts method invocations at Protected classes. Intercep-
tion code is executed before method code, and it is able to cancel method execution
whenever the access is denied.

3.1.6. Implementation

1 Aspect PolicyGuard {
2

3 pointcut policyControl() : ProtClass1.method1() ||
4 ProtClass1.method2() ||
5 ProtClass2.method2() ;
6

7 around() : policyControl() {
8 Collection roles = Session.getCurrentUserRoles();
9 String method = getMethodID();

10 Policy policy = PoliciesFactory.getPolicy(method);
11 boolean allowed = policy.hasAccess(roles);
12 if(allowed) {
13 proceed();
14 } else {
15 //Inform the user that is access attempt was denied
16 Session.registerAccessDenied(Session.getCurrentUser(),
17 method);
18 }
19 }

Figure 4: Algorithm for the PolicyGuard aspect.

Figure 4 shows the intercepted behavior to be executed before the method. Methods be-
ing intercepted are listed in the pointcut construction (Lines 3-4). In lines 7-9, the user
roles and the policy associated to the method are obtained, getMethodID function returns
a string that uniquely identifies the intercepted method. This string is recognized by Poli-
ciesFactory which returns a Policy object capable of verifying permissions. The Policy
validates if any of the user roles contains the minimum permission required to access the
method (Line 10). If it is allowed, proceed method lets the system continues its normal
flow (Line 12). Otherwise, the user must be informed that his access attempt was denied.
Finally, in this code, any procedure to deal with access denied can be included(Line 15).

Like we describe in Section 3.1.5, the Policy class was implemented using the Strategy
Pattern. There are some strategies that could be used to validate the access to a certain
functionality, for example: Access Matrix Control (ACM) [Harrison et al., 1976] and
Basic Role Control (BRC). The former use a matrix users versus resources that define
the rights allowed to a certain system user. The latter, specifies a set of basic roles4 with
access to each functionality. Given a role, it is verified whether one of its sub-role is
one of the specified basic roles for the policy. The basic role found will be used by the
system instead of the original user role, ensuring the principle of least privilege proposed
by [Saltzer and Schroeder, 1975].

3Factory Method defines an interface for creating an object, but let subclasses decide which class to
instantiate [Gamma et al., 1994].

4Given a Role hierarchy, a basic role is a role with no sub-roles [Sandhu et al., 1996].
94

3.1.7. Example Resolved

CETAV was originally an OO system without security mechanisms for functionality ac-
cess. It is important to notice that this aspect-oriented implementation, is very useful
when having a system lacking of control in functionality access. It introduces minimal
changes in application code and in original system architecture, because it just adds an
independent component outside this original architecture.

In order to validate the access to functionalities we used the PolicyGuard aspect, based
on the Protected System Pattern [Halkidis et al., 2004]. This pattern requires a com-
ponent to manage users and their roles. Such component could be implemented using
the RBAC model [Sandhu et al., 1996] and hold in an instance of the Session Pattern
[Yoder and Barcalow, 1997] making this information available to the PolicyGuard.

Figure 5 shows the class diagram of the solution. When addNewSell(Sell) or re-
moveSell(Sell) methods of the SellModule class are called by the CETAV system, a Poli-
cyGuard aspect intercepts them in order to allow or deny the access, so users must pass
through this guard to access these functionalities. The interception point is declared in
the Pointcut and the steps that follow the interception was explained in the algorithm
presented in Section 3.1.6.

CETAV

SellModule

 addNewSell(Sell)

 removeSell(Sell)

Policy Control Package

PolicyGuard

 policyControl()

Policy

 hasAccess(roles)

BRC Policy

Connector

<<pointcut>>

Pointcut

 policyControl(SellModule.addNewSell)

 policyControl(SellModule.removeSell)

<<advice>>

Advice

 <<around>> policyControl(PolicyGuard.policyControl)

<<use>> <<use>>

PoliciesFactory

 getPolicy(method)

Figure 5: Access Policy Control applied in CETAV.

3.1.8. Known Uses

We implemented the Access Policy Control Pattern in CETAV system. CETAV’s policy
control was originally implemented with an object-oriented approach using security pat-
terns [Yoder and Barcalow, 1997]. After applying this aspect-oriented pattern, we mea-
sured cohesion and coupling using metrics proposed by [Tsang et al., 2004]. The aspect-
oriented implementation of access policy control shows being more cohesive than the

95

object-oriented one. Domain classes’ coupling was reduced, because they no longer in-
clude policy control code, since it was extracted to PolicyGuard.

The Ariel Project [Pandey, 2005] presents an alternative to enforce security validation
through a declarative policy language to specify a set of constraints on accesses to re-
sources [Pandey and Hashii, 1999]. It provides fine-grained access control for mobile
java programs applying a set of code transformation tools enforcing these constraints di-
rectly on the code, similar to aspect-oriented approach.

In [Westphall and Fraga, 1999] the authors presented an authorization scheme for large
scale networks that involves programming models and tools represented by Web, Java
and CORBA for security [Object Managment Group, 2002]. The access validation is
provided by having CORBA interceptor classes that capture method calls applying au-
thorization defined by control policies. These ideas were implemented in JaCoWeb
[Fraga, 2005].

3.1.9. Consequences

The Access Policy Control Pattern has some important benefits:

• Access validation to system functionalities is encapsulated by the Access Policy
Control Pattern in the PolicyGuard Aspect, so this validation is not spread among
the application domain classes as in OO approach is usually done. Alternatives,
like [Fernandez et al., 2005], also separate this validation mapping each use case,
that needs to enforce access, to a new class that control this validation. This ap-
proach introduces some complexity in the design model and consequently in the
implementation stage.

• Legacy systems can have this pattern applied to establish an appropriate security
control. Policy class perform the validation of an access, based in the organiza-
tional policies.

• Given the policy encapsulation offered by the pattern, incorporation of new poli-
cies or modification of existing ones has no direct impact in system architecture.
Only will be necessary to add (or modify) a policy in the Policy class and add the
interception point in the PolicyGuard Aspect.

• Interception points of the methods whose access is controlled will be centralized
in the Access Policy Control Pattern. This helps to identify security holes, and to
keep track of security validations through the system.

The liabilities of this pattern are as follows:

• Our approach is more complex because it controls security across applications.
The authorization rules must be applied to all applications that access some shared
data.

• Aspect-Orientation, nowadays, is less used than Object-Orientation. In some cases
our approach could not be applied because Aspect-Orientation techniques are not
available.

• A general Aspect-Orientation drawback is that the code inside the aspect is
very coupled with the intercepted code minimizing the reusability of the aspect
(PolicyGuard). In the other hand the security specific code (Policyfactory and
Policy classes) can be reused due to it is implemented outside the aspect.

96

3.1.10. See also

Access Policy Control includes features of Protected System and Policy Pattern, de-
scribed in [Blakley and Heath, 2004], as well as Checkpoint and Roles Pattern proposed
by [Yoder and Barcalow, 1997].

Access Policy Control Pattern uses the Session Pattern [Yoder and Barcalow, 1997] to
store and get user roles.

A Policy Guard is an aspect-oriented instance of Reference Monitor
[Fernandez and Pan, 2001].

3.2. Security Services Pattern

The Security Services Pattern provides a mechanism to protect system resources through
a set of security services. Each one of these services is abstracted and encapsulated in
a modular way providing the means to clarify what resources are protected by what ser-
vices.

3.2.1. Example

The CETAV system, in order to send a document, requires document encryption and
registration of the action for a future audit. Suppose that this system was constructed with
an OO approach and with two security services (authenticate, audit) spread throughout the
code. Like software complexity increased, minimal changes to these services produced
very high costs, in time, to discover and change the classes involved (shaded ellipses in
Figure 6(a)). Another problem arise when new service is add (encrypt the document), the
new code must ensure that this new service does not affect the old security functionalities
and will have to spread this new security services throughout the classes (shaded boxes in
Figure 6(b)).

Class 1

Class 2

Class 4

Class 3

Security Service 1

(a) Tracking domain classes involving a certain
security service

Class 1

Class 2

Class 4

Class 3

Security Service 1

NEW Security Service

(b) Add a new security service involving various
domain classes

Figure 6: Problems raised in CETAV Object-Oriented approach.

3.2.2. Context

The Security Services Pattern is useful when it is necessary to apply a set of related
security services on a application level functionalities. Each one of these services are

97

encapsulated in a modular way.

3.2.3. Problem

Imagine you are modeling a system where you need to apply security services to methods
that need to protect its resource confidentiality and integrity. For example, suppose that
a system needs to protect some data and this protection is to audit the actions upon the
resource, encrypt it and communicate through a secure communication channel when
interact with another system. We can expect that some methods only audit the data, others
only encrypt the data and others do both.

Now, suppose that you need to add in such systems a new security services, like validate
that a sent resource doesn’t have any sensible data (Input/Output validation) which might
open security holes in the system.

We can see, from an architectural and design point of view, that this protection involves
a set of related security services and it is difficult to track which security services were
applied to what methods. This happen because the security is spread throughout the
system functionality.

The design of the system, specially the security services, has to consider the following
forces:

• The security service applied in a system functionality should be centralized in
order to improve the reusability of the application domain code and the security
service service.

• The addition and modification of a security service should be easy because new
security holes can be discovered very frequently.

• Easily keep track which system functionalities are secured by each security ser-
vice.

3.2.4. Solution

All the functionalities that need a certain security service are intercepted by method invo-
cations using the principles of aspect oriented programming explained in Section 2.1.

The solution requires that each security service will be in a module that control the inter-
ceptions and can apply the behavior associated to it. With this approach, we ensure that
the service implemented is highly cohesive because all the actions to that service are in
one module and totally modular because there are not relationship with others modules.

3.2.5. Structure

Participants

We describe the participants involved in the structure of Figure 7.

Protected Class Represent any clas in the application domain that requires a security
service over their methods.

Security Package Consists of a general implementation of security concerns. It might
be an external library or an application subsystem.

98

Connector

<<pointcut>>

Pointcut

 secObj1Met1(ProtClass1.method1)

 secObj2Met1(ProtClass2.method1)

<<advice>>

Advice

 <<before>> secObj1Met1(applyService1)

 <<before>> secObj2Met1(applyService2)

<<use>> <<use>>

Application Domain

ProtClass1

 method1()

 method2()

ProtClass2

 method1()

 method2()

Package Security Service

Security Package

Communicate Time

Encrypt Authenticate Audit

Validate I/O

Aspect Package

Encrypt

 applyService1()

Authenticate

 applyService2()

Validate I/O

 applyService1()

Communicate

 applyService2()

Time

 applyService1()

Audit

 applyService2()

Figure 7: Security Services Pattern.

SecurityService (Encrypt, Communicate, etc.) Applies a particular security service in
a functionality of the system. Any of these aspects act as the Protected System
Pattern.

Aspects Package It is defined by a set of SecurityService aspects. It represents the way
the security is included in the application domain.

3.2.6. Implementation

Figure 8 shows the implementation of two security services in an existing module of
CETAV. The original code was not altered, the security services were implemented in the
aspect code that intercepts the original methods.

The aspects Audit and Encrypt apply respectively auditing (Line 1) and encryption (Line
11) services to the send() method of the SendModule class in Figure 9. The send method
is intercepted in the pointcut construction (Lines 2 and 12). The Audit service code (se-
cure send method), which is called before the send method. It logs the send action, storing
the destiny, the file name and the date and time when this action occurred (Lines 5 to 7).
The Encrypt service encrypts the file with an external library (Line 17).

As it can be seen in this example, the original code is not modified and the security
specific code can remain encapsulated in specialized classes. The relationship between
the application domain and the security services is done inside the aspect and is the only
highly coupled code.

99

1 public Aspect Audit {
2 pointcut secure_send() : SendModule.send(destiny, file);
3

4 before() : secure_send() {
5 InetAddress destiny = getParameter("destiny");
6 File file = getParameter("file");
7 logSend(destiny, file, session.getDate("today"));
8 }
9 }

10

11 public Aspect Encrypt {
12 pointcut secure_send() : SendModule.send(destiny, file);
13

14 before() : secure_send() {
15 File file = getParameter("file");
16 Key theKey = Authenticate.getKey(session.getUserKey());
17 file = Encrypt.encrypt(file, theKey);
18 }
19 }

Figure 8: Applying Security Services in CETAV.

3.2.7. Example Resolved

This pattern, applied to CETAV, was very useful to trace the functionalities that a service
intercept and to separate the security code from the business logic code. Also, it allowed
us to add a new service in a easy way. In order to resolve the problems presented in the
example, the aspects Encrypt and Audit can be used to intercept method invocations that
need to apply these security services.

Figure 9 shows the class diagram of the solution. The SendModule class contains the
functionality to be secured. When send method defined in the SendModule class is called
by the CETAV system, the Encrypt and the Audit aspects intercept it. The Encrypt
aspect encrypts the file passed as a parameter using the private key generated by the class
Authenticate. This encryption is provided by an Encrypt class of an external library.
The Audit aspect registers this sending, storing the destiny and the date in a log. The
interception point is declared in the Pointcut and the steps that follow the interception
was explained in the algorithm presented in Section 3.2.6.

3.2.8. Known Uses

This pattern is often implemented as a set of security services, where each one might use
a pattern to deal with its respective service.

We implemented the Security Services Pattern in CETAV system. The encryption and
authentication services were originally implemented by CETAV with an object-oriented
approach. Our aspect-oriented implementation extracted the spread security code, reduc-
ing the system domain coupling and incrementing its cohesion.

The Lumbago [Koshiba, 2001] system is an application used to maintain information
records about patients in healthcare institutions. The information maintained by the sys-
tem is highly confidential so it needs to be secured, and it applied encryption mechanisms
to secure it. The original application was built with no encryption in mind. The method
used was to create an aspect that abstracts the security code taking care of this service,
minimizing the impact on the original implementation.

100

Connector
<<pointcut>>

Pointcut

 secure_send(SendModule.send)

<<advice>>

Advice

 <<before>> secure_send(Encrypt.secure_send)

 <<before>> secure_send(Audit.secure_send)

<<use>> <<use>>

CETAV

SendModule

 send(destiny,file)

Security Services Package

Security Package

Encrypt Authenticate Audit

Aspect Package

Encrypt

 secure_send()

Audit

 secure_send()

Figure 9: Security Services applied in CETAV.

3.2.9. Consequences

The Security Services Pattern has some important benefits:

• It is easy to identify which functionalities of the system have a certain type of
security service. For each service there is an aspect that take care and encapsulate
the resource protection.

• New types of security services can be added easily, as it was described in the
implementation example. Each security service is independently implemented of
the others, because each one is encapsulated in its own aspect. To provide a new
security service we only need to model a new aspect that provide the behavior
necessary to protect the resource, to make it capture the code being secured and,
to implement the security specific code.

The liabilities of this pattern are as follows:

• It is difficult to track which types of security services were applied to a system
functionality. This is due to the separation of the services into different aspects.

• If the system already contains some implemented security mechanism, the inser-
tion of this pattern might be difficult since it will be necessary to extract all the
security code, spread among the domain classes, and encapsulate them in their
respective aspects. However, applying this pattern will be relatively simple if the
system does not contain a security mechanism.

3.2.10. See also

Communicate aspect uses the Secure Access Layer [Yoder and Barcalow, 1997] and the
Secure Communication Pattern [Blakley and Heath, 2004, Braga et al., 1998] in order to
communicate with third parties in a secure channel.

101

Authenticate aspect uses the Session Pattern [Yoder and Barcalow, 1997] to store data
information related to authentication, like keys or credentials.

Validate I/O aspect uses the Object Filter Pattern [Hays et al., 2000] to filter undesirable
data.

Encrypt aspect uses the Information Secrecy Pattern and Message Integrity
[Braga et al., 1998] in order to keep the data integrity and secrecy.

Each security service aspect acts as a Protected System Pattern [Halkidis et al., 2004].

4. Integrating the Patterns as an Architecture

The architecture represents a system from a global point of view and defines the general
features that will be used in the different phases of the development process. These fea-
tures are defined in an abstract level, and it makes possible to understand the system being
modeled. Being the security an important issue, it is recommendable to contemplate it in
this model [Fernandez et al., 2005].

For this reason, we integrated the Access Policy Control Pattern and the Security Ser-
vices Pattern to show how they can be integrated in the architectural model of a sys-
tem. This integration is needed, because as shown in other researches [Gao et al., 2004,
McGraw and Viega, 2002] many security problems arise when it is not dealt as a part of
a system since initial development phases.

Security Service Package

Aspect Package

Session Package

Session Facade

Communicate TimeEncrypt

Authenticate Audit Validate I/O

Application Domain

ProtClass1 ProtClass2

<< use >>

<< use >>

<< use >>

Security Package

implemented or
3rd party

Policy Control Package

PolicyGuardFactoryPolicies

 Policy

<< use >>

Figure 10: Architecture.

Figure 10 presents the Access Policy Control Pattern and instances of the Security Ser-
vices Pattern. They do not interact directly because methods intercepted by the former
need not necessarily be intercepted by the latter. To interact with the application both

102

patterns can use an instance of the Session pattern [Yoder and Barcalow, 1997]. The
Session pattern Facade is used to encapsulate user information and some system config-
uration values, such as current session time or user roles. It is important that the aspects
have a centralized point of access to the user and system information to try to reduce the
coupling of the aspect code with the application.

A clear advantage of this architecture is that the implementation of security issues is
separated of the application domain, being the aspects the connection point between them.
If security is not defined in an architectural model it becomes difficult to get these benefits
[Fernandez et al., 2005].

5. Conclusions

Security is a crosscutting concern problem. This motivated us to use the aspect-oriented
technique that deals with this kind of problem better than the object-oriented approach.
Based in this approach, we proposed two architectural patterns: the Access Policy Control
pattern and the Security Services pattern.

The Access Policy Control pattern ensure that all functionalities accesses are controlled
by a set of role-based organizational policies. This security control is encapsulated in a
modular unit improving the security code reusability.

The Security Services pattern allows to apply a set of security services, like encryption and
authentication, to any functionality of the system that requires it. Each of these security
services are centralized in a modular unit, improving the application and security code
reusability.

Finally, we interrelate these two patterns in order to cover the principal security problems
found in many systems, that normally arise when security is not considered as a part of a
system in the architecture model.

Acknowledgments

We would like to thank our colleagues at University of São Paulo for their comments
and suggestions, specially to Eduardo Guerra who provided valuable guidance at the ar-
chitecture specification. Eric Ross helped us implementing the Patterns in CETAV. We
would also like to mention the pertinent and focused suggestions given by Eduardo B.
Fernandez, our shepherd in the final phase of PLoP submission.

References

[Bass et al., 2003] Bass, L., Clements, P., and Kazman, R. (2003). Software Architecture in
Practice. Addison-Wesley Professional, second edition.

[Blakley and Heath, 2004] Blakley, B. and Heath, C. (2004). Security Design Patterns. The
Open Group.

[Braga et al., 1998] Braga, A., Rubira, C., and Dahab, R. (1998). Tropyc: A pattern lan-
guage for cryptographic software. In Proceedings of the 5th Conference on Patterns
Language of Programming (PLoP´98).

[Buschmann et al., 1996] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., and
Stal, M. (1996). Pattern-Oriented Software Architecture, A System of Patterns. John
Wiley & Sons Ltd, Chichester, England.

103

[Elrad et al., 2001] Elrad, T., Filman, R., and Bader, A. (2001). Aspect-oriented program-
ming: Introduction. Commun. ACM, 44(10):29–32.

[Fernandez and Pan, 2001] Fernandez, E. and Pan, R. (2001). A pattern language for secu-
rity models. In Proceedings of the 8th Conference on Pattern Languages of Program-
ming (PLoP 01).

[Fernandez et al., 2005] Fernandez, E., Sorgente, T., and Larrondo-Petrie, M. (2005). A
uml-based methodology for secure systems: The design stage. In Third International
Workshop on Security in Information Systems (WOSIS), Miami.

[Fraga, 2005] Fraga, J. D. S. (2005). JaCoWeb project. http://www.lcmi.ufsc.br/
jacoweb/.

[Gamma et al., 1994] Gamma, E., Helm, R., Johnson, R., and Vlissides, R. (1994). Design
Patterns: Elements of Reusable Object-Oriented Software. Adisson Wesley.

[Gao et al., 2004] Gao, S., Deng, Y., Yu, H., He, X., Beznosov, K., and Cooper, K. (2004).
Applying aspect-orientation in designing security systems: A case study. In Proceed-
ings of the Sixteenth International Conference on Software Engineering and Knowl-
edge Engineering, Canada.

[Groher and Schulze, 2003] Groher, I. and Schulze, S. (2003). Generating aspect code from
UML models. In The 4th AOSD Modeling With UML Workshop.

[Halkidis et al., 2004] Halkidis, S., Chatzigeorgiou, A., and Stephanides, G. (2004). A qual-
itative evaluation of security patterns. In Proceedings of the 6th International Confer-
ence, ICICS 2004, Malaga, Spain.

[Harrison et al., 1976] Harrison, M., Ruzzo, W., and Ullman, J. (1976). Protection in oper-
ating systems. Commun. ACM, 19(8):461–471.

[Hays et al., 2000] Hays, V., Loutrel, M., and Fernandez, E. (2000). The object filter and
access control framework. In Proceedings of the 7th Conference on Patterns Language
of Programming (PLoP´00).

[Kiczales et al., 2001] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., and
Griswold, W. (2001). Getting started with AspectJ. Commun. ACM, 44(10):59–65.

[Koshiba, 2001] Koshiba, T. (2001). A new aspect for security notions: Secure randomness
in public-key encryption schemes. In PKC ’01: Proceedings of the 4th International
Workshop on Practice and Theory in Public Key Cryptography, pages 87–103, London,
UK. Springer-Verlag.

[McGraw and Viega, 2002] McGraw, G. and Viega, J. (2002). Building Secure Software:
How to Avoid Security Problems the Right Way. Addison Wesley.

[Object Managment Group, 2002] Object Managment Group (2002). Security service spec-
ification. Technical report, Object Managment Group. (version 1.8).

[Pandey, 2005] Pandey, R. (2005). The ariel project. http://pdclab.cs.ucdavis.
edu/projects/ariel/.

[Pandey and Hashii, 1999] Pandey, R. and Hashii, B. (1999). Providing fine-grained access
control for java programs. In Springer-Verlag, editor, Proceedings of the 13th Confer-
ence on Object-Oriented Programming ECOOP’99, Lecture Notes in Computer Sci-
ence, Lisboa, Portugal.

[Redwine and Davis, 2004] Redwine, S. and Davis, N. (2004). Processes to produce secure
software. Technical report, National Cybersecurity Partnership Task Force Report.

104

[Saltzer and Schroeder, 1975] Saltzer, J. and Schroeder, M. (1975). The protection of infor-
mation in computer systems. Proceedings of the IEEE, 63(9):1278–1308.

[Sandhu et al., 1996] Sandhu, R., Coyne, E., Feinstein, H., and Youman, C. (1996). Role-
based access control models. IEEE Computer, 29(2):38–47.

[Scott, 2004] Scott, D. (2004). Abstracting Application-Level Security Policy for Ubiquitous
Computing. PhD thesis, University of Cambridge.

[Tsang et al., 2004] Tsang, S., Clarke, S., and Baniassad, E. (2004). An evaluation of
aspect-oriented programming for java-based real-time systems development. In Pro-
ceedings of the 7th IEEE International Symposium on Object-oriented Real-time dis-
tributed Computing, Austria.

[Westphall and Fraga, 1999] Westphall, C. and Fraga, J. (1999). Authorization Schemes
for Large-Scale Systems based on Java, CORBA and Web Security Models. In The
IEEE International Conference on Networks, pages 327–334, Brisbane-Queensland,
Australia.

[Win et al., 2001] Win, B. D., Vanhaute, B., and Decker, B. D. (2001). Security through
aspect-oriented programming. In Network Security, pages 125–138.

[Yoder and Barcalow, 1997] Yoder, J. and Barcalow, J. (1997). Architectural patterns for
enabling application security. In Proceedings of the 4th Conference on Patterns Lan-
guage of Programming (PLoP´97), volume 2.

105

Propagação Direcional para Processamento de Imagens

Francisco de Assis Zampirolli1 , Roberto de Alencar Lotufo2 ,
Lucas Padovani Trias1

1Centro Universitário Senac
Av. Eng. Eusébio Stevaux, 823 – 04696–000 – São Paulo, SP

2FEEC – Faculdade de Elétrica e de Computação – UNICAMP
6101 – 13083–970 Campinas, SP

{francisco.zampirolli,lucas.trias}@sp.senac.br, lotufo@unicamp.br

Abstract. This paper describes an extension of a pattern for image processing,
where we consider a propagation direction. This extension may be applied on
many morphological operators like Euclidian Distance Transformation (EDT).
In this work we present simple and efficient ways to implement EDT using the
directional propagation of erosion and decomposition the structuring function
in 3 × 3.

Resumo. Este artigo descreve uma extensão de um padrão por propagação
para processamento de imagens, onde consideramos uma direção de
propagação. Esta extensão pode ser usada em vários operadores morfológicos,
como dilatação, erosão e Transformada de Distância Euclidiana (TDE). Neste
trabalho apresentamos formas simples e eficientes de implementar a TDE usan-
do a erosão por propagação direcional e usando a decomposição da função
estruturante em 3 × 3.

Palavras-Chave: morfologia matemática, desenvolvimento de software, técnicas de
implementação, padrões de algoritmo e programação genérica.

Introdução

Neste artigo falaremos sobre as formas de realizar operações frequentes na área de proces-
samento de imagens. Por se tratar de uma área muito especı́fica, a seguir formalizaremos
alguns conceitos e definições que serão utilizados durante a descrição do padrão.

a) Morfologia Matemática

Uma forma elegante de resolver problemas de processamento de imagens é através da
utilização de uma base teórica consistente. Uma destas teorias é a morfologia matemática
criada na década de 60 por Jean Serra e George Matheron na École Nationale Su-
periéure des Mines de Paris, em Fontainebleau, França. Esta teoria diz que é possı́vel
fazer transformações entre reticulados completos1, os quais são chamados de operadores
morfológicos. Na morfologia matemática existem quatro classes básicas de operadores,
chamados de operadores elementares: dilatação, erosão, anti-dilatação e anti-erosão.

Iremos aplicar a propagação direcional no operador erosão. Estudo análogo pode
ser feito nos demais operadores elementares.

1Um conjunto qualquer com uma relação de ordem é um reticulado completo se todo subconjunto não
vazio tem um supremo e um ı́nfimo. Para detalhes da teoria dos reticulados veja [Birkhoff, 1967].

106

b) Erosão Morfológica

A erosão atribui o menor valor de uma região predefinida (elemento estruturante) ao pixel
que está sendo erodido. Deste modo o fundo da imagem consome as bordas dos objetos
erodindo-os. Matematicamente ela é definida da seguinte forma:

Seja Z o conjunto dos inteiros, E ⊂ Z
2 o domı́nio da imagem e K = [0, k] ⊂ Z

um intervalo de números inteiros representando os possı́veis nı́veis de cinza da imagem.
O operador erosão em nı́veis de cinza invariante por translação, εb : KE → KE (KE, é o
conjunto de funções de E in K), é definido como [Heijmans, 1991]:

∀f ∈ KE, ∀x ∈ E e ∀b ∈ Z
B,

εb(f)(x) = min{f(y)−̇b(y − x) : y ∈ (B + x) ∩E}, (1)

onde B ⊆ E ⊕ E é chamado elemento estruturante, o sı́mbolo ⊕ é chamado soma de
Minkowski, B + x = {y + x, y ∈ B} (translação de B por x) e b é uma função
estruturante definida em B por b : B → Z. Sejam v e t inteiros, definimos t → t−̇v em
K por

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

t−̇v = 0 se t < k e t − v ≤ 0;
t−̇v = t − v se t < k e 0 ≤ t − v ≤ k;
t−̇v = k se t < k e t − v > k;
t−̇v = k ∀v ∈ Z.

Na Figura 2 mostramos um exemplo do efeito da erosão morfológica de uma
imagem binária (com nı́veis de cinza preto e branco) usando a função estruturante
apresentado na Figura 1.

0 0 0
0 0 0
0 0 0

Figura 1: Função estruturante b, com domı́nio 3 × 3

Imagem Original Imagem Erodida

Figura 2: Exemplo de erosão usando a função estruturante a Figura 1

c) Algoritmos que Implementam a Erosão Morfológica

A literatura fala sobre diversos modos de implementar a erosão morfológica.

O mais intuitivo e simples de ser implementado é o algoritmo paralelo. Nele a
imagem (matriz) é varrida em qualquer ordem (inclusive, os pixels podem ser processados

107

de forma paralela), e para cada pixel a vizinhança é verificada aplicando-se a função
estruturante. Esta implementação tem um desempenho baixo já que não utiliza nenhuma
estratégia de otimização.

Buscando um melhor desempenho foram criados dois outros algoritmos o sequen-
cial e o por propagação. No primeiro a imagem é percorrida sequencialmente. O ganho
de desempenho reside no fato de a função estruturante ser dividida em dois e cada metade
da função varrer metade da imagem. A metade superior da função estruturante varre a
imagem descendo e a metade inferior subindo.

O algoritmo por propagação centra seu funcionamento em processar apenas os
pixels que realmente fazem parte da borda que será erodida. Com isto não é desperdiçado
tempo computacional tentando erodir pixels que não podem ser erodididos. Deste modo
há uma redução significativa no número de pixels que serão verificados e consequente-
mente uma redução no tempo computacional gasto.

No algoritmo por propagação as coordenadas destes pixels são usualmente ar-
mazenadas em um conjunto2 e são chamados de borda ou fronteira. A eficiência máxima
deste tipo de algoritmo ocorre quando é possı́vel que uma iteração de erosão gere a fron-
teira para a próxima iteração. Em cada iteração é aplicada a erosão tradicional a todos os
pixels armazenados no conjunto. Quando este conjunto encontra-se vazio significa que
não há mais fronteira a ser erodida, ou seja, toda a erosão possı́vel para aquela iteração já
foi feita.

Abaixo está o pseudocódigo que retorna a fronteria de propagação de uma imagem
f usando a vizinhança definida pela função estruturante b. Esta borda é colocada no
conjunto ∂fb.

Function ∂fb = front(f, b)
for all x ∈ E

∂fb = {x : ∃y ∈ (B + x) ∩ E, f(y) > f(x)−̇b(x − y)};

Abaixo está o pseudocódigo para a erosão por propagação, próprio para uso itera-
tivo usando a mesma função estruturante b. Os parâmetros de entrada são a imagem f , a
função estruturante b e a sua fronteira de f , ∂fb. Os parâmetros de saı́da são a imagem g

(erosão) e a sua fronteira ∂gb.

Function [g, ∂gb] = eroPro(f, b, ∂fb)
{g e ∂gb são parâmetros de saı́da}
g = f ;
for all x ∈ ∂fb

for all y ∈ (B + x) ∩E

if g(y) > f(x) −̇ b(x − y)
g(y) = f(x) −̇ b(x − y);
if y /∈ ∂gb, set in(∂gb, y);

onde set in(∂gb, y) é a função para inserir y no conjunto ∂gb. Observe que antes de inserir
um ponto no conjunto de fronteira, é feito uma verificação para que o ponto não seja
inserido mais de uma vez desnecessariamente. Veja um exemplo de uso deste algoritmo
na Figura 3.

2Na literatura, o uso de operações por propagação é confuso pois em algumas vezes usa-se fila, em outras
fila hierárquica. Para o caso da erosão, a fronteira é um conjunto que pode ser processado em qualquer
ordem (análogo ao ocorrido no caso paralelo) e neste caso uma estrutura de conjunto (por exemplo, vetor)
é suficiente para armazenar a fronteira.

108

k k k k k k k k k

k k k k k k k k k

k k k k k k k k k

k k k k [0] k k k k

k k k k k k k k k

k k k k k k k k k

k k k k k k k k k

(a) f

k k k k k k k k k

k k k k k k k k k

k k k k [1] k k k k

k k k [1] 0 [1] k k k

k k k k [1] k k k k

k k k k k k k k k

k k k k k k k k k

(a) eroPro(f, b4, ∂fb4) = ε
p
b4

(f)

Figura 3: (a) Imagem de entrada f , onde o valor entre colchetes pertence à fron-
teira ∂fb4; (b) erosão por propagação por b4, onde os pixels entre
colchetes pertencem à nova fronteira ∂(εp

b4
(f))b4 . b4 é a métrica city-

block.

É possı́vel generalizar o algoritmo de erosão iterativa por propagação usando uma
seqüência de erosões com funções estruturantes não crescentes. A condição para que esta
generalização seja válida pode ser encontrada em Zampirolli [Zampirolli, 2003].

Contexto

Precisamos erodir imagens com eficiência. Existem técnicas de varredura da imagem que
otimizam o processo de erosão, mas ainda assim eles não atingem a eficiência necessária.

Problema

Os algoritmos tradicionais que implementam a erosão morfológica desperdiçam tempo
computacional processando pixels desnecessários. O algoritmo paralelo é extremamanete
ineficiente por sua varredura e por sua forma de processar os pixels. O algoritmo sequen-
cial é mais eficiente, mas seu grande ganho de desempenho restringe seu uso em poucas
funções estruturantes. Finalmente o algoritmo por propagação processa apenas a fron-
teira dos objetos da imagem, mas ainda assim computa pixels que não geram resultados.

Forças

• O algoritmo paralelo é fácil de implementar, mas não tem eficiência.
• O algoritmo sequencial é mais eficiente que o paralelo, mas restringe o seu uso

em poucas funções estruturantes.
• A erosão por propagação também desperdiça tempo computacional verificando

pixels que não vão gerar resultados, além de ter a implementação mais difı́cil.

Solução

Usar Propagação Direcional. Ou seja, consideramos uma direção de propagação na fron-
teira do algoritmo por propagação. Isto permite que processemos somente pixels que
gerarão resultados e também apenas as adjacências destes pixels que podem gerar resul-
tados.

A estratégia adotada é considerar a direção em que a erosão ocorre, avaliando esta
expressão apenas nesta direção.

109

Para isto, ∂fb armazena, além da coordenada x, a direção de propagação da erosão
como um inteiro k ∈ [1, 8], cuja direção correspondente a propagação de x, conforme a
Figura 4.

5 6 7

4 8

3 2 1

Figura 4: Direções de propagação

Por exemplo: na Figura 5 o pixel (2, 3) pode ser erodido considerando apenas as
direções 3, 4 e 5 (isto é, (3, 2), (2, 2) e (1, 2)).

0 1 2 3 4 5

1 0 0 k k k

2 0 0 k k k

3 0 0 k k k

4 0 0 0 0 0

5 0 0 0 0 0

Figura 5: Exemplo para propagação direcional, onde a primeira linha e a primeira
conluna são os ı́ndices da imagem

O algoritmo baseado em erosão por propagação usando a informação da direção é
dado por (agora ∂fb contém [x, d], a coordenada x e a direção de propagação d):

Function [g, ∂gb] = eroInit(f, b)
{g e ∂gb são parâmetros de saı́da}
g = f ;
for all x ∈ E

for all y ∈ (B + x) ∩E

{ d é a direção de y em B + x }
if g(x) > f(y) −̇ b(y − x)

g(x) = f(y) −̇ b(y − x);
if x /∈ ∂gb, set in(∂gb, [x, d]);

Function [g, ∂gb] = eroDir(f, b, ∂fb)
{g e ∂gb são parâmetros de saı́da}
g = f ;
for all [x, k] ∈ ∂fb

for all y ∈ (B′[k––, k, k++] + x) ∩ E

if g(y) > f(x) −̇ b(x − y)
g(y) = f(x) −̇ b(x − y);
set in(∂gb, [y, d]);

onde [k– –, k, k++] é o subconjunto das direções: anterior, k e posterior a k, con-
siderando a ordem horária. Se k = 1, então anterior é 8, e se k = 8, posterior é 1.
Na última linha do código acima, d é k– –, k ou k++ dependendo da direção do y usado
no teste, conforme Figura 4.

110

Usos Conhecidos

Uma série de operações morfológicas podem usar propagação direcional. Erosão,
dilatação, fechamento, abertura e esqueleto são apenas alguns exemplos.

A Transformada de Distância Euclidiana (TDE) é outro exemplo, pois pode ser
implementada usando-se erosões morfológicas que por sua vez podem ser implementadas
usando propagação direcional.

A seguir explicaremos os conceitos de TDE usando erosão morfológica. Maiores
informações podem ser encontradas em [Zampirolli, 2003].

Shih e Mitchell foram os primeiros a mostrar que a TDE pode ser obtida de forma
exata pela erosão morfológica usando uma função estruturante parabolóide bE aplicada
sobre uma imagem binária f com valores 0 e k [Shih and Mitchell, 1992]:

ΨdE(f) = εbE
(f).

O valor na origem de bE é zero e nos outros pontos é dado pelo negativo do quadrado da
distância Euclidiana à origem.

Uma propriedade da erosão especı́fica para a transformada de distância é a idem-
potência, i.e., se aplicarmos a erosão por bE novamente, o resultado não se modifica:

εbE
(εbE

(f)) = εbE
(f).

Por exemplo, a Figura 6 mostra bE , onde a origem da função estruturante está
marcada em negrito. Esta função estruturante pode ser usada para calcular a transforma
de distância em imagens onde o maior valor da distância seja 2. Na Figura 7b é mostrado

-4
-2 -1 -2

-4 -1 0 -1 -4
-2 -1 -2

-4

Figura 6: função estruturante bE .

a erosão de f por bE .

0 0 0 0 0 0 0 0 0
0 0 0 k k k 0 0 0
0 0 k k k k k 0 0
0 k k k k k k k 0
0 k k k 0 k k k 0
0 k k k k k k k 0
0 0 k k k k k 0 0
0 0 0 k k k 0 0 0
0 0 0 0 0 0 0 0 0

(a)

0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 1 2 4 2 1 0 0
0 1 2 2 1 2 2 1 0
0 1 4 1 0 1 4 1 0
0 1 2 2 1 2 2 1 0
0 0 1 2 4 2 1 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0

(b)

Figura 7: (a) Imagem de entrada f e (b) TDE(f).

111

Contexto Resultante

A eficiência do padrão direcional pode ser observado na TDE, pois usa de forma ite-
rativa as erosões direcionais. Veja a seguir os desempenhos das implementações desses
três algoritmos comparando com os algoritmos do Eggers [Eggers, 1998] e do Ragne-
malm [Ragnemalm, 1992]. As imagens testadas são de tamanho 256 × 256, onde img1
é uma imagem contendo um único pixel do fundo colocado no centro da imagem; img2
é uma imagem contendo quadrados de tamanhos variados e img3 é uma imagem com
cı́rculos de tamanhos variados, ambas possuindo 20% de pixels do objeto. Analisando
os desempenhos apresentados acima, vemos que os algoritmos distPro e distDir apre-
sentam eficiências semelhantes ao algoritmo do Eggers. Justificamos o desenpenho de
distDir inferior ao distPro em alguns casos, pelo fato do aumento da complexidade das
estruturas de dados envolvidas, mesmo fazendo menos cálculos por considerar a direção
de propagação.

Rag Egg Par Pro Dir

img1 3.02 1.03 16.27 1.05 1.14
img2 5.98 0.47 4.18 0.33 0.50
img3 2.78 0.71 3.52 0.40 0.36

Tabela 1: Tempo em segundos do desempenho de diversos algoritmos:
Rag−Ragnelmalm [Rag92];
Egg−Eggers [Egg98];
Par−TDE por erosão paralela;
Pro−TDE usando erosão por propagação;
Dir−TDE usando erosão por propagação com informação de direção.

Padrões Relacionados

Paralelo [D’Ornellas, 2003]
Sequêncial [D’Ornellas, 2004] e
Por Propagação [D’Ornellas, 2002].

Referências

Birkhoff, G. (1967). Lattice Theory. American Mathematical Society, Providence, Rhode
Island.

D’Ornellas, M. (2002). A queue-based algorithmic pattern. In Proceedings of the Second
Latin American Conference on Pattern Languages of Programming - SugarLoafPloP,
pages 279–298, São Paulo, SP. Editora do IME-USP.

D’Ornellas, M. (2003). A parallel algorithmic pattern. In Proceedings of the Third Latin
American Conference on Pattern Languages of Programming - SugarLoafPloP, Porto
de Galinhas, PE.

D’Ornellas, M. (2004). A sequential algorithmic pattern. In Proceedings of the Fourth
Latin American Conference on Pattern Languages of Programming - SugarLoafPloP,
Fortaleza, CE. Editora da UFC/Hillside Group/Instituto Atlântico.

Eggers, H. (1998). Two fast Euclidean distance transformations in z2 based on sufficient
propagation. Computer Vision, Graphics and Image Processing, 69(1).

Heijmans, H. (1991). Theoretical aspects of gray-level morphology. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 13(6):568–581.

112

Ragnemalm, I. (1992). Neighborhoods for distance transformations using ordered prop-
agation. Computer Vision, Graphics and Image Processing: Image Understanding,
56(3).

Shih, F. and Mitchell, O. (1992). A mathematical morphology approach to Euclidean
distance transformation. IEEE Transactions on Image Processing, 1:197–204.

Zampirolli, F. (2003). Transformada de distância por morfologia matemática. PhD
thesis, Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de
Computação, Campinas, SP, Brasil.

113

The Layered Information System Test Pattern

Roberta Coelho, Uirá Kulesza, Arndt von Staa, Carlos Lucena

Software Engineering Laboratory, Computer Science Department
Pontifícal Catholic University of Rio de Janeiro - PUC-Rio

e-mail: [roberta, uira, arndt, lucena]@inf.puc-rio.br

Abstract

The object oriented application layer architecture [3, 12] allows the distribution of
classes into well defined layers, according to different purposes (business,
communication, data access, etc.). Elements from different layers communicate
only through interfaces. While this architecture helps to address requirements of
many applications, it also creates many new challenges to software testing [9].
Developers must look around for some techniques that help isolate bugs more
quickly in this architecture. Test pattern is a technique that can improve the
efficiency of the testing process, since, it provides a means to share test
construction experience. While design patterns describe interactions between
classes and determine the specification of the classes that participate in the
solution of a specific design problem, a test pattern defines a configuration of
objects needed to test the interactions between classes. Both are intended to guide
the construction of a piece of software. The Layered Information System Test
Pattern documents a systematic way of testing a layered information system which
is based on exercising only the interface defined by each layer.

Intent
The Layered Information System Test Pattern proposes a set of test classes to exercise an
information system structured according the Layer Architectural Pattern. Each test class
exercises the interface of each layer, focusing on the specific concerns/features implemented
by a layer. This pattern also allows the execution the unit test of each layer and the integration
tests between layers.

Example
This section presents an illustrative example of an information system that supports the
management of bank accounts. Figure 1 presents the object-oriented architecture of this
information system following the Layer architectural pattern [3, 12]. According to this pattern,
the elements from each layer should communicate only through well defined layers` interfaces.
The purpose of a layer interface is to define the set of available operations - from the
perspective of interacting client layers - and to coordinate the layer response to each
operation.

114

Several design patterns have been proposed to refine each layer of this architecture. Some
of them are: the Service Layer Pattern [13], the Data Access Object Pattern [11] and the
Persistent Data Collections (PDC) [1].

The example, presented in the Figure 1, focuses on the Business and Data layers of a
Bank Information System. There can be a GUI layer on top of them; however, this pattern will
just focus on the layers illustrated in Figure 1.

Business and Data layers are defined according to PDC pattern. Nevertheless, different
design patterns [1, 11] could be adopted to refine the information system layers, according to
the system requirements and the platform used by the application. PDC design pattern [13]
refines each layer by filling them with specific classes and interfaces related to business and
data access concerns.

Following the guidelines defined in the PDC pattern, the Business layer should provide a
Facade [2] to the system functionality, a unique interface for its services. In this example the
Facade role is played by the Bank class. The Business layer also specifies a set of business
collection classes (ClientRecord, AccountRecord) which defines business rules related to
each entity classes (Client, Account). The business collection classes are also responsible
for accessing the services of the Data layer in order to execute persistence operations, such as,
insertions, searches, updates, deletions.

Figure 1. Object-Oriented Design for the Bank information system.

Business Layer

Data Layer

ClientRepositoryJDBC

Client
id
name

getId()
getName()

Account
balance
idNumber

credit()
withdraw()

AccountRepositoryJDBC

IClientRepository

insert()
search()

<<Interface>>

ClientRecord

insert()
search()

IAccountRepository

insert()
search()
searchNegativeBalanceAccounts()
searchTop10AccountsbyBalance()

<<Interface>>

AccountRecord

insert()
credit()
search()
withdraw()
searchNegativeBalanceAccounts()
searchTop10AccountsbyBalance()

Bank

insertAccount()
searchAccount()
credit()
insertClient()
withdraw()
searchClient()
searchNegativeBalanceAccounts()
searchTop10AccountsbyBalance()

<<facade>>

115

The Data layer interface can be structured in one or more classes. In Figure 1, the Data
layer interface is structured in two modules one to each main business entity defined in the
business layer (IClientRepository, IAccountRepository). These interfaces are
implemented according to a specific persistence platform, in Figure 1,
ClientRepositoryJDBC and AccountRepositoryJDBC classes implement data access
operations related to a specific Entity class using the Java Database Connection (JDBC) API.

Context
Many information systems developed nowadays, define their architecture based on the

Layer architectural pattern [3, 12]. This architectural pattern allows the distribution of classes
into well defined layers according to different concerns, such as user interface, communication,
business and data access. Also, several design patterns [1, 11, 13] have been proposed to
refine each layer of this architecture.

Despite those patterns have been widely used, the model for testing systems structured
according to this architectural pattern has received few attention and has been few explored.
Most tests are limited to test suites and test cases using simple strategies [7,10]. Although
those tests are useful, they fall short in the role of a general organizational for automated
testing. What is required is a higher level of abstraction, a test pattern that can be reused
wherever a layered architecture is adopted.

Problem
Due to the lack of well defined test patterns, developers and test engineers have applied adhoc
or not well defined strategies during system testing. Some examples of common test strategies
which have been adopted during system testing are the following:

• execution of adhoc manual tests in the user interface layer;
• specification of unit tests to some classes of the system which are chosen using no

systematic strategy;
• implementation of one test class to every class of the system (Test Driven

Development – Extreme Programming practice [7]).

Although, these test strategies can eventually help system debugging, there are many
disadvantages associated to such strategies, such as:

• the difficulty of finding the exact faulty code that causes a system failure. Sometimes,
during manual tests complex sequence of actions are performed, which can not be
repeated.

• high cost and effort necessary to reexecute manual tests;
• a great amount of resources and effort can be wasted due to the codification of many

unit tests that will not be effective during system testing;
• since the classes to be tested are chosen without good selection criteria, important

system functionalities may be forgotten during testing.

The development of an information system typically addresses different concerns, such as,
user interface, distribution, business and data access. The lack of well defined strategies to
test an information system can bring several problems to system quality and additional costs to

116

the software development. A recurring problem in the context of layered information systems
is how to systematically define automatic tests to verify the functionality of each layer in
isolation and in collaboration with other layers.

Forces
The following forces influence solutions to this problem:

• Importance of Tests: Software testing adds value to a system by revealing its faults. It
produces evidence that a pre-release reliability goal has been met.

• Resource Limitation: Testing is an expensive process. Test process should continue
until a reliability goal is attained, but mot of the time it continues until available test
resources have been expended.

• Minimum set of Test-Cases: We would like to reduce the cost of testing process
without decreasing test quality. We would like to define a minimum set of test cases
that would exercise system main components and functionalities.

• Separation of Concerns: Developers should focus on each specific layer when testing
the system. Besides, they should be able to test each layer independent from the
others.

• Test Class Modularity: Each test class should verify a well defined set of
functionalities provided by one specific layer.

• Test Robustness: The test classes should be resilient to internal changes in the
implementation of the layer classes.

• Proximity between Fail and Fault: Automatic tests should make it easier to come
across system failures as well as to localize the faults that had caused them.

Solution
Create unit tests to exercise only the interface defined by each layer. Each test class focuses
on the test of specific concerns/features implemented by a layer. Furthermore, the test code
responsible for verifying all the services provided by a layer can be modularized in one or
more test classes.

To allow the test of one layer at a time, this pattern adopts auxiliary classes, called mock
objects [8]. A Mock Object is used by a test to replace a real component (or a set of
components) on which the system under test depends. Typically, mock objects fakes the
implementation either by returning hard coded results or results that were pre-loaded by the
test [8].

Since the tests defined by the Layered Information System Test Pattern exercises only the
interface of each layer, and there is not a one-to-one relationship between the classes that
comprises the interface and the test classes, this pattern can be used to test any layered
information system no matter the design pattern or design strategy used to refine the layers.

117

Structure
Figure 2 illustrates the structure of the Layered Information System Test Pattern. It has three
participants:

• BusinessTest: this class contains all methods that test a set of functionalities provided
by the Business Layer Interface and are related according to one specific criterion.
This criterion can be a set of operations related to a business entity or to a business
service.

• BusinessRepositoryTest: implements test methods to all methods provided by a
Repository interface. The implementation of these test classes focus on the testing of
specific data repository functionality related to insertion, searching, update and
database operations. Each test method implements a test case which verifies a
successful or an error condition from a specific repository method.

• MockRepository: this class fakes the implementation of a specific BusinessRepository.
Thus, this auxiliary class enables the unit test of the business layer.

All Business Layer`s operations can be structured in one single interface or a set of
interfaces [2]. The purpose of the BusinessTest classes is to modularize the Business Layer
tests according to each business entity manipulated by its operations or according to each
business services implemented by such operations. For example, there can be one
BusinessTest class to exercise the set of operations related to a business entity or a
business service.

Figure 2. The Static View of the Layered Information System Test Pattern.

Test
Data

Business Layer

BusinessTest

testSystemService()

MockBusinessRepository

IBusiness

systemService()

<<Interface>>

BusinessRepositoryTest

testRemove()
testUpdate()
testSearch()
testInsert()
testBusinessSpecificOperation()

IBusinessRepository

remove()
update()
search()
insert()
businessSpecificOperation()

<<Interface>>

118

The BusinessTest classes contain a test method to each successful and error condition
of each method from the Business Layer. Most of the time developers focus on testing
successful conditions and forget the error ones, which are as important as the former. If we
define only one class to test all successful and error conditions of Business Layer methods, the
resulting test class will probably contain too many lines of code which can impact on test
maintainability.

The Data Layer will also be tested through a set of classes which exercises its interface.
Each Data Layer test class concerns with one specific business repository accessible through
the Data Layer`s interface. The BusinessRepositoryTest classes, illustrated in Figure 2,
are the ones responsible for testing the each business repository.

Since each layer delegates services to the lower layer the only way to test Business Layer
without the passing through Data Layer is to delegate data services to the
MockBusinessRepository class, which fakes the implementation of a real
BusinessRepository class either by returning hard coded results or results that were pre-
loaded by the test.

The MockBusinessRepository classes allow the BusinessTest classes to
concentrate on testing Business Layer own code. Therefore, the integration test of those two
layers is performed when Business Layer delegates services to the real repositories instead to
the mock classes.

Dynamics
This pattern allows the execution of three types of tests: Business Layer unit test, Data Layer
unit test, and integration test of Data and Business Layers.

Figure 3 illustrates the sequence of method calls performed during Data Layer unit test.
Firstly, an instance of BusinessRepository class is created during the initialization of
BusinessRepositoryTest class (steps 1 and 2), Secondly, a test method is called, for
example, testInsert() (step 3), then, setup() method is called – a private method
responsible for any configuration and initialization common to all test methods (step 4). Finally,
BusinessRepository methods are called (steps 5, 8 and 9) and assert operations are
executed to compare expected results with returned results (steps 7 and 10).

Figure 4 represents an integration test comprising the Business Layer and the Data Layer.
It illustrates the sequence of method calls performed when the Business Layer is tested in
collaboration with the Data Layer. Firstly, the BusinessTest class creates the classes that
implement the Business and Data layers. In the Figure 4, this is illustrated through the
instantiation of classes that implement the IBusiness and IBusinessRepository interfaces
(steps 2 and 3). After that, different test methods can be executed in order to exercise the
functionalities implemented by the Business Layer. Figure 4 illustrates the execution of the
testSystemService() method, which calls a business method (step 6) and uses an
assert() method (step 7) to to compare returned results with expected results.

Figure 5 illustrates the sequence of method calls performed when testing the piece of
functionality embedded in the Business Layer. This type of test, as distinct to the integration
test described previously, exercises a single layer. Since Business layer depends on the
services provided by Data Layer, those services should be emulated by a fake implementation
of such layer, a mock object. In the Figure 5, the instantiation of Business Layer is represented

119

by the creation of the IBusiness object (step 3). As we can see, this IBusiness object
receives an instance of MockBusinessRepository (step 2), which will simulate the
repository implementation. Since the mock object implements the same interface of a real
repository and the IBusiness object does not know that it is dialing with a “fake”
implementation of a repository. Finally, the test methods are executed the same way as
described in Figure 5.

 : BusinessRepositoryTest repository :
IBusinessRepository

2: create()

5: search()

8: insert()

4: setup()

9: search()

6: no element was found

method setup() should include all
configuration and inicalization that
is common to all tests methods.

3: testInsert()

1: new

7: assert()

10: assert()

assert method evaluates
an expression (returned
elements < 0) If the
expression is evaluated as
false, this method will
throw an exception.

Figure 3. Dynamic View of the Data Layer unit test.

 : BusinessTest : IBusiness businRep :
BusinessRepository

3: create(businRep)

6: systemService()

2: businRep = create()

1: new

4: testSystemService()

5: setup()

7: assert()

Figure 4. Dynamic View of the integration test of the Data Layer and the Business Layer.

120

 : BusinessTest : IBusiness mockRep :
MockBusinessRepository

2: mockRep = create()

6: systemService()

3: create(mockRep)

1: new

4: testSystemService()

7: assert()

5: setup()

Figure 5. Dynamic View of Business Layer unit test.

Example Resolved

Figure 6 presents the use of the Layered Information System Test Pattern for the bank
information system illustrated previously. Two classes, AccountRepositoryTest and
ClientRepositoryTest, are specified to enable the testing of the data access classes.
These classes are implemented based on the method signatures defined in the
IAccountRepository and IClienteRepository, respectively. This allows to reuse them
in case the system developers need to provide new data access classes to a different
persistency platform.

The test of the Business Layer for the example of the bank information system is
supported by the AccountOperationsTest and ClientOperationsTest classes. Each of
these classes implements a set of test methods related to a specific entity class. Also, as we
can see in the Figure 6, these classes are codified based only on the business methods
provided by the Bank facade class. Thus, internal changes in the implementation of these
services do not affect the test classes.
Finally, two mock auxiliary classes, MockAccountRepository and
ClientAccountRepository, are presented in the Figure 6. They represent alternative
implementations of the data access classes. They are used when it is required to test the
Business layer functionality individually.

121

Figure 6. An information system and its corresponding test classes

Consequences
The Layered Information System (LIS) Test Pattern maintains the following consequences:

• Separation of Concerns. The pattern defines an individual test to each layer of an
information system. LIS test pattern focus on the testing of individual services.

• Test Class Modularity. The testing code is modularized using different test classes.
Each test class focus on the verification of a well defined and limited set of
functionalities provided by a specific layer. It improves the readability and
maintainability of the test classes.

• Test Robustness. Since test classes depend only on the layer interface, they are no
effected due to implementation changes inside a layer.

• Increase in Cost of System Development. Although there is a cost associated to the
implementation of the layered information system test pattern, the systematization of
the test activity can reduce its cost if compared with other approaches, such as adhoc
tests and unit test of every class. Code generation tools can even reduce test costs
since they can generate the overall structure of many test classes. Moreover, if a
developer decides to skip test activities, afterwards, the system will be buggy and will
consequently cost more time and money to be fixed.

ClientRepositoryJDBC

Client
id
name

getId()
getName()

ClientOpetationsTest

testInsertClient()
testSearchClient()

MockAccountRepository

Account
balance
idNumber

credit()
withdraw()

ClientRepositoryTest

testInsert()
testSearch()

MockClientRepository

AccountRepositoryTest

testInsert()
testSearch()
testSearchNegativeBalanceAccounts()
testSeatchTop10AccountsByBalance()

AccountRepositoryJDBC

IClientRepository

insert()
search()

<<Interface>>

ClientRecord

insert()
search()

Bank

insertAccount()
searchAccount()
credit()
insertClient()
withdraw()
searchClient()
searchNegativeBalanceAccounts()
searchTop10AccountsbyBalance()

<<facade>>

IAccountRepository

insert()
search()
searchNegativeBalanceAccounts()
searchTop10AccountsbyBalance()

<<Interface>>

AccountRecord

insert()
credit()
search()
withdraw()
searchNegativeBalanceAccounts()
searchTop10AccountsbyBalance()

AccountOpetarionsTest

testInsertAccount()
testCredit()
testWithdraw()
testSearchAccount()

Business
L

Data Layer

122

• Proximity between Failure and Fault. LIS test pattern defines individual tests to
each layer. When a fault is detected by a test case, such minimum set of tests cases
allows the developer to identify in which layer is the fault, but cannot diagnosis which
specific class causes the failure.

• Increase in the number of classes: a negative consequence of this testing solution is
the increase in the number of classes to be maintained. However, this Test Pattern
allows the execution of automated tests along the iterations which would require high
cost and effort to be reexecuted manually. Although this pattern suggests fewer test
classes than Test Driven Development (TDD) agile practice (one unit test per class) it
is as effective as TDD. Since the classes to be tested are chosen according to a
specific criterion, important system functionalities is not forgotten during testing.

Known Uses
The Layered Information System Test Pattern has been used during the development of two
Java information systems in Recife, Brazil. A general description of these systems is given
below.

• A system for managing real estate. This system allows the register of real estate and
the management of tax charging related to them. It was implemented in the J2EE
platform.

• A system that supports the management of market activities. The system allows the
register of market activities and the management of tax charging related. It was also
implemented in the J2EE platform, including the use of the Enterprise Java Bean
technology.

See Also
A few test patterns have already been proposed. Gerard Meszaros [4, 5] has proposed two
Test Pattern languages, one for setting up XUnit test features - which describes key techniques
for addressing the issues around test fixture management, and the other for automating testing
of indirect inputs and outputs using XUnit.

Some design patterns for using Mock Objects have been proposed as well, some of them
are the following:

• Mock Object: a basic mock pattern that allows for testing a unit in isolation by
“faking” the communication between collaborating objects.

• Mock Object Factory: a way of creating mock objects using existing factory
methods.

• Mock Object via Delegator: a pattern that creates a mock implementation of a
collaborating interface in the test class or mock object.

123

Implementation
We describe below some guidelines for implementing the Layered Information System (LIS)
Test Pattern. The following code examples are related to an information system for managing
bank accounts presented in previous sections. They are written using the Java programming
language and the JUnit test framework [6]. However, the LIS Test Pattern can be
implemented in other platforms, by following the guidelines we present below.

Step 1: Prepare the Entity classes to help the codification of test classes.

Every test method needs to evaluate the data sent or received from the methods being tested.
In the context of information systems, the information manipulated are, typically, the content
embedded in entity classes. Thus, before starting the implementation of test classes, it is
important to define a way to compare two instances of the same Entity class. A well known
way to compare two instances of a class is through the a method equals() that receives an
instance of the same class and returns true if the argument contains the same attributes values
as the class being called or false otherwise.

In the information system for the management of bank accounts, for example, the
Account class must define its equals() method in order to compare its attributes idNumber
and balance with the same attributes of other instance.

public class Account {

private long idNumber;

private double balance;

public Account(long idNumber, double balance){

this.idNumber = idNumber;

this.balance = balance;

}

...

public boolean equals(Object anotherInstance){

 Account anotherAccount = (Account) anotherInstance;

 if (this.idNumber == anotherAccount.idNumber &&

 this.balance == anotherAccount.balance){

 return true;

}else {

 return false;

 }

}

}

Step 2: Define a BusinessRepositoryTest class.

A BusinessRepositoryTest class must define test methods to verify the functionality provided
by a data access class (or data repository class) which are specified in the business
repositories interfaces.

124

As mentioned in the Structure Section, a BusinessRepositoryTest class has many
responsibilities, such as: (i) to create an instance of a data access class to be tested; (ii) to
define a method that performs every configuration and initialization necessary to run the test;
and (iii) to specify different test methods to each method provided by the data access class to
be tested.

Each BusinessRepositoryTest class must define different test methods to each existent
method of the data access classes. These test methods must verify the successful and error
conditions, using different argument types and values and handling different types of
exceptions.

In order to minimize effort, the search methods - of the data access classes - can be used
to support the test of the other methods. For example, the test method of insert operations
can, previously, search the object be inserted to verify if it does not already exist in the
repository. Also, the test methods of delete and update operations should use the search
method whenever they need.

Below, we present the partial code of a BusinessRepositoryTest class in the context of the
banking system, responsible to test the functionality of an IAccountRepository instance.

public class AccountRepositoryTest extends TestCase {

private IAccountRepository accountRepository;

public AccountRepositoryTest(String name){

 this.accountRepository = new AccountRepositoryJDBC();

 // Additional common configurations before to execute

 // all the test methods

 ...

}

// JUnit standard method to be executed before every test method

protected void setUp() {

 ...

}

public void testInsertAccount() {

 try {

 Account account = new Account(123, 500);

 accountRepository.inserir(account);

 Account accountSearched = accountRepository.search(123);

 assertEquals(account, accountSearched);

 } catch (Exception e) {

 fail("Exception not expected:" + e);

 }

 }

 public void testInsertAlreadyExistentAccount() {

 try {

 Account account = new Account(123, 500);

accountRepository.inserir(account);

 fail(“System did not throw exception!!!”);

125

 Account accountSearched = accountRepository.search(123);

 assertEquals(account, accountSearched);

 } catch (AlreadyExistsObjectException e) {

 System.out.println(“OK: Exception expected!!!”);

 } catch (Exception e) {

 fail("Exception not expected:" + e);

 }

 }

...

}

Step 3: Define a MockBusinessRepository class.

The MockBusinessRepository classes simulate the behavior of BusinessRepository classes in
order to allow the unit test of the Business Layer.

In order to fake the behavior of a real repository the MockBusinessRepository classes
can use an internal data structure (like a hash table or a vector) that is able to store the
business objects. The Mock classes must implement the data access interfaces. Each method
described in these interfaces uses the internal data structure.

A partial code of the MockAccountRepository class is presented below. It uses a hash
table to store the business objects manipulated by the mock.

public class MockAccountRepository implements IAccountRepository {

 private Map accounts;

 public MockAccountRepository(){

this.accounts = new Hashtable();

 }

public void insert(Account account)

 throws AlreadyExistentObjectException, ... {

if (this.accounts.containsKey(new Long(account.getIdNumber()))){

 throw new AlreadyExistsObjectException

("Object already exists");

}else {

 this.accounts.put(new Long(account.getIdNumber()), account);

}

 }

public Account search(long idNumber)

throws InexistentObjectException {

 Account account = null;

 if (this.accounts.containsKey(new Long(idNumber))){

 account = (Account) this.accounts.get(new Long(idNumber));

 }else {

 throw new InexistentObjectException "Object does not exist");

}

return account;

 }

 ...

}

126

Step 4: Define a BusinessTest class.

A BusinessTest class verifies the functionality provided by Business Layer. Different
BusinessTest classes should be defined for each system.

This class contains all methods related to a business entity or to a business service. In this
example each test class must focus on the testing of all Facade operations related to a business
entity. Moreover, each test method defined must verify different execution conditions of the
method under test, such as: (i) the correct execution of business rules; and (ii) the incorrect
execution which throws business exceptions.

In the example presented in Solved Example Section, two different BusinessTest classes
were be specified: one responsible for testing the functionalities related to the Account class
and the other responsible for testing the functionalities related to Client class. Below we
present the AccountOperationsTest class, responsible for testing the methods in the Bank
facade class related to the Account business class. We can also observe that the
AccountOperationTest class constructor allows two different configurations depending on
the kind of test that will be executed: (i) in case we want to perform integration tests, the Data
layer will use the system data access classes; and (ii) in case we want to perform unit tests in
the Business Layer, the Data layer should be replaced by a mock object in the test method. In
a more realistic implementation of BusinessRepositoryTest classes, the parameter
integrationTest should be loaded from a configuration file.

import junit.framework.TestCase;

public class AccountOperationsTest extends TestCase {

private Bank bank;

private boolean integrationTest = true;

public AccountOperationTest(String name){

this.bank = Bank.getInstance();

AccountRecord accountRecord = null;

ClientRecord = clientRecord = null;

if (integrationTest){

 accountRecord = new AccountRecord(new AccountRepositoryJDBC());

 ...

} else {

 accountRecord = new AccountRecord(new MockAccountRepository());

 ...

}

this.bank.setAcccountRecord(accountRecord);

...

}

// JUnit standard method to be executed before every test method

protected void setUp() {

...

}

public void testCreditAccount() {

 try {

 Account account = new Account(123, 500);

127

 bank.insertAccount(account);

 bank.credit(123, 200);

 Account accountSearched = bank.searchAccount(123);

 assertEquals(new Account(123, 700), accountSearched);

} catch (Exception e) {

 fail("Exception not expected:" + e);

 }

}

public void testWithdrawAccount() {

try {

 Account account = new Account(456, 500);

 bank. insertAccount(account);

bank.withdraw(456, 200);

 Account accountSearched = bank.searchAccount(456);

 assertEquals(new Account(456, 300), accountSearched);

 } catch (Exception e) {

 fail("Exception not expected:" + e);

 }

 }

 ...

}

Acknowledgments. We would like to give special thanks to Carlo Giovano, our shepherd,
for his important comments, helping us to improve our pattern. This work has been partially
supported by CNPq under grant No. 150678/2004-7 for Roberta de Souza Coelho and
grant No. 140252/2003-7 for Uirá Kulesza, and by FAPERJ under grant No. E-
26/151.493/2005 for Uirá. The authors are also supported by the PRONEX Project under
grant 7697102900, and by ESSMA under grant 552068/2002-0 and by the art. 1st of
Decree number 3.800, of 04.20.2001.

References

1. D. Alur, D. Malks, J. Crupi. Core J2EE Patterns: Best Practices and Design Strategies.
Prentice Hall PTR, 2nd edition, 2003.

2. E. Gamma et al. Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, Reading, MA, 1995..

3. F. Buschmann et al. Pattern-Oriented Software Architecture: A System of Patterns. John
Wiley Sons, 1996.

4. G. Meszaros. A Pattern Language for Automated Testing of Indirect Inputs and Outputs
using XUnit, Proc. of the 11th Conference on Pattern Languages of Programs
(PLoP2004), September 2004, Monticello, USA.

5. G. Meszaros. A Pattern Language for Setting up XUnit Test Fixtures. Proc. of the 11th
Conference on Pattern Languages of Programs (PLoP2004), September 2004,
Monticello, USA.

6. JUnit Framework, http://www.junit.org.

128

7. K. Beck, Extreme Programming Explained, Addison-Wesley, 2000
8. M. Brown and E. Tapolcsanyi, Mock Object Patterns, Proceeding of the PLOP 2003,

September 2003, Monticello, USA.
9. M. Donat, Debugging in an Asynchronous World, ACM Queue 1(6), 2003, pp. 23-30.
10. M. Fowler, A UML Testing Framework. Software Development Magazine. April, 1999
11. M. Fowler, et al. Patterns of Enterprise Application Architecture. Addison-Wesley

Professional, 2002.
12. S. Ambler. Building Object Applications that Work. Cambridge University Press and

Sigs Books, 1998.
13. T. Massoni, Vander Alves, Sergio Soares, and Paulo Borba. PDC: Persistent Data

Collections pattern. In First Latin American Conference on Pattern Languages
Programming SugarLoafPLoP, Rio de Janeiro, Brazil, October 2001. UERJ Magazine:
Special Issue on Software Patterns.

129

Secrecy with Session Key: Um padrão de criptografia para
evitar ataques de criptoanálise por textos cifrados conhecidos

Windson Viana1, José Bringel Filho2, Rossana Andrade1,2

1Mestrado em Ciência da Computação – Universidade Federal do Ceará (UFC)

2Centro Nacional de Processamento de Alto Desempenho no Nordeste
{windson, bringel, rossana}@lia.ufc.br

Abstract. This paper presents an extension of the Tropyc pattern language,
describing a solution for the confidentiality problem applying ciphertext-only
cryptoanalysis of techniques. This problem is aggravated when messages
contain known parts by attackers, which facilitates cipher discovery. This
ciphered messages with known message parts allows then break the cipher
and, as a consequence, the confidentiality of the sent messages.

Resumo. Este artigo apresenta um padrão que pode ser utilizado por
desenvolvedores de sistemas de criptografia orientados a objetos. O padrão
complementa a linguagem de padrões Tropyc, definindo soluções para o
problema de quebra de confidencialidade através de técnicas de criptoanálise
de ciphertext-only. Este problema se agrava quando as mensagens possuem
partes conhecidas pelo atacante, o que facilita a descoberta da cifra. A
catalogação, em conjunto com as partes conhecidas das mensagens, permite a
quebra da cifra e, em conseqüência, da confidencialidade das mensagens
enviadas.

1. Introdução
A linguagem de padrões Tropyc [Braga 1999] apresenta padrões de soluções
criptográficas identificadas a partir de sistemas computacionais que apresentam
requisitos de segurança. O primeiro padrão apresentado da linguagem Tropyc é o
GOOCA - Generic Object-Oriented Cryptographic Architecture, a qual consiste em
uma arquitetura genérica para o desenvolvimento de sistemas criptográficos flexíveis e
reutilizáveis, utilizando o paradigma da orientação a objeto.

 A partir de GOOCA são apresentados padrões de segurança identificados de
acordo com os objetivos primários da criptografia (i.e., confidencialidade, integridade,
autenticidade e não-repúdio [Stallings 1999]), bem como a combinações entre eles,
descrevendo uma linguagem de padrões fechada ao domínio de segurança.

 Para fornecer o serviço de confidencialidade aos sistemas computacionais,
Tropyc define o padrão Information Secrecy. Este padrão utiliza algoritmos de
criptografia simétrica ou assimétrica para prover a confidencialidade das mensagens
trocadas entre dois pontos comunicantes. Para cifrar ou decifrar as mensagens, é
necessário uma chave secreta ou chaves públicas compartilhadas entre as partes
comunicantes. O padrão Information Secrecy é ainda combinado com os padrões
Tropyc Secrecy with Sender Authentication, Secrecy with Signature, Secrecy with

130

Integrity e Secrecy with Signature with Appendix, para a formação de novos padrões
com propósitos de segurança.

 Entretanto, o padrão Information Secrecy não considera o problema originado
através de ataques de ciphertext-only [Biryukov and Kushilevitz], que permite a quebra
da confidencialidade. Nesse tipo de ataque, o invasor somente tem acesso ao texto
cifrado, porém ele deduz o texto original ou a chave através de técnicas de criptoanálise.
Um exemplo deste ataque é apresentado em [Fluhrer, 2001], no qual a quebra do
algoritmo RC4 é realizada.

 Este artigo descreve então um padrão, chamado Secrecy with Session Key, que
apresenta uma solução para proteger a comunicação contra ataques desse tipo.

 Na descrição do padrão foram utilizados termos comumente conhecidos na
literatura relacionada à criptografia. Por exemplo, Alice e Bob identificam as partes
comunicantes, por sua vez, Eve corresponde ao atacante ou criptoanalista que deseja
recuperar as informações trocadas entre Alice e Bob, conforme ilustrado na Figura 1.

Figura 1. Comunicação entre duas partes comunicantes com a presença de um
atacante (adaptado de [Stallings 1999]).

2. Contexto
Alice deseja enviar a Bob mensagens de forma segura. Eles utilizam chaves e
algoritmos criptográficos previamente combinados para cifrar e decifrar as mensagens.
Entretanto, Eve pode obter acesso às mensagens cifradas e, através de técnicas de
criptoanálise de ciphertext-only, recuperar as informações transmitidas entre eles.

3. Problema
Como Alice e Bob podem reduzir a possibilidade de Eve recuperar as informações
transmitidas através de técnicas de criptoanálise de ciphertext-only?

4. Forças
A recuperação por Eve das informações é facilitada quando a comunicação é intensa
(i.e., muitas mensagens trocadas com a mesma chave), quando as mensagens
trocadas são curtas (i.e., possuem poucos caracteres) e/ou possuem um formato
específico conhecido (e.g., documentos XML, arquivos de imagens e de
processadores de texto).

131

Será dispendioso Eve, mesmo recuperando todas as mensagens transmitidas no
canal, descobrir a(s) chave(s) utilizada(s) para cifrar e decifrar, assim como as
informações encriptadas;

O mecanismo de geração e estabelecimento de session keys deve seguro de maneira a
evitar que Eve, mesmo capturando as mensagens trocadas durante o processo, não
consiga recuperar a chave gerada.

O custo (e.g., computacional, financeiro) para Eve recuperar as chaves ou quebrar a
cifra é maior do que o custo da informação transmitida.

5. Solução
Alice e Bob não devem utilizar sempre a mesma chave ou pares de chaves, no caso da
criptografia assimétrica, para cifrar e decifrar as mensagens. Sendo assim, deve ser
estabelecida uma chave válida por um determinado período, denominada de chave de
sessão (session key), além de ser necessário a combinação prévia entre Alice e Bob dos
mecanismos para a geração e estabelecimento destas chaves, como por exemplo o
algoritmo criptográfico Diffie-Helman [Diffie and Hellman, 1976].

 Ao iniciar o processo de comunicação entre Alice e Bob, deve ser verificada a
validade da chave de sessão utilizada. Sendo assim, caso o período de validade desta
chave esteja expirado, Alice deve executar novamente os mecanismos de geração e
estabelecimento de chaves de sessão. A nova chave de sessão deve ser utilizada para
cifrar e decifrar as mensagens enviadas e recebidas de Bob, respectivamente. Por fim,
para cifrar e decifrar as mensagens, Alice e Bob devem utilizar o padrão Information
Secrecy da linguagem Tropyc com a chave de sessão estabelecida.

 A Figura 2 apresenta o padrão Secrecy with Session Key documentado neste
artigo, que complementa a linguagem de padrões Tropyc, bem como os novos
relacionamentos e padrões que surgiram a partir dele. As arestas contínuas representam
as dependências originais entre os padrões Tropyc, enquanto que as tracejadas
descrevem as novas dependências entre os padrões Tropyc e o Secrecy with Session
Key.

 Os padrões representados por retângulos cinza com a borda tracejada,
representam os padrões Tropyc que, através do relacionamento destes com o padrão
Secrecy with Session Key, podem dar origem a novos padrões (e.g., Secrecy with
Session Key with Sender Authentication).

132

Figura 2. Padrões do Tropyc e o padrão Secrecy with Session Key
(adaptado de [Braga, 1999]).

6. Conseqüências
A utilização de mecanismos para a geração e o estabelecimento das chaves de sessão
aumenta o tempo de processamento e o número de mensagens trocadas entre Alice e
Bob;

Períodos curtos de validade das session keys adicionam overhead de processamento e
de troca de mensagens;

Períodos longos de validade das session keys facilitam a ocorrência de ataque de
ciphertext-only.

8. Dinâmica
A Figura 3 ilustra o processo de comunicação entre Alice e Bob, utilizando um
diagrama de seqüência, onde é necessário que as mensagens (parâmetro msg) sejam
transmitidas de forma segura. Neste diagrama, as classes envolvidas (e.g., codificador,
Alice) são as mesmas utilizadas na ilustração do padrão GOOCA da linguagem Tropyc
[Braga 1999] e os seguintes passos são executados:

1º Passo: antes de dar início à transmissão, Alice verifica a validade da chave de
sessão;

2º Passo: caso seja constatado que a chave está expirada, Alice, através dos
mecanismos de geração e estabelecimento de chave de sessão (SK), irá gerar uma
nova SK;

3º Passo: caso o 2º Passo tenha sido executado, a chave gerada SK será estabelecida
entre Alice e Bob;

133

4º e 5º Passos: a partir desse momento, Alice e Bob utilizam as classes Codificador e
Decodificador (que implementam o padrão Information Secrecy), além da SK, para
cifrar e decifrar as mensagens a serem enviadas.

Figura 3. Dinâmica do Padrão Secrecy With Session Key.

9. Implementação
Os mecanismos de geração e estabelecimento de chaves de sessão podem ser
implementados de duas maneiras distintas: com segredo inicial compartilhado ou sem
segredo inicial compartilhado.

 No caso da geração e estabelecimento de chaves de sessão com segredo inicial
compartilhado, Alice e Bob possuem uma informação inicial previamente distribuída
sem o conhecimento de Eve. Essa informação inicial é utilizada nos mecanismos para
gerar e estabelecer a nova SK, por exemplo, podem ser utilizados mecanismos de
desafio-resposta e de geração de números pseudo-aleatórios [Menezes 1996].

 Já no estabelecimento de chave de sessão sem segredo inicial, Alice e Bob
utilizam mecanismos de criptografia assimétrica. Neste caso, os padrões Information
Secrecy e Secrecy with Signature with Appendix podem ser utilizados para o
estabelecimento da chave de sessão. Além disso, é possível utilizar protocolos de
distribuição de chaves, tais como o Diffie-Helman [Diffie and Helman 1976].

10. Padrões Relacionados
O padrão Strategy [Wolfgang 1995] pode ser utilizado para implementar o
mecanismo de escolha dos algoritmos de geração e estabelecimento de chaves a
serem utilizados pelas partes comunicantes;

O padrão Secrecy with Session Key pode ser combinado a outros padrões da
linguagem Tropyc (Signature, Message Integrity, Sender Authentication, Signature
with Apendix) visando criar padrões que tratam este problema somado ao escopo

134

original do padrão, como aconteceu com o padrão Information Secrecy ilustrado na
Figura 2;

A linguagem de padrões para Gerenciamento de Chaves Criptográficas [Lehtonen
and Pärssinen 2002] pode ser utilizada para realizar o gerenciamento de chaves
comuns (padrão Common Key Management), a geração de chaves criptográficas
(padrão Cryptographic Key Generation) e a troca de chave de sessão utilizando
chaves públicas (padrão Session Key Exchange With Public Keys).

A linguagem apresentada em [deSouza and Matwin 2001] trata de problemas
relacionados à comunicação segura na arquitetura cliente-servidor. Os padrões
Public/Private Key Generation, Session Key Generation, Session Key Exchange e
Data Encryption/Decryption podem ser usados em conjunto ao padrão apresentado
neste artigo.

11. Usos Conhecidos
A utilização de session keys é muito comum em sistemas baseados em criptografia de
chave pública e que utilizam a criptografia simétrica para cifrar e decifrar mensagens,
por exemplo, o protocolo SSL (Security Socket Layer) [Stallings 1999] e aplicações que
utilizam PGP (Pretty Good Privacy) [RFC 2440 1998]. Por sua vez, o protocolo SSL é
utilizado em sites comerciais de venda ou oferta de serviços com a finalidade de realizar
a troca segura de informações entre o cliente (i.e., browser web) e o servidor, o qual faz
uso de chaves de sessão.

 Além disso, este padrão também é encontrado no processo de autenticação de
estações móveis nos sistemas de comunicação móvel GSM (Global System for Mobile
Communications) e GPRS (General Packet Radio Service) [Watkins 2000]. Nesses
sistemas, é estabelecida uma chave de sessão entre o núcleo da rede e a estação móvel
(i.e., aparelho celular) que será utilizada para cifrar a voz e os dados que trafegam na
rede.

Referências
Braga, A. M.; Rubina C. M. F.; Dahab, R. Tropyc: A Pattern Language for

Cryptographic Software. p. 1-27, Jan. 1999.

Diffie, W.; Hellman, M.E. New directions in cryptography. IEEE Trans. Inform.
Theory, 1976. Disponível em http://citeseer.ist.psu.edu/diffie76new.html>. Acesso
em: 15 mar. 2005.

Stallings, W. Network Security Essentials: applications and standards. New Jersey:
Prentice Hall, 1999.

Menezes, A. J.; Oorschot, P. C. V.; Vanstone S. A. Handbook of Applied Cryptography,
Out., 1996.

Wolfgang, P. Design patterns for object-oriented software development. 2rd edition.
1995.

RFC 2440 (1998) “Open PGP Message Format ”, J. Callas, L. Donnerhacke, H. Finney,
R. Thayer, Nov. 1998.

135

Lehtonen, S.; Pärssinen, J. Pattern language for Cryptographic Key Management.
EuroPLoP, 2002.

Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J. Design Patterns. Addison Wesley,
Reading, MA, 1995.

Watkins, D. Overview and Comparison of GSM, GPRS and UMTS. Bradley
Department of Electrical and Computer Engineering, Virginia Polytechnic Institute
and State University, abr. 2000.

Biryukov, A.; Kushilevitz, E. From Differential Cryptanalysis to Ciphertext-Only
Attacks. In: CRYPTO, pp72–88, 1998.

deSouza, J. T.; Matwin, S. A Pattern Language for Providing Client-Server Confidential
Communication, in: SugarLoafPLop, Rio de Janeiro, Brazil, 2001.

S. Fluhrer, I. Mantin, and A. Shamir. Weaknesses in the key scheduling algorithm of
RC4. In Eighth Annual Workshop on Selected Areas in Cryptography, Toronto,
Canada, Aug. 2001.

136

Patterns for Parallel and Distributed Processing of Large
Hierarchical Structures

Denise Stringhini Ismar Frango Silveira Luciano Silva
Faculdade de Computação e Informática, Universidade Presbiteriana Mackenzie

{dstring, ismar, lucianosilva}@mackenzie.br

Abstract. Processing of large hierarchical structures could achieve better
performance whether implemented over parallel environments. Although there
is a wide range of applications for such parallelized structures, there is a lack
of well-defined design patterns to model them, even though some parallel
programming patterns have already been proposed. This paper proposes a set
of design patterns that address these issues as well as describing some
potential applications.

1 Introduction
Parallelism has been largely used to obtain better performance in computational
intensive applications. Nowadays, clusters of thousands of processors are used to run
scientific applications such as weather forecasting or genomic sequencing processing.
Parallel processing is also used in industry for applications that range from web search
to computer graphics. This processing environment is largely improved by the use of
cluster computing technology. Programming in such environments is usually enhanced
by parallel programming libraries such as MPI [Gropp et al. 1999] and PVM [Geist et
al. 1994]. Also, Grid environments take advantage of the Internet infrastructure to
allow the execution of distributed applications over geographically separated machines.

Despite the increasing amount of research on techniques and tools for parallel and
distributed programming, this is still a hard task considering distributed memory
architectures. Issues like data and task partitioning, data mapping, communication and
synchronization between processes are difficult to manage. Besides, these issues must
be addressed to achieve the best possible performance.

Recently, object-oriented design patterns have been receiving more attention from
parallel programming designers. This is probably because it is possible to identify
patterns in some parallel programming techniques such as the bag of tasks, pipeline,
divide and conquer, master/workers [Mattson et al. 2004]. The main advantage of using
patterns is their independency on languages, libraries, or tools. In the context of parallel
and distributed programming this is particularly useful since the available hardware and
tools could vary considerably.

This paper presents a set of design patterns for parallel and distributed processing of
large hierarchical structures, such as scene graphs and phylogenetic trees, distributed
over a cluster of computers. Section 2 describes some related work. Section 3 presents
the proposed patterns. Section 4 discusses some patterns applications and finally some
conclusions and future works are presented in Section 5.

137

2 Related work
Frameworks and skeletons have been developed to help parallel and distributed
programming. For example, there is the PAS – Parallel Architectural Skeleton and
SuperPAS [Akon et al. 2004] system that is a pattern-based parallel programming model
and environment. SuperPAS is an extension of PAS that provides a skeleton description
language for the generic PAS. In this approach the user has to learn the system’s
description language, which is sometimes undesirable.

There is some interesting work in developing parallel design patterns. Mattson [Mattson
et al. 2004] presents a collection of patterns for parallel programming based on classical
patterns description. They describe a pattern language organized into four design
spaces: finding concurrency, algorithm structure, supporting structures, and
implementation mechanisms. The programmer has to consider each of these spaces in
order to complete an application. Each space is composed of a collection of parallel
design patterns. Nonetheless, this approach doesn’t address conceptual design issues
since it is limited to low-level coding.

The CO2P3S – Correct Object-Oriented Pattern-based Parallel Programming System
[Tan et al. 2003] and MetaCO2P3S, use generative design patterns. A programmer
selects the parallel design patterns and then generates a custom framework for the
application that includes all structural code necessary for the application to run in
parallel. The programmer is only required to write simple code that launches the
application and to fill in some application-specific sequential hook routines. These tools
don’t substitute pattern definitions since they are required by MetaCO2P3S to provide
basic information in order to allow CO2P3S to generate code.

3 Proposed Patterns
In order to contribute to the definition of patterns for parallel and distributed
applications, three patterns are being proposed as follows: Distributed Composite, Dual
Visitor and Matched Transporter.

3.1 Distributed Composite

Motivation: Parallel applications often need to work with data that are organized in a
hierarchical structure, making each one of the components highly dependent on their
ancestors or descendants, according to the traversal strategy. Such dependence makes
the parallel processing of these elements more difficult, since the nodes have to be
distributed over several processors.

Intent: Distributed Composite lets clients treat individual objects and compositions of
objects uniformly, whether remote or local.

Applicability: The use of the Distributed Composite pattern is recommended when:

o Distributed objects are organized in a large hierarchical, tree-like structure;
o Their processing can be done in parallel, usually by bottom-up traversal strategies.

Structure: The key component in Distributed Composite is an abstract class Node that
is implemented by classes that represent local nodes and remote references. Local nodes

138

may represent primitive elements or composite nodes, as in the Composite pattern
[Gamma et al. 1995]. The structure for the Distributed Composite Pattern is shown in
Figure 1.

Figure 1. Distributed Composite Pattern

Participants:
o Node: this abstract class implements default behavior for the interface common to all

classes. It defines an interface for accessing and managing its child components, and
for accessing a parent component in the recursive structure (these methods are not
shown in model, since they are already defined in the Composite pattern [Gamma et
al. 1995]). Since this class represent nodes that will be processed by Dual Visitor, it
must include an accept() method, which must be implemented by their subclasses.

o LocalPrimitiveNode: represents a leaf object that will be locally processed.
o LocalCompositeNode: represents nodes with children, which can be of any type that

implements Node.
o RemoteReferenceNode: instances of this class actually point to an instance of any

subclass of Node that is not in the same physical or logical context.

Collaborations:
o Clients use Node interface to interact with different objects in the structure. If the

object is an instance of LocalPrimitiveNode requests can be treated directly. If it is a
LocalCompositeNode, requests are recursively forwarded to the next nodes in
hierarchy. However, if it is a RemoteReferenceNode requests are sent to remote
nodes pointed by this object. These requests are treated as local ones by the remote
nodes.

139

Consequences:
The Distributed Composite pattern:

defines class hierarchies consisting of local objects and remote objects.
Wherever client expects a local object, it can take a remote object. This remote
object represents the remote processing of a subtree. It considers the previous
partitioning of the hierarchical application (the tree) that could be distributed
across several processors.
make clients simpler, since they could treat composite structures, local objects
and remote objects in the same way.

Sample Code: the following is an example of implementation in Java, using RMI
(Remote Method Invocation) as basis for implementing remote nodes.

import java.rmi.*;
import java.rmi.server.*;

interface Node
 extends Remote
{
//methods

};

class LocalPrimitiveNode
 extends UnicastRemoteObject
 implements Node
{
 // problem-specific
 // implementation
}

class CompositeNode
 extends UnicastRemoteObject
 implements Node
{
 private Node composite[];
 // problem-specific
 // implementation
}

class RemoteReferenceNode
 implements Node
{
 private Node remoteReference;
}

Known uses:
Johnson and Krishna’s (1993) early works deal with distributed B-trees (dB-
trees) to illustrate techniques for designing distributed search structures.
Cluster-wide JNDI (Java Naming and Directory Interface) trees are similar to a
single server instance JNDI tree. In addition to storing the names of local
services, however, the cluster-wide JNDI tree stores the services offered by
clustered objects from other server instances in the cluster. Application servers
like WebLogic (Prem et al., 2003) and JBoss (Burke and Labourey, 2002)
support this kind of JNDI implementation.
Brushwood (Zhang et al., 2005) uses a distributed implementation of a B-tree to
provide a framework for implementation of p2p applications.
Yilmaz and Erdo an (2001) present a model called Distributed Composite
Object (DCO). They have also designed and implemented a software layer,
DCOBE (Distributed Composite Object Based Environment) that can be placed
on top of Java programming language to provide a uniform interface for
collaborative application developers to use.

Related patterns: the nodes in the Distributed Composite structure will accept a Dual
Visitor that will change the node strategy depending on the type of the Node. If the
recipient is a Remote Reference Node, the Matched Transporter pattern will be used to

140

transport the Dual Visitor to the matched Remote Reference Node (probably in a remote
processing unit). Once the transported Dual Visitor reaches its remote counterpart, it
triggers the remote processing of another Distributed Composite structure, while the
original structure could still be visited.

3.2 Dual Visitor

Motivation: Processing heterogeneous hierarchical structures frequently demand
different processing strategies that depend on the classes the objects belong to. This
problem can be solved with the Visitor pattern [Gamma et al. 1995]. In distributed
applications whose data is structured according to the Distributed Composite pattern, all
remote references must be handled in such a way that the processing could be
parallelized without generating deadlocks or other faults.

With the Dual Visitor pattern, which is an extension of Visitor and Strategy patterns
[Gamma et al. 1995], different visiting strategies – for local and remote elements – may
be dynamically exchanged, according to the type of object being visited. Thus, different
remote visiting strategies may be implemented according to system requirements.

Intent: Dual Visitor allows interchangeable visiting strategies tailored to the kind of
objects being visited. This is done without changing the classes of the elements on
which it operates, or the Visitor object itself.

Applicability: Dual Visitors should be used in the following situations:
o The hierarchical structure to be visited is distributed in such a way that all parts are

well-connected by remote references;
o Each part of the tree can be independently visited.

Structure: The structure for the Dual Visitor Pattern can be seen in Figure 2.

Figure 2. Dual Visitor Pattern

141

Participants:
o DualVisitor: abstract class that defines a processNode() operation that must be

implemented by its subclasses. Its use is recommended for extensibility reasons.
o ConcreteDualVisitor: implements the processNode() operation by calling the visit()

operation defined in VisitingStrategy.
o VisitingStrategy: defines an abstract visit operation that will be implemented by its

subclasses. Using this class, it is possible to change its implementation without
changing the instance of ConcreteDualVisitor in a tree segment.

o LocalVisitingStrategy: contains visiting methods for local nodes. These methods
are called by the implementation of visit().

o RemoteVisitingStrategy: defines a strategy for processing remote nodes.

Collaborations: when a node accepts a Dual Visitor it could either continue local
processing or trigger remote parallel processing (if it is a Remote Reference Node).
Figure 3 illustrates the collaborations between the Dual Visitor, the local and remote
strategies and the two types of nodes (local and remote).

Figure 3. UML Sequence diagram for the Dual Visitor Pattern

Consequences:
The Dual Visitor pattern:

makes transparent the visiting strategy being used. Clients do not need to know
if the structure being visited is local or remote. These strategies are easily
interchanged.

allows the accumulation of states, whether local or remote, during the visiting
process of a previously distributed hierarchical structure.

solves a common problem found in Visitor pattern (Gamma, 1995): it is hard to
add different elements to be visited once a Visitor is already defined. Dual
Visitor solves this by applying Strategy pattern (Gamma, 1995) to decouple
visiting strategies from Dual Visitor’s structure.

142

Sample code: the following is a Java code with an implementation for Dual Visitor
Pattern.

/* Node class stands for any tree element */
interface DualVisitor
{

void processNode(Node n);
}

class ConcreteDualVisitor
 implements DualVisitor
{
 private VisitingStrategy vsBridge;

 void setStrategy(Node n)
 { n = /* n is Local*/ ? LocalVisitingStrategy.getInstance()

 : RemoteVisitingStrategy.getInstance();
 }
 void processNode(Node n)
 {
 this.setStrategy(n);
 vsBridge.visit(n);
 }
}

interface VisitingStrategy
{
 void visit(Node n);

}

class ConcreteVisitingStrategy
 implements VisitingStrategy
{
 void visit(Node n)
 {

 this.processLocal(n);
 }

 void processLocal(Node n)
 {

//Process problem-specific business rules
 }
}

class RemoteVisitingStrategy
 implements VisitingStrategy
{
 void visit(Node n)
 {

 this.processRemote(n);
 }

 void processRemote(Node *n)
 {

 /*Visiting strategies in some part of the tree hosted by
 another machine are triggered. Locally, processing
 can continue in parallel - or wait, if needed.*/

 }

}

143

Known uses:

Martin (1997) proposes a variation of Visitor pattern (Gamma, 1995) called
Acyclic Visitor, which allow new functions to be added to existing class
hierarchies without affecting those hierarchies, and without creating some
dependency cycles that are inherent to Visitor.

Adaptive programming (Yoder and Razavi, 2000) allows capturing crosscutting
concerns by structure-shy adaptive visitors. Demeter Tools (DRG, 2000), use
extensively a Selective Visitor in order to loosely couple behavior modification
to behavior and structure.

 DJ library (Orleans and Lieberherr, 2001) is an aspect-oriented (Filman et al.,
2005) Java library for adaptive programming that allows traversal strategies to
be constructed and interpreted dynamically at run-time by reflection-based
Adaptive Visitors.

JAsCo (Suvée et al., 2003) is an aspect-oriented programming language targeted
at Component-Based Software Development. Vanderperren et al. (2005) present
an implementation of an adaptive visitor as a regular JAsCo aspect bean.

Related patterns:

Dual Visitors are well-suited to traverse Distributed Composite structures.

Interpreters (Gamma, 1995) could be attached to Dual Visitors in order to
perform interpretation according to the behavioral aspects of the structure being
visited.

3.3 Matched Transporter

Motivation: When a remote reference is reached, an object is needed to trigger the
change of visiting strategy. The object must remotely activate new processing tasks or
swap remote references and tree segments. The Matched Transporter pattern combines
Observer flexibility [Gamma et al. 1995] and the Data Transfer Object facilities [Alur et
al. 2003]. A local observer is attached to every remote reference at the same time it is
matched to another remote observer. State changes in one observer will be immediately
reflected in the remote counterpart. This behavior resembles the EPR pairs of Quantum
Mechanics [Griffith 2004].

Intent: This pattern defines a dependency among local objects and a mapping between
remote objects. When one object state changes, all its local dependents are notified and
updated just in time and its remote counterpart assumes its state.

Applicability: Matched Transporters are useful in the following situations:
o While traversing a hierarchical structure, Dual Visitors need to be warned when

remote nodes are reached in order to exchange their visiting strategies;
o Objects must be transferred after completing of local processing to replace remote

references to them.

144

Structure: Figure 4 shows the general structure for the Matched Transporter pattern.

Figure 4. Matched Transporter Pattern

Participants:
o MatchedObserver: concrete class that maintains a recursive association. Each

instance will remotely refer to a shadow sibling and both are self reflections.
o Transporter: associative class between MatchedObservers, responsible for the

transfer of Nodes.
o RemoteObserver: subclass of MatchedObserver locally detects objects of

Distributed Composite that are instances of RemoteReferenceNode, in order to warn
the local instance of DualVisitor to change its implementation for VisitingStrategy.

Consequences:
The Matched Transporter pattern:

supports instant peer-to-peer communication through Matched Observers. Since
Matched Observers are entangled, any event observed is immediately reported
to both peers.
relies on object persistence mechanisms. Such condition could lead to
implementations that are language or platform-dependent.

145

Sample Code: a possible implementation of Matched Transporter in Java follows,
using RMI and object serialization to implement this pattern.

import java.io.*;
import java.rmi.*;
import java.rmi.server.*;

class Transporter
 implements Serializable, Remote
{
 private Serializable wrapped;

 public Transporter (Serializable s)
 {

 wrapped = s;
 }
}

interface IMatchedObserver
 extends Remote
{
 public void attach (IMatchedObserver mob, Transporter t);
}

class MatchedObserver
 extends UnicastRemoteObject

implements IMatchedObserver
{
 private OutputStream entanglementOut;
 private InputStream entanglementIn;
 private IMatchedObserver eprPeer;
 private Transporter tRef;

/*All attributes with protected getters and setters*/
 public MatchedObserver ()
 {
/*Entanglement attributes must be properly initiated here*/
}

 public void attach (MatchedObserver mob, Transporter t)
 {
 tRef=t;
 if (eprPeer==null)
 { eprPeer = mob;
 eprPeer.attach(this,tRef);
 }
 }

 public boolean catch()
 throws IOException, ClassNotFoundException
 {
 tRef = (Transporter) entanglementIn.readObject();
 }

 public void transport (Transporter t) throws IOException
 {
 entanglementOut.writeObject(t);
 eprPeer.catch();
 entanglementOut.close();
 }
}

146

class RemoteObserver
 extends MatchedObserver
{
 public RemoteObserver () throws RemoteException
 {

/*Remote entanglement must be configured here*/
}

 public void attach (IMatchedObserver mob, Transporter t)
 throws RemoteException
 {
 // Ovverides this method, using RMI to get entangled
 // to a remote peer
 }
}

class Subject
 implements Serializable
{
 transient private MatchedObserver mob;
 //problem-specific non-transient attributes
 public Transporter attach (MatchedObserver mob)
 {

 Transporter t=new Transporter(this);
 this.mob = mob;
 mob.attach(this, t);

return t;
 }
 //getters and setters
}

An alternative implementation could consider MatchedObserver as a specialization of
Subject, from the point of view of its peer observer.

Collaborations: the Matched Transporter transfers the context of a Node between two
matched RemoteObservers. The following sequence diagram (Figure 5) illustrates the
collaborations between local and remote elements.

Figure 5. Collaboration diagram for the Matched Transporter Pattern

147

Known Uses:

Halbwachs et al. (1993) present a formal specification of synchronous observers
for reactive systems. This kind of observer is used, for instance, in Xeve
(Bouali, 1998), which is a graphical interface environment for symbolic analysis
and verification of Esterel programs modeled as Finite State Machines.

Rieffel and Polak (2000) present the teleportation problem in Quantum
Cryptography: the objective is to transmit the quantum state of a particle using
classical bits and reconstruct the exact quantum state at the receiver. Both
transmitter and receiver act as MatchedObservers and the Transporter is the
entanglement itself.

Harrison, Levine and Schmidt (1997) propose a Real-Time Event Service for
TAO, a Real-Time CORBA architecture. The service allows CORBA Event
Channel to support synchronous Real-Time event dispatching. Under this
mechanism CORBA Event Channel acts as a RemoteObserver of suppliers’
Events and clients’ Requests (the Transporters).

Related patterns:

Matched Transporters could be used to transfer Distributed Composite structures
between different nodes.

A Mediator (Gamma, 1995) could be attached to Matched Transporter to allow
multicast communication.

4 Patterns Applications
In this section we present some problems whose static and dynamic structures could be
treated with our patterns. We choose hard-processing and wide area applications in
order to demonstrate the effective use of the proposed patterns.

4.1 Scene Graph Distributed Rendering
A scene graph is a hierarchical structure built from nodes. It is a common data structure
which arises in several areas such as computer graphics [Lengyel 2003], image
processing [Nokolaids and Pitas 2000], computer vision [Forsyt and Ponce 2003] and
virtual reality [Bowman et al 2004].

Each scene graph node encapsulates some characteristic related to scene description:
object geometric parameters (geometric type, radius, size, position)
transformations (translation, rotation, scaling)
appearance information for rendering (color, texture, reflection parameters)
behaviors
visualization and environment setup

The scene graph transformation onto images is called rendering and usually requires a
powerful processing environment. Some important libraries like Java3D, OpenInventor
and OpenSceneGraph use scene graphs extensively as the main representation of their
graphical cores.

148

Figure 6 shows a typical Java3D scene graph structure:

Figure 6. A typical Java3D Scene Graph Structure

There are two natural scene graph decompositions: transform nodes and branching
groups. Figure 7 shows an example of scene graph decomposition using the patterns
proposed in this paper.

Figure 7. Scene graph decomposition into local and remote nodes

Transform nodes affect groups of primitives and usually are stored in the same host.
Branching groups are sets compound by objects and transformations. There is at most

149

one RemoteReferenceNode for each Node. This allows the construction of Node pairs:
one of them is a tree root and another is a leaf. In Figure 7, GeometricNode and
GroupNode represent local information. Several rendering strategies may be used for
scene graph transversal and are locally implemented by processLocal() and
processComposite() methods in the LocalRenderingStrategies. The proposed pattern
allows arbitrary scene graph decomposition, which provides great flexibility in
achieving improved processing performance.

4.2 Phylogenetic Trees and Cladograms
A phylogenetic tree [Pevzner 2000] is a graphical representation of the evolutionary
relationship between taxonomic groups, as depicted on the Figure 8. The term
phylogeny refers to the evolution or historical development of a plant or animal species,
or even a human tribe or similar group.

Figure 8. Cladogram of human race and its relationships with another species

A phylogenetic tree is a specific type of cladogram where the branch lengths are
proportional to the predicted or hypothetical evolutionary time between organisms or
sequences. The cladogram only illustrates the probability that two organisms, or
sequences, are more closely related to each other than to a third organism, it does not
necessarily clarify the pathway that created the existing relationships. However, the
cladogram can be used in the formulation of new hypotheses and to cast new light on
existing data. For this formulation, several operations over cladograms are needed in
order to obtain predictions about the structure. Even in supercomputers or clusters, the
cladogram analysis depends on high efficient data structures and algorithms.

Both phylogenetic trees and cladograms are compound structures (trees). Leaves
represent elements called taxons and internal branching nodes can contain a wide range

150

of values. It is easy to see that the DistributedComposite pattern could be easily adapted
to represent those structures, as shown in Figure 9.

Figure 9. Cladogram decomposition into local and remote components

Several algorithms which traverse phylogenetic and cladograms, like parsimony or
distance algorithms, may be now embedded into DualVisitor objects. By changing the
DualVisitor’s strategy one can use different transverse algorithms with minimal impact
on phylogenetic or cladograms data structures.

5 Conclusions and further work
Parallel processing of large hierarchical structures includes a wide range of
applications. There is a lack of design patterns to model them. Since distribution and
processing of these structures are non-trivial, hard computational tasks, the development
of adequate design patterns could improve the reusability and expansibility of common
solutions in this context.

This paper presented a set of design patterns for parallel processing of large hierarchical
structures, which could be distributed over a cluster of computers. These patterns
incorporate well-known, classical patterns, which guarantee high cohesion and low
coupling between classes. The main contribution was to provide a generic solution for
modeling and traversing distributed tree-like structures, which arise naturally in many
applications. The proposed patterns allow different implementations of user-defined
processing and traversal strategies.

Future work will include the implementation of these patterns over different parallel and
distributed architectures and applications. Tree partitioning optimal strategies are also a
candidate for future research.

The authors would like to acknowledge Cleber Ferreira de Castro Marchetto Zarate for
his work on initial implementation of these patterns in MPI and RMI, which contributed
to provide sample codes for patterns’ descriptions.

151

References

Akon, M. M. et al. (2004), “SuperPAS: A Parallel Architectural Skeleton Model
Supporting Extensibility and Skeleton Composition”. In Proceedings: Second
International Symposium on Parallel and Distributed Processing and Applications
(ISPA'04), Hong Kong, p. 985-996.

Alur, D. et al. (2003), Core J2EE Patterns, 2nd Edition, Prentice Hall.
Gamma E. et al. (1995), Design Patterns: Elements of Reusable Object-Oriented

Software. Addison-Wesley.
Bouali, A. (1998) “XEVE, an ESTEREL Verification Environment”. Lecture Notes In

Computer Science; v. 1427.
Bowman, D.A., Kruijff, E., LaViola, J.J. and Poupyrev, K. (2004), I. 3D User

Interfaces: Theory and Practice. Addison-Wesley Professional.
Burke, B. and Labourey, S. (2005), “Clustering with JBoss 3.0” In: OnJava electronic

magazine. Available on the Internet at http://www.onjava.com/
pub/a/onjava/2002/07/10/jboss.html (Visited september, 5, 2005).

Filman, R.; Elrad, T.; Clarke, S. and Askit, M. (2005) Aspect-Oriented Software
Development. Addison-Wesley.

Forsyt, D.A. and Ponce, J. (2003), Computer Vision: A Modern Approach, Prentice
Hall.

Geist, M. et al. (1994), PVM: Parallel Virtual Machine, A User's Guide and Tutorial
for Parallel Computing. MIT Press.

Griffiths, D.J. (2004), Introduction to Quantum Mechanics, Prentice Hall, 2nd Edition.
Gropp, W. et al. (1999), Using MPI: Portable Parallel Programming with the Message

Passing Interface (Scientific and Engineering Computation Series). MIT Press.
Halbwachs, N.; Lagnier, F. and Raymond, P. (1993) “Synchronous Observers and the

Verification of Reactive Systems”. Proceedings of the Third International
Conference on Methodology and Software Technology: Algebraic Methodology and
Software Technology. London: Springer-Verlag.

Harrison H. T., Levine D. L. and Schmidt D. C., (1997) "The Design and Performance
of a Real-time CORBA Event Service," in Proceedings of OOPSLA '97, Atlanta,
GA, October, ACM.

Johnson, T. and Krishna, P. (1993) “Designing Distributed Search Structures with Lazy
Updates”. Proceedings of the 1993 ACM SIGMOD International Conference on
Management of Data. Washington.

Lengyel, E. (2003), Mathematics for 3D Game Programming and Computer Graphics,
Charles Rivers Media, 2nd edition.

Martin, R. C. (1997) Pattern languages of program design 3. Addison-Wesley.
Mattson, T. G. et al. (2004), Patterns for Parallel Programming. Addison-Wesley.
Nikolaidis, N. and Pitas, I. (2000), 3-D Image Processing.Willey Interscience.
Orleans, D. and Lieberherr, K. (2001) “DJ: Dynamic Adaptive Programming in Java”.

In: Proceedings of Reflection 2001 - The Third International Conference on
Metalevel Architectures and Separation of Crosscutting Concerns. Kyoto, Japan.

Pevzner, P.A. (2000), Computational Molecular Biology: An Algorithmic Approach.
MIT Press.

Prem, J.; Ciconte, B.; Devgan, M.; Dunbar, S. and Go, P. BEA (2003) WebLogic
Platform 7. Sams Publishing.

152

Rieffel, E. and Polak, W. (2000) “An introduction to quantum computing for non-
physicists”. ACM Computing Surveys v. 32 (3), pp. 300-335, September, New York:
ACM Press

Suvée, D.; Vanderperren, W. and Jockers, V. (2003) “JAsCo: an aspect-oriented
approach tailored for component based software development”. Proceedings of the
2nd international conference on Aspect-oriented software development. Boston

Tan, K. et al. (2003), “Using Generative Design Patterns to Generate Parallel Code for a
Distributed Memory Environment”. In Proceedings: ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP'2003).

The Demeter Research Group. (2005) Online Material on Adaptive Programming and
Demeter/Java. Available on the Internet at
http://www.ccs.neu.edu/research/demeter/, 2000. Visited at September, 4

Vanderperren, W.; Suvée, D.; Verheecke, B.; Cibrán, M. A.; Jonckers, V. (2005)
“Adaptive programming in JasCo”. In: Proceedings of the 4th international
conference on Aspect-oriented software development. Chicago.

Yilmaz, G. and Erdo an, N. (2001) “A New Distributed Composite Object Model For
Collaborative Computing”. Proceeding of ISCIS 2001 - International Symposium on
Computer and Information Sciences. Antalya, Turkey, November.

Yoder, J. W. and Razavi, R. (2000) “Metadata and adaptive object-models”. In ECOOP
2000 Workshop Reader, volume 1964 of Lecture Notes in Computer Science.
Springer Verlag

Zhang, C.; Krishnamurthy, A.; Wang, R.Y. (2005) “Brushwood: Distributed Trees in
Peer-to-Peer Systems”. Proceedings of IPTPS’05 – International Workshop on
Peer-To-Peer Systems. Ithaca, New York, February.

153

155

Padrões e Métodos Ágeis: agilidade no processo de
desenvolvimento de software

Edes Garcia da Costa Filho1, , Rosângela Penteado1

Júnia Coutinho Anacleto Silva1, Rosana Teresinha Vaccare Braga2

1Universidade Federal de São Carlos – Departamento de Computação

2Universidade de São Paulo – Instituto de Ciências Matemáticas e de Computação
{edes_filho,rosangel,junia}@dc.ufscar.br, rtvb@icmc.usp.br

 Apoio Financeiro do CNPq

Abstract. This paper presents some organizational and process patterns that
can be integrated to agile methods to improve and speed up the software
development process. Common features can be found in some organizational
and process patterns, as well as in practices used in agile methods such as
Extreme Programming (XP) and Scrum. From these features, some patterns
that are used as practices in these methods and others that can be integrated
to them were emphasized. There is still the challenge to integrate these
patterns to an agile method.

Keywords: Organizational and Process Patterns, Agile Methods, Extreme
Programming, Scrum.

Resumo. Este artigo apresenta alguns padrões organizacionais e de processo
que podem ser integrados aos métodos ágeis para melhorar e agilizar o
processo de desenvolvimento de software. Características comuns podem ser
encontradas em alguns padrões organizacionais e de processo existentes e em
algumas práticas utilizadas em métodos ágeis como o Extreme Programming
(XP) e o Scrum. A partir dessas características, foram destacados alguns
padrões que são usados como prática nesses métodos e outros que podem ser
integrados a eles. Existe ainda o desafio de integrar esses padrões a um
método ágil.

Palavras chave: Padrões Organizacionais e de Processo, Métodos Ágeis,
Extreme Programming, Scrum.

1. Introdução
Um desafio constante da área de Engenharia de Software é melhorar o processo de
desenvolvimento de software. Mesmo com a constante evolução de métodos, técnicas e
ferramentas, a entrega de software em prazos e custos estabelecidos nem sempre é

156

conseguida. Uma das causas desse problema é o excesso de formalidade nos modelos de
processo propostos nos últimos 30 anos (Fowler, 2003; Larman, 2004). Existe hoje a
necessidade de desenvolver software de forma mais rápida, mas com qualidade. Esse
desenvolvimento pode ser obtido utilizando métodos ágeis e padrões organizacionais e
de processo. A popularização dos métodos ágeis ocorreu com “Manifesto Ágil” (Beck
et al., 2001), que indica alguns princípios que são compartilhados por tais métodos:

Indivíduos e interações são mais importantes que processos e ferramentas;

Software funcionando é mais importante do que documentação detalhada;

Colaboração dos clientes é mais importante do que negociação de contratos;

Adaptação às mudanças é mais importante do que seguir um plano.

 Nos últimos anos, métodos ágeis como o XP (Beck, 1999), Scrum (Schwaber,
2002) e Crystal (Cockburn, 2002) passaram a ser usados em empresas, universidades,
institutos de pesquisa e agências governamentais (Goldman et al., 2004).

 O reuso de software é uma atividade comum durante o processo de
desenvolvimento. Juntamente com outras técnicas, por exemplo desenvolvimento de
software baseado em componentes, os padrões de software (software patterns)
auxiliam e contribuem para o reuso em níveis mais altos de abstração, como por
exemplo, em nível de análise, arquitetural, organizacional e de processo. Das diversas
categorias de padrões que surgiram, os padrões organizacionais e de processo são os
que têm por objetivo apoiar a construção do software e melhorar o seu
desenvolvimento. Além de estarem divididos em categorias, os padrões podem ser
agrupados em linguagens de padrões. Uma linguagem de padrões é um sistema de
padrões organizados em uma estrutura que guia a sua aplicação (Kerth et al., 1997).

 Os padrões organizacionais e de processo cobrem problemas de
desenvolvimento. Eles podem ser usados para modelar uma nova organização e seu
processo de desenvolvimento (Coplien, 1995). Essas duas categorias de padrões podem
ser utilizadas em conjunto com métodos ágeis.

 A simples utilização de métodos ágeis pode não suprir as necessidades de uma
organização ou projeto. Adaptações nos métodos podem ser necessárias (Goldman et
al., 2004; Taber et al., 2000). Os padrões organizacionais e de processo podem ser
utilizados nesse contexto para ajustar ou aperfeiçoar um método ágil, como o XP ou
Scrum, de acordo com as necessidades da organização ou do projeto.

 Neste artigo, são apresentados dez padrões organizacionais e de processo,
propostos por diferentes autores, que podem ser integrados aos métodos ágeis, para
melhorar ou adaptar o método ágil e dar mais agilidade ao processo de
desenvolvimento. Essa integração será avaliada por meio de estudos de caso. Na Seção
2, são apresentados alguns trabalhos relacionados encontrados na literatura. Na Seção 3,
são apresentados conceitos básicos sobre os métodos ágeis XP e Scrum. Na Seção 4,
são apresentados os padrões organizacionais e de processo que já são encontrados nos
métodos ágeis e os que podem ser integrados a eles. Finalmente, na Seção 5, estão as
considerações finais.

157

2. Trabalhos Relacionados
Algumas publicações encontradas na literatura apresentam padrões organizacionais e de
processo para desenvolvimento ágil de software e a integração de padrões
organizacionais e de processo com métodos ágeis.

 A linguagem de padrões “A Generative Development-Process Pattern
Language" (Coplien, 1995), publicada em Pattern Languages of Program Design
(Coplien et al., 1995) é a primeira referência sobre padrões organizacionais e de
processo. Essa linguagem possui um conjunto de padrões organizacionais e de processo
de sucesso, que podem ser utilizados para estabelecer estruturas organizacionais e
práticas cujo objetivo é melhorar o processo de desenvolvimento de software da
organização.

 Coplien et al. (2004) apresentam quatro linguagens de padrões que combinam
estruturas organizacionais com as melhores práticas de desenvolvimento de software.
Essas linguagens, que devem ser usadas em conjunto para solucionar problemas de
desenvolvimento de software da organização, são:

Project Management Pattern Language: trata do trabalho e estruturação da
organização, com foco no cronograma, processo, tarefas e estrutura para
apoiar o progresso do trabalho.

Piecemeal Growth Pattern Language: descreve como criar a organização e
o processo juntos.

Organizational Style Pattern Language: trata do relacionamento entre os
papéis na organização.

People and Code Pattern Language: explica o relacionamento entre a
estrutura de uma organização e os artefatos que são construídos.

 Uma parte dos padrões dessas linguagens foi herdada da linguagem de padrões
“A Generative Development-Process Pattern Language" (Coplien, 1995). Apesar do
título do livro ser "Organizational Patterns of Agile Software Development" (Padrões
Organizacionais de Desenvolvimento de Software Ágil), o termo "Ágil" foi usado por
questões de marketing. Muitos dos padrões dessas linguagens podem contribuir para
agilidade, mas o principal objetivo é a efetividade (Coplien et al., 2004).

 O padrão Fire Walls é apresentado para exemplificar os padrões de Coplien et
al. (2004). A forma de apresentação desses padrões é a Alexandrina.

Nome: Fire Walls ** (para Coplien et al. (2004), as estrelas variam entre zero e duas,
dependendo da freqüência com que os autores perceberam a aplicação do padrão)

Contexto: uma organização de desenvolvedores está formada em um contexto
corporativo ou social, em que os desenvolvedores são examinados por colegas,
financiadores, clientes e por outras pessoas externas. Desenvolvedores são
freqüentemente distraídos por pessoas externas, que sentem necessidade de passar
informações e críticas.

Resumo do Problema: é importante proteger os desenvolvedores de outras pessoas
envolvidas no projeto, que não participam do desenvolvimento, mas sentem necessidade
de ajudar por meio de comentários ou críticas.

158

Problema Detalhado: o isolamento não funciona: o fluxo da informação é importante.
Mas, o excesso de comunicação aumenta de forma não linear em relação ao número de
colaboradores externos.

Solução: crie um cargo de gerente, que protege os desenvolvedores de interações com
cargos externos. A responsabilidade desse cargo é “manter as pestes longe”.

Contexto Resultante: a nova organização isola os desenvolvedores de interrupções
externas insignificantes. Para evitar o isolamento, esse padrão deve ser utilizado em
conjunto com outros, como Engage Customers e Gate Keeper.

Análise Racional: o padrão Gate Keeper facilita o fluxo de informações úteis; Fire
Walls restringe o fluxo de informações. É necessário balancear esses dois padrões.

 Beedle et al. (1999) propõem uma linguagem de padrões de extensão para as
linguagens de padrões organizacionais já existentes, a “Scrum Pattern Language”.
Nessa linguagem as práticas Scrum, descritas na forma de padrões, são combinadas com
alguns padrões organizacionais e de processo de Coplien (1995), para guiar o
desenvolvimento de software de forma mais adaptativa e estruturar melhor a
organização. Para Beedle (1997), o próprio Scrum é um padrão organizacional.

 O padrão Scrum Meeting é apresentado a seguir para exemplificar a forma de
apresentação dos padrões de Beedle et al. (1999), que descrevem seus padrões com os
seguintes elementos: nome, contexto, problema, forças, solução, análise racional, usos
conhecidos e contexto resultante.

Nome: Scrum Meeting

Contexto: você é um desenvolvedor de software ou gerente de uma equipe de
desenvolvimento no qual estão envolvidos: criatividade, descobertas e testes.

Problema: qual é a melhor forma de controlar um processo de desenvolvimento de
software, em que é difícil definir os artefatos que serão produzidos e os processos para
consegui-los?

Forças: é difícil realizar estimativas exatas para atividades que envolvem descobertas,
criatividade ou testes. Planejar e re-priorizar tarefas consome tempo.

Solução: fazer reuniões diárias de aproximadamente quinze minutos, onde se deve
discutir o que foi produzido desde a última reunião, que problemas foram encontrados
para realizar as tarefas nas últimas vinte e quatro horas e o que será feito nas próximas
vinte e quatro horas.

Análise Racional: é muito fácil superestimar ou subestimar esforços, o que leva a um
desperdício de tempo ou a um atraso para conclusão de tarefas. É melhor ter um
mecanismo adaptativo que fornece uma amostra do que está sendo realizado em
pequenos períodos de tempo, ao invés de re-priorizar tarefas constantemente.

Usos Conhecidos: Nike Securities em Chicago e Elementrix Technologies.

Contexto Resultante: melhor visibilidade do status do projeto e da produtividade
individual, menos tempo perdido com obstruções e melhor socialização entre os
membros da equipe.

159

3. Visão Geral sobre Métodos Ágeis, Extreme Programming e Scrum
Existe atualmente grande interesse nos métodos modernos de desenvolvimento,
conhecidos como métodos ágeis. Esses métodos abordam o processo de
desenvolvimento de software de forma diferente dos modelos preconizados
anteriormente pela Engenharia de Software, que tinham forte ênfase na documentação e
nos processos. A principal diferença está na forma como as mudanças são tratadas
durante o desenvolvimento do software. Os modelos de processo convencionais adotam
a estratégia de previsibilidade. Eles utilizam técnicas para tentar levantar todos os
requisitos e compreender o domínio do problema antes de iniciar o desenvolvimento.
Depois de levantados os requisitos, é feito um planejamento para que as mudanças
possam ser controladas no decorrer do processo de desenvolvimento do software. Os
métodos ágeis optam pela adaptabilidade. Os requisitos são levantados aos poucos e o
planejamento é contínuo, para que a adaptação às mudanças possa ocorrer.

 Cockburn (2001) define desenvolvimento ágil de software como uma
abordagem de desenvolvimento que trata os problemas das mudanças rápidas:
mudanças nas forças de mercado, requisitos de sistemas, tecnologia de implementação e
equipes de projeto dentro de período de desenvolvimento.

 Os métodos ágeis enfatizam os aspectos humanos do desenvolvimento de
software ao invés dos aspectos de Engenharia (Lycett et al., 2003). Segundo Highsmith
et al. (2001), o que existe de novo nos métodos ágeis não são as práticas que eles usam,
mas o reconhecimento de que as pessoas são os principais condutores de sucesso do
projeto. Outra característica desses métodos é que eles não são centrados nos artefatos.
Eles optam por uma documentação apropriada para evitar redundâncias e excessos, para
que auxilie efetivamente o desenvolvimento do software.

 As Seções 3.1 e 3.2 apresentam os métodos ágeis XP e Scrum resumidamente.

3.1. Extreme Programming
O XP, criado por Kent Beck e Ward Cunningham, é o mais popular dos métodos ágeis.
Ele é indicado para equipes pequenas e médias, com até dez integrantes, que
desenvolvem software baseado em requisitos não totalmente definidos e que se
modificam rapidamente (Beck, 1999).

 As práticas do XP não são novidades: ele reúne práticas de implementação e
gerenciamento em um conjunto coerente, acrescentando as idéias de processo.

 XP define um conjunto de doze práticas, apresentadas a seguir, escolhidas com
base em quatro valores que são: comunicação, simplicidade, feedback e coragem.

Jogo do Planejamento (The Planning Game). Determina rapidamente o escopo das
próximas versões, combinando as prioridades de negócio e as estimativas técnicas.

Pequenas Versões (Small releases). A equipe deve colocar rapidamente um sistema
simples em produção, uma versão pequena, e depois entregar novas versões em poucos
dias ou poucas semanas.

Metáfora (Metaphor). Uma metáfora é uma descrição simples de como o sistema
funciona. Ela fornece uma visão comum do sistema e guia o seu desenvolvimento.

160

Projeto simples (Simple design). O sistema deve ser projetado o mais simples possível.
Complexidade extra é removida assim que descoberta.

Testes (Testing). Os programadores escrevem testes de unidade continuamente. Esses
testes são criados antes do código e devem ser executados perfeitamente para que o
desenvolvimento continue. Os clientes também escrevem testes para validar se as
funções estão finalizadas.

Refatoração (Refactoring). Os programadores reestruturam o sistema durante todo o
desenvolvimento, sem modificar seu comportamento externo (Fowler, 1999). Isso é
feito para simplificar o sistema, adicionar flexibilidade ou melhorar o código.

Programação pareada (Pair programming). Todo código produzido é feito em pares,
duas pessoas trabalhando em conjunto na mesma máquina.

Propriedade coletiva (Collective ownership). Qualquer um pode alterar qualquer
código em qualquer momento, o código é de propriedade coletiva.

Integração contínua (Continuous integration). Uma nova parte do código deve ser
integrada assim que estiver pronta. Consequentemente, o sistema é integrado e
construído várias vezes ao dia.

Semana de 40 horas (40-hour week). XP defende um ritmo de trabalho que possa ser
mantido, sem prejudicar o bem estar da equipe. Trabalho além do horário normal pode
ser necessário, mas fazer horas extras por períodos maiores que uma semana é sinal de
que algo está errado com o projeto.

Cliente junto aos desenvolvedores (On-site customer). Os desenvolvedores devem ter
o cliente disponível todo o tempo, para que ele possa responder às dúvidas que os
desenvolvedores possam ter.

Padronização do Código (Coding standards). Os programadores escrevem o código
seguindo regras comuns enfatizando a comunicação por meio do código.

 Alguns dos papéis identificados em XP: Programador (Programmer), Cliente
(Customer), Testador (Tester), Investigador (Tracker), Orientador (Coach), Consultor
(Consultant) e Gerente (Manager). Ressalta-se que o testador não é necessariamente
uma pessoa que realiza somente essa atividade (Beck, 1999).

 As práticas do XP apóiam umas às outras, devem ser usadas em conjunto e todas
devem ser aplicadas para se ter agilidade no processo. Aplicar as práticas de forma
isolada pode não produzir a agilidade desejada.

3.2. Scrum
O Scrum foi desenvolvido para gerenciar o processo de desenvolvimento de software
em ambientes em que os requisitos estão em constante mudança. Ele é apropriado para
equipes pequenas, com até dez integrantes. (Abrahamsson et al., 2002). Schwaber et al.
(2002) sugerem que a equipe contenha de cinco a nove integrantes.

 O Scrum não exige ou fornece métodos ou práticas específicas de
desenvolvimento de software, mas exige certas práticas de gerenciamento, que são
descritas por Abrahamsson et al. (2002):

161

Tarefas do Produto (Product Backlog): define tudo o que é necessário no produto
final. Contém uma lista priorizada e constantemente atualizada dos requisitos do
sistema que está sendo construído ou otimizado.

Estimativa de esforço (Effort Estimation): como o Scrum é um processo iterativo a
estimativa de esforço para realizar as tarefas deve ser realizada frequentemente.

Sprint: procedimento de adaptação às mudanças de variáveis de ambiente, como
requisitos, tempo, recursos ou tecnologia. Sprints são intervalos fixos de tempo, em que
todo o trabalho é realizado. No Scrum um sprint tem duração de trinta dias. Durante um
sprint a equipe Scrum se organiza para produzir um incremento do produto. Essa prática
contém: reuniões de planejamento dos sprints (Sprint Planning Meetings), para decidir
os objetivos e funcionalidades do próximo sprint; Tarefas do Sprint (Sprint Backlog),
que é uma lista de itens de trabalho de produto selecionados para o próximo sprint;
Reuniões Scrum diárias (Daily Scrum Meetings), de aproximadamente quinze minutos
realizadas para verificar o progresso do projeto e para discutir questões como: o que foi
feito desde a última reunião e o que precisa ser feito até a próxima.

Reunião de Revisão de Sprint (Sprint Review Meeting): no último dia do sprint, os
resultados são apresentados.

 Segundo Abrahamsson (2002) os papéis identificados no Scrum são: Mestre
(Scrum Master), Proprietário do produto (Product Owner), Equipe Scrum (Scrum
Team), Cliente (Customer) e Gerência (Management).

 Por não fornecer métodos e práticas específicas de desenvolvimento, o Scrum se
torna um método mais flexível, já que o desenvolvimento pode ser tratado da forma que
for melhor para a organização.

4. Métodos Ágeis e Padrões Organizacionais e de Processo
No estudo realizado foi possível detectar que padrões organizacionais e de processo e
métodos ágeis estão diretamente relacionados. Sutherland (2003) afirma que alguns
padrões de Coplien (1995) influenciaram o desenvolvimento de Scrum, enquanto Beck
(1999) declara que muitas das idéias do XP provêm da linguagem de padrões Episodes
(Cunningham, 1996).

 Assim, muitas idéias encontradas nos padrões organizacionais e de processo
também são encontradas nos métodos ágeis. Por exemplo, no XP o cliente define a
funcionalidade do sistema a ser desenvolvido por meio das chamadas estórias do
usuário, e as prioriza em seguida. Na linguagem de padrões Episodes, os padrões
Implied Requirement e Work Queue sugerem, respectivamente, que a funcionalidade
seja identificada e depois priorizada. Além desses, outros padrões organizacionais e de
processo podem ser destacados pela relação que possuem com os métodos ágeis.

 Com base nos estudos realizados, a Tabela 1 mostra alguns padrões
organizacionais e de processo que são usados como prática nos métodos ágeis, porém
não existe referência para eles nos métodos. A seleção foi realizada com base nos
conceitos comuns encontrados nos métodos ágeis e nesses padrões. A coluna 1 mostra o
nome do padrão; na coluna 2 consta a(s) linguagem(ns) de padrões a(s) qual(is) o
padrão pertence; um breve resumo do problema que o padrão resolve é apresentado na

162

coluna 3 e a coluna 4 indica o(s) método(s) ágil (eis) que usa(m) o padrão como
prática.

Tabela 1. Padrões Organizacionais e de Processo e Métodos Ágeis

Nome Linguagem de Padrões Resumo Método Ágil
Implied Requirement Project Management

Pattern Language,
Episodes.

O problema é definir as necessidades
do cliente de forma significativa para
os desenvolvedores. Portanto,
selecione e nomeie partes de
funcionalidade e crie uma lista com
essas partes.

XP, Scrum

Work Queue Project Management
Pattern Language,
Episodes.

O problema é conceder tempo para
realizar tudo. Portanto, crie um
cronograma que é simplesmente uma
lista priorizada de trabalho. Use a lista
do Implied Requirement como ponto
de partida e ordene-a, em uma ordem
de implementação, de modo que
favoreça os itens mais urgentes ou de
maior prioridade.

XP, Scrum

Size the
Organization

Piecemeal Growth
Pattern Language

Quando a equipe de desenvolvimento
é muito grande, raramente os projetos
são entregues dentro do prazo e
orçamento previstos. Se a equipe é
muito grande a comunicação pode
falhar. Se a equipe é pequena, a
produtividade vai diminuir. Por isso,
escolha aproximadamente dez pessoas
para compor a equipe de
desenvolvimento e evite acrescentar
indivíduos depois de iniciado o
desenvolvimento.

XP, Scrum

Engage Customers Piecemeal Growth
Pattern Language

Se você quer gerenciar um processo
de desenvolvimento incremental que
acomode informações fornecidas pelo
cliente, junte o cliente aos
desenvolvedores e arquitetos, não
somente ao QA (Quality Assurance)
ou marketing.

XP, Scrum

Developing in Pairs Piecemeal Growth
Pattern Language

Se você quer melhorar a efetividade
individual dos desenvolvedores,
coloque os desenvolvedores para
trabalharem em pares.

XP

Few Roles Organizational Style
Pattern Language

As pessoas em um projeto devem se
comunicar para o projeto progredir.
Mas, o custo indireto dessa
comunicação pode impedir o
verdadeiro progresso que ela deveria
facilitar. Portanto, tente manter o
número de papéis da organização
abaixo de dezesseis.

XP, Scrum

Stand up Meeting People and Code
Pattern Language

Em tempos de mudanças rápidas é
essencial que todos os membros da
organização recebam as mesmas
informações. Portanto, realize
reuniões diárias, de aproximadamente

XP, Scrum

163

quinze minutos, com a equipe, para
trocar informações sobre o projeto.

Developer Controls
Process

Project Management
Pattern Language

Como os Desenvolvedores
contribuem diretamente no
desenvolvimento dos artefatos
visíveis para o usuário final, faça do
desenvolvedor o ponto foco de
informação do processo.

XP, Scrum

Patron Role Piecemeal Growth
Pattern Language

É importante dar continuidade ao
projeto. Mas, um controle
centralizado pode dificultar o
progresso. Assim, eleja um “Patrono”
para o projeto, para que as barreiras
que impedem o progresso do projeto
sejam removidas.

Scrum

Surrogate Customer Piecemeal Growth
Pattern Language

É importante trocar idéias com os
clientes. Mas se o cliente não estiver
disponível, crie um papel de
Substituto do Cliente no projeto, com
alguém que irá tentar pensar como o
cliente.

XP

Fire Walls Piecemeal Growth
Pattern Language

É importante proteger os
desenvolvedores de outras pessoas
envolvidas no projeto, que não
participam do desenvolvimento, mas
sentem necessidade de ajudar por
meio de comentários ou críticas.
Portanto, crie um cargo de gerente,
que protege os desenvolvedores de
interações com cargos externos.

Scrum

 Tanto no XP quanto no Scrum as funções que irão compor a versão final do
software são selecionadas e depois priorizadas. Essas práticas são as propostas pelos
padrões Implied Requirement e Work Queue. Da mesma forma que o padrão Size the
Organization propõe, os dois métodos defendem o uso de equipes pequenas ou médias.
Um dos valores que serve como base para os métodos ágeis é a colaboração dos
clientes. O padrão Engage Customers sugere que os clientes devem estar próximos dos
desenvolvedores e arquitetos e não só da garantia de qualidade e marketing. Com os
clientes participando, o desenvolvimento se torna mais rápido, pois para conseguir
agilidade os desenvolvedores precisam de respostas rápidas dos clientes. Uma das
práticas do XP é a programação em pares, em que todo código produzido é feito em
pares, trabalhando juntos na mesma máquina. O padrão Developing in Pairs sugere que
em pares os desenvolvedores produzem mais do que a soma dos dois individualmente.
Cockburn et al. (2000) afirmam que a programação em pares traz importantes
benefícios ao desenvolvimento de software. Os programadores trabalham mais rápido,
aprendem mais sobre o projeto e o sistema, o código desenvolvido é menor e o software
é produzido com menos defeitos. Poucos papéis são definidos no XP e no Scrum.
 Ambos seguem o padrão Few Roles, que sugere que o número de papéis em uma
organização seja de aproximadamente de dezesseis ou menos. Stand up Meetings são
reuniões rápidas de aproximadamente quinze minutos, que é uma das práticas de
gerenciamento do XP e do Scrum, realizada para avaliar o progresso alcançado e
planejar as próximas atividades. Nos dois métodos, o desenvolvedor é o ponto central
do projeto, o que é sugerido pelo padrão Developer Controls Process. O Padrão Patron

164

Role e o Padrão Fire walls propõem, respectivamente, que sejam criados papéis para dar
continuidade ao projeto e proteger o desenvolvedores de interações externas. No Scrum
isso é responsabilidade do Scrum Master. Outra semelhança pode ser encontrada no
padrão Surrogate Customer e na prática “Cliente junto aos desenvolvedores” (On-site
customer) do XP. O XP defende que o cliente deve estar disponível todo o tempo, para
que os desenvolvedores possam tirar dúvidas sobre o projeto. Entretanto, se não for
possível ter o cliente disponível, alguém da equipe deve desempenhar esse papel. Essa
prática é proposta pelo padrão Surrogate Customer.

 Além dos padrões apresentados na Tabela 1, outros podem ser integrados aos
métodos ágeis para melhorar ou adaptar o método ágil, conforme mostrado na Tabela 2.
Esses padrões foram identificados com base nos princípios dos métodos ágeis, e
propõem soluções que facilitam a comunicação, interação e adaptação às mudanças que
podem ocorrer no projeto.

Tabela 2. Padrões Organizacionais e de Processo

Nome Linguagem de Padrões Resumo
Community of Trust Project Management Pattern

Language
O relacionamento social tem um impacto
significante na efetividade da equipe.
Faça suas atividades de forma que
demonstre confiança explicitamente. As
ações devem ser visíveis e evidentes, para
que as pessoas da equipe confiem umas
nas outras.

Self Selecting Team Piecemeal Growth Pattern
Language

Não existe um critério perfeito para
selecionar membros de uma equipe, mas
os interesses dos indivíduos não devem
ser ignorados. Assim, crie equipes
entusiasmadas com as pessoas escolhendo
sua própria equipe.

Unity of Purpose Piecemeal Growth Pattern
Language

Muitos projetos têm um inicio difícil com
as pessoas se esforçando para trabalharem
juntas. Frequentemente, as pessoas têm
idéias diferentes de como o produto final
deveria ser. Assim, o líder do projeto
deve expor para todos membros da equipe
uma visão comum e propósito geral.

Matron Role Piecemeal Growth Pattern
Language

Algumas atividades são necessárias para
manter a equipe prosseguindo no trabalho
técnico. Por isso, assegure que a equipe
contenha uma “Mãe”, que vai tratar dos
assuntos sociais e pessoais necessários
para manter a equipe unida.

Compensate Success Piecemeal Growth Pattern
Language

Estabeleça recompensas para os
indivíduos que contribuem para o sucesso
do projeto. Toda a equipe deve receber
recompensas parecidas, para evitar
desmotivação individual. Assim, a
organização fica mais focada na
satisfação do cliente e no sucesso do
sistema.

Organization Follows
Location

Organizational Style Pattern
Language

Se for necessário distribuir o trabalho
geograficamente, a comunicação pode ser
prejudicada, mas você pode limitar os
danos se o trabalho puder ser dividido.

165

Assim, a divisão de tarefas deve estar de
acordo com a distribuição geográfica dos
envolvidos no projeto. Responsabilidades
devem ser atribuídas de forma que
decisões possam ser tomadas localmente.

Face To Face Before
Working Remotely

Organizational Style Pattern
Language

A distância geográfica dificulta a
comunicação. Assim, inicie um projeto
distribuído com uma reunião cara a cara
com todos para que se estabeleça uma
uniformidade no projeto.

Standards Linking
Locations

Organizational Style Pattern
Language

O isolamento de desenvolvedores não
deve ocorrer em projetos geograficamente
distribuídos. A equipe deve se comunicar
por meio de interfaces definidas, o código
deve interagir. Assim, utilize normas para
representar tudo o que está relacionado à
arquitetura.

Shaping Circulation Realms Organizational Style Pattern
Language

A comunicação entre os participantes do
projeto é fundamental para o sucesso e
não se pode esperar que a comunicação
aconteça espontaneamente. Portanto, crie
estruturas na organização ou no espaço de
trabalho que apóiem a comunicação.

The Water Cooler Organizational Style Pattern
Language

As organizações precisam evitar o
isolamento das equipes. Em ambientes
amplos é difícil apoiar a freqüente
interação entre as equipes. Promova
estruturas sociais que não estão
relacionadas ao local de trabalho, onde as
pessoas podem se encontrar, tanto para
pausa quanto para comunicação.

 Os padrões Community of Trust, Self Selecting Team, Unity of Purpose e
Compensate Success abordam questões relacionadas aos indivíduos envolvidos no
processo de desenvolvimento. Esses padrões podem ser integrados aos métodos ágeis
para aumentar a motivação individual, melhorar o relacionamento e bem estar dos
envolvidos no desenvolvimento e, conseqüentemente, agilizar o desenvolvimento de
software.

 Em uma pesquisa realizada para ensinar XP para estudantes, Goldman et al.
(2004) destacam alguns aspectos importantes que devem ser observados quando se
adota o XP como processo de desenvolvimento. Foi observado que fornecer lanches
simples para os estudantes é uma forma eficiente de mantê-los no desenvolvimento do
software por um longo período. Assim, os estudantes permaneciam concentrados no
desenvolvimento. Esse é o caso de aplicação do padrão Matron Role. Outro ponto
destacado foi que os desenvolvedores foram organizados seguindo diretrizes para
facilitar a comunicação. Os padrões Shaping Circulation Realms e The Water Cooler
são aplicados com esse objetivo nas organizações.

 Em um estudo realizado sobre programação pareada, Baheti et al. (2002)
mostram que é possível desenvolver software com programação pareada distribuída.
Porém, com os programadores geograficamente divididos, a falta de comunicação pode
afetar o projeto. Para tratar o problema da comunicação em ambientes distribuídos, os
padrões Organization Follows Location, Standards Linking Locations e Face To Face

166

Before Working Remotely podem ser aplicados para que a agilidade não seja afetada por
falta de comunicação.

 Assim, aspectos importantes do desenvolvimento ágil de software são abordados
pelos padrões apresentados. A integração de métodos ágeis e de padrões
organizacionais e de processo se torna cada vez mais necessária, possibilitando um
desenvolvimento de software mais rápido e com qualidade.

5. Considerações Finais
Os padrões organizacionais e de processo apóiam de forma efetiva a construção do
software. Assim, se integrados com métodos ágeis, o software pode ser desenvolvido de
forma mais rápida e com mais qualidade, pois os padrões são soluções de sucesso para
problemas recorrentes que podem ser utilizados tanto para melhorar quanto para adaptar
os métodos ágeis.

 Uma questão que surge quando os padrões organizacionais e de processo são
abordados é como integrá-los aos métodos de desenvolvimento de software.

 A linguagem de padrões apresentada por Beedle et al. (1999) é um exemplo de
integração de alguns padrões organizacionais e de processo com o método ágil Scrum.
Por meio dessa combinação, Beedle et al. (1999) descrevem de forma mais clara a
estrutura da organização de desenvolvimento de software. Dentre os padrões integrados
com o Scrum, pode-se destacar dois que foram apresentados na Tabela 1: o Fire Walls e
o Developer Controls Process. O padrão Fire Walls está relacionado ao Scrum Master,
que deve filtrar as informações irrelevantes que não contribuem para melhoria do
projeto. Outro relacionamento é o do padrão Developer Controls Process com o Scrum
Team, que é a equipe de desenvolvimento. Os desenvolvedores, que tem autoridade para
decidir ações necessárias para alcançar seus objetivos, são os pontos chave de
comunicação no projeto, por estarem em melhor posição para assumir responsabilidade
pelo produto.

 Apesar deste estudo sobre padrões mostrar a existência de alguns padrões
organizacionais e de processo que podem melhorar o desenvolvimento de software,
existe ainda o desafio de integrar esses padrões a um método ágil (Scrum ou XP) e
estabelecer um processo de desenvolvimento de software ágil, com soluções de sucesso
em nível organizacional e de processo.

6. Referências Bibliográficas
Abrahamsson, P.; Salo, O.; Ronkainen, J.; Warsta, J. Agile Software Development

Methods: Reviews and Analysis. Espoo: VTT Publications, 2002. Disponível em:
<http://www.inf.vtt.fi/pdf/publications/2002/P478.pdf>. Acesso em: 11 mar. 2005.

Baheti, P.; Williams, L.; Gehringer, E.; Stotts, D. Exploring Pair Programming in
Distributed Object-Oriented Team Projects. In Proceedings of XP/Agile Universe
2002, Chicago, Agosto, 2002.

Beck, K. Extreme Programming Explained – Embrace Change. Addison-Wesley. 1999.

Beck, K.; Beedle, M.; Bennekum, A.; Cockburn, A.; Cunningham, W.; Fowler, M.;
Grenning, J.; Highsmith, J.; Hunt, A.; Jeffries, R.; Kern, J.; Marick, B.; Martin, R.;
Mellor, S.; Schwaber, K.; Sutherland, J.; Thomas, D. Manifesto for Agile Software

167

Development. 2001. Disponível em: <http://www.agilemanifesto.org/>. Acesso em:
20 fev. 2005.

Beedle, M. Scrum is an Organization Pattern. 1997. Disponível em:
<http://www.jeffsutherland.org/scrum/scrum_pattern.html>. Acesso em: 23 mar.
2005.

Beedle, M.; Devos, M.; Sharon, Y.; Schwaber, K.; Sutherland, J. SCRUM: An
Extension Pattern Language for Hyperproductive Software Development. In:
Harrison, N.; Foote, B.; Rohnert, H. Pattern Languages of Program Design 4.
Addison-Wesley, 1999.

Cockburn, A.; Williams, L. The Costs and Benefits of Pair Programming. In
Proceedings of the First International Conference on Extreme Programming and
Flexible Processes in Software Engineering (XP2000), Junho, 2000.

Cockburn, A.; Highsmith, J. Agile Software Development: The People Factor. IEEE
Computer, 2001.

Cockburn, A. Agile software development. Boston: Addison Wesley, 2002.

Coplien, J. O. A Generative Development-Process Pattern Language. In: Coplien, J.;
Schmidt, D. Pattern Languages of Program Design. USA: Addison-Wesley, 1995.

Coplien, J. O.; Schmidt, D. C. Pattern Languages of Program Design. Reading – MA,
USA: Addison-Wesley, 1995.

Coplien, J. O.; Harrison N. B. Organizational Patterns of Agile Software Development.
1. ed. Prentice Hall, 2004.

Cunningham, W. Episodes: A Pattern Language of Competitive Development. In:
Vlissides, J.; Coplien, J.; Kerth, N. Pattern Languages of Program Design 2,
Addison-Wesley, 1996.

Fowler, M.; Beck, K.; Brant, J.; Opdyke, W.; Roberts, D. Refactoring: Improving the
Design of Existing Code. Addison-Wesley, 1999.

Fowler, M. The New Methodology. 2003. Disponível em:
<http://www.martinfowler.com/articles/newMethodology.html>. Acesso em: 15 jun
2005.

Goldman, A.; Kon, F; Silva, P. J. S.; Yoder J. W. Being Extreme in the Classroom:
Experiences in Teaching XP. In Journal of the Brazilian Computer Society, volume
10, número 2, pp. 1-17. Novembro, 2004.

Highsmith, J.; Cockburn, A. Agile Software Development: The Business of Innovation.
IEEE Computer, 2001.

Kerth, H.; Cunningham, W. Using Patterns to Improve our Architectural Vision. IEEE
Software, v.14, n. 1, p. 53-59, 1997.

Larman, C. Applying UML and Patterns: An Introduction to Object-Oriented Analysis
and Design and Iterative Development. 3. ed. Prentice Hall, 2004.

Lycett, M.; Macredie, R. D.; Patel, C.; Paul, R. J. Migrating Agile Methods to
Standardized Development Practice. In: Computer, pp. 79-85. IEEE Computer
Society. Jun. 2003.

168

Schwaber, K.; Beedle, M. Agile Software Development with SCRUM. Prentice-Hall,
2002.

Sutherland, J. SCRUM: Another Way to Think about Scaling a Project. 2003.
Disponível em: <http://jeffsutherland.org/scrum/2003_03_01_archive.html>. Acesso
em: 20 mar. 2005.

Taber, C.; Fowler, M. An iteration in the life of an XP project. Cutter IT Journal,
13(11), Novembro, 2000. Versão eletrônica disponível em:
<http://www.martinfowler.com/articles/planningXpIteration.html>. Acesso em: 20
set. 2005.

169

170

171

172

173

174

175

176

177

178

Aplicação de metapadrões e padrões em desenvolvimento
de software para sistemas de informação

Gabriela T. de Souza1, 2, Carlo Giovano S. Pires1, Fabiana Gomes Marinho1,
Arnaldo Dias Belchior2

1Instituto Atlântico
Rua Chico Lemos, 946 – 60 822-780 – Fortaleza – CE – Brasil

2Universidade de Fortaleza
Av. Washington Soares, 1321 – Fortaleza – CE – Brasil

{gabi, cgiovano, fabiana}@atlantico.com.br, belchior@unifor.br

Abstract. This work presents a catalogue of metapatterns and their application
in the development of information systems. The considered metapatterns are
implemented by requirement patterns, design patterns and test patterns. RUP
is used as reference of software engineering good practices.
Resumo. Este trabalho apresenta um catálogo de metapadrões e a aplicação
desses metapadrões no desenvolvimento de sistemas de informação. Os
metapadrões propostos são implementados por padrões de requisitos, padrões
de projeto e padrões de teste. O RUP foi utilizado como referência de boas
práticas de engenharia de software a serem seguidas.

1. Introdução
Em sistemas de informação, as funcionalidades são muito concentradas em cenários de
uso baseados em manutenção e consulta de dados, gerando necessidades e problemas
recorrentes durante o desenvolvimento do sistema, que afetam os vários produtos de
trabalho ao longo do ciclo de vida de desenvolvimento de software. Entre estes
problemas podemos citar o tratamento de operações para criação, atualização, exclusão
e consulta de entidades.

 Com o objetivo de minimizar estes problemas, vários modelos e processos foram
propostos para auxiliar o desenvolvimento de produtos de software de qualidade,
destacando-se o RUP (Rational Unified Process) [8]. O RUP é um framework de
processo adaptável que abrange as melhores práticas do desenvolvimento de software de
mercado e tem sido largamente utilizado em projetos de software.

 Desenvolver software usando padrões pode reduzir o custo e condensar o ciclo
de vida do desenvolvimento, e simultaneamente manter a qualidade dos sistemas
desenvolvidos. Entretanto, o potencial de usar padrões em sistemas de software não é
aproveitado inteiramente. Embora diversos padrões tenham sido desenvolvidos para
analisar, projetar, e implementar o software; não existe nenhuma orientação ou
metodologia madura que fornece uma abordagem sistemática para integrar estes
diferentes tipos de padrões durante o ciclo de desenvolvimento.

 Neste trabalho, propomos o uso de um catálogo de metapadrões integrado ao
ciclo de vida de desenvolvimento de software para apoiar a construção de sistemas de
informação. Os metapadrões apresentados são implementados por padrões de requisitos,

179

padrões de projeto e padrões de teste. Não abordamos padrões de implementação. Esses
padrões serão tratados em trabalhos futuros.

 Este trabalho está organizado em 5 seções. A seção 2 descreve modelos e
processos de software, que são propostos para auxiliar no desenvolvimento de software.
Os conceitos de padrões e metapadrões são apresentados na seção 3. Na seção 4,
descrevemos o catálogo de metapadrões proposto. A seção 5 apresenta o uso de
metapadrões e padrões no desenvolvimento de sistemas de informação. Finalmente, a
seção 6 contém as conclusões e os direcionamentos para trabalhos futuros.

2. Desenvolvimento de software
Atualmente, existem vários processos de desenvolvimento software com o objetivo de
auxiliar os grupos de desenvolvimento a construírem produtos de software de qualidade,
capazes de atender as necessidades e exigências dos usuários. Apesar de possuírem
abordagens diferentes, as disciplinas descritas a seguir são comuns a vários processos
[14].

- Requisitos: define as funcionalidades e as restrições do software.

- Análise e Projeto: produz a arquitetura utilizada como base para o desenvolvimento
do software.

- Implementação: produz e libera o código para o cliente final.

- Testes: valida o software para garantir que as funcionalidades e restrições serão
atendidas.

- Manutenção: garante que o software atenda às necessidades de mudança do
cliente.

 Estas disciplinas fundamentais são organizadas de acordo com os modelos de
ciclo de vida. O ciclo de vida cascata (clássico) é o mais tradicional. Neste ciclo de vida
o desenvolvimento de software é organizado de forma a percorrer cada disciplina em
seqüência apenas uma vez. O ciclo de vida iterativo é uma alternativa mais flexível para
o desenvolvimento de software. As diversas disciplinas são percorridas várias vezes,
gerando um melhor entendimento dos requisitos, planejando uma arquitetura robusta,
elevando a organização do desenvolvimento e, por fim, liberando uma série de
implementações que são gradualmente mais completas. No ciclo de vida incremental as
necessidades do usuário são determinadas e os requisitos do sistema são definidos e, em
seguida, o restante do desenvolvimento é realizado em uma seqüência de incrementos.
O primeiro incremento incorpora partes das capacidades planejadas, o próximo
incremento adiciona mais capacidades e assim por diante até o sistema estar completo
[13].

 Na prática, abordagens híbridas dos ciclos de vida descritos podem ser
utilizadas. O RUP, por exemplo, é um framework de processo iterativo e incremental
que provê uma abordagem disciplinada para o desenvolvimento de software [8].

 Conforme apresentado na Figura 1, o RUP possui duas dimensões. O eixo
horizontal representa o aspecto dinâmico do processo e mostra as fases do ciclo de vida
à medida que este se desenvolve. O eixo vertical representa o aspecto estático do
processo, como ele é descrito em termos de disciplinas [10].

180

 As disciplinas fundamentais do processo de desenvolvimento de software
também estão presentes na estrutura do RUP. A disciplina de Requisitos é responsável
por estabelecer e manter concordância com os clientes e outros envolvidos sobre o que o
sistema deve fazer, oferecer aos desenvolvedores do sistema uma compreensão melhor
dos requisitos e definir as fronteiras do sistema. O RUP indica a utilização de casos de
uso para definir, detalhar e documentar requisitos. Um caso de uso define um conjunto
de instâncias de casos de uso, no qual cada instância é uma seqüência de ações realizada
por um sistema que produz um resultado de valor observável para determinado ator
[10].

Figura 1: Ciclo de vida de desenvolvimento do RUP

 A disciplina de Análise e Projeto, por sua vez, visa transformar os requisitos em
um projeto do sistema e desenvolver a arquitetura. O processo é baseado em caso de uso
e desenvolve a análise e projeto através de Realizações de Casos de Uso. A finalidade
da disciplina de Implementação é implementar classes e objetos, testar e integrar os
resultados produzidos. A disciplina de Testes atua em vários aspectos como uma
provedora de serviços para as outras disciplinas, enfatizando principalmente a avaliação
da qualidade do produto.

 Neste trabalho, propomos um conjunto de metapadrões e padrões para apoiar o
processo de desenvolvimento de sistemas de informação baseado no RUP. Os
metapadrões e padrões propostos podem ser aplicados ao longo de todo o ciclo de vida
de desenvolvimento de software com suas fases e disciplinas de forma integrada e
consistente. Apesar de utilizar o RUP como base para o ciclo de vida de
desenvolvimento de software, a abordagem pode ser facilmente aplicada a outros
processos, dada a existência das disciplinas fundamentais.

3. Padrões de software
Um padrão é definido em [1] como uma regra que expressa uma relação entre um
determinado contexto, um problema e uma solução. Este conceito tem sido amplamente
utilizado no domínio da engenharia de software como uma forma de descrever boas
soluções para problemas específicos em todo o ciclo de vida do projeto [2].

 Uma classificação bastante utilizada para padrões de software toma como base o
estágio de desenvolvimento de software em que o padrão é aplicado. Em [2], os padrões

181

são classificados em cinco categorias: padrões de requisitos, padrões de análise, padrões
de projeto, idiomas e padrões de testes. Os padrões de testes são orientações para as
atividades de testes, incluindo documentação, execução e divulgação dos resultados
[11]. Os idiomas são orientações para codificar padrões de projeto em uma linguagem
de programação específica. Os padrões de projeto são utilizados para refinar os
componentes ou relacionamentos entre eles podendo ser usados durante toda a fase de
projeto do software. O objetivo dos padrões de análise é construir um modelo de análise
que represente as estruturas conceituais dos processos do negócio. Os padrões de
requisitos, por sua vez, documentam as necessidades dos usuários e o comportamento
dos sistemas em um alto nível de abstração.

Figura 2: Classificação pelo ciclo de vida de desenvolvimento (adaptado de [12])

 Metapadrões representam uma abordagem proposta por [9], que consiste na
especificação de um conjunto de metapadrões que descrevem como construir
frameworks. Segundo [9], metapadrões constituem uma abordagem elegante e poderosa
que pode ser aplicada para classificar e descrever padrões em um metanível. Portanto,
metapadrões não substituem as abordagens de padrões, mas complementam-nas.

 O conceito de linguagens de padrões foi introduzido por [1]. Em uma adaptação
para a engenharia de software, Coplien descreveu uma linguagem de padrões como uma
coleção de padrões que trabalham em conjunto para construir um sistema [4]. As
linguagens de padrões, além dos padrões que as compõem, possuem um título,
geralmente possuem uma descrição ou resumo e um mapa, que consiste de um grafo
que ilustra como seus padrões estão relacionados [12]. Segundo [7], uma linguagem de
padrões deve ser completa morfologicamente e completa funcionalmente. Se os padrões
não são completos destas duas maneiras, então eles são considerados uma simples
coleção de padrões ou catálogo de padrões, como [6] [5] [3].

4. Catálogo de Metapadrões
Nesta seção, apresentamos uma breve descrição dos metapadrões e padrões que
compõem o catálogo de metapadrões proposto para auxiliar o processo de
desenvolvimento de sistemas de informação. Este trabalho aplica e amplia o conceito de
metapadrões proposto por PREE [9] no contexto de padrões de projeto, para
metapadrões no domínio de sistemas de informação. O foco deste trabalho está nos
padrões de requisitos, padrões de projeto e padrões de teste. Os padrões de
implementação serão abordados em trabalhos futuros.

 A Figura 3 apresenta os relacionamento entre os metapadrões e padrões. Os
padrões citados nesta seção encontram-se descritos em [15] [16].

Requisitos Análise Projeto Implementação Testes

Padrões de
Requisitos

Padrões de
Análise

Padrões de
Projeto

Idiomas Padrões de
Testes

182

Figura 3: Relacionamento entre os metapadrões e os padrões

4.1. Metapadrão Meta-CRUD
Problema
 Tratar a manutenção das entidades nas diversas fases de um ciclo de vida de
construção de software de forma integrada e consistente.

Solução
 Este metapadrão descreve a estrutura geral para manutenção de entidades. As
entidades devem ser mantidas através de operações de criação, consulta, alteração e
consulta (CRUD – Create, Read, Update, Delete). A estrutura dessas operações deve
considerar o tipo de entidade, sua complexidade e volume de dados tratados.

Padrões que implementam o metapadrão
- Caso de Uso CRUD;

- CRUD-MVC;

- Registro com Busca;

- Manutenção em Grade;

- Seleção com Secundária;

- Teste CRUD.

4.1.1. Padrão Caso de Uso CRUD
Contexto
 Este padrão é utilizado para a documentação dos requisitos de manutenção em
sistemas da informação, por meio do uso de modelos e especificações de casos de uso.
Os requisitos de manutenção são caracterizados por operações de Inclusão, Consulta,
Alteração e Exclusão.

Problema
 Como documentar os requisitos funcionais de inserção, atualização, exclusão e
consulta de dados por meio de especificações de casos de uso?

183

4.1.2. Padrão CRUD-MVC
Contexto
 Sistemas de informação requerem funcionalidades de negócio implementadas
através de interface humano-computador (IHC), componentes para tratamento de regras
de negócio e acesso a dados para operações CRUD e operações de negócio.

Problema
 Como tratar funcionalidades recorrentes de criação, consulta, atualização e
exclusão de dados em sistemas de informação considerando aspectos de apresentação e
tratamento de eventos, regras de negócio e persistência?

4.1.3. Padrão Registro com Busca
Contexto
 Utilizado para as principais entidades de negócio, com muitos campos e/ou
relacionamentos. Em geral, essas entidades são objetos complexos com muitos atributos
e relacionamentos. O enfoque do cenário é de uma busca eficiente seguida de
visualização e edição de uma entidade.

Problema
 Como criar componentes de cadastro e manutenção de entidades de negócio
complexas, atendendo a requisitos de interface humano-computador, permitindo a
reutilização de interação com usuário e estrutura comuns aos vários tipos de entidades
complexas existentes em uma aplicação de sistema de informação?

4.1.4. Padrão Manutenção em Grade
Contexto
 Sistemas de informação utilizam entidades básicas e simples para configuração
do sistema. Essas entidades possuem poucos atributos, sem objetos dependentes e
possuem um pequeno número de instâncias, por exemplo, cadastro de unidades
federativas, tipos de endereço, tipo de cliente, entre outras. Entidades básicas são usadas
em relacionamentos com entidades de negócio, por exemplo, no momento de cadastrar
um cliente, é necessário informar a unidade federativa de seu endereço, o tipo de
endereço e o tipo de cliente. A implementação de entidades básicas em sistemas de
informação não alcança, de forma trivial, um bom grau de reuso e eficiência.

Problema
 Como implementar funcionalidades de cadastro de entidades básicas de forma
eficiente e reutilizável?

4.1.5. Padrão Seleção com Secundária
Contexto
 Utilizado para entidades principais ou secundárias de média ou alta
complexidade com vários atributos e relacionamentos em situações que requerem a
seleção de entidades sob determinado critério para somente depois realizar edição ou
inclusão em objeto de interface auxiliar, e não diretamente sobre a grade. A edição em
objeto auxiliar (interface secundária) facilita a edição de um número maior de atributos
e relacionamentos.

184

Problema
 Como implementar funcionalidades de seleção e manutenção de entidades de
negócio de média e alta complexidade de forma eficiente e reutilizável?

4.1.6. Padrão Teste CRUD
Contexto
 Este padrão é utilizado para especificar os casos de teste das operações de
Inclusão, Consulta, Alteração e Exclusão. O padrão indica idéias de testes típicas e
cenários de falhas recorrentes para inserção, atualização, exclusão e consulta de dados
em sistemas de informação, de forma a facilitar e agilizar a execução dos testes.

 Exemplos de idéias de testes típicas para inserção: a) Inserir entidade já existe e
verificar resultado b) Inserir entidade não existe e consultar em seguida para verificar se
os dados estão iguais aos dados solicitados na inserção.

Problema
 Como especificar os casos de teste dos requisitos funcionais de inserção,
atualização, exclusão e consulta de dados por meio de especificações de testes?

4.2. Metapadrão Relatório
Problema
 Tratar a geração de relatórios nas diversas fases do ciclo de vida de
desenvolvimento de software de forma integrada e consistente.

Solução
 Este metapadrão descreve a estrutura geral para geração de relatórios. O
relatório deve permitir a parametrização (filtros), visualização e exportação de dados.
Estruturas complementares como agrupamento e totalizações são fornecidas.

Padrões que implementam o metapadrão
- Caso de Uso Relatório;

- Teste Relatório.

4.2.1. Padrão Caso de Uso Relatório
Contexto
 Em sistemas de informação, uma grande quantidade de dados é armazenada
freqüentemente. Neste contexto, surge a necessidade de visualizar, exportar ou imprimir
dados armazenados com o objetivo de conferir, analisar e tomar decisões com base
nesses dados.

Problema
 Como documentar os requisitos de relatórios que podem incluir a necessidade de
visualizar, exportar ou imprimir dados de entidades de acordo com filtros especificados,
agrupamentos, totalizações e informações a serem apresentadas?

185

4.2.2. Padrão Teste Relatório
Contexto
 Este padrão é utilizado para especificar os casos de teste de relatórios. O padrão
apresenta idéias de testes típicas e cenários de falhas recorrentes na visualização,
exportação ou impressão dados de entidades de acordo com filtros especificados,
agrupamentos, totalizações e informações a serem apresentadas.

 Exemplos de idéias de testes típicas para relatório: a) Verificar resultados em
combinações de filtros de relatório b) Verificar visualização e impressão c) Verificar
totalizações, cálculos e agrupamentos d) Verificar formato e) Verificar formato e dados
em arquivos exportados.

Problema
 Como especificar os casos de teste de relatórios?

4.3. Metapadrão Assistente
Problema
 Tratar o processamento de operações complexas, com necessidade de iteração
com usuários, nas diversas fases de um ciclo de vida de desenvolvimento de software de
forma integrada e consistente.

Solução
 Este metapadrão descreve a estrutura geral para organizar operações baseadas
em assistentes. O assistente deve organizar a operação em passos, de forma que cada
passo tenha início em um ponto onde necessite configurações ou decisões do usuário.

Padrões que implementam o metapadrão
- Caso de Uso Assistente;

- Teste Assistente.

4.3.1. Padrão Caso de Uso Assistente
Contexto
 Este padrão é utilizado para a documentação dos requisitos de operações
complexas que são executadas em diversos passos, onde decisões ou dados necessitam
serem informados em cada passo através da iteração com o usuário.

Problema
 Como documentar os requisitos de uma operação, na qual diversas decisões
devem ser tomadas antes que a operação possa ser concluída completamente?

4.3.2. Padrão Teste Assistente
Contexto
 Este padrão é utilizado para especificar os casos de teste de operações
complexas, na qual diversas decisões devem ser tomadas antes que a operação possa ser
concluída completamente. O padrão indica idéias de testes típicas e cenários de falhas
recorrentes na seqüência de passos, retorno, parametrização e decisões.

186

 Exemplos de idéias de testes típicas para assistente: a) Verificar seqüência
correta dos passos b) verificar mensagens e explicações dos passos; c) Verificar se as
informações dos passos anteriores são passadas de forma correta entre os contextos d)
Verificar resultado final da transação.

Problema
 Como especificar os casos de teste de uma operação, na qual diversas decisões
devem ser tomadas antes que a operação possa ser concluída completamente?

4.4. Metapadrão Transação
Problema
 Tratar operações longas e complexas no formato de comandos e compostas por
um conjunto de transações nas diversas fases de um ciclo de vida de construção de
software de forma integrada e consistente.

Solução
 Este metapadrão descreve a estrutura geral para organizar operações de
comando. A operação deve ser disparada por uma parametrização, manter o usuário
informado da evolução das transações e tratar a consistência entre as transações.

Padrões que implementam o metapadrão
- Caso de Uso Transação;

- Teste Transação.

4.4.1. Padrão Caso de Uso Transação
Contexto
 Este padrão é utilizado para a documentação dos requisitos de operações que são
tratadas como um comando atômico que processa várias transações. Tipicamente
operações batch e operações que requerem apenas um comando de inicio do caso de uso
pelo usuário tendo pouca entrada de dados e iteração com o sistema.

Problema
 Como documentar os requisitos de operações que possuem a execução de longa
duração ou que são executadas em formato de comando atômico, dando ênfase para os
requisitos especiais dessas operações?

4.4.2. Padrão Teste Transação
Contexto
 Este padrão é utilizado para especificar os casos de teste de operações que
possuem execução de longa duração ou que são executadas em formato de comando
atômico. O padrão indica idéias de testes típicas e cenários de falhas recorrentes na
parametrização, no tratamento de falhas e na recuperação de transações.

 Exemplos de idéias de testes típicas para transação: a) Verificar se
parametrização da transação é requerida de acordo com especificação b) Solicitar
execução da transação sem informar os parâmetros necessários c) Verificar resultado
final da transação de acordo com a parametrização; d) Executar da transação e provocar

187

falha do durante processamento (interromper aplicação por exemplo) e verificar a
consistência do resultado.

Problema
 Como especificar os casos de teste de operações que possuem execução de longa
duração ou que são executadas em formato de comando atômico?

5. Desenvolvimento de um sistema de informações usando metapadrões
Os principais produtos de trabalho no desenvolvimento de um sistema de informação
são gerados nas disciplinas de Requisitos, Análise e Projeto, Implementação e Teste.
Para direcionar a solução no contexto de produto de trabalho, propomos a utilização de
metapadrões, que aplicados a cada disciplina, definem um conjunto de padrões que
podem ser aplicados.

 A Figura 4 apresenta os metapadrões e padrões propostos e seus
relacionamentos de acordo com as principais disciplinas do ciclo de vida de
desenvolvimento. Cada um dos padrões detalha como aplicar uma solução geral
indicada nos metapadrões. Vale a pena ressaltar que os padrões fornecem a solução para
a elaboração dos produtos de trabalho.

Figura 4: Relacionamento entre os metapadrões e os padrões no ciclo de

desenvolvimento

 A aplicação de padrões poderá auxiliar na construção de produtos de trabalho de
acordo com o ciclo de desenvolvimento de forma mais consistente, dado que os padrões
são delineados com base nos metapadrões para desenvolvimento de sistemas de
informação.

 Nas fases iniciais, os metapadrões associados aos diversos requisitos (casos de
uso) do sistema, são identificados. À medida que o ciclo de vida evolui, os produtos de
trabalho derivados são desenvolvidos tomando como base o produto gerado na
disciplina anterior. Em paralelo, os padrões são selecionados de acordo com o
metapadrão associado ao caso de uso e a disciplina em execução.

188

 Nas fases iniciais de desenvolvimento, analistas de requisitos especificam casos
de uso com base nos padrões de requisitos. Esses casos de uso servem de base para a
análise e projeto. Além dos próprios casos de uso, o projetista terá como insumo os
padrões de projeto. Esses padrões possuem forte consistência com a estrutura dos casos
de uso, pois são baseados nos mesmos metapadrões, facilitando o trabalho do projetista.
Da mesma forma, os casos de testes são construídos com base nos casos de uso e
padrões de testes de forma consistente e facilitada. De acordo com o RUP, o código é
mapeado e criado com base na Análise e Projeto. Assim, o código criado estará
consistente com os padrões utilizados na Análise e Projeto.

 Por exemplo, quando um caso de uso é associado ao metapadrão Meta-CRUD,
durante a execução das atividades de especificação de casos de uso da disciplina de
Requisitos, o padrão Caso de Uso CRUD é selecionado para o detalhamento do caso de
uso. Em seguida, durante a Análise e Projeto do caso de uso, os padrões de projeto
associados ao metapadrão Meta-CRUD são verificados para uso na criação do projeto
do caso de uso. O padrão é então selecionado com base na adequação do padrão ao
contexto e problema. Esse processo é repetido até se chegar na seleção do padrão Teste
CRUD para criação da especificação de testes (ver Figura 5).

Figura 5: Aplicação de metapadrões e padrões no ciclo de desenvolvimento

6. Conclusões
Este trabalho apresentou um catálogo de metapadrões e uma abordagem para definição
e uso dos padrões ao longo do ciclo de desenvolvimento de software em sistemas de
informação. Os metapadrões propostos solucionam problemas genéricos no contexto de
sistemas de informação a partir do uso de padrões. O trabalho abordou metapadrões,
padrões de requisitos, padrões de projeto e padrões de teste.

 O RUP foi utilizado como referência de boas práticas de engenharia de software
a serem seguidas e como base para o ciclo de vida de desenvolvimento de software.

 De forma geral, o trabalho forneceu:

- Uma abordagem para a aplicação de metapadrões e padrões durante o ciclo
de desenvolvimento de sistemas de informação.

189

- Metapadrões que organizam padrões de forma integrada e consistente para as
diversas disciplinas de construção de software.

- Uma abordagem integrada das disciplinas, do modelo de ciclo de vida
iterativo e de produtos de trabalho do RUP.

Como trabalhos futuros, temos a pesquisa de idiomas derivados de metapadrões
propostos para linguagens como Java. Além disso, o desenvolvimento de um framework
que suporte a aplicação dos metapadrões em linguagens de desenvolvimento pode
facilitar a consistência do código com a análise e projeto e aumentar a produtividade.

Referências
[1] ALEXANDER, C. et al. A Pattern Language: Towns, Buildings, Construction.

Oxford University Press, New York, NY, 1977.

[2] ANDRADE, R. Capture, Reuse, and Validation of Requirements and Analysis
Patterns for Mobile Systems. Ph.D. Thesis, School of Information Technology and
Engineering (SITE), University of Ottawa, Ottawa, Ontario, Canada, May 2001.

[3] BUSCHMANN, F.; MEUNIER, R.; ROHNERT, H.; SOMMERLAD, P.; STAL,
M. Pattern-Oriented Software Architecture. John Wiley and Sons, New York, NY,
1996.

[4] COPLIEN, J. O. Software Patterns. SIGS books and Multimedia, June 1996.

[5] Core J2EE Pattern Catalog. Disponível em:
http://java.sun.com/blueprints/corej2eepatterns. Acessado em: 06/04/2005.

[6] GAMMA, E.; HELM, R.; JOHNSON, R.; VLISSIDES, J. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, Reading, MA,
1995.

[7] HANMER, R. Introduction to Pattern Languages. SugarLoafPLoP 2003, The
Third Latin American Conference on Pattern Languages of Programming, Porto de
Galinhas, PE, 2003.

[8] POLLICE, Gary. Using the Rational Unified Process for Small Projects:
Expanding Upon Extreme Programming. Rational Software White Paper.

[9] PREE, W. Design Patterns for Object-Oriented Software Development.
Addison-Wesley, 1995.

[10] RATIONAL UNIFIED PROCESS Tutorial. Versão 2002 05 00.

[11] RISING, L. The Pattern Almanac 2000. Software Pattern Series, Addison-
Wesley, 2000. ISBN 0-201-61567-3.

[12] SANTOS, M. S. Uma Proposta para a Integração de Modelos de Padrões de
Software com Ferramentas de Apoio ao Desenvolvimento de Sistemas. Dissertação
de Mestrado. Universidade Federal do Ceará, Fortaleza, 2004.

[13] Software Development and Documentation, MIL-STD-498, Departamento de
Defesa dos EUA, dezembro de 1994.

[14] SOMMERVILLE, I. Software Engineering. 6th Edition, Addison-Wesley
Publishers Ltd., 2001. ISBN 0-201-39815-X.

190

[15] SOUZA, G. T. e PIRES, C. G. PATI-MVC: Uma Família de Padrões para
Sistemas de Informação Baseada no Padrão MVC. SugarloafPloP, 2004.

[16] SOUZA, G. T., PIRES, C. G. e Barros, M. Padrões MVC para Sistemas de
Informação. SugarloafPloP, 2003.

191

Relacionamento de Padrões de Engenharia de Software e
de Interação Humano-Computador para o Desenvolvimento

de Sistemas Interativos

André Constantino da Silva 1,†, Júnia Coutinho Anacleto Silva1, Rosângela
Aparecida Dellosso Penteado1, Sérgio Roberto Pereira da Silva2

1Departamento de Computação – Universidade Federal de São Carlos (UFSCar)
Caixa Postal 676 – CEP 12.565-905 – São Carlos – SP – Brazil

2Departamento de Informática – Universidade Estadual de Maringá (UEM)
Av. Colombo, 5790, Zona 07 – CEP 87.020-900 – Maringá – PR – Brazil
{andrecons,junia,rosangel}@dc.ufscar.br, srsilva@din.uem.br

†Bolsista financiado pela Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Abstract. Many Software Engineering and Human-Computer Interaction
patterns have been identified and published lately. However, as these
knowledge areas are complementary in the interactive system development,
there is a need for researches that consider the unified use of those kinds of
patterns in a development process. In this context, this paper presents a case
study developed in order to demonstrate and detail the application of SE and
HCI patterns in an interactive system development process. As a result, it was
identified nineteen relationships among the applied patterns.

Resumo. Ultimamente muitos padrões tanto de Engenharia de Software
quanto de IHC são identificados e divulgados. Entretanto, tendo em vista o
fato dessas áreas de conhecimento serem complementares no desenvolvimento
de sistemas interativos, há uma carência de pesquisas que abordam a
aplicação conjunta dos padrões dessas áreas durante o processo de
desenvolvimento. Assim, este artigo apresenta um estudo de caso desenvolvido
com o objetivo de abordar e detalhar a aplicação de padrões de ES e de IHC
no processo de desenvolvimento de sistemas interativos. Como resultados,
foram identificados dezenove relacionamentos entre os padrões aplicados.

1. Introdução
Este artigo, motivado pelo fato de padrões serem identificados e aplicados pelas áreas
de Engenharia de Software (ES) e de Interação Humano-Computador (IHC) durante o
desenvolvimento de sistemas interativos, tem por objetivo apresentar um conjunto de
relacionamentos identificados a partir da aplicação conjunta de padrões de ES e de IHC
em um processo de desenvolvimento de sistemas interativos baseado no modelo de
processo Prototipação.

192

 Sabendo que existe um relacionamento entre as áreas de ES e de IHC para
desenvolver sistemas interativos de forma mais abrangente, acredita-se que tal
relacionamento também pode ser expresso através de relacionamentos entre padrões.
Devido a pouca preocupação dos escritos em identificar relacionamentos entre padrões
de outras áreas, tais relacionamentos podem ser coletados durante a aplicação de
padrões na elaboração de sistemas em um processo de desenvolvimento que considere
as visões das áreas de IHC e de ES.

 Contextualizando, sabe-se que o desenvolvimento de um sistema interativo é um
processo complexo, com diversas preocupações a serem consideradas, tais como: a
organização do processo de desenvolvimento e da equipe que realizará as atividades
propostas no processo. Durante a organização de tal processo, devem-se considerar
atividades que englobem a engenharia de requisitos (considerando o levantamento,
especificação, análise e verificação dos requisitos do sistema), o projeto, a
implementação, e a validação e verificação do sistema. Devido à natureza de um
sistema interativo, também é necessário considerar atividades que estão relacionadas à
elaboração, avaliação e refinamento de protótipos.

 Diversos padrões de ES e de IHC podem ser aplicados durante a realização das
atividades de um processo de desenvolvimento. Entretanto, uma aplicação de padrões
mais sistemática, envolvendo as visões de ambas as áreas no processo de
desenvolvimento ainda não é muito divulgada, apresentando poucos artigos na literatura
especializada. Devido a essa carência, muitas vezes, os profissionais se limitam a
aplicar só alguns padrões, impedindo um melhor aproveitamento do potencial dos
padrões e a obtenção de um produto melhor. Relacionar padrões permite que esforços
de estudo de padrões sejam minimizados, pois o relacionamento indicará quais os
possíveis padrões a serem aplicados em seguida, que é uma das motivações deste
trabalho.

 Portanto, padrões existentes na literatura que podem ser aplicados para auxiliar
na realização dessas atividades foram levantados, estudados e agrupados em categorias,
que são apresentadas na Seção 2. Em seguida as categorias foram relacionadas às fases
do modelo de processo Prototipação, realizando estudos de caso para avaliar a aplicação
conjunta dos padrões selecionados, apresentado na Seção 3. A partir da aplicação
conjunta, foram obtidos alguns relacionamentos entre os padrões de ES e de IHC, que
são discutidos na Seção 4. Na Seção 5 são comentados as considerações finais e os
trabalhos futuros.

2. Padrões de ES e Padrões de IHC
 Diversos padrões de ES e de IHC encontrados na literatura foram estudados e
analisados. Para facilitar o estudo e aplicação desses padrões em um processo de
desenvolvimento, eles foram agrupados em categorias. Para os padrões de ES,
estendem-se aqui as categorias propostas por Buschmann et al. (1996), incluindo as
categorias padrões de processo, padrões organizacionais, padrões de análise, padrões de
persistência de dados e padrões de testes:

Padrões de Processo: conduzem o desenvolvimento de software, descrevendo
uma abordagem ou série de ações provadas e de sucesso para o desenvolvimento de
software [Ambler, 1998]. Os padrões de processo que foram estudados e aplicados

193

foram os que compõem a linguagem de padrões de Coplien [Coplien, 1995], a
linguagem de padrões Requirements-Analysis-Process Pattern Language - RAPPeL
[Whitenack, 1995], a linguagem de padrões Caterpillar’s Fate [Kerth, 1995] e a
linguagem de padrões para desenvolvimento de protótipos conceituais efetivos
[Stimmel, 1999];

Padrões Organizacionais: auxiliam o gerenciamento das pessoas envolvidas
com o processo de software [Ambler, 1998]. Exemplo de padrões organizacionais são
os propostos por Coplien em sua linguagem de padrões [Coplien, 1995];

Padrões de Análise: expressam grupos de conceitos que representam uma
construção comum na modelagem de negócio. Eles podem ser relevantes para um
domínio, ou para vários domínios [Fowler, 1996]. Para a realização deste trabalho
foram considerados os padrões de análise definidos por Fowler (1996) e a linguagem de
padrões para Gerência de Recurso de Negócios (GRN) [Braga et al., 1999];

Padrões Arquiteturais: expressam uma organização estrutural ou esquemas
para sistemas. Pode-se citar, como exemplo, o Model-View-Controller (MVC) e o
Presentation-Abstraction-Control (PAC) [Buschmann et al., 1996] para sistemas
interativos;

Padrões de Projeto: refinam subsistemas ou componentes de um sistema, ou a
relação entre eles. Nessa categoria têm-se os padrões identificados por Gamma et al.
(1995) e os por Grand (1998);

Padrões de Persistência de Dados: descrevem mecanismos para mapear
objetos persistentes para um banco de dados. Como exemplo pode-se citar a coleção de
padrões para persistência de Yoder et al. (1998), que facilita a implementação de
sistemas orientados a objetos (OO) com banco de dados relacionais;

Padrões de Implementação ou Idiomas: específicos de linguagens de
programação, esses padrões descrevem como implementar aspectos particulares dos
componentes ou a relação entre eles utilizando as características da linguagem. Como
exemplo, pode-se citar o padrão Counted Point [Buschmann et al., 1996];

Padrões de Testes: descrevem diferentes métodos de testes de sistemas. São
exemplos dessa categoria os padrões Black Box Testing, White Box Testing e
Acceptance Testing, identificados por Grand (1999).

Entre os autores de padrões de IHC não existe uma definição amplamente aceita.
Segundo Borchers (2000), um padrão de projeto captura uma solução comprovada para
um problema de projeto recorrente em uma forma de fácil entendimento, gerativa e
compreensível às pessoas. Enquanto que Tidwell (1999) define padrões como
descrições para possíveis boas soluções para um problema comum de projeto em um
certo contexto, descrevendo as qualidades invariáveis de todas as soluções. O termo
“qualidades invariáveis” refere-se às características comuns e constantes ao analisar
várias aplicações do padrão.

Não se encontra na literatura uma classificação tão clara dos padrões de IHC
quanto a encontrada para os padrões de ES [Buschmann et al., 1996]. Para a realização
deste trabalho foram utilizadas as categorias apresentadas por Alpert (2003):

194

Padrões de Interação Humano-Computador: relacionados com
preocupações de alto nível e algumas vezes com guidelines, envolvendo a psicologia do
usuário, auxiliando no projeto da interação. Podem ser citados, como exemplos, os
padrões da linguagem de padrões Common Ground [Tidwell, 1999];

Padrões de Interface com o Usuário: auxiliam no projeto de detalhamento da
interface com o usuário, e estão relacionados com problemas de interação específicos.
Sua solução é baseada em componentes de interface com o usuário. Como exemplo,
pode-se citar os padrões da coleção UI Patterns & Techniques [Tidwell, 2003] e os
padrões para projeto de GUI [Welie, 2003].

 As categorias aqui apresentadas foram relacionadas com as etapas do modelo de
processo de Prototipação, por meio de um estudo de caso, conforme apresentado na
próxima Seção.

3. Aplicando Padrões de ES e de IHC em um Processo de Desenvolvimento
Diversos são os modelos de processo propostos pela ES e pela IHC para o
desenvolvimento de sistemas interativos [Sommerville, 2003] [Preece, 1993]. Dentre
esses modelos destaca-se o modelo de processo de Prototipação, pois o
desenvolvimento de protótipos é parte integral do desenvolvimento de um sistema
interativo e por ser uma abordagem altamente participativa [Preece, 1993].

 Entretanto, o foco do engenheiro de software difere do foco do especialista em
IHC durante a elaboração do protótipo. Enquanto que o engenheiro de software está
preocupado em compreender o processo de desenvolvimento, elaborando uma lógica
interna para o sistema, o especialista em IHC preocupa-se com os aspectos externos, ou
seja, com a interação e a interface com o usuário [Silva et al., 2004]. Entretanto é
preciso desenvolver o protótipo de tal modo a explorar aspectos de ambas as áreas. Tais
fatores influenciaram a escolha do modelo de processo de Prototipação como o primeiro
a ser estudado em conjunto com padrões de IHC e de ES.

 Após um estudo sobre o modelo de processo Prototipação, uma lista de
problemas e considerações foi elaborada, as quais são apresentadas resumidamente na
Tabela 1. Ponderando os problemas e as considerações levantadas, em conjunto com as
categorias de ES e de IHC descritas anteriormente, elaborou-se o modelo de processo de
Prototipação Apoiado por Padrões [Silva et al., 2004]. Cada etapa foi relacionada às
categorias de padrões que podem ser aplicados para amenizar as considerações
levantadas. Ressaltando que os padrões de processo e organizacionais podem ser
aplicados em várias etapas, estando, portanto, referenciados do lado externo da Figura.

 Planejou-se desenvolver o estudo de caso em duas fases. Durante a primeira fase
o sistema foi desenvolvido sem a aplicação de padrões, enquanto que na segunda fase os
padrões foram aplicados durante o processo de desenvolvimento, conforme é
apresentado na Figura 1. No estudo de caso que é detalhando neste artigo foi
desenvolvido um sistema para uma lanchonete, que consiste do gerenciamento dos
pedidos realizados pelos clientes através do telefone, e também do controle de itens que
podem ser adicionados aos pedidos, tais como ingredientes, taxa de entrega, etc. Deste
estudo de caso participaram dois especialistas em desenvolvimento e um usuário final,

195

Tabela 1 – Considerações levantadas para as etapas do modelo de processo
Prototipação

Etapa Considerações
Coleta e Refinamento de

Requisitos
- Procurar por informações que auxiliam a compreender o domínio do

problema e os requisitos
- Obter os requisitos do sistema
- Delimitar os requisitos do sistema por completo, o que é uma das

dificuldades do usuário.
Projeto Rápido - Elaborar um projeto da interface com o usuário que englobe os requisitos a

serem refinados, representando os aspectos que são visíveis ao usuário e o
nível de conhecimento do usuário.

- Considerar as melhores decisões relacionadas à funcionalidade no projeto
rápido

- Garantir que o processo não será oneroso (tempo e recursos)
Construção do Protótipo - Minimizar o tempo e os recursos despendidos no desenvolvimento

- Assegurar o correto funcionamento do protótipo para que uma avaliação
consistente seja realizada na próxima etapa
- Englobar somente as funções necessárias, não há necessidade de incluir
todas que comporão o produto final.

Avaliação do Protótipo
pelo Cliente

- Guiar o usuário para um melhor refinamento dos requisitos desejados,
engajando-o e cuidando para que tenha uma comunicação efetiva com o
usuário.

- Preocupar-se em como obter melhor as informações do usuário
- Aproveitar ao máximo o tempo despendido com o usuário na avaliação, a

fim de obter informações suficientes para detalhar os requisitos
- Fazer um planejamento para permitir a participação dos clientes

representativos (usuários finais do sistema), e que o processo de avaliação
não seja muito oneroso.

Refinamento do Protótipo - Coletar críticas e problemas resultantes da avaliação do protótipo,
apresentando diretivas de solução para as considerações levantadas

Engenharia do Produto - Desenvolver o sistema seguindo práticas de ES e de IHC

Figura 1 – Instanciação do Modelo de Processo de Prototipação Apoiado por
Padrões para desenvolvimento de um sistema para gerência de pedidos de uma
lanchonete.

196

sendo que o especialista que participou da primeira fase não conhecia os padrões,
enquanto que o especialista da segunda fase estudou os padrões a serem aplicados.

 Diversos padrões de processo que tratam do desenvolvimento de protótipos
foram encontrados na literatura. O padrão Prototype [Whitenack, 1995] propõe o
desenvolvimento de protótipos descartáveis, enquanto que o padrão Prototypes
[Coplien, 1995] abrange tanto protótipos descartáveis quanto protótipos evolucionários,
apresentando as vantagens e as desvantagens de cada um dos tipos de protótipos. Tais
padrões comentam sobre o engajamento do cliente durante o uso de protótipos.
Portanto, a linguagem de padrões para desenvolvimento de protótipos conceituais
efetivos pode ser aplicada em conjunto com tais padrões para engajar o cliente e
aumentar a sua participação. Observa-se aqui um relacionamento entre o padrão
Prototypes e o padrão Use It and Lose It [Stimmel, 1999], que tratam sobre o
desenvolvimento de protótipos descartáveis. Esses padrões também comentam sobre o
uso do protótipo como base para elaborar os casos de uso, o que será discutido
posteriormente.

 Os padrões que estão relacionados ao engajamento do cliente no
desenvolvimento de protótipos são o Customer Rapport, Engage the Client Early
[Stimmel, 1999] e Come on Baby, Light My Fire. O padrão Customer Rapport apresenta
a necessidade de se ter um bom relacionamento com o cliente, focando o usuário e os
envolvendo no projeto da interface com o usuário dos protótipos ou do produto final. O
padrão Engage the Client Early também trata o desenvolvimento de protótipos e a
participação do usuário, destacando a diretiva de permitir ao usuário dirigir os esforços
do desenvolvimento. Outra consideração é não distrair o usuário com questões
particulares da interface com o usuário durante o uso de protótipos, tratado pelo padrão
Come on Baby, Light My Fire.

 Na etapa de Coleta e Refinamento de Requisitos foram aplicados padrões de
processo, organizacionais e de análise. Os padrões de processo foram escolhidos
seguindo o objetivo dessa etapa (identificar, especificar e validar os requisitos do
sistema), entre eles cita-se o padrão Behavioral Requirements, que fornece diretivas
para a captura de requisitos comportamentais do sistema.

 Para a especificação de requisitos foi aplicado o padrão Requirements
Specification, que apresenta diretivas para a elaboração de um documento de
especificação de requisitos, comentando sobre a adoção de um modelo de especificação
que contemple tanto os requisitos identificados quanto os artefatos elaborados, e a
validação do documento de requisitos com o cliente. Entretanto, este padrão não define
quando finalizar o desenvolvimento do protótipo e iniciar a elaboração do documento
de especificação de requisitos. Para tal consideração, pode-se aplicar o padrão Let’s
Make a Deal, que apresenta diretivas de quando iniciar a elaboração de tal artefato.

 Para a validação foi aplicado o padrão Requirements Validation, que apresenta
informações a serem consideradas para a realização de reuniões de validação dos
requisitos. Porém, esse padrão não apresenta uma abordagem, ou passos, que contemple
todo o processo de validação, desde o planejamento das reuniões até a efetivação das
mudanças solicitadas. Para amenizar essa consideração, o padrão Technical Review
[Ambler, 1998] pode ser aplicado após a aplicação do padrão Requirements Validation.

197

 Durante a realização do estudo de caso sem aplicar padrões, percebeu-se que
somente o propósito do sistema é insuficiente para elaborar questões para o
levantamento de requisitos. São necessárias mais informações para se evitar um numero
 excessivo de retorno ao usuário. Assim, parte dos padrões da linguagem de
padrões GRN [Braga et al., 1999] foi aplicada como guia para se elaborar questões ao
usuário. Para escolher os padrões foram utilizados como critério o propósito do sistema,
seguindo os relacionamentos apresentados na linguagem de padrões.

 Após os requisitos identificados serem descritos no documento de especificação,
conforme o padrão Requirements Specification, deu-se início a etapa de Projeto Rápido,
na qual, foram elaborados mockups das interfaces com o usuário. Nessa etapa foram
aplicados os padrões Prototypes e User Interface Requirements, objetivando a
elaboração de um protótipo para auxiliar no levantamento e refinamento dos requisitos.

 Segundo o padrão Prototypes, inicialmente deve-se elaborar um protótipo de
baixa fidelidade com a participação do cliente, e em seguida, elaborar protótipos de alta
fidelidade, caso seja necessário. Para a elaboração do protótipo de baixa fidelidade foi
aplicada a abordagem de Dearden et al. (2002), que aplica padrões de IHC para
melhorar a comunicação entre os usuários e os especialistas. Protótipos de alta
fidelidade foram elaborados e avaliados em etapas posteriores. A abordagem de
Dearden et al. (2002) é dividida em três passos (I) Introdução: o facilitador introduz os
conceitos de padrões e linguagem de padrões ao usuário final; e (II) Leitura dos
Padrões: o facilitador solicita ao usuário final a ler os padrões, retirando dúvidas do
usuário final; (III) Desenvolvimento da Interface: por meio de prototipação em papel,
o usuário final, em conjunto com o facilitador, elabora as interfaces do sistema
utilizando padrões para se expressar. Após elaborar uma tela, o facilitador verifica se
essa satisfaz todas as diretivas dos padrões aplicados.

 Um subconjunto de 29 padrões da linguagem de padrões Common Ground foi
apresentado ao usuário durante a elaboração do projeto da interface com o usuário,
permitindo que ele expressasse seus anseios. A linguagem de padrões não foi
apresentada em sua completitude ao usuário devido à necessidade de aprendizado e de
tradução dos padrões, pois o usuário não conhece a língua inglesa. Dessa forma,
somente os padrões diretamente relacionados ao estudo de caso foram utilizados.

 Na Figura 2 é apresentada a tela de cadastro de clientes e pedidos que foi
projetada pelo usuário. Os padrões de interação humano-computador aplicados para a
elaboração dessa tela também são apresentados nessa Figura. Para o projeto dessa tela
foi aplicado, primeiramente, o padrão High-Density Information Display (1). Esse
padrão é um dos três que podem ser aplicados para definir a forma básica do conteúdo a
ser apresentado, que é a primeira consideração no projeto da interface com o usuário ao
utilizar a linguagem de padrões Common Ground [Tidwell, 1999]. Para a escolha de
qual dos três padrões aplicar foram considerados os periféricos de saída existentes, visto
que o monitor pode exibir uma vasta quantidade de informações em diferentes
resoluções e tamanhos, e o fato de o usuário interagir constantemente com o sistema.

 Em seguida, foram aplicados os padrões Navigable Spaces (2), pois o sistema é
composto por diversas telas e o usuário necessita navegar entre elas, e Tabular Set (3),
que define a apresentação de informações através de uma tabela (aplicado, nesse
exemplo, para apresentar os pedidos solicitados). Seguindo os relacionamentos da

198

linguagem, em seguida foi aplicado o padrão Go Back to a Safe Place (4), resultando no
botão fechar na parte superior direita da janela. Também foi aplicado o padrão Pointer
Shows Affordance (5), resultando na mudança do ponteiro do mouse para I-Bean (I)
quando o ponteiro está sobre um campo de texto editável.

 Para o detalhamento da interface com o usuário foi aplicado o padrão Form (6).
Esse padrão define diretivas para a apresentação de um formulário, na qual o usuário
poderá entrar com os dados necessários para realizar a tarefa. Nesse exemplo, foram
definidos caixas de textos para a entrada de dados sobre o cliente. Esse padrão também
foi aplicado, em conjunto com o padrão Tabular Set (3), para a entrada de dados
relacionados aos pedidos.

 Após a aplicação do padrão Form (6), foram aplicados os padrões Forgiving
Text Entry (7), Structured Text Entry (8), Choice from a Large Set (9) e Small Group of
Related Things (10). O Padrão Forgiving Text Entry e Structured Text Entry foram
aplicados para alguns campos de texto onde existe certa estrutura do dados como, por
exemplo, para o campo “Telefone”. Nesse caso, o usuário não é obrigado a digitar os
caracteres fixos da estrutura (padrão Forgiving Text Entry) e quando não existe dado
fornecido pelo usuário, o campo apresenta a formatação do telefone esperada (padrão
Structured Text Entry). O padrão Choice from a Large Set foi aplicado para o campo
“Estado”, na qual o número de opções é maior que dez e o usuário necessita escolher
um valor específico. O padrão Small Group of Related Thing foi aplicado, novamente,
para organizar a localização espacial dos campos para a entrada dos dados do cliente.

Figura 2 – Padrões aplicados para desenvolver a tela de cadastro de clientes e
pedidos.

Pointer Shows Affordance (5)

Tabular Set (3)

Small Group of Related Things (10)

Navigable Spaces (2)

High-Density Information Display (1)

Go Back to a Safe Place (4)

Remembered State (12)

Choice from a Large Set (9)

Forgiving Text Entry (7)

Form (6)

Good Defaults (11)

Structured Text Entry (8)

199

 Aplicando o padrão Good Defaults (11), valores foram definidos para alguns
campos do formulário como, por exemplo, o campo “Acréscimo”, que considera a taxa
de entrega. O padrão Remembered State (12) foi aplicado para garantir que os valores
dos campos do formulário não sejam alterados, caso o usuário navegue para outra tela
ou para outro programa.

 Devido à dinâmica da técnica de Prototipação em Papel, o usuário manifestou
seus interesses no projeto da interface com o usuário, empregando parte dos
conhecimentos que absorveu do aprendizado de padrões. As interfaces elaboradas foram
avaliadas pelos especialistas verificando se atendiam ou não as diretivas de cada um dos
padrões. Para as diretivas que não foram atendidas, perguntas foram elaboradas para
que as telas projetadas respeitassem todas as diretivas dos padrões selecionados. Esta
avaliação possibilitou a diminuição do número de decisões de projeto que estavam
sendo realizadas na etapa de Construção do Protótipo, devido ao esquecimento de
detalhes sobre a interface.

 Observou-se, deste modo, que os padrões de IHC complementam a aplicação
dos padrões Prototypes e User Interface Requirements, fornecendo diretivas para
elaborar a interação e a interface com o usuário e um vocabulário de comunicação entre
o usuário e os especialistas.

 Na seqüência, um protótipo foi implementado usando a linguagem de
programação Visual Basic, e foi avaliado pelo usuário durante a etapa de Avaliação do
Protótipo pelo Usuário. Para essa etapa houve uma atividade de planejamento, com o
objetivo de definir as tarefas a serem realizadas pelo usuário durante a avaliação.
Durante a execução da avaliação, o protótipo era manipulado pelo usuário, sendo
observado pelos especialistas durante a realização das tarefas elaboradas. Observou-se,
durante a interação, que o usuário notou a aplicação dos padrões de IHC no protótipo.
Algumas vezes, ao descrever um problema encontrado no protótipo, ele tentava fornecer
uma solução através dos padrões aprendidos anteriormente.

 Após a etapa de Avaliação do Protótipo pelo Usuário, durante a etapa de
Refinamento do Protótipo, uma lista foi elaborada com as críticas apresentadas pelos
usuários e pelos especialistas. Novamente os especialistas utilizaram padrões para
corrigir essas deficiências. Por exemplo, na interface apresentada anteriormente (Figura
2) o usuário não citou a necessidade de confirmação de algumas operações. Mas no caso
de cancelamento de comandas notou a necessidade da confirmação do cancelamento de
pedidos para a prevenção de erros. Nesse caso o padrão Shield [Welie, 2003] pode ser
aplicado.

 No planejamento do estudo de caso foram definidas duas iterações no uso do
modelo de processo Prototipação antes da realização da etapa de Engenharia do
Produto, objetivando identificar novos requisitos e refinar os requisitos já identificados.
A aplicação de padrões durante a segunda iteração foi semelhante à primeira, com
exceção da etapa de Projeto Rápido. Nessa etapa não foi elaborado um novo projeto
para a interface com o usuário, realizando-se somente modificações no projeto
existente, conforme as necessidades levantadas na etapa de Refinamento do Protótipo.

 A primeira atividade realizada na etapa de Engenharia do Produto é a análise, na
qual foram elaborados os modelos de casos de uso, de classe e de seqüência. Para a
realização dessa atividade foram aplicados os padrões de processo Behavioral

200

Requirements, que apresentam diretivas para a descrição dos comportamentos do
sistema através de casos de uso, em conjunto com o padrão Scenarios Define Problem,
que aconselha a elaboração de casos de uso para documentar os comportamentos e
comunicar-se com o cliente. Em seguida, foram aplicados alguns padrões para escrita de
casos de uso efetivos [Adolph et al., 2002], procurando complementar as diretivas
fornecidas pelos padrões de processo aplicados. Essa aplicação conjunta resultou na
identificação de outros três relacionamentos entre os padrões de ES, que serão
discutidos na seção seguinte.

 Na fase de Análise também foi aplicado o padrão de processo Problem Domain
Analysis, que define um conjunto de perguntas a serem respondidas para realizar a
análise. Em seguida, para auxiliar a identificar os objetos do domínio, os
relacionamentos entre os objetos, seus atributos e seus métodos, foram aplicados os
padrões a linguagem de padrões GRN [Braga et al., 1999] em conjunto com o padrão
Party [Fowler, 1996]. Observa-se aqui um relacionamento entre o padrão de processo
Problem Domain Analysis e padrões de análise, os quais podem ser aplicados para
auxiliar a responder as questões desse padrão de processo.

 Durante a etapa de Projeto, para definir os passos da elaboração dos objetos
responsáveis pela interface com o usuário, foi aplicado o padrão Human Interface Role
Is a Special Interface Role. Esse padrão de processo fornece como diretiva a separação
dos objetos da interface com o usuário dos demais objetos, aplicando, por exemplo, o
padrão MVC. Esse padrão também indica a elaboração de diversas alternativas de
projeto para serem discutidas com a equipe, selecionando em seguida as melhores
alternativas. Podem ser aplicados padrões de IHC para auxiliar a definir boas
alternativas. Observou-se um outro relacionamento entre o padrão Human-Interface
Role Is a Special Interface Role e os padrões de IHC, que será discutido na seção
seguinte.

 Como padrão arquitetural foi adotado o padrão MVC. Durante sua aplicação foi
empregado também o padrão Observer, que complementa a solução do padrão MVC, e
os padrões de IHC. Buschmann et al. (1996) apresentam dez passos para a
implementação do padrão MVC, sendo que o terceiro é o projeto da parte da
visualização da interface com o usuário, representado pela View. Para auxiliar a realizar
esse passo podem ser aplicados padrões de IHC. Nesse estudo de caso, os mesmos
padrões de IHC aplicados no protótipo foram aplicados no produto final, pois a
Prototipação se mostrou útil como um mecanismo para averiguar quais padrões de IHC
deveriam estar presentes no produto final.

 Relacionamentos entre os padrões de IHC e padrões de projeto foram
identificados durante a atividade de projeto. Por exemplo, cita-se o requisito de
interface com o usuário no qual o botão “Cancelar Comanda” (Figura 2) só deve está
habilitado se houver algum pedido sendo realizado, resultante da aplicação do padrão
Disabled Irrelevant Things. O botão é inicialmente desabilitado, pois não existem
pedidos sendo realizados. Após o usuário fornecer o telefone do cliente, o sistema
permite a edição do pedido e, então, habilita o botão para cancelar os pedidos
solicitados. Percebe-se que um objeto que pode ser desabilitado ou habilitado está
relacionado a um contexto composto por um ou mais objetos. O padrão Observer pode
ser aplicado para que, quando o contexto de tal objeto alterar, o objeto seja informado
sobre tal mudança, verificando, assim, se ele é relevante ou não para o novo contexto e

201

alterando sua permissão de manipulação por parte do usuário. Conclui-se que o padrão
de projeto Observer auxilia a projetar o padrão de interação humano-computador
Disabled Irrelevant Things.

 Por fim, o produto final foi implementado na linguagem Java, respeitando o
projeto da interface com o usuário definido durante o desenvolvimento e avaliação do
protótipo.

4. Relacionando Padrões de ES e de IHC
Durante a realização do estudo de caso percebeu-se que padrões de ES e de IHC se
complementam durante o desenvolvimento de um sistema interativo. Vários
relacionamentos foram identificados por meio da leitura dos padrões e validados com o
estudo de caso descrito na seção anterior. Na Tabela 2 são apresentados o
relacionamento dos padrões de IHC que complementam os padrões de ES. Tais
relacionamentos foram identificados durante a realização dos estudos de caso.

 Observando os relacionamentos identificados entre os padrões de IHC
complementando os padrões de ES, percebe-se que os relacionamentos partem dos
padrões de processo de ES que tratam de alguma forma o desenvolvimento de interfaces
com o usuário, seja durante a elaboração de protótipos (padrão Prototypes [Coplien,
1995]), seja na elaboração do produto final (padrão MVC [Buschmann et al., 1996],
aplicado durante a definição da arquitetura do sistema, e o padrão User Interface Role Is
a Special Interface Role [Kerth, 1995], aplicado durante a definição da solução para o
sistema, especificando através de um projeto de software).

Tabela 2 – Relacionamento dos padrões de ES complementados pelos padrões
de IHC

Padrão de ES Relacionamento
Prototypes Padrões de IHC complementam o padrão Prototypes, pois fornecem diretivas para

elaboração da interação e do layout de sistemas interativos, inclusive para os protótipos,
que podem ser desenvolvidos resultantes da aplicação do padrão Prototypes.

Human
Interface Role

is a Special
Interface Role

Padrões de IHC podem ser aplicados em conjunto com esse padrão para auxiliar a
definir uma boa solução ao se realizar o projeto da interface com o usuário, resultante da
aplicação desse padrão de ES. Os relacionamentos entre padrões de IHC com os padrões
de projeto podem auxiliar a definir responsabilidades dos objetos da interface com o
usuário que, segundo esse padrão de ES, devem ser identificados.

MVC No projeto das Visões (View), que representa a interface com o usuário, é possível
aplicar padrões de IHC.

 Empregando os estudos de caso, também foram coletados relacionamentos entre
os padrões de ES que complementavam os padrões de IHC. A Tabela 3 sumariza os
relacionamentos identificados.

Na Tabela 4, é apresentada uma síntese dos relacionamentos identificados entre os
padrões de ES, identificados através dos estudos de caso realizados. Diversos outros
relacionamentos entre padrões de ES foram identificados e apresentados por seus
autores, principalmente os relacionamentos com os padrões de projeto, conforme é
possível perceber durante a leitura de tais padrões.

Tabela 3 – Relacionamento dos padrões de IHC complementados pelos
padrões de ES

202

Padrão de
IHC

Padrão de
ES

Relacionamento

Composed
Command

Little
Language

O padrão Composed Command apresenta diretivas para a linguagem que
será utilizada pelo usuário para a interação com o sistema. O padrão
Little Language define como objetos colaboram para analisar e realizar a
ação correspondente ao comando fornecido.

Undo Memento +
Command

O padrão Undo apresenta diretivas para disponibilizar a operação de
desfazer, enquanto que o padrão Command define uma interface para os
comandos possíveis (e com isso é possível elaborar uma lista de
operações a desfazer) e o padrão Memento realiza a operação desfazer
em si, retornando o objeto ao estado anterior.

Tabular Set Iterator O padrão Tabular Set apresenta diretivas para apresentar os dados por
meio de uma tabela. Entretanto, é desejável que o objeto que apresenta
a tabela não dependa do modo como os dados sejam representados. A
aplicação do padrão Iterator permite essa independência.

Step-by-Step
Instructions

Memento Uma das diretivas do padrão Step-by-Step Instructions é fornecer a
possibilidade do usuário retornar a um passo. Possivelmente um passo
realizado altera o estado de um ou mais objetos. O padrão Memento
permite que o estado anterior do objeto seja recuperado ao retornar um
passo sem que o encapsulamento seja violado.

Disabled
Irrelevant

Things

Observer Um determinado objeto que pode se tornar irrelevante está relacionado
ao contexto que define se ele é irrelevante ou não. Esse contexto pode
ser formado por outros objetos. O padrão Observer pode ser aplicado
para informar ao objeto que houve mudanças em seu contexto. Quando
o objeto é informado sobre a mudança do seu contexto, ele é capaz de
determinar se é irrelevante ou não nesse novo contexto.

Tabela 4 – Relacionamento dos padrões de ES complementados pelos padrões
de ES

Padrão de
ES

Padrão de
ES

Relacionamento

Customer
Rapport

Engage the
Client Early

O padrão Customer Rapport apresenta diretivas para estabelecer um
bom relacionamento com o cliente, focando os usuários e envolvendo-os
no projeto da interface com o usuário em conjunto com a elaboração de
protótipos. O padrão Engage the Client Early também trata do
desenvolvimento de diversos protótipos, considerando engajar o usuário
e sua participação, permitindo-o guiar os esforços do desenvolvimento.

Scenarios
Define

Problem

Behavioral
Requirements

O padrão Scenarios Define Problem propõe, como solução para o
problema dos documentos de projeto serem veículos ineficientes para
comunicação com o usuário, o emprego de casos de uso. O padrão
Behavioral Requirements aprofunda essa questão e apresenta também
algumas diretivas para a elaboração dos casos de uso.

Customer
Rapport

Come on
Baby, Light

My Fire

O padrão Customer Rapport apresenta diretivas para estabelecer um
bom relacionamento com o cliente, focando os usuários e envolvendo-os
no projeto da interface com o usuário, em conjunto com a elaboração de
protótipos. O padrão Come on Baby, Light My Fire também trata do
desenvolvimento de protótipos, considerando engajar o usuário e sua
participação, mas sem distraí-lo com questões particulares de interface.

Prototypes Prototype O padrão Prototypes apresenta diretivas para elaborar protótipos
descartáveis ou evolucionários. O padrão Prototype comenta sobre a
elaboração de protótipos descartáveis.

Tabela 4 – Relacionamento dos padrões de ES complementados pelos padrões
de ES (continuação)

203

Padrão de
ES

Padrão de
ES

Relacionamento

Prototypes Use It and
Lose It

O padrão Prototypes apresenta diretivas para elaborar protótipos
descartáveis ou evolucionários. Para o desenvolvimento de protótipos
descartáveis pode-se aplicar em seguida o padrão Use It and Lose It que
também fornece diretivas para a elaboração de protótipos descartáveis,
considerando o desenvolvimento rápido do protótipo e o engajamento
do cliente.

Prototype Use It and
Lose It

O padrão Prototype comenta sobre a elaboração de protótipos
descartáveis para auxiliar a compreender os requisitos. Diversos fatores
estão relacionados ao desenvolvimento de protótipos, inclusive a
redução do tempo de desenvolvimento do protótipo, como apresenta o
padrão Use It and Lose It.

Let’s Make a
Deal

Requirements
Specification

O padrão Let’s Make a Deal apresenta diretivas informando quando a
elaboração de protótipos pode ser finalizada e a elaboração de um
documento de requisitos apropriado pode ser iniciada. O padrão
Requirements Specification define diretivas para a elaboração de um
documento de requisitos.

Requirements
Validation

Technical
Review

O padrão Requirements Validation comenta que todos os interessados
devem ler o documento de requisitos em reuniões de revisão. O padrão
Technical Review apresenta diretivas para o planejamento, execução e
coleta de resultados de reuniões para revisão de um artefato.

Problem
Domain
Analysis

Padrões de
Análise

O padrão Problem Domain Analysis comenta sobre a necessidade de
elaborar uma representação para o domínio do sistema, levando em
conta questões comuns que são deparadas durante a realização de uma
análise. Para apoiar a realização da análise podem ser aplicados padrões
de análise encontrados na literatura.

Behavioral
Requirements

Padrões de
Caso de Uso

O padrão Behavioral Requirements apresenta diretivas para representar
o comportamento do sistema por meio de casos de uso. Ele também
apresenta algumas diretivas para a elaboração destes casos de uso. Caso
sejam necessárias mais diretivas, é possível aplicar os padrões voltados
para a elaboração de casos de uso.

Scenarios
Define

Problem

Padrões de
Caso de Uso

O padrão Scenarios Define Problem propõe a elaboração de casos de
uso, como solução para o problema dos documentos de projeto, ser de
difícil compreensão pelo usuário. Para escrever casos de uso que
permitam uma leitura fácil ao usuário, entre outras características, pode-
se aplicar os padrões para elaboração de casos de uso.

5. Conclusões e Trabalhos Futuros
Como resultado deste trabalho, que está baseado em um projeto que visa integrar as
visões de IHC e de ES no desenvolvimento de sistemas interativos, apresentamos 19
relacionamentos coletados durante a aplicação de um conjunto de padrões de ES e de
IHC em três estudos de caso. Acredita-se que um maior número de relacionamentos
podem ser identificados através da aplicação dos padrões e da análise destas aplicações
no desenvolvimento de sistemas interativos.

 Realizar a identificação de relacionamentos entre os padrões das duas áreas é
uma tarefa árdua, pois existem muito padrões à considerar. Entretanto, acredita-se que
esses esforços trazem benefícios, pois por meio da linguagem proposta é possível um
melhor aproveitamento dos benefícios que os padrões trazem ao serem aplicados em um
processo de desenvolvimento, realizando a transferência de conhecimento entre os
participantes de níveis diferentes e facilitando a comunicação entre eles. Relacionar os
padrões das duas áreas também é útil para motivar os especialistas de ambas as áreas a

204

desenvolver o sistema em parceria, o que muitas vezes não ocorre devido à falta de
comunicação, divergência de foco e por possuírem formação diferentes.

 Os seguintes resultados foram alcançados: (1) validação da proposta do modelo
de processo Prototipação Apoiado por Padrões; (2) identificação de 19 relacionamentos
entre padrões de ES e de IHC; (3) validação da proposta da existência de
relacionamentos entre padrões de IHC e de ES. Através da avaliação desses resultados,
concluímos que: (1) padrões de ES e de IHC podem se complementar para desenvolver
sistemas interativos de forma mais abrangente, tratando aspectos de ambas as áreas; (2)
relevância na identificação de relacionamentos entre padrões de ES e de IHC.

 Como trabalhos futuros pretende-se elaborar uma linguagem para
desenvolvimento de sistemas interativos que considere padrões de ambas as áreas a
partir da coleta dos relacionamentos entre os padrões, incluindo os aqui apresentados.
Entretanto, percebe-se que, para chegar a uma linguagem de padrões que considere tal
quantidade de padrões, é necessário que a linguagem [Meszaros e Double 1996]: 1)
apóie todos os aspectos importantes em um dado domínio, 2) forneça uma tabela
resumindo os padrões passíveis de serem empregados (padrão Problem/Solution
Summary), 3) utilize um mesmo exemplo em toda a linguagem (padrão Running
Example), 4) ofereça um glossário de termos (padrão Glossary), e 5) descreva os
relacionamentos dentro do texto que descreve o padrão (padrão Pattern Language).
Todas essas questões serão consideradas em trabalhos futuros.

Referências
Adolph, S., Bramble, P., Cockburn, A., Pols, A. Patterns for Effective Use Cases,

Pearson Education, Inc., EUA, 2002.
Alpert, S. R. (2003) “Getting Organized: Some Outstanding Questions and Issues

Regarding Interaction Design Patterns”, In: Workshop on “Perspectives on HCI
Patterns” at CHI, 20., 2003.

Ambler, S., Process Patterns: Building Large-Scale Systems Using Object Technology,
Cambridge University Press, 1998.

Borchers, J. O. (2000) “CHI Meets PLoP: An Interaction Patterns Workshop”. In:
SIGCHI Bulletin, Nova Iorque, EUA, v. 32, n. 1, p. 9-12.

Braga, R. T., Germano, F. S. R. and Masiero, P. C. (1999) “A Pattern Language for
Business Resource Management”, In: Pattern Languages of Programming
Conference, 6., Monticello, EUA.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P. and Stal, M., Pattern-Oriented
Software Architecture Volume 1: A System of Patterns, John Wiley & Sons Ltd.,
1996.

Coplien, J. O. (1995) “A Generative Development-Process Pattern Language”, In:
Pattern Language of Programming Design, Edited by J. O. Coplien and D. C.
Schmidt, EUA, Addison Wesley Longman Inc.

Dearden, A., Finlay, J., Allgar, E. and McManus, B. (2002) “Using Pattern Languages
in Participatory Design”. Proceedings of Participatory Design Conference, (2002).

Fowler, M., Analysis Patterns: Reusable Object Models, Addison Wesley, 1996.

205

Gamma, E., Helm, R., Johnson, R. and Vlissides, J., Design Patterns: Elements of
Reusable Object-Oriented Software, Addison Wesley, 1995.

Grand, M., Patterns in Java Volume 1, John Wiley & Sons Inc., 1998.
Grand, M., Patterns in Java Volume 2, John Wiley & Sons Inc., 1999.
Kerth, N. L. (1995) “Caterpillar´s Fate: A Pattern Language for the Transformation

from Analysis to Design”, In: Pattern Language of Programming Design, Edited by
J. O. Coplien and D. C. Schmidt, EUA, Addison Wesley Longman Inc.

Meszaros, G., and Doble, J. (1996) “Metapatterns: A pattern language for pattern
writing”, Proceedings of the 3rd Pattern Languages of Programming Conference,
1996.

Preece, J., A Guide to Usability: Human factors in computing. Addison-Wesley Pub.
Co., Reading, MA, EUA, 1993.

Silva, A. C. da, Silva, J. C. A., Penteado, R. A. D. and Silva, S. R. P. da (2004)
“Integrando a Visão da ES e da IHC através da Aplicação de Padrões sobre o
Modelo de Prototipação”, In: Simpósio Brasileiro de Fatores Humanos em Sistemas
Computacionais, 6., Curitiba-PR, Brasil.

Sommerville, I. Engenharia de Software, 6.ed. Addison-Wesley Pub. Co., São Paulo,
SP, Brasil, 2003.

Stimmel, C. L. (1999) “Hold Me, Thrill Me, Kiss Me, Kill Me Pattern Language for
Developing Effective Concept Prototypes”, In: Pattern Languages of Programming
Conference, 6., Monticello, EUA.

Tidwell, J. (1999) “Commond Ground: a Pattern Language for Human-Computer
Interface Design”, http://www.mit.edu/~jtidwell/interaction_patterns.html.

Tidwell, J. (2003) “User Interface Patterns and Techniques”, http://time-
tripper.com/uipatterns.

Welie, M. van, (2003) “Pattern in Interaction Design”, http://www.welie.com.
Whitenack, B. (1995) “RAPPeL: A Requirements-Analysis-Process Pattern Language

for Object-Oriented Development”, In: Pattern Language of Programming Design,
Edited by J. O. Coplien and D. C. Schmidt, EUA, Addison Wesley Longman Inc.

Yoder, J. W., Johnson, R. E. and Wilson, Q. D., (1998) “Connecting Business Objects
to Relational Database”, In: Pattern Languages of Progamming Conference, 5.,
Monticello, USA.

206

Aplicando Padrões de Gerência de Configuração de
Software em Projetos Geograficamente Distribuídos1

Dario André Louzado, Lucas Carvalho Cordeiro

Siemens Com Mobile Devices – Siemens Eletroeletrônica S.A.
Manaus – AM – Brazil

{dario.louzado,lucas.cordeiro}@siemens.com
Abstract: Software Configuration Management (SCM) plays an important role
in software development projects by controlling the consistency of artifacts
during the whole project life cycle. In this article we discuss how a well-known
SCM pattern language was applied in a medium size outsourced project. For
each applied pattern we explain the context, problem, solution and resulting
context. We present the ideas by looking to the SCM system as continuous
evolving system as the patterns are applied. Special nuances, common to the
complex world of outsourcing, are also emphasized.
Keywords: patterns, software configuration management, outsourcing.
Resumo: Gerência de Configuração de Software (SCM) desempenha um
papel importante no desenvolvimento de projetos de software, controlando a
consistência dos artefatos ao longo do ciclo de vida do projeto. Neste artigo é
discutido como uma linguagem de padrões de SCM conhecida foi aplicada em
um projeto terceirizado de tamanho médio. Para cada padrão aplicado são
apresentados contexto de aplicação, problemas enfrentados, soluções
consideradas assim como o contexto resultante. As idéias são apresentadas
olhando para o sistema de SCM como um sistema que evolui na medida em
que os padrões são aplicados. Nuances especiais, comuns ao complexo mundo
da terceirização, são também enfatizadas.
Palavras-chave: padrões, gerência de configuração de software,
terceirização.

1 Copyright © 2005, Dario André Louzado and Lucas Carvalho Cordeiro. Permission is granted to copy
for the SugarLoafPLoP 2005 conference. All other rights reserved.

207

1. Introdução
Uma disciplina da engenharia de software que vem ganhando crescente destaque em
projetos de software é a gerência de configuração do software, ou software
configuration management – SCM. A razão para tanto destaque é muito simples. Se
entendermos todo o processo de desenvolvimento de software como um software [1],
SCM pode ser vista como o subsistema de entrada-saída (I/O) deste software.

 Indo um pouco mais além, SCM responde pelo controle transacional dos
artefatos de software, isto é, pelo controle da consistência do produto de trabalho
produzido pelos desenvolvedores ao longo de todo o ciclo de vida do projeto. Por
exemplo, ao receber o código-fonte de diferentes desenvolvedores, o gerente de
configuração do software organiza este material em um espaço de trabalho (workspace)
checa as consistências e dispara o processo de geração de builds. Como resultado deste
último processo, tem-se uma versão intermediária, ou incremento, do software em
construção ou manutenção.

SCM

Código Fonte Build do Sistema

Figura 1. Sistema de entrada e saída SCM

 Conforme mostrado na figura 1, o sistema de I/O SCM recebe código-fonte
(entrada), organiza, verifica as diferenças e consistências e produz um build, uma saída,
portanto, deste processo. O exemplo é simples, mas serve para ilustrar o papel da
gerência de configuração em projetos de software. Um build que apresenta problemas
de compilação ou integração poderia sacrificar um ou mais dias de trabalho de uma
equipe inteira de desenvolvedores ou testatores. Builds com este tipo de problema
dificultam inclusive a gerência do projeto pelos líderes, pois a noção de progresso é
consideravelmente ofuscada.

 Na prática, as atividades, considerações e verificações realizadas pelo gerente da
configuração são bem menos triviais que o exemplo acima. Neste artigo, estaremos
navegando pela linguagem de padrões de gerência de configuração definida em [3],
objetivando discutir, para cada padrão aplicado e para a linguagem como um todo, quais
as considerações, dificuldades e soluções realizadas no contexto de um projeto real
vivenciado pelos autores.

 É importante salientar que o propósito principal deste artigo é focar em assuntos
estratégicos de SCM tais como: práticas, políticas e organização. Com este objetivo em
mente, o apêndice A fornece uma visão geral das ferramentas utilizadas no projeto.
Além disso, por questões de confidencialidade, o artigo abordará apenas do uso da
técnica, omitindo qualquer tipo de informação que envolva o escopo e a estratégia do
projeto analisado.

208

2. Contexto Geral
O projeto analisado tem por objetivo produzir um software de uso desktop (com
aproximadamente 100,000 LOC) destinado a usuários finais de aparelhos celulares. Por
ser destinado ao usuário final em um mercado de massa, trata-se de um projeto crítico o
qual demanda um controle rigoroso na configuração do software. A Siemens
Communications é uma organização com uma evidente política de presença no mercado
(time-to-market), o que evidencia a necessidade de controle sobre o projeto, status da
configuração e da qualidade do código.

 Adicionalmente, o projeto é desenvolvido por quatro parceiros situados
fisicamente em localidades diferentes – Figura 2. Esta realidade demanda uma boa
comunicação e uma definição clara de responsabilidades, situando ainda mais a gerência
da configuração do software como um instrumento chave neste processo.

Siemens

P4

P3

P1

P2

Siemens

P4

P3

P1

P2

Figura 2. Siemens e seus parceiros

 Outra particularidade encontrada foi a necessidade de separar um pouco a gestão
dos artefatos de software (atividades de integração e geração do build). A primeira é
atribuição do gerente de configuração (Configuration Manager, doravante denominado
CM). A segunda é atribuição do gerente de build (Build Manager, doravante
denominado BM).

3. Organização, arquitetura e gerência de configuração de software
Organizações estruturam-se de acordo com o mercado para lançar produtos ou soluções
[2]. Esta estruturação influência fortemente a arquitetura do software. Conforme os
sistemas de software tornam-se mais complexos, a arquitetura passa a influenciar a
organização e suas decisões.

 Uma influência importante é a localização do trabalho, isto é, como um pacote
de trabalho é atribuído a uma determinada equipe. Dois componentes com muita
proximidade e dependência são atribuídos de forma localizada a um time de
desenvolvedores, minimizando a demanda por canais de comunicação. Esta abordagem
implica em mais agilidade e melhor gestão dos riscos ao projeto.

209

Organização

Arquitetura

SCMOrganização

Arquitetura

SCM

Figura 3. Influências entre organização, arquitetura e SCM

 De uma maneira geral, o padrão Architecture Follows Organization [2] discute
como a arquitetura estrutura os canais de comunicação em uma organização.
Continuando com o cliclo de influências, conforme figura 3, tanto as estruturas
organizacional quanto arquitetural influenciam diretamente as práticas, políticas,
planejamento e as ferramentas destinadas à gerência da configuração do software. Esta
fornece, portanto, uma base de sustentação para as outras.

 Estudando estas dependências conceituais, foi desenvolvida uma linguagem de
padrões destinada à gerência da configuração [3]. Esta linguagem classifica os padrões
em duas categorias:

Codeline: padrões relacionados ao controle de versão e ao isolamento de
iniciativas distintas de desenvolvimento em linhas de codificação isoladas,
tipicamente implementadas em ferramentas de controle de versão com o
conceito de branches.

Workspace: padrões relacionados ao agrupamento de versões específicas de
artefatos do projeto em áreas de trabalho a fim de suportar diferentes atividades
do projeto. Exemplos: gerar um build, executar smoke tests, desenvolver
funcionalidades, integrar software, coletar métricas de código, entre outras.

 A linguagem de padrões SCM vem sendo refinada há pelo menos cinco anos
pelos autores originais e este artigo adiciona uma contribuição a partir de uma
experiência em projeto com times geograficamente distribuídos. A figura 4 mostra as
interações entre os padrões da linguagem em estudo.

 É importante observar a partir do mapa de linguagem de padrões SCM (figura
4), que a seta padrão A padrão B significa que padrão A precisa do padrão B para
completá-lo [3]. Deste modo, o padrão Task Level Commit deve ser implementado para
que o Integration Build funcione.

210

Mainline

Active
Development Line

Private Workspace

Private
System Build

Release
Line

Private
Versions

Task
Branch

Release Prep
Codeline

Integration
Build

Repository

Task Level
Commit

Third Party
Codeline

Unit Test Regression
Test

Codeline
Policy

Smoke Test

Mainline

Active
Development Line

Private Workspace

Private
System Build

Release
Line

Private
Versions

Task
Branch

Release Prep
Codeline

Integration
Build

Repository

Task Level
Commit

Third Party
Codeline

Unit Test Regression
Test

Codeline
Policy

Smoke Test

Figura 4. Padrões de gerência de configuração de software [3]

4. Padrões de gerência de configuração de software
Esta seção descreve cada padrão de gerência de configuração de software utilizado no
projeto. A aplicação destes padrões é determinada de acordo com as decisões de
organização e arquitetura, conforme mencionado na seção 3. Deste modo, alguns
padrões de SCM propostos por [3] não foram aplicados e os demais sofreram
adaptações considerando o contexto específico do projeto observado.

4.1 Padrão Mainline
4.1.1 Contexto de Aplicação
Como mencionado na seção 2, o projeto é desenvolvido por quatro parceiros situados
fisicamente em localidades diferentes. Cada parceiro possui sua estrutura organizacional
e diferentes tipos de ferramentas para lidar com gerência de configuração. Sendo assim,
foram criadas cinco diferentes linhas de codificação (codelines), uma para cada parceiro
e uma principal gerenciada pela Siemens (figura 5). Além disso, existe uma linha de
codificação chamada de produção com o propósito de receber somente versões estáveis
do software.

211

siemens

produção

parceiros

Figura 5. Linhas de codificação

4.1.2 Problemas enfrentados
Alguns componentes possuem dependências entre si, por exemplo, qualquer mudança
na interface e/ou comportamento do componente afeta o trabalho de um ou mais
parceiros. Se todos os parceiros possuem linhas de codificação diferentes, como
resolver este problema de dependência de componentes?

4.1.3 Soluções
Para que fosse possível utilizar cinco diferentes linhas de codificação e ter maior
controle de todas as mudanças de interface/comportamento dos componentes, foi
desenvolvido um processo de comunicação de mudança de interface. Neste processo, o
parceiro realiza a mudança na interface/comportamento do componente e depois
notifica todos os parceiros afetados.

 Esta adaptação é válida, pois, o projeto é norteado por uma arquitetura baseada
em componentes e interfaces bem definidas. Ciclos de integração semanais ocorrem na
linha principal da Siemens (onde são gerados os builds e releases) pelos parceiros.
Sendo assim, no término de cada ciclo tem-se uma versão definitiva do produto que é
disponibilizada na linha de produção para a equipe de teste.

4.1.4 Contexto Resultante
Depois da implementação deste processo, cada parceiro foi capaz de trabalhar em sua
própria linha de codificação. O processo de comunicação de mudança de interface
possibilitou uma melhor comunicação, de acordo com as dependências arquiteturais.
Esta comunicação aprimorada permitou uma maior transferência de responsabilidade
para os parceiros. O foco da Siemens pode ser mantido no controle da linha de
codificação principal. A linha de produção (principal), incrementada a partir das
integrações semanais, é a única referência – não-ambígua, portanto – para versões
oficiais do produto.

4.2 Padrão Active Development Line
4.2.1 Contexto de Aplicação
O desenvolvimento ocorre em quatro linhas ativas de codificação, uma para cada
parceiro. Isto implica dizer que, para cada uma das linhas, uma partição do sistema (em
termos de sub-sistemas e componentes) deve ser desenvolvida, testada e entregue por
cada parceiro envolvido no projeto.

212

4.2.2 Problemas enfrentados
A coordenação das entregas, a fim de garantir um único sistema funcionando não é uma
tarefa simples. Muitos problemas de retrabalho ou esforço elevado de integração foram
encontrados.

4.2.3 Soluções
Toda integração de código do parceiro é acompanhada por notas de entrega (delivery
notes). As notas de entrega têm o propósito de fornecer as condições atuais da entrega,
ou seja, quais componentes foram adicionados ou modificados, quais bugs foram
resolvidos, quais as limitações de cada componente e assim por diante. O gerente de
configuração de software é responsável por revisar as notas de entrega e comunicar aos
parceiros eventuais problemas de consistência.

4.2.4 Contexto Resultante
Com o adequado preenchimento das notas de entrega é possível integrar e gerar um
novo build do sistema e, por conseguinte disponibilizar uma versão estável do mesmo
na linha principal de codificação. Esta prática tornou viável a implantação de uma
estratégia de integração por estágios, na qual um mesmo ciclo de integração é quebrado
em ciclos menores de acordo com as dependências entre os componentes.

4.3 Padrão Private Workspace
4.3.1 Contexto de Aplicação
Diferentes parceiros possuem diferentes estruturas organizacionais, cultura de trabalho e
processos de software. O isolamento geográfico demanda um certo isolamento para a
construção do software de modo a eliminar o excesso de interferência no trabalho diário
de cada desenvolvedor.

4.3.2 Problemas enfrentados
Com o uso de uma linha de codificação por parceiro, pode-se isolar as mudanças feitas
por cada um deles e obter um melhor controle do software sendo desenvolvido. Em
cada uma dessas linhas, cada desenvolvedor de cada parceiro pode gerar o seu espaço
de trabalho (workspace).

Mesmo usando diferentes linhas de codificação, pôde ser observada a utilização de
forma intrusiva, isto é, parceiro P2 modifica componentes atribuídos ao parceiro P1
(conforme mostrado na figura 6). Este problema causa desperdício de esforço visto que
não há garantia de consistência nas versões produzidas por P1.

213

Parceiro 1 Parceiro 2

Componente A Componente BFornece
interface

Solicita
interface

Modific
a interfa

ce

Im
pl

em
en

ta

Im
pl

em
en

ta

Figura 6. Mudança de interface de componentes

4.3.3 Soluções
O estabelecimento de um processo de comunicação de mudança de interface e a
separação de responsabilidades atenuou os problemas enfrentados. A arquitetura bem
definida e o reforço da atribuição das responsabilidades desempenharam um papel
fundamental na redução deste tipo de problema.

4.3.4 Contexto Resultante
Melhoria na comunicação entre os times e na integração dos componentes implicando
em builds mais estáveis e entregas mais controladas.

4.4 Padrão Integration Build
4.4.1 Contexto de Aplicação
Uma data e horário do dia são marcados para cada parceiro realizar sua entrega. Quatro
entregas são realizadas na semana, de acordo com as dependências – integração por
estágios. Esta abordagem favorece a integração gradual do produto. Cada uma das
integrações deve ser acompanhada por notas de entrega e um rótulo (tag) atribuído à
versão específica dos componentes sendo entregues (conforme mostrado na figura 7).
As notas de entrega devidamente preenchidas e a tag associada aos componentes
facilitam a integração e a geração de um novo build do sistema.

4.4.2 Problemas enfrentados
Algumas integrações não foram acompanhadas de notas de entrega devidamente
preenchidas, o que dificultou a implementação da integração por estágios. Além disso,
a tag era associada a todos os componentes do sistema, dificultando a assimilação do
que estava sendo entregue de fato.

214

4.4.3 Soluções
Para cada integração realizada pelo parceiro, o gerente de configuração de software é
responsável por verificar se a tag foi corretamente atribuída aos devidos componentes e
checar se as notas de entrega condizem com o conjunto de componentes entregues. Com
estas informações em mãos, o SCM comunica aos parceiros da inconsistência da
entrega. Atualmente, um checklist é aplicado a fim de validar e fornecer feedback de
cada entrega.

4.4.4 Contexto Resultante
Builds de integração são produzidas de forma sistemática, com periodicidade definida e
controlada. No caso do projeto em questão, usou-se a freqüência semanal.

subsistema

componente A

componente B

componente C

componente D

componente E

componente F

componente G

parceiro1-2005-03-02-01

Figura 7. Parceiro 1 atribuindo uma tag aos componentes

4.5 Padrão Third Party Codeline
4.5.1 Contexto de Aplicação
Cada parceiro possui uma linha de codificação no sistema de controle de versão. O ciclo
de vida da linha de codificação (atualização, desenvolvimento, teste de integração
interna e assim por diante) está sob responsabilidade do parceiro. As atualizações bem
como as entregas devem ocorrer de acordo com políticas bem estabelecidas no início do
projeto.

4.5.2 Problemas enfrentados
Má gestão das linhas de codificações dedicadas aos parceiros. Muita demanda interna
para integrar e gerar builds, o que afeta diretamente o caminho crítico do projeto.

4.5.3 Soluções
Papéis e responsabilidades foram bem definidos e enfatizados para cada parceiro
envolvido. Neste sentido, foram desenvolvidos, documentados e divulgados todos os
procedimentos e políticas de gerência de configuração.

215

4.5.4 Contexto Resultante
Seguindo todos os procedimentos estabelecidos pela Siemens, cada parceiro foi capaz
de cuidar, com certo grau de independência, do ciclo de vida da sua linha de
codificação. Boa parte do caminho crítico do projeto foi aliviada, graças a este
redirecionamento de responsabilidade.

4.6 Padrão Task Level Commit
4.6.1 Contexto de Aplicação
Uma tarefa (ou task), para o projeto analisado, pode ser mapeada em uma entrega
individual por parceiro. Por exemplo, implementar um novo componente ou serviço.
Cada parceiro realiza a sua entrega em uma linha de codificação isolada, usando
controle de versão a partir de tag.

4.6.2 Problemas enfrentados
Cada parceiro é responsável por tarefas e pelo ciclo de vida de sua linha de codificação
individual. Em alguns momentos, quando um parceiro depende fortemente da
modificação de outro, o dependente terá que aguardar pela conclusão da tarefa, o que
pode significar tempo improdutivo de espera.

4.6.3 Soluções
Isolamento das linhas de codificação por parceiro e a entrega baseada em tag. Para
contornar o problema da espera por dependência, usa-se o conceito de snapshot, ou
fotografia. Nesta abordagem, o parceiro causador da dependência prioriza as suas
atividades e, antes da conclusão da tarefa, aplica um rótulo em sua linha de codificação
tornando a versão disponível aos demais interessados. Uso intensivo de notas de entrega
com o propósito de comunicar efetivamente o andamento das modificações para todos
os envolvidos.

4.6.4 Contexto Resultante
Percepção consistente do andamento do projeto pelos líderes de projeto, devido ao
incremento consistente de funcionalidades no software. Maior controle sobre os builds
globais do produto em construção a partir de diferentes entregas. Necessidade de
pessoas dedicadas à tarefa de monitorar o andamento das modificações e integrar
componentes.

4.7 Padrão Smoke Test
4.7.1 Contexto de Aplicação
Mesmo entregas bem estruturadas, tal como proposto em Task Level Commit,
demandam uma verificação mínima de consistência. Eventualmente versões são
enviadas para outros times remotamente localizados ao redor do globo a fim de executar
testes de diversos tipos.

4.7.2 Problemas enfrentados
Contínuo balanceamento entre custo, time-to-market e estabilidade de cada build (figura
8). Difícil decisão entre lançar um build antes ou depois dos Smoke Tests.

216

Qualidade Custo

Tempo

Figura 8. Triângulo mágico [19]

4.7.3 Soluções
Definir funcionalidades prioritárias para a execução de smoke tests. Estratégia de
priorização com base nos componentes que sofreram as mudanças mais críticas desde a
última entrega.

4.7.4 Contexto Resultante
Mais tranqüilidade e confiança antes de repassar versões intermediárias do software
para diferentes times de teste geograficamente distribuídos. Menos desperdício de
esforço e redução na demanda por comunicação entre os times.

4.8 Padrão Regression Test
4.8.1 Contexto de Aplicação
Defeitos críticos são encontrados e corrigidos no software. Dependendo de quão
críticos, há uma necessidade de garantir que os mesmos não voltarão a se manifestar em
uma nova versão.

4.8.2 Problemas enfrentados
Definição de prioridades dos defeitos encontrados no software. Muita comunicação
entre times de desenvolvimento no projeto com o propósito de rastrear tais defeitos e
propor soluções para os mesmos.

4.8.3 Soluções
Criação do papel do gerente de versão intermediária (Build Manager) para cada um dos
parceiros. O BM é responsável por fazer o rastreamento dos bugs sob sua
responsabilidade e notificar (com a ajuda da equipe de teste), para cada entrega, quais as
correções e pendências. Além disso, o BM e arquiteto devem fornecer soluções e prazos
para os defeitos que se manifestam em uma nova versão do software.

4.8.4 Contexto Resultante
Áreas funcionais de alta prioridade estão protegidas pelos testes. Entretanto, há uma
demanda por comunicação para definir qual o nível de regressão desejado em cada
execução de testes.

217

4.9 Padrão Release Line
4.9.1 Contexto de Aplicação
Necessidade de ter uma base única para a geração de versões oficiais do produto. Linhas
de codificação dos parceiros são isoladas da linha de codificação de produção,
responsável pela geração de releases oficiais do produto.

4.9.2 Problemas enfrentados
Esforço para a junção das linhas de codificação dos diversos parceiros (processo de
integração) e necessidade de verificar a consistência de cada entrega através de um
checklist desenvolvido pelo gerente de configuração de software. Este checklist tem
como finalidade a aceitação ou rejeição da entrega do parceiro.

4.9.3 Soluções
A própria linha de codificação de produção é utilizada como linha para geração de um
novo release do produto, evitando o uso de uma linha de codificação.

4.9.4 Contexto Resultante
Capacidade de produzir releases do software independentemente de qualquer tarefa de
desenvolvimento em andamento pelos parceiros.

4.10 Padrão Codeline Policy
4.10.1 Contexto de Aplicação
Diferentes organizações, diferentes culturas, todos envolvidos na construção de um
único software. Necessidade de um nível mínimo de uniformidade nas ações a fim de
garantir a produtividade coletiva dos desenvolvedores.

4.10.2 Problemas enfrentados
Dificuldade para os desenvolvedores assimilarem todas as idéias contidas na política de
gerência da linha de codificação. Divergências entre formas de trabalho, cultura e
metodologia de desenvolvimento de software.

4.10.3 Soluções
Os parceiros receberam um treinamento de gerência de configuração de software no
início do projeto. Desta forma, foram definidos e enfatizados os papéis e
responsabilidades no processo de SCM. Cada parceiro é responsável pelo ciclo de vida
de sua respectiva linha de codificação (atualizações, commits, rotulação e entregas
oficiais). Concentração das responsabilidades mencionadas no papel do Build Manager.
Cada parceiro possui um desenvolvedor desempenhando o papel especial de BM.

4.10.4 Contexto Resultante
Redução da sobrecarga e dos ruídos na comunicação no grupo. Agilidade na tomada de
decisão a cada ciclo de integração. Facilidade para absorver novos desenvolvedores no
projeto. Maior potencial para que todas as linhas de codificação se mantenham mais
estáveis ao longo do projeto.

218

5 Conclusão
Um projeto desenvolvido em regime de terceirização, envolvendo equipes de diferentes
localidades e de diferentes empresas, influenciou fortemente a estruturação das soluções
de gerência de configuração para o projeto observado. A necessidade de compartilhar
artefatos de software em um contexto global de países e organizações colocou grandes
desafios para o projeto. As diferenças culturais e de processo de software também
contribuem fortemente com a complexidade do ambiente analisado.

 As soluções foram sendo implementadas de acordo com as necessidades do
projeto, gradualmente, bem como o reconhecimento dos padrões proposta por [3]. Deste
modo, foi possível identificar os padrões e traçar as devidas correlações com o ambiente
real. Neste âmbito, a linguagem contribuiu para a reflexão e validação das soluções
vigentes. Considerando fatores como organização, arquitetura e time-to-market, pode-se
também utilizar outras linguagens de padrão, como por exemplo, os padrões
organizacionais definidos por [2]. Desta forma, é possível compreender de forma ampla
o ciclo de influência entre organização, arquitetura e gerência de configuração.

6 Apêndice “A” – Ferramentas utilizadas
Este apêndice contém informações sobre as ferramentas utilizadas pelo projeto para dar
sustentação ao emprego dos padrões de gerência de configuração. As informações estão
contidas na tabela 1.

Tabela 2. Ferramentas empregadas na aplicação dos padrões de SCM

Ferramenta Aplicação

Subversion Repositório de versões. Criação de branches (linhas de
codificação) para permitir o trabalho simultâneo dos diversos
parceiros e posterior integração [8].

Kdiff3 Checar se ocorre sobreposição entre o código entregue pelos
parceiros. Permite comparar diretamente três fontes de dados
[9].

Ant/ make Automação de tarefas envolvendo o produto do software e os
espaços de trabalho (workspace) [10]/[11]:

Geração de builds

Empacotamento de componentes

Instrumentação de código para profiling (análise
dinâmica)

Invocação das ferramentas para a análise estática do
código

Check Infra-estrutura C para execução de testes automatizados
escritos na mesma linguagem [12].

Checkstyle Análise de padrões de codificação. Detecção de práticas
perigoras (anti-patterns) [13].

CCCC Métricas de código: tamanho de módulos e funções em NCSS

219

(non-commented source statement), complexidade ciclomática
por função. Suporte à C/C++ [14].

JavaNCSS Análogo ao CCCC, só que para Java [15].

Simian Analisador estático de redundância no código. Suporta
múltiplas linguagens: C/C++, Java, C#, entre outras [16].

RPM/ JAR Padrões para empacotamento de componentes e produtos de
software [17]/[18].

Unix tools grep, sed, find, bash scripts, etc.

220

7 Referências

[1] Osterweil, L., Software Processes are Software Too, ACM, 1987.
[2] Coplien, J., Harrison N., Organizational Patterns for Agile Software
 Development, Prentice Hall, 2004.
[3] Berczuk, S., Appleton, B., Software Configuration Management Patterns,

Addison-Wesley, 2002.
[4] Bass, L., Kazman, R., Clements, P., Software Architecture In Practice, SEI
 Series in Software Engineering, 2002
[5] McConnel, S., Rapid Development, Microsoft Press, 1996
[6] Fowler, M., Continuous Integration,

http://www.martinfowler.com/articles/continuousIntegration.html, última visita
 em [09/07/2005].
[7] Gabriel, R., Software Patterns, Oxford Press, 1996
[8] Subversion, http://subversion.tigris.org/, última visita em [10/07/2005].
[9] Kdiff3, http://kdiff3.sourceforge.net/, última visita em [10/07/2005].
[10] Apache Ant, http://ant.apache.org/, última visita em [10/07/2005].
[11] GNU make, http://directory.fsf.org/make.html, última visita em [10/07/2005].
[12] Check, http://check.sourceforge.net/, última visita em [10/07/2005].
[13] Checkstyle, http://checkstyle.sourceforge.net/, última visita em [10/07/2005].
[14] CCCC, http://cccc.sourceforge.net/, última visita em [10/06/2005].
[15] JavaNCSS, http://www.kclee.de/clemens/java/javancss/, última visita em
 [10/06/2005].
[16] Simian, http://www.redhillconsulting.com.au/products/simian/, última visita em
 [10/06/2005].
[17] RPM, http://www.rpm.org/, última visita em [10/06/2005].
[18] JAR, http://java.sun.com/j2se/1.5.0/docs/guide/jar/, última visita em
 [10/06/2005].
[19] Göhner, P. (2003). Lecture notes of Software Engineering for Real-Time

Systems. IAS, Stuttgart.

221

Extending Patterns with Testing Implementation ∗

Maria Istela Cagnin†1, Rosana T. V. Braga1, Fernão S. Germano1,
Alessandra Chan‡1, José Carlos Maldonado1

1Laboratório de Engenharia de Software

Instituto de Ciências Matemáticas e de Computação

Universidade de São Paulo

Av. do Trabalhador São-Carlense, 400 – 13560-970 São Carlos, SP

{istela, rtvb, fernao, alechan, jcmaldon}@icmc.usp.br

Abstract. VV&T activities are a present concern in the context of patterns, as
patterns are used for software development, maintenance, and reengineering,
and VV&T is necessary to assure the quality both of the solutions and of the de-
livered products. Although VV&T activities are important, they are not always
performed as they should be, due to the associated time and cost. In this context,
this paper proposes a strategy that allocated test resources to software patterns.
This allows reusing not only solutions in a certain context, but also the cor-
responding test resources needed to validate applications. Reengineering case
studies were conducted with the support of a pattern language, through which it
has been possible to observe, although without statistical significance, a mean-
ingful reduction of the time spent with VV&T activities when test resources are
allocated to patterns.

1. Introduction
Software patterns are being widely used to enhance productivity. Besides providing so-

lutions to recurring problems, they embed knowledge and the experience of experts in a

domain. Software patterns are used at several abstraction levels: analysis patterns (Coad,

1992; Coad et al., 1997; Larman, 2004), design patterns (Gamma et al., 1995; Larman,

2004), architectural patterns (Beck and Johnson, 1994; Buschmann et al., 1996), testing

patterns (Binder, 1999; DeLano and Rising, 1998), reverse engineering patterns (Demeyer

et al., 2000), reengineering patterns (Stevens and Pooley, 1998; Recchia, 2002; Lemos,

2002), among others.

More specifically, testing patterns provide general guidelines and procedures to

help testers during product quality assessment, but do not capture the expert solution nor

the specific validation aspects of the applications. A good solution should have the corre-

sponding validation captured in the pattern. This allows the reuse of VV&T (Verification,

Validation and Test) information, in addition to the reuse of the solutions.

Several authors (Sommerville, 2000; Harrold, 2000; Pressman, 2001; Rocha et al.,

2001) comment on the importance of testing activities, although they point out that these

activities are not always practiced due to the associated time and cost. Testing resources,

ready to be used, allocated to software patterns, will ease the execution of testing activities

∗Copyright c© 2005, Maria Istela Cagnin and Rosana T. V. Braga and Fernão S. Germano and Alessandra

Chan and José Carlos Maldonado. Permission is granted to copy for the SugarLoafPLoP 2005 conference.

All other rights reserved.
†Financial support from FAPESP #00/10881-4.
‡Financial support from CNPq.

222

and, consequently, will make it possible to enhance the quality of delivered products.

Moreover, this can stimulate the execution of tests before coding, in the context of agile

methods (Beck et al., 2001). This way of performing testing activities is called eXtreme

Testing (XT) by Myers (2004) and Test-Driven Development (TDD) by Beck (2002).

The latter is also known as Test-First Development (Larman, 2004). Test creation before

coding requires understanding the specification and the reduction of ambiguity before

coding begins.

This paper proposes considering VV&T activities in any type of software pattern

definition. For that, it proposes a strategy that allocates test resources (requirements,

test cases and other produced documents) to software patterns, through the inclusion of

a new pattern section. As patterns can be used in software development, maintenance,

and reengineering, and testing activities are included in the quality assessment of any

product delivered to users (Rocha et al., 2001), patterns should be concerned with VV&T

activities.

Two reengineering case studies were conducted with the support of an agile

reengineering process, called PARFAIT 1 (Cagnin et al., 2003b), that uses the GREN

framework (Braga and Masiero, 2002), which was built based on the GRN pattern lan-

guage (Braga et al., 1999) and belongs to the business resource management domain. In

one of the case studies a pattern language with allocated test requirements was used, and

it was possible to observe the reduction of both time and effort during software reengi-

neering. That is due to the fact that a large percentage of the test cases were based on the

reuse of the test requirements available in the patterns definition.

This paper is organized as follows: in Section 2 related work in the context of this

paper is presented. In Section 3 a strategy that allocates test resources to software patterns

is described. In Section 4 we describe an experience using the proposed strategy in the

patterns of the GRN pattern language, generating a specific strategy. In Section 5 the

results of two reengineering case studies are presented to compare the advantage of the

proposed strategy. In Section 6 conclusions are presented and future work is discussed.

2. Related Work

Tsai et al. (1999) discuss tests in design patterns in object oriented frameworks. They

present a technique, called Message Framework Sequence Specifications (MfSS), to sup-

port template scenario generation used to create types of test scenarios, such as partition

test scenarios and random test scenarios. These scenarios support the test of applica-

tions generated from object oriented frameworks that use extensible design patterns, i.e.,

patterns that allow the addition of new classes and methods to the framework at compila-

tion or runtime. MfSS is an extension of the techniques Method Sequence Specifications
(MtSS), and Message Sequence Specifications (MgSS), which specify the message inter-

action among objects of object oriented applications, through regular expressions.

Weyuker (1998) argues that it is important to make available, with software com-

ponents and their specification, the test cases and the parts of the component that are

exercised with these test cases. The reason is that components need to be tested in each

new environment as they interact with other components. However, Mariani et al. (2004)

observe that components are being used in ways not anticipated by their developers, mak-

ing their specifications invalid, as well as their available test sets. Mariani et al. (2004)

1PARFAIT - from the Portuguese ”Processo Ágil de Reengenharia baseado em FrAmework no domı́nio

de sistemas de Informação com técnicas VV&T”, which means: An Agile Reengineering Process based on

an Information System Domain Framework using VV&T Activities.

223

propose an approach for implementing self-testing components, which allows integration

test specifications and suites to be developed by observing both the behavior of the com-

ponent and of the entire system. Self-testing components can self-verify their behavior in

the new context and, thus, in principle, can be reused without any a-priori limitation, so

they are provided with a set of associated test cases that are executed at system deploy-

ment time.

Tevanlinna et al. (2004) present several testing approaches applied in the context

of product families. (Clements and Northrop, 2001). In one of them, called reusable asset
instantiation (McGregor, 2001) apud (Tevanlinna et al., 2004), the test assets are created

as extensively as possible in domain engineering, anticipating variabilities by creating, for

example, document templates and abstract test cases. In application engineering, a full

testing process according to the levels of the V-model 2 (Germany Ministry of Defense,

1992) (acceptance test, system test, integration test and unit test) is instantiated. The

concrete test assets are used as is, and the abstract assets are extended or refined to test

the product-specific aspects in application engineering (McGregor, 2001). Product family

testing differs from traditional testing in the reuse not only of resources related to the

architecture and components, but also testing resources. It is important to distinguish

between testing resources that belong to the domain and those that belong specifically to

the product. However, the literature lacks testing methods specific to product families,

which should focus primarily on unit and integration test.

As mentioned in the previous section, test resources allocated to patterns and com-

ponents, product families, and frameworks can support the practice of Test-Driven Devel-
opment. Larman (2004) mentions several advantages of this practice, among which are:

the unit tests actually get written: unit test writing is not often done if it is left as for

later; provable, repeatable, automated verification: having hundreds or thousands of

unit tests built in a test tool, during weeks, allows meaningful verification of system cor-

rectness; and the confidence to change things: if a change was made to the system, the

unit test set for the modified classes needs to be executed to know if the change caused

any errors.

3. Patterns with Testing
The strategy proposed in this paper allocates test resources to software patterns. This

strategy was motivated by the importance of easing the application of VV&T activities

in the production of software based on patterns, as mentioned in Section 1. The steps

of the proposed strategy are presented in Table 1. In the specific case of analysis and

design patterns, each element that participates in the pattern is equivalent to the classes

that compose the structure of such patterns.

In step Define types of requirements it is necessary to identify the requirement

types, according to the software aspects that should be considered by the tests, as they are

important to system verification and validation. This depends on the domain and on the

context for the pattern. For example, analysis patterns in the domain of business resource

management require tests related to consistency, integrity, and business rules. In this

case, integrity should be considered because a large volume of data is supplied by users,

and input errors in these data should be avoided. Consistency should be considered be-

cause data needs to be physically stored, for example using a relational or object-oriented

database, so it is necessary to guarantee that the data will be retrieved successfully later

on. Business rules should also be considered so that the system correctly satisfies or-

ganization business rules. Another example of a requirement type is for reengineering

2V-model of software testing that is the traditional way to model testing.

224

Table 1: Steps of the strategy for aggregating test resources to software patterns

– Given a software pattern

• Define types of requirements

• Select existing test criteria

• For each type of requirement defined and common to most pattern elements

– Create test requirements based on the selected test criteria

• For each pattern element

– For each test requirement type defined and specific to the pattern element

∗ Create test requirements based on the selected test criteria

– Classify and document each test requirement created

– Derive test cases

– Map common test cases

– Make the test resources available

patterns, where it is relevant to worry about tests that ensure functional compatibility with

the legacy system. For design patterns, it should be important to test, for example, system

flexibility.

In step Select existing test criteria, it is necessary to decide which existing test

criteria will be used. A test criterion aims at selecting and evaluating test cases to in-

crease the chances of revealing defects or, when this does not occur, to establish a high

confidence level in product correctness (Rocha et al., 2001).

Each test criterion contributes a set of specific test cases, but any one of them offers

a complete set. Thus, test strategies need to be established, containing both functional and

structural criteria, so that it is possible to achieve a complete test set. According to Myers

(2004) and Roper (1994), functional and structural test criteria should be used together so

that one complements the other.

Initially, the type of criterion to be used has to be studied. Functional test criteria

should be selected when the product specification is considered to derive the test require-

ments, for example, when the pattern is an analysis pattern. On the other hand, when

product implementation is considered, structural test criteria can be selected, for example

when the pattern is a design or implementation pattern. After selecting the type of criteria,

observe the goals, cost, efficiency and strength 3 of the criteria belonging to the selected

type, so that they can be correctly chosen.

Functional test criteria “equivalence partitioning” and “boundary value analysis”

were used in the experience of allocating tests to analysis patterns (see next Section), as

they are the most common in the literature. The “equivalence partitioning” criterion di-

vides the input domain of a program into a finite number of equivalence classes (both

valid and invalid), and derives test cases from these classes. This criterion aims at mini-

mizing the number of test cases, by selecting at most one test case for each equivalence

class, as, in principle, all elements of a class should behave in an equivalent way (Rocha

et al., 2001). In other words, if a test case for a given equivalent class reveals an error, any

3or satisfaction difficulty, which refers to the difficulty of satisfying the criteria after having already

satisfied another (Rocha et al., 2001).

225

other test case of this class should reveal the same error (Myers, 2004). The functional test

criterion “boundary value analysis” complements the “equivalence partitioning” criterion

and is concerned with creating test cases that consider values directly below or above the

bounds of equivalent classes. According to Myers (2004), test cases that explore boundary

conditions are more worthwhile than those that do not.

In step Create test requirements based on the selected test criteria test require-

ments for the types defined are created, based on the guidelines of each selected test

criterion. Each test requirement should be classified and documented (step Classify and
document each test requirement created). The test requirement classification is related

to “when” the test should be executed. For example, in analysis patterns of the business

resource domain, the execution of a test is done during the data manipulation operations

(i.e., insertion, modification, deletion, and search). In design patterns, the test execution

can be done before (in the design models that are built) or after the system implementa-

tion (in the source code that is created). The documentation should supply the information

needed to support the next step (Derive Test Cases), considering the test requirements’

specification and valid conditions.

In step Map common test cases, the test cases that are common to most pattern

elements are mapped to the patterns that should use them, to encourage reuse. The map-

ping documentation should contain the following information: pattern name, pattern
class, test case number, and previous validations.

In step Make the test resources available, both test requirements and test cases

are included in the pattern documentation, with the introduction of a new section called

VV&T Information. In this section, the test criteria used in the test resources creation

should be mentioned. In the case of pattern languages, systems of patterns or any other

types of pattern collections, test resources that can be used by all patterns should be placed

in a general VV&T Information section that could be shared by all of them, while the test

resources that are specific to each individual pattern and the test cases mapped in step

Map common test cases are placed in its own VV&T Information section. For example,

in the GRN pattern language, the test resources relative to business rules together with

the mapping done in step Map common test cases are placed in the VV&T Information
sections corresponding to the patterns to which they belong, while the test resources corre-

sponding to consistency and integrity are placed on a general VV&T Information section,

because they are applicable to all patterns.

4. Analysis Patterns with Testing: An Experience

The strategy presented in the previous section to allocate test resources to software pat-

terns was used in several analysis patterns that compose the GRN pattern language, for

the business resource management domain (Braga et al., 1999). GRN has fifteen analysis

patterns, some of which are applications or extensions of existing patterns in the literature.

Figure 1 presents GRN patterns, the dependencies among them, and the order in

which they can be applied. This pattern language has three main patterns: RENT THE

RESOURCE (4), TRADE THE RESOURCE (6), and MAINTAIN THE RESOURCE

(9). The application of each of these patterns and, consequently, of the patterns associated

with them, is done according to the goal of the application being modeled. Their use is

not mutually exclusive, as there are applications in which they can be used in parallel (for

example, in a car repair shop that also sells and buys parts, in addition to repairing cars).

According to Figure 1, the patterns are categorized in three groups, depending on

their goal. Group 1 (Identification of the Business Resource) has three patterns, (1),
226

(2) and (3), which are concerned with the identification and possible qualification, quan-

tification and storage of the resources managed by the organization. Group 2 (Business
Transactions), has seven patterns, (4) to (10), which are concerned with the operations

performed with the resources by the application. Group 3 (Business Transaction De-
tails) contains five patterns, (11) to (15), which are concerned with the details of the

transactions performed with the resource.

Initially, during the execution of step Define types of requirements of the strat-

egy, three types of test requirements were identified: consistency, integrity, and business.

QUANTIFY THE RESOURCE (2)

RESERVE THE

RESOURCE (5)

RENT THE RESOURCE (4) TRADE THE RESOURCE (6)

CHECK RESOURCE

DELIVERY (8)

MAINTAIN THE RESOURCE (9)

PAY FOR THE RESOURCE

TRANSACTION (12)
ITEMIZE THE RESOURCE

TRANSACTION (11)

IDENTIFY THE TRANSACTION

EXECUTOR (13)

QUOTE THE

TRADE (7)
QUOTE THE

MAINTENANCE (10)

IDENTIFY MAINTENANCE

TASKS (14)

IDENTIFY MAINTENANCE

PARTS (15)

IDENTIFY THE RESOURCE (1)

Group
2

Business
Transactions

Group
1

Business
Resource

Identification

Group
3

Business
Transaction

Details

STORE THE RESOURCE (3)

Figure 1: Structure of the GRN pattern language (Braga et al., 1999)

The definition of the consistency test requirement was motivated by the impor-

tance of validating the data submitted to the system before they are stored. The definition

of the integrity test requirement was motivated by the importance of correct storage of

the data processed by the information system in a relational database and, mainly, by the

need to ensure the integrity of the stored data, so that they are later correctly retrieved. The

business test requirement has the goal of assessing the correct treatment of the business

rules and ensuring that the system works properly. This requirement is based on specific

business features, and concerns the business functions embedded in the pattern.

As GRN analysis patterns provide knowledge about the domain functionality, in

the form of solutions to analysis problems, rather than source code, only the functional

test criteria were considered during the execution of step Select existing test criteria.

As discussed in the previous section, the “equivalence partitioning” and “boundary value

analysis” criteria (Myers, 2004) were selected, in addition to the ideas behind the “Input

Validation Test” technique 4 (Hayes and Offutt, 1999).

4the “Input Validation Test” technique identifies test data that try to show the presence or lack of specific

227

Table 2 presents the steps of a strategy to allocate test resources to GRN patterns,

based on the strategy proposed in Section 3. Most steps were maintained as a one to

one relationship, except by step Create test requirements based on the selected test
criteria, which was split into three steps (Create consistency test requirements, Create

integrity test requirements and Create business test requirements).

Table 2: Strategy to allocate test resources to GRN patterns

– Define types of requirements

– Select existing test criteria

– Create consistency test requirements

– Create integrity test requirements

– For each GRN pattern

• For each pattern class

– Create business test requirements

– Classify and document each of the test requirements

– Derive test cases

– Map common test cases

– Make the test resources available

Consistency and integrity test requirements that are common to most GRN pat-

tern classes (step Create consistency test requirements and step Create integrity test
requirements) were defined based on the equivalence classes created by applying the se-

lected functional test criteria. The documentation of the equivalence classes was adapted

from the one suggested by (Myers, 2004) and is presented in Table 3.

Table 3: Global Equivalence Classes
Operation Requirement Type Valid Classes Invalid Classes
Include, Modify,

Delete

consistency checking integer attribute (1) non integer attribute(2)

Include, Modify,

Delete

consistency checking attribute value between 1

and 2147483647 (3)
attribute value < 1 (4)

value > 2147483647 (5)
Include, Modify,

Delete

consistency checking attribute value between 0

and 2147483647 (6)
attribute value < 0 (7)

Include, Modify,

Delete

consistency and in-

tegrity checking

filled attribute value (8) empty attribute value (9)

Include, Modify consistency checking alphanumeric attribute

value(10)
non-alphanumeric

attribute value (11)
.

Include, Modify integrity checking attribute is foreign key

registered as a primary

key in the associated ta-

ble (47)

attribute is foreign key

and is not registered as a

primary key in the asso-

ciated table (48)
Delete integrity checking attribute without pend-

ing relationships (it is

not a foreign key) (49)

attribute with pending

relationships (50)

To create the global consistency equivalence classes, both valid and invalid

equivalence classes have to be considered for each primitive data type (integer,

faults, concerning “input tolerance” (i.e. verifies the system ability to adequately processing input values,

both expected or non-expected).

228

float, string and date); as well as for other data types (for example, vector,

enumeration, multivalue, etc), which are used by the analysis pattern language.

For attributes whose type is different from the primitive ones, it is necessary to check the

possible valid and invalid equivalence classes, which can be abstracted from the sugges-

tions established in (Cagnin et al., 2004) for the types integer, float, string, and

date, and others can be created to consider specific characteristics of the attribute type.

To create the global integrity equivalence classes, both valid and invalid equiva-

lence classes should be created for each integrity rule of the relational database. In this

work, the integrity rules are limited to primary and foreign keys of relational databases,

so other features such as triggers and stored procedures are not considered.

In step Create business test requirements valid and invalid equivalence classes

are created from specific business functions embedded in the patterns of the analysis pat-

tern language (business rules of the domain for which the analysis pattern languages be-

longs), taking into account its conditions. For example, in a rental, the resource can only

be rented if it is available at the moment. The documentation of the equivalence classes

for the business test requirement was also adapted from that proposed by (Myers, 2004)

and contains additional information compared to the one presented in Table 3: the pat-
tern class to which the requirement belongs, the corresponding table in the RDBMS, the

attribute of the pattern class that is involved in the business rule and a comment about

when the test requirement should be considered, if necessary. In Table 4 an example is

given to illustrate the documentation of the equivalence class for this type of requirement.

Table 4: Equivalence Class for the business test requirement of the “RENT THE
RESOURCE” class

Operation Pattern
Class

Corresponding
Table

Attribute Valid Classes Invalid Classes Comment

Include Rent the

Resource

ResourceRental situation

of the

resource

instance

situation of the

resource instance

is ”available”

(51)

situation of the

resource instance

is ”unavailable”

(52)

Requirement

should be consid-

ered only if the

“Itemize the Re-

source Transaction”

pattern was not

used and if the

“Instantiable Re-

source” sub-pattern

was used.

. .

Notice that the creation of the test requirements , in addition to being based on

the valid and invalid equivalence classes, are also based on the “boundary value analysis”

criterion, by observing the bounds immediately above and below each equivalence class.

In step Create business test requirements, business test requirements were created for

each participating class of each pattern of the GRN pattern language.

All the requirements defined for GRN are classified in step Classify and docu-
ment each test requirement created, according to the data manipulation operation (in-

clude, modify, delete or search) done in the relational database. This occurs because

GRN was used as basis for the construction of the GREN framework (Braga and Masiero,

2002), using MySQL (MySQL, 2003) RDBMS, which is a relational database.

Another activity of step Classify and document each test requirement created
is to document all the requirement types created. To support that, Cagnin et al. (2004)

suggests that the documentation be presented in a tabular format. The documentation

of the test requirements that are common to most patterns should contain the following

information: test requirement number; test requirement type (e.g, integrity, persistence,

or business); type of data manipulation operation treated by the test requirement (e.g.,
229

include, modify, delete, or search); equivalence classes numbers used to create the test

requirement; test requirement specification, describing what should be considered by

the input data of the test case to be instantiated in Derive test cases; valid condition to be

considered when analyzing the input data and establishing the expected return; previous
validation, i.e., test requirements that are considered as pre-condition of the test require-

ment being documented; comment, which contains some relevant information regarding

the test requirement; and expected return. A portion of the test requirements documen-

tation that is common to most GRN patterns, created from the global equivalence classes

illustrated in Table 3, is shown in Table 5.

Table 5: Partial Documentation for the consistency and integrity test require-
ments of GRN patterns

Test
Req
Num-
ber

Type Operation Equiv
Classes

Test Req
Spec

Valid Condi-
tions

Previous
valida-
tion

Comment Expected Return

TR01 Consist. Include,

Modify,

Delete,

Search

2 non integer

attribute

integer at-

tribute

– – consistency ver-

ification error,

operation cannot

proceed

TR02 Consist. Include,

Modify,

Delete,

Search

1,4,8 attribute == 0 attribute has an

integer value

(greater than 0

and less than

2147483648)

– – consistency ver-

ification error,

operation cannot

proceed

TR03 Consist. Include,

Modify,

Delete,

Search

1,3,8 attribute == 1 attribute has an

integer value

(greater than 0

and less than

2147483648)

– – well succeeded ver-

ification, operation

can proceed

TR04 Consist. Include,

Modify,

Delete,

Search

1,3,8 attribute ==

2147483647

attribute has an

integer value

(greater than 0

and less than

2147483648)

– – well succeeded ver-

ification, operation

can proceed

TR05 Consist. Include,

Modify,

Delete,

Search

2,5,8 attribute >
2147483647

attribute has an

integer value

(greater than 0

and less than

2147483648)

– – consistency ver-

ification error,

operation cannot

proceed

TR06 Consist. Include,

Modify,

Delete,

Search

1,4,8 attribute < 1 attribute has an

integer value

(greater than 0

and less than

2147483648)

– – consistency ver-

ification error,

operation cannot

proceed

TR07 Consist. Include,

Modify,

Delete,

Search

9 empty at-

tribute

attribute is not

empty

– – consistency ver-

ification error,

operation cannot

proceed

. .

TR08 Integr. Include 44 register is

logged

register is not

logged

TR01 to

TR07

– integrity verifica-

tion error, operation

cannot proceed

TR09 Integr. Modify,

Delete,

Search

46 register is not

logged

register is

logged

TR01 to

TR07

– integrity verifica-

tion error, operation

cannot proceed

. .

To document the business test requirements that are specific to each class of

the GRN patterns, the following information is added: pattern name; class name and

RDBMS table. A portion of the documentation for the business test requirement of GRN

pattern 4 (RENT THE RESOURCE) is presented in Table 6.

Guidelines to support the consistency (step Create consistency test require-
ments) and integrity (step Create integrity test requirements) test requirements cre-

ation, and to ease the test requirements classification (step Classify and document each
of the test requirements) are described in (Cagnin et al., 2004).

230

In step Derive and document test cases, test cases are derived from the defined

requirements. One test requirement can generate more than one test case, for example,

TC7 and TC8 test cases of Table 8. We suggest the tabular format for the test cases doc-

umentation. The documentation of each test case derived from the test requirements that

are common to the majority of the patterns should contain the following information: test
case number; test requirement number (obtained from the test requirement documen-

tation); operation type (obtained from the test requirement documentation); previous
validations, i.e., number of test cases that should be considered as pre-condition; input
data (specifies the value that should be used as input data for the test); and expected
output (specifies the test expected value relative to the input data). It can be noticed

that some information of the test requirement documentation is repeated to ease the test

case readability. In Table 8 a snippet of the test case documentation is presented, which

was derived from the test requirements presented in Table 5 (that table presented those

requirements that are common to most GRN patterns).

To document the test cases derived from the business test requirements, the fol-

lowing information should be added: pattern name (obtained from the test requirement

name) and class name (obtained from the test requirement documentation). In Table 7,

an example of the business test cases documentation for GRN pattern 4 (RENT THE

RESOURCE) is presented. They were derived from the test requirements presented in

Table 6.

In step Map common test cases, a mapping is done between the pattern specific

attributes and the test cases that are common to all patterns. For that, it is necessary to

know, for each pattern attribute, its type and possible length, whether or not this attribute

is a primary key in the corresponding relational database table, and its relationships with

other classes that participate of the pattern (as these are mapped to foreign keys in the

relational database). Then, from the test requirements documentation, test cases derived

from this requirement are obtained. For example, in the specific case of the number
attribute (Resource Rental class of RENT THE RESOURCE pattern), which is an

integer and primary key, we can reuse the test cases shown in Table 8, from the test

requirements shown in Table 5.

Table 9 shows an example that illustrates the mapping between the test cases and

the number attribute of the Resource Rental class (pattern 4 - RENT THE RE-

SOURCE). In this specific case, two columns were added: RDBMS table and attribute,

corresponding to the table and the attribute being validated.

In step Make test resources available, the documentation of the business test

resources is placed in a new pattern section, named VV&T Information. For example, the

equivalence classes presented in Table 4, the test requirements presented in Table 6, the

test cases presented in Table 7 and the mapping presented in Table 9 are made available.

The documentation of the consistency and integrity test resources, which are ap-

plicable to all patterns, is made available at the end of GRN patterns, in a new section,

also named VV&T Information (Tables 3, 5 and 8). In both sections, the functional crite-

ria used to create the test resources (i.e., “equivalence partitioning” and “boundary value

analysis”) should be mentioned.

231

Ta
bl

e
6:

P
ar

tia
lD

oc
um

en
ta

tio
n

of
th

e
bu

si
ne

ss
te

st
re

qu
ir

em
en

ts
fo

r
th

e
“R

es
ou

rc
e

R
en

ta
l”

cl
as

s
of

G
R

N
pa

tt
er

n
4

Te
st

R
eq

N
um

be
r

Ty
pe

Pa
tt

er
n

Pa
tt

er
n

C
la

ss
O

pe
ra

tio
n

R
D

B
Ta

bl
e

E
qu

iv
C

la
ss

es
Te

st
R

eq
E

s-
pe

c
Va

lid
C

on
di

-
tio

ns
Pr

ev
io

us
Va

li-
da

tio
ns

C
om

m
en

t
E

xp
ec

te
d

R
et

ur
n

T
R

1
0

B
u

si
n

es
s

P
at

te
rn

4
:

R
en

t
th

e

R
es

o
u

rc
e

R
es

o
u

rc
e

R
en

ta
l

In
cl

u
d

e,

M
o

d
if

y

R
es

o
u

rc
e

R
en

ta
l

5
1

re
so

u
rc

e

in
st

an
ce

si
tu

at
io

n
=

=

“a
v
ai

la
b

le
”

re
so

u
rc

e
si

tu
a-

ti
o

n
=

=
“a

v
ai

l-

ab
le

”

al
l

te
st

re
q

u
ir

e-

m
en

ts
th

at
ar

e

u
se

fu
l

to
m

ak
e

th
e

co
n

si
st

en
cy

o
f

th
e

at
tr

ib
u

te
s

o
f

th
e

R
es

o
u

ce

R
en

ta
l

cl
as

s

–
w

el
l

su
cc

ee
d

ed
v
er

-

ifi
ca

ti
o

n
,

o
p

er
at

io
n

ca
n

p
ro

ce
ed

T
R

1
1

B
u

si
n

es
s

P
at

te
rn

4
:

R
en

t
th

e

R
es

o
u

rc
e

R
es

o
u

rc
e

R
en

ta
l

In
cl

u
d

e,

M
o

d
if

y

R
es

o
u

rc
e

R
en

ta
l

5
2

re
so

u
rc

e

in
st

an
ce

si
tu

at
io

n
=

=

“r
en

te
d

”

re
so

u
rc

e
si

tu
a-

ti
o

n
=

=
“a

v
ai

l-

ab
le

”

al
l

te
st

re
q

u
ir

e-

m
en

ts
th

at
ar

e

u
se

fu
l

to
m

ak
e

th
e

co
n

si
st

en
cy

o
f

th
e

at
tr

ib
u

te
s

o
f

th
e

R
es

o
u

ce

R
en

ta
l

cl
as

s

–
b
u

si
n

es
s

fu
n

ct
io

n
al

-

it
y

v
er

ifi
ca

ti
o

n
er

-

ro
r,

o
p

er
at

io
n

ca
n

-

n
o

t
p

ro
ce

ed

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

Ta
bl

e
7:

B
us

in
es

s
Te

st
C

as
es

fo
r

th
e

“R
en

tt
he

R
es

ou
rc

e”
G

R
N

pa
tt

er
n

Te
st

C
as

e
N

um
be

r
Te

st
R

eq
N

um
be

r
O

pe
ra

tio
n

Pa
tt

er
n

Pa
tt

er
n

C
la

ss
Pr

ev
io

us
Va

lid
at

io
ns

In
pu

tD
at

a
E

xp
ec

te
d

O
ut

pu
t

T
C

1
2

T
R

1
0

In
cl

u
d

e,
M

o
d

if
y

P
at

te
rn

4
:

R
en

t
th

e

R
es

o
u

rc
e

R
es

o
u

rc
e

R
en

ta
l

al
l

te
st

ca
se

s
th

at
ar

e

u
se

fu
l

to
en

su
re

th
e

co
n

si
st

en
cy

o
f

th
e

at
-

tr
ib

u
te

s
o

f
th

e
R

e-

so
u

rc
e

R
en

ta
l

cl
as

s

si
tu

at
io

n
:=

“1
”

(t
h

is

m
ea

n
s,

to
th

e
G

R
E

N

fr
am

ew
o

rk
,

th
at

th
e

re
so

u
rc

e
is

av
ai

la
b

le
)

w
el

l
su

cc
ee

d
ed

b
u

si
n

es
s

fu
n

c-

ti
o

n
al

it
y

v
er

ifi
ca

ti
o

n
,

o
p

er
at

io
n

ca
n

p
ro

ce
ed

T
C

1
3

T
R

1
1

In
cl

u
d

e,
M

o
d

if
y

P
at

te
rn

4
:

R
en

t
th

e

R
es

o
u

rc
e

R
es

o
u

rc
e

R
en

ta
l

al
l

te
st

ca
se

s
th

at
ar

e

u
se

fu
l

to
m

ak
e

th
e

co
n

si
st

en
cy

o
f

th
e

at
-

tr
ib

u
te

s
o

f
th

e
R

e-

so
u

ce
R

en
ta

l
cl

as
s

si
tu

at
io

n
:=

“2
”

(t
h

is

m
ea

n
s,

to
th

e
G

R
E

N

fr
am

ew
o

rk
,

th
at

th
e

re
so

u
rc

e
is

re
n

te
d

)

b
u

si
n

es
s

fu
n

ct
io

n
al

it
y

v
er

ifi
ca

-

ti
o

n
er

ro
r,

o
p

er
at

io
n

ca
n

n
o

t
p

ro
-

ce
ed

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

232

Table 8: Consistency and Integrity test cases for GRN patterns
Test
case
number

Test
Req
number

Operation Previous Vali-
dations

Input Data Expected Output

TC01 TR01 Include, Modify,

Delete, Search

– attribute := “A” consistency verification error, op-

eration cannot proceed

TC02 TR02 Include, Modify,

Delete, Search

– attribute := 0 consistency verification error, op-

eration cannot proceed

TC3 TR03 Include, Modify,

Delete, Search

– attribute := 1 well succeeded verification, oper-

ation can proceed

TC4 TR04 Include, Modify,

Delete, Search

– attribute :=

2147483647

well succeeded verification, oper-

ation can proceed

TC5 TR04 Include, Modify,

Delete, Search

– attribute :=

2147483646

well succeeded verification, oper-

ation can proceed

TC6 TR05 Include, Modify,

Delete, Search

– attribute :=

2147483648

verification error, operation can-

not proceed

TC7 TR06 Include, Modify,

Delete, Search

– attribute := -1 verification error, operation can-

not proceed

TC8 TR06 Include, Modify,

Delete, Search

– attribute := 0 verification error, operation can-

not proceed

TC9 TR07 Include, Modify,

Delete, Search

– attribute := null verification error, operation can-

not proceed

TC10 TR08 Include TC01 to TC09 attribute := 1 (already

registered)

integrity verification error, opera-

tion cannot proceed

TC11 TR09 Modify, Delete,

Search

TC01 to TC09 attribute := 2 (not reg-

istered)

integrity verification error, opera-

tion cannot proceed

.

Table 9: Test Cases Mapping
Pattern Pattern Class RDBMS Table Attribute Test Case

number
Previous
Validations

Pattern 4: Rent the Re-

source

Resource Rental ResourceRental number TC1 to TC11 –

Pattern 4: Rent the Re-

source

Resource Rental ResourceRental observation ... TC1 to TC9

.

To reuse the test resources, the reuse guidelines proposed in (Cagnin et al., 2004)

should be used. Basically, they consist of mapping the system functionality to the asso-

ciated GRN patterns and reusing the test resources available, both the specific ones and

those that are common to several patterns. For system functionality that doesn’t corre-

spond to GRN patterns, it is also possible to reuse, maybe after some adaptation, the test

resources that are common to all patterns. Furthermore, guidelines are provided to test

the correct use of the pattern language as a whole, as several issues need to be checked,

such as: whether the pattern sequence was used correctly, according to the GRN struc-

ture (Figure 1) and the following patterns section; whether the mandatory classes of the

pattern were considered, according to the pattern sections structure, participants and vari-
ants; and, when the usage of one pattern requires the application of other patterns, if they

were correctly used. We suggest that all these guidelines are applied incrementally for

each system functional requirement.

5. Case Study
Two reengineering case studies were conducted with the support of the PARFAIT process

(Cagnin et al., 2003b). This process uses the GREN framework for computational support.

As GREN was built based on the GRN pattern language, all classes and relationships

contained in each GRN pattern have a corresponding implementation within the GREN

classes. Variants of each pattern were implemented as framework hot spots 5.

5hot spots are framework abstract classes or methods that must be overridden in the specific application

during framework instantiation (Markiewicz and Lucena, 2001).

233

As GRN belongs to the same domain of the legacy system, it is used to support

its understanding and to build its class diagram. Patterns and variants applied in the

construction of the class diagram are used in the GREN framework instantiation. Users

of the legacy system should participate in the reengineering to refine and validate the

resulting artifacts.

In PARFAIT, the legacy system understanding and the identification of the busi-

ness rules are also obtained by executing the system functions, which is done in a system-

atic way with the support of VV&T activities. Test cases executed in the legacy system

are used later to validate the target system.

The legacy system submitted to reengineering in the case studies is a small sys-

tem (with approximately 6 KLOC) to control book loans in a University library. It was

developed in Clipper and was operative during the case studies conduction.

The first case study was done by an undergraduate student in the fourth year of a

Computing Science course at ICMC-USP. The test cases used to execute the legacy system

and, afterwards, to validate the target system, were created from scratch with the support

of functional test criteria, namely the “equivalence partitioning” and the “boundary value

analysis”, totalizing 174 equivalence classes and 354 test cases. This was done in about

549:00 hours from a total of 676:29 hours spent on the reengineering, i.e., approximately

81% of the reengineering effort was spent with VV&T activities. More information about

this case study can be found elsewhere (Cagnin et al., 2003a).

The second case study was conducted by an undergraduate student of the second

semester of a Computing Science course at ICMC-USP. In this case, the test cases used

to execute the legacy system and, afterwards, to validate the target system, were reused,

whenever possible, from the VV&T Information sections of the GRN patterns used to

model the legacy system. The creation of most test cases was totally reused, as presented

in Table 10. This consumed 238:10 hours from a total of 323:40 hours spent in the case

study, i.e., approximately 74% of the reengineering effort was spent to create test cases.

The time spent with VV&T activities (i.e., time spent with test creation and execution)

had a reduction of about 57%, compared with the first case study, and the percentage in

relation to the total reengineering time suffered meaningful reduction of about 52%. More

information about the conduction of this case study can be found in (Cagnin, 2005).

Table 10: Data about VV&T activities collect in the second reengineering case
study

Data collected Value Percentage
Test cases created from reused equivalence classes 34 4%

Test cases created from scratch (new equivalence

classes)

43 5%

Test cases created from reused and adapted require-

ments

80 9,4%

Test cases created from reused test requirements 695 81,6%

The results indicate that there is a reduction in the time spent with tests both in

reengineering and in software development when test resources are allocated to patterns

to ease their reuse. However, we should observe that these results are only clues that the

reengineering time is reduced. Controlled experiments should be conducted to verify this

hypothesis.
234

6. Conclusion and Future Work

As mentioned in Section 2, a present concern exists in providing test resources associ-

ated to different reuse paradigms (Tsai et al., 1999; Weyuker, 1998; Mariani et al., 2004;

Tevanlinna et al., 2004), to guarantee the quality and reliability of the products created.

Nevertheless, the authors of this paper did not see any evidence in the literature of work

to capture expert solutions as well as the underlying validation aspects. Another problem

we see is that we frequently cannot assess the quality of a pattern we want to use, be-

cause it does not provide indications of how it was validated, except by the known uses

section, which is often vague. This paper presented a strategy to solve these problems,

by including a section in the pattern documentation to help validate the solution in the

pattern. Existing pattern formats, as for example Gamma et al. (1995), Appleton (1997)

and Meszaros and Doble (1998), do not consider this aspect.

The proposed strategy was used in some patterns of the GRN pattern language that

belongs to the business resource management domain. The test resources were reused

during a reengineering case study and the time spent was compared with another case

study performed, without the reuse of test resources. The results have suggested a reduc-

tion of the time spent with VV&T activities. However, controlled case studies need to be

performed to verify these results.

The proposed strategy was used with only a few GRN patterns, which are analysis

patterns. So, it would be desirable to apply the strategy to other patterns, with different

contexts and in other domains, using other test criteria, so that the strategy can be refined

and generalized. We intend to explore these ideas next in the context of Web applications

development.

References

Appleton, B. (1997). Patterns and software: Essential concepts and ter-

minology. site. http://www.cmcrossroads.com/bradapp/docs/
patterns-intro.html. Accessed: December, 2003.

Beck, K. (2002). Test-driven development: by example. The Addison-Wesley signature

series. Addison-Wesley, first edition.

Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M.,

Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin, R. C.,

Mellor, S., Schwaber, K., Sutherland, J., and Thomas, D. (2001). Manifesto for agile

software development. site. http://www.agilemanifesto.org. Accessed:

June, 2003.

Beck, K. and Johnson, R. (1994). Patterns generate architectures. In ECOOP’1994,
8th European Conference on Object-Oriented Programming, pages 139–149, Bologna,

Italy.

Binder, R. V. (1999). Testing Object-Oriented Systems: Models, Patterns, and Tools.

Addison-Wesley, first edition.

Braga, R. T. V., Germano, F. S. R., and Masiero, P. C. (1999). A pattern language for

business resource management. In PLOP’1999, 6th Conference on Pattern Languages
of Programs, pages 1–33, Urbana, IL, USA.

Braga, R. T. V. and Masiero, P. C. (2002). A process for framework construction based on

a pattern language. In COMPSAC’2002, 26th Annual International Computer Software
and Applications Conference, 26, pages 615–620, Oxford, England. IEEE.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M., Sommerlad, P., and

Stal, M. (1996). Pattern-oriented software architecture: A System of Patterns. Wiley

Series in Software Design Patterns. Wiley, first edition.
235

Cagnin, M. I. (2005). PARFAIT: A Contribution for Software Reengineering based on
Pattern Languagens and Frameworks. PhD thesis, Instituto de Ciências Matemáticas e

de Computação, Universidade of São Paulo, São Carlos–SP. (in Portuguese).

Cagnin, M. I., Maldonado, J. C., Chan, A., Penteado, R. D., and Germano, F. S. (2004).

Reuse on Testing Activity to Reduce Cost and Effort of VV&T in Software Develop-

ment and Reengineering. In XVIII Brazilian Software Engineering Symposium, pages

71–85, Brası́lia-DF, Brazil. (in Portuguese).

Cagnin, M. I., Maldonado, J. C., Germano, F. S., Chan, A., and Penteado, R. D. (2003a).

A reengineering case study using PARFAIT process. In SDMS’2003, Naive Software
Development and Maintenance Symposium, pages 1–10, Rio de Janeiro, RJ. (in Por-

tuguese).

Cagnin, M. I., Maldonado, J. C., Germano, F. S., and Penteado, R. D. (2003b). PAR-

FAIT: Towards a framework-based agile reengineering process. In ADC’2003, Agile
Development Conference, pages 22–31, Salt Lake City, UTHA, USA. IEEE.

Clements, P. and Northrop, L. (2001). Software Product Lines: Practices and Patterns.

SEI Series in Software Engineering. Addison-Wesley.

Coad, P. (1992). Object-oriented patterns. Communications of the ACM, 35(9):152–159.

Coad, P., North, D., and Mayfield, M. (1997). Object models: Strategies, patterns and
applications. Yourdon Press, second edition.

DeLano, D. E. and Rising, L. (1998). Pattern Languages of Program Design 3, volume 1,

chapter Software Design Patterns: Common Questions and Answers, pages 503–525.

Addison-Wesley, first edition.

Demeyer, S., Ducasse, S., and Nierstrasz, O. (2000). A pattern language for reverse

engineering. In EuroPLOP’2000, 5th European Conference on Pattern Languages of
Programming and Computing, pages 189–208, Irsee, Germany. Andreas Ruping.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). Design Patterns Elements of
Reusable of Object-Oriented Software. Addison-Wesley, second edition.

Germany Ministry of Defense (1992). V-Model: Software Lifecycle Process Model.

Technical Report General Reprint No250, Germany Ministry of Defense.

Harrold, M. J. (2000). Testing: a roadmap. In ICSE’2000, 22nd International Confer-
ence on Software Engineering, The Future of Software Engineering, pages 61–72, New

York, NY, USA. ACM Press.

Hayes, J. H. and Offutt, A. J. (1999). Increased software reliability through input valida-

tion analysis and testing. In ISSRE’1999, 10th International Symposium on Software
Reliability Engineering, pages 199–209, Boca Raton, FL, USA.

Larman, C. (2004). Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design and Iterative Development. Prentice Hall, third edition.

Lemos, G. S. (2002). PRE/OO - an object-oriented reengineering process emphasing

quality assurance. M.sc. dissertation, Computer Department. Federal University of São

Carlos, São Carlos-SP, Brazil. 159 p. (in Portuguese).

Mariani, L., Pezzè, M., and Willmor, D. (2004). Generation of selft-test components.

Lecture Notes in Computer Science (LNCS), Springer, 3236(2004):337–350.

Markiewicz, M. and Lucena, C. (2001). Object oriented framework development. ACM
Crossroads Student Magazine. Crossroads 7.4, Summer 2001. http://acm.org/
crossroads/xrds7-4/frameworks.html. Accessed: January/2005.

McGregor, J. D. (2001). Structuring test assets in a product line effort. In Proceedings of
the Second International Workshop on Software Product Lines: Economics, Architec-
tures, and Implications, pages 89–92.

Meszaros, G. and Doble, J. (1998). A pattern language for pattern writing, chapter 29, J.

Coplien; D. Schmidt. Pattern Languages of Program Design, pages 529–574. Reading-

MA, Addison-Wesley.

Myers, G. J. (2004). The art of software testing. Wiley, second edition.
236

MySQL (2003). MySQL Reference Manual. http://www.mysql.com/doc/en/
index.html. Accessed: December/2003.

Pressman, R. (2001). Software Engineering: A Practitioner’s Approach. McGraw-Hill,

5th edition.

Recchia, E. (2002). Reverse engineering and reengineering based on patterns. Master’s

thesis, Computer Department. Federal University of São Carlos, São Carlos-SP, Brazil.

159 p. (in Portuguese).

Rocha, A. R., Maldonado, J., and Weber, K. (2001). Software Quality: Teory and Prac-
tice. Prentice Hall, first edition. (in Portuguese).

Roper, M. (1994). Software Testing. The International Software Engineering Series.

McGraw-Hill.

Sommerville, I. (2000). Software Engineering. Addison-Wesley, sixth edition.

Stevens, P. and Pooley, R. (1998). Systems reengineering patterns. In ACM SIGSOFT
1998, Sixth Internatinal Symposium on the Foundations of Software Engineering, pages

17–23, Orlando, Florida, USA.

Tevanlinna, A., Taina, J., and Kauppinen, R. (2004). Product family testing: a survey.

ACM SIGSOFT Software Engineering Notes, 29(2):12–12.

Tsai, W., Tu, Y., Shao, W., and Ebner, E. (1999). Testing extensible design patterns in

object-oriented frameworks through scenario templates. In COMPSAC’1999, 23rd In-
ternational Computer Software and Applications Conference, pages 166–171, Phoenix,

AZ.

Weyuker, E. J. (1998). Testing component-based software: A cautionary tale. IEEE
Software, 15(5):54–59.

Acknowledgements

The authors would like to thank Linda Rising, who provided several comments to improve

this paper.

237

XSpeed: Uma ferramenta para geração de aplicações
distribuídas baseadas em padrões

Lincoln S. Rocha1, Rute Nogueira2, João Gustavo Prudêncio, Rossana M. C.
Andrade e Jerffeson Teixeira de Souza

Universidade Federal do Ceará, Departamento de Computação, Campus do Pici
Bloco 910, 60455-760, Fortaleza – Ceará – Brasil.

{lincoln,rute,gustavo,rossana,jeff}@lia.ufc.br

Resumo. Este artigo apresenta uma ferramenta, denominada XSpeed, que tem
como objetivo principal aumentar a produtividade no desenvolvimento de
aplicações para ambiente distribuído utilizando padrões para resolver
problemas recorrentes neste domínio. XSpeed recebe como entrada um
arquivo XMI contendo o modelo UML de uma aplicação e então realiza a
geração automática de código para uma plataforma específica. Também neste
artigo é apresentado um estudo de caso para ilustrar o funcionamento da
ferramenta.

Abstract. This paper presents a tool, called XSpeed, which increases
productivity in the development of applications for a distributed environment
using software patterns to solve recurrent problems in the scope of this
domain. XSpeed receives as input a XMI file, which has the UML model of an
application and then performs an automatic code generation for a specific
platform. A case study is presented to illustrate how this tool works to achieve
its requirements.

1. Introdução
O desenvolvimento de aplicações para o ambiente distribuído é um processo complexo
e que requer do engenheiro de software um maior esforço. No intuito de padronizar e
simplificar esta tarefa, especificações como CORBA [14] e J2EE [21] surgem como
uma alternativa prática e viável. Da mesma forma, a utilização de padrões de software e
frameworks, neste contexto, podem contribuir de maneira significativa para o aumento
da reusabilidade, escalabilidade, flexibilidade [18] e diminuição da complexidade do
código produzido. Em contrapartida, a incorporação de especificações, padrões de
software e frameworks ao processo de desenvolvimento pode ocasionar um impacto,
não positivo, na curva do aprendizado.
 A utilização de ferramentas de geração automática de aplicações é uma
abordagem que traz consigo inúmeras vantagens. Além de aumentar a produtividade na
fase de desenvolvimento, garante a não ocorrência de erros na tradução da especificação
(modelo de alto nível) para a implementação (linguagem alvo), uma vez que essa
atividade é realizada de maneira automática. Além disso a manutenibilidade da
aplicação gerada é facilitada devido à uniformidade e modularidade do código
produzido.

1 Bolsista de mestrado financiado pela CAPES.
2 Bolsista de mestrado financiado pela FUNCAP.

238

 Este artigo propõe uma ferramenta denominada XSpeed, que busca integrar
tecnologias e facilitar a reutilização de padrões no processo de desenvolvimento de
aplicações para ambiente distribuído através da geração automática de código a partir de
modelos UML [7], disponibilizados através de arquivos no formato XMI (XML
Metadata Interchange) [15]. Desta maneira, as novas aplicações geradas seguirão um
modelo de arquitetura padronizado, facilitando o entendimento e a manutenibilidade do
sistema como um todo.
 O restante deste artigo é descrito como segue: na seção 2 encontram-se padrões
de software e ferramentas relacionadas com o desenvolvimento de aplicações para um
ambiente distribuído; na seção 3 são apresentados os padrões utilizados para fazer a
validação da ferramenta; na seção 4 é apresentada uma descrição da arquitetura do
XSpeed; na seção 5 é mostrado um estudo de caso da ferramenta e por fim na seção 6
são apresentadas as conclusões obtidas neste trabalho bem como sugestões para
trabalhos futuros.

2. Trabalhos Relacionados
A reutilização de padrões no desenvolvimento de um software tem emergido como uma
das mais promissoras abordagens para a melhoria da qualidade dos artefatos de
software, pois eles permitem que a experiência de desenvolvedores seja documentada e
reutilizada, registrando-se soluções de projeto para um determinado problema em um
contexto particular.
 A utilização de ferramentas que fazem geração automática de aplicações e
utilizam padrões de software como estratégia para a geração de código tem se tornado
uma alternativa viável para diminuir tempo e esforço gastos no processo de
desenvolvimento e manutenção de softwares. Nesta seção são apresentados padrões e
ferramentas que buscam solucionar problemas envolvidos com o desenvolvimento de
aplicações distribuídas.
 Em [8], os autores apresentam os padrões DAP-EJB (Distributed Adapters
Pattern with EJB) e PDC-EJB (Persistent Data Collections with EJB) que auxiliam na
estruturação de aplicações EJB [23]. Essa estruturação pode acontecer em sistemas já
existentes, sem EJB, bem como em projetos de novos sistemas, os quais obterão alguns
benefícios como reusabilidade, extensibilidade, modularidade, independência de
tecnologia (distribuição ou dados) e desempenho.
 Além disso, em [17] tem-se o Padrão de DBCD (Desenvolvimento Baseado em
Componentes Distribuídos), cuja intenção é a criação de componentes distribuídos
reutilizáveis para diferentes domínios de aplicações. Este padrão trabalha com a
integração de diferentes tecnologias em uma ferramenta CASE, para apoiar o
Desenvolvimento Baseado em Componentes (DBC), além de cobrir todo o ciclo de vida
dos componentes distribuídos e definir mudanças no código de comunicação dos
mesmos.
 Em [3] é apresentado um método de implementação que orienta a transformação
progressiva que torna uma aplicação inicialmente centralizada em uma distribuída. O
método ameniza a complexidade inerente a sistemas distribuídos e torna os testes mais
efetivos. Além disso, esse método utiliza o Distributed Adapters Pattern (DAP)
apresentado em [2] promovendo uma maior modularidade, reuso, extensibilidade assim
como uma implementação progressiva.
 A ferramenta Cordel apresentada em [10] promove de forma flexível a geração,
compilação e implantação automática de sistemas Web, com base em tecnologias de

239

objetos distribuídos, a partir de modelos UML, seguindo especificações e tecnologias já
consolidadas. Esses sistemas que adotam mecanismos que favorecem a construção de
aplicações reutilizáveis, flexíveis e escaláveis trazem consigo a conseqüência natural de
um maior esforço no processo de desenvolvimento, devido à adoção de especificações,
como J2EE ou CORBA que, por sua vez, implicam numa maior necessidade de
aprendizado da tecnologia e uma maior quantidade de código a ser escrito.
 Além da ferramenta Cordel, pode-se destacar como importante para este
trabalho a ferramenta AndroMDA [4], que trabalha com a geração de código fonte a
partir da especificação UML. Como conseqüência, o código fonte torna-se pouco
relevante, pois os diagramas UML é que são essenciais para a implementação. Além
disso, a ferramenta sugere o uso de diversas tecnologias para persistência dos dados
como Hibernate, Spring e SOAP, ao mesmo tempo em que se propõe a diminuir o
tempo de desenvolvimento de programas e promover o uso intensivo de padrões.

3. Padrões Utilizados
Alguns padrões foram selecionados e estudados com a finalidade de fazer a validação
da ferramenta proposta neste artigo. O critério de seleção levou em consideração a
adequação do padrão à solução proposta. Uma seleção mais rigorosa foi deixada para
um momento posterior. A seguir, os padrões escolhidos são apresentados.
 O padrão BD (Business Delegate) [1], normalmente, é utilizado para reduzir o
acoplamento entre os clientes da camada de apresentação e os serviços de negócios. O
BD oculta os detalhes de implementação por trás do serviço de negócios, como forma
de pesquisa e acesso em ambientes remotos. A Figura 1 mostra o diagrama de classes
do padrão BD.

Figura 1. Diagrama de classes do BD [1]

 Já o BO (Business Object) [1] é empregado para separar dados e lógica de
negócio usando um modelo orientado a objeto. O BO fará, portando, o encapsulamento
das regras de negócio e do gerenciamento da camada de persistência. Na Figura 2 é
exposto o diagrama de classes do BO.

240

Figura 2. Diagrama de classes do BO [1]

 Segundo [1], o acesso a dados muda dependendo da sua origem. O acesso ao
armazenamento persistente, como em um banco de dados, varia muito dependendo do
tipo de armazenamento e da implementação do desenvolvedor. Através da utilização do
padrão DAO (Data Access Object) pode-se extrair e encapsular todos os acessos à
origem de dados em um único objeto. O DAO gerencia a conexão com a fonte de dados
para obter e armazenar dados. Seu diagrama de classes pode ser observado na Figura 3.

Figura 3. Diagrama de classes do DAO [1]

4. XSpeed e sua Arquitetura
XSpeed é uma ferramenta que tem como objetivo principal aumentar a produtividade no
desenvolvimento de aplicações para ambiente distribuído utilizando padrões para
resolução de problemas recorrentes. A ferramenta recebe como entrada um arquivo no
formato XMI contendo o modelo UML da aplicação a ser gerada. Em seguida, mapeia
os padrões que deverão ser aplicados como estratégia para resolução de problemas e
finalmente faz a geração automática do código interligando as tecnologias específicas
para a resolução de cada um dos problemas inerentes ao domínio.
 A arquitetura do XSpeed, demonstrada na Figura 4, se divide em três módulos
básicos: módulo de conversão, módulo de configuração e módulo de geração.

241

Figura 4. Arquitetura geral da ferramenta XSpeed

4.1. Módulo de Conversão
O módulo de conversão faz a extração das informações relacionadas a cada uma das
classes do modelo UML contido no arquivo XMI, disponibilizando-as como uma
instância do modelo de representação descrito na Figura 5. Em seguida, esta instância é
armazenada em um arquivo XML intermediário que servirá como base para geração da
aplicação.

Figura 5. Modelo de mapeamento do XMI

242

Nesta fase, uma filtragem por meio de um parser é concebida sobre o arquivo XMI de
entrada. Apenas informações relevantes para o XSpeed são selecionadas, tais como a
estrutura e o relacionamento das classes do modelo. Desse modo, não são avaliadas as
informações contidas em outros possíveis diagramas como os de casos de uso,
colaboração e seqüência.

4.2. Módulo de Configuração
Neste módulo, é feita uma seleção manual dos padrões e das tecnologias, de persistência
e acesso remoto, a serem aplicadas sobre as classes do modelo para resolução dos
problemas específicos do domínio. XSpeed propõe um conjunto de padrões para
resolução de problemas específicos de aplicações distribuídas tais como delegação de
serviço, processamento de lógica de negócio e persistência de dados. A versão atual da
ferramenta não disponibiliza uma interface gráfica para realizar os mapeamentos. O
usuário pode utilizar algum editor de XML para alterar o mapeamento default do
arquivo XML intermediário gerado pela ferramenta.
 Para resolver o problema de acesso remoto à lógica de negócio, adotou-se o
padrão BD, apresentado na seção 3, integrado ao framework Spring [19] [26] que
fornece uma estrutura transparente de comunicação distribuída baseada em RMI
(Remote Method Invocation) [24]. De acordo com o diagrama de classes observado na
Figura 6, o código cliente faz apenas chamadas locais. Assim sendo, toda a
complexidade das chamadas remotas são encapsuladas pelo BD. Além de facilitar o
desenvolvimento da aplicação cliente, o seu simples uso promove a separação explícita
entre a camada de apresentação e a tecnologia envolvida na camada de negócio.

Figura 6. Diagrama de classes do BD adaptado

 Na camada de lógica de negócio adotou-se o padrão BO, descrito na seção 3,
que faz o encapsulamento das regras de negócio e do gerenciamento da camada de
persistência. O acesso à camada de persistência pode acontecer de maneira remota
(Figura 7), portanto, o BO também faz uso do framework Spring.

243

Figura 7. Diagrama de classes do BO adaptado

 Por fim, elegeu-se o padrão DAO, explanado na seção 3, como técnica para
encapsular as diferentes estratégias de persistência da aplicação. Atualmente XSpeed
possibilita a integração de três tecnologias de persistência remota JDBC [22] [16]
nativo, Hibernate [11] [6] e JPox [13] (Figura 8) sendo que as duas últimas fazem uso
da primeira para persistir dados de maneira transparente.

Figura 8. Diagrama de classes do DAO adaptado

244

4.3. Módulo de Geração
Este módulo é responsável por fazer a geração de código de todas as classes da
aplicação. XSpeed faz uma junção entre as informações contidas no arquivo XML
intermediário e os templates (Figura 9) que definem a estrutura das classes, inclusive o
formato dos padrões a serem aplicados. Só então a geração de código é realizada para
uma plataforma específica. A versão atual da ferramenta possibilita a geração apenas
para a plataforma Java [20].

Figura 9. Processo de geração de código

 O motor de geração do XSpeed utiliza o Velocity Template Engine [5] para fazer
o merge entre as informações extraídas do arquivo XML intermediário e os templates.
O Velocity possui uma linguagem de manipulação de template: a VTL (Velocity
Template Language), que permite fazer a inserção de informações de maneira dinâmica
dentro do template. O trecho de código (Figura 10) a seguir mostra a utilização da VTL
para fazer a geração dos atributos de uma classe e seus respectivos métodos de acesso.

245

Figura 10. Template Velocity

5. Estudo de Caso
Nesta seção são mostradas todas as etapas para geração de uma aplicação para ambiente
distribuído utilizando XSpeed. A aplicação escolhida como exemplo consiste na
manutenção de um cadastro simplificado de estudantes universitários. O diagrama de
classes da Figura 11 representa o modelo UML da aplicação.

Figura 11. Diagrama de classes da aplicação

 O modelo exibido na Figura 11 pode ser criado e convertido para o formato
XMI por meio de uma ferramenta de modelagem UML, tais como Rational Rose [12],
ArgoUML [25] e Poseidon [9]. A Figura 12 mostra a descrição das classes Person e
Student no formato resultante da conversão.

246

Figura 12. Estrutura do arquivo XMI

 Na fase de conversão, o arquivo XMI gerado é fornecido como entrada para
XSpeed que, por sua vez, faz a filtragem das informações de cada uma das classes para
o seu modelo de representação, descrito na seção 4.1. Em seguida, atualiza o arquivo
XML intermediário incorporando as novas características da aplicação. A Figura 13
mostra as classes Person e Student descritas no formato deste arquivo com o
mapeamento default da ferramenta.

247

Figura 13. Arquivo XML intermediário

 No exemplo específico (Figura 14) foi removido, manualmente, o mapeamento
dos padrões e das tecnologias que incidiam sobre a classe Person.

Figura 14. Arquivo XML intermediário mapeado

 Após as alterações realizadas sobre o arquivo XML intermediário, o código é
gerado. O diagrama de classes da Figura 15 mostra o novo formato da aplicação com a
incorporação das classes StudentBDImpl, StudentBOImpl e StudentJPoxDAO e das
interfaces StudentBO e StudentDAO.

248

Figura 15. Diagrama de classes da aplicação após a geração

 A Figura 16 exibe um fragmento de código da classe StudentBDImpl que
descreve como é obtido uma instância remota de StudentBOImpl utilizando o
framework Spring.

Figura 16. Obtenção de um BO

 Do mesmo modo (Figura 17), a classe StudentBOImpl obtém uma instância de
StudentJPoxDAO para fazer o gerenciamento da camada de persistência.

Figura 17. Obtenção de um DAO

 Por fim, a Figura 18 exibe o formato do código da StudentJPoxDAO
responsável por fazer a persistência transparente dos objetos da aplicação.

249

Figura 18. Persistência transparente com JPox

6. Conclusões e Trabalhos Futuros
Ao fim deste trabalho conclui-se que a utilização de padrões no desenvolvimento de
aplicações, independentemente do domínio de atuação, é um processo que requer dos
desenvolvedores um elevado grau de conhecimento específico sobre onde encontrar os
padrões, e como e quando utilizá-los. Além disso, observa-se que a utilização de
padrões no desenvolvimento de aplicações distribuídas implica na realização de tarefas
repetitivas e enfadonhas de codificação. Nesse contexto, a ferramenta apresentada neste
artigo visa facilitar e difundir a utilização de padrões com o intuito de maximizar tanto a
produtividade no desenvolvimento de software quanto a qualidade do software gerado.
 Como trabalhos futuros, pretende-se fazer a interligação da ferramenta com
repositórios de padrões para facilitar o processo de identificação de padrões
relacionados para o desenvolvimento de aplicações para um domínio específico. Neste
sentido, deseja-se expandir ao máximo o escopo de atuação da ferramenta a fim de
possibilitar o desenvolvimento de aplicações para um número maior de domínios.

250

Referências
[1] Alur, D., Crupi, J., Malks, D. Core J2EE Patterns: Best Practices and Design

Strategies. 2ed Edition. Prentice Hall, 2003.
[2] Alves, V. Progressive development of distributed object-oriented

applications. Master's thesis, Centro de Informatica Universidade Federal
de Pernambuco, Feb, 2001.

[3] Alves, V., Borba, P. An Implementation Method for Distributed Object-Oriented
Applications. In Second Latin American Conference on Pattern Languages of
Programming, SugarLoafPLoP'2002, pages 55-86, Itaipava, Brazil, 5th-7th
August 2002.

[4] AndroMDA Tool. http://www.andromda.org. Acesso em janeiro de 2005.
[5] Apache. Velocity Template Engine (Velocity). http://jakarta.apache.org/velocity.

Acesso em novembro de 2004.
[6] Bauer, C. and King, G. Hibernate in Action. Softbound, 2004.
[7] Booch, G., Rumbaugh, J. and Jacobson, I. The Unified Modeling Language

User Guide. Addison-Wesley, 1999.
[8] Dias, K., Borba, P. Padrões de projeto para estruturação de aplicações

distribuídas Enterprise JavaBeans. In Second Latin American Conference on
Pattern Languages of Programming, SugarLoafPLoP'2002, pages 55-86,
Itaipava, Brazil, 5th-7th August 2002.

[9] Gentleware. Poseidon for UML. http://www.gentleware.com/index.php. Acesso
em janeiro de 2005.

[10] Greve, F.G.P., Araújo, J.G.R., Andrade, S.S., Maia Filho, E.M.F., Brito, K.S.,
Rocha, L.A., Pinheiro, V.G. Cordel: uma Ferramenta Distribuída para a Geração
de Aplicações Web. In I2TS 3rd International Information and
Telecommunication Technologies Symposium, São Carlos, 2004. I2TS 3rd
International Infor.

[11] Hibernate. Relational Persistence For Idiomatic Java. http://www.hibernate.org.
Acesso em janeiro de 2005.

[12] IBM. Rational Rose. http://www-306.ibm.com/software/rational. Acesso em
dezembro de 2004.

[13] Jpox - JDO. Java Persistent Object (JPOX).http://www.jpox.org/index.jsp.
Acesso em janeiro de 2005.

[14] OMG. CORBA Specification. http://www.corba.org/. Acesso em julho de
2005.

[15] OMG. XML Metadata Interchange (XMI).
www.omg.org/technology/documents/formal/xmi.htm. Acesso em dezembro de
2003.

[16] Reese, G. Database Programming with JDBC and Java. 2nd Edition. O'Reilly,
2000.

251

[17] Santana, E., Bianchini, C.P., Prado, A.F., Trevelin, L.C. Um Padrão para o
Desenvolvimento de Software Baseado em Componentes Distribuídos. In
Second Latin American Conference on Pattern Languages of Programming,
SugarLoafPLoP'2002, pages 175-190, Itaipava, Brazil, 5th-7th August 2002.

[18] Schmidt, D.C., Fayad, M.E., Johnson, R.E. Building Application Frameworks:
Object-Oriented Foundations of Framework Design. Wiley Computing
Publisher, 1999.

[19] Spring. Java/J2EE Application Framework. http://www.springframework.org.
Acesso em janeiro de 2005.

[20] Sun Microsystems. Java Technology. http://java.sun.com, Acesso em janeiro de
2000.

[21] Sun Microsystems. Java 2 Platform, Enterprise Edition (J2EE).
java.sun.com/j2ee, Acesso em dezembro de 2004.

[22] Sun Microsystems. Java Database Connectivity (JDBC).
http://java.sun.com/products/jdbc. Acesso em julho de 2004.

[23] Sun Microsystems. Enterprise JavaBeans Technology (EJB).
http://java.sun.com/products/ejb. Acesso em julho de 2004.

[24] Sun Microsystems. Remote Method Invocation (RMI).
http://java.sun.com/products/jdk/rmi. Acesso em julho de 2005.

[25] Tigris. Modelling tool ArgoUML. http://argouml.tigris.org. Acesso em janeiro
de 2005.

[26] Walls, C., Breidenbach, R. Spring in Action. Softbound, 2005.

252

253

