Campos do Jordao, Brazil, August 16-19, 2005
Conference Organization

General Chair:
Program co-chairs:
Local Arrangements

co-Chairs:

Program Committee:

Assistant Editor

Edited by:
Linda Rising
Fabio Kon

SugarlLoafPLoP'2005

5" Latin American
Conference on
Pattern Languages
of Programming

Rosana Teresinha Vaccare Braga, ICMC-USP, Brazil

Linda Rising, Independent Consultant, USA
Fabio Kon, IME-USP, Brazil

Fabio Kon, IME-USP, Brazil

Marcos Cordeiro d'Ornellas, UFSM, Brazil
Paulo Cesar Masiero, ICMC-USP, Brazil
Rosangela A. D. Penteado, UFSCAR, Brazil

Claudia Werner, UFRJ, Brazil

Dick Gabriel, Sun Microsystems, USA
Eugene Wallingford, U. Northern lowa, USA
Fabio Kon, IME/USP, Brazil

Gustavo H. Rossi, Lifia/UNLP, Argentina
Jim Coplien, Vrije Universiteit, Belgium
Jorge L. Ortega Arjona, UNAM, Mexico
Joseph Yoder, U. lllinois / The Refactory, Inc, USA
Linda Rising, Independent Consultant, USA
Marcos Cordeiro d'Ornellas, UFSM, Brazil
Paulo Borba, UFPE, Brazil

Paulo Cesar Masiero, /[CMC/USP, Brazil
Robert Hanmer, Lucent Technologies, USA
Rosana Braga, ICMC/USP, Brazil

Rossana Andrade, DC/UFC, Brazil

Giuliano Mega, IME-USP, Brazil

B Conference Proceedings

Supporting Agencies

A FAPESP

CAPES

Sponsors
V
SBC DD
Sociedade Brasieira Hillside.net
Organization

uf e

IME-USP 1260

Latin American Conference on Pattern Languages of
Programming SugarLoafPLoP 2005 (5.:2005 : Campos do Jordao, SP)
Proceedings... / Editors Linda Rising, Fabio Kon. -- Campos do Jordao,
SP: ICMC/USP 2005
258 p.
ISBN 85-87837-09-5

1. Padroes de Software. 2. Linguagens de Padrdes. 1. Rising, Linda,
ed. II. Fabio Kon, ed. III. Titulo

Beneficiario de auxilio financeiro da CAPES - Brasil

b,

SugarLoafPLoP 2005 Proceedings

B Table of Contents

Section 1: Writer’'s Workshop

Padroes para Apoiar o Projeto de Material Instrucional para EAD 2
Americo Talarico Neto, Junia C. Anacleto, Vania P. de Almeida Neris
(Universidade Federal de Sdo Carlos)

A Pattern Language for Adaptive Distributed Systems 19
Francisco José da Silva e Silva (Federal University of Maranhdo),

Fabio Kon (University of Sao Paulo),

Joseph Yoder, Ralph Johnson (University of Illinois at Urbana-Champaign)

Padroes de Requisitos para Especificacio de Casos de Uso em Sistemas de 48
Informacgao

Gabriela T. de Souza (Universidade de Fortaleza, Instituto Atlantico),

Carlo Giovano S. Pires (Instituto Atlantico)

Arnaldo Dias Belchior (Universidade de Fortaleza)

Patterns for Secure Operating System Architectures 68
Eduardo B. Fernandez, Tami Sorgente (Florida Atlantic University)

Architectural Patterns to Secure Applications with an Aspect Oriented 89
Approach
Christian Paz-Trillo, Vladimir Rocha (IME-University of Sdo Paulo)

Propagacio Direcional para Processamento de Imagens 106
Francisco de Assis Zampirolli, Lucas Padovani Trias (Centro Universitario Senac)
Roberto de Alencar Lotufo (FEEC/UNICAMP)

The Layered Information System Test Pattern 114
Roberta Coelho, Uird Kulesza, Arndt von Staa, Carlos Lucena (PUC-Rio)

Secrecy with Session Key: Um padrio de criptografia para evitar ataques de 130
criptoanalise por textos cifrados conhecidos

Windson Viana (Universidade Federal do Cearda),

José Bringel Filho (Centro Nacional de Processamento de Alto Desempenho do

Nordeste),

Rossana Andrade (Universidade Federal do Ceard, Centro Nacional de

Processamento de Alto Desempenho do Nordeste)

Patterns for Parallel and Distributed Processing of Large Hierarchical 137
Structures

Denise Stringhini, Ismar Frango Silveira, Luciano Silva (Universidade

Presbiteriana Mackenzie)

Table of Contents i

b,

SugarLoafPLoP 2005 Proceedings

B Table of Contents

Section 2: Pattern Applications

Padroes e Métodos Ageis: agilidade no processo de desenvolvimento de 156
software

Edes Garcia da Costa Filho, Rosangela Penteado, Junia Coutinho Anacleto Silva
(Universidade Federal de Sao Carlos),

Rosana Teresinha Vaccare Braga (ICMC-USP)

Cooperacao entre Padroes de Projeto na Resolucio de Problemas de 170
Processamento de Imagens Baseados em Filtros de Convolucio

Daniel Welfer, Marcos Cordeiro d’Ornellas

(Universidade Federal de Santa Maria)

Aplicacio de metapadroes e padrdes em desenvolvimento de software para 179
sistemas de informacao

Gabriela T. de Souza (Universidade de Fortaleza; Instituto Atlantico),

Carlo Giovano S. Pires, Fabiana Gomes Marinho (Instituto Atldntico)

Arnaldo Dias Belchior (Universidade de Fortaleza)

Relacionamento de Padrdes de Engenharia de Software e de Interagio 192
Humano-Computador para o Desenvolvimento de Sistemas Interativos

André Constantino da Silva, Junia Coutinho Anacleto Silva,

Rosangela Aparecida Dellosso Penteado (Universidade Federal de Sdo Carlos),

Sérgio Roberto Pereira da Silva (Universidade Estadual de Maringa)

Aplicando Padrdes de Geréncia de Configuracio de Software em Projetos 207
Geograficamente Distribuidos
Dario André Louzado, Lucas Carvalho Cordeiro (Siemens Com Mobile Devices)

Extending Patterns with Testing Implementation 222
Maria Istela Cagnin, Rosana T. V. Braga, Ferndo S. Germano, Alessandra Chan,
José Carlos Maldonado (ICMC-USP)

XSpeed: Uma ferramenta para geracao de aplicagoes distribuidas baseada em 238
padroes

Lincoln S. Rocha, Rute Nogueira, Jodo Gustavo Prudéncio, Rossana M. Andrade e

Jerffeson Teixeira de Souza (Universidade Federal do Ceara)

Table of Contents ii

482 suparLoafPLoP'2005
(p—

B Vriter's Workshop

e

SugarLoafPLoP 2005 Proceedings

Writer's Workshop 1

E SugarLoafPLoP 2005 Proceedings

Padroes para Apoiar o Projeto de Material Instrucional
para EAD

Americo Talarico Neto, Junia C. Anacleto, Vania P. de Almeida Neris

Departamento de Computacdo — Universidade Federal de Sdo Carlos (UFSCar)
Caixa Postal 676 — CEP.13565-905 — Sao Carlos — SP — Brasil

{americo, junia,vania}@dc.ufscar.br

Abstract. This work presents a pattern collection aiming at supporting
teachers to design instructional material for Distance Learning Systems. Such
patterns were identified and written based on a selected set of Cognitive
Strategies, in order to better organize the content displayed as instructional
material presented to students, in an attempt to facilitate their learning
process.

Resumo. Este trabalho apresenta uma cole¢cdo de Padroes com a finalidade
de apoiar o professor durante o projeto de material instrucional para sistemas
de Educac¢do a Distancia (EAD). Tais Padroes foram identificados e escritos a
partir de um conjunto de Estratégias Cognitivas, selecionadas com o objetivo
de melhor organizar o conteudo visto pelo aluno, visando facilitar o seu
processo de aprendizado.

1. Introducio

A disseminagdo da informagdo, associada ao desenvolvimento das midias interativas,
vem colocando recursos como o computador e a Internet a servigo da educagéo, e tem
gerado uma grande transformacdo nos processos de ensino e aprendizagem, relacionada
principalmente ao uso da Educagdo a Distancia (EAD) como forma de atingir novos
publicos e desenvolver novas metodologias de ensino.

O projeto de cursos em ambientes WEB pode ser uma tarefa dificil para os
professores que tém pouca experiéncia em interacdo e projeto de material instrucional
em ambiente computacional. Essa dificuldade acaba gerando uma producio de cursos
deficientes que impedem ou dificultam o processo de aprendizagem dos alunos [Frizell,
2001].

Este artigo explora a questdo do projeto de material instrucional para EAD,
sintetizando algumas propostas disponiveis na literatura da ciéncia cognitiva, que tenta
explicar como ocorre o processo de ensino e aprendizagem no ser humano, expressa
aqui em um conjunto adotado de Estratégias Cognitivas [Liebman, 1998],
documentando tais praticas em forma de Padrdes para apoio adequado ao processo de
geracdo do material instrucional.

Espera-se que tais Padrdes possam gerar um vocabuldrio comum entre os
diversos participantes (professores, autores, educadores, profissionais da computacao, €
web designers) do projeto multidisciplinar de material instrucional para EAD, extraindo
e estruturando abstra¢des de qualidades comuns, identificando solucdes e apresentando

Writer’'s Workshop 2

E SugarLoafPLoP 2005 Proceedings

a relevancia de tais solugdes para ajudar os professores a melhor organizar o material
instrucional e assim favorecer o aprendizado dos alunos que venham a utiliza-lo.

Neste trabalho utiliza-se o termo professor para designar o profissional
responsavel pelo projeto de material instrucional para ambiente Web e utiliza-se o
termo aluno para designar o usudrio que ira interagir com a interface elaborada nesse
projeto (o material instrucional).

Este trabalho esta organizado da seguinte forma: na sec¢do 2 sdo apresentadas as
Estratégias Cognitivas adotadas como base para este trabalho, na se¢do 3 sdo mostradas
as principais caracteristicas dos padrdes identificados e na secdo 4 os padrdes sdo
apresentados em detalhes. Por fim, na se¢do 5 sdo feitas as consideragdes finais.

2. Estratégias Cognitivas para Apoio ao Ensino

Gagné (1974) aborda os processos internos de aprendizagem por meio de itens que
foram denominados dominios. Um desses dominios ¢ constituido pelas Estratégias
Cognitivas, que segundo ele sdo capacidades internamente organizadas que o aluno usa
para guiar seus proprios processos de atengdo, aprendizagem, memoria e pensamento. O
aluno usa uma Estratégia Cognitiva, por exemplo, ao prestar atengdo nas diversas
caracteristicas daquilo que esta lendo. O leitor usa certas Estratégias Cognitivas para
selecionar e codificar o que aprende, valendo-se de outras estratégias para recuperar
posteriormente essas informacdes [Almeida e Silva, 2004].

As Estratégias Cognitivas s@o, portanto, os meios que o aluno dispde para
administrar seus proprios processos de aprendizagem. Gagné relaciona tais estratégias
com os conceitos de "aprender a aprender” e "aprender a pensar".

Beckman (2002) define as Estratégias Cognitivas como “uma estratégia ou um
grupo de estratégias ou procedimentos que os alunos usam para cumprir tarefas
académicas ou melhorar habilidades sociais. Normalmente, mais do que uma Estratégia
Cognitiva ¢ utilizada, dependendo do esquema de aprendizado do aluno”. As estratégias
citadas por Beckman sdo: Visualizagdo, Verbalizacdo, Associacdes, Particionamento,
Questionamento, Inspecdo, Sinalizacdo, Uso de mnemonicos, Auto-verificagdo e
Monitoramento.

Rosenshine (1997) refor¢ca que a melhor maneira de saber que estratégia utilizar
¢ observar como os alunos mais experientes resolvem os problemas e que estratégias
utilizam. Algumas das estratégias citadas em seu trabalho sdo: Quebra de tarefas,
Suporte, Feedback e Mapa de Conceitos.

West et al. (1991) sugerem o uso de mais algumas Estratégias Cognitivas. As
atividades apresentadas por West et al. (1991) e utilizadas, com sucesso, por Liebman
(1998) no ensino presencial sdo listadas a seguir: Organizacdo, Estruturagdo, Mapa de
Conceitos, Metaforas e analogias, Ensaios e Organizadores de avanco.

Neste trabalho foram adotadas as estratégias de Liebman (1998). Essa decisdo
foi tomada apds uma andlise minuciosa das estratégias anteriormente mencionadas na
qual pode-se perceber que o grupo de estratégias de Liebman reflete quase todas as
estratégias citadas anteriormente. Nesse sentido, as estratégias de Liebman sdo
detalhadas a seguir:

Writer’'s Workshop 3

E SugarLoafPLoP 2005 Proceedings

e Organizagdo: na literatura sobre psicologia cognitiva ¢ chamada de
particionamento, inclui a aplicacdo de taxonomias, listagem de semelhangas e
diferencas, andlise de forma e fungdo, listar vantagens e desvantagens e
identificar causa e efeito;

e [Estruturagc@o: s@o organizacdes visuais da estrutura basica da informagdo em
questdo; um exemplo de estruturacdo € a elaboragdo de uma tabela na qual as
linhas representam objetos e as colunas representam as propriedades. O
professor fornece a estrutura e pede aos aprendizes que preencham algumas ou
todas as informacdes. Essa estruturacdo pode ser de dois tipos. No tipo 1 os
aprendizes preenchem a estrutura usando a informag¢ao que t€ém disponivel, e no
tipo 2 eles usam o raciocinio para desenvolver a informagdo a ser colocada na
estrutura,

e Mapa de Conceitos: diagramas usados para expressar relacionamentos
temporais, por categoria, causais, hierarquicos, etc;

e Uso de metaforas e analogias;

e Ensaios: sdo estratégias para manter a informagao sendo processada na memoria
de trabalho dos aprendizes o tempo suficiente para que seja melhor estabelecida
na memoria de longa duracdo. Incluem repeticdo, perguntas e respostas, prever €
esclarecer, redefinir ou parafrasear a informagao, revisar e resumir, selecionar
qual a informag¢do importante, tomar notas e enfatizar (sublinhar);

e Organizadores de avango: sdo observagdes feitas pelo professor para ajudar o
aprendiz a passar para um novo topico, podendo ser entendidos como conectores
ou pontes, fazendo associagdes entre um topico que estd por vir € o
conhecimento ja adquirido;

Outro ponto interessante que correlaciona este trabalho com o de Liebman é que
ela também reconhece que os professores podem utilizar as Estratégias Cognitivas para
facilitar o processo de ensino e aprendizagem do aluno. Aqui, neste trabalho, as
estratégias sdo selecionadas e utilizadas pelos professores no projeto do material
instrucional com o objetivo de melhor organizar o conteiido pela interface, em uma
tentativa de facilitar o processo de aprendizado do aluno.

3. Caracteristicas dos Padroes para EAD Identificados neste Trabalho

O objetivo de Alexander na publicacdo de sua Linguagem de Padrdes [Alexander et al.,
1977] era permitir aos usudrios leigos, os habitantes, a capacidade de participar do
projeto de seus ambientes. Essa preocupagdo ¢ similar as idéias encontradas em
Engenharia de Software, no Projeto Centrado no Usuério e no Design Participativo,

cujo objetivo € envolver usudrios finais em todos os estagios do ciclo de
desenvolvimento de software [Borchers, 2001].

Uma Linguagem de Padroes para EAD deve conter Padrdes que orientem os
instrutores em como elaborar o curso, ajudem na concep¢do de um projeto para elaborar
a seqiiéncia de a¢des em um curso e fornecam auxilio durante a realizagdo do curso com
estratégias de acesso [PPP, 2005].

Writer’'s Workshop 4

E SugarLoafPLoP 2005 Proceedings

Tais beneficios estdo presentes nesta pesquisa que se propde a apresentar uma
colecdo de Padrdes para apoiar o professor na tarefa de projetar o material instrucional
para ser inserido em sistemas de EAD. Nesse contexto, o professor pode desempenhar
os papeis de:

e Usudrio: quando atua em conjunto com uma equipe multidisciplinar para o
projeto do material instrucional, podendo assim utilizar os Padrdes como
ferramenta para estabelecer uma comunica¢do mais eficiente e participar mais
ativamente do projeto, utilizando terminologia e conhecendo os problemas do
dominio da EAD.

e Projetista: quando ele mesmo projeta e disponibiliza o material instrucional,
utilizando os Padrdes como ferramenta para avaliacdo, projeto e validagdo e para
divulgar seus conhecimentos para pessoas menos experientes.

Os Padrdes identificados nesta pesquisa foram obtidos por meio de estudos de
caso (Almeida e Silva, 2004) cujos objetivos principais foram verificar se o conjunto
selecionado de seis Estratégias Cognitivas [Liebman, 1998], apresentado na se¢do
anterior, aumenta a usabilidade de materiais instrucionais para EAD, verificando em
que momento essas Estratégias Cognitivas sdo inseridas no material instrucional e se
elas podem ser vistas como solugdes para problemas recorrentes nesse contexto e, desse
modo, se podem ser escritas na forma de Padrdes.

O formato e o estilo de escrita desses Padrdes para EAD foram baseados na
“Linguagem de Padrdes para escrita de Padrdes” de Meszaros e Doble (1996), que
mostra que os Padrdes sd@o mais faceis de compreender e aplicar quando os elementos
Nome, For¢as, Contexto, Problema e Solucio estdo presentes no formato utilizado.
Esses autores comentam que outros elementos podem ser incluidos no formato do
Padrdo, mas sdo opcionais (Exemplos, Raciocinio, etc). Segundo esses autores, os
elementos opcionais devem ser escolhidos pelo autor para tornar mais facil a
compreensdo do Padrao ou para relacionar os Padroes.

Neste trabalho, oito elementos foram considerados como sendo de alta
importancia para o entendimento dos Padrdes formalizados, conforme descrito a seguir:
Nome do Padrio, Contexto, Forcas, Problema, Solu¢ido, Raciocinio, Exemplos e
Padrdes Relacionados. Cada um dos Padrdes identificados foi escrito seguindo-se essa
estrutura.

Os relacionamentos entre os Padrdes da colec¢do obtida sdo mostrados na Figura
1, construida baseada na teoria de Linguagem de Padrdes de Alexander et al. (1977),
que relaciona os Padrdes visualmente na forma de um grafo, no qual as caixas (nos)
representam os Padroes e as linhas (arestas) representam os relacionamentos entre eles.

Writer’'s Workshop 5

@

SugarLoafPLoP 2005 Proceedings

A A
y AE—

> Estruturaggodo 5 Sedimentagéo
Planejamento > Gancho Conhecimento

Contextualizagédo Hierarquizagao

Legenda:
/
Padrao: Padrao A

Correlagéo

Associaggo entre 2 padrbes: __,

Figura 1. Relacionamentos entre os Padrdes para EAD, identificados neste
trabalho.

A seguir serdo apresentados todos os Padrdoes que foram obtidos a partir das
Estratégias Cognitivas apresentadas na se¢ao 2.

4. Padroes Identificados a partir das Estratégias Cognitivas

4.1. O Padrio Planejamento
Contexto:

A primeira tarefa do professor é planejar a aula estruturando os contetidos e criando um
ambiente que motive o aluno. Esta fase define a fundag@o necessaria para conduzir uma
boa aula.

Forcas:

e A preparacdo de uma aula completa envolve o entendimento de uma série de
conceitos e interesses, bem como o entendimento de que os diferentes publicos
tém habilidades e conhecimentos unicos.

e O professor geralmente tem familiaridade com o tema da aula, entretanto ele
pode esquecer de mencionar topicos que sao importantes para o entendimento do
tema pelo aluno.

e O Planejamento auxilia o professor a melhor organizar uma aula e facilita o
processo de transferéncia do conhecimento.

Problema:
Como planejar a transferéncia de conhecimento do professor para o aluno?
Solucio:

Formalize o problema a ser resolvido, definindo o objetivo final, que o ajudara a
determinar as estratégias para uma aula. Especifique um ou mais sub objetivos que seu
material instrucional deve contemplar e que aspectos vocé quer focalizar.

Writer’'s Workshop

@

SugarLoafPLoP 2005 Proceedings

Identifique o conhecimento inicial necessario que o aluno deve ter e siga os seguintes
passos:

1- Defini¢do dos resultados de aprendizagem desejados (quando esses resultados
forem muito complexos, dividi-los em resultados mais simples)

2- Estabelecimento de uma hierarquia de resultados,
3- Identificagdo das condigdes internas requeridas,
4- Identificacdo das condi¢des externas requeridas,

5- Planejamento dos meios de aprendizagem em funcdo do contexto de
aprendizagem e das caracteristicas do grupo,

6- Planejamento da motivagio
Raciocinio:

Um bom planejamento ¢ resultado de experiéncia. Esteja atento para adaptar o
planejamento para proximas versdes da mesma aula, incorporando assim novas
experiéncias.

Exemplos:

Considere o projeto de um material instrucional que aborda o tema “A Camada de
Ozonio”. O professor estabelece o seguinte plano de ensino com objetivos de
aprendizado para seus alunos, durante o contato com o material instrucional. A partir do
plano de Ensino o professor elabora um Mapa de Conceitos para organizar as idéias e
conceitos que ele gostaria de transmitir a seus alunos, na forma de conteudo:

Plano de Ensino

Identificacdo Aula: “A Camada de Oz6nio”

Disciplina: Biologia — Meio ambiente

Pré-requisitos | Conhecer os conceitos de Meio Ambiente, atmosfera e as
condig¢des para preservacao das formas de vida na Terra.

Ementa: Apresentacdo da Camada de Ozdnio, sua composi¢do, localizacdo
e os problemas bioldgicos causados pela sua destrui¢do

Objetivos: Como a camada de ozonio se forma?
Por que ela ¢ importante?

Como a camada de 0zonio vem sendo destruida?

Quais as conseqiiéncias bioldgicas dessa destruicdo?

Writer’'s Workshop 7

@

SugarLoafPLoP 2005 Proceedings

P ,de Ser humano -QM Raios Solares ﬂﬂb ABtmosfera
Conceito
protege filtra
localizada
Camada de Ozdni
E composta por Fossui Buraco
\ Traz

Ozdnio Consequéncias

Biologicas

m -
& S0
Propriedades Fisicas Caracteristicas Aquecimento Global Cancer de Pele
Referéncias Enciclopédia Britanica

Padrdes Relacionados: Gancho.

4.2. O Padriao Gancho
Contexto:

O professor realizou o planejamento da sua aula e ja tem os objetivos de ensino e

aprendizado bem consolidados. Agora ¢ necessario dar inicio ao que foi planejado,
mostrando ao aluno o que ele ira aprender.

No inicio de uma aula ¢ interessante mostrar ao aluno o conceito principal do assunto
que ele ird aprender e se tal conceito é relacionado com algum outro previamente
conhecido, para que o aluno possa estabelecer relacionamentos entre tais conceitos.

Para preparar o aluno para a integragdo do conhecimento é necessario construir uma
ponte entre o material novo e as idéias existentes.

Forcas:

e A introdu¢do de um novo conceito pode fazer com que o aluno se sinta
desorientado durante o inicio de uma aula virtual e consequentemente tenha seu
aprendizado dificultado. Ao estimular o aluno a relembrar conceitos que ele ja
domina e a relaciond-lo com o conceito que sera apresentado, o professor atua
como facilitador do aprendizado do aluno.

e Na aula, ao final da apresentagdo de um conceito, este pode ser usado como uma
introdugdo ao préximo conceito a ser aprendido, preparando o aluno para
receber um novo tema com base em um conceito ja assimilado.

Problema:
Como o professor pode apresentar uma nova aula ao aluno?
Solucio:

Utilize a Estratégia Cognitiva Organizadores de Avango.

Writer’'s Workshop

E SugarLoafPLoP 2005 Proceedings

Um organizador de avango ¢ uma Estratégia Cognitiva proposta por David Ausubel
(1968) que serve como topico ou categoria nos quais os fatos e os detalhes podem ser
organizados e subseqiientemente aprendidos. Os organizadores de avango sdo
importantes para auxiliar o aluno a aprender, recordar, e relacionar o material que ja
estudou. Podem incluir observagdes feitas pelo professor para ajudar o aluno a iniciar
um novo topico.

Apresente material introdutério que ajude o aluno a relacionar informacdo nova com
esquemas de conhecimentos existentes. Novas idéias e conceitos devem ser
potencialmente significativos para o aluno. Ajude-o a relacionar novas idéias com
conhecimento existente.

Estimule o aluno a responder perguntas tais como:
e O que vocé quer descobrir?
¢ Que agdes vocé deve fazer para chegar 14?
e O que voce ja sabe?

Raciocinio:

Os Organizadores de avango, propostos por David Ausubel (1968), ajudam a construir
uma fundacdo. Uma inspegdo prévia do material a ser estudado e aprendido forma uma
estrutura de conhecimento prévio sobre os quais o conhecimento novo ¢ a compreensao
podem ser construidos.

Os tipos de Organizadores de Avango sdo:

Organizadores de Avanc¢o Expositores: pode simplesmente fornecer aos alunos o
significado e a finalidade do que deve seguir. Por outro lado, pode apresentar aos alunos
informag¢@o mais detalhada do que estardo aprendendo especialmente a informacdo que
pode ser dificil de compreender.

Organizadores de Avango Narrativos: tem o formato de uma historia. Aqui o professor
fornece as idéias essenciais de uma aula ou de uma unidade que planeja ensinar
contando uma historia que incorpore as idé€ias.

Organizador de avanco superficial: o professor fornece aos alunos uma oportunidade de
inspecionar a informagdo importante que encontrard mais tarde focalizando os titulos,
os subtitulos, e as informacdes destacadas. Utilize a Estratégia Cognitiva Ensaios para
selecionar a informacdo importante, sublinhar ou destacar. Ensaio ¢ definido como
atividades que ajudam processar o material na memoria de curta duragdo deixando-o
ativo na consciéncia do aluno para que ele possa ser recuperado mais tarde [Mayer,
1987].

Organizadores graficos: fornecem aos alunos a orientacio de qual informagao
importante uma li¢do ou uma unidade ¢ composta. Dao a alunos o sentido e fornecem
também uma representagdo visual da informacao importante.

Exemplos:

No inicio de uma aula sobre “a Camada de Ozo6nio” ¢ apresentado um Organizador de
Avango Narrativo para explicar o fato de que a Terra possui um escudo que filtra os
raios solares que sdo maléficos aos seres humanos, estimulando o aluno a relembrar os

Writer’'s Workshop 9

é‘_‘_‘ SugarlLoafPLoP 2005 Proceedings

conceitos de atmosfera e raios ultravioletas e que esse filtro é composto pelo gas
0zonio, que vem sendo destruido ultimamente.

[Aula: A Camada de Ozo6nio]

9 indice Introdugédo > Atmosfera mééﬁn

MNosso planeta tem somente uma tela natural do Sol que protege todas as formas de
vida da exposicio excedente aos raios ultravioletas prejudiciais. Este filtro invisivel,
- Atmosfera encontrado na atmosfera da terra, € a camada de ozénio.
- Raios Solares

= Introdugao

= 0 Gas Ozénio
- Caracteristicas
- Propriedades Fisicas

= Camada de Ozdnio |
- Localizagdo na
Atmosfera

- Origens da Camada Ma natureza, o ozénio na atmosfera superior constantemente esta sendo

- O Buraco na Camada produzido e destruido em um ciclo natural.

= Consequéncias Entretanto, a quantidade total de ozonio & estavel Este fato pode ser pensado
Bioldgicas como a profundidade de um corrego em um determinado local. Embora as moléculas
. Cancer de Pele de agua individuais estejam se movendo, a profundidade total remanesce constante.

- Aguecimento Global Similarmente, depois que a a criagao e destruicdo natural do ozénio foram

balangados, os niveis do ozdnio permanescem estaveis. Recentemente, encontrou-se
que este equilibrio foi alterado, guando uma empresa Inglesa comegou medir a
concentracdo do ozdnio sobre a Antarctica em 1957. Percebeu-se que os niveis do

oz6nio estavam declinando firmemente.

ﬁ ﬂa Péagina .
Capa Contato B“;c.a Ajuda | \'\1_’ Introduc&o 05 da 30 Raios Solares | ’-_-/

Figura 2. Exemplo da Estratégia Cognitiva Organizador de Avanco.

= Exercicios de
Fixagado

Padrdes Relacionados: Estruturacdo do Conhecimento

4.3. O Padrio Estruturacio do Conhecimento

Contexto:

O professor estimulou o conhecimento prévio do aluno que agora sabe como o tdpico
que ele ird aprender se relaciona com conceitos que ele ja conhece. Agora o professor
deve mostrar os conceitos principais, bem como o conteido que deve ser aprendido.

Forcas:

e Para manter o estudante ativo durante uma aula virtual, o professor pode mostrar
como o conceito que vai ser apresentado serd explorado e detalhado, pois os
alunos geralmente se lembram melhor do que eles aprendem inicialmente e tém
a necessidade de saber o tamanho da aula, seus topicos principais € 0 progresso.

e O professor pode introduzir as idéias importantes no inicio da aula, mesmo que
elas ndo sejam completamente exploradas de imediato. Dessa forma o aluno tera
uma visdo geral do conhecimento que ele ira aprender.

Problema:
Como podemos introduzir novos conceitos aos alunos?
Solucio:

Utilize Mapa de Conceitos como ferramenta para a indexag@o dos contetidos envolvidos
em um ambiente virtual de aprendizagem. O ambiente deve conter uma pagina para

Writer’'s Workshop 10

SugarLoafPLoP 2005 Proceedings

cada no (Conceito) do Mapa de Conceitos e um indice, que serve como "link" para elas.
Os Mapa de Conceitos sdo uteis por diversas razdes: sdo um registro observavel da
compreensdo de um individuo; demonstram como a informaco ¢ significativa; forcam
um individuo a pensar sobre seus proprios processos de pensamento e estruturacdo do
conhecimento.

Mapa de Conceitos podem ser utilizados como ferramenta instrucional para:

e Organizar o indice do curso: construindo um mapa de todas as idéias de um
curso, os professores podem usar tal estrutura para organizar o indice do curso.
Isto fornece uma maneira para o instrutor ver conexdes entre o material do curso
e como melhor apresentar as conexdes aos alunos

e Preparar aulas especificas: melhor que mapear o indice de um curso inteiro, um
instrutor pode focalizar na tarefa mais especifica de tracar o indice de somente
uma aula para questdes de melhor organizagio.

e Apresentar o material aos alunos: um instrutor pode escolher ensinar o material
do curso com o uso de Mapa de Conceitos para mostrar claramente as conexdes
entre conceitos.

Utilize a Estratégia Cognitiva Ensaios para selecionar informagdes importantes, para
facilitar a localizacdo dos itens e sua identificagdo no texto. Ensaio ¢ definido como
atividades que ajudam a processar o material na memoria de curta duragdo, deixando-o
ativo na consciéncia do aluno para que ele possa ser recuperado mais tarde [Mayer,
1987].

Utilize a Estratégia Cognitiva Estruturacdo (na forma de listas), que sdo organizacdes
visuais da estrutura basica da informacdo em questao.

Raciocinio:

A técnica de Mapa de Conceitos, desenvolvida pelo Prof. Joseph D. Novak (1977), esta
embasada na teoria construtivista, entendendo que o individuo constroi seu
conhecimento e seus significados a partir da sua predisposicdo para realizar essa
construg¢do, € servem como instrumentos para facilitar o aprendizado do contetudo
sistematizado em conteudo significativo para o aprendiz.

Exemplos:

A figura abaixo apresenta um exemplo de um indice para a aula sobre “a Camada de
Ozo6nio”, baseado na Estratégia Cognitiva Mapa de Conceito utilizada como indexador
de conteudos durante o Planejamento da Aula (veja padrdo Planejamento). O projeto
navegacional do material instrucional foi feito de tal forma que cada pagina Web desse
material representasse um conjunto de conhecimento (tépicos) que se queria transmitir.

Writer’'s Workshop

11

SugarLoafPLoP 2005 Proceedings

= Introdugdo
iudi incid - Atmosfera
Ser humano ,‘M Raios Solares ﬂb Atmosfera - Raios Solares

= O Gas Ozbdnio

protege filtra - Caracteristicas
) - Propriedades Fisicas

localizada

Camada de Ozdni = Camada de Ozdnio

- Localizagdo na

- Atmosfera

E compasta por Possui Buraco - Origens da Camada
\ Ttaz - O Buraco na Camada
. . = Consequéncias
Ozbdnio Consequéncias B?oldgicas
Bioldgicas

- Cancer de Pele
tem 80 - Aguecimento Global

Propriedades Fisicas Caracteristicas . = Exercicios de

Agquecimento Global Cancer de Pele Fixacdo

Mapa Conceitual indice

Figura 3. Exemplo da Estratégia Cognitiva Mapa de Conceitos utilizado como
indexador de contetdos.

Padrées Relacionados: Correlacdo, Contextualizagcdo, Hierarquizacdo, Sedimentacao.

4.4. O Padriao Contextualizacio
Contexto:

Os alunos estdo estudando o material instrucional e em certo ponto gostariam de saber
como os conceitos que estdo aprendendo se relacionam com o ambiente em que vivem e
como podem aplica-lo.

Forcas:

e Para manter o aluno mais engajado em uma aula virtual € necessario fazé-lo
visualizar como o conceito que esta aprendendo pode ser aplicado no seu dia a
dia, ou em seu ambiente de trabalho e as motivag¢des para que ele possa utilizar
tais conceitos para resolver seus problemas.

Problema:
Como aplicar o conceito recentemente mostrado ao ambiente do aluno?
Solucio:

O contetdo ndo deve ser apresentado apenas de forma expositiva e descritiva. Sempre
que possivel, o tema deve ser introduzido por alguma atividade em que se resgatem os
conhecimentos e as informacdes que o aluno traz, criando-se, assim, um contexto que
ird dar um "significado" ao tema em questdo, justificando ainda o fato do por que tal
tema esta sendo estudado.

Utilize a Estratégia Cognitiva Ensaios para selecionar a informa¢@o importante, para
facilitar a localizacdo dos itens e sua identificagdo no texto. Ensaio ¢ definido como
atividades que ajudam processar o material na memoria de curta duragdo deixando-o

Writer’'s Workshop

12

é‘_‘_ SugarLoafPLoP 2005 Proceedings

ativo na consciéncia do aluno para que ele possa ser recuperado mais tarde [Mayer,
1987].

Utilize a Estratégia Cognitiva Organiza¢des que na psicologia cognitiva é também
conhecida como particionamento e sugere a aplicacdo de taxonomias, listagem de
semelhangas e diferengas, analise de forma e fungdo, listar vantagens e desvantagens e
identificar causa e efeito.

Utilize a Estratégia Cognitiva Mapa de Conceitos para expressar relacionamentos entre
os conceitos apresentados em forma de diagrama

Exemplos:

A figura abaixo apresenta parte de um Material Instrucional sobre a aula “A Camada de
Ozo6nio” elaborado com as Estratégias Cognitivas: Ensaios para selecionar a informagao
importante e facilitar a sua localizagdo e identificacdo no texto e Estruturagdo para
identificar as causas e os efeitos da exposi¢do moderada e excessiva ao Sol. Tais
conceitos s@o uteis para o aluno e a forma como sdo apresentados reforca a sua
importancia.

[Aula: A Camada de Ozdnio]
&

9 indice Consequéncias Bioldgicas > Cancer de Pele

= Introdugéo A radiaco UV-B pode causar supressao do sistema imunologico, um

- Atmosfera problema potencialmente grave em areas onde doencas infecciosas sao comuns.

. Raios Solares Em populagbes de pele clara, exposicao elevada a UV-B & o fator de risco principal
no desenvolvimento do cancer de pele; experimentos sugerem que os casos
aumentam em 2% para cada 1% de redugao do ozénio estratosférico.
= 0 Gas Ozbnio

- Caracteristicas

- Propriedades Fisicas Figura - Melanona maligno do dedo do Pé - uma
% das fotos usadas na campanha australiana contra
. o céncer Slip, Slep, Slop
= Camada de Ozénio |
. Localizagdo na

Atmosfera Entretanto, a exposicdo moderada, que ajuda a formar vitamina D na pele, é

» Origens da Gamada benéfica. O risco de cancer de pele mais sério, com melanoma, também pode
- O Buraco na Camada aumentar com a exposigao a UV-B, particularmente durante a infancia
O melanoma & agora um dos tipos de cancer mais comuns entre as pessoas de
= Consequéncias pele branca.
Biolégicas
- Gancer de Pele

- Aguecimento Global Causa Efeito
— Exposigio moderada ao 3ol Formagio de Vitamina D na pele (Benefica)
) EXEFCIC_IOS C_'IE Exposigio excessiva ao Jol Supressio do Sistema Imunologico (Maléfica)
Fixagao Tabela. Beneficios e maleficios da exposigio da pele aos ralos solares

A . 7 ' — EGILES
Capa Contato Busca Ajuda — 21 de 30

Aquecimento Global ;,

Figura 4. Material Instrucional elaborado com as Estratégias Cognitivas
Estruturagcdo e Ensaios.

Padrdes relacionados: Correlagdo, Sedimentagao

4.5. O Padriao Hierarquizagao
Contexto:

Os topicos em um curso sdo divididos em fragmentos e os fragmentos sdo introduzidos
em uma ordem que facilite resolver um problema do aluno. Muitos dos fragmentos
introduzem um conceito, mas ndo o cobrem em detalhes. Inicialmente, o tratamento
dado ¢ suficiente apenas para formagdo de uma compreensdo basica dos conceitos que
serdo refor¢ados e detalhados posteriormente em seqiiéncias adicionais.

Writer’'s Workshop 13

E SugarLoafPLoP 2005 Proceedings

Forcas:

e E necessario que o aluno conheca todos os topicos que ele ira estudar antes de
aprender cada conceito individualmente, pois o cérebro aprende melhor quando
ele consegue associar novos assuntos com assuntos aprendidos e quanto mais
associagdes forem feitas pelo cérebro, mais facil sera recuperar o conhecimento
adquirido e aplica-lo em certo ambiente.

e Topicos extensos, requerem muitos fragmentos com diversos conceitos
envolvidos. O material instrucional necessario para explicar todos os conceitos
envolvidos pode ser facilmente expandido em subitens causando polui¢do
textual. E necessario que os alunos saibam de antemio quais sio os conceitos
importantes antes de saber suas explicacdes.

Problema:
Como podemos introduzir um conceito que tem um grande numero de subitens?
Solucio:

As idéias mais gerais de um assunto devem ser apresentadas primeiramente e depois
progressivamente diferenciadas em termos de detalhes. Organize o novo material por
coordenagdo, subordinagdo e superordenagao.

Segundo a idéia de diferenciag@o progressiva, se o objetivo € ensinar os itens X, Y e Z,
deve-se, primeiro, ensinar os 3 itens num nivel geral, depois os 3 itens num nivel de
maior detalhe e assim por diante; o oposto seria ensinar tudo sobre X, depois tudo sobre
Y e depois tudo sobre Z. De inicio, serdo apresentadas as idéias mais gerais que serdo,
progressivamente, detalhadas em termos de detalhe e especificidade. Importante nesse
processo €, a cada passo, destacar o que os itens tém em comum e o que os diferencia.

Utilize a Estratégia Cognitiva Ensaios para selecionar a informagdo importante, para
facilitar a localizacdo dos itens e sua identificagdo no texto..

Utilize a Estratégia Cognitiva Estruturagdo, que sdo organizagdes visuais da estrutura
basica da informag¢do em questao.

Raciocinio:

A diferenciacdo progressiva vé a aprendizagem significativa como um processo

continuo no qual adquirem significados mais abrangentes a medida que sdo
estabelecidas novas relagdes entre os conceitos.

Exemplos:

A figura abaixo apresenta uma pagina de um material instrucional sobre “A Camada de
Oz6nio” elaborado utilizando-se a diferenciagdo progressiva, na qual todos os itens sio
apresentados antes de suas explicagdes para se ter uma visdo geral do que serd
aprendido. A Estratégia Cognitiva Estrutura¢do foi usada para organizar visualmente a
informacdo em questao.

Writer’'s Workshop 14

é‘_‘_ SugarLoafPLoP 2005 Proceedings

Aula: A Camada de Ozonio]

$ indice Camada de Oz6nio |..§mr

= Introdugéo

- Atmosfera =
-Ralos Solares 5 Localizacdo na Atmosfera - situa-se numa faixa
= O Gas Ozénio G de 25 a 30 km da estratosfera

- Caracteristicas
- Propriedades Fisicas

Origens da Camada - descargas elétricas em
= Camada de Ozbnio o 5 : i
N baixas altitudes e radiagées ultravicletas na
- Localizagdo na

_ Atmosfera estratosfera favorecem a formacéo do Ozénio
- Origens da Camada

- O Buraco na Camada

= Consequéncias

Biolégicas O Buraco na Camada -
- Cancer de Pele B i,

. Aquecimento Global ' Desde 1979 a camada de oz6nio se tornou_

= Exercicios de 4% mais fina e o principal causador foi o CFC
Fixagao

= -
ﬁ *.l 21C des Fisicas Fauiﬂa

Capa Contato Busca Ajuda 21 de 30

Localizagio na Atmosfera

Figura 5. Exemplo de material Instrucional elaborado com Diferenciagao
Progressiva.

Padrdes relacionados: Correlacdo, Contextualizagdo, Sedimentagdo

4.6. O Padrio Correlacio
Contexto:

Ao ensinar um topico complexo fora da experiéncia normal do aluno, encontre uma
metafora complexa e consistente para o topico que esta sendo ensinado. O contexto base
da metafora necessita ser de conhecimento dos alunos.

Forcas:

e Os alunos precisam de uma estratégia poderosa e consistente para pensar sobre
algum topico complexo. A estratégia deve relacionar o topico que esta sendo
ensinado ao contexto que o aluno vivencia.

e Os alunos podem ficar perdidos nos detalhes facilmente ¢ podem ndo ver como
as pegas se relacionam. Isto ¢ valido quando os detalhes sdo estranhos ou novos
aos alunos.

Problema:

Como fazer com que os alunos vejam rapidamente como o tdpico se relaciona com os
objetivos maiores da aula e entendam como os conceitos se relacionam?
Solucio:

Utilize a Estratégia Cognitiva Metaforas e Analogias. Crie uma Metafora que seja
consistente com o topico que estd sendo ensinado. Forneg¢a aos alunos uma maneira
rapida de pensar sobre o topico.

Exemplos:

Durante uma aula sobre “A camada de Oz6nio” o professor cria uma analogia entre a
Camada de Ozo6nio e um escudo que protege a Terra dos raios nocivos do Sol, com o
objetivo de trabalhar a informag¢ao de maneira diferente na memoria do aluno. Durante a

Writer’'s Workshop 15

é‘_‘_‘ SugarlLoafPLoP 2005 Proceedings

mesma aula ¢ apresentada uma metafora para relacionar a destruicdo da camada de
0zonio com o langamento de gases toxicos na atmosfera.

A Terra possui um escudo natural gue projete os seres vivos dos
raios nocivos do Sol. ' 2)

Ap pela de gases CFC destréi o ozonio da
atmosfera, contribuindo para o aumento do Buraco na Camada de
ozbnio, que protege a vida na Terra

Figura 6. Exemplo de Metaforas e Analogias inseridas no material instrucional.
Padrdes relacionados: Sedimentacao.

4.7. O Padrio Sedimentac¢io
Contexto:

O aluno estudou uma quantidade razoavel do material instrucional e precisa que essa
informacao seja trabalhada por mais tempo em sua memdria, enquanto ele se prepara
para adquirir novos conhecimentos.

Forcas:
e O cérebro consegue se concentrar em um determinado topico por um periodo
limitado. Apos esse periodo os alunos ndo conseguem aprender eficientemente.
e E preciso manter o conhecimento novo na memdria do aluno e fazer com que ele
estabeleca relagcdes com o que ja conhece, bem como exercita-lo em problemas
reais.

Problema:

Como fazer com que o novo conhecimento adquirido fique sendo trabalhado na
memoria de curta duragdo do aluno, enquanto ele se prepara para adquirir novos
conhecimentos?

Solucio:

Integre o novo conhecimento a outras areas de conhecimento.

Os materiais instrucionais devem tentar integrar o material novo com informacao

previamente apresentada por meio de comparagdes que referenciem idéias novas e
velhas, consideracdes, tabelas, conclusio e exercicios.

Para facilitar esse processo, o material instrucional deve procurar integrar qualquer
material novo com material anteriormente apresentado (referéncias, comparacdes etc.),

Writer’'s Workshop 16

te.

SugarLoafPLoP 2005 Proceedings

inclusive com exercicios que exijam o uso do conhecimento de maneira nova (por ex:
formulacdo de questdes de maneira ndo familiar).

Raciocinio:

Reconciliagdo Integradora ¢ o processo pelo qual a pessoa reconhece novas relagdes
entre conceitos até entdo vistos de forma isolada.

Exemplos:

A figura abaixo apresenta parte do material instrucional sobre “A Camada de Ozo6nio”,
cuja Retencdo de Conhecimento foi elaborada com um exercicio do tipo “selecione”,
com o objetivo de manter o conhecimento recentemente adquirido na memoria de longa
duragdo do aluno e fazer com que ele estabeleca relagdes com o que ja conhece.

[Aula: A Camada de Ozénio]
—
9 indice Exercicio de Fixacdo > Questdo 1 .m.%mr
= Introdugéo 1) Qual dessas Moléculas é a de Ozénio?
- Atmosfera
- Raios Solares
) -
= O Gas Ozbnio -
- Caracteristicas \
- Propriedades Fisicas
= Camada de Ozdénio
- Localizagdo na
Atmosfera CORRETO!
- Origens da Camada AMolécula de Ozénio possui 3 dtomos de Oxigénio.
- O Buraco na Camada
o Consequéncias
Biologicas
o Exercicios de
Fixacao
+ Questdc 1
- Questdo 2
- Questdo 3
«
i & » 2 [. P4gina
Al ol Exercicios e Questao 2 -‘b’"__a

Figure 7. Exercicio do tipo “selecione” projetado para realizar a Reten¢ao de
Conhecimento

5. Consideracoes Finais

A colecdo de Padroes para EAD proposta neste trabalho foi decorréncia do estudo da
aplicacdo das Estratégias Cognitivas utilizadas por Liebman (1998) como uma forma de
apoio aos professores na tarefa de projetar material instrucional para EAD com
qualidade. Os estudos de caso realizados [Almeida e Silva, 2004] proporcionaram a
identificacdo e escrita dos Padrdes para EAD apresentados aqui e permitiram verificar
que as Estratégias Cognitivas aumentam a usabilidade do material instrucional para
EAD e, consequentemente, sua qualidade.

Como trabalho futuro, espera-se organizar a colecdo de Padrdes para EAD
obtida nesta pesquisa, visando a cria¢do de uma Linguagem de Padrdes para EAD que
capture principios pedagodgicos e boas praticas de projeto de interagdo, abordando
questdes relativas ao projeto do /ayout e utilizagdo de multimidia de uma forma que
englobe um maior nimero de problemas encontrados pelos professores durante o
projeto e a geracdo de materiais instrucionais para ambientes Web.

Writer’'s Workshop

17

E SugarLoafPLoP 2005 Proceedings

6. Agradecimentos

Agradecemos ao apoio recebido do projeto TIDIA-Ae da FAPESP (processo
03/08276-3). Agradecemos ao nosso shepherd, o professor Paulo Cesar Masiero, pela
valiosa contribui¢do na melhoria dos padrdes apresentados nesse trabalho.

Referéncias
Alexander, C. et al. “A Pattern Language”. Oxford University Press, N.Y., 1977.

Almeida, V. P.; Silva, J. C. A. (2004) Estratégias Cognitivas para Aumento da
Qualidade do Hiperdocumento que Contém o Material Instrucional para EAD. In:
IHC 2004 - VI Simpdsio sobre Fatores Humanos em Sistemas Computacionais. 17-
20 de Outubro de 2004. Curitiba

Ausubel, David P. (1968). Educational Psychology, a Cognitive View. New York: Holt,
Rinehart and Winston, Inc.

Beckman, P. Strategy Instruction. ERIC Clearinghouse on Disabilities and Gifted
Education. http://ericec.org/digests/e638.html

Borchers, J. A Pattern Approach to Interaction Design. John Wiley & Sons Ltd, 2001.

Frizell, Sherri S. “A Pattern-Based Design Methodology for Web-based Instruction”.
Thesis Research. Auburn University, September, 2001.

Gagné, R. M. The Conditions of Learning. 3rd editon. Holt, Rinehart e Winston, 1974.

Liebman, J. Teaching Operations Research: Lessons from Cognitive Psychology.
Interfaces, 28 (2), 1998. 104-110.

Meszaros G. and Doble J. (1996) “MetaPatterns: A Pattern Language for Writing
Patterns”, in Proceedings of the Conference on Pattern Languages of Programming
PloP 1996, Allerton Park, Illinois, Sept. 4-6, 1996,
http://www hillside.net/patterns/writing/patternwritingpaper.htm.

Mayer, R.E. (1987). Educational Psychology: A cognitive approach. Boston: Little,
Brown.

Novak, J. D. (1977). A Theory of Education. Ithaca, NY: Cornell University Press.

PPP. Pedagogical Patterns Project. Website visited in 30/01/2005
http://www.pedagogicalpatterns.org.

Rosenshine, B. (1997) The Case for Explicit, Teacher led, Cognitive Strategy
Instruction. Annual Meeting of the American Educational Research Association.
Chicago. http://www.epaa.asu.edu/barak/barak1.html

Writer’'s Workshop 18

E SugarLoafPLoP 2005 Proceedings

A Pattern Language for Adaptive Distributed Systems
Francisco José da Silva e Silva', Fabio Kon?, Joseph Yoder®, Ralph Johnson®

'Department of Informatics - Federal University of Maranhdo
*Department of Computer Science - University of Sdo Paulo
*Department of Computer Science - University of Illinois at Urbana-Champaign

fssilva@deinf.ufma.br, kon@ime.usp.br,
joe@joeyoder.com, johnson@cs.uiuc.edu

Introduction

Modern computing environments are characterized by a high level of dynamism. Two
major kinds of dynamic changes occur frequently. The first refers to structural changes
such as hardware and software upgrades, protocol and API updates, and operating
system evolution. The second refers to dynamic changes in the availability of memory,
CPU, network bandwidth and, in mobile systems, connectivity and location. Drastic
changes may occur in a few seconds, impacting the performance of user applications
profoundly. Among existing production software systems few offer support for
managing, adapting, and reacting to these changes; most of the times, all the work is left
to users and system administrators who must take care of them manually.

Fortunately, this scenario is gradually changing as researchers in academia and
industry investigate elegant and robust ways to build self-adaptive systems for the
dynamic, distributed environments of the future. In this paper we present a pattern
language that captures some of the most relevant problems and solutions faced by
developers who accept the challenge of building automatically configurable and
adaptive distributed systems.

Dynamic Reconfiguration

Services must grow to meet increasing usage, new requirements, and new applications.
However, flexibility usually conflicts with availability. In conventional systems, the
service provider must often shut down, reconfigure, and restart the service to update or
reconfigure it. In many cases, it is unacceptable to disrupt the services for any period of
time. Disruption may result in business loss, as in the case of electronic commerce, or it
may put lives in danger, as in the case of mission critical systems delivering disaster
information, for example. Research in dynamic reconfiguration seeks solutions to this
problem.

By breaking a complex system into smaller components and by allowing the
dynamic replacement and reconfiguration of individual components with minimal
disruption of system execution, it is possible to combine high degrees of flexibility and
availability.

Self-Adaptation

Highly heterogeneous platforms and varying resource availability motivates the need for
self-adapting software. Applications can improve their performance by using different

Writer’s Workshop 19

E SugarLoafPLoP 2005 Proceedings

algorithms in different situations and switching from one algorithm to another according
to environmental conditions. Significant variations in resource availability should
trigger architectural reconfigurations, component replacements, and changes in the
components' internal parameters.

Consider, for example, the network connectivity of a mobile computer as its user
commutes from work to home. As the user switches from a wired connection at the
office, to a wireless WAN using a cellular phone, and finally, to a modem connection at
home, the available bandwidth changes by several orders of magnitude. The movement
is also accompanied by changes in latency, error rates, connectivity, protocols, and cost.

Ideally, we would like to have a system capable of maintaining an explicit
representation of the dependencies among the network drivers, transport protocols,
communication services, and the application components that use them. Only then,
would it be possible to inform the interested parties when significant changes occur.
Upon receiving the change notifications, applications and services would be able to
select different mechanisms, replace components, and modify their internal
configuration to adapt to the changes, optimizing performance.

Designing Self-Adaptive Systems
The design of a self-adaptive system must answer three key questions:

1. When to adapt? How can the system detect that it is time to adapt (change its
behavior) so that its performance will improve or that changes in the
environment will not harm system correct functioning.

2. What do adapt? Which parts, elements, components of the system (e.g.,
mechanisms, algorithms and protocols) are subject to being adapted or replaced?

3. How to adapt? What are the mechanisms that allow for change in behavior?
Given a certain system and environmental state, which adaptations would be
more beneficial?

Only by addressing the three key questions above, a software framework can
provide a comprehensive solution to the problem of building effective self-adaptive
systems. In the remaining of this paper we present a pattern language that addresses the
most important aspects of dynamic reconfiguration and adaptation in distributed
systems.

Note, however, that there are other important non-functional aspects that are
orthogonal to the patterns in this language. Aspects such as Security, Fault-Tolerance,
and Real-Time can be essential factors for consideration depending upon the different
environments the system will be deployed. In these cases, the reader should refer to
patterns specific to these domains.

Writer’s Workshop 20

te.

SugarLoafPLoP 2005 Proceedings

I — Monitoring

i adds dynamic .
Distributed ﬂmﬁh. Adaptive
i o

Monitor T T T T T T T MMoniior

(1) (2)

\ environment data /
\. / II — Event Detection

Event
Detector
(3)

environmental change notification

2 S
/ \ IT — Dynamic Configuration
i adds dynamic .
Au tomatic ¢ l;u:ﬁj: Adaptive
Reconfigurator [~ -~~~ ~-=——~ Reconfigurator
(4) (5)

Figure 1: Pattern Language Structure

Figure 1 illustrates the pattern language structure, which is composed of three
parts: monitoring, event detection, and dynamic configuration. Part I helps answer the
"When" question. These patterns are related to monitoring distributed environments.
The DISTRIBUTED MONITOR (1) and the ADAPTIVE MONITOR (2) patterns describe
monitoring solutions for applications that must obtain a global view of the state of
distributed resources to decide when adaptations should be performed. The
DISTRIBUTED MONITOR (1) provides a simpler solution while the ADAPTIVE MONITOR
(2) describes an extension that supports dynamic reconfiguration of the monitor. Both
monitors provide monitoring data to event detection mechanisms. Part II presents the
EVENT DETECTOR (3), which helps detect when an adaptation should be performed and
decides "What" adaptations should be performed. When the need for an adaptation is
detected (with the information provided by the monitors), the EVENT DETECTOR (3)
notifies the mechanisms responsible for the dynamic reconfiguration of the system.

Part III shows "How" adaptation can be performed with the AUTOMATIC
RECONFIGURATOR (4) and the ADAPTIVE RECONFIGURATOR (5) patterns. Again, the
former pattern describes a simpler solution while the latter describes an extension that
supports dynamic reconfiguration of the reconfiguration process, leading to a
"reconfigurable reconfigurator".

These patterns work together to solve the problem of describing what resources
we are concerned about, when to adapt and how to adapt. We now present the five
patterns of the pattern language. The patterns are presented in the same order in which
information in the system flows, i.e., the monitors collect information, passing it to the
detector, which, in its turn, notifies the reconfigurators.

Writer’s Workshop 21

SugarLoafPLoP 2005 Proceedings

1. DISTRIBUTED MONITOR

Motivation:

In order to improve its performance by means of dynamic configuration, a system must
be aware of the dynamic state of the environment in which it is executing. In a
distributed system, the environment is spread throughout a collection of, possibly
heterogeneous, machines linked by, possibly heterogeneous, network links. Monitoring
resource availability can help detect when the system reaches a state in which dynamic
reconfiguration would improve application performance or avoid its breakage

Problem:

How to monitor the resources of a distributed system efficiently?

Forces:

* The state of a distributed system is composed of many variables distributed
across many machines in various locations. The communication delays and
relative speeds of computations of asynchronous distributed systems make it
difficult to detect a global state in which dynamic adaptation would be desirable.

* Trying to detect opportunities for dynamic adaptation by looking at isolated
machines is easier but this approach cannot provide optimal solutions; it is very
likely that relevant global information will be missing.

* Having a single centralized node be aware of the state of the entire system might
be infeasible since this compromises scalability (the central node becomes a
bottleneck as the system grows) and fault-tolerance (the central node becomes a
single point of failure). One can approximate a centralized view of the global
state by sending messages from all the nodes to the central node at a high rate.
But this may impose an extremely high communication cost and make the
central node a single point of failure.

* On the other hand, replicating the central node to avoid a single point of failure
increases system complexity and network usage.

* Adopting a lazy protocol in which the state of individual nodes is sent to the
central server at a slow rate could solve the network congestion problem but
would probably make the data in the central node stale and therefore of little use.

Solution:

Organize the distributed system as a hierarchy of clusters, as illustrated in Figure 2, so
that each cluster includes the machines in a local area network, typically containing
from a few to approximately one hundred machines (this number can vary depending
upon requirements and the environment). Provide a single (possibly replicated)
Monitoring Server for each cluster. Have the cluster nodes send periodic information
about their local state to the Monitoring Server, as illustrated in Figure 3. These
messages may be sent by multicast to all replicated copies of the Monitoring Server
(e.g., using the IP-Multicast protocol) so that the network load is not increased by an
increase in the number of replicas.

Writer’'s Workshop

22

SugarLoafPLoP 2005 Proceedings

Figure 2 — Hierarchy of computer clusters

Monitoring

Server

d

{ Local state

Local Resource
Monitor

Local Resource
Manitar

Local Resource
Manitar

Figure 3 — Distributed Monitoring within a single cluster of machines

To avoid unnecessary messages in the network, the frequency with which the
messages are sent to the Monitoring Server cannot be high. Thus, have each node
monitor its resources locally at a higher rate (e.g., once per minute) and only send
update messages to the Monitoring Server when a significant change in the local state
occurs. If no changes occur during a long period (e.g., 5 minutes) then send an update
message to the Monitoring Server as a keep-alive. If it is not important whether the

nodes are alive or not, then this keep-alive message is not necessary.

Writer’'s Workshop

23

SugarLoafPLoP 2005 Proceedings

The Monitoring Servers of different clusters may be organized in a hierarchy so
that consolidated information about cluster state can be exchanged across clusters in a
lazy fashion. The farther a Monitoring Server is from a certain machine, the less
accurate this monitoring information will be for this machine since changes might have
happened to the machine by the time the Server processes the information.

Example:

A distributed system is composed of several distributed resources, such as CPUs,
memory, disks, and network links. For each resource, one would like to know the
current usage level. Resource usage can be expressed by several properties. For a
network link, for instance, properties could be available bandwidth, current latency,
number of collisions, etc. In such a system, it would be desirable to have a load
balancing mechanism that would migrate tasks from one machine to another depending
on resource availability on the distributed system.

Consequences:
+ Network usage is limited (can be fine tuned through the periodicities).
+ One can have a good approximation of the system global state.

Implementation in the hierarchical case can be complex, compared to a single
centralized server.

To implement the monitoring service component that collects the state of local
resources in each node one must define, in advance, which machine resources
will be monitored.

Resulting Context:

By applying this pattern, a collection of machines, possibly organized in a hierarchy of
machine clusters, can be monitored with low network and processor overheads. Thus, it
is possible to get an approximate view of the global state of the resources in the
distributed system. This pattern requires that the kinds of resources to be monitored be
defined a priori; if there is a need for adding new types of resources to be monitored at
runtime, then one should use the ADAPTIVE MONITOR (2) instead. This pattern describes
how to collect information about “When” to adapt, which will be used by the EVENT
DETECTOR (3) for triggering the adaptations.

Related Patterns:

* The Publisher-subscriber pattern [Buschmann:1996] describes a mechanism for
objects in a distributed system to declare interest in receiving information about
a certain topic and for publishing information to be sent to the interested objects.

Writer’'s Workshop

24

E SugarLoafPLoP 2005 Proceedings

Known Uses:

* Grid computing systems instantiate this pattern to monitor the geographically
distributed machines of the Grid. The Globus toolkit [Foster:1997], for example,
uses the LDAP protocol for communicating information about resource
availability and status of Grid nodes; a federation of LDAP servers plays the
roles of the monitoring servers of this pattern. The InteGrade Grid middleware
[Goldchleger:2003] also instantiates the pattern but uses CORBA for
communication and a new service, called Global Resource Manager, as the
monitoring server.

* The 2K operating system [Kon:2000, Kon:2005] instantiates this pattern to
maintain an approximate view of the state of machines in the distributed system
and uses this view as a hint for remote execution of user applications.

* The Framework for Adaptive Distributed Systems [Silva:2003] developed by
Silva in his PhD work provides a generic object-oriented framework for
instantiating this pattern based on CORBA distributed objects. Communication
is performed with the CORBA event service, which is an instantiation of the
Publisher-Subscriber pattern [Buschmann:1996].

Variant:

For some adaptive distributed applications there is no need for a centralized view of the
state of distributed resources (e.g., a video client retrieving a movie from a video
server). Instead, the application is only concerned with the state of resources located in
the path between its components. In such a case, there is no need for a Monitoring
Server. Each software component responsible for monitoring a resource should
implement an interface through which the state of the resource can be queried. It should
also implement a notification service through which applications can register interest in
being notified about changes on the state of the monitored resource.

Implementation:

To implement this pattern, a system developer must implement and deploy Local
Resource Monitors for each of the resources to be monitored. When implementing
monitors for resources such as CPU and memory, almost always it is necessary to deal
with the specificities of each operating system as there are no widespred standards for
getting this kind of information. In Linux systems, for example, it is common to use the
/proc pseudo-filesystem to get information about resource usage such as CPU and
memory. In Windows systems, it is common to rely on Win32 API functions such as
GlobalMemoryStatus to obtain memory information and RegQueryValueEx to
get CPU consumption information from the Windows registry.

Local Resource Monitors must send data updates to the Monitoring Server
periodically. This one-way communication can be implemented in various ways: from
rudimentary sockets (using UDP, TCP or IP-Multicast channels) to higher level
middleware mechanisms such as Java RMI, CORBA IIOP, or SOAP.

Writer’s Workshop 25

E SugarLoafPLoP 2005 Proceedings

2. ADAPTIVE MONITOR

Motivation:

In very dynamic systems, we may not know a priori which objects and resources should
be monitored. As new applications are installed in a system, we may need to monitor
information that was previously irrelevant or not available.

Problem:

How to monitor system objects and resources that are not known at the design phase of
the monitoring system?

Forces:

* Limiting the types of objects and resources that are monitored makes it easier to
develop adaptive strategies because there is less information to be managed and
analyzed. However, it is hard to predict ahead of time which objects and
resources are available or needed as a system or demands on the system evolves.

* Systems, services, and resources change often as the requirements evolve. The
monitoring system must cope with such changes by starting to monitor new
things and stopping the monitoring of things that are no longer relevant.

* A distributed system is composed of several distributed resources, such as
workstations, network links, and application servers. The usage of a resource can
be expressed by different properties that adaptive applications might be
interested in monitoring. For a network link, for instance, properties could be
available bandwidth, current latency, and number of collisions. Therefore, a
flexible way to describe distributed resources and their monitoring properties is
needed.

Solution:

Define an Object Monitor responsible for gathering the state information of a single
resource property and allow dynamic loading and unloading of these monitors in the
various nodes of the distributed system. Each resource property could be defined with
three attributes: resource name, property name and value type (e.g., <“Network Link”,
“Available Bandwidth”, “Mbps”> <“CPU”, “CPU load”, “percentage’>).

Define a standard Object Monitor interface regardless of the property to be
monitored and define a standard protocol and message format to be supported by the
Monitoring Server. Each Object Monitor registers itself with the Monitoring Server as
part of its instantiation process. Object Monitors send a message to the Monitoring
Server whenever there is a significant change on the state of the resource properties they
monitor, as illustrated in Figure 4.

Writer’s Workshop 26

E SugarLoafPLoP 2005 Proceedings

Monitoring [ﬂj]
Server

|
)

‘ Notify change

CPU Resource Disk Resource
Manitoring Object Maonitoring Object Notwork Resouroe
Monitoring Object
Memory Resource Memoary Resource
Maonitoring Object Monitoring Object

Figure 4 — Monitoring different kinds of resources

Example:

Consider the example described in the DISTRIBUTED MONITOR (1) pattern, where the
CPU and memory of distributed machines are monitored to provide load balancing.
When a machine becomes congested, with high CPU or memory usage, the load is
balanced by migrating tasks to a machine with lower load. If new applications
composed of several collaborative tasks must now be executed, a new resource property
(available bandwidth) should also be monitored to avoid allocating collaborative tasks
to different machines connected by low bandwidth links. Therefore, a new Object
Monitor must be implemented (and dynamically loaded into the system) to monitor the
available bandwidth.

As another example, consider a Web application for a bookstore. The load
balancing among application servers can be based on CPU load. If, during the
application execution, the administrator realizes that the network (and not the CPU) has
become the bottleneck, an Object Monitor can be dynamically loaded into the
application servers to redistribute the load based on the number of network connections
rather than using just the CPU load as the scheduling parameter.

Consequences:

+ New or different resource properties can be monitored without affecting the code
of the monitoring infrastructure

+ The monitoring service can start monitoring new or different resource properties
without interrupting the service

New resource properties should apply to the standard Object Monitor interface,
which can limit the expressiveness of the resource property to be monitored

Writer’s Workshop 27

te

SugarLoafPLoP 2005 Proceedings

Implementation:

To implement such monitoring functionality, define a Resource Monitoring Object
(RMO) that monitors a specific resource property. Each RMO monitors a single
resource property that can correspond to physical resources such as memory, CPU, disk,
and network links, but it can also monitor software parameters, such as the number of
open threads in a server object.

Every resource property has a set of associated operation ranges, which are
defined by the application developer. For example, one could use the following
operation ranges for monitoring percentage of processor utilization: [0%, 10%), [10%,
25%), [25%, 50%), [50%, 75%), and [75%, 100%].

In all hosts containing resources that must be monitored, instantiate a Resource
Monitoring Object for each resource property to be monitored. The RMO periodically
verifies the current operation range of the resource property and only notifies registered
components about changes on the operation range, limiting the number of monitoring
messages in the distributed system. Figure 5 shows the RMO interface using CORBA
IDL.

interface Rmo {
MonitoredEntities: :Parameter
MonitoredEntities: :Entity

parameter ();
me ();

unsigned long
unsigned long

void suspend
void resume
void

frequency ();
current_range

()
()

change_frequency (in unsigned long new_frequency);

()

oneway void shutdown (};

b

Figure 5 - Resource Monitoring Object interface

The parameter () method returns a reference to the resource property being
monitored while me () returns a reference to the monitored entity.
current range () returns the current operation range of the monitored property,
allowing the developer to use, optionally, a pull approach in complement to the push
mechanism described above. As an example, consider the operation ranges described
above for monitoring percentage of processor utilization. The method
current range () would return 2 if a monitored processor usage is in the range
[10%, 25%). The RMO interface also allows temporary suspension of the monitoring
process (suspend ()) as well as its resumption (resume ()).
change frequency () alters the frequency used for verifying the operation range
and shutdown () stops the monitoring process.

Figure 6 presents the class diagram for a Resource Monitoring Object
responsible for monitoring the CPU usage on a host. The design is extensible, allowing
the developer to construct easily new RMOs for monitoring other resource properties.
To do so, the developer has to rewrite two classes, fully reusing the other five ones.

The RMOImpl class implements the Resource Monitoring Object interface
illustrated in Figure 5. CpuMonitor and RmoCpulImpl are specific for the CPU
usage property. The CouMonitor class contains the code that actually verifies the

Writer’'s Workshop

28

E SugarLoafPLoP 2005 Proceedings

CPU usage with a given frequency encapsulated by the Frequency object. The user
can change the frequency value through the change frequency () method of the
RMOImpl object. This method calls a set () method of the Frequency object. The
user can also suspend or resume the monitoring by calling the suspend () and
resume () methods of the RMOImpl object. These methods call the
SuspendMonitor object that implements a monitor used by the CpuMonitor
thread to verify if it must continue the CPU monitoring at the end of every monitoring
interaction. A CurrentRange object encapsulates the value of the latest CPU usage
calculated. The user can check the current CPU operation range by calling the
RMOImpl current range () method. The Notifier thread is responsible for
sending a message to the Monitoring Server whenever there is a change on the CPU
usage operation range.

]

Entity Repository Monitoring Server
D .
| |
= |
| |
| i
i |
Fraimp! e Thread=s= CurrentRange
Motifier

VAN

Frequency

RmoCpulmpl SuspendMonitor < [Nreads>
CpuMonitor

Figure 6 - Resource Monitoring Object monitoring CPU usage on a host

Resulting Context:

By applying this pattern, a collection of machines can be monitored with low overheads,
enabling the construction of an approximate view of the global state of distributed
resources. With the ADAPTIVE MONITOR (2), the set of resources and the type of
resources that are monitored can be reconfigured at runtime, enabling the monitoring of
resources that were not anticipated at design time. This solution provides a large degree
of flexibility. The data provided by the monitor will be processed by the EVENT
DETECTOR (3), which will trigger the adaptation actions.

Writer’s Workshop 29

SugarLoafPLoP 2005 Proceedings

Related Patterns:

The Component Configurator pattern [Schmidt:2000] describes a mechanism for
dynamically loading and configuring components into a running execution
environment. This pattern can be used to load new monitoring objects
dynamically.

The TypeSquare pattern commonly used in Adaptive Object-Models (AOM) can
be used for implementing the resource properties that can monitored
[Yoder:2001; Yoder:2002]. The resource properties can be stored in a XML file
that can be read at run-time in order to dynamically build the objects responsible
for monitoring new defined resource properties without the necessity of
recompiling and restarting the LocalResourceManager. AOM describes how to
read the metadata file and dynamically build these objects using the Interpreter
and Builder patterns [Gamma:1994].

The Properties Pattern can be used for implementing different types of resource
properties that are monitored [Foote:1998; Yoder:2001; Yoder:2002].

Known Uses:

The Framework for Adaptive Distributed Systems [Silva:2003] allows
specifying which resources will be monitored and how they will be monitored
dynamically. This is achieved by dynamically loading new monitoring objects
into the system runtime.

The QuO Quality Objects Framework [Zinky:1997, Vanegas:1998, BBN:2002]
provides a powerful CORBA-based framework for building quality of service
aware, distributed applications. It instantiates this pattern using "system
condition objects" as adaptable monitors.

A mechanism for providing network environmental information in mobile
wireless networks [Sudame:1997].

An environment to support dynamic adaptation of distributed applications using
the LuaORB system [Moura:2002].

Writer’'s Workshop

30

E SugarLoafPLoP 2005 Proceedings

3. EVENT DETECTOR

Motivation:

By analyzing the data provided by a distributed monitoring system, it is possible to
identify relevant changes on resource availability that would impact application
performance. By sending notifications to interested parties, it is possible to allow
adaptive applications to reconfigure themselves to improve their performance in face of
environmental changes.

Problem:

How to detect and notify applications about changes in the environment?

Forces:

* Tightly coupling the code responsible for detecting environmental changes with
the application code adds unnecessary complexity, making the application code
harder to implement, debug, and maintain. It also does not allow sharing the
code with other environment-aware applications executing on the distributed
system.

* On the other hand, each adaptive application can have specific needs concerning
which environmental changes are relevant for dynamically adapting it.

* The notification of some environmental changes should be treated differently
from others, leading to the need to apply different notification policies in
different cases.

Solution:

An adaptive application must be notified of relevant changes in resource availability.
These notifications can be implemented as asynchronous events. Expand the Monitoring
Server interface (from the DISTRIBUTED MONITOR (1)) to allow the definition of event
evaluators through conditional Boolean expressions. The Boolean expression indicates
changes on resource property state. For instance, a "heavy use" event can be triggered
when the percentage of the CPU usage on a host becomes greater than 80%.

Some applications need to correlate multiple events, such as the percentage of
CPU usage and the amount of main memory available on a host. If this is the case, the
definition of event evaluators must support composite events by allowing the Boolean
expression to be composed of several resource properties.

Define an Event Channel to bind the event producer (Extended Monitoring
Server) and event consumers (adaptive applications). The Event Channel implements
the event delivery policy. You can organize your system with more than one Event
Channel, each one responsible for notifying related events. For instance, a network
channel may be associated with all network related events while a hardware channel
may be associated with all events related to changes on hardware components. Figure 7
shows an abstract diagram of this architecture.

Writer’s Workshop 31

E SugarLoafPLoP 2005 Proceedings

Adaptive E]
. " Application
Extended E] Notify event
Monitoring I) Notify event
Server
Event Channel
‘ \ Adaptive E]
®) Application

[Notify change

[
Resource
Monitoring Object

Figure 7 — Event Detector structure

Figure 8 illustrates the interactions between the pattern components. The
adaptive application registers itself with the Event Channel, passing the list of
environmental changes (events) in which it is interested. The resource monitoring
objects (RMOs) continuously monitor the distributed system resources. Each RMO
monitors a specific system parameter, notifying the Monitoring Server whenever a
significant change is detected. The Monitoring Server evaluates all Boolean expressions
containing the notified parameter and notifies the Event Channel whenever a Boolean
expression is evaluated to true, meaning that an event has been detected. The Event
Channel then notifies all adaptive applications that registered interest in the event that
was triggered.

Example:

Consider a distributed system whose goal is to provide load balancing by migrating
tasks from one machine to the other by looking at machines with congested CPUs and
high memory usage. In each machine, instantiate two Object Monitors for monitoring
the percentage of CPU load and the amount of memory available. Through the
Monitoring Server interface, define a new Boolean expression that triggers an event
every time a machine becomes congested, such as: CPU load > 80% and
memory available < 20MB. Define an event channel used to notify the
occurrence of events. The event channel abstraction is provided by some distributed
object middleware services, such as the CORBA event service [CORBA:2002]. The
channel uses a push approach, where the Monitoring Server registers itself as an event
producer and the components of adaptive applications responsible for the dynamic
reconfigurations register themselves as consumers.

Writer’s Workshop 32

te

SugarLoafPLoP 2005 Proceedings

I Monitoring Server Event Channel Adaptive Application
RMO hinatiaetink - St il e jihiutin, st ot et

register_interest (event)

notify_change

notify (event)

notify (event)

Figure 8 - Event detection and notification

Consequences:
+ Applications can share event evaluator definitions but also define new ones.
+ Allows flexible, event-specific delivery policies.

— Separating the code responsible for detecting environmental changes from
application code adds complexity and can also lead to communication delays if
they are deployed on separate machines.

Implementation:

Define a Monitoring Server responsible for collecting notifications of changes on the
operation range of resource monitoring properties being monitored by Resource
Monitoring Objects (from the ADAPTIVE MONITOR (2)). The Monitoring Server must
allow the definition of events that are triggered based on a Boolean expression. Figure
9 shows a CORBA IDL interface for defining such resource events.

interface Event {

string eid();
string description();

b

interface ResourceEvent : Event {
string expression ();
unsigned long duration_time ();

MonitoredEntities: :EntityType metype();
I

Figure 9 - IDL interface for an Event

Writer’s Workshop 33

E SugarLoafPLoP 2005 Proceedings

duration time specifies the amount of time that the Boolean expression
must hold true to trigger an event notification. This avoids the notification of false
events, based on temporary situations such as a short peak on CPU usage that occurs
when a heavy application is started.

Since in a distributed system it is not guaranteed that messages are delivered in
the same order that they were generated, each message from a RMO must include a
timestamp. The Monitoring Server must maintain the last timestamp received from each
RMO, discarding older messages without processing them.

Figure 10 shows the Monitoring Server interface. The register () method
allows registering an event type and starts its detection. The interface allows the
suspension and restart of the detection process though the suspend () and
resume () methods, respectively. The unregister () method stops the detection of
a given event type. An RMO notifies changes on the operation range of the resource
being monitored through the change parameter () method. To do so, it has to be
previously registered through the rmo_register () method. If the execution of an
RMO is suspended, resumed, or stopped the Monitoring Server must be informed
through the rmo suspend (), rmo resume () and rmo unregister ()
methods, respectively. The reason to do so, is that if an RMO is suspended or stopped,
the Monitoring Server should not evaluate the event types whose Boolean expression
contains the resource property that is no longer being monitored.

interface MonitoringServer({

void register (in ResourceEvent re);

void unregister (in string eid) raises(NoSuchEvent, EventNotBeeingEvaluated) ;
void suspend (in string eid) raises(NoSuchEvent, EventNotBeeingEvaluated) ;
void resume (in string eid) raises (NoSuchEvent, EventNotBeeingEvaluated) ;

void change_parameter (in string meid, in string pid,
in unsigned long new_range) ;

void rmo_register (in string strRmo, in string meid, in string pid);
void rmo_unregister (in string meid, in string pid);

void rmo_suspend (in string meid, in string pid);

void rmo_resume (in string meid, in string pid);

range_list list_me_parameter_range (in string meid) ;

Figure 10 - MonitoringServer interface

The MonitoringServer interface uses the following terminology: a monitored
distributed resource is called a monitored entity. An object representing every
monitored entity and all its monitored parameters must be previously created through an
Entity Repository. The Entity Repository will create a globally unique identifier for
monitored entities and parameters. In the MonitoringServer interface, eid stands
for event identification, me id stands for monitored entity identification and pid for
parameter identification.

Figure 11 shows the class diagram of the Monitoring Server implementation.
The MonitoringServerImpl class acts as a mediator. It receives information
about resource utilization from remote RMOs and maintains a local list of entities being

Writer’s Workshop 34

é‘_‘_‘ SugarLoafPLoP 2005 Proceedings

monitored (instances of the MonitoredEntity class, which contains a description of
the entity and its current value). MonitoringServerImpl also keeps a list of all
active events whose descriptions are instances of EventDescription. An instance
of the Calculator class performs the evaluation of the Boolean expressions defined
in the event descriptions. Each time a Boolean expression is evaluated to true, a
corresponding SatisfiedEvent 1is constructed. Once every second the
EventNotifier checks for events whose expression holds true for the duration
specified in the event definition. It then uses an Event Service (e.g., the CORBA one) to
send notifications on event channels to which adaptive applications can listen to receive
the notification of event occurrences.

Event Service Resource Event Repository RMO
A %
| 1)
! | sremote=> WMonitoredEntity
I
i i * description
)
| N currentValue
: : i
<<Thieacss MonitoringServerimpl
- i - Cakulator
EventNotifler activeEventsList
satisfiedEventsList

.

EventDescription

it et ————— |
| SatisfiedEvent booleanExpression

evensevahsied D fue

events being evaluated

Figure 11 - Structure of the Monitoring Server implementation including event detection

Resulting Context:

By applying this pattern, it is possible to detect the occurrence of events based on the
state of resources in a distributed system and to notify interested parties. In particular,
the AUTOMATIC RECONFIGURATOR (4) and the ADAPTIVE RECONFIGURATOR (5) patterns
rely on this event notification for carrying out the dynamic reconfiguration to adapt the
applications.

Related Patterns:

* The instantiation of the Publisher-Subscriber pattern [Buschmann:1996] depends on
a mechanism for matching subscriptions descriptions and event descriptions. This
mechanism can be implemented by using the EVENT DETECTOR (3) described here.

Writer’s Workshop 35

E SugarLoafPLoP 2005 Proceedings

* The Observer design pattern [Gamma:1994] describes an even simpler notification
mechanism that can be used in some cases.

* The TypeSquare pattern described in Adaptive Object-Models (AOM) can be used
for implementing the set of events that can change at runtime [Yoder:2001;
Yoder:2002]. Event definitions can be stored in a XML file that can be read at run-
time in order to dynamically build the objects responsible for detecting new defined
events without the necessity of recompiling and restarting the MonitoringServer.
AOM describes how to read the metadata file and dynamically build these objects
using the Interpreter and Build patterns.

* The Interpreter design pattern [Gamma:1994] define a representation for a given
language grammar along with an interpreter that uses the representation to interpret
sentences in the language. It can be used for implementing the Boolean expression
evaluator.

Known Uses:

* The Framework for Adaptive Distributed Systems [Silva:2003] includes an engine
for event detection that instantiates this pattern faithfully.

* The QuO Quality Objects Framework [Zinky:1997] uses "delegates" and "contracts"
to instantiate this pattern. Delegates act as proxies [Gamma:1994,
Buschmann:1996] that intercept remote method calls; during interception, a delegate
evaluates a contract to detect possible contract violations, which can be seen as a
form of event detection.

* Moreto and Endler [Moreto:2001] describe a general purpose Event Processing
Service (EPS), which can be used to detect primitive and composite events.
Composite events are defined through an event expression based on primitive event
types combined by a set of operators, similarly to the EVENT DETECTOR (3).

* Welling and Badrinath [Welling:1997] describes an architecture for exporting
environment awareness to mobile computing applications. In their architecture, a
change in the environment is modeled as an asynchronous event that includes
information related to the change. The architecture also allows alternate event
delivery policies by isolating the event delivery functionality within a channel, as
done in the EVENT DETECTOR (3).

Writer’s Workshop 36

E SugarLoafPLoP 2005 Proceedings

4. AUTOMATIC RECONFIGURATOR

Motivation:

A distributed system has many resources whose availability and load vary intensely. To
cope with these variations, an adaptive application must be able to reconfigure itself as
relevant changes on resource availability occur. Changes on resource availability could
be notified through an event distribution mechanism. For each event, the set of adaptive
actions that must be performed may vary.

Problem:

Given event notifications indicating changes on resource availability, how can a system
apply dynamic reconfiguration actions automatically without the need for any human
interference?

Forces:

* Coupling the application functional code with the code responsible for dynamic
adaptation increases code complexity, making it harder to implement, debug,
and maintain.

* The application developer should concentrate on the application core
functionality, considering the adaptation issues as a separate aspect.

* Limiting which adaptation mechanisms can be applied (e.g., adjusting
application parameters, switching between algorithms and relocation or
replication of application components) restricts the solution applicability.

Solution:

Using a reflective model [Maes:1987], organize the application in two levels: a meta-
level composed of objects responsible for receiving notifications of events describing
environmental changes and for applying the reconfiguration actions and a base-level,
that deals with regular application functionality.

For each event type indicating environmental changes that requires adaptation,
describe the reconfiguration action(s) that your application must apply and code it into
objects (called Handlers) that will be part of the meta-level. Each Handler object must
implement a run () method, responsible for applying the reconfiguration actions when
called. As illustrated in Figure 12, the Event Handler registers itself with the Event
Channel (described in the EVENT DETECTOR (3)). Through the Event Channel, it
receives notifications of environmental changes and reacts to them by applying the
reconfiguration actions coded in its run () method.

Adaptive actions can be based on several mechanisms, such as:

a) Adjusting parameters of base-level objects (e.g., changing the presentation rate
of video frames as network bandwidth varies);

b) Switching between algorithms used by base-level objects (e.g., changing a
compression algorithm as CPU usage and network bandwidth varies);

¢) Relocating or replicating application components to other network nodes.

Writer’s Workshop 37

E SugarLoafPLoP 2005 Proceedings

In the application meta-level, instantiate an active object that registers itself as a
consumer of the network event channel responsible for notifying environmental
changes. Upon the receipt of an event, it calls the run () method of the corresponding
Handler object.

Event

() o Event

Handler

Event Channel

Meta Level

l Reconfiguration Action Base Level

I
Application
Functional Objects

Figure 12 — Automatic Reconfigurator structure

Example:

Consider again the load balancing problem based on machine load. In the application
meta-level, instantiate an object that registers itself as a consumer of the event channel
responsible for notifying environmental changes. The adaptive application must react to
a notification of an overloaded machine by migrating a subset of the tasks executing at
the congested location to a machine with better CPU and memory availability (if one is
available). The migration should be triggered by the run () method of the Handler
object. This reconfiguration can be done with the assistance of libraries that support the
reconfiguration of distributed applications [KonPhD:2000].

Consequences:

+ Leads to a clear separation of concerns between the application functional code
and the adaptation code. As a consequence, the resulting application becomes
easier to design, implement, and maintain.

The actions applied in reaction to an environmental change are hard-coded into
the application and cannot be dynamically changed.

Reflection adds complexity to the system which can make understanding and
maintaining the system harder.

Implementation:

To implement this pattern, first it is necessary to make the event handlers capable of
receiving event notifications by using a mechanism compatible with the notification
mechanism chosen in the implementation of the EVENT DETECTOR (3).

Writer’s Workshop 38

E SugarLoafPLoP 2005 Proceedings

Then, it is required to implement handlers capable of changing the internal
behaviour or structure of the application. Thus, normally the handler programmer must
have a very good knowledge of the application implementation. One way to mitigate
this requirement is to provide an interface in the application that programmers can use
to set some parameters that determine how the application works. In this case, the
application programmer would specify how the application could be configured (by
specifiying which parameters can be set) and the event handler programmer would
simply write the code that sets the proper values for the parameters.

Resulting Context:

By applying this pattern, the system is able to respond to changes in the environment by
reconfiguring the applications, allowing for the implementation of self-adaptive
applications. The set of reconfiguration actions to be taken are hard-coded and cannot
be modified without recompiling the application. If the ability to dynamically redefiny
the reconfiguration actions is desirable, then the ADAPTIVE RECONFIGURATOR (5)
pattern should be used instead.

Related Patterns:

* The Reflection architectural pattern [Buschmann:1996] describes how to
separate components of an adaptable system in a meta-level and a base-level.
Base-level components deal with functional aspects of the system while meta-
level components deal with non-functional aspects such as dynamic
reconfiguration.

* Foote and Yoder [Foote:1995] describe some common reflective patterns that
should be considered when building systems that need to be able to dynamically
adapt at runtime.

Known Uses:

* The Video Datagram Protocol used by the Vosaic system [Chen:1996] uses a
hard-coded adaptation algorithm that changes parameters of a video streaming
session based on the monitored rate of dropped network packets.

* Chang and Karamcheti [Chang:2000] describe a framework for automatic
configuration and run-time adaptation of distributed applications that hard-code
alternative execution paths (algorithms) that are dynamically selected by guard
expressions of control parameters.

* Noble and Satyanarayanan [Noble:1999] describes Odyssey, a platform for
mobile data access. The adaptive application is divided in client and server
components and the hard-coded adaptation mechanism allows to choose
between different versions of the data being retrieved, so as to be compatible
with the environment resource availability.

Writer’s Workshop 39

E SugarLoafPLoP 2005 Proceedings

5. ADAPTIVE RECONFIGURATOR

Motivation:

An adaptive application must change its behavior in reaction to changes in its execution
environment. The application can consider several different events that signal
environmental changes; for each event, the adaptive actions that must be performed can
vary. More flexibility can be achieved if the developer is allowed to specify collections
of adaptive actions (adaptation policies) for each event, switching from one to another at
run time depending on the application context. The adaptation mechanism can also
evolve or be debugged without restarting the application if it allows dynamic loading
and unloading of adaptation policies.

Problem:

How to vary at run time the collection of adaptive actions?

Forces:

* On the one hand, statically configuring the adaptation policies into the
application code requires stopping, recompiling, and restarting the application
whenever new code for an adaptation policy or changes in an old one are
developed. These activities are infeasible for applications with high availability
requirements. Dynamic loading and unloading of adaptation policies not only
resolves this problem but also minimizes resource consumption, since only
policies that are in use need to be loaded into the application code. This is
particularly important if the computer on which the application is running has
memory and processing limitations.

* On the other hand, the dynamic loading and unloading of adaptation policies
implies application overhead.

Solution:

Decouple the Event Handler interface from its implementation by defining a uniform
interface for each Event Handler that applies adaptive actions for a given environmental
event. Develop one or more concrete Event Handlers that implement this interface. Each
concrete Event Handler implements an adaptation policy. As illustrated in Figure 13,
define for each application component a corresponding Component
Configurator [KonPhD:2000]. The Component Configurator keeps track of
the dynamic dependencies between the component and other system or application
components and is also responsible for (1) disseminating events across inter-dependent
components, whenever they affect several correlated components and (2) carrying out
component-specific reconfiguration actions by calling component methods directly.
Through this mechanism, the Event Handler can propagate the adaptive actions required
to adapt the application to the new environmental state.

Writer’s Workshop 40

SugarLoafPLoP 2005 Proceedings

Event
())— Event
Event Channel Handler
Component ['j:]] “ Component %]
Configurator Configurator
Meta Level
1 Reconfiguration Action J Reconfiguration Action Base Level
Application E] Application

Functional GComponent <depends: |Functional Component

Figure 13 — Adaptive Reconfigurator structure

Example:

It is possible to design an application to be adaptable in ways that can be fully specified
at design time, but it is difficult, if not impossible, to anticipate all the ways in which it
may be required to adapt some applications. For instance, in mobile computing
environments, the characteristics of the network connections can range from an
inexpensive, very high bandwidth with low latency connection such as high-speed
LAN, to a very expensive, low bandwidth with high latency connection such as GSM or
infrared. Even the network address of the machine can change. Mobile applications
should also be able to handle periods of disconnection. The application and data
characteristics, and the user’s context requirements and limitations may all change
dynamically. Any of these contextual conditions can change without warning and to
values unknown and unforseen by the application designer. Thus, it might be necessary
to load new adaptation policies at runtime.

Consequences:

+ Several adaptation policies can be defined and reconfigured at run time for each
environmental event.

+ The adaptation policies can be loaded and unloaded dynamically, allowing the
adaptation mechanism to evolve or be debugged without restarting the
application. This also minimizes resource consumption.

The dynamic loading and unloading of adaptation policies generates overhead to
the adaptation mechanism.

The level of complexity increases making applications more difficult to develop
and maintain.
Implementation:

Organize application components in two layers: (1) a metalevel layer, responsible for
receiving event notifications describing changes on distributed resource usage and also

Writer’'s Workshop

41

E SugarLoafPLoP 2005 Proceedings

applying reconfiguration actions to adapt the application to the new environmental state;
and (2) a base level, that provides the application functionality.

Define, for each application component, a corresponding Component
Configurator object. As described in the Dynamic Dependence Manager pattern
[Domingues, 2005], the Component Configurator keeps track of the dynamic
dependencies between the component and other system or application components and
helps to maintain runtime consistency in the presence of reconfigurations.
Component Configurators are also responsible for disseminating events across
inter-dependent components. Examples of common events are the failure or migration
of a component, internal reconfiguration, or replacement of the component
implementation. The rationale is that those events affect all the dependent components.
This communication mechanism coordinates reconfiguration actions among the
application components. The Component Configurator contains the code to deal
with these configuration-related events. This approach provides a clear separation of
concerns between the application functional code and the code that deals with the
application reconfiguration.

As illustrated in Figure 14, create an EventReceiver that registers itself with
the event channels (described in the EVENT DETECTOR (3)). The EventReceiver will
be notified of events that indicate relevant environmental changes. Depending on the
type of the event, it executes the appropriate actions required to adapt the application to
the new environment state, using the Component Configurators to coordinate
reconfiguration actions among the, possibly distributed, application components.
Organize the classes that handle each environment event as a set of Event Handler
strategies, using the Strategy design pattern. Figure 14 illustrates three strategies
(EventAHandlerl, EventAHandler2, and EventAHandler3) that can
be triggered when an instance of EventA is notified.

Q)

Event Channel

Event

Reconfiguration
Action

. Component Ej
EventReceiver <>——— EventAHandler Configurator
N\

Reconfiguration
Action

EventAHandler1 EventAHandler2 EventAHandler3

Meta Level

Base Level

Application %j

Functional Compohent

Figure 14 - Architecture for handling events and reconfiguring the application

Writer’s Workshop 42

SugarLoafPLoP 2005 Proceedings

Concrete Event Handlers should be packaged into a suitable unit of
configuration that can be dynamically linked to the application, such as a dynamically
loaded library (DLL) or a Java class file. The dynamic loading and unloading of Event
Handlers can be controlled by specific configuration mechanisms such as the
Component Configurator (forming a metametalevel, not illustrated in Figure 15). Other
configuration operations, such as suspend and resume, can also be supplied. Suspending
the execution of an Event Handler implies not executing the reconfiguration actions
when the corresponding event is triggered. Resuming it, turns back the adaptive
behavior of the application for the corresponding event.

Resulting Context:

By applying this pattern, the system is able to respond to changes in the environment by
reconfiguring the applications, enabling the implementation of self-adaptive
applications. In addition, the set of adaptation actions is also reconfigurable, allowing
the application maintainer or operator to modify or add new reconfiguration strategies at
runtime. This permits the construction of highly flexible and reconfigurable applications
that can evolve and change radically at runtime without the need for shutdown and
restart.

Related Patterns:

* The Strategy design pattern [Gamma:1994] explains how to build a system such
that the algorithms it uses can be changed dynamically. The ADAPTIVE
RECONFIGURATOR (5) can be implemented by enhancing an implementation of
the AUTOMATIC RECONFIGURATOR (4) with the Strategy pattern.

* The Component Configurator pattern [Schmidt:2000] (not to be confused with
the Component Configurator object [KonPhD:2000] used in the implementation
section of the pattern described here) describes a mechanism for dynamically
loading and configuring components into a running execution environment. This
pattern can be used to load new Event Handlers dynamically allowing new
forms of reconfiguring a system.

* The TypeSquare pattern described in Adaptive Object-Models (AOM) can be
used for implementing the set of events that an extended
ComponentConfigurator can handle [Yoder:2001; Yoder:2002]. Event
definitions can be stored in a XML file that can be read at run-time in order to
dynamically build the objects responsible for handling new defined events
without the necessity of recompiling and restarting the extended
ComponentConfigurator. AOM describes how to read the metadata file and
dynamically build these objects using the Interpreter and Build patterns.

Known Uses:

* The Framework for Adaptive Distributed Systems [Silva:2003] allows dynamic
loading new Component Configurators and new Event Handlers at runtime.

* The dynamicTAO reflective ORB [Kon&Roman:2000] allows dynamic loading
new ORB components at runtime, including components that take care of the
reconfiguration process itself.

Writer’'s Workshop

43

E SugarLoafPLoP 2005 Proceedings

Variant:

If the adaptation mechanism must provide more than one adaptation policy for a given
event but dynamic loading and unloading its code is unnecessary, the Strategy pattern
can be applied instead of the Component Configurator. Decouple the Event Handler
interface from its implementation and develop concrete Event Handlers that implement
the uniform interface. Each concrete Event Handler implements an adaptation policy
and corresponds to a Concrete Strategy using the Strategy pattern terminology. A
Context object must be configured with the concrete Handler to be used when the
corresponding event is triggered. If the adaptation mechanism must switch from one
adaptation policy to another at run time, all concrete Event Handlers must be
instantiated as part of the application initialization. If only one policy will be used in a
single application execution, it is only necessary to instantiate the Event Handler that
corresponds to the policy that will be applied.

Pattern Language Summary

Computing environments today require systems to adapt quickly to changes, which
often includes reconfiguring or adapting to an evolving environment. This paper
presented a pattern language for assisting with this requirement, specifically with the
problem of building automatically configurable and adaptive distributed systems. The
pattern language outlines an architecture for describing “When” should an adaptation
be done (monitors), “What” adaptation should be performed (event detection) and
“How” to adapt the system (reconfigurators).

The DISTRIBUTED MONITOR (1) provides a simpler solution for monitoring
distributed resources while the ADAPTIVE MONITOR (2) describes an extension that
supports dynamic reconfiguration of the monitor. The approach uses rules for triggering
events for when adaptations should be performed. The EVENT DETECTOR (3), uses the
rules and notifies the mechanisms responsible for the dynamic reconfiguration of the
system. The reconfigurators provide a mechanism for actually adapting the system
safely according to the specified rules. The AUTOMATIC RECONFIGURATOR (4)
describes a simpler solution while the ADAPTIVE RECONFIGURATOR (5) describes
dynamic reconfiguration of the reconfiguration process, thus making the reconfigurator
more adaptable and reconfigurable.

There are orthogonal issues that will need to be addressed while applying these
patterns such as Security, Fault-Tolerance, and Real-Time, which are beyond the scope
of this pattern language.

Acknowledgments

The authors would like to thank Eugene Wallingford, Paulo Borba, Linda Rising,
Giuliano Mega, and Eduardo Fernandez for their valuable thoughts and suggestions that
greatly contributed to this work. We would also like to thank the Software Architecture
Group from the University of Illinois at Urbana-Champaign and the
SugarLoafPLoP2005 Araucaria group for their valuable feedback and comments.

Writer’'s Workshop 44

SugarLoafPLoP 2005 Proceedings

References

[BBN:2002]

[Buschmann:1996]

[Chang:2000]

[Chen:1996]

[CORBA:2002]

[Domingues:2005]

[Foote:1995]

[Foote:1998]

[Foster:1997]

[Gamma:1994]

BBN Technologies. QuO ToolKit User's Guide, release 3.0.10, April
2002. http://quo.bbn.com.

Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad,
Michael Stal, Peter Sommerlad, Michael Stal. Pattern-Oriented
Software Architecture, Volume 1: A System of Patterns. John Wiley &
Sons, 1996.

Fangzhe Chang and Vijay Karamcheti. Automatic conguration and
run-time adaptation of distributed applications. In Ninth IEEE
International Symposium on High Performance Distributed
Computing, pp. 11-20, Pittsburg, Pennsylvania, August 2000.

Zhigang Chen and See-Mong Tan and Roy H. Campbell and
Yongcheng Li. Real-Time Video and Audio in the World Wide Web.
In World Wide Web Journal. 1(1). 1996.

OMG - Object Management Group. The Common Object Request
Broker: Architecture and Specication, November 2002. version 3.0.1.

Helves Domingues and Marco A. S. Netto. The Dynamic Dependence
Manager Pattern. Technical Report RT-MAC-2005-07, Department of
Computer Science, University of Sdo Paulo. 2005.

Brian Foote and Joseph W. Yoder Evolution, Architecture, and
Metamorphosis. In Second Conference on Patterns Languages of
Programs (PLoP '95). Monticello, Illinois, September 1995. Also
Pattern Languages of Program Design 2 edited by John M. Vlissides,
James O. Coplien, and Norman L. Kerth. Addison-Wesley, 1996.

Brian Foote and Joseph Yoder. Metadata and Active Object-Models
Collected papers from the PLoP '98 and EuroPLoP '98 Conference,
Technical Report WUCS-98-25, Department of Computer Science,
Washington University, September 1998.

Ian Foster and Carl Kesselman. Globus: A Metacomputing
Infrastructure Toolkit. In International Journal of Supercomputer
Applications. 11(2), pp. 115-118. 1997.

Erich Gamma, Richard Helm, John Vlissides, and Ralph Johnson.
Design Patterns: Elements of Reusable Object Oriented Software.
Addison-Wesley, 1994.

Writer’'s Workshop

45

E SugarLoafPLoP 2005 Proceedings

Andrei Goldchleger, Fabio Kon, Alfredo Goldman, Marcelo Finger,

[Goldchleger:2003] and Germano Capistrano Bezerra. InteGrade: Object-Oriented Grid
Middleware Leveraging Idle Computing Power of Desktop Machines.
In Concurrency and Computation: Practice & Experience. Vol. 16, pp.
449-459. March, 2004.

[Kircher:2004] Michael Kircher, Prashant Jain. Pattern-Oriented Software

Architecture, Patterns for Resource Management. John Wiley & Sons,
2004.

Fabio Kon, Manuel Roman, Ping Liu, Jina Mao, Tomonori Yamane,
Luiz Claudio Magalhdes, and Roy H. Campbell. Monitoring, Security,
and Dynamic Conguration with the dynamicTAO Reflective ORB. In
Proceedings of the IFIP/ACM International Conference on Distributed
Systems Platforms and Open Distributed Processing
(Middleware'2000), number 1795 in LNCS, pages 121-143, New
York, April 2000. Springer-Verlag.

[Kon&Roman:2000]

Fabio Kon, Roy Campbell, M. Dennis Mickunas, Klara Nahrstedt, and
Francisco J. Ballesteros. 2K: A Distributed Operating System for
Dynamic Heterogeneous Environments. In 9th IEEE International
Symposium on High Performance Distributed Computing. Pittsburgh.
August 1-4, 2000.

[Kon:2000]

Fabio Kon. Automatic Conguration of Component-Based Distributed
Systems. PhD thesis, Department of Computer Science, University of
Illinois at Urbana-Champaign, May 2000.

[KonPhD:2000]

Fabio Kon, Jeferson Roberto Marques, Tomonori Yamane, Roy H.
Campbell, and M. Dennis Mickunas. Design, Implementation, and
Performance of an Automatic Configuration Service for Distributed
Component Systems. In Software: Practice and Experience, 35(7), pp.
667-703, May 2005.

[Kon:2005]

Maes P. Concepts and experiments in computational reflection. In
Proceedings of the ACM Conference on Object-Oriented
Programming Systems, Languages, and Applications Conference '87,
volume 22 of Sigplan Notices, pages 147-155. ACM, December 1987.

[Maes:1987]

Douglas Moreto and Markus Endler. Evaluating composite events
using shared trees. In [EEE Proceedings Software, 2001. ISSN 1462-
5970, 148(1).

[Moreto:2001]

Moura A, Ururahy C, Cerqueira R, and Rodriguez N. Dynamic support
for distributed auto-adaptive applications. In Proceedings of AOPDCS
- Workshop on Aspect Oriented Programming for Distributed
Computing Systems (held in conjunction with IEEE ICDCS 2002),
pages 451-456, Vienna, Austria, July 2002.

[Moura:2002]

B. D. Noble and M. Satyanarayanan. Experience with adaptive mobile
applications in Odyssey. In Mobile Networks and Applications,
4(4):245-254, 1999. Kluwer.

[Noble:1999]

Writer’s Workshop 46

SugarLoafPLoP 2005 Proceedings

[Schmidt:2000]

[Silva:2003]

[Sudame:1997]

[Vanegas:1998]

[Welling:1997]

[Yoder:2001]

[Yoder:2002]

[Zinky:1997]

Douglas Schmidt, Michael Stal, Hans Rohnert, Frank Buschmann.
Pattern-Oriented Software Architecture, Volume 2, Patterns for
Concurrent and Networked Objects. John Wiley & Sonss, 2000.

Francisco J. S. Silva, Markus Endler, and Fabio Kon. Developing
Adaptive Distributed Applications: a Framework Overview and
Experimental Results. In Proceedings of the International Symposium
on Distributed Objects and Applications. LNCS 2888, pp.1275-1291.
Catania, Sicily, Italy, November, 2003.

Sudame P and Badrinath B. On providing support for protocol
adaptation in mobile wireless networks. Technical report, Department
of Computer Science, Rutgers Universit, June 1997.
http://www.cs.rutgers.edu/pub/technical-reports/dcstr-333.ps.Z.

Vanegas R, Zinky J, Loyall J, Karr D, Schantz R, and Bakken D.
QuO's runtime support for quality of service in distributed objects. In
Proceedings of the IFIP International Conference on Distributed
Systems Platforms and Open Distributed Processing (Middleware'98),
The Lake District, England, September 1998.

Girish Welling and B. R. Badrinath. A framework for environment
aware mobile applications. In Proceedings of the 17th International
Conference on Distributed Computing Systems (ICDCS'97), May
1997.

Joseph Yoder, Federico Balguer and Ralph Johnson. Architecture and
Design of Adaptive Object-Models. In Proceedings of the 2001
Conference on Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA'01). ACM SIGPLAN Notices, December
2001.

Joseph Yoder and Ralph Johnson. The Adaptive Object-Model
Architectural Style. In Proceedings of the Workshop IEEE/IFIP
Conference on Software Architecture 2002 (WICSA3 ‘02) at the World
Computer Congress in Montreal, August 2002. Software Architecture
System Design, Development and Maintenance Edited by Jan Bosch,
Morven Gentleman, Christine Hofmeister, and Juha Kuusela; Kluwer
Academic Publishers 2002.

John A. Zinky, David E. Bakken, and Richard E. Schantz.
Architectural Support for Quality of Service for CORBA Objects. In
Theory and Practice of Object Systems. April, 1997.

Writer’'s Workshop

47

E SugarLoafPLoP 2005 Proceedings

Padrdes de Requisitos para Especificacao de Casos de Uso
em Sistemas de Informacao

Gabriela T. de Souza" 2, Carlo Giovano S. Pires > e Arnaldo Dias Belchior'

'Universidade de Fortaleza
Av. Washington Soares, 1321 — Fortaleza — CE — Brasil

*Instituto Atlantico
Rua Chico Lemos, 946 — 60 822-780 — Fortaleza — CE — Brasil

belchior@unifor.br, {gabi,cgiovano}@atlantico.com.br

Abstract. This work presents a set of requirement patterns for information
systems. These patterns are based on the use case concept and present
solutions for use cases specification problems, considering maintenance
operations (insert, update and delete), transaction and query functionalities,
which are a representative part of information systems scope.

Resumo. Este trabalho apresenta um conjunto de padroes de requisitos para
sistemas de informagdo. Esses padroes sdo fundamentados no conceito de
casos de uso e apresentam solu¢des para problemas de especificagcdo de
requisitos funcionais, considerando operacdes de manutengdo (inclusdo,
alteragdo e exclusdo), transagdo e consulta, que representam um volume
significativo do escopo de sistemas de informagdo.

1. Introducio

Este trabalho apresenta um conjunto de padrdes de requisitos para sistemas de
informacgdo, que sdo fundamentados no conceito de casos de uso. Esses padrdes
abordam solucdes para problemas de especificacio de requisitos funcionais
considerando questdes de operagdes de manutencdo, consulta, relatorio e operacdes de
transacdo. Isto representa um volume significativo do escopo de sistemas de
informacao.

O relacionamento entre os padrdes apresentados pode ser visto na Figura 1.
Nesta figura, os retdngulos representam os padrdes e as setas representam que o0s
padrdes que se encontram na origem da seta usam o padrdo que se encontra no destino
da seta.

Caso de uso ¢ um conceito amplamente difundido e utilizado para a
documentag¢do e o desenvolvimento de requisitos [3] [4] [5] [6] [7]. Segundo o RUP [2],
caso de uso € uma descricdo de comportamento do sistema em termos de seqiiéncias de
acdes. Um caso de uso deve produzir um resultado de valor observavel para um ator.
Ele contém todos os fluxos de eventos referentes a producdo do "resultado de valor
observavel". Mais formalmente, um caso de uso define um conjunto de instancias de

-2 Copyright 2005, Gabriela T. de Souza, Carlo Giovano S. Pires e Arnaldo Dias Belchior. Permissio de
copia concedida para a Conferéncia Sugarloaf-PLoP 2005. Todos os outros direitos reservados.

Writer’s Workshop 48

E SugarLoafPLoP 2005 Proceedings

casos de uso ou cendrios [2]. O CMMI indica que casos de uso podem ser usados na
elicitagdo e analise de requisitos para estabelecer os cenarios operacionais do sistema
[1]. Ou seja, além de representar os requisitos, os casos de uso também descrevem uma
solucdo em alto nivel.

Este trabalho utiliza um formato de caso de uso definido pela Rational [2], que
compreende se¢des como fluxos bdsicos e alternativos, subfluxos de execugdo,
requisitos especiais e regras de negodcio. Serdo apresentados os seguintes padrdes: (i)
padrao Caso de Uso CRUD; (ii) padrio Documentacio de Atributos; (iii) padrdo
Caso de Uso Relatorio; (iv) padrao Caso de Uso Transacéo e (v) padrdo Caso de Uso

Assistente.
Caso de Uso Caso de Uso
CRUD Transacdo
Documentagéo
de Atributos
Caso de Uso Caso de Uso
Relatoério Assistente

Figura 1: Relacionamento entre os padroes apresentados

2. Caso de Uso CRUD

2.1. Contexto

Este padrio ¢ utilizado para a documentacdo dos requisitos de operagdes de manutengdo
em sistemas da informacao, por meio do uso de modelos e especificacdes de casos de
uso. Os requisitos de operacdes de manutencdo sdo caracterizados por operagdes de
Inclusdo, Consulta, Altera¢ao e Exclusio.

2.2. Problema

Como documentar os requisitos funcionais de inser¢do, atualizacio, exclusdo e consulta
de dados por meio de especificagdes de casos de uso?

2.3. Forgas

- Todo caso de uso deve demonstrar um valor observavel [2]. Em alguns casos,
o usuario identifica o valor observavel como a manutencdo da entidade. Em
outros casos, o valor observavel estd nas operagdes individuais de Inclusdo,
Consulta, Alteracdo e Exclusio.

- As operag¢des de manutencdo podem ocorrer tanto sobre entidades simples,
com poucos atributos, como em entidades complexas, com varios atributos e
relacionamentos.

- As operagdes de inclusdo, alteragdo, remocao e consulta devem ser tratadas e
seus requisitos documentados. Esses requisitos incluem validagdo de
atributos e regras de negocio.

Writer’s Workshop 49

E SugarLoafPLoP 2005 Proceedings

- Os atributos mantidos de cada entidade devem ser documentados.

- Os requisitos documentados devem ser de facil entendimento para os
usudrios e para a equipe de desenvolvimento.

- Uma quantidade grande de casos de uso dificulta a gestdo dos requisitos e
pode indicar a existéncia de decomposi¢do funcional.

2.4. Solugao

Organizar o fluxo de eventos do caso de uso em cinco subfluxos (Fluxo basico, Incluir,
Alterar, Remover e Consultar) como se segue:

- O Fluxo basico descreve a condi¢@o de inicio e desvia o fluxo para um dos
subfluxos, de acordo com as opera¢des disponiveis: Incluir, Alterar, Excluir e
Consultar. Condi¢des de inicio indicam os eventos que provocam a execugao
do caso de uso. Por exemplo, em que situagdo a entidade deve ser mantida, se
existe alguma periodicidade requerida ou alguma questdo de permissdo de
acesso.

- Cada subfluxo descreve o cenario operacional de uma das funcionalidades:
Incluir, Alterar, Remover e Consultar.

- O subfluxo Incluir apresenta os atributos para a inclusdo e descreve o
comportamento da inclusao.

- O subfluxo Alterar apresenta os atributos atualizaveis, exibe seus valores e
descreve o comportamento da atualizagdo. Se os atributos atualizaveis forem
os mesmos apresentados no subfluxo Incluir, pode-se referenciar este
subfluxo.

- O subfluxo Remover descreve o comportamento da remo¢ao e documenta as
restri¢des da exclusdo da entidade. Por exemplo, se alguma regra de negdcio
deve ser acionada ou se uma confirmagdo para a exclusdo ¢ exigida.

- O subfluxo Consultar documenta requisitos para localizagdo da entidade,
que atributos devem ser filtros para a consulta, quais sdo obrigatdrios e quais
atributos sdo exibidos no resultado.

- As validagdes de atributos e regras de negocio sdo documentadas em uma
secdo independente dos fluxos e subfluxos, ver o padrdo Documentaciio de
Atributo. A decisdo sobre o momento no qual as validagdes e regras sdo
executadas fara parte do projeto do caso de uso. No entanto, se esse momento
ja for identificado como um requisito claro da aplicacdo, a regra ou validacao
deve ser referenciada pelo subfluxo. As regras de negdcio, tipicamente,
representam requisitos de calculos e tratamento de relacionamentos com
outras entidades. As validagoes, tipicamente, documentam o tratamento para
a obrigatoriedade de atributos e o tratamento de formato de atributos (datas,
limites numéricos, entre outros).

Writer’s Workshop 50

E SugarLoafPLoP 2005 Proceedings

2.4.1 Estrutura

Fluxo basico

1. O caso de uso inicia quando o <mome do ator> necessita fazer a manutengao
(inclusdo, alteragdo, exclusdo ou consulta) de uma <wnome da entidade>.
<descrever a condicdo de inicio do caso de uso>

2. De acordo com o tipo de operagdo manuten¢do desejado pelo <nome do ator>,
um dos subfluxos € executado:

a. Se o <mome do ator> deseja incluir uma nova <nome do ator> , o
subfluxo Incluir <nome do ator> ¢é executado.

b. Se o <nome do ator> deseja alterar informagdes de uma <nome do
ator> ja cadastrada, o subfluxo Alterar <nome do ator> ¢ executado.

c. Se o <nome do ator> deseja excluir uma <wmome do ator> ja
cadastrada, o subfluxo Remover <nome do ator> ¢é executado.

d. Se o <nome do ator> deseja consultar informacdes sobre uma ou
mais <nome do ator> cadastradas, o subfluxo Consultar <nome do
ator> ¢ executado.

Subfluxo Incluir <nome da entidade>

1. Este subfluxo inicia quando o <nome do ator> solicita incluir uma <nome da
entidade>;

2. O sistema solicita ao <nome do ator> o preenchimento dos seguintes atributos:
- <lista de atributos>.

3. O <nome do ator> preenche os atributos acima e confirma a inclusao;

4. O sistema realiza a inclusdo dos dados informados pelo <nome do ator> no
passo 3;

5. O sistema exibe uma mensagem informando que a inclusdo da <wnome da

entidade> foi efetivada com sucesso;

Subfluxo Alterar <nome da entidade>

1. Este fluxo inicia quando o <nome do ator> solicita alterar uma <nome da
entidade>;

2. O <nome do ator> seleciona um unico <nome da entidade>

3. O sistema solicita a alteragdo dos seguintes atributos:
- <lista de atributos que podem ser alterados>

4. O <mome do ator> altera os dados desejados e confirma a alteragio;

5. O sistema realiza a altera¢do dos dados informados no passo 4;

6. O sistema exibe uma mensagem de confirmag¢do informando que a alteragdo do

<nome da entidade> foi efetivada com sucesso;

Subfluxo Remover <nome da entidade>

1. Este subfluxo inicia quando o <nome do ator> solicita remover uma ou mais
<nome da entidade>;
2. O <nome do ator> seleciona quais <nome da entidade> deseja remover e

solicita a remogao;

Writer’s Workshop 51

E SugarLoafPLoP 2005 Proceedings

O sistema solicita a confirmagdo para a remogao;

O <mome do ator> confirma a remocao;

O sistema remove 0s <nome da entidade> confirmados;

O sistema exibe uma mensagem informando que a remog¢do dos <nome da
entidade> foi efetivada com sucesso;

Sk w

Subfluxo Consultar <nome da entidade>

1. Este fluxo inicia quando o <wnome do ator> solicita consultar <nome da
entidade>;

2. O sistema solicita o preenchimento dos seguintes filtros:
- <lista de filtros>.

3. O <mome do ator> preenche os filtros e solicita a consulta;

4. O sistema apresenta as seguintes informagdes dos <nome da entidade> obtidos

na consulta:

- <lista de atributos>.

Validacdes e regras de negocio

- Esta regra se aplica a todos os subfluxos. Atributos obrigatorios. Se algum
atributo obrigatdrio ndo tiver sido preenchido, <descrever que acdes o
sistema deve tomar, por exemplo, “o sistema ndo completard a operacdo e
notificara ao <nome do ator>, solicitando o preenchimento’>;

- Esta regra se aplica a todos os subfluxos. Atributos com valores nao
permitidos. Se algum atributo for preenchido com valor ndo permitido,
<descrever que acdes o sistema deve tomar, por exemplo, “o sistema ndo
completard a operagdo e notificarda ao <mome do ator>, solicitando o
preenchimento’>;

- No subfluxo Remover, o sistema valida os <wnome da entidade>
selecionados de acordo com as seguintes regras:

o <regras de remo¢do>.

2.5. Exemplo

Este exemplo apresenta o caso de uso Manter Cliente de uma aplicagdo de CallCenter.

Incluir Cliente

1. Este subfluxo inicia quando o Operador de Telemarketing solicita incluir um
cliente;

2. O sistema solicita ao Operador de Telemarketing o preenchimento dos seguintes
atributos:
- *Nome;

- * Logradouro. Descreve a rua ou a avenida em que o cliente reside;
- * Numero;
- * Bairro;

- * Cidade;

Writer’s Workshop 52

E SugarLoafPLoP 2005 Proceedings

- * Estado (campo de escolha fechada. Valores possiveis: todas os estados
cadastrados no sistema);

- CPF;
- Sexo (campo de escolha fechada. Valores possiveis: feminino e masculino).
3. O Operador de Telemarketing preenche os atributos acima e confirma a
inclusio;
4. O sistema realiza a inclusdo dos dados informados pelo Operador de
Telemarketing no passo 3;
5. O sistema exibe uma mensagem informando que a inclusdo do cliente foi

efetivada com sucesso;

Alterar Cliente

1. Este fluxo inicia quando o Operador de Telemarketing solicita alterar um
cliente;

2. O Operador de Telemarketing seleciona um Unico cliente;

3. O sistema solicita a alteragdo dos atributos listados no passo 2 do subfluxo
Incluir.

4. O Operador de Telemarketing altera os dados desejados e confirma a alteragao;

5. O sistema realiza a alterag¢do dos dados informados no passo 4;

6. O sistema exibe uma mensagem de confirmag¢@o informando que a alteracdo do

cliente foi efetivada com sucesso;

Remover Cliente

1. Este subfluxo inicia quando o Operador de Telemarketing solicita remover um
ou mais clientes;

2. O Operador de Telemarketing seleciona quais clientes deseja remover e solicita

a remocao;

O sistema solicita a confirmag¢ao para a remogao;

O Operador de Telemarketing confirma a remogao;

O sistema remove os clientes confirmados;

O sistema exibe uma mensagem informando que a remocdo dos clientes foi

efetivada com sucesso;

A

Consultar Cliente

1. Este fluxo inicia quando o Operador de Telemarketing solicita consultar
clientes;

2. O sistema solicita o preenchimento dos seguintes filtros:

- Nome;

- CPF.
3. O Operador de Telemarketing preenche os filtros e solicita a consulta;
4. O sistema apresenta as seguintes informacodes dos clientes obtidos na consulta:

- Nome;
- Logradouro;
- Numero;

- Bairro;

Writer’s Workshop 53

E SugarLoafPLoP 2005 Proceedings

- Cidade;
- Estado;
- CPF;
- Sexo.

Validacgdes e regras de negocio

- Esta regra se aplica a todos os subfluxos. Atributos obrigatdrios. Se algum
atributo obrigatério ndo tiver sido preenchido, o sistema ndo completara a
operacdo e notificard ao Operador de Telemarketing, informando quais
campos obrigatorios ndo foram preenchidos e solicitando o preenchimento
dos mesmos;

- Esta regra se aplica a todos os subfluxos. Atributos com valores nao
permitidos. Se algum atributo for preenchido com valor ndo permitido, o
sistema ndo completard a operacdo e notificard ao Operador de
Telemarketing, informando quais campos foram preenchidos com valores
invalidos e solicitando o preenchimento correto;

- No subfluxo Remover, o sistema valida os clientes selecionados de acordo
com as seguintes regras:

o Cliente que tiver algum chamado em aberto ndo podera ser removido.

2.6. Conseqiiéncias

- As operagdes de manutencdo e seus requisitos sdo documentadas de forma
padronizada e estruturada para os diversos tipos de entidade, melhorando o
entendimento do comportamento e dos requisitos, facilitando o
desenvolvimento de produtos de trabalho das fases seguintes, como por
exemplo, andlise, projeto e casos de teste;

- As validagdes e regras de negocio sdo documentadas de maneira estruturada,
evitando omissdes e destacando sua importancia;

- Os atributos e informag¢des requeridos em cada operacdo sdo documentados,
facilitando o entendimento da estrutura do sistema e facilitando a modelagem
de dados e prototipagdo de telas;

- Fornece suporte ao conceito de caso de uso definido em [2]: “todo caso de
uso deve demonstrar um valor observavel”. A solugdo utiliza o conceito de
subfluxos para agrupar em um unico caso de uso as operagdes de Inclusio,
Consulta, Alteracdo e Excluséo.

- Reduz o niimero de casos de uso do sistema por meio do agrupamento da
especificagdo das operagdes de manutencdo em um Unico caso de uso,
facilitando a gestio dos requisitos.

2.7. Padraes relacionados

- Padrao Documentacio de Atributos:

o Utilizado no subfluxo Inserir para listar os atributos da entidade; no
subfluxo Alterar, para descrever os atributos que podem ser alterados; e

Writer’s Workshop 54

E SugarLoafPLoP 2005 Proceedings

no subfluxo Consultar, para descrever os filtros e atributos que serdo
exibidos no resultado da consulta.

3. Documentacio de Atributos

3.1. Contexto

Em sistemas de informag@o, os atributos das entidades possuem diversas caracteristicas
como: nome, descri¢do, obrigatoriedade, validagdes, semantica, entre outras. Portanto, a
documentagdo desses atributos deve ser elaborada de forma que essas caracteristicas
nao sejam esquecidas.

3.2. Problema

Como definir e documentar de forma padronizada os diversos atributos das entidades,
que sdo informagdes necessarias durante operacdes CRUD?

3.3. Forc¢as

- Atributos podem ser de tipos primitivos, enumerados, multivalorados ou de
relacionamentos. Os atributos enumerados podem assumir um valor dentro de
um dominio fixo de valores. Os atributos de relacionamentos podem assumir
como valor uma referéncia para outras entidades cadastradas no sistema. Os
atributos multivalorados podem assumir um ou mais valores referentes a
outras entidades cadastradas no sistema.

- Os atributos de entidades podem fazer parte de um conjunto de pardmetros ou
filtros de consulta.

- Alguns atributos podem ser opcionais e outros obrigatorios. Atributos
obrigatorios devem ter tratamento adequado em caso de ndo preenchimento
na inclusio, altera¢do ou consulta.

- Se os atributos ndo foram documentados com as informagdes necessarias, 0s
seguintes problemas poderdo ocorrer: (i) dificuldade na validacdo dos
requisitos com o usudrio final por falta de informagdes sobre os atributos e
(i1) inconsisténcia nos produtos de trabalho gerado nas fases de andlise e
projeto, implementagdo e testes.

3.4. Solucio

- Documente os atributos como uma lista itemizada associada a uma operagao
de consulta, inclusdo ou alteragcdo. No caso da alteragdo, se os atributos que
podem ser alterados forem os mesmos da inclusdo pode-se apenas fazer uma
referéncia aos atributos listados na inclusao.

- Uma descri¢do breve do atributo deve ser fornecida, quando necessario.

- Marque com um caractere especial os atributos obrigatorios (“*”, por
exemplo).

- Para atributos que indicam relacionamento, indique que ¢ um campo de
escolha fechada e indique a fonte origem dos dados de escolha. Por exemplo:

Writer’s Workshop 55

E SugarLoafPLoP 2005 Proceedings

Unidade federativa (campo de escolha fechada. Valores possiveis: todas as
unidades federativas cadastradas no sistema).

- Para atributos enumerados, indique que ¢ um campo de escolha fechada e
indique os valores possiveis. Por exemplo: Sexo (campo de escolha fechada.
Valores possiveis: feminino e masculino).

- Para atributos multivalorados, indique que ¢ um campo de escolha multipla e
indique a fonte origem dos dados de escolha.

- Alguns atributos possuem restricdo quanto aos valores aceitos. Neste caso,
deve-se documentar esta restricdo juntamente com o atributo.
3.4.1 Estrutura
- <atributo>. <descricdo do atributo>
- <caractere> <atributo obrigatorio>

- <atributo> (Campo de escolha fechada. Valores possiveis: <entidade origem
dos dados>). <descri¢cdo do atributo>

- <atributo> (Campo de escolha fechada. Valores possiveis: <valor 1>,
<valor 2>, ... <valor n>). <descrigdo do atributo>

- <atributo> (Campo de escolha multipla. Valores possiveis: <entidade
origem dos dados>). <descrigcdo do atributo>

- <atributo>. <descricdo da validacdo de valores aceitos>

3.5. Exemplo
Exemplo de atributo com descrigao:
- Logradouro. Descreve a rua ou a avenida em que o cliente reside;
Exemplo de atributo obrigatdrio:
- *Nome
Exemplo de atributo de relacionamento:

- Estado (campo de escolha fechada. Valores possiveis: todos os estados
cadastrados no sistema);

Exemplo de atributo enumerado:
- Sexo (campo de escolha fechada. Valores possiveis: feminino e masculino).
Exemplo de atributo multivalorado:

- Autor do livro (campo de escolha multipla. Valores possiveis: todos os
autores cadastrados no sistema).

Exemplo de atributo com restri¢do de valores:

- Temperatura corpdrea do paciente. SO podera assumir valor entre 35 e 42
graus.

Writer’s Workshop 56

E SugarLoafPLoP 2005 Proceedings

3.6. Conseqiiéncias

- Os diversos tipos de atributos sdo documentados de forma simples e
padronizada.

- Os atributos obrigatérios sdo declarados claramente, facilitando sua
identificagdo e tratamento da implementacao e testes.

4. Caso de Uso Relatorio

4.1. Contexto

Em sistemas de informagdo, uma grande quantidade de dados ¢ armazenada
freqlientemente. Neste contexto, surge a necessidade de visualizar, exportar ou imprimir
dados armazenados com o objetivo de conferir, analisar e tomar decisdes com base
nesses dados.

4.2. Problema

Como documentar os requisitos de relatérios que podem incluir a necessidade de
visualizar, exportar ou imprimir dados de entidades de acordo com filtros especificados,
agrupamentos, totalizagcdes e informagdes a serem apresentadas?

4.3. Forgas

- O sistema deve permitir extrair dados em diversos formatos (tela, arquivo e
impressao).

- O sistema deve tratar a estrutura do relatorio, como por exemplo, disposi¢ao
dos campos, cabegalho e rodapé, tamanho da fonte e orientagdo do papel.

- O sistema deve tratar as necessidades para exibi¢do dos dados, como por
exemplo, se os dados devem ser agrupados, se devem ser apresentadas
totalizagdes e se existe a necessidade de algum filtro para restringir os dados
que serdo apresentados.

4.4. Solucao

- O Fluxo basico descreve que atributos devem ser filtros, quais sdo de
preenchimento obrigatdrio e quais atributos devem ser exibidos no cabegalho,
corpo ou rodapé.

- O Fluxo basico descreve a condi¢do de inicio. Condi¢des de inicio indicam
os eventos que provocam a execug¢do do caso de uso. Por exemplo: em que
situagcdo o relatério deve ser visualizado ou impresso; ou se existe alguma
periodicidade requerida.

- Os requisitos especiais sdo documentados em uma se¢do independente dos
fluxos e subfluxos. Tipicamente, devem ser documentados requisitos de
exportacdo para diversos formatos, regras das seg¢des (regras de agrupamento,
calculo para totalizagdo) e opcdes de ordenagdo. Um desenho esquematico do
relatdrio e suas segdes pode também ser apresentado. Descrever também o
critério para filtro ou extragdo de dados.

Writer’s Workshop 57

te

SugarLoafPLoP 2005 Proceedings

4.4.1 Estrutura

Fluxo basico

1. Este fluxo inicia quando o <nome do ator> solicita gerar o relatério <nome do
relatério>. <descrever a condi¢do de inicio do caso de uso>;
2. O sistema solicita o preenchimento dos seguintes filtros:

- <lista de filtros>.

3. Uma vez que o <mnome do ator> forneca a informacdo solicitada, uma das
seguintes agdes ¢ executada:

- Se o <nome do ator> selecionar Imprimir, <descrever acdo que deve ser
executada>;

- Se o <nome do ator> selecionar Visualizar, <descrever acdo que deve ser
executada>;

- Se o <nome do ator> selecionar Exportar, <descrever acdo que deve ser
executada>;

4. O sistema apresenta o resultado na seguinte forma:

- Cabecalho. <descrever as informag¢des que devem estd contidas no
cabecgalho>;

- Corpo. <descrever as informacdes que devem estar contidas no corpo,
informando lista de atributos, se¢des de agrupamento, e quebra de secdo>;

- Rodapé. <descrever as informagdes que devem estar contidas no rodapé>;
- Totalizacdo. <descrever que totalizacdes devem ser exibidas>.
Requisitos especiais

- Exportar para diversos formatos. <descrever para que formatos o resultado do
relatério deve ser exportado, informando os requisitos necessarios para a
exportacdo de cada formato>;

- Regras das secdes. <descrever quais sdo as regras de agrupamento de segdes
e as regras para o calculo das totalizacdes>;

- Opcdes de ordenagdo. <listar as op¢des de ordenagdo disponiveis e descrever
0s requisitos para essas ordenagdes>.

- Regra de extrag@o. <expressdo ldgica descrevendo como os atributos de filtro
e outros critérios devem ser combinados para extrair os dados corretamente>

- Modelo de desenho esquematico:

<Logo><Sistema> | <Titulo>

<Grupol>

<Campo 1> <Campo 2>

<Total grupo 1> <Soma campo 2>

<Pégina x de y>

Writer’s Workshop 58

E SugarLoafPLoP 2005 Proceedings

4.5. Exemplo

Este exemplo apresenta um relatério de cliente de uma aplicacdo de CallCenter. O
relatorio possui totalizagdes por bairro.

Fluxo basico

1. Este fluxo inicia quando o Operador de Telemarketing solicita gerar o relatorio
de clientes por bairro. Este relatério deve ser executado antes da avaliacdo da
carteira de clientes;

2. O sistema solicita o preenchimento dos seguintes filtros:
- (Codigo da filial.
3. Uma vez que o Operador de Telemarketing forneca a informacdo solicitada,

uma das seguintes agdes ¢ executada:

- Se o Operador de Telemarketing selecionar Imprimir, o sistema deve
apresentar a janela de configuragdo de impressao;

- Se o Operador de Telemarketing selecionar Visualizar, o sistema deve
apresentar uma janela com a visualizagdo do relatorio;

- Se o Operador de Telemarketing selecionar Exportar, o sistema deve solicitar
o tipo de arquivo a ser exportado e gerar o arquivo solicitado conforme
padrido definido nos requisitos especiais;
4. O sistema apresenta o resultado na seguinte forma:

- Cabecalho. Deve conter o nome do relatério, nome da empresa, nome da
filial e a data em que o relatério foi executado;

- Corpo. Os clientes devem ser agrupados por bairro e as secdes devem conter
quebras de pagina a cada bairro. Os seguintes atributos devem ser
apresentados: nome do bairro, nome, telefone e data de cadastro do cliente;

- Rodapé. Deve conter o nimero da pagina;

- Totalizacdo. As totalizacdes devem ser efetuadas por bairro, apresentando
quantos clientes existem em cada bairro.

Requisitos especiais

- Exportar para diversos formatos. Os dados deste relatorio devem ser
exportados para o Excel, apresentado as informag¢des em colunas;

- Opgdes de ordenacdo. O relatorio deve ser ordenado por nome do bairro e
posteriormente por nome do cliente.

- Regra de extracdo. Devem ser apresentados no relatério todos os clientes
cadastrados no sistema e que sdo relacionados a filial selecionada no filtro. A
identificagdo da filial encontra-se no cadastro do cliente.

- Modelo de desenho esquematico:

Writer’s Workshop 59

te

SugarLoafPLoP 2005 Proceedings

Empresa de Telemarketing
Filial Norte América

Relatorio de clientes por bairro

01/01/2005
Bairro: Varjota
Nome Telefone Data de Cadastro
Gabriela Souza 32678950 01/01/2004
Carlo Pires 29087654 23/04/2004
Total de clientes da Varjota: 2

Pégina 1

4.6. Conseqiiéncias
- As opgoes e formatos para extracdo sdo descritos.

- A estrutura do relatério e das se¢des é documentada de forma clara e
estruturada.

- Os requisitos para extracdo da informag¢ao sao documentados.

4.7. Padraoes relacionados
- Padrao Documentac¢ao de Atributos:

o Utilizado no Fluxo basico para listar os filtros.
5. Caso de Uso Transacao

5.1. Contexto

Documentagdo dos requisitos de operagdes que sdo tratadas como um comando atémico
que processa varias transagdes. Tipicamente operagdes batch e operagdes que requerem
apenas um comando de inicio do caso de uso pelo usuario tendo pouca entrada de dados
e iteracdo com o sistema.

5.2. Problema

Como documentar os requisitos de operagdes que possuem a execugdo de longa duragdo
ou que sdo executadas em formato de comando atdmico, dando énfase para os requisitos
especiais dessas operagdes?

5.3. Forcas

- Transagdes que ocorrem freqiientemente em sistemas de informagdo possuem
varias caracteristicas em comum e ¢ importante que fiquem documentadas de
forma uniforme para facilitar o entendimento dos casos de uso.

Writer’s Workshop 60

E SugarLoafPLoP 2005 Proceedings

- O usudrio necessita de informagao sobre o progresso e o tempo estimado para
a conclusdo da operagao.

- O usuario pode nao ter familiaridade com a complexidade da tarefa.
- Transag¢des complexas podem envolver algoritmos e calculos.

- Durante a operacdo o usuario pode decidir interrompé-la.

5.4. Solucao

- Os requisitos devem documentar a duragdo média do tempo de execucdo da
operacdo.

- O Fluxo basico descreve que atributos devem ser fornecidos para a execucao
da operacdo, indicando quais sdo obrigatorios.

- O Fluxo basico descreve a condi¢do de inicio. Condi¢des de inicio indicam
0s eventos que provocam a execuc¢do do caso de uso. Por exemplo, em que
situagd0o o caso de uso devera ser executado ou se existe alguma
periodicidade requerida.

- O Fluxo basico deve indicar que existe uma opg¢do de cancelamento que
pode ser solicitada a qualquer momento.

- Os requisitos especiais descrevem como o progresso da operagdo sera
apresentado. O progresso ¢ tipicamente o0 momento restante para o término, o
numero das unidades processadas ou a porcentagem do trabalho feita.
Tipicamente deve ser fornecido para o usudrio o status da execucdo da
operacdo, informando se a operagdo ainda esta sendo executada, e quanto
tempo o usudrio necessitara esperar.

5.4.1 Estrutura

Fluxo basico

1. Este fluxo inicia quando o <nome do ator> solicita executar a <nome da
transa¢do>. <descrever a condi¢do de inicio do caso de uso>;
2. O sistema solicita o preenchimento dos seguintes dados:

- <lista de atributos de parametro para a transagdo>.

3. O <nome do ator> preenche os dados solicitados no passo 2 e confirma a
execug¢do da operagao;
4. O sistema executa a operacao:

- <Operagdes, indicacdes de algoritmos e de calculos executados na operagao>
Requisitos especiais

- O progresso da operagdo devera ser apresentado em <descrever a unidade ou
formato em que sera apresentado o progresso da operagdo>.

Regras de negécio

- Descrigdo de algoritmos e calculos eventualmente utilizados na operacao.

Writer’s Workshop 61

SugarLoafPLoP 2005 Proceedings

5.5. Exemplo

Este exemplo apresenta o caso de uso Transferir Chamado de um sistema de Call
Center. O objetivo deste caso de uso ¢ transferir um chamado de um Operador de
Telemarketing para outro.

Fluxo basico

1. Este fluxo inicia quando o Operador de Telemarketing solicita transferir um
chamado;
2. O sistema solicita o preenchimento dos seguintes dados:

* Numero dos chamados. (Campo de escolha multipla);

* Nome do novo Operador de Telemarketing responsavel pelo chamado.
(Campo de escolha fechada. Valores possiveis: todos os Operadores de
Telemarketing ativos cadastrados no sistema). Esse campo deve aparecer em
ordem alfabética pelo nome do Operador de Telemarketing;

* Descricdo. Este campo deve conter a descrigdo do historico da
transferéncia.

3. O Operador de Telemarketing preenche os dados solicitados no passo 2 e
confirma a execug¢do da operagao;
4. O sistema executa as seguintes operagdes:

Obtém o login do usudrio corrente e atribui ao campo responsavel pela
transferéncia dos chamados;

Obtém a data e hora corrente e atribui ao campo data de criagdo do historico;
Atribui ao identificador do tipo do historico o valor “transferéncia”;

A aplicagdo realiza a transferéncia dos chamados salvando os dados
informados pelo Operador de Telemarketing no passo 2 e obtidos pela
aplicacdo no passo 4;

Requisitos especiais

O progresso da operacdo devera ser apresentado em % (percentual) que
devera ser calculado considerando quantos chamados ja foram transferidos
em relacdo ao total de chamados selecionado. Por exemplo: o Operador de
Telemarketing selecionou 10 (dez) chamados para serem transferidos.
Quando o sistema estiver efetuado a transferéncia de 2 (dois) chamados o
progresso da operacdo serd 20% (vinte por cento).

Regras de negocio

Nao se aplica.

5.6. Conseqiiéncias

O retorno sobre o status da execuc¢ao da transagdo ¢ fornecido;

Os passos da transagdo, algoritmos e célculos sdo documentados de forma
clara.

Writer’'s Workshop

62

SugarLoafPLoP 2005 Proceedings

5.7. Variantes
- Em transag¢des curtas, o tratamento do progresso da opera¢do pode ser
suprimido.
5.8. Padroes relacionados
- Padrao Documentac¢ao de Atributos:

o Utilizado no Fluxo basico para listar os filtros.

6. Caso de Uso Assistente

6.1. Contexto
Documentagdo dos requisitos de operacdes complexas que sdo executadas em diversos
passos, onde decisdes ou dados necessitam serem informados em cada passo através da
iteragcdo com o usuario.
6.2. Problema
Como documentar os requisitos de uma operagdo, na qual diversas decisdes devem ser
tomadas antes que a operagdo possa ser concluida completamente?
6.3. Forcas

- Para concluir a operagdo, diversos passos precisam ser realizados.

- Um determinado passo pode necessitar ser terminado antes que o passo

seguinte possa ser feito.

6.4. Solucao

- O Fluxo basico descreve o objetivo da operagdo e quantos passos precisam
ser executados.

- O Fluxo basico descreve a condicdo de inicio. Condi¢des de inicio indicam
os eventos que provocam a execug¢do do caso de uso. Por exemplo: em que
situagdo o caso de uso devera ser executado ou se existe alguma
periodicidade requerida.

- O Fluxo basico deve indicar que existe uma opcdo de cancelamento que
pode ser solicitada a qualquer momento.

- Cada Subfluxo Passo <n> deve determinar se o usudrio ndo pode comegar o
passo seguinte antes de terminar o atual.

Writer’'s Workshop

63

E SugarLoafPLoP 2005 Proceedings

6.4.1 Estrutura

Fluxo basico

1. O caso de uso inicia quando o <nome do ator> necessita <nome do caso de uso>.
<descrever a condi¢do de inicio do caso de uso>;

2. O sistema informa tipicamente o objetivo da operag@o € quantos passos precisam
ser executados;

3. O sistema solicita que o <nome do ator> execute o Passo 1;

4. Uma vez que o <nome do ator> decida executar o Passo 1, subfluxo Passo 1 ¢
executado;

5. O caso de uso se encerra.

Subfluxo Passo 1

1. Este subfluxo se inicia quando o <nome do ator> solicita <descrever as a¢des
que serdo executadas neste passo>;
2. O sistema solicita ao <nome do ator> o preenchimento dos seguintes atributos:

- <lista de atributos>.

3. O <mome do ator> preenche os atributos;
4. O sistema solicita que o <nome do ator> execute o Passo n;
5. Uma vez que o <nome do ator> decida executar o Passo <n>, subfluxo Passo

<n> é executado;

Subfluxo Passo <n>

1. Este subfluxo se inicia quando o <mome do ator> solicita <descrever as agdes
que serdo executadas neste passo>;
2. Para este subfluxo ser executado os subfluxos <Passo I, Passo 2, ... Passo n>

devem ter sido executados. Se ndo existir requisitos de precedéncia para a
execucdo dos passos, esse item podera ser omitido;
3. O sistema solicita ao <nome do ator> o preenchimento dos seguintes atributos:

- <lista de atributos>.

4. O <nome do ator> preenche os atributos;

5. O sistema solicita que o <nome do ator> execute o Passo <n+1> ou conclua a
operacao;

6. Uma vez que o <nome do ator> decida executar o Passo <n+1>, subfluxo Passo

<n+1> é executado;

Subfluxo Passo <final>

1. Este subfluxo se inicia quando o <nome do ator> solicita <descrever as agdes
que serdo executadas neste passo>;
2. Para este subfluxo ser executado os subfluxos <Passo I, Passo 2, ... Passo n>

devem ter sido executados. Se ndo existir requisitos de precedéncia para a
execucdo dos passos, esse item podera ser omitido;
3. O sistema solicita ao <nome do ator> o preenchimento dos seguintes atributos:

- <lista de atributos>.
4. O <nome do ator> preenche os atributos;
5. O sistema solicita que o <nome do ator> conclua a operacao;

Writer’s Workshop 64

E SugarLoafPLoP 2005 Proceedings

6. O caso de uso retorna para o passo 5 do fluxo bésico.

6.5. Exemplo

Este exemplo apresenta o caso de uso Submeter Proposta de Seguro de um sistema de
administracdo de seguros para automoveis, que deve ser realizado em trés passos. No
passo inicial o proponente informa a cidade e o estado onde o veiculo iré circular e os
dados do veiculo. No segundo passo, o sistema apresenta uma lista de coberturas e
precos existentes de acordo com os dados informados no passo 1. O proponente
seleciona as coberturas desejadas e avanca para o passo seguinte. No terceiro e ultimo
passo o sistema apresenta o prego total do seguro e solicita a conclusdo da operacéo.

Fluxo basico

1. O caso de uso inicia quando o Proponente necessita submeter uma proposta de
seguro;

2. O sistema informa que esta operacdo sera executada em 3 passos;

3. O sistema solicita que o Proponente execute o Passo 1;

4. Uma vez que o Proponente decida executar o Passo 1, subfluxo Passo 1 ¢
executado;

5. O caso de uso se encerra.

Passo 1

1. Este subfluxo se inicia quando o Proponente solicita informar a cidade e o
estado onde o veiculo ira circular e os dados do veiculo;

2. O sistema solicita ao Proponente o preenchimento dos seguintes atributos:

- *C(Cidade. Indica a cidade onde o veiculo ira circular;
- * Estado. Indica o onde o veiculo ira circular;

- *Ano de fabricagdo do veiculo;

- * Ano do modelo do veiculo,

- * Modelo do veiculo,

- * Marca do veiculo.

3. O Proponente preenche os atributos;

4. O sistema solicita que o Proponente execute o Passo 2;

5. Uma vez que o Proponente decida executar o Passo 2, subfluxo Passo 2 ¢
executado;

Passo 2

1. Este subfluxo se inicia quando o sistema apresenta uma lista de coberturas e
pregos existentes;

2. Para este subfluxo ser executado o subfluxo Passo 1 deve ter sido executado;

3. O sistema apresenta a lista de coberturas e pregos existente e solicita ao
Proponente a sele¢ao das coberturas desejadas;

4. O Proponente seleciona as coberturas;

5. O sistema solicita que o Proponente execute o Passo 3;

6. Uma vez que o Proponente decida executar o Passo 3, subfluxo Passo 3 ¢
executado;

Writer’s Workshop 65

E SugarLoafPLoP 2005 Proceedings

Passo 3

1. Este subfluxo se inicia quando o Proponente solicita a conclusdo da operagao;

2. Para este subfluxo ser executado os subfluxos Passo 1 e Passo 2 devem ter sido
executados;

3. O sistema apresenta o preco total do seguro e solicita a conclusdo da operacao;

4. O Proponente conclui a operagao;

5. O caso de uso retorna para o passo 5 do fluxo basico.

6.6. Conseqiiéncias

- Organiza e documenta todos os passos que devem ser realizados para
concluir uma operagdo complexa.

- Permite que o usuario possa realizar intervengdes, decisdes e configuracdes
em estagios intermedidrios de uma operacdo complexa.
6.7. Padrades relacionados
- Padrdo Documentac¢ao de Atributos:

o Utilizado no Fluxo basico e subfluxos para listar os atributos.

7. Usos conhecidos

Os padrdes apresentados neste artigo t€m sido utilizados na fase de elicitagdo de
requisitos em diversos sistemas, tais como um sistema Imobiliario, um sistema de Portal
web para administrad¢do e publicagdo de informagdes de acervos culturais e um sistema
de CallCenter. Porém, por motivos de confidencialidade, mais detalhes dos usos
conhecidos ndo podem ser fornecidos.

Em [2], os exemplos de casos de uso CRUD seguem estrutura similar a proposta
no padrao Caso de Uso CRUD.
8. Agradecimentos
Este trabalho foi suportado pelo Instituto Atlantico.

Os autores agradecem aos responsaveis pelo processo de revisdo, em especial a
Rosana Teresinha Vaccare Braga, pelas contribui¢des realizadas no aprimoramento do
artigo.

Referéncias

[1] Chrissis, M. B., Konrad, M., Shrum, S. CMMI Guidelines for Process Integration
and Product Improvement. Addison-Wesley, 2004.

[2] Rational Unified Process®, Version 2002.05.00. Rational Software Corporation,
2001.

[3] COCKBURN, A. Writing effective: use cases. Addison-Wesley Boston, 2001.

[4] SCHNEIDER, G.; WINTERS, J. Applying Use Case: A Practical Guide. 2nd ed.
Addison-Wesley, 2001.

[5] KRUCHTEN, P. The Rational Unified Process: an introduction. Addison-
Wesley, 2001.

Writer’s Workshop 66

é‘_‘_ SugarlLoafPLoP 2005 Proceedings

[6] BITTNER, K., SPENCE, I. Use Case Modeling. Addison Wesley, 2002

[7] JACOBSEN; CHRISTERSON; OVERGAARD. Object-oriented software
engineering: a use case-driven approach. Addison-Wesley, 1992.

Writer’s Workshop 67

SugarLoafPLoP 2005 Proceedings

Patterns for Secure Operating System Architectures

Eduardo B. Fernandez and Tami Sorgente
Dept. of Computer Science and Engineering
Florida Atlantic University
Boca Raton, FL

{ed, tami(@cse.fau.edu}

Abstract

An operating system (OS) interacts with the hardware and supports the execution of
all the applications. As a result, its security is very critical. Most of the reported
attacks occur through the OS. The security of individual execution time actions such
as process creation and memory protection is very important and we have previously
presented patterns for these functions. However, the general architecture of the OS is
also very important. We present here patterns for the four basic OS architectures and
evaluate their use in different environments. We consider general aspects but we
emphasize those aspects that affect security.

1 Introduction

Operating systems (OS) act as an intermediary between the user of a computer and its
hardware. The purpose of an OS is to provide an environment in which users can
execute programs in convenient and efficient manner [Sil05]. OSs control and
coordinate the available resources to present to the user an abstract machine with
convenient features. The architecture of the OS organizes components to structure its
functional and non-functional aspects. The OS is the most critical of the software
layers because compromise can affect all applications and persistent data. Most of the
reported attacks occur through the OS [FerOla]. The security of individual execution
time actions such as process creation and memory protection is very important and we
have presented patterns for these functions [Fer02, Fer03]. However, the general
architecture of the OS is also very important for the ability of the system to provide a
secure execution environment.

We present here patterns to help a designer select an architecture according to the
security requirements of the applications. Other aspects such as performance,
reliability, or real-time properties can also affect the choice. While we mention some
of those properties, we focus here on security aspects.

Most operating systems use one of five basic architectures [Sil05, TanO1]. One of
them, the monolithic architecture has little value for security and it is only mentioned
as a possible variant of the modular architecture. We present here patterns
representing an abstract view of the other four architectures from the point of view of
security The first pattern is the Modular Operating System Architecture which
describes the components of the operating system as communicating object-oriented
modules. In the Layered Operating System Architecture, the OS components are
assigned to a set of hierarchical layers. The Microkernel Operating System
Architecture assigns all its functions to servers that communicate through a common
module. The Virtual Machine Operating System Architecture provides virtual copies

Writer’'s Workshop

68

E SugarLoafPLoP 2005 Proceedings

of the underlying hardware that can be used for execution of different OSs. Figure 1
describes a pattern diagram of the OS architectures, indicating their relationships. The
figure shows also two variants of the basic patterns, corresponding to common
combinations of the three basic architectures.

Can be combined

Modular Operating
Layered Modular
Operating
S

System Architecture

ystem Architecture Can run
Can be combined
Layered Operating Can run Virtual Malchme
Canb bined System Architecture Operating
an be combine System Architecture

Operating
System Architecture

[Layered Microkernel

Microkernel Operating
System Architecture

Can be combined

jAn

Figure 1. Pattern diagram of OS Architectures

Opearting system functionality can be divided between the kernel (or OS proper),
components and the user applications or utilities. Typically, the kernel of an OS
includes the following functional units:

e Process Management- handles creation and deletion of processes,
communication and scheduling.

e Memory Management- keeps track of which parts of memory are used by
which processes, allocates and deallocates memory.

o File Management- handles creation and deletion of files and directories, file
searches, and mapping files to secondary storage

e J/O Management- provides interfaces to hardware device drivers , as well as
handling mass memory management components including buffering,
caching, and spooling.

e Networking- controls communication path between two or more systems.

e Protection System- includes authentication of users and file and memory
protection.

In addition, the OS includes a User Interface, which communicates between user and
OS through command interpreters, and a variety of utilities. These units may be
further divided for specific applications. In [Fer02] and [Fer03] we presented patterns
for the security of some of these functions. The four architectures we consider show
how the structure of the functional units affect security.

Writer’'s Workshop 69

E SugarLoafPLoP 2005 Proceedings

2 Modular Operating System Architecture

The OS services can be separated into modules each representing a basic function or
component. The core module of the kernel is always in memory, has the necessary
functionality to start itself, and the ability to load other modules. Modules are loaded
on demand when needed. Each module performs a function and may take parameters.

2.1 Example

Our group is building a new OS that should support various types of devices requiring
dynamic services with a large variety of security requirements. We want to
dynamically add OS components, functions, and services, as well as tailor their
security aspects according to the type of application. For example, a media player
may require support to prevent copying of the contents. We need a very flexible
architecture. .

2.2 Context
A variety of applications with diverse security requirements, but where the
requirements are not very strict.

2.3 Problem

We need to be able to add/ remove functions in the easiest way so we can
accommodate applications with a variety of security requirements. How do we
structure the functions for this purpose?

The possible solution is constrained by the following forces:

J OSs for PCs and other types of platforms require a large variety of plug-ins.
New plug-ins appear frequently and we need the ability to add and remove them in a
convenient way.

o Some of the plug-ins may contain malware and we need to isolate their
execution so they do not affect other processes.

J We would like to hide security-critical modules from the direct visibility of
other modules to avoid possible attacks.

o For performance and flexibility, active (loaded) modules can call each other,
which is a possible source of attacks.

2.4 Solution

Define a core module that can dynamically load and link modules as needed. By
loading only needed modules we can restrict visibility. We can also have different
versions of the modules with different degrees of security and load them according to
application security requirements. Critical modules can execute in their own
process/thread for better isolation but this may restrict flexibility. Calls between
modules can be checked.

Structure

Figure 2 shows a class diagram for this pattern. The KernelCore is the core of the
Modular OS. A set of LoadableModules is associated with the KernelCore, indicating
the modules that could be loaded. Any LoadableModule can call any other
LoadableModule.

Writer’'s Workshop 70

E SugarLoafPLoP 2005 Proceedings

LoadedModule

can call

* can load

LoadableModule |- ! | KernelCoreModule

Figure 2. Class diagram for the Modular Operating System Architecture pattern

2.5 Implementation

— Separate the functions of the OS into independent modules according to whether:
e They are complete functional units.

e They are critical with respect to security.

e They should execute in their own process for security reasons or thread for
performance reasons.

e They should be isolated during execution because they may contain malware.

— Define a set of loadable modules. New modules are later added at this point.

— Define a communication structure for the resultant modules. Operations should
have well defined call signatures and all calls should be checked. To prevent
incorrect commands or malformed parameters.

— Define a preferred order for loading some basic modules. Modules that are critical
for security should be loaded only when needed to reduce their exposure to
attacks.

2.6 Example resolved

We structured the functions of our system following the Modular Architecture pattern.
Because each module could have its own address space, we can isolate its execution.
Because each module can be designed independently, they can have different security
constraints in their structure. This structure gives us flexibility with a reasonable
degree of security.

2.7 Variants

Monolithic kernel. In this case the operating system is a collection of procedures.
Each procedure has a well defined interface in terms of parameters and results and
each one is free to call any other one [Tan01]. There is no structure between operating
system, components, services, and user applications. The difference between
monolithic and modular is that in the monolithic approach, all the modules are loaded
together at installation time, instead of being brought in on demand. As indicated
earlier, this approach is not very attractive for secure systems.

2.8 Known uses

The Solaris 10 Operating System (Figure 3) is designed in this way. Its kernel is
dynamic and composed of a core system that is always resident in memory [Sun04].
The types of Solaris 10 loadable modules are represented in Figure 3 as loaded by the
kernel core. This diagram does not represent the communication links between

Writer’'s Workshop 71

E SugarLoafPLoP 2005 Proceedings

individual modules. Another example is ExtremeWare from Extreme Networks [Ext].
Some versions of Linux are somewhat in between modular and monolithic, in that
some modules can be loaded when needed.

scheduling
classes

device and
bus drivers

core Solaris
kernel

loadable
System calls

miscellaneous
modules

STREAMS
modules

executable
formats

Figure 3. The modular design of the Solaris 10 Operating System [Sil03]

2.9 Consequences

The Modular Operating System Architecture Pattern has the following advantages:

e The flexibility to add/ remove functions contributes to security in that we can add
new versions of modules with better security.

e FEach module is separate and communicates with other modules over known
interfaces. We can introduce controls in these interfaces.

e [t is possible to partially hide critical modules by loading them only when needed
and removing them after use.

e By giving each executing module its own address space we can isolate the effects
of a rogue module.

The Modular Operating System Architecture Pattern has the following liabilities:
¢ Any module can see all the others and potentially interfere with their execution.

e Uniformity of call interfaces between modules makes it difficult to apply stronger
security restrictions to critical modules.

2.10 Related patterns
The Controlled Execution Environment pattern [Fer02] can be used to isolate
executing modules.

Writer’'s Workshop 72

E SugarLoafPLoP 2005 Proceedings

3 The Layered Operating System Architecture

The overall features and functionality of the OS are decomposed and assigned to
hierarchical layers. This provides clearly defined interfaces between each section of
the operating system and between user applications and the OS functions. Layer 1 uses
services of a lower layer i-1 and does not know the existence of a higher layer i+1.

3.1 Example

Our team is now handling an OS to support very complex applications. Complexity
brings along vulnerability so we need a way to separate concerns. We also want to
control the calls between OS components and services to improve security and
reliability. Finally, we would like to permanently hide critical modules. We tried a
modular architecture but it did not have enough structure to do all this systematically
and does not allow us to hide modules permanently.

3.2 Context
A variety of complex applications with diverse and stringent security requirements.
Flexibility is not an important concern.

3.3 Problem

Complex applications require separation of concerns for better understanding, errors
lead to security flaws. Unstructured modules as in modular architectures have the
problem that all modules know about the existence of all other modules, which
facilitates attacks. N many systems a good part of the units are stable and only some
of them need to be replaced.

The possible solution is constrained by the following forces:

e Interfaces should be stable and well defined. Going through any interface
could imply authorization checks.

e Parts of the system should be exchangeable or removable without affecting the
rest of the system. For example, we could replace some parts of the system
when we need more security.

e Similar responsibilities should be grouped to help understandability and
maintainability. This contributes indirectly to improve security.

e We should control module visibility to avoid possible attacks from other
modules.

e Complex units need further decomposition. This makes the design simpler and
clearer and also improves security.

3.4 Solution

Define a hierarchical set of layers and assign functional components (units) to each
layer. Each layer presents an abstract machine to the layer above it, hiding
implementation details of the lower layers. Now we can hide modules by placing
them in the lower levels. Each level defines a set of services to the level above, these
services can apply security checks when invoked. A whole lower level can be
replaced by a more secure version.

Writer’'s Workshop 73

te.

SugarLoafPLoP 2005 Proceedings

Structure
Figure 4 shows a class diagram for the Layered Operating System Architecture
pattern. Layer N represents the highest level of abstraction, and Layer 1 is the lowest
level of abstraction. The main structural characteristic is that the services of Layer i

are used only by Layer i + 1. Each layer may contain complex entities consisting of
different units.

Client

<<uses>>

LayerN

Dynamics
In Figure 5, a user (at the application level) wishes to open a file located in a block of

a disk (at a lower level):

N A

LayerN-1

¢

Layer2

'

Layer1

A user sends an openFile request to the OSInterface

Figure 4. Class diagram for Layered Operating System Architecture pattern

e The OSInterface interprets the openFile request.
e The openFile request is sent from the OSInterface to the FileManager
e The FileManager sends a readBlock request to the DiskDriver
<<actor>> :OSlInterface :FileManager :DiskDriver
aUser:
openFile(...) o
openfFile(...) o
" readBlock(...) ”]
Figure 5. Sequence diagram for opening and reading a disk file
Writer’'s Workshop 74

te.

SugarLoafPLoP 2005 Proceedings

3.5 Implementation

e List all units in the system and define their dependencies.

e Assign units to levels such that units in higher levels depend only on units of
lower levels. This may require a new unit decomposition.

e Once the modules in a given level are assigned, define a language (interface)
for this level. This language includes the operations that we want to make
visible to the next level above. Add well-defined operation signatures and
security checks in these operations to assure the proper use of the level.

e Hide in lower levels those modules that control critical security functions (this
will prevent direct attacks).

3.6 Example resolved

We structured the functions of our system as in Figure 6 and now we have a way to
control interactions and enforce abstraction. For example, the file system can use the
operations of the disk drives and enforce similar restrictions in the storage of data.
The user of the file cannot take advantage of the implementation details of the disk
driver to attack the system.

UserApplication Layer 5

¢

users

utilities Utilities Layer 4
[] filesystem FileSystem Layer 3
1/0 dri \ disk dri ,
rives IS rives
D . I/Odrives Layer 2
hardware
Hardware Layer 1

Figure 6. An example of the use of a Layered OS architecture.

3.7 Variants

Layered modules. The modules of the Modular architecture are assigned to different
layers. Now, in addition to visibility of modules due to activation, we have visibility
constraints due to layering. This could improve the security of the Modular
architecture.

Layer skipping. In this architecture there are special applications able to skip layers
for added performance (going directly to another layer reduces call overhead). This
structure implies a tradeoff between performance and security. By deviating from the
strict hierarchy of the layered system, there may not be enforcement of security
policies between layers for these applications.

Writer’'s Workshop 75

SugarLoafPLoP 2005 Proceedings

3.8 Known uses
The Symbian OS (Figure 7) uses a variation of the layered approach [SymO1].

Connectivity framework Connectivity plug-ins
Application | Application | \\ . WAP Web JavaPhone
> protocols engines 99 | browser | browser JavaRuntime
©
j=1 o Narrow
8 Application band g\t/:ci g/:l;c?(Infrared |Bluetooth| Networking
g~ framework protocols
8
2 Multimedia Comms infrastructure
s
@ s .
Graphics Security Conr!eCt'V'ty Serial Telephony
link Comms Base

Figure 7. Symbian OS Layered Architecture [SymO1]

The UNIX operating system (Figure 8) is separated into 4 layers with clear interfaces
between the system calls to the kernel and between the kernel and the hardware.

user applications

shells and commands
compilers and interpreters
system libraries

system-call interface to the kernel

sighals terminal file system CPU scheduling
handling swapping block I/O page replacement
character I/O system system demand paging

terminal drivers disk and tape drivers virtual memory

kernel interface to the hardware

device controllers
disks and tapes

memory controllers
physical memory

terminal controllers
terminals

Figure 8. UNIX OS Layered Architecture (from [Sil05])

IBM’s OS/2 also uses this approach [OS2].

Writer’'s Workshop 76

E SugarLoafPLoP 2005 Proceedings

3.9 Consequences
The Layered Operating System Architecture Pattern has the following advantages:
e Lower levels can be changed without affecting higher layers. We can add or
remove security functions in the lower levels as needed.
e C(Clearly defined interfaces between each OS layer and the user applications
improve security.
e Control of information using layered hierarchical rules, using enforcement of
security policies between layers.
e The fact that layers hide implementation aspects is useful for security in that
possible attackers cannot exploit lower level details.

The Layered Operating System Architecture Pattern has the following liabilities:

e [t may not be clear what to put in each layer; in particular related modules may
be hard to allocate. There may be conflicts between functional and security
needs when allocating modules.

e Performance may decrease due to the indirection of calls through several
layers. If we try to improve performance we may sacrifice security.

3.10 Related patterns
This pattern is a specialization of the Layers architectural pattern [Bus96]. Security
versions of the Layers pattern have appeared in [Fer02] and in [Yod97].

Writer’'s Workshop 77

E SugarLoafPLoP 2005 Proceedings

4 The Microkernel Operating System Architecture

Move as much as possible of the OS functionality from the kernel and put it in
specialized servers, coordinated by a microkernel. The microkernel itself has a very
basic set of functions. OS functional components and services are implemented as
external and internal servers.

4.1 Example

We are building an OS for financial applications. This implies a range of applications
with different reliability and security requirements (some are very critical) and a
variety of plug-ins. We would like to provide OS versions with different types of
modules, some more secure, some less so.

4.2 Context

A variety of applications with diverse security requirements. Some of these
applications may be very sensitive and are constantly changing. The platform itself
may also change frequently.

4.3 Problem

In general purpose environments we need to be able to add new functionality with
variation in security and other requirements as well as provide alternative
implementations of services to accommodate different application requirements.

The possible solution is constrained by the following forces:

e The application platform must cope with continuous hardware and software
evolution; these additions may have very different security or reliability
requirements.

e Strong security or reliability requirements indicate the need for modules with
well-defined interfaces.

e We may want to perform different types of security checks in different
modules, depending on their security criticality.

e We would like a minimum of functionality in the kernel so we have a
minimum of processes running in supervisor mode. A simple kernel can be
checked and this is good for security.

4.4 Solution

The Microkernel is the central communication for the OS. Separate all functionality
into specialized services with well-defined interfaces and provide an efficient way to
route requests to the appropriate servers. Each server can be built with different
security constraints. The Microkernel mostly routes requests to servers and has
minimal functionality.

Structure

There is one Microkernel and several internal and external servers, each providing
a set of specialized services (Figure 9). In addition to the servers, an Adapter is used
between the Client and the microkernel or an external server. The Microkernel
controls the internal servers.

Writer’'s Workshop 78

SugarLoafPLoP 2005 Proceedings

ExternalServer Microkernel
* calls 1

receive request execute mechanism

dispatch request init communication

execute service find receiver
call internal server
send message
create handle (unique ID)

-
InternalServer 1 1
* calls

receive request
dispatch request
execute service

Initializes
communication

1

Adapter

Client
1 1 1

sends request

do task

calls service calls service

creates request

Figure 9. Class diagram for the Microkernel Operating System Architecture pattern

Dynamics
A client requests a service from an external server using the following sequence
(Figure 10):

4.5

The adapter receives the request and asks the microkernel for a
communication link with the external server.

The microkernel checks for authorization to use the server, determines the
physical address of the external server and returns it to the adapter

The adapter establishes a direct communication link with the external server.
The adapter sends the request to the external server using a procedure call or a
remote procedure call (RPC). The RPC can be checked for well-formed
commands, correct size and type of parameters (we can check signatures).

The external server receives the request, unpacks the message and delegates
the task to one of its own methods. All results are sent back to the adapter.
The adapter returns to the client, which in turn continues with its control flow.

Implementation

Identify the core functionality necessary for implementing external servers and
their security constraints. Typically, basic functions of the OS should be
internal servers, utilities, or user-defined services should go into external
servers. Each server can use the patterns from [Fer02] and [Fer03] for their
secure construction.

Define policies to restrict access to external and internal servers. Clients may
be allowed to call only some specific servers.

Find a complete set of operations and abstractions for every category
identified.

Writer’'s Workshop

79

é‘_‘_ SugarLoafPLoP 2005 Proceedings

<<aqtor>> :Adapter :Microkernel :ExternalServer
:Client
I_ call service | create request

init communication

find receiver
check authorization
receiverHandle

receive request

check signature

dispatch request

i

execute service

returnResult

returnResult

Figure 10. Sequence diagram for performing an OS call through the microkernel

e Determine strategies for request transmission and retrieval.

e Structure the microkernel component. The microkernel should be simple
enough to make sure of its security properties (no malware for example).

e Design and implement the internal servers as separate processes or shared
libraries. Add security checks in each server.

e Implement the external servers. Add security checks in each service provided
by the servers.

4.6 Example resolved

By implementing our system using a microkernel we can have several versions of
each service, each with different degrees of security and reliability. We can replace
servers dynamically if needed. We can also control access to specific servers and
make sure that they are called in the proper way.

4.7 Variants

Layered Microkernel. The Microkernel OS Architecture Pattern can be combined
with the Layered OS Architecture pattern. In this case, servers can be assigned to
levels and a call is accepted only if it comes from a level above the server level.

4.8 Known uses

The PalmOS Cobalt (Figure 11). This OS has a preemptive multitasking kernel that
provides basic task management. Many applications in the PalmOS do not use the
microkernel services; they are handled automatically by the system. The microkernel
functionality is provided for internal use by system software or for certain special
purpose applications [PalmOS].

Writer’'s Workshop 80

E SugarLoafPLoP 2005 Proceedings

68K Applications
ARM Applications
PACE
Palm OS Application PIM ‘
Compatibility Environment
Background Licensee System
Tasks ’ Graphics/ Ul ‘
’ Media playback ‘ ’ Multimedia ‘
’ HotSync ‘
Data Manager Microkernel ’ Exchange ‘
’ Internal storage ‘ ’ Security ‘
1/0 Subsystem
VFS Hardware
’ Networking ‘ ’ Telephony ‘ Driver Set

Figure 11. PalmOS Microkernel combined with Layered OS Architecture [PalmOS].

The QNX Microkernel (Figure 12) is intended mostly for communication and process
scheduling [QNX].

Process

Process

A
n\

” Network

Manager

Network
Interface

Scheduler

|

Interrupt
redirector

’ Network media ‘

|

Hardware
interrupts

Figure 12. QNX Microkernel Architecture [QNX]

Mach and Windows NT also use some form of microkernels [Sil05].

Writer’'s Workshop 81

E SugarLoafPLoP 2005 Proceedings

4.9 Consequences
The Microkernel Operating System Architecture Pattern has the following
advantages:

e Flexibility and extensibility — if you need an additional function or an existing
function with different security requirements you only need to add an external
server. Extending the system capabilities or requirements only require addition
or extension of internal servers.

e The Microkernel mediates all calls for services and can apply authorization
checks. In fact, the microkernel is in effect, a concrete realization of a
reference monitor [FerO1].

e The well-defined interfaces between servers allow each server to check each
request for its services.

e (Can add even more security by putting fundamental functions in internal
servers.

e Servers usually run in user mode, which further increases security.

e The microkernel is very small and can be verified or checked for security.

The Microkernel Operating System Architecture Pattern has the following liabilities:
e Communication overhead since all requests go through the Microkernel.
e Some extra complexity.

4.10 Related patterns

This pattern is a specialization of the microkernel pattern [Bus96]. As indicated, the
microkernel itself is a concrete version of the Reference Monitor [FerOl1]. The
Adapter is an example of the Adapter pattern {Bus96].

Writer’'s Workshop 82

SugarLoafPLoP 2005 Proceedings

S The Virtual Machine Operating System Architecture

Provides a set of replicas of the hardware architecture (Virtual Machines), which can
be used to execute (maybe different) operating systems with a strong isolation
between them.

5.1 Example

A web server is hosting applications for two competing companies. These companies
use different operating systems. We want to ensure that neither of them can access the
other company’s files or launch attacks against the other system.

5.2 Context
Mutually suspicious sets of applications that need to execute in the same hardware.
Each set requires isolation from the other sets.

5.3 Problem

Sometimes we need to execute different operating systems in the same hardware.
How do we keep those operating systems isolated from each other in such a way that
their executions don’t interfere with each other?

The possible solution is constrained by the following forces:

e FEach OS needs to have access to a complete set of hardware features to
support its execution.

e FEach OS has its own set of machine dependent features, e.g., interrupt
handlers. In other words, each OS uses the hardware in different ways.

e When an OS crashes or it is penetrated by a hacker, the effects of this situation
should not propagate to other OSs in the same hardware.

e There should be no way for a malicious user in a VM to get access to the data
or functions of another VM.

5.4 Solution

Define an architectural layer that is in control of the hardware and supervises and
coordinates the execution of each OS environment. This extra layer, usually called a
Virtual Machine Monitor (VMM) or Hypervisor presents to each operating system a
replica of the hardware. The VMM intercepts all system calls and interprets them
according to the originating OS.

Structure

Figure 13 shows a class diagram for the Virtual Machine Operating System
Architecture (VMOS). The VMOS contains one VirtualMachineMonitor and
multiple Virtual Machines (VM). Each VM can run a Local Operating System
(LocalOS). The Hypervisor supports each LocalOS and is able to interpret its system
calls. As a LocalProcess runs on a LocalOS the VM passes the OS system calls to the
Hypervisor, which executes them in the hardware.

Writer’'s Workshop

83

E SugarLoafPLoP 2005 Proceedings

VMOS

5

1 <<controls>>
VirtualMachineMonitor P—ﬂ VM ‘

* *

Y| canrun

5

- Supports * { LocalOS ‘

1
Hardware

5

LocalProcess ‘

Figure 13. Class diagram for the Virtual Machine Operating System pattern

Dynamics
In Figure 14 a local process wishing to perform a system operation uses the following
sequence:
e A LocalProcess makes an OS call to the LocalOS.
e The LocalOS maps the OS call to the VMM (by executing a privileged
operation).
e The VMM interprets the call according to the originating OS from where it
came and it executes the operation in the hardware.
e The VMM sends return codes to the LocalOS to indicate successful instruction
execution as well as results of the instruction execution.
e The LocalOS sends the return code and data to the LocalProcess.

5.5 Implementation

e Seclect the hardware that will be virtualized. All of its privileged instructions
must trap when executed in user mode (this is the usual way to intercept
system calls).

e Define a representation (data structure) for describing OS features that map to
hardware aspects, e.g. meaning of interrupts, disk space distribution, etc. and
build tables for each operating system to be supported. .

e Enumerate the system calls for each supported OS and associate them with
specific hardware instructions.

Writer’'s Workshop 84

SugarLoafPLoP 2005 Proceedings

<<actor>> :LocalOS
:LocalProcess

:VirtualMachineMonitor :Hardware

J_ OS call

OS call

\ 4

return(...)

:I interpretCall

performOperation‘

return(...)

Figure 14. Sequence diagram for performing an OS call on a virtual machine

5.6 Example resolved

In the example of Figure 15, two companies using Windows and Linux can execute
their applications in different virtual machines. The VMM provides a strong isolation

between these two execution environments.

Windows
XP

VM1

Linux

VM2

VMM (virtual machine monitor)

hardware

Figure 15. Virtual Machine OS example

5.7 Variants

This architecture is orthogonal to the other three architectures discussed earlier and

can execute any of them as local operating systems.

KVM/370 was a secure extension of VM/370 [Gol79]. This system included a
formally verified security kernel and its VMs executed in different security levels, e.g.
top secret, confidential, etc. In addition to the isolation provided by the VMM, this

system also applied the multilevel model secure flow control.

Writer’'s Workshop

85

SugarLoafPLoP 2005 Proceedings

5.8 Known uses

IBM VM/370 [Cre81]. This was the first VMOS, it provided VMs for an
IBM370 mainframe.

VMware [Nie00]. This is a current system that provides VMs for Intel x86
hardware.

Solaris10 [Sun04] calls the VMs “containers” and one or more applications
execute in each container.

Connectix [Con] produces virtual PCs to run Windows and other operating
systems.

Xen is a VMM for the Intel x86 developed as a project at the University of
Cambridge, UK [Bar00].

5.9 Consequences
The Virtual Machine Operating System Architecture Pattern has the following
advantages:

The VMM intercepts and checks all system calls. The VMM is in effect a
Reference Monitor [Fer01] and provides total mediation on the use of the
hardware. This can provide a strong isolation between virtual machines
[Ros05].

Each environment (VM) does not know about the other VM(s), this helps
prevent cross-VM attacks.

There is a well-defined interface between the VMM and the virtual machines.
The VMM is small and simple and can be checked for security.

The Virtual Machine Operating System Architecture Pattern has the following
liabilities:

All the VMs are treated equally. If one needs virtual machines with different
levels of security, it is necessary to build specialized versions as done in
KVM370 (see Variants).

Extra overhead in use of privileged instructions.

It is rather complex to let VMs communicate with each other (if this is
needed).

5.10 Related patterns

Reference Monitor [FerO1]. As indicated, the VMM is a concrete version of a
Reference Monitor.

The operating system patterns in [Fer02] and [Fer03] can be used to
implement the structure of a VMOS.

Writer’'s Workshop

86

é‘_‘_ SugarLoafPLoP 2005 Proceedings

Acknowledgements

This work was supported by a grant from the US Dept. of Defense (DISA),
administered by Pragmatics, Inc. The comments of our shepherd, Raphael Y. de
Camargo, were very useful in improving this paper. Finally, further improvements
came from the members of the Writers’ Workshop at SugarLoafPLoP 2005.

References

[Bar00] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.
Neugebauer, 1. Pratt, and A. Warfield, “Xen and the art of virtualization”, Procs. of
the ACM Symp. on Operating System Principles, SOSP’03.

[Bus96] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal. Pattern-
Oriented Software Architecture: A System of Patterns, Volume 1. Wiley, 1996.

[Con] Connectix Corp., “The technology of virtual machines”, white paper, San
Mateo, CA, http://www.connectix.com

[Cre81] R.J. Creasy, “The origin of the VM/370 Time-Sharing System”, IBM
Journal of Research and Dev., vol. 25, No 5, 1981, 483-490.

[Ext] Extreme Networks, http://www.extremenetworks.com/products/OS/

[Fer01] E.B.Fernandez and R. Pan “A pattern language for security models”,
http://jerry.cs.uiuc.edu/~plop/plop2001/accepted submissions/

[Fer02] E.B.Fernandez, "Patterns for operating systems access control", Procs. of
PLoP
2002, http://jerry.cs.uiuc.edu/~plop/plop2002/proceedings.html

[Fer03] E. B. Fernandez and J. C. Sinibaldi, “More patterns for operating system
access control”, Proc. of the 8" European conference on Pattern Languages of
Programs, EuroPLoP 2003, http://hillside.net/europlop, 381-398.

[Gam95] E. Gamma, R. Helm,R. Johnson, and J. Vlissides, Design patterns —
Elements of
reusable object-oriented software, Addison-Wesley 1995.

[Gol79] B.D. Gold, R.R. Linde, R.J. Peeler, M. Schaefer, J.F. Scheid, and P.D. Ward,
“A security retrofit of VM/370”, Procs. of the Nat. Comp. Conf. (NCC 1979), 335-
344,

[Har02] H. Hartig, “Security Architectures Revisited”, Proceedings of the 10th ACM
SIGOPS European Workshop (EW 2002), September 22—25 2002, Saint-Emilion,
France, http://os.inf.tu-dresden.de/papers_ps/secarch.pdf

[Nie00] “Examining VMware”, Dr. Dobbs Journal, August 2000, 70-76.

[OS2] http://www-306.ibm.com/software/os/warp/

Writer’'s Workshop 87

SugarLoafPLoP 2005 Proceedings

[Pfl03] C.P.Pfleeger, Security in computing, 3" Ed., Prentice-Hall, 2003.
http://www.prenhall.com

[Pri04] T. Priebe, E.B.Fernandez, J.I.Mehlau, and G. Pernul, "A pattern system for
access control ", in Research Directions in Data and Applications Security XVIII, C.
Farkas and P. Samarati (Eds.), Procs of the 18th. Annual IFIP WG 11.3 Working
Conference on Data and Applications Security, Sitges, Spain, July 25-28, 2004, 235-
249.

[PalmOS] http:// www.palmos.com/dev/tech/overview.html

[Phi03] Philips, “Current Trends in Operating System kernels”, July 2003.
http://db.ilug-bom.org.in/lug-authors/philip/docs/os-tech.html

[QNX] QNX Software systems, http:// www.qnx.com

[Ros05] M. Rosenblum and T. Garfinkel, “Virtual machine monitors: Current
technology and future trends”, Computer, IEEE May 2005, 39-47.

[Sch00] D. Schmidt, M. Stal, H. Rohnert, and F. Buschmann, Pattern-oriented
software

architecture, vol. 2 , Patterns for concurrent and networked objects, J. Wiley & Sons,
2000.

[Sha02] J.S.Shapiro and N. Hardy, “EROS: A principle-driven operating system from
the ground up”, IEEE Software, Jan./Feb. 2002, 26-33. See also: http://www.eros-

0S.01rg

[Sil05] A. Silberschatz, P. Galvin, G. Gagne, Operating System Concepts (7" Ed.),
John Wiley & Sons, 2003.

[Sun04] http://www.sun.com/software/whitepapers/solaris10/s10security.pdf

[SymO1] http://www.symbian.com/developet/

[Tan01] A. Tanenbaum, Modern Operating Systems (2" Ed.), Prentice Hall, 2001.

[Yod97]J. Yoder and J. Barcalow, "Architectural patterns for enabling application
security". Procs. PLOP’97, http://jerry.cs.uiuc.edu/~plop/plop97 Also Chapter 15
in Pattern Languages of Program Design, vol. 4 (N. Harrison, B. Foote, and H.
Rohnert, Eds.), Addison-Wesley, 2000.

Writer’'s Workshop 88

SugarLoafPLoP 2005 Proceedings

Architectural Patternsto Secure Applicationswith an
Aspect Oriented Approach.

Christian Paz-Trillo!, Vladimir Rocha!

!Department of Computer Science — Institute of Mathematics and Statistics
University of Sdo Paulo
Rua do Matdo, 1010 — 05508-090 Séao Paulo, SP

{cpaz, vmoreira}@ime.usp.br

Abstract. Today, security problems involving software are serious. Most se-
curity problems are caused by attacks through the so-called **security holes™.
Security holes usually appears because given that security is a crosscutting con-
cern, its Object-Oriented implementation results in systems tough to understand,
difficult to evolve and with intruder code in application domain classes. Aspect
Orientation is a technique created to deal with this kind of crosscutting con-
cerns, and there is some work using it for security implementation. We present
two security patterns with an Aspect-Oriented approach and show how they in-
teract with the application layer. These patterns handle functionality access and
put on the security issues on the architectural application level.

1. Introduction

The variety and increasing number of system attacks have generated serious problems
involving from subjective issues, as trust in the system, to objective issues as data in-
tegrity and privacy [Redwine and Davis, 2004]. Recently, in the software engineering
area, it has been recognized that the majority of these attacks are addressed to the so-
called “security holes” of a system. The significant characteristic of all these systems
is that security matters were considered only in latest phases of software development
process [Halkidis et al., 2004].

When security fixes are done in latest stages of the development process, fixed vulnerabil-
ities can remain hidden for all previous stages, making it difficult to identify the security
holes. For example, in the implementation phase it was necessary to add a method provid-
ing data encryption and this method which was not specified in the system architecture.
In this case, analysts might never know about the existence of an encryption service. To
prevent this kind of problem, security should be addressed in a phase where all the sys-
tem components and functionalities are being modeled, i.e., in system architecture phase
[Bass et al., 2003].

The most used paradigm to model the system architecture is the Object-Oriented (OO) ap-
proach, allowing the decomposition of complex systems in modular and functional com-
ponents found in the system domain. However, the OO paradigm has some deficiencies
when modeling concerns (functionalities) that interact with different system components.
These are called crosscutting concerns. Security is a classical example of this kind of
functionality.

One of the OO’s extensions that resolve the crosscutting concern problem is the Aspect-
Oriented approach. In this technique, behavior that affects the different classes is en-
capsulated in modular units, named Aspects, that improves clarity and understanding of
crosscutting concerns. We show this approach in the next Section.

Writer’'s Workshop

89

SugarLoafPLoP 2005 Proceedings

In this paper we present two patterns that will help to construct secure applications
based in the aspect-oriented paradigm, to encapsulate the security and improve its leg-
ibility. The first pattern presented is responsible for access control to system func-
tionalities. The second pattern presented is responsible for applying security in each
system’s functionality. Finally, we show how the interaction of these two patterns
present solutions for the majority of security problems defined in other researches
[Scott, 2004, Redwine and Davis, 2004, Win et al., 2001].

These patterns had been implemented and applied to an Online Accounting System
(CETAV). In this system, small and medium size companies register purchases and sells,
and they can obtain prediction reports about future sells. We will use this system to illus-
trate the pattern examples.

2. Aspect Orientation

Aspect-Oriented approach [Elrad et al., 2001] is a recent technique that resolve crosscut-
ting concerns. Each concern is encapsulated in a modular unit, called Aspect, which has
associated behaviors that affect multiple classes. With that, aspects improve modulariza-
tion, present high cohesion and have a behavior similar to that of a class in the Object
Oriented approach. An aspect also has attributes, methods, etc.

2.1. Aspect-Oriented Programming

Aspect-Oriented Programming (AOP), allows for easier implementation code than
Object-Oriented Programming (OOP) when dealing with concerns that are traversal to
application code. It is important to point that AOP complements the OOP and in any way
replace it. In AOP there are four basic and essential components [Kiczales et al., 2001]:

¢ Join-Point: Well-defined points in a program execution where a behavior will be
added. This points might be constructor class, methods, exceptions, etc.

e Pointcut: Group a set of join points based on logics operator criteria.

e Advice: Responsible to add the behavior that will be executed when a point is
intercepted in the program. An advice can capture one or more Pointcuts.

e Agpect: Contain the three components mentioned above. It has a behavior similar
to that of a class and it is responsible to encapsulate the crosscutting functionalities
that otherwise would be spread across the system.

It is important to notice that Advice component can intercept code in three different mo-
ments:before is executed before the method call, around is like before but it allows to
cancel the method execution and, after is executed when finalized the method call.

Inside the advice, depending of the AOP languages, it is possible to have access to param-
eters of the intercepted method and to attributes or other methods of the class that contains
the intercepted method.

2.2. Aspect-Oriented Modeling

Aspect-Oriented Modeling (AOM) provides the way to describe and communicate the
specification of crosscutting concerns at analysis and design level. We use in our dia-
grams an extension to UML that avoid to change its metamodel and support AOM only
using UML standard extension mechanism [Groher and Schulze, 2003]. In this exten-
sion, the notation includes three essential packages: base package containing the appli-
cation domain classes intercepted by the aspects; connector package that encapsulates
the underlying core concepts implemented in the technology to be used (like AspectJ or
AspectC++), that means, this package is responsible to intercept the points where will be

Writer’'s Workshop

90

SugarLoafPLoP 2005 Proceedings

implemented an behavior and; aspect package containing the crosscutting concern and
the implementation of the behavior associated to the intercepted points. Like Figure 1
shows, base and aspect package have not direct connection and the link between them is
given only by the connector.

Connector
<<advices>> <<pointcut>>
<<use>> A - =] K <<use>>
- Advice Pointcut -
1 1
I <<when>> advProtClasslMetl (Aspect.applyBehavior) pointProtClasslMetl (ProtClassl.methodl) !
1 1
1 1
1 1
1 1
1 1
1 1
: Aspect Package I Base Packagel :
1 1
1 1
1 1
1 1
. Aspect ProtClass1 | .
applyBehavior () methodl ()
Figure 1: Aspect Oriented Modeling Example.
3. Patterns

In this section we describe two Aspect-Oriented architectural patterns that model se-
curity access control to application functionalities and put on the security issues on
the architectural application level. This patterns are presented in POSA! format
[Buschmann et al., 1996] and the implementation code use Aspect] [Kiczales et al., 2001]
for the sake of simplicity.

3.1. Access Policy Control Pattern

The Access Policy Pattern provides a mechanism to abstract and encapsulate, in a modular
unit, the protection against inappropriate access to system functionalities, involving in this
process the organization’s policies.

3.1.1. Example

Some CETAV functionalities should be only accessed by certain groups of users according
to an organizational policy. For instance, electronic documents can be delivered only by
users registered with the Accountant Role in the system. Therefore, other users should
not be able to use this functionality.

In software development phases, these kind of situations, generally involve system func-
tionality accesses, are very difficult to model and to implement. This is because the func-
tionality is spread among various classes. For example, Figure 2 shows that the CETAV
sell functionality is spread in four classes (shaded ellipses) that include GUI, Application
Domain and Database layers. If all these four classes must control the access in order to

Ipattern-Oriented Software Architecture.

Writer’'s Workshop

91

SugarLoafPLoP 2005 Proceedings

allow or deny the execution of a functionality, this control will be spread in these classes
with consequent problems including tracking, difficult classes reutilization, high coupling
between domain and security classes, and others.

Sell Logic

Sell Ul DB Facade

Sell Functionality

Figure 2: CETAV Sell Functionality spread among various classes.

3.1.2. Context

The Access Policy Control Pattern can be used whenever an application embeds (or re-
quires to embed) security code to restrict access to system functionalities. This restriction
can be handled in any way, but the main idea is to protect against the inappropriate use
of system functionalities of inadequate users. It is important to highlight that this pattern
focuses on the application level of an architectural view of the system.

3.1.3. Problem

Imagine you are designing a system that needs to perform access validations in different
parts of the program. This is very common in systems with various users with different
roles and permissions. These users want to access some functionalities but these func-
tionalities are restricted for certain roles through the access policies established by the
organization.

The design of the system, specially the access policy control, has to consider the following
forces:

e The validation needs to be performed in a specific place and in a unified way,
allowing maintainability and reusability of security code.

e Such systems need to establish an access control to system functionalities based
on its organizational policies rules.

e The addition, modification and removal of access policies should be easily done
because a system is related with organizational policies which can vary in time.

e How to keep track security validations through the system, allowing to identify
security access holes.

Writer’'s Workshop

92

te

SugarLoafPLoP 2005 Proceedings

3.1.4. Solution

Functionalities are accessed by method invocations. The solution is based on intercepting
method invocations of the functionalities to be secured, using the principles of aspect
oriented programming explained in Section 2.1.

The solution requires that each invocation to methods that need protection is intercepted.
All these interceptions will be validated, against the organizational policies, in an aspect.
The access validation code is abstracted from the application code by putting it into an
external class (Policy Figure 3) that match the method intercepted with the policy for this
method and returns to the caller if it is allowed or denied its access.

3.1.5. Structure

Connector
<<use>> <<advices>> <<pointcuts>> Ssuse>>
> Advice - = = Pointcut <----,
1 1
1 <<around>> policyControl (PolicyGuard.policyControl) policyControl (ProtClassl.methodl) 1
1 policyControl (ProtClassl.method2) 1
1 policyControl (ProtClass2.method2) 1
1 1
1 1
1 1
1 - 1
| Policy Control Package I I 1
1 . . . 1
. Application Domain)
1 PolicyGuard PoliciesFactory 1
1 1
| policyControl () getPolicy (method) ProtClass1 1
1 methodl () 1
! method2 () | L - -
1
1 - ProtClass2
L Abstract Policy
methodl ()
hasAccess (roles) method2 ()
1
1
Concrete Policy
Figure 3: Access Policy Control Pattern.
Participants

We describe the participants involved in the structure of Figure 3.

Protected classes. Represent any classes in the application domain that require a control
when accessing its methods.

Policy: Validates whether the access to a functionality must be allowed or denied. We
used the Strategy Pattern? because this validation can be implemented in different
ways.

ZStrategy defines a family of algorithms, encapsulate each one, and make them interchangeable. Strategy
lets the algorithm vary independently from clients that use it [Gamma et al., 1994].
Writer’s Workshop 93

SugarLoafPLoP 2005 Proceedings

© © N o g A~ W N e

D~ e ~ S S
© ©® N o o~ W N P O

PoliciesFactory: Given a method, it returns the Policy object for it. We used the Factory
Method Pattern® to create the Policy objects.

PolicyGuard: This aspect intercepts method invocations at Protected classes. Intercep-

tion code is executed before method code, and it is able to cancel method execution
whenever the access is denied.

3.1.6. Implementation

Aspect PolicyGuard {

pointcut policyControl() : ProtClassl.methodl() ||
ProtClassl.method2 () ||
ProtClass2.method2 () ;

around () : policyControl()
Collection roles = Session.getCurrentUserRoles() ;
String method = getMethodID() ;
Policy policy = PoliciesFactory.getPolicy (method) ;
boolean allowed = policy.hasAccess (roles) ;
if (allowed) ({
proceed () ;
} else {
//Inform the user that is access attempt was denied
Session.registerAccessDenied (Session.getCurrentUser (),
method) ;

Figure 4: Algorithm for the PolicyGuard aspect.

Figure 4 shows the intercepted behavior to be executed before the method. Methods be-
ing intercepted are listed in the pointcut construction (Lines 3-4). In lines 7-9, the user
roles and the policy associated to the method are obtained, getMethodID function returns
a string that uniquely identifies the intercepted method. This string is recognized by Poli-
ciesFactory which returns a Policy object capable of verifying permissions. The Policy
validates if any of the user roles contains the minimum permission required to access the
method (Line 10). If it is allowed, proceed method lets the system continues its normal
flow (Line 12). Otherwise, the user must be informed that his access attempt was denied.
Finally, in this code, any procedure to deal with access denied can be included(Line 15).

Like we describe in Section 3.1.5, the Policy class was implemented using the Strategy
Pattern. There are some strategies that could be used to validate the access to a certain
functionality, for example: Access Matrix Control (ACM) [Harrison et al., 1976] and
Basic Role Control (BRC). The former use a matrix users versus resources that define
the rights allowed to a certain system user. The latter, specifies a set of basic roles* with
access to each functionality. Given a role, it is verified whether one of its sub-role is
one of the specified basic roles for the policy. The basic role found will be used by the
system instead of the original user role, ensuring the principle of least privilege proposed
by [Saltzer and Schroeder, 1975].

3Factory Method defines an interface for creating an object, but let subclasses decide which class to
instantiate [Gamma et al., 1994].
4Given a Role hierarchy, a basic role is a role with no sub-roles [Sandhu et al., 1996].

Writer’'s Workshop

94

E SugarLoafPLoP 2005 Proceedings

3.1.7. Example Resolved

CETAV was originally an OO system without security mechanisms for functionality ac-
cess. It is important to notice that this aspect-oriented implementation, is very useful
when having a system lacking of control in functionality access. It introduces minimal
changes in application code and in original system architecture, because it just adds an
independent component outside this original architecture.

In order to validate the access to functionalities we used the PolicyGuard aspect, based
on the Protected System Pattern [Halkidis et al., 2004]. This pattern requires a com-
ponent to manage users and their roles. Such component could be implemented using
the RBAC model [Sandhu et al., 1996] and hold in an instance of the Session Pattern
[Yoder and Barcalow, 1997] making this information available to the PolicyGuard.

Figure 5 shows the class diagram of the solution. When addNewsSell(Sell) or re-
moveSell(Sell) methods of the SellM odule class are called by the CETAV system, a Poli-
cyGuard aspect intercepts them in order to allow or deny the access, so users must pass
through this guard to access these functionalities. The interception point is declared in
the Pointcut and the steps that follow the interception was explained in the algorithm
presented in Section 3.1.6.

Connector
<<use>> <<use>>
R <<advice>> <<pointcut>> _—— -
1 > . - = . < 1
. Advice Pointcut .
1 1
<<around>> policyControl (PolicyGuard.policyControl) policyControl (SellModule.addNewSell)
1 1
| policyControl (SellModule.removeSell) 1
1 1
1 1
1 1
1 1
| Policy Control Package I I 1
1 1
1 1
1 PolicyGuard PoliciesFactory CETAV 1
1 1
1 policyControl () getPolicy (method) 1
! SellModule !
1 - — - -
1 Q addNewsSell (Sell)
1 - removeSell (Sell)
. Policy
hasAccess (roles)
1
1
BRC Policy

Figure 5: Access Policy Control applied in CETAV.

3.1.8. Known Uses

We implemented the Access Policy Control Pattern in CETAV system. CETAV’s policy
control was originally implemented with an object-oriented approach using security pat-
terns [Yoder and Barcalow, 1997]. After applying this aspect-oriented pattern, we mea-
sured cohesion and coupling using metrics proposed by [Tsang et al., 2004]. The aspect-

oriented implementation of access policy control shows being more cohesive than the
Writer’s Workshop 95

E SugarLoafPLoP 2005 Proceedings

object-oriented one. Domain classes’ coupling was reduced, because they no longer in-
clude policy control code, since it was extracted to PolicyGuard.

The Ariel Project [Pandey, 2005] presents an alternative to enforce security validation
through a declarative policy language to specify a set of constraints on accesses to re-
sources [Pandey and Hashii, 1999]. It provides fine-grained access control for mobile
java programs applying a set of code transformation tools enforcing these constraints di-
rectly on the code, similar to aspect-oriented approach.

In [Westphall and Fraga, 1999] the authors presented an authorization scheme for large
scale networks that involves programming models and tools represented by Web, Java
and CORBA for security [Object Managment Group, 2002]. The access validation is
provided by having CORBA interceptor classes that capture method calls applying au-
thorization defined by control policies. These ideas were implemented in JaCoWeb
[Fraga, 2005].

3.1.9. Consequences

The Access Policy Control Pattern has some important benefits:

e Access validation to system functionalities is encapsulated by the Access Policy
Control Pattern in the PolicyGuard Aspect, so this validation is not spread among
the application domain classes as in OO approach is usually done. Alternatives,
like [Fernandez et al., 2005], also separate this validation mapping each use case,
that needs to enforce access, to a new class that control this validation. This ap-
proach introduces some complexity in the design model and consequently in the
implementation stage.

e Legacy systems can have this pattern applied to establish an appropriate security
control. Policy class perform the validation of an access, based in the organiza-
tional policies.

e Given the policy encapsulation offered by the pattern, incorporation of new poli-
cies or modification of existing ones has no direct impact in system architecture.
Only will be necessary to add (or modify) a policy in the Policy class and add the
interception point in the PolicyGuard Aspect.

e Interception points of the methods whose access is controlled will be centralized
in the Access Policy Control Pattern. This helps to identify security holes, and to
keep track of security validations through the system.

The liabilities of this pattern are as follows:

e Our approach is more complex because it controls security across applications.
The authorization rules must be applied to all applications that access some shared
data.

e Aspect-Orientation, nowadays, is less used than Object-Orientation. In some cases
our approach could not be applied because Aspect-Orientation techniques are not
available.

e A general Aspect-Orientation drawback is that the code inside the aspect is
very coupled with the intercepted code minimizing the reusability of the aspect
(PolicyGuard). In the other hand the security specific code (Policyfactory and
Policy classes) can be reused due to it is implemented outside the aspect.

Writer’s Workshop 96

E SugarLoafPLoP 2005 Proceedings

3.1.10. Seealso

Access Policy Control includes features of Protected System and Policy Pattern, de-
scribed in [Blakley and Heath, 2004], as well as Checkpoint and Roles Pattern proposed
by [Yoder and Barcalow, 1997].

Access Policy Control Pattern uses the Session Pattern [Yoder and Barcalow, 1997] to
store and get user roles.

A Policy Guard 1is an aspect-oriented instance of Reference Monitor
[Fernandez and Pan, 2001].

3.2. Security Services Pattern

The Security Services Pattern provides a mechanism to protect system resources through
a set of security services. Each one of these services is abstracted and encapsulated in
a modular way providing the means to clarify what resources are protected by what ser-
vices.

3.2.1. Example

The CETAV system, in order to send a document, requires document encryption and
registration of the action for a future audit. Suppose that this system was constructed with
an OO approach and with two security services (authenticate, audit) spread throughout the
code. Like software complexity increased, minimal changes to these services produced
very high costs, in time, to discover and change the classes involved (shaded ellipses in
Figure 6(a)). Another problem arise when new service is add (encrypt the document), the
new code must ensure that this new service does not affect the old security functionalities
and will have to spread this new security services throughout the classes (shaded boxes in
Figure 6(b)).

NEW Security Service

Class 2 Class 2

[@ Class 3

Class 4

I
(RN
Il
Il

(a) Tracking domain classes involving a certain (b) Add a new security service involving various
security service domain classes

Figure 6: Problems raised in CETAV Object-Oriented approach.

3.2.2. Context

The Security Services Pattern is useful when it is necessary to apply a set of related

security services on a application level functionalities. Each one of these services are
Writer’s Workshop 97

SugarLoafPLoP 2005 Proceedings

encapsulated in a modular way.

3.2.3. Problem

Imagine you are modeling a system where you need to apply security services to methods
that need to protect its resource confidentiality and integrity. For example, suppose that
a system needs to protect some data and this protection is to audit the actions upon the
resource, encrypt it and communicate through a secure communication channel when
interact with another system. We can expect that some methods only audit the data, others
only encrypt the data and others do both.

Now, suppose that you need to add in such systems a new security services, like validate
that a sent resource doesn’t have any sensible data (Input/Output validation) which might
open security holes in the system.

We can see, from an architectural and design point of view, that this protection involves
a set of related security services and it is difficult to track which security services were
applied to what methods. This happen because the security is spread throughout the
system functionality.

The design of the system, specially the security services, has to consider the following
forces:

e The security service applied in a system functionality should be centralized in
order to improve the reusability of the application domain code and the security
service service.

e The addition and modification of a security service should be easy because new
security holes can be discovered very frequently.

e Easily keep track which system functionalities are secured by each security ser-
vice.

3.2.4. Solution

All the functionalities that need a certain security service are intercepted by method invo-
cations using the principles of aspect oriented programming explained in Section 2.1.

The solution requires that each security service will be in a module that control the inter-
ceptions and can apply the behavior associated to it. With this approach, we ensure that
the service implemented is highly cohesive because all the actions to that service are in
one module and totally modular because there are not relationship with others modules.

3.2.5. Structure

Participants

We describe the participants involved in the structure of Figure 7.

Protected Class Represent any clas in the application domain that requires a security
service over their methods.

Security Package Consists of a general implementation of security concerns. It might
be an external library or an application subsystem.

Writer’'s Workshop

98

@

SugarLoafPLoP 2005 Proceedings

Connector
<<advices> <<pointcut>>
<<use>> I S > i <<use>>
- =3> Advice Pointcut <€ = == ==
1
1 . N
| <<before>> secObjlMetl (applyServicel) secObjlMetl (ProtClassl.methodl) 1
\ <<before>> secObj2Metl (applyService2) secObj2Metl (ProtClass2.methodl) 1
1
: 1
. 1
. 1
| Package Security Service I 1
1
! 1
! 1
! 1
! —I 1
1 [Aspect Package I
1 - - | 1
1 Encrypt Authenticate Validate 1/0 1
1 Application Domain |
1 applyServicel () applyService2 () applyServicel () 1
1
. ProtClass1 !
1 Communicate Time Audit !
\ methodl () I
1 applyService2 () applyServicel () applyService2 () method2 () -
1
L - ProtClass2
method1 ()
Security Package | method2 ()
Encrypt Authenticate Audit
Communicate Time Validate 1/0

Figure 7: Security Services Pattern.

SecurityService (Encrypt, Communicate, etc.) Applies a particular security service in
a functionality of the system. Any of these aspects act as the Protected System
Pattern.

Aspects Package It is defined by a set of SecurityService aspects. It represents the way
the security is included in the application domain.

3.2.6. Implementation

Figure 8 shows the implementation of two security services in an existing module of
CETAV. The original code was not altered, the security services were implemented in the
aspect code that intercepts the original methods.

The aspects Audit and Encrypt apply respectively auditing (Line 1) and encryption (Line
11) services to the send() method of the SendM odule class in Figure 9. The send method
is intercepted in the pointcut construction (Lines 2 and 12). The Audit service code (se-
cure_send method), which is called before the send method. It logs the send action, storing
the destiny, the file name and the date and time when this action occurred (Lines 5 to 7).
The Encrypt service encrypts the file with an external library (Line 17).

As it can be seen in this example, the original code is not modified and the security
specific code can remain encapsulated in specialized classes. The relationship between
the application domain and the security services is done inside the aspect and is the only

highly coupled code.
Writer’s Workshop 99

E SugarLoafPLoP 2005 Proceedings

T 1

public Aspect Audit {
pointcut secure send() : SendModule.send(destiny, file);

before() : secure send() {
InetAddress destiny = getParameter ("destiny") ;
File file = getParameter ("file");
logSend (destiny, file, session.getDate("today")) ;

© © N o g A~ w N e

}

public Aspect Encrypt {
pointcut secure send() : SendModule.send(destiny, file);

S
w N P O

before() : secure send() {
File file = getParameter ("file");
Key theKey = Authenticate.getKey(session.getUserKey()) ;
file = Encrypt.encrypt(file, theKey) ;

P~ L
© © N o O »
——
—

Figure 8: Applying Security Services in CETAV.

3.2.7. Example Resolved

This pattern, applied to CETAV, was very useful to trace the functionalities that a service
intercept and to separate the security code from the business logic code. Also, it allowed
us to add a new service in a easy way. In order to resolve the problems presented in the
example, the aspects Encrypt and Audit can be used to intercept method invocations that
need to apply these security services.

Figure 9 shows the class diagram of the solution. The SendModule class contains the
functionality to be secured. When send method defined in the SendM oduleclass is called
by the CETAV system, the Encrypt and the Audit aspects intercept it. The Encrypt
aspect encrypts the file passed as a parameter using the private key generated by the class
Authenticate. This encryption is provided by an Encrypt class of an external library.
The Audit aspect registers this sending, storing the destiny and the date in a log. The
interception point is declared in the Pointcut and the steps that follow the interception
was explained in the algorithm presented in Section 3.2.6.

3.2.8. Known Uses

This pattern is often implemented as a set of security services, where each one might use
a pattern to deal with its respective service.

We implemented the Security Services Pattern in CETAV system. The encryption and
authentication services were originally implemented by CETAV with an object-oriented
approach. Our aspect-oriented implementation extracted the spread security code, reduc-
ing the system domain coupling and incrementing its cohesion.

The Lumbago [Koshiba, 2001] system is an application used to maintain information
records about patients in healthcare institutions. The information maintained by the sys-
tem is highly confidential so it needs to be secured, and it applied encryption mechanisms
to secure it. The original application was built with no encryption in mind. The method
used was to create an aspect that abstracts the security code taking care of this service,

minimizing the impact on the original implementation.
Writer’s Workshop 100

E SugarLoafPLoP 2005 Proceedings

Connector
<<advicess> <<pointcuts>>

. Seuse> Advice [T TTTT% > Pointcut Seuse>>
1

1
| <<before>> secure_send (Encrypt.secure_send) secure_send (SendModule.send) !
| <<before>> secure_send (Audit.secure_send) !
1
1 1
! 1
1 1
! 1
1 Security Services Package | |
1 1
1 1
! 1
1 [Aspect Package 1
1 1
1 R 1
| Encrypt Audit 1

1
secure_send () secure_send () !
1 CETAV !
1 1
1 1
L SendModule |
1
send (destiny, file) -

Security Package
Encrypt {e Authenticate Audit
|
1

Figure 9: Security Services applied in CETAV.

3.2.9. Consequences

The Security Services Pattern has some important benefits:

e It is easy to identify which functionalities of the system have a certain type of
security service. For each service there is an aspect that take care and encapsulate
the resource protection.

e New types of security services can be added easily, as it was described in the
implementation example. Each security service is independently implemented of
the others, because each one is encapsulated in its own aspect. To provide a new
security service we only need to model a new aspect that provide the behavior
necessary to protect the resource, to make it capture the code being secured and,
to implement the security specific code.

The liabilities of this pattern are as follows:

e It is difficult to track which types of security services were applied to a system
functionality. This is due to the separation of the services into different aspects.

o If the system already contains some implemented security mechanism, the inser-
tion of this pattern might be difficult since it will be necessary to extract all the
security code, spread among the domain classes, and encapsulate them in their
respective aspects. However, applying this pattern will be relatively simple if the
system does not contain a security mechanism.

3.2.10. Seealso

Communicate aspect uses the Secure Access Layer [Yoder and Barcalow, 1997] and the
Secure Communication Pattern [Blakley and Heath, 2004, Braga et al., 1998] in order to
communicate with third parties in a secure channel.

Writer’s Workshop 101

E SugarLoafPLoP 2005 Proceedings

Authenticate aspect uses the Session Pattern [Yoder and Barcalow, 1997] to store data
information related to authentication, like keys or credentials.

Validate 1/0 aspect uses the Object Filter Pattern [Hays et al., 2000] to filter undesirable
data.

Encrypt aspect uses the Information Secrecy Pattern and Message Integrity
[Braga et al., 1998] in order to keep the data integrity and secrecy.

Each security service aspect acts as a Protected System Pattern [Halkidis et al., 2004].

4. Integrating the Patternsasan Architecture

The architecture represents a system from a global point of view and defines the general
features that will be used in the different phases of the development process. These fea-
tures are defined in an abstract level, and it makes possible to understand the system being
modeled. Being the security an important issue, it is recommendable to contemplate it in
this model [Fernandez et al., 2005].

For this reason, we integrated the Access Policy Control Pattern and the Security Ser-
vices Pattern to show how they can be integrated in the architectural model of a sys-
tem. This integration is needed, because as shown in other researches [Gao et al., 2004,
McGraw and Viega, 2002] many security problems arise when it is not dealt as a part of
a system since initial development phases.

security service Package |

Security Package

<< use >> implemented or
3rd party

Aspect Package

Authenticate | Audit | Validate I/O

| Communicate | | Encrypt | |Time|

<< use >>

Application Domain

Session Facade ProtClass1 ProtClass2

<<use >>

Policy Control Package

FactoryPolicies lH PolicyGuard

<< use >>

Figure 10: Architecture.

Figure 10 presents the Access Policy Control Pattern and instances of the Security Ser-
vices Pattern. They do not interact directly because methods intercepted by the former
need not necessarily be intercepted by the latter. To interact with the application both
Writer’s Workshop 102

E SugarLoafPLoP 2005 Proceedings

patterns can use an instance of the Session pattern [Yoder and Barcalow, 1997]. The
Session pattern Facade is used to encapsulate user information and some system config-
uration values, such as current session time or user roles. It is important that the aspects
have a centralized point of access to the user and system information to try to reduce the
coupling of the aspect code with the application.

A clear advantage of this architecture is that the implementation of security issues is
separated of the application domain, being the aspects the connection point between them.
If security is not defined in an architectural model it becomes difficult to get these benefits
[Fernandez et al., 2005].

5. Conclusions

Security is a crosscutting concern problem. This motivated us to use the aspect-oriented
technique that deals with this kind of problem better than the object-oriented approach.
Based in this approach, we proposed two architectural patterns: the Access Policy Control
pattern and the Security Services pattern.

The Access Policy Control pattern ensure that all functionalities accesses are controlled
by a set of role-based organizational policies. This security control is encapsulated in a
modular unit improving the security code reusability.

The Security Services pattern allows to apply a set of security services, like encryption and
authentication, to any functionality of the system that requires it. Each of these security
services are centralized in a modular unit, improving the application and security code
reusability.

Finally, we interrelate these two patterns in order to cover the principal security problems
found in many systems, that normally arise when security is not considered as a part of a
system in the architecture model.

Acknowledgments

We would like to thank our colleagues at University of Sdo Paulo for their comments
and suggestions, specially to Eduardo Guerra who provided valuable guidance at the ar-
chitecture specification. Eric Ross helped us implementing the Patterns in CETAV. We
would also like to mention the pertinent and focused suggestions given by Eduardo B.
Fernandez, our shepherd in the final phase of PLoP submission.

References

[Bass et al., 2003] Bass, L., Clements, P., and Kazman, R. (2003). Software Architecture in
Practice. Addison-Wesley Professional, second edition.

[Blakley and Heath, 2004] Blakley, B. and Heath, C. (2004). Security Design Patterns. The
Open Group.

[Braga et al., 1998] Braga, A., Rubira, C., and Dahab, R. (1998). Tropyc: A pattern lan-
guage for cryptographic software. In Proceedings of the 5th Conference on Patterns
Language of Programming (PLoP"98).

[Buschmann et al., 1996] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., and
Stal, M. (1996). Pattern-Oriented Software Architecture, A System of Patterns. John
Wiley & Sons Ltd, Chichester, England.
Writer’s Workshop 103

SugarLoafPLoP 2005 Proceedings

[Elrad et al., 2001] Elrad, T., Filman, R., and Bader, A. (2001). Aspect-oriented program-
ming: Introduction. Commun. ACM, 44(10):29-32.

[Fernandez and Pan, 2001] Fernandez, E. and Pan, R. (2001). A pattern language for secu-
rity models. In Proceedings of the 8th Conference on Pattern Languages of Program-
ming (PLoP 01).

[Fernandez et al., 2005] Fernandez, E., Sorgente, T., and Larrondo-Petrie, M. (2005). A
uml-based methodology for secure systems: The design stage. In Third International
Workshop on Security in Information Systems (WOSIS), Miami.

[Fraga, 2005] Fraga, J. D. S. (2005). JaCoWeb project. http://www.lcmi.ufsc.br/
jacoweb/.

[Gamma et al., 1994] Gamma, E., Helm, R., Johnson, R., and Vlissides, R. (1994). Design
Patterns: Elements of Reusable Object-Oriented Software. Adisson Wesley.

[Gao et al., 2004] Gao, S., Deng, Y., Yu, H., He, X., Beznosov, K., and Cooper, K. (2004).
Applying aspect-orientation in designing security systems: A case study. In Proceed-
ings of the Sixteenth International Conference on Software Engineering and Knowl-
edge Engineering, Canada.

[Groher and Schulze, 2003] Groher, 1. and Schulze, S. (2003). Generating aspect code from
UML models. In The 4th AOSD Modeling With UML Workshop.

[Halkidis et al., 2004] Halkidis, S., Chatzigeorgiou, A., and Stephanides, G. (2004). A qual-
itative evaluation of security patterns. In Proceedings of the 6th International Confer-
ence, ICICS 2004, Malaga, Spain.

[Harrison et al., 1976] Harrison, M., Ruzzo, W., and Ullman, J. (1976). Protection in oper-
ating systems. Commun. ACM, 19(8):461-471.

[Hays et al., 2000] Hays, V., Loutrel, M., and Fernandez, E. (2000). The object filter and
access control framework. In Proceedings of the 7th Conference on Patterns Language
of Programming (PLoP”00).

[Kiczales et al., 2001] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., and
Griswold, W. (2001). Getting started with AspectJ. Commun. ACM, 44(10):59-65.

[Koshiba, 2001] Koshiba, T. (2001). A new aspect for security notions: Secure randomness
in public-key encryption schemes. In PKC *01: Proceedings of the 4th International
Workshop on Practice and Theory in Public Key Cryptography, pages 87-103, London,
UK. Springer-Verlag.

[McGraw and Viega, 2002] McGraw, G. and Viega, J. (2002). Building Secure Software:
How to Avoid Security Problems the Right Way. Addison Wesley.

[Object Managment Group, 2002] Object Managment Group (2002). Security service spec-
ification. Technical report, Object Managment Group. (version 1.8).

[Pandey, 2005] Pandey, R. (2005). The ariel project. http://pdclab.cs.ucdavis.
edu/projects/ariel/.

[Pandey and Hashii, 1999] Pandey, R. and Hashii, B. (1999). Providing fine-grained access
control for java programs. In Springer-Verlag, editor, Proceedings of the 13th Confer-
ence on Object-Oriented Programming ECOOP’99, Lecture Notes in Computer Sci-
ence, Lisboa, Portugal.

[Redwine and Davis, 2004] Redwine, S. and Davis, N. (2004). Processes to produce secure

software. Technical report, National Cybersecurity Partnership Task Force Report.
Writer’s Workshop 104

SugarLoafPLoP 2005 Proceedings

[Saltzer and Schroeder, 1975] Saltzer, J. and Schroeder, M. (1975). The protection of infor-
mation in computer systems. Proceedings of the IEEE, 63(9):1278-1308.

[Sandhu et al., 1996] Sandhu, R., Coyne, E., Feinstein, H., and Youman, C. (1996). Role-
based access control models. IEEE Computer, 29(2):38-47.

[Scott, 2004] Scott, D. (2004). Abstracting Application-Level Security Policy for Ubiquitous
Computing. PhD thesis, University of Cambridge.

[Tsang et al., 2004] Tsang, S., Clarke, S., and Baniassad, E. (2004). An evaluation of
aspect-oriented programming for java-based real-time systems development. In Pro-
ceedings of the 7th IEEE International Symposium on Object-oriented Real-time dis-
tributed Computing, Austria.

[Westphall and Fraga, 1999] Westphall, C. and Fraga, J. (1999). Authorization Schemes
for Large-Scale Systems based on Java, CORBA and Web Security Models. In The
IEEE International Conference on Networks, pages 327-334, Brisbane-Queensland,
Australia.

[Win et al., 2001] Win, B. D., Vanhaute, B., and Decker, B. D. (2001). Security through
aspect-oriented programming. In Network Security, pages 125-138.

[Yoder and Barcalow, 1997] Yoder, J. and Barcalow, J. (1997). Architectural patterns for
enabling application security. In Proceedings of the 4th Conference on Patterns Lan-
guage of Programming (PLoP"97), volume 2.

Writer’s Workshop 105

E SugarLoafPLoP 2005 Proceedings

Propagacao Direcional para Processamento de | magens

Francisco de Assis Zampirolli' , Roberto de Alencar Lotufo? ,
L ucas Padovani Trias'

ICentro Universitario Senac
Av. Eng. Eusébio Stevaux, 823 — 04696—000 — Sao Paulo, SP

2FEEC - Faculdade de Elétrica e de Computagao — UNICAMP
6101 — 13083-970 Campinas, SP

{francisco.zampirolli, lucas.trias}@sp.senac.br, lotufoe@unicamp.br

Abstract. This paper describes an extension of a pattern for image processing,
where we consider a propagation direction. This extension may be applied on
many morphological operators like Euclidian Distance Transformation (EDT).
In this work we present simple and efficient ways to implement EDT using the
directional propagation of erosion and decomposition the structuring function
in3 x 3.

Resumo. Este artigo descreve uma extensdo de um padrdo por propagacao
para processamento de imagens, onde consideramos uma dire¢cdo de
propagacao. Esta extensdo pode ser usada em varios operadores morfologicos,
como dilatacdo, erosao e Transformada de Distancia Euclidiana (TDE). Neste
trabalho apresentamos formas simples e eficientes de implementar a TDE usan-
do a erosdo por propagacao direcional e usando a decomposi¢do da funcdo
estruturante em 3 x 3.

Palavras-Chave: morfologia matematica, desenvolvimento de software, técnicas de
implementacdo, padrdes de algoritmo e programacéo genérica.

Introducao

Neste artigo falaremos sobre as formas de realizar operagdes frequentes na area de proces-
samento de imagens. Por se tratar de uma area muito especifica, a seguir formalizaremos
alguns conceitos e defini¢cBes que serdo utilizados durante a descri¢do do padréo.

a) Morfologia Matematica

Uma forma elegante de resolver problemas de processamento de imagens é através da
utilizacdo de uma base tedrica consistente. Uma destas teorias & a morfologia matematica
criada na década de 60 por Jean Serra e George Matheron na Ecole Nationale Su-
periéure des Mines de Paris, em Fontainebleau, Franca. Esta teoria diz que é possivel
fazer transformacdes entre reticulados completos!, os quais sdo chamados de operadores
morfologicos. Na morfologia matematica existem quatro classes basicas de operadores,
chamados de operadores elementares: dilatacéo, erosdo, anti-dilatacéo e anti-erosao.

Iremos aplicar a propagacdo direcional no operador erosdo. Estudo analogo pode
ser feito nos demais operadores elementares.

1Um conjunto qualquer com uma relacio de ordem é um reticulado completo se todo subconjunto néo
vazio tem um supremo e um infimo. Para detalhes da teoria dos reticulados veja [Birkhoff, 1967].

Writer’s Workshop 106

E SugarLoafPLoP 2005 Proceedings

b) Erosdo Morfologica

A erosdo atribui o menor valor de uma regido predefinida (elemento estruturante) ao pixel
que esta sendo erodido. Deste modo o fundo da imagem consome as bordas dos objetos
erodindo-o0s. Matematicamente ela é definida da seguinte forma:

Seja Z o conjunto dos inteiros, E C Z? o dominio da imageme K = [0,k] C Z
um intervalo de nimeros inteiros representando 0s possiveis niveis de cinza da imagem.
O operador erosdo em niveis de cinza invariante por translagdo, ¢, : K¥ — K® (K® éo
conjunto de funcdes de E in K), é definido como [Heijmans, 1991]:

Vfec KB VxrcEeVbc ZB,
ep(f)(x) = min{f(y)~b(y —z) :y € (B +z) NE}, Y

onde B C E @ E é chamado elemento estruturante, o simbolo & & chamado soma de
Minkowski, B +z = {y + x, y € B} (translagdo de B por z) e b & uma fungdo
estruturante definidaem B por b: B — Z. Sejam v e t inteiros, definimos ¢ — t—v em

K por
t=v =0 set<ket—ov<O0;
t—v=t—v set<keO0<t—uv<k;
t—v ==~k set<ket—uv>k;

t—v==~k Vv € Z.

Na Figura 2 mostramos um exemplo do efeito da erosdo morfolégica de uma
imagem binaria (com niveis de cinza preto e branco) usando a fungdo estruturante
apresentado na Figura 1.

0(0]0
0(0]0
0/0|0

Figura 1: Func¢do estruturante b, com dominio 3 x 3

3% 5

Imagem Original Imagem Erodida

Figura 2: Exemplo de eroséo usando a func¢éo estruturante a Figura 1

c) Algoritmos que | mplementam a Erosao M or fologica
A literatura fala sobre diversos modos de implementar a erosdao morfologica.

O mais intuitivo e simples de ser implementado é o algoritmo paralelo. Nele a
imagem (matriz) é varrida em qualquer ordem (inclusive, os pixels podem ser processados
Writer’s Workshop 107

E SugarLoafPLoP 2005 Proceedings

de forma paralela), e para cada pixel a vizinhanga é verificada aplicando-se a func¢do
estruturante. Esta implementagdo tem um desempenho baixo ja que ndo utiliza nenhuma
estratégia de otimizacéo.

Buscando um melhor desempenho foram criados dois outros algoritmos o sequen-
cial e o por propagacdo. No primeiro a imagem & percorrida sequencialmente. O ganho
de desempenho reside no fato de a fungéo estruturante ser dividida em dois e cada metade
da funcdo varrer metade da imagem. A metade superior da funcdo estruturante varre a
imagem descendo e a metade inferior subindo.

O algoritmo por propagagdo centra seu funcionamento em processar apenas 0S
pixels que realmente fazem parte da borda que sera erodida. Com isto ndo é desperdicado
tempo computacional tentando erodir pixels que ndo podem ser erodididos. Deste modo
ha uma reducdo significativa no nimero de pixels que serdo verificados e consequente-
mente uma reducdo no tempo computacional gasto.

No algoritmo por propagacdo as coordenadas destes pixels sdo usualmente ar-
mazenadas em um conjunto? e sdo chamados de borda ou fronteira. A eficiéncia maxima
deste tipo de algoritmo ocorre quando é possivel que uma iteracdo de erosdo gere a fron-
teira para a proxima iteracdo. Em cada iteracéo é aplicada a erosdo tradicional a todos 0s
pixels armazenados no conjunto. Quando este conjunto encontra-se vazio significa que
ndo ha mais fronteira a ser erodida, ou seja, toda a erosdo possivel para aquela iteragdo ja
foi feita.

Abaixo esta o pseudocodigo que retorna a fronteria de propagac¢ao de uma imagem
f usando a vizinhanga definida pela funcdo estruturante . Esta borda & colocada no
conjunto O fp.

Function 0f, = front(f,b)
forall z € E

Ofp ={z: 3y e (B+xz)NE, f(y)> f(z)-blz—y)}

Abaixo esta o pseudocddigo para a erosdo por propagacao, proprio para uso itera-
tivo usando a mesma funcao estruturante b. Os parametros de entrada sdo a imagem f, a
funcdo estruturante b e a sua fronteira de f, df,. Os pardmetros de saida sdo a imagem g
(erosdo) e a sua fronteira dgj.

Function [g, gp] = eroPro(f,b,0f)
{g e Og, s80 pardmetros de saida}
g=1
for all z € 9f;,

foralye (B+z)NE
ifg(y) > fx) — bz —y)
9(y) = f(x) = b(z — y);
ify & Ogp, set_in(Ogp,y);

onde set_in(dgy, y) € a funcdo para inserir y no conjunto dg,,. Observe que antes de inserir
um ponto no conjunto de fronteira, é feito uma verificagdo para que o0 ponto ndo seja
inserido mais de uma vez desnecessariamente. Veja um exemplo de uso deste algoritmo
na Figura 3.

2Na literatura, o uso de operagdes por propagagio é confuso pois em algumas vezes usa-se fila, em outras
fila hierarquica. Para o caso da erosdo, a fronteira & um conjunto que pode ser processado em qualquer
ordem (anélogo ao ocorrido no caso paralelo) e neste caso uma estrutura de conjunto (por exemplo, vetor)
é suficiente para armazenar a fronteira.
Writer’s Workshop 108

E SugarLoafPLoP 2005 Proceedings

E 'k kK kK k k k k Ek

E 'k kE k k k kE k k
E 'k kK kK k k k k Ek

E 'k kE k k k kE k k
Kk k k1] k k k k

E 'k kE k k k kE k k
F ok k(] 0] k k K

Kk k k0] k k k k
Kk k k1] k k k k

E'k kK kK k kE k k k
k k k k k k k k k
E k kE k k k k k k ok E ok kE k k E K

E k kE k k k kE k k

— P

(a) f (a) eTOPrO(Lﬂ b47 afb4) = Epy (f)

Figura 3: (a) Imagem de entrada f, onde o valor entre colchetes pertence a fron-
teira dfp,; (b) erosdo por propagacdo por by, onde os pixels entre
colchetes pertencem a nova fronteira d(ey, (f))s,- bs € @ métrica city-
block.

E possivel generalizar o algoritmo de eros3o iterativa por propagaco usando uma
sequéncia de erosdes com fungdes estruturantes ndo crescentes. A condicdo para que esta
generalizacdo seja valida pode ser encontrada em Zampirolli [Zampirolli, 2003].

Contexto

Precisamos erodir imagens com eficiéncia. Existem técnicas de varredura da imagem que
otimizam o processo de erosdo, mas ainda assim eles ndo atingem a eficiéncia necessaria.

Problema

Os algoritmos tradicionais que implementam a erosdo morfologica desperdicam tempo
computacional processando pixels desnecessarios. O algoritmo paralelo é extremamanete
ineficiente por sua varredura e por sua forma de processar os pixels. O algoritmo sequen-
cial & mais eficiente, mas seu grande ganho de desempenho restringe seu uso em poucas
funcbes estruturantes. Finalmente o algoritmo por propagacgdo processa apenas a fron-
teira dos objetos da imagem, mas ainda assim computa pixels que ndo geram resultados.

Forcas

e O algoritmo paralelo é facil de implementar, mas nao tem eficiéncia.

e O algoritmo sequencial é mais eficiente que o paralelo, mas restringe 0 seu uso
em poucas fungdes estruturantes.

e A erosdo por propagacdo também desperdica tempo computacional verificando
pixels que ndo vao gerar resultados, além de ter a implementacdo mais dificil.

Solucao

Usar Propagacédo Direcional. Ou seja, consideramos uma direcdo de propagacéo na fron-
teira do algoritmo por propagacdo. Isto permite que processemos somente pixels que
gerardo resultados e também apenas as adjacéncias destes pixels que podem gerar resul-
tados.

A estratégia adotada é considerar a direcdo em que a erosao ocorre, avaliando esta
expressdo apenas nesta direcao.
Writer’s Workshop 109

E SugarLoafPLoP 2005 Proceedings

Para isto, 0 f, armazena, além da coordenada x, a dire¢do de propagacdo da erosao
como um inteiro k& € [1, 8], cuja direcdo correspondente a propagacdo de x, conforme a
Figura 4.

5167
4
3121

Figura 4: Direcdes de propagacao

Por exemplo: na Figura 5 o pixel (2, 3) pode ser erodido considerando apenas as
direcbes 3,4 e 5 (isto &, (3,2),(2,2) e (1, 2)).

Y| W= O
[en) Nen) Nen) Newll el Nl
(oo} Revl Hewl ew) Nen) i)
OO | T T W
OO | | | b~
OO | T T Ot

Figura 5: Exemplo para propagacao direcional, onde a primeira linha e a primeira
conluna sé&o os indices da imagem

O algoritmo baseado em erosdo por propagagdo usando a informacdo da direcdo é
dado por (agora df, contém [z, d|, a coordenada x e a direcdo de propagacao d):

Function [g, gp] = erolnit(f,b)
{g e Og, sdo pardmetros de saida}
g=1;
forall z € E
foralye (B+z)NE
{déadireciode yem B + z }
it g(z) > f(y) = bly —)
g(z) = f(y) — bly — z);
if x ¢ Ogy, set_in(Ogy, [x,d]);

Function [g, dgy] = eroDir(f,b,dfp)

{g e Og, sdo pardmetros de saida}

g=1r

for al [x,k] € Ofy

for all y € (B'[k-—, k,k++] + 2) NE
ifg(y) > fzx) — bz —y)

g(y) = f(z) — bz —y),
set_in(Ogy, [y, d]);

onde [k——, k, k++] & o subconjunto das dire¢Bes: anterior, k € posterior a k, con-
siderando a ordem horaria. Se k = 1, entdo anterior € 8, e se k = 8, posterior & 1.
Na Gltima linha do codigo acima, d é k——, k ou k++ dependendo da dire¢do do y usado
no teste, conforme Figura 4.
Writer’s Workshop 110

E SugarLoafPLoP 2005 Proceedings

Usos Conhecidos

Uma série de operacdes morfologicas podem usar propagacdo direcional. Erosao,
dilatacdo, fechamento, abertura e esqueleto sdo apenas alguns exemplos.

A Transformada de Distancia Euclidiana (TDE) é outro exemplo, pois pode ser
implementada usando-se erosdes morfolbgicas que por sua vez podem ser implementadas
usando propagacao direcional.

A seguir explicaremos os conceitos de TDE usando erosdo morfologica. Maiores
informacOes podem ser encontradas em [Zampirolli, 2003].

Shih e Mitchell foram os primeiros a mostrar que a TDE pode ser obtida de forma
exata pela erosdo morfologica usando uma funcdo estruturante paraboloide by aplicada
sobre uma imagem binaria f com valores 0 e & [Shih and Mitchell, 1992]:

Vap(f) = e (f)-

O valor na origem de by € zero e nos outros pontos é dado pelo negativo do quadrado da
distancia Euclidiana a origem.

Uma propriedade da erosao especifica para a transformada de distancia é a idem-
poténcia, i.e., se aplicarmos a erosdo por by novamente, o resultado ndo se modifica:

ebg (b (f)) = b (f)-

Por exemplo, a Figura 6 mostra bz, onde a origem da funcdo estruturante esta
marcada em negrito. Esta fungéo estruturante pode ser usada para calcular a transforma
de distancia em imagens onde o maior valor da distancia seja 2. Na Figura 7b & mostrado

-4
2 1 =2
4 -1 0 -1 -4
2 1 =2
-4

Figura 6: funcéo estruturante bg.

a erosdo de f por bg.

0O 0 0O 0OOO O 0O 0O 0 0 0O0OO O OO
0O 0 0 K kK kK 0 0O 0 0 01 1.1 00O
0 0 £k kK k£ kK kK 0 O 0 01 2 4 2 1 0O
0O £k k£ kK kK kK kE k£ O 01 2 2 1 2 2 1 0
0 £k £k k£ 0 kK kK kK O 01 4 1 01 4 1 O
0O kK k£ kK k£ kK kE k£ O 01 2 2 1 2 2 1 0
0 0k kK kK kK kK 0O 0 01 2 4 2 1 00
0O 0 0 K kK kK 0 0O 0 0 01 1.1 0 0O
O 0 00O OO O OO 0 0 0 0O0OO O OO
(@) (b)

Figura 7: (a) Imagem de entrada f e (b) TDE(f).

Writer’s Workshop 111

E SugarLoafPLoP 2005 Proceedings

Contexto Resultante

A eficiéncia do padrdo direcional pode ser observado na TDE, pois usa de forma ite-
rativa as erosoes direcionais. Veja a seguir os desempenhos das implementacdes desses
trés algoritmos comparando com os algoritmos do Eggers [Eggers, 1998] e do Ragne-
malm [Ragnemalm, 1992]. As imagens testadas sdo de tamanho 256 x 256, onde img1l
€ uma imagem contendo um Gnico pixel do fundo colocado no centro da imagem; img?2
€ uma imagem contendo quadrados de tamanhos variados e img3 & uma imagem com
circulos de tamanhos variados, ambas possuindo 20% de pixels do objeto. Analisando
0s desempenhos apresentados acima, vemos que 0s algoritmos dist Pro e dist Dir apre-
sentam eficiéncias semelhantes ao algoritmo do Eggers. Justificamos o desenpenho de
dist Dir inferior ao dist Pro em alguns casos, pelo fato do aumento da complexidade das
estruturas de dados envolvidas, mesmo fazendo menos calculos por considerar a direcao
de propagacao.

Rag | Egg | Par | Pro | Dir
tmgl | 3.02 | 1.03 | 16.27 | 1.05 | 1.14
tmg2 | 5.98 | 0.47 | 4.18 | 0.33 | 0.50
tmg3 | 2.78 | 0.71 | 3.52 | 0.40 | 0.36

Tabela 1: Tempo em segundos do desempenho de diversos algoritmos:
Rag—Ragnelmalm [Rag92];

Egg—Eggers [Eggo8];

Par—TDE por erosao paralela;

Pro—TDE usando erosdo por propagacao;

Dir—TDE usando erosdo por propagacdo com informacdo de direcao.

Padr 6es Relacionados

Paralelo [D’Ornellas, 2003]
Sequéncial [D’Ornellas, 2004] e
Por Propagacéo [D’Ornellas, 2002].

Referéncias

Birkhoff, G. (1967). Lattice Theory. American Mathematical Society, Providence, Rhode
Island.

D’Ornellas, M. (2002). A queue-based algorithmic pattern. In Proceedings of the Second
Latin American Conference on Pattern Languages of Programming - SugarLoafPloP,
pages 279-298, Sdo Paulo, SP. Editora do IME-USP.

D’Ornellas, M. (2003). A parallel algorithmic pattern. In Proceedings of the Third Latin
American Conference on Pattern Languages of Programming - SugarLoafPloP, Porto
de Galinhas, PE.

D’Ornellas, M. (2004). A sequential algorithmic pattern. In Proceedings of the Fourth
Latin American Conference on Pattern Languages of Programming - SugarLoafPloP,
Fortaleza, CE. Editora da UFC/Hillside Group/Instituto Atlantico.

Eggers, H. (1998). Two fast Euclidean distance transformations in 22 based on sufficient
propagation. Computer Vision, Graphics and Image Processing, 69(1).

Heijmans, H. (1991). Theoretical aspects of gray-level morphology. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 13(6):568-581.
Writer’s Workshop 112

E SugarLoafPLoP 2005 Proceedings

Ragnemalm, 1. (1992). Neighborhoods for distance transformations using ordered prop-
agation. Computer Vision, Graphics and Image Processing: Image Understanding,
56(3).

Shih, F. and Mitchell, O. (1992). A mathematical morphology approach to Euclidean
distance transformation. IEEE Transactions on Image Processing, 1:197-204.

Zampirolli, F. (2003). Transformada de distancia por morfologia matematica. PhD
thesis, Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de
Computagdo, Campinas, SP, Brasil.

Writer’s Workshop 113

SugarLoafPLoP 2005 Proceedings

The Layered Information System Test Pattern

Roberta Coelho, Uira Kulesza, Arndt von Staa, Carlos Lucena

Software Engineering Laboratory, Computer Science Department
Pontifical Catholic University of Rio de Janeiro - PUC-Rio
e-mail: [roberta, uira, arndt, lucena]@inf.puc-rio.br

Abstract

The object oriented application layer architecture [3, 12] allows the distribution of
classes into well defined layers, according to different purposes (business,
communication, data access, etc.). Elements from different layers communicate

only through interfaces. While this architecture helps to address requirements of
many applications, it also creates many new challenges to software testing [9].

Developers must look around for some techniques that help isolate bugs more

quickly in this architecture. Test pattern is a technique that can improve the

efficiency of the testing process, since, it provides a means to share test
construction experience. While design patterns describe interactions between
classes and determine the specification of the classes that participate in he
solution of a specific design problem, a test pattern defines a configuration of
objects needed to test the interactions between classes. Both are intended to guide
the construction of a piece of software. The Layered Information System Test
Pattern documents a systematic way of testing a layered information system which
is based on exercising only the interface defined by each layer.

Intent

The Layered Information System Test Pattern proposes a set of test classes to exercise an
information system structured according the Layer Architectural Pattern. Each test class
exercises the interface of each layer, focusing on the specific concerns/features implemented
by a layer. This pattern also allows the execution the unit test of each layer and the integration
tests between layers.

Example

This section presents an illustrative example of an information system that supports the
management of bank accounts. Figure 1 presents the object-oriented architecture of this
information system following the Layer architectural pattern [3, 12]. According to this pattern,
the elements from each layer should communicate only through well defined layers™ interfaces.
The purpose of a layer interface is to define the set of available operations - from the
perspective of interacting client layers - and to coordinate the layer response to each
operation.

Writer’s Workshop

114

SugarLoafPLoP 2005 Proceedings

Several design patterns have been proposed to refine each layer of this architecture. Some
of them are: the Service Layer Pattern [13], the Data Access Object Pattern [11] and the
Persistent Data Collections (PDC) [1].

The example, presented in the Figure 1, focuses on the Business and Data layers of a
Bank Information System. There can be a GUI layer on top of them; however, this pattern will
just focus on the layers illustrated in Figure 1.

Business and Data layers are defined according to PDC pattern. Nevertheless, different
design patterns [1, 11] could be adopted to refine the information system layers, according to
the system requirements and the platform used by the application. PDC design pattern [13]
refines each layer by filling them with specific classes and interfaces related to business and
data access concerns.

Following the guidelines defined in the PDC pattern, the Business layer should provide a
Facade [2] to the system functionality, a unique interface for its services. In this example the
Facade role is played by the Bank class. The Business layer also specifies a set of business
collection classes (ClientRecord, AccountRecord) which defines business rules related to
each entity classes (Client, Account). The business collection classes are also responsible
for accessing the services of the Data layer in order to execute persistence operations, such as,
insertions, searches, updates, deletions.

<<facade>>
Bank

P L L L L L L e e B¥insertAccount) =00 Fmmmmmmemm e mmmmmm————m -
. I=¥searchAccount() N
‘ IS credit() \
i IinsertClient()
Business Layer FSwithdraw()
| ®searchClient()
| BsearchNegativeBalanceAccounts()
I®¥searchTop10AccountsbyBalance()

' !
1]
1]
1 1
: :
] 1
\ > X !
. Va \ I
1 . /. 1
! & - E AccountRecord !
: E2id ClientRecord Account :
! Ename < Finsert() Zbalance '
| insert() ®oreqit) 0 l____ N =ZlidNumber '
\ I=getld() "M¥search() B¥scarch() |
I IS getName() e ®credit() !
\ Fwithdraw() b |
" [MsearchNegativeBalanceAccounts() Awithdraw() l’
\ [#searchTop10AccountsbyBalance() ’
N ‘<
N
<<Interface>>
<<Interface>> |AccountRepository
P IClientRepository |- === -cd—————--—r——o——— e -
e P&insert() N
' Winsert() | ®search() \
: Data Layer _-_?'search() | BsearchNegativeBalanceAccounts() :
) A M¥searchTop10AccountsbyBalance()]
1 /'r\ N :
[| 0w
1
! | \)
| \
) - - \ :
: ClisntiRepositoryIDBE AccountRepositoryJDBC :
)
!)
! {
‘. /

Figure 1. Object-Oriented Design for the Bank information system.

Writer’s Workshop

115

g SugarlLoafPLoP 2005 Proceedings

The Data layer interface can be structured in one or more classes. In Figure 1, the Data
layer interface is structured in two modules one to each main business entity defined in the
business layer (IClientRepository, IAccountRepository). These interfaces are
implemented according to a specific persistence platform, i Figure 1,
ClientRepositoryJDBC and AccountRepositoryJDBC classes implement data access
operations related to a specific Entity class using the Java Database Connection (JDBC) APIL.

Context

Many information systems developed nowadays, define their architecture based on the
Layer architectural pattern [3, 12]. This architectural pattern allows the distribution of classes
into well defined layers according to different concerns, such as user interface, communication,
business and data access. Also, several design patterns [1, 11, 13] have been proposed to
refine each layer of this architecture.

Despite those patterns have been widely used, the model for testing systems structured
according to this architectural pattern has received few attention and has been few explored.
Most tests are limited to test suites and test cases using simple strategies [7,10]. Although
those tests are useful, they fall short in the role of a general organizational for automated
testing. What is required is a higher level of abstraction, a test pattern that can be reused
wherever a layered architecture is adopted.

Problem

Due to the lack of well defined test patterns, developers and test engineers have applied adhoc
or not well defined strategies during system testing. Some examples of common test strategies
which have been adopted during system testing are the following:
e cxecution of adhoc manual tests in the user interface layer;
e specification of unit tests to some classes of the system which are chosen using no
systematic strategy;
e implementation of one test class to every class of the system (Test Driven
Development — Extreme Programming practice [7]).

Although, these test strategies can eventually help system debugging, there are many

disadvantages associated to such strategies, such as:

e the difficulty of finding the exact faulty code that causes a system failure. Sometimes,
during manual tests complex sequence of actions are performed, which can not be
repeated.

e high cost and effort necessary to reexecute manual tests;

e a great amount of resources and effort can be wasted due to the codification of many
unit tests that will not be effective during system testing;

e since the classes to be tested are chosen without good selection criteria, important
system functionalities may be forgotten during testing.

The development of an information system typically addresses different concerns, such as,
user interface, distribution, business and data access. The lack of well defined strategies to
test an information system can bring several problems to system quality and additional costs to

Writer’s Workshop 116

SugarLoafPLoP 2005 Proceedings

the software development. A recurring problem in the context of layered information systems
is how to systematically define automatic tests to verify the functionality of each layer in
isolation and in collaboration with other layers.

Forces
The following forces influence solutions to this problem:

e [mportance of Tests: Software testing adds value to a system by revealing its faults. It
produces evidence that a pre-release reliability goal has been met.

e Resource Limitation: Testing is an expensive process. Test process should continue
until a reliability goal is attained, but mot of the time it continues until available test
resources have been expended.

o Minimum set of Test-Cases: We would like to reduce the cost of testing process
without decreasing test quality. We would like to define a minimum set of test cases
that would exercise system main components and functionalities.

e Separation of Concerns: Developers should focus on each specific layer when testing
the system. Besides, they should be able to test each layer independent from the
others.

e Test Class Modularity. Each test class should verify a well defined set of
functionalities provided by one specific layer.

e Test Robustness: The test classes should be resilient to internal changes in the
implementation of the layer classes.

e Proximity between Fail and Fault: Automatic tests should make it easier to come
across system failures as well as to localize the faults that had caused them.

Solution

Create unit tests to exercise only the interface defined by each layer. Each test class focuses
on the test of specific concerns/features implemented by a layer. Furthermore, the test code
responsible for verifying all the services provided by a layer can be modularized in one or
more test classes.

To allow the test of one layer at a time, this pattern adopts auxiliary classes, called mock
objects [8]. A Mock Object is used by a test to replace a real component (or a set of
components) on which the system under test depends. Typically, mock objects fakes the
implementation either by returning hard coded results or results that were pre-loaded by the
test [8].

Since the tests defined by the Layered Information System Test Pattern exercises only the
interface of each layer, and there is not a one-to-one relationship between the classes that
comprises the interface and the test classes, this pattern can be used to test any layered
information system no matter the design pattern or design strategy used to refine the layers.

Writer’s Workshop

117

fee

SugarLoafPLoP 2005 Proceedings

Structure

Figure 2 illustrates the structure of the Layered Information System Test Pattern. It has three
participants:

e BusinessTest: this class contains all methods that test a set of functionalities provided
by the Business Layer Interface and are related according to one specific criterion.
This criterion can be a set of operations related to a business entity or to a business
service.

e BusinessRepositoryTest: implements test methods to all methods provided by a
Repository interface. The implementation of these test classes focus on the testing of
specific data repository functionality related to insertion, searching, update and
database operations. Each test method implements a test case which verifies a
successful or an error condition from a specific repository method.

e MockRepository: this class fakes the implementation of a specific BusinessRepository.
Thus, this auxiliary class enables the unit test of the business layer.

All Business Layer's operations can be structured in one single interface or a set of

interfaces [2]. The purpose of the BusinessTest classes is to modularize the Business Layer
tests according to each business entity manipulated by its operations or according to each
business services implemented by such operations. For example, there can be one
BusinessTest class to exercise the set of operations related to a business entity or a
business service.

BusinessTest
HtestSystemService()
BusinessRepositoryTest

lestRemove()
estUpdate()
[#¥testSearch()
estinsert() q
lestBusinessSpecificOperation() Business Layer

MockBusinessRepository

<<Interface>>
IBusiness
I
.systemService()

<<Interface>>
IBusinessRepository

H#remove()
.update()
'search()
insert()
BbusinessSpecificOperation()

Figure 2. The Static View of the Layered Information System Test Pattern.

Writer’'s Workshop

118

SugarLoafPLoP 2005 Proceedings

The BusinessTest classes contain a test method to each successful and error condition
of each method from the Business Layer. Most of the time developers focus on testing
successful conditions and forget the error ones, which are as important as the former. If we
define only one class to test all successful and error conditions of Business Layer methods, the
resulting test class will probably contain too many lines of code which can impact on test
maintainability.

The Data Layer will also be tested through a set of classes which exercises its interface.
Each Data Layer test class concerns with one specific business repository accessible through
the Data Layer's interface. The BusinessRepositoryTest classes, illustrated in Figure 2,
are the ones responsible for testing the each business repository.

Since each layer delegates services to the lower layer the only way to test Business Layer
without the passing through Data Layer is to delegate data services to the
MockBusinessRepository class, which fakes the implementation of a real
BusinessRepository class either by returning hard coded results or results that were pre-
loaded by the test.

The MockBusinessRepository classes allow the BusinessTest classes to
concentrate on testing Business Layer own code. Therefore, the integration test of those two
layers is performed when Business Layer delegates services to the real repositories instead to
the mock classes.

Dynamics

This pattern allows the execution of three types of tests: Business Layer unit test, Data Layer
unit test, and integration test of Data and Business Layers.

Figure 3 illustrates the sequence of method calls performed during Data Layer unit test.
Firstly, an instance of BusinessRepository class is created during the initialization of
BusinessRepositoryTest class (steps 1 and 2), Secondly, a test method is called, for
example, testInsert () (step 3), then, setup() method is called — a private method
responsible for any configuration and initialization common to all test methods (step 4). Finally,
BusinessRepository methods are called (steps 5, 8 and 9) and assert operations are
executed to compare expected results with returned results (steps 7 and 10).

Figure 4 represents an integration test comprising the Business Layer and the Data Layer.
It 1llustrates the sequence of method calls performed when the Business Layer is tested in
collaboration with the Data Layer. Firstly, the BusinessTest class creates the classes that
implement the Business and Data layers. In the Figure 4, this is illustrated through the
instantiation of classes that implement the TBusiness and TBusinessRepository interfaces
(steps 2 and 3). After that, different test methods can be executed in order to exercise the
functionalities implemented by the Business Layer. Figure 4 illustrates the execution of the
testSystemService () method, which calls a business method (step 6) and uses an
assert () method (step 7) to to compare returned results with expected results.

Figure 5 illustrates the sequence of method calls performed when testing the piece of
functionality embedded in the Business Layer. This type of test, as distinct to the integration
test described previously, exercises a single layer. Since Business layer depends on the
services provided by Data Layer, those services should be emulated by a fake implementation
of such layer, a mock object. In the Figure 5, the instantiation of Business Layer is represented

Writer’s Workshop

119

SugarLoafPLoP 2005 Proceedings

by the creation of the 1Business object (step 3). As we can see, this IBusiness object
receives an instance of MockBusinessRepository (step 2), which will simulate the
repository implementation. Since the mock object implements the same interface of a real
repository and the IBusiness object does not know that it is dialing with a “fake”
implementation of a repository. Finally, the test methods are executed the same way as

described in Figure 5.

: BusinessRepositoryTest

repository :
|BusinessRepository

1: new
2: create()
1
3:testlnsert()

4isetup()—___

5: search(; \\\\\\\
6: no element was found

7: assert().

P R
8 insert() | T—=— J
9: search()

6:__

| 10: assert()

method setup() should include all =

Tjconfiguration and inicalization that

is common to all tests methods.

assert method evaluates

\\\\\\ an expression (returned
N

elements < 0) If the
expression is evaluated as
false, this method will
throw an exception.

Figure 3. Dynamic View of the Data Layer unit test.

: BusinessTest

: IBusiness

businRep :
BusinessRepository

1: new R
2: businRep = create(
3: create(businRep)
PI]
L
4: testSystemService() T
| 5: setup()
<z ——
6: systemService()
=>rh
Ll
7: assert()
ez ——

Figure 4. Dynamic View of the integration test of the Data Layer and the Business Layer.

Writer’s Workshop

120

ZE SugarlLoafPLoP 2005 Proceedings

: BusinessTest . IBusiness mockRep :
MockBusinessRepository

1: new

2: mockRep [~ create()

3: create(mockRep)
T
4: testSystemService() I
5: setup()
6: systemService()
7: assert()
<—

Figure 5. Dynamic View of Business Layer unit test.

Example Resolved

Figure 6 presents the use of the Layered Information System Test Pattern for the bank
information system illustrated previously. Two classes, AccountRepositoryTest and
ClientRepositoryTest, are specified to enable the testing of the data access classes.
These classes are implemented based on the method signatures defined in the
IAccountRepository and IClienteRepository, respectively. This allows to reuse them
in case the system developers need to provide new data access classes © a different
persistency platform.

The test of the Business Layer for the example of the bank information system is

supported by the AccountOperationsTest and ClientOperationsTest classes. Each of
these classes implements a set of test methods related to a specific entity class. Also, as we
can see in the Figure 6, these classes are codified based only on the business methods
provided by the Bank facade class. Thus, internal changes in the implementation of these
services do not affect the test classes.
Finally, two mock auxiliary classes, MockAccountRepository and
ClientAccountRepository, are presented in the Figure 6. They represent alternative
implementations of the data access classes. They are used when it is required to test the
Business layer functionality individually.

Writer’s Workshop 121

g SugarLoafPLoP 2005 Proceedings

\
N} N
<<facade>>
Bank
ClientOpetationsTest ; FinsertAccount()
AccountOpetarionsTest | _______ [B¥searchAcoqunt()_ _ — — - — — - — b o _____ -
testinsertClient() N 2 ifcredit() N
[BtestSearchClient() :::estlnsenAooount() J | FinsertClient() \
[I¥testCredit() ' [withdraw() A)
Itestithdraw()) BsearchClient() Business i
~®testSearchAccount() 1 1 searchNegativeBalanceAccounts() . Il
: % searchTop10AccountsbyBalance() 1
'
1 /7
'
1
1 Client / \ !
\ , k AccountRecord !
 |Ed ClientRecord 0o !
AccountRepository Test : finame le—] Pinsert() i-ﬂ_,-palance '
1 = Minsert() [Mcredit() i:ZidNumber 1
[Witestinsert() 1 Hgetld() Msearch() Msearch() - :
[MitestSearch() 1 HgetName() 7 Bwithdraw() Ecredit() :
HitestSearchNegativeBalanceAccounts() : / MsearchNegativeBalanceAccounts() Bwithdraw() |
HitestSeatchTop10AccountsByBalance() 1 / MsearchTop10AccountsbyBalance() :
~_ ' /)
S~ - N ’/ ,'
ClientRepository Test Yy — L L T T T I e e e e e e e - -7
v S8
Bestinsert) = b——__ _ <<Interface>> <<Interface>>
WestSearch) | T T TTm——— N IClientRepository |AccountRepository
A Hinsert() Minsert()
2 o= ¥ Bsearch(r = - = === == WRearch)~ """ " """"----Tf -t ------ ~~.
T _____[___ I searchNegativeBalanceAccounts() \
_ - : “ MisearchTop10AccountsbyBalance() !
i N Data Layer '
I MockAccountRepository j| ! MockCIientRepositoryJ] : \\ < Li y :
i 34 i ! o\ / \ '
- - —_————
| I ClientRepositoryJDBC | '/ | I-\ooountRepositoryJDBC_|-I :
1 - ——————4 . \
1 I P 1 |
l\ | 1
. ;
|

Figure 6. An information system and its corresponding test classes

Consequences
The Layered Information System (LIS) Test Pattern maintains the following consequences:

o Separation of Concerns. The pattern defines an individual test to each layer of an
information system. LIS test pattern focus on the testing of individual services.

o Test Class Modularity. The testing code is modularized using different test classes.
Each test class focus on the verification of a well defined and limited set of
functionalities provided by a specific layer. It improves the readability and
maintainability of the test classes.

e Test Robustness. Since test classes depend only on the layer interface, they are no
effected due to implementation changes inside a layer.

e [ncrease in Cost of System Development. Although there is a cost associated to the
implementation of the layered information system test pattern, the systematization of
the test activity can reduce its cost if compared with other approaches, such as adhoc
tests and unit test of every class. Code generation tools can even reduce test costs
since they can generate the overall structure of many test classes. Moreover, if a
developer decides to skip test activities, afterwards, the system will be buggy and will
consequently cost more time and money to be fixed.

Writer’s Workshop 122

SugarLoafPLoP 2005 Proceedings

e Proximity between Failure and Fault. LIS test pattern defines individual tests to
each layer. When a fault is detected by a test case, such minimum set of tests cases
allows the developer to identify in which layer is the fault, but cannot diagnosis which
specific class causes the failure.

e Increase in the number of classes: a negative consequence of this testing solution is
the increase in the number of classes to be maintained. However, this Test Pattern
allows the execution of automated tests along the iterations which would require high
cost and effort to be reexecuted manually. Although this pattern suggests fewer test
classes than Test Driven Development (TDD) agile practice (one unit test per class) it
is as effective as TDD. Since the classes to be tested are chosen according to a
specific criterion, important system functionalities is not forgotten during testing.

Known Uses

The Layered Information System Test Pattern has been used during the development of two
Java information systems in Recife, Brazil. A general description of these systems is given
below.

e A system for managing real estate. This system allows the register of real estate and
the management o tax charging related to them. It was implemented in the J2EE
platform.

e A system that supports the management of market activities. The system allows the
register of market activities and the management of tax charging related. It was also
implemented in the J2EE platform, including the use of the Enterprise Java Bean
technology.

See Also

A few test patterns have already been proposed. Gerard Meszaros [4, 5] has proposed two
Test Pattern languages, one for setting up XUnit test features - which describes key techniques
for addressing the issues around test fixture management, and the other for automating testing
of indirect inputs and outputs using XUnit.

Some design patterns for using Mock Objects have been proposed as well, some of them
are the following;

e Mock Object: a basic mock pattern that allows for testing a unit in isolation by
“faking” the communication between collaborating objects.

o Mock Object Factory: a way of creating mock objects using existing factory
methods.

e Mock Object via Delegator: a pattern that creates a mock implementation of a
collaborating interface in the test class or mock object.

Writer’s Workshop

123

ZE SugarlLoafPLoP 2005 Proceedings

Implementation

We describe below some guidelines for implementing the Layered Information System (LIS)
Test Pattern. The following code examples are related to an information system for managing
bank accounts presented in previous sections. They are written using the Java programming
language and the JUnit test framework [6]. However, the LIS Test Pattern can be
implemented in other platforms, by following the guidelines we present below.

Step 1: Prepare the Entity classes to help the codification of test classes.

Every test method needs to evaluate the data sent or received from the methods being tested.
In the context of information systems, the information manipulated are, typically, the content
embedded in entity classes. Thus, before starting the implementation of test classes, it is
important to define a way to compare two instances of the same Entity class. A well known
way to compare two instances of a class is through the a method equals () that receives an
instance of the same class and returns true if the argument contains the same attributes values
as the class being called or false otherwise.

In the information system for the management of bank accounts, for example, the
Account class must define its equals () method in order to compare its attributes i dNumber
and balance with the same attributes of other instance.

public class Account {
private long idNumber;
private double balance;

public Account (long idNumber, double balance) {
this.idNumber = idNumber;
this.balance = balance;

}

public boolean equals (Object anotherInstance) {

Account anotherAccount = (Account) anotherInstance;
if (this.idNumber == anotherAccount.idNumber &&
this.balance == anotherAccount.balance) {
return true;
}else {

return false;

}

Step 2: Define a BusinessRepositoryTest class.

A BusinessRepositoryTest class must define test methods to verify the functionality provided
by a data access class (or data repository class) which are specified in the business
repositories interfaces.

Writer’s Workshop 124

SugarLoafPLoP 2005 Proceedings

As mentioned in the Structure Section, a BusinessRepositoryTest class has many
responsibilities, such as: (i) to create an instance of a data access class to be tested; (ii) to
define a method that performs every configuration and initialization necessary to run the test;
and (iii) to specify different test methods to each method provided by the data access class to
be tested.

Each BusinessRepositoryTest class must define different test methods to each existent
method of the data access classes. These test methods must verify the successful and error
conditions, using different argument types and values and handling different types of
exceptions.

In order to minimize effort, the search methods - of the data access classes - can be used
to support the test of the other methods. For example, the test method of insert operations
can, previously, search the object be inserted to verify if it does not already exist in the
repository. Also, the test methods of delete and update operations should use the search
method whenever they need.

Below, we present the partial code of a BusinessRepositoryTest class in the context of the
banking system, responsible to test the functionality of an TAccountRepository instance.

public class AccountRepositoryTest extends TestCase {
private IAccountRepository accountRepository;

public AccountRepositoryTest (String name) {
this.accountRepository = new AccountRepositoryJDBC() ;

// Additional common configurations before to execute
// all the test methods

// JUnit standard method to be executed before every test method
protected void setUp () {

public void testInsertAccount () {
try |
Account account = new Account (123, 500);

accountRepository.inserir (account) ;

Account accountSearched = accountRepository.search(123);
assertEquals (account, accountSearched);

} catch (Exception e) {

fail ("Exception not expected:" + e);
}
}
public void testInsertAlreadyExistentAccount () {
try {
Account account = new Account (123, 500);

accountRepository.inserir (account) ;
fail (“System did not throw exception!!!”);

Writer’s Workshop

125

ZE SugarlLoafPLoP 2005 Proceedings

Account accountSearched = accountRepository.search(123);
assertEquals (account, accountSearched);

} catch (AlreadyExistsObjectException e) {
System.out.println (“OK: Exception expected!!!”);

} catch (Exception e) {
fail ("Exception not expected:" + e);

Step 3: Define a MockBusinessRepository class.

The MockBusinessRepository classes simulate the behavior of BusinessRepository classes in
order to allow the unit test of the Business Layer.

In order to fake the behavior of a real repository the MockBusinessRepository classes
can use an internal data structure (like a hash table or a vector) that is able to store the
business objects. The Mock classes must implement the data access interfaces. Each method
described in these interfaces uses the internal data structure.

A partial code of the MockAccountRepository class is presented below. It uses a hash
table to store the business objects manipulated by the mock.

public class MockAccountRepository implements IAccountRepository {
private Map accounts;
public MockAccountRepository () {
this.accounts = new Hashtable();

public void insert (Account account)
throws AlreadyExistentObjectException, ... {
if (this.accounts.containsKey (new Long (account.getIdNumber()))) {
throw new AlreadyExistsObjectException
("Object already exists");
lelse {
this.accounts.put (new Long(account.getIdNumber ()), account);

}
public Account search(long idNumber)
throws InexistentObjectException {

Account account = null;
if (this.accounts.containsKey (new Long (idNumber))) {

account = (Account) this.accounts.get (new Long (idNumber)) ;
}else {

throw new InexistentObjectException "Object does not exist");

}

return account;

Writer’s Workshop 126

@ SugarlLoafPLoP 2005 Proceedings

Step 4: Define a BusinessTest class.

A BusinessTest class verifies the functionality provided by Business Layer. Different
BusinessTest classes should be defined for each system.

This class contains all methods related to a business entity or to a business service. In this
example each test class must focus on the testing of all Facade operations related to a business
entity. Moreover, each test method defined must verify different execution conditions of the
method under test, such as: (i) the correct execution of business rules; and (ii) the incorrect
execution which throws business exceptions.

In the example presented in Solved Example Section, two different BusinessTest classes
were be specified: one responsible for testing the functionalities related to the Account class
and the other responsible for testing the functionalities related to ciient class. Below we
present the AccountoOperationsTest class, responsible for testing the methods in the Bank
facade class related to the Account business class. We can also observe that the
AccountOperationTest class constructor allows two different configurations depending on
the kind of test that will be executed: (i) in case we want to perform integration tests, the Data
layer will use the system data access classes; and (i) in case we want to perform unit tests in
the Business Layer, the Data layer should be replaced by a mock object in the test method. In
a more realistic implementation of BusinessRepositoryTest classes, the parameter
integrationTest should be loaded from a configuration file.

import junit.framework.TestCase;

public class AccountOperationsTest extends TestCase {
private Bank bank;
private boolean integrationTest = true;

public AccountOperationTest (String name) {
this.bank = Bank.getInstance();

AccountRecord accountRecord = null;
ClientRecord = clientRecord = null;
if (integrationTest) {
accountRecord = new AccountRecord(new AccountRepositoryJDBC()) ;

} else {
accountRecord = new AccountRecord (new MockAccountRepository());

}

this.bank.setAcccountRecord (accountRecord) ;

// JUnit standard method to be executed before every test method
protected void setUp () {

public void testCreditAccount () {
try {
Account account = new Account (123, 500);

Writer’s Workshop 127

ZE SugarlLoafPLoP 2005 Proceedings

bank.insertAccount (account) ;
bank.credit (123, 200);

Account accountSearched = bank.searchAccount (123);
assertEquals (new Account (123, 700), accountSearched);

} catch (Exception e) {
fail ("Exception not expected:" + e);
}
}

public void testWithdrawAccount () {
try {
Account account = new Account (456, 500);
bank. insertAccount (account) ;
bank.withdraw (456, 200);

Account accountSearched = bank.searchAccount (456) ;
assertEquals (new Account (456, 300), accountSearched);

} catch (Exception e) {
fail ("Exception not expected:" + e);

}

Acknowledgments. We would like to give special thanks to Carlo Giovano, our shepherd,
for his important comments, helping us to improve our pattern. This work has been partially
supported by CNPq under grant No. 150678/2004-7 for Roberta de Souza Coelho and
grant No. 140252/2003-7 for Uira Kulesza, and by FAPERJ under grant No. E-
26/151.493/2005 for Uird. The authors are also supported by the PRONEX Project under
grant 7697102900, and by ESSMA under grant 552068/2002-0 and by the art. Ist of
Decree number 3.800, of 04.20.2001.

References

1. D. Alur, D. Malks, J. Crupi. Core J2EE Patterns: Best Practices and Design Strategies.
Prentice Hall PTR, 2nd edition, 2003.

2. E. Gamma et al. Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, Reading, MA, 1995..

3. F. Buschmann et al. Pattern-Oriented Software Architecture: A System of Patterns. John
Wiley Sons, 1996.

4. G. Meszaros. A Pattern Language for Automated Testing of Indirect Inputs and Outputs
using XUnit, Proc. of the 11th Conference on Pattern Languages of Programs
(PLoP2004), September 2004, Monticello, USA.

5. G. Meszaros. A Pattern Language for Setting up XUnit Test Fixtures. Proc. of the 11th
Conference on Pattern Languages of Programs (PLoP2004), September 2004,
Monticello, USA.

6. JUnit Framework, http://www junit.org.

Writer’s Workshop 128

ZE SugarlLoafPLoP 2005 Proceedings

7. K. Beck, Extreme Programming Explained, Addison-Wesley, 2000

8. M. Brown and E. Tapolcsanyi, Mock Object Patterns, Proceeding of the PLOP 2003,
September 2003, Monticello, USA.

9. M. Donat, Debugging in an Asynchronous World, ACM Queue 1(6), 2003, pp. 23-30.

10. M. Fowler, A UML Testing Framework. Software Development Magazine. April, 1999

11. M. Fowler, et al. Patterns of Enterprise Application Architecture. Addison-Wesley
Professional, 2002.

12. S. Ambler. Building Object Applications that Work. Cambridge University Press and
Sigs Books, 1998.

13. T. Massoni, Vander Alves, Sergio Soares, and Paulo Borba. PDC: Persistent Data
Collections pattern. In First Latin American Conference on Pattern Languages
Programming SugarLoafPLoP, Rio de Janeiro, Brazil, October 2001. UERJ Magazine:
Special Issue on Software Patterns.

Writer’s Workshop 129

E SugarLoafPLoP 2005 Proceedings

Secrecy with Session Key: Um padriao de criptografia para
evitar ataques de criptoanalise por textos cifrados conhecidos

Windson Vianal, José Bringel Filhoz, Rossana Andrade'’
'Mestrado em Ciéncia da Computacio — Universidade Federal do Ceara (UFC)

*Centro Nacional de Processamento de Alto Desempenho no Nordeste

{windson, bringel, rossana}@lia.ufc.br

Abstract. This paper presents an extension of the Tropyc pattern language,
describing a solution for the confidentiality problem applying ciphertext-only
cryptoanalysis of techniques. This problem is aggravated when messages
contain known parts by attackers, which facilitates cipher discovery. This
ciphered messages with known message parts allows then break the cipher
and, as a consequence, the confidentiality of the sent messages.

Resumo. Este artigo apresenta um padrdo que pode ser utilizado por
desenvolvedores de sistemas de criptografia orientados a objetos. O padrdo
complementa a linguagem de padroes Tropyc, definindo solugbes para o
problema de quebra de confidencialidade através de técnicas de criptoandlise
de ciphertext-only. Este problema se agrava quando as mensagens possuem
partes conhecidas pelo atacante, o que facilita a descoberta da cifra. A
catalogagdo, em conjunto com as partes conhecidas das mensagens, permite a
quebra da cifra e, em conseqiiéncia, da confidencialidade das mensagens
enviadas.

1. Introducio

A linguagem de padroes Tropyc [Braga 1999] apresenta padrdoes de solucdes
criptograficas identificadas a partir de sistemas computacionais que apresentam
requisitos de seguranca. O primeiro padrdo apresentado da linguagem Tropyc € o
GOOCA - Generic Object-Oriented Cryptographic Architecture, a qual consiste em
uma arquitetura genérica para o desenvolvimento de sistemas criptograficos flexiveis e
reutilizaveis, utilizando o paradigma da orientagdo a objeto.

A partir de GOOCA sdo apresentados padrdes de seguranca identificados de
acordo com os objetivos primarios da criptografia (i.e., confidencialidade, integridade,
autenticidade e ndo-repudio [Stallings 1999]), bem como a combinacdes entre eles,
descrevendo uma linguagem de padrdes fechada ao dominio de seguranga.

Para fornecer o servigo de confidencialidade aos sistemas computacionais,
Tropyc define o padrdo Information Secrecy. Este padrio utiliza algoritmos de
criptografia simétrica ou assimétrica para prover a confidencialidade das mensagens
trocadas entre dois pontos comunicantes. Para cifrar ou decifrar as mensagens, ¢
necessario uma chave secreta ou chaves publicas compartilhadas entre as partes
comunicantes. O padrdo Information Secrecy ¢ ainda combinado com os padrdes
Tropyc Secrecy with Sender Authentication, Secrecy with Signature, Secrecy with

Writer’'s Workshop 130

é‘_‘_ SugarlLoafPLoP 2005 Proceedings

Integrity e Secrecy with Signature with Appendix, para a formagdo de novos padrdes
com propositos de seguranca.

Entretanto, o padrdo Information Secrecy ndo considera o problema originado
através de ataques de ciphertext-only [Biryukov and Kushilevitz], que permite a quebra
da confidencialidade. Nesse tipo de ataque, o invasor somente tem acesso ao texto
cifrado, porém ele deduz o texto original ou a chave através de técnicas de criptoanalise.
Um exemplo deste ataque € apresentado em [Fluhrer, 2001], no qual a quebra do
algoritmo RC4 ¢ realizada.

Este artigo descreve entdo um padrdo, chamado Secrecy with Session Key, que
apresenta uma solugdo para proteger a comunicacio contra ataques desse tipo.

Na descri¢do do padrio foram utilizados termos comumente conhecidos na
literatura relacionada a criptografia. Por exemplo, Alice e Bob identificam as partes
comunicantes, por sua vez, Eve corresponde ao atacante ou criptoanalista que deseja
recuperar as informacdes trocadas entre Alice e Bob, conforme ilustrado na Figura 1.

Bob Alice

Troca de
Mensagens

I

I Escuta

| das mensagens
trocadas

Eve

b

Figura 1. Comunicagédo entre duas partes comunicantes com a presen¢a de um
atacante (adaptado de [Stallings 1999]).

2. Contexto

Alice deseja enviar a Bob mensagens de forma segura. Eles utilizam chaves e
algoritmos criptograficos previamente combinados para cifrar e decifrar as mensagens.
Entretanto, Eve pode obter acesso as mensagens cifradas e, através de técnicas de
criptoanalise de ciphertext-only, recuperar as informagdes transmitidas entre eles.

3. Problema

Como Alice e Bob podem reduzir a possibilidade de Eve recuperar as informagdes
transmitidas através de técnicas de criptoanalise de ciphertext-only?

4. Forcas

— A recuperagdo por Eve das informagdes ¢ facilitada quando a comunicagdo ¢ intensa
(i.e., muitas mensagens trocadas com a mesma chave), quando as mensagens
trocadas sdo curtas (i.e., possuem poucos caracteres) e/ou possuem um formato
especifico conhecido (e.g., documentos XML, arquivos de imagens e de
processadores de texto).

Writer’'s Workshop 131

SugarLoafPLoP 2005 Proceedings

— Seréd dispendioso Eve, mesmo recuperando todas as mensagens transmitidas no
canal, descobrir a(s) chave(s) utilizada(s) para cifrar e decifrar, assim como as
informacdes encriptadas;

— O mecanismo de geracdo e estabelecimento de session keys deve seguro de maneira a
evitar que Eve, mesmo capturando as mensagens trocadas durante o processo, nio
consiga recuperar a chave gerada.

— O custo (e.g., computacional, financeiro) para Eve recuperar as chaves ou quebrar a
cifra ¢ maior do que o custo da informagao transmitida.

5. Solugao

Alice e Bob ndo devem utilizar sempre a mesma chave ou pares de chaves, no caso da
criptografia assimétrica, para cifrar e decifrar as mensagens. Sendo assim, deve ser
estabelecida uma chave valida por um determinado periodo, denominada de chave de
sessdo (session key), além de ser necessario a combinacdo prévia entre Alice e Bob dos
mecanismos para a geracdo e estabelecimento destas chaves, como por exemplo o
algoritmo criptografico Diffie-Helman [Diffie and Hellman, 1976].

Ao iniciar o processo de comunicacdo entre Alice e Bob, deve ser verificada a
validade da chave de sessdo utilizada. Sendo assim, caso o periodo de validade desta
chave esteja expirado, Alice deve executar novamente os mecanismos de geragdo e
estabelecimento de chaves de sessdo. A nova chave de sessdo deve ser utilizada para
cifrar e decifrar as mensagens enviadas e recebidas de Bob, respectivamente. Por fim,
para cifrar e decifrar as mensagens, Alice ¢ Bob devem utilizar o padrdo Information
Secrecy da linguagem Tropyc com a chave de sessdo estabelecida.

A Figura 2 apresenta o padrdo Secrecy with Session Key documentado neste
artigo, que complementa a linguagem de padrdes Tropyc, bem como os novos
relacionamentos e padrdes que surgiram a partir dele. As arestas continuas representam
as dependéncias originais entre os padrdes Tropyc, enquanto que as tracejadas
descrevem as novas dependéncias entre os padrdes Tropyc e o Secrecy with Session
Key.

Os padroes representados por retdngulos cinza com a borda tracejada,
representam os padrdes Tropyc que, através do relacionamento destes com o padrdo
Secrecy with Session Key, podem dar origem a novos padrdes (e.g., Secrecy with
Session Key with Sender Authentication).

Writer’'s Workshop

132

é‘_‘_‘ SugarlLoafPLoP 2005 Proceedings

Generic Object-Oriented Cryptographic Architecture

-
P - \ \»K\\
fff \\ “\\
1"’ ¥ u Y
Sender Information | Secrecy with . Message
Authentication Secrecy *| Session Key Signature Integrity
H_l_,,,f' ~c I,-’HI __F___‘__».\-:'"_F--f-
e PRt H‘M L .
- e o ' S -
e . - = /
| - f:x“‘:h v/ \\\
| Secrecy with | ;------TA e po=sn= o - AT
: Sender L\ Secrecy with | ; Secrecy with i _Sugnalure _
‘Authentication: © Integrity i Signature with Appendix
""""""""" TToTTTTTTmTTmmTT """""'Y;;;'
-,
.
-,
........ B
i Secrecy with Signature |
i with Appendix i

Figura 2. Padroes do Tropyc e o padrdao Secrecy with Session Key
(adaptado de [Braga, 1999]).

6. Conseqiiéncias

— A utilizagdo de mecanismos para a geragdo e o estabelecimento das chaves de sessdo
aumenta o tempo de processamento ¢ o numero de mensagens trocadas entre Alice e
Bob;

— Periodos curtos de validade das session keys adicionam overhead de processamento e
de troca de mensagens;

— Periodos longos de validade das session keys facilitam a ocorréncia de ataque de
ciphertext-only.

8. Dinamica

A Figura 3 ilustra o processo de comunicacdo entre Alice e Bob, utilizando um
diagrama de seqii€ncia, onde ¢ necessario que as mensagens (parametro msg) sejam
transmitidas de forma segura. Neste diagrama, as classes envolvidas (e.g., codificador,
Alice) sdo as mesmas utilizadas na ilustracdo do padrio GOOCA da linguagem Tropyc
[Braga 1999] e os seguintes passos sdo executados:

— 1° Passo: antes de dar inicio a transmissdo, Alice verifica a validade da chave de
Sessao;

— 2° Passo: caso seja constatado que a chave estd expirada, Alice, através dos
mecanismos de geracdo e estabelecimento de chave de sessdo (SK), ird gerar uma
nova SK;

— 3° Passo: caso o 2° Passo tenha sido executado, a chave gerada SK sera estabelecida
entre Alice e Bob;

Writer’'s Workshop 133

E SugarLoafPLoP 2005 Proceedings

— 4°e 5° Passos: a partir desse momento, Alice e Bob utilizam as classes Codificador e
Decodificador (que implementam o padrdo Information Secrecy), além da SK, para
cifrar e decifrar as mensagens a serem enviadas.

Codificador Alice Bob Decodificador

| 1:checarvalidadeDaChaveDeSessdol)

i

1

1

|
|
|
|
2 gerarChaveDeSessdol |
|
[
|
|

L1 3: 5K = estabelecerChaveDeSessiod
4.3 = InformationSecrecy{msg, SK) :

r _

L A receive ()

g
|
|
|
ol
1 51: msg = InformationSecrecy(s, Sk
|
| |
| |
| |
I |

|
|
|
|
|
|
| Ll
| |
| |
| |
Figura 3. Dindmica do Padrao Secrecy With Session Key.

9. Implementacao

Os mecanismos de geracdo e estabelecimento de chaves de sessdo podem ser
implementados de duas maneiras distintas: com segredo inicial compartilhado ou sem
segredo inicial compartilhado.

No caso da geragdo e estabelecimento de chaves de sessdo com segredo inicial
compartilhado, Alice e Bob possuem uma informag¢do inicial previamente distribuida
sem o conhecimento de Eve. Essa informagdo inicial € utilizada nos mecanismos para
gerar ¢ estabelecer a nova SK, por exemplo, podem ser utilizados mecanismos de
desafio-resposta e de geracdo de numeros pseudo-aleatorios [Menezes 1996].

J& no estabelecimento de chave de sessdo sem segredo inicial, Alice e Bob
utilizam mecanismos de criptografia assimétrica. Neste caso, os padrdes Information
Secrecy e Secrecy with Signature with Appendix podem ser utilizados para o
estabelecimento da chave de sessdo. Além disso, € possivel utilizar protocolos de
distribui¢do de chaves, tais como o Diffie-Helman [Diffie and Helman 1976].

10. Padroées Relacionados

— O padrio Strategy [Wolfgang 1995] pode ser utilizado para implementar o
mecanismo de escolha dos algoritmos de geragdo e estabelecimento de chaves a
serem utilizados pelas partes comunicantes;

— O padrao Secrecy with Session Key pode ser combinado a outros padrdes da
linguagem Tropyc (Signature, Message Integrity, Sender Authentication, Signature
with Apendix) visando criar padrdes que tratam este problema somado ao escopo

Writer’'s Workshop 134

E SugarLoafPLoP 2005 Proceedings

original do padrdo, como aconteceu com o padrdo I/nformation Secrecy ilustrado na
Figura 2;

— A linguagem de padrdes para Gerenciamento de Chaves Criptograficas [Lehtonen
and Pérssinen 2002] pode ser utilizada para realizar o gerenciamento de chaves
comuns (padrdo Common Key Management), a geragdo de chaves criptograficas
(padrdo Cryptographic Key Generation) e a troca de chave de sessdo utilizando
chaves publicas (padrdo Session Key Exchange With Public Keys).

— A linguagem apresentada em [deSouza and Matwin 2001] trata de problemas
relacionados a comunicagcdo segura na arquitetura cliente-servidor. Os padrdes
Public/Private Key Generation, Session Key Generation, Session Key Exchange ¢
Data Encryption/Decryption podem ser usados em conjunto ao padrdo apresentado
neste artigo.

11. Usos Conhecidos

A utilizacdo de session keys ¢ muito comum em sistemas baseados em criptografia de
chave publica e que utilizam a criptografia simétrica para cifrar e decifrar mensagens,
por exemplo, o protocolo SSL (Security Socket Layer) [Stallings 1999] e aplicagdes que
utilizam PGP (Pretty Good Privacy) [RFC 2440 1998]. Por sua vez, o protocolo SSL ¢
utilizado em sites comerciais de venda ou oferta de servigos com a finalidade de realizar
a troca segura de informacgdes entre o cliente (i.e., browser web) e o servidor, o qual faz
uso de chaves de sessao.

Além disso, este padrdo também € encontrado no processo de autenticagdo de
estacdes moveis nos sistemas de comunicacdo movel GSM (Global System for Mobile
Communications) ¢ GPRS (General Packet Radio Service) [Watkins 2000]. Nesses
sistemas, ¢ estabelecida uma chave de sessdo entre o nicleo da rede e a estacdo moével
(i.e., aparelho celular) que serd utilizada para cifrar a voz e os dados que trafegam na
rede.

Referéncias

Braga, A. M.; Rubina C. M. F.; Dahab, R. Tropyc: A Pattern Language for
Cryptographic Software. p. 1-27, Jan. 1999.

Diffie, W.; Hellman, M.E. New directions in cryptography. IEEE Trans. Inform.
Theory, 1976. Disponivel em http://citeseer.ist.psu.edu/diffie76new.html>. Acesso
em: 15 mar. 2005.

Stallings, W. Network Security Essentials: applications and standards. New Jersey:
Prentice Hall, 1999.

Menezes, A. J.; Oorschot, P. C. V.; Vanstone S. A. Handbook of Applied Cryptography,
Out., 1996.

Wolfgang, P. Design patterns for object-oriented software development. 2rd edition.
1995.

RFC 2440 (1998) “Open PGP Message Format ”, J. Callas, L. Donnerhacke, H. Finney,
R. Thayer, Nov. 1998.

Writer’'s Workshop 135

é‘_‘_ SugarLoafPLoP 2005 Proceedings

Lehtonen, S.; Pidrssinen, J. Pattern language for Cryptographic Key Management.
EuroPLoP, 2002.

Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J. Design Patterns. Addison Wesley,
Reading, MA, 1995.

Watkins, D. Overview and Comparison of GSM, GPRS and UMTS. Bradley
Department of Electrical and Computer Engineering, Virginia Polytechnic Institute
and State University, abr. 2000.

Biryukov, A.; Kushilevitz, E. From Differential Cryptanalysis to Ciphertext-Only
Attacks. In: CRYPTO, pp72-88, 1998.

deSouza, J. T.; Matwin, S. A Pattern Language for Providing Client-Server Confidential
Communication, in: SugarLoafPLop, Rio de Janeiro, Brazil, 2001.

S. Fluhrer, I. Mantin, and A. Shamir. Weaknesses in the key scheduling algorithm of
RC4. In Eighth Annual Workshop on Selected Areas in Cryptography, Toronto,
Canada, Aug. 2001.

Writer’'s Workshop 136

E SugarLoafPLoP 2005 Proceedings

Patterns for Parallel and Distributed Processing of Large
Hierarchical Structures

Denise Stringhini Ismar Frango Silveira Luciano Silva
Faculdade de Computag@o e Informatica, Universidade Presbiteriana Mackenzie
{dstring, ismar, lucianosilva}@mackenzie.br

Abstract. Processing of large hierarchical structures could achieve better
performance whether implemented over parallel environments. Although there
is a wide range of applications for such parallelized structures, there is a lack
of well-defined design patterns to model them, even though some parallel
programming patterns have already been proposed. This paper proposes a set
of design patterns that address these issues as well as describing some
potential applications.

1 Introduction

Parallelism has been largely used to obtain better performance in computational
intensive applications. Nowadays, clusters of thousands of processors are used to run
scientific applications such as weather forecasting or genomic sequencing processing.
Parallel processing is also used in industry for applications that range from web search
to computer graphics. This processing environment is largely improved by the use of
cluster computing technology. Programming in such environments is usually enhanced
by parallel programming libraries such as MPI [Gropp et al. 1999] and PVM [Geist et
al. 1994]. Also, Grid environments take advantage of the Internet infrastructure to
allow the execution of distributed applications over geographically separated machines.

Despite the increasing amount of research on techniques and tools for parallel and
distributed programming, this is still a hard task considering distributed memory
architectures. Issues like data and task partitioning, data mapping, communication and
synchronization between processes are difficult to manage. Besides, these issues must
be addressed to achieve the best possible performance.

Recently, object-oriented design patterns have been receiving more attention from
parallel programming designers. This is probably because it is possible to identify
patterns in some parallel programming techniques such as the bag of tasks, pipeline,
divide and conquer, master/workers [Mattson et al. 2004]. The main advantage of using
patterns is their independency on languages, libraries, or tools. In the context of parallel
and distributed programming this is particularly useful since the available hardware and
tools could vary considerably.

This paper presents a set of design patterns for parallel and distributed processing of
large hierarchical structures, such as scene graphs and phylogenetic trees, distributed
over a cluster of computers. Section 2 describes some related work. Section 3 presents
the proposed patterns. Section 4 discusses some patterns applications and finally some
conclusions and future works are presented in Section 5.

Writer’'s Workshop 137

E SugarLoafPLoP 2005 Proceedings

2 Related work

Frameworks and skeletons have been developed to help parallel and distributed
programming. For example, there is the PAS — Parallel Architectural Skeleton and
SuperPAS [Akon et al. 2004] system that is a pattern-based parallel programming model
and environment. SuperPAS is an extension of PAS that provides a skeleton description
language for the generic PAS. In this approach the user has to learn the system’s
description language, which is sometimes undesirable.

There is some interesting work in developing parallel design patterns. Mattson [Mattson
et al. 2004] presents a collection of patterns for parallel programming based on classical
patterns description. They describe a pattern language organized into four design
spaces: finding concurrency, algorithm structure, supporting structures, and
implementation mechanisms. The programmer has to consider each of these spaces in
order to complete an application. Each space is composed of a collection of parallel
design patterns. Nonetheless, this approach doesn’t address conceptual design issues
since it is limited to low-level coding.

The CO,P;S — Correct Object-Oriented Pattern-based Parallel Programming System
[Tan et al. 2003] and MetaCO,P3S, use generative design patterns. A programmer
selects the parallel design patterns and then generates a custom framework for the
application that includes all structural code necessary for the application to run in
parallel. The programmer is only required to write simple code that launches the
application and to fill in some application-specific sequential hook routines. These tools
don’t substitute pattern definitions since they are required by MetaCO,P3S to provide
basic information in order to allow CO,P;S to generate code.

3 Proposed Patterns

In order to contribute to the definition of patterns for parallel and distributed
applications, three patterns are being proposed as follows: Distributed Composite, Dual
Visitor and Matched Transporter.

3.1 Distributed Composite

Motivation: Parallel applications often need to work with data that are organized in a
hierarchical structure, making each one of the components highly dependent on their
ancestors or descendants, according to the traversal strategy. Such dependence makes
the parallel processing of these elements more difficult, since the nodes have to be
distributed over several processors.

Intent: Distributed Composite lets clients treat individual objects and compositions of
objects uniformly, whether remote or local.

Applicability: The use of the Distributed Composite pattern is recommended when:

o Distributed objects are organized in a large hierarchical, tree-like structure;
o Their processing can be done in parallel, usually by bottom-up traversal strategies.

Structure: The key component in Distributed Composite is an abstract class Node that
is implemented by classes that represent local nodes and remote references. Local nodes

Writer’'s Workshop 138

E SugarLoafPLoP 2005 Proceedings

may represent primitive elements or composite nodes, as in the Composite pattern
[Gamma ef al. 1995]. The structure for the Distributed Composite Pattern is shown in

Figure 1.
Distributed CompositeP at‘tern|
Node
*
S i
RemwiteR eferencelode Loc alPrimitived ode Loc alCompositeHode

Figure 1. Distributed Composite Pattern

Participants:

o Node: this abstract class implements default behavior for the interface common to all
classes. It defines an interface for accessing and managing its child components, and
for accessing a parent component in the recursive structure (these methods are not
shown in model, since they are already defined in the Composite pattern [Gamma et
al. 1995]). Since this class represent nodes that will be processed by Dual Visitor, it
must include an accept() method, which must be implemented by their subclasses.

o LocalPrimitiveNode: represents a leaf object that will be locally processed.

o LocalCompositeNode: represents nodes with children, which can be of any type that
implements Node.

o RemoteReferenceNode: instances of this class actually point to an instance of any
subclass of Node that is not in the same physical or logical context.

Collaborations:

o Clients use Node interface to interact with different objects in the structure. If the
object is an instance of LocalPrimitiveNode requests can be treated directly. If it is a
LocalCompositeNode, requests are recursively forwarded to the next nodes in
hierarchy. However, if it is a RemoteReferenceNode requests are sent to remote
nodes pointed by this object. These requests are treated as local ones by the remote
nodes.

Writer’'s Workshop 139

E SugarLoafPLoP 2005 Proceedings

Consequences:
The Distributed Composite pattern:

e defines class hierarchies consisting of local objects and remote objects.
Wherever client expects a local object, it can take a remote object. This remote
object represents the remote processing of a subtree. It considers the previous
partitioning of the hierarchical application (the tree) that could be distributed
across several processors.

e make clients simpler, since they could treat composite structures, local objects
and remote objects in the same way.

Sample Code: the following is an example of implementation in Java, using RMI
(Remote Method Invocation) as basis for implementing remote nodes.

import java.rmi.*;

import java.rmi.server.*; class CompositeNode
extends UnicastRemoteObject
interface Node implements Node
extends Remote {
{ private Node compositel[];
//methods // problem-specific

}i

// implementation

}

class LocalPrimitiveNode

extends UnicastRemoteObject class RemoteReferenceNode
implements Node implements Node

{ {

// problem-specific private Node remoteReference;

// implementation }

}

Known uses:

e Johnson and Krishna’s (1993) early works deal with distributed B-trees (dB-
trees) to illustrate techniques for designing distributed search structures.

e Cluster-wide JNDI (Java Naming and Directory Interface) trees are similar to a
single server instance JNDI tree. In addition to storing the names of local
services, however, the cluster-wide JNDI tree stores the services offered by
clustered objects from other server instances in the cluster. Application servers
like WebLogic (Prem et al., 2003) and JBoss (Burke and Labourey, 2002)
support this kind of JNDI implementation.

e Brushwood (Zhang ef al., 2005) uses a distributed implementation of a B-tree to
provide a framework for implementation of p2p applications.

e Yilmaz and Erdogan (2001) present a model called Distributed Composite
Object (DCO). They have also designed and implemented a software layer,
DCOBE (Distributed Composite Object Based Environment) that can be placed
on top of Java programming language to provide a uniform interface for
collaborative application developers to use.

Related patterns: the nodes in the Distributed Composite structure will accept a Dual
Visitor that will change the node strategy depending on the type of the Node. If the
recipient is a Remote Reference Node, the Matched Transporter pattern will be used to

Writer’'s Workshop 140

SugarLoafPLoP 2005 Proceedings

transport the Dual Visitor to the matched Remote Reference Node (probably in a remote
processing unit). Once the transported Dual Visitor reaches its remote counterpart, it
triggers the remote processing of another Distributed Composite structure, while the
original structure could still be visited.

3.2 Dual Visitor

Motivation: Processing heterogeneous hierarchical structures frequently demand
different processing strategies that depend on the classes the objects belong to. This
problem can be solved with the Visitor pattern [Gamma ef al. 1995]. In distributed
applications whose data is structured according to the Distributed Composite pattern, all
remote references must be handled in such a way that the processing could be
parallelized without generating deadlocks or other faults.

With the Dual Visitor pattern, which is an extension of Visitor and Strategy patterns
[Gamma ef al. 1995], different visiting strategies — for local and remote elements — may
be dynamically exchanged, according to the type of object being visited. Thus, different
remote visiting strategies may be implemented according to system requirements.

Intent: Dual Visitor allows interchangeable visiting strategies tailored to the kind of
objects being visited. This is done without changing the classes of the elements on
which it operates, or the Visitor object itself.

Applicability: Dual Visitors should be used in the following situations:

o The hierarchical structure to be visited is distributed in such a way that all parts are
well-connected by remote references;

o Each part of the tree can be independently visited.

Structure: The structure for the Dual Visitor Pattern can be seen in Figure 2.

DualvistarP sttern

Duaifisfor
+proc e saiNode ol
1
Concretell ualvisitor VEringStrategy
o
+arocesshode (1 void R) vkl
1
LocalVisiti ngStrateqy RemoteVisitingStrateqy
+yisit () waid +yisit () vaid
-processlocal(); woid +processRemote () void

Figure 2. Dual Visitor Pattern

Writer’'s Workshop

141

E SugarLoafPLoP 2005 Proceedings

Participants:

o DualVisitor: abstract class that defines a processNode() operation that must be
implemented by its subclasses. Its use is recommended for extensibility reasons.

o ConcreteDualVisitor: implements the processNode() operation by calling the visit()
operation defined in VisitingStrategy.

o VisitingStrategy: defines an abstract visit operation that will be implemented by its
subclasses. Using this class, it is possible to change its implementation without
changing the instance of ConcreteDualVisitor in a tree segment.

o LocalVisitingStrategy: contains visiting methods for local nodes. These methods
are called by the implementation of visit().

o RemoteVisitingStrategy: defines a strategy for processing remote nodes.

Collaborations: when a node accepts a Dual Visitor it could either continue local
processing or trigger remote parallel processing (if it is a Remote Reference Node).
Figure 3 illustrates the collaborations between the Dual Visitor, the local and remote
strategies and the two types of nodes (local and remote).

| Dualvisitar LocalvistingStrat eqy | | :EemdteR eterencet ode
1 1 1 I
1 By 1 1 |
: » Wizt : ; :
] : : Funs in parallel stark when
| caccept(d DualVisitor) | aremote node & reached -
: 2 b_' : the local pracessing could
i : processlbeal)pro cessComp osite)) i Lo
1 |
1 |
1 (e
| Decceptld Dualvisitor) 7
1 il
: :processRemote) :
I
»—P{ RemotedisitingStratedy ‘
1
1 1
. N i

Figure 3. UML Sequence diagram for the Dual Visitor Pattern

Consequences:
The Dual Visitor pattern:

e makes transparent the visiting strategy being used. Clients do not need to know
if the structure being visited is local or remote. These strategies are easily
interchanged.

e allows the accumulation of states, whether local or remote, during the visiting
process of a previously distributed hierarchical structure.

e solves a common problem found in Visitor pattern (Gamma, 1995): it is hard to
add different elements to be visited once a Visitor is already defined. Dual
Visitor solves this by applying Strategy pattern (Gamma, 1995) to decouple
visiting strategies from Dual Visitor’s structure.

Writer’'s Workshop 142

SugarLoafPLoP 2005 Proceedings

Sample code: the following is a Java code with an implementation for Dual Visitor
Pattern.

/* Node class stands for any tree element */
interface DualVisitor
{

void processNode (Node n);

}

class ConcreteDualVisitor
implements DualVisitor

private VisitingStrategy vsBridge;

void setStrategy (Node n)

{ n=/*n is Local*/ ? LocalVisitingStrategy.getInstance ()
RemoteVisitingStrategy.getInstance() ;

}

void processNode (Node n)
{
this.setStrategy(n);
vsBridge.visit (n);

}

interface VisitingStrategy
{

void visit (Node n);
}

class ConcreteVisitingStrategy
implements VisitingStrategy
{
void visit (Node n)
{
this.processLocal (n) ;

}

void processLocal (Node n)
{
//Process problem-specific business rules
}
}

class RemoteVisitingStrategy
implements VisitingStrategy
{
void visit (Node n)
{
this.processRemote (n) ;

}

void processRemote (Node *n)

{

/*Visiting strategies in some part of the tree hosted by
another machine are triggered. Locally, processing
can continue in parallel - or wait, if needed.*/

}

Writer’'s Workshop 143

E SugarLoafPLoP 2005 Proceedings

Known uses:

e Martin (1997) proposes a variation of Visitor pattern (Gamma, 1995) called
Acyclic Visitor, which allow new functions to be added to existing class
hierarchies without affecting those hierarchies, and without creating some
dependency cycles that are inherent to Visitor.

e Adaptive programming (Yoder and Razavi, 2000) allows capturing crosscutting
concerns by structure-shy adaptive visitors. Demeter Tools (DRG, 2000), use
extensively a Selective Visitor in order to loosely couple behavior modification
to behavior and structure.

e DJ library (Orleans and Lieberherr, 2001) is an aspect-oriented (Filman et al.,
2005) Java library for adaptive programming that allows traversal strategies to
be constructed and interpreted dynamically at run-time by reflection-based
Adaptive Visitors.

e JAsCo (Suvée et al., 2003) is an aspect-oriented programming language targeted
at Component-Based Software Development. Vanderperren et al. (2005) present
an implementation of an adaptive visitor as a regular JAsCo aspect bean.

Related patterns:
e Dual Visitors are well-suited to traverse Distributed Composite structures.

e Interpreters (Gamma, 1995) could be attached to Dual Visitors in order to
perform interpretation according to the behavioral aspects of the structure being
visited.

3.3 Matched Transporter

Motivation: When a remote reference is reached, an object is needed to trigger the
change of visiting strategy. The object must remotely activate new processing tasks or
swap remote references and tree segments. The Matched Transporter pattern combines
Observer flexibility [Gamma ez al. 1995] and the Data Transfer Object facilities [Alur et
al. 2003]. A local observer is attached to every remote reference at the same time it is
matched to another remote observer. State changes in one observer will be immediately
reflected in the remote counterpart. This behavior resembles the EPR pairs of Quantum
Mechanics [Griffith 2004].

Intent: This pattern defines a dependency among local objects and a mapping between
remote objects. When one object state changes, all its local dependents are notified and
updated just in time and its remote counterpart assumes its state.

Applicability: Matched Transporters are useful in the following situations:

o While traversing a hierarchical structure, Dual Visitors need to be warned when
remote nodes are reached in order to exchange their visiting strategies;

o Objects must be transferred after completing of local processing to replace remote
references to them.

Writer’'s Workshop 144

E SugarLoafPLoP 2005 Proceedings

Structure: Figure 4 shows the general structure for the Matched Transporter pattern.

M atchedT ransgpo tter|
Subject MatchedObserver IF
T,
A obzere

+attachiMatchedObserver)0 void Hranspot(Transparter: Transparter Tvoid § oheersel

i

Transporter Remoted bserver

Figure 4. Matched Transporter Pattern

Participants:

o MatchedObserver: concrete class that maintains a recursive association. Each
instance will remotely refer to a shadow sibling and both are self reflections.

o Transporter: associative class between MatchedObservers, responsible for the
transfer of Nodes.

o RemoteObserver: subclass of MatchedObserver locally detects objects of
Distributed Composite that are instances of RemoteReferenceNode, in order to warn
the local instance of DualVisitor to change its implementation for VisitingStrategy.

Consequences:
The Matched Transporter pattern:

e supports instant peer-to-peer communication through Matched Observers. Since
Matched Observers are entangled, any event observed is immediately reported
to both peers.

e relies on object persistence mechanisms. Such condition could lead to
implementations that are language or platform-dependent.

Writer’'s Workshop

145

é‘_‘_ SugarLoafPLoP 2005 Proceedings

Sample Code: a possible implementation of Matched Transporter in Java follows,
using RMI and object serialization to implement this pattern.

import java.io.*;
import java.rmi.*;
import java.rmi.server.*;

class Transporter
implements Serializable, Remote

{

private Serializable wrapped;

public Transporter (Serializable s)
{
wrapped = s;
}
}

interface IMatchedObserver
extends Remote
{
public void attach (IMatchedObserver mob, Transporter t);

}

class MatchedObserver
extends UnicastRemoteObject
implements IMatchedObserver

private OutputStream entanglementOut;
private InputStream entanglementIn;
private IMatchedObserver eprPeer;
private Transporter tRef;

/*All attributes with protected getters and setters*/
public MatchedObserver ()

{

/*Entanglement attributes must be properly initiated here*/

}

public void attach (MatchedObserver mob, Transporter t)
{
tRef=t;
if (eprPeer==null)
{ eprPeer mob;
eprPeer.attach(this, tRef);

}
}

public boolean catch/()

throws IOException, ClassNotFoundException
{

tRef = (Transporter) entanglementIn.readObject();
}

public void transport (Transporter t) throws IOException
{
entanglementOut.writeObject (t);
eprPeer.catch();
entanglementOut.close () ;
}
}

Writer’'s Workshop 146

E SugarLoafPLoP 2005 Proceedings

class RemoteObserver
extends MatchedObserver

public RemoteObserver () throws RemoteException
{
/*Remote entanglement must be configured here*/
}
public void attach (IMatchedObserver mob, Transporter t)
throws RemoteException
{
// Ovverides this method, using RMI to get entangled
// to a remote peer
}
}

class Subject
implements Serializable
{
transient private MatchedObserver mob;
//problem-specific non-transient attributes
public Transporter attach (MatchedObserver mob)
{
Transporter t=new Transporter (this);
this.mob = mob;
mob.attach (this, t);
return t;
}
//getters and setters

An alternative implementation could consider MatchedObserver as a specialization of
Subject, from the point of view of its peer observer.

Collaborations: the Matched Transporter transfers the context of a Node between two
matched RemoteObservers. The following sequence diagram (Figure 5) illustrates the
collaborations between local and remote elements.

Dualvisitar tn:Retn atebserver == temote == == temote ==

]] tn2:Rematedbsetver Dualyisitar

Does remotehy
thesame work
than the local
one

I

1

| ——] Transporter
I

| change Strategy

I

transters

)

I
I
I
I
I
I
I
|
-

> notify()

¥y ¥

RematelisitingStrateqy

rocessRemote
i 0 s processhade

- enelsfem ot Visiting

Figure 5. Collaboration diagram for the Matched Transporter Pattern

Writer’'s Workshop 147

E SugarLoafPLoP 2005 Proceedings

Known Uses:

e Halbwachs et al. (1993) present a formal specification of synchronous observers
for reactive systems. This kind of observer is used, for instance, in Xeve
(Bouali, 1998), which is a graphical interface environment for symbolic analysis
and verification of Esterel programs modeled as Finite State Machines.

e Rieffel and Polak (2000) present the teleportation problem in Quantum
Cryptography: the objective is to transmit the quantum state of a particle using
classical bits and reconstruct the exact quantum state at the receiver. Both
transmitter and receiver act as MatchedObservers and the Transporter is the
entanglement itself.

e Harrison, Levine and Schmidt (1997) propose a Real-Time Event Service for
TAO, a Real-Time CORBA architecture. The service allows CORBA Event
Channel to support synchronous Real-Time event dispatching. Under this
mechanism CORBA Event Channel acts as a RemoteObserver of suppliers’
Events and clients’ Requests (the Transporters).

Related patterns:

e Matched Transporters could be used to transfer Distributed Composite structures
between different nodes.

e A Mediator (Gamma, 1995) could be attached to Matched Transporter to allow
multicast communication.

4 Patterns Applications

In this section we present some problems whose static and dynamic structures could be
treated with our patterns. We choose hard-processing and wide area applications in
order to demonstrate the effective use of the proposed patterns.

4.1 Scene Graph Distributed Rendering

A scene graph is a hierarchical structure built from nodes. It is a common data structure
which arises in several areas such as computer graphics [Lengyel 2003], image
processing [Nokolaids and Pitas 2000], computer vision [Forsyt and Ponce 2003] and
virtual reality [Bowman et al 2004].

Each scene graph node encapsulates some characteristic related to scene description:

e object geometric parameters (geometric type, radius, size, position)

o transformations (translation, rotation, scaling)

e appearance information for rendering (color, texture, reflection parameters)
e behaviors

e visualization and environment setup

The scene graph transformation onto images is called rendering and usually requires a
powerful processing environment. Some important libraries like Java3D, Openlnventor
and OpenSceneGraph use scene graphs extensively as the main representation of their
graphical cores.

Writer’'s Workshop

148

SugarLoafPLoP 2005 Proceedings

Llzer Code
and Data

Wiew Platform Object

(Other Objects

Figure 6. A typical Java3D Scene Graph Structure

There are two natural scene graph decompositions: transform nodes and branching
groups. Figure 7 shows an example of scene graph decomposition using the patterns

proposed in this paper.
Dualdisitor MatchedObserverrobserver Transporter
torocessiods(] Element tohservatle
transfers
RenderingVisitor changes sirategy RemoteQbserver
Node +
Hprocesshlod () Element
+acceptlv: Duallistor)void
RenderingStrategy ?
RemoteReferenceNode Geometrichiode Grouphode
Hyilvoud
+accept(y: Dualistorvaid +aceeplv Duatiistor) vor! +acoept(v Duahistor) void
+attachio:RemoteObser ervoid A
LocalRenderingStrategy | |RemoteRenderingStrategy
wisits
wish{voi i vod Primitive BranchingGroup TransformationGroup
-processLocal():vaid +HpracessR ematef) v oid
| C te (v oid
processComposie (4o +acceptv: Duattistor).vaid +accepty: Dualiisior)vaid +acceptly. DuaiVisionvoid
visits Transformation
wisits

+acce pty: Dualvisitor) void

Figure 7. Scene graph decomposition into local and remote nodes

Transform nodes affect groups of primitives and usually are stored in the same host.
Branching groups are sets compound by objects and transformations. There is at most

Writer’'s Workshop 149

E SugarLoafPLoP 2005 Proceedings

one RemoteReferenceNode for each Node. This allows the construction of Node pairs:
one of them is a tree root and another is a leaf. In Figure 7, GeometricNode and
GroupNode represent local information. Several rendering strategies may be used for
scene graph transversal and are locally implemented by processLocal() and
processComposite() methods in the LocalRenderingStrategies. The proposed pattern
allows arbitrary scene graph decomposition, which provides great flexibility in
achieving improved processing performance.

4.2 Phylogenetic Trees and Cladograms

A phylogenetic tree [Pevzner 2000] is a graphical representation of the evolutionary
relationship between taxonomic groups, as depicted on the Figure 8. The term
phylogeny refers to the evolution or historical development of a plant or animal species,
or even a human tribe or similar group.

Hurnans Velbret
Chlirnpanzees Apes raonkeys Baboons and

Ilacarues

Corunon Prirate
Ancestar

Figure 8. Cladogram of human race and its relationships with another species

A phylogenetic tree is a specific type of cladogram where the branch lengths are
proportional to the predicted or hypothetical evolutionary time between organisms or
sequences. The cladogram only illustrates the probability that two organisms, or
sequences, are more closely related to each other than to a third organism, it does not
necessarily clarify the pathway that created the existing relationships. However, the
cladogram can be used in the formulation of new hypotheses and to cast new light on
existing data. For this formulation, several operations over cladograms are needed in
order to obtain predictions about the structure. Even in supercomputers or clusters, the
cladogram analysis depends on high efficient data structures and algorithms.

Both phylogenetic trees and cladograms are compound structures (trees). Leaves
represent elements called zaxons and internal branching nodes can contain a wide range

Writer’'s Workshop 150

E SugarLoafPLoP 2005 Proceedings

of values. It is easy to see that the DistributedComposite pattern could be easily adapted
to represent those structures, as shown in Figure 9.

Node
+acoept(v Duallisior) void
N
RemoteReferenceNode ‘
Taxon InternalBranching
+accept(v:Ouatisifor) void —] —]
+atfach(o:RemoteObserver) void +accept(v: Duaiistor)void +accept(v: Dualvisifor) void

Figure 9. Cladogram decomposition into local and remote components

Several algorithms which traverse phylogenetic and cladograms, like parsimony or
distance algorithms, may be now embedded into DualVisitor objects. By changing the
DualVisitor’s strategy one can use different transverse algorithms with minimal impact
on phylogenetic or cladograms data structures.

5 Conclusions and further work

Parallel processing of large hierarchical structures includes a wide range of
applications. There is a lack of design patterns to model them. Since distribution and
processing of these structures are non-trivial, hard computational tasks, the development
of adequate design patterns could improve the reusability and expansibility of common
solutions in this context.

This paper presented a set of design patterns for parallel processing of large hierarchical
structures, which could be distributed over a cluster of computers. These patterns
incorporate well-known, classical patterns, which guarantee high cohesion and low
coupling between classes. The main contribution was to provide a generic solution for
modeling and traversing distributed tree-like structures, which arise naturally in many
applications. The proposed patterns allow different implementations of user-defined
processing and traversal strategies.

Future work will include the implementation of these patterns over different parallel and
distributed architectures and applications. Tree partitioning optimal strategies are also a
candidate for future research.

The authors would like to acknowledge Cleber Ferreira de Castro Marchetto Zarate for
his work on initial implementation of these patterns in MPI and RMI, which contributed
to provide sample codes for patterns’ descriptions.

Writer’'s Workshop 151

E SugarLoafPLoP 2005 Proceedings

References

Akon, M. M. et al. (2004), “SuperPAS: A Parallel Architectural Skeleton Model
Supporting Extensibility and Skeleton Composition”. In Proceedings: Second
International Symposium on Parallel and Distributed Processing and Applications
(ISPA'04), Hong Kong, p. 985-996.

Alur, D. et al. (2003), Core J2EE Patterns, nd Edition, Prentice Hall.

Gamma E. et al. (1995), Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley.

Bouali, A. (1998) “XEVE, an ESTEREL Verification Environment”. Lecture Notes In
Computer Science; v. 1427.

Bowman, D.A., Kruijff, E., LaViola, J.J. and Poupyrev, K. (2004), I. 3D User
Interfaces: Theory and Practice. Addison-Wesley Professional.

Burke, B. and Labourey, S. (2005), “Clustering with JBoss 3.0” In: OnJava electronic
magazine. Available on the Internet at http://www.onjava.com/
pub/a/onjava/2002/07/10/jboss.html (Visited september, 5, 2005).

Filman, R.; Elrad, T.; Clarke, S. and Askit, M. (2005) Aspect-Oriented Software
Development. Addison-Wesley.

Forsyt, D.A. and Ponce, J. (2003), Computer Vision: A Modern Approach, Prentice
Hall.

Geist, M. et al. (1994), PVM: Parallel Virtual Machine, A User's Guide and Tutorial
for Parallel Computing. MIT Press.

Griffiths, D.J. (2004), Introduction to Quantum Mechanics, Prentice Hall, 2nd Edition.

Gropp, W. et al. (1999), Using MPI: Portable Parallel Programming with the Message
Passing Interface (Scientific and Engineering Computation Series). MIT Press.

Halbwachs, N.; Lagnier, F. and Raymond, P. (1993) “Synchronous Observers and the
Verification of Reactive Systems”. Proceedings of the Third International
Conference on Methodology and Software Technology: Algebraic Methodology and
Software Technology. London: Springer-Verlag.

Harrison H. T., Levine D. L. and Schmidt D. C., (1997) "The Design and Performance
of a Real-time CORBA Event Service," in Proceedings of OOPSLA '97, Atlanta,
GA, October, ACM.

Johnson, T. and Krishna, P. (1993) “Designing Distributed Search Structures with Lazy
Updates”. Proceedings of the 1993 ACM SIGMOD International Conference on
Management of Data. Washington.

Lengyel, E. (2003), Mathematics for 3D Game Programming and Computer Graphics,
Charles Rivers Media, 2nd edition.

Martin, R. C. (1997) Pattern languages of program design 3. Addison-Wesley.

Mattson, T. G. et al. (2004), Patterns for Parallel Programming. Addison-Wesley.

Nikolaidis, N. and Pitas, 1. (2000), 3-D Image Processing. Willey Interscience.

Orleans, D. and Lieberherr, K. (2001) “DJ: Dynamic Adaptive Programming in Java”.
In: Proceedings of Reflection 2001 - The Third International Conference on
Metalevel Architectures and Separation of Crosscutting Concerns. Kyoto, Japan.

Pevzner, P.A. (2000), Computational Molecular Biology: An Algorithmic Approach.
MIT Press.

Prem, J.; Ciconte, B.; Devgan, M.; Dunbar, S. and Go, P. BEA (2003) WebLogic
Platform 7. Sams Publishing.

Writer’'s Workshop 152

E SugarLoafPLoP 2005 Proceedings

Rieffel, E. and Polak, W. (2000) “An introduction to quantum computing for non-
physicists”. ACM Computing Surveys v. 32 (3), pp. 300-335, September, New York:
ACM Press

Suvée, D.; Vanderperren, W. and Jockers, V. (2003) “JAsCo: an aspect-oriented
approach tailored for component based software development”. Proceedings of the
2nd international conference on Aspect-oriented software development. Boston

Tan, K. et al. (2003), “Using Generative Design Patterns to Generate Parallel Code for a
Distributed Memory Environment”. In Proceedings: ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP'2003).

The Demeter Research Group. (2005) Online Material on Adaptive Programming and
Demeter/Java. Available on the Internet at
http://www.ccs.neu.edu/research/demeter/, 2000. Visited at September, 4

Vanderperren, W.; Suvée, D.; Verheecke, B.; Cibran, M. A.; Jonckers, V. (2005)
“Adaptive programming in JasCo”. In: Proceedings of the 4th international
conference on Aspect-oriented software development. Chicago.

Yilmaz, G. and Erdogan, N. (2001) “A New Distributed Composite Object Model For
Collaborative Computing”. Proceeding of ISCIS 2001 - International Symposium on
Computer and Information Sciences. Antalya, Turkey, November.

Yoder, J. W. and Razavi, R. (2000) “Metadata and adaptive object-models”. In ECOOP
2000 Workshop Reader, volume 1964 of Lecture Notes in Computer Science.
Springer Verlag

Zhang, C.; Krishnamurthy, A.; Wang, R.Y. (2005) “Brushwood: Distributed Trees in
Peer-to-Peer Systems”. Proceedings of IPTPS’05 — International Workshop on
Peer-To-Peer Systems. Ithaca, New York, February.

Writer’'s Workshop 153

482 suparLoafPLoP'2005
(p—

B Pattern Applications

e

SugarLoafPLoP 2005 Proceedings

Pattern Applications

155

E SugarLoafPLoP 2005 Proceedings

Padroes e Métodos Ageis: agilidade no processo de
desenvolvimento de software

Edes Garcia da Costa Filho'™* , Rosangela Penteado’
Junia Coutinho Anacleto Silva', Rosana Teresinha Vaccare Braga’
'Universidade Federal de Sdo Carlos — Departamento de Computacio

Universidade de Sdo Paulo — Instituto de Ciéncias Matematicas e de Computagio

{edes filho, rosangel, junia}@dc.ufscar.br, rtvb@icmc.usp.br

Abstract. This paper presents some organizational and process patterns that
can be integrated to agile methods to improve and speed up the software
development process. Common features can be found in some organizational
and process patterns, as well as in practices used in agile methods such as
Extreme Programming (XP) and Scrum. From these features, some patterns
that are used as practices in these methods and others that can be integrated
to them were emphasized. There is still the challenge to integrate these
patterns to an agile method.

Keywords: Organizational and Process Patterns, Agile Methods, Extreme
Programming, Scrum.

Resumo. Este artigo apresenta alguns padroes organizacionais e de processo
que podem ser integrados aos métodos dgeis para melhorar e agilizar o
processo de desenvolvimento de software. Caracteristicas comuns podem ser
encontradas em alguns padrdes organizacionais e de processo existentes e em
algumas praticas utilizadas em métodos ageis como o Extreme Programming
(XP) e o Scrum. A partir dessas caracteristicas, foram destacados alguns
padrdes que sdo usados como pratica nesses métodos e outros que podem ser
integrados a eles. Existe ainda o desafio de integrar esses padroes a um
método agil.

Palavras chave: Padrdoes Organizacionais e de Processo, Métodos Ageis,
Extreme Programming, Scrum.

1. Introducao

Um desafio constante da area de Engenharia de Software ¢ melhorar o processo de
desenvolvimento de software. Mesmo com a constante evolugdo de métodos, técnicas e
ferramentas, a entrega de software em prazos e custos estabelecidos nem sempre ¢

* Apoio Financeiro do CNPq

Pattern Applications 156

E SugarLoafPLoP 2005 Proceedings

conseguida. Uma das causas desse problema ¢ o excesso de formalidade nos modelos de
processo propostos nos ultimos 30 anos (Fowler, 2003; Larman, 2004). Existe hoje a
necessidade de desenvolver software de forma mais rapida, mas com qualidade. Esse
desenvolvimento pode ser obtido utilizando métodos ageis e padrdes organizacionais e
de processo. A populariza¢io dos métodos ageis ocorreu com “Manifesto Agil” (Beck
et al., 2001), que indica alguns principios que sdo compartilhados por tais métodos:

. Individuos e interagdes sdo mais importantes que processos e ferramentas;

« Software funcionando é mais importante do que documentacdo detalhada;

« Colaboracdo dos clientes ¢ mais importante do que negociagdo de contratos;
. Adaptagdo as mudangas € mais importante do que seguir um plano.

Nos ultimos anos, métodos ageis como o XP (Beck, 1999), Scrum (Schwaber,
2002) e Crystal (Cockburn, 2002) passaram a ser usados em empresas, universidades,
institutos de pesquisa e agéncias governamentais (Goldman et al., 2004).

O reuso de software ¢ uma atividade comum durante o processo de
desenvolvimento. Juntamente com outras técnicas, por exemplo desenvolvimento de
software baseado em componentes, os padrdes de software (software patterns)
auxiliam e contribuem para o reuso em niveis mais altos de abstragdo, como por
exemplo, em nivel de analise, arquitetural, organizacional e de processo. Das diversas
categorias de padrdes que surgiram, os padrdes organizacionais € de processo sdo 0s
que tém por objetivo apoiar a construcdo do software e melhorar o seu
desenvolvimento. Além de estarem divididos em categorias, os padrdes podem ser
agrupados em linguagens de padrdes. Uma linguagem de padrdes ¢ um sistema de
padrdes organizados em uma estrutura que guia a sua aplicag@o (Kerth et al., 1997).

Os padroes organizacionais e de processo cobrem problemas de
desenvolvimento. Eles podem ser usados para modelar uma nova organizagdo e seu
processo de desenvolvimento (Coplien, 1995). Essas duas categorias de padroes podem
ser utilizadas em conjunto com métodos ageis.

A simples utilizagdo de métodos ageis pode ndo suprir as necessidades de uma
organizacdo ou projeto. Adaptacdes nos métodos podem ser necessarias (Goldman et
al., 2004; Taber et al., 2000). Os padrdes organizacionais e de processo podem ser
utilizados nesse contexto para ajustar ou aperfeicoar um método agil, como o XP ou
Scrum, de acordo com as necessidades da organizacdo ou do projeto.

Neste artigo, sdo apresentados dez padrdes organizacionais e de processo,
propostos por diferentes autores, que podem ser integrados aos métodos ageis, para
melhorar ou adaptar o método 4gil e dar mais agilidade ao processo de
desenvolvimento. Essa integracdo serd avaliada por meio de estudos de caso. Na Secdo
2, sdo apresentados alguns trabalhos relacionados encontrados na literatura. Na Se¢do 3,
sdo apresentados conceitos basicos sobre os métodos dgeis XP e Scrum. Na Sec¢do 4,
sdo apresentados os padrdes organizacionais e de processo que ja sdo encontrados nos
métodos ageis e os que podem ser integrados a eles. Finalmente, na Secdo 5, estdo as
consideragdes finais.

Pattern Applications 157

E SugarLoafPLoP 2005 Proceedings

2. Trabalhos Relacionados

Algumas publicacdes encontradas na literatura apresentam padrdes organizacionais e de
processo para desenvolvimento 4gil de software e a integragdo de padrdes
organizacionais ¢ de processo com métodos ageis.

A linguagem de padroes “A Generative Development-Process Pattern
Language" (Coplien, 1995), publicada em Pattern Languages of Program Design
(Coplien et al., 1995) ¢ a primeira referéncia sobre padrdes organizacionais e de
processo. Essa linguagem possui um conjunto de padrdes organizacionais e de processo
de sucesso, que podem ser utilizados para estabelecer estruturas organizacionais e
praticas cujo objetivo € melhorar o processo de desenvolvimento de software da
organizacao.

Coplien et al. (2004) apresentam quatro linguagens de padrdoes que combinam
estruturas organizacionais com as melhores praticas de desenvolvimento de software.
Essas linguagens, que devem ser usadas em conjunto para solucionar problemas de
desenvolvimento de software da organizagao, sdo:

« Project Management Pattern Language: trata do trabalho e estruturagdo da
organizagdo, com foco no cronograma, processo, tarefas e estrutura para
apoiar o progresso do trabalho.

o Piecemeal Growth Pattern Language: descreve como criar a organizagao e
0 processo juntos.

« Organizational Style Pattern Language: trata do relacionamento entre os
papéis na organizagao.

« People and Code Pattern Language: explica o relacionamento entre a
estrutura de uma organizacio e os artefatos que sdo construidos.

Uma parte dos padrdes dessas linguagens foi herdada da linguagem de padrdes
“A Generative Development-Process Pattern Language" (Coplien, 1995). Apesar do
titulo do livro ser "Organizational Patterns of Agile Software Development" (Padrdes
Organizacionais de Desenvolvimento de Software Agil), o termo "Agil" foi usado por
questdes de marketing. Muitos dos padrdes dessas linguagens podem contribuir para
agilidade, mas o principal objetivo ¢ a efetividade (Coplien et al., 2004).

O padrao Fire Walls ¢ apresentado para exemplificar os padrdes de Coplien et
al. (2004). A forma de apresentagdo desses padrdes ¢ a Alexandrina.

Nome: Fire Walls ** (para Coplien et al. (2004), as estrelas variam entre zero e duas,
dependendo da freqiiéncia com que os autores perceberam a aplicacdo do padrio)

Contexto: uma organizagdo de desenvolvedores estd formada em um contexto
corporativo ou social, em que os desenvolvedores sdo examinados por colegas,
financiadores, clientes e por outras pessoas externas. Desenvolvedores sdo
freqiientemente distraidos por pessoas externas, que sentem necessidade de passar
informacdes e criticas.

Resumo do Problema: ¢ importante proteger os desenvolvedores de outras pessoas
envolvidas no projeto, que nao participam do desenvolvimento, mas sentem necessidade
de ajudar por meio de comentarios ou criticas.

Pattern Applications 158

SugarLoafPLoP 2005 Proceedings

Problema Detalhado: o isolamento ndo funciona: o fluxo da informagao ¢ importante.
Mas, o excesso de comunicagdo aumenta de forma nao linear em relagdo ao nimero de
colaboradores externos.

Solugdo: crie um cargo de gerente, que protege os desenvolvedores de interagdes com
cargos externos. A responsabilidade desse cargo ¢ “manter as pestes longe”.

Contexto Resultante: a nova organizacdo isola os desenvolvedores de interrupgdes
externas insignificantes. Para evitar o isolamento, esse padrdo deve ser utilizado em
conjunto com outros, como Engage Customers ¢ Gate Keeper.

Analise Racional: o padrio Gate Keeper facilita o fluxo de informagdes uteis; Fire
Walls restringe o fluxo de informagdes. E necessario balancear esses dois padrdes.

Beedle et al. (1999) propdem uma linguagem de padrdes de extensdo para as
linguagens de padrdes organizacionais ja existentes, a “Scrum Pattern Language”.
Nessa linguagem as praticas Scrum, descritas na forma de padrdes, sdo combinadas com
alguns padroes organizacionais e de processo de Coplien (1995), para guiar o
desenvolvimento de software de forma mais adaptativa e estruturar melhor a
organizac¢do. Para Beedle (1997), o proprio Scrum ¢ um padro organizacional.

O padrao Scrum Meeting é apresentado a seguir para exemplificar a forma de
apresentacdo dos padrdes de Beedle et al. (1999), que descrevem seus padrdes com os
seguintes elementos: nome, contexto, problema, forcas, solu¢do, anélise racional, usos
conhecidos e contexto resultante.

Nome: Scrum Meeting

Contexto: vocé ¢ um desenvolvedor de software ou gerente de uma equipe de
desenvolvimento no qual estdo envolvidos: criatividade, descobertas e testes.

r

Problema: qual ¢ a melhor forma de controlar um processo de desenvolvimento de
software, em que ¢ dificil definir os artefatos que serdo produzidos e os processos para
consegui-los?

Forcas: ¢ dificil realizar estimativas exatas para atividades que envolvem descobertas,
criatividade ou testes. Planejar e re-priorizar tarefas consome tempo.

Solucio: fazer reunides diarias de aproximadamente quinze minutos, onde se deve
discutir o que foi produzido desde a ultima reunido, que problemas foram encontrados
para realizar as tarefas nas ultimas vinte e quatro horas e o que sera feito nas proximas
vinte e quatro horas.

Analise Racional: ¢ muito facil superestimar ou subestimar esfor¢os, o que leva a um
desperdicio de tempo ou a um atraso para conclusdo de tarefas. E melhor ter um
mecanismo adaptativo que fornece uma amostra do que estd sendo realizado em
pequenos periodos de tempo, ao invés de re-priorizar tarefas constantemente.

Usos Conhecidos: Nike Securities em Chicago e Elementrix Technologies.

Contexto Resultante: melhor visibilidade do status do projeto e da produtividade
individual, menos tempo perdido com obstru¢cdes e melhor socializacdo entre os
membros da equipe.

Pattern Applications

159

E SugarLoafPLoP 2005 Proceedings

3. Visdo Geral sobre Métodos Ageis, Extreme Programming e Scrum

Existe atualmente grande interesse nos métodos modernos de desenvolvimento,
conhecidos como métodos dageis. Esses métodos abordam o processo de
desenvolvimento de software de forma diferente dos modelos preconizados
anteriormente pela Engenharia de Software, que tinham forte énfase na documentagao e
nos processos. A principal diferenca estd na forma como as mudangas sdo tratadas
durante o desenvolvimento do software. Os modelos de processo convencionais adotam
a estratégia de previsibilidade. Eles utilizam técnicas para tentar levantar todos os
requisitos e compreender o dominio do problema antes de iniciar o desenvolvimento.
Depois de levantados os requisitos, € feito um planejamento para que as mudangas
possam ser controladas no decorrer do processo de desenvolvimento do software. Os
métodos ageis optam pela adaptabilidade. Os requisitos sdo levantados aos poucos € o
planejamento ¢ continuo, para que a adaptacdo as mudancas possa ocorrer.

Cockburn (2001) define desenvolvimento 4agil de software como uma
abordagem de desenvolvimento que trata os problemas das mudancas rapidas:
mudangas nas for¢as de mercado, requisitos de sistemas, tecnologia de implementacdo e
equipes de projeto dentro de periodo de desenvolvimento.

Os métodos ageis enfatizam os aspectos humanos do desenvolvimento de
software ao invés dos aspectos de Engenharia (Lycett et al., 2003). Segundo Highsmith
et al. (2001), o que existe de novo nos métodos ageis ndo sdo as praticas que eles usam,
mas o reconhecimento de que as pessoas sdo os principais condutores de sucesso do
projeto. Outra caracteristica desses métodos € que eles ndo sdo centrados nos artefatos.
Eles optam por uma documentagio apropriada para evitar redundancias e excessos, para
que auxilie efetivamente o desenvolvimento do software.

As Secdes 3.1 e 3.2 apresentam os métodos ageis XP e Scrum resumidamente.

3.1. Extreme Programming

O XP, criado por Kent Beck ¢ Ward Cunningham, ¢ o mais popular dos métodos ageis.
Ele ¢ indicado para equipes pequenas e médias, com até dez integrantes, que
desenvolvem software baseado em requisitos ndo totalmente definidos e que se
modificam rapidamente (Beck, 1999).

As praticas do XP ndo s@o novidades: ele retne praticas de implementagdo e
gerenciamento em um conjunto coerente, acrescentando as idéias de processo.

XP define um conjunto de doze praticas, apresentadas a seguir, escolhidas com
base em quatro valores que sdo: comunicag¢do, simplicidade, feedback e coragem.

Jogo do Planejamento (The Planning Game). Determina rapidamente o escopo das
préximas versdes, combinando as prioridades de negocio e as estimativas técnicas.

Pequenas Versoes (Small releases). A equipe deve colocar rapidamente um sistema
simples em produc¢do, uma versdo pequena, € depois entregar novas versdes em poucos
dias ou poucas semanas.

Metafora (Metaphor). Uma metafora ¢ uma descricdo simples de como o sistema
funciona. Ela fornece uma visdo comum do sistema e guia o seu desenvolvimento.

Pattern Applications 160

SugarLoafPLoP 2005 Proceedings

Projeto simples (Simple design). O sistema deve ser projetado o mais simples possivel.
Complexidade extra ¢ removida assim que descoberta.

Testes (Testing). Os programadores escrevem testes de unidade continuamente. Esses
testes sdo criados antes do codigo e devem ser executados perfeitamente para que o
desenvolvimento continue. Os clientes também escrevem testes para validar se as
fungdes estdo finalizadas.

Refatoracdo (Refactoring). Os programadores reestruturam o sistema durante todo o
desenvolvimento, sem modificar seu comportamento externo (Fowler, 1999). Isso ¢
feito para simplificar o sistema, adicionar flexibilidade ou melhorar o codigo.

Programacio pareada (Pair programming). Todo codigo produzido ¢ feito em pares,
duas pessoas trabalhando em conjunto na mesma maquina.

Propriedade coletiva (Collective ownership). Qualquer um pode alterar qualquer
codigo em qualquer momento, o cddigo € de propriedade coletiva.

Integracdo continua (Continuous integration). Uma nova parte do codigo deve ser

integrada assim que estiver pronta. Consequentemente, o sistema ¢ integrado e
construido varias vezes ao dia.

Semana de 40 horas (40-hour week). XP defende um ritmo de trabalho que possa ser
mantido, sem prejudicar o bem estar da equipe. Trabalho além do horério normal pode
ser necessario, mas fazer horas extras por periodos maiores que uma semana ¢ sinal de
que algo esta errado com o projeto.

Cliente junto aos desenvolvedores (On-site customer). Os desenvolvedores devem ter
o cliente disponivel todo o tempo, para que ele possa responder as duvidas que os
desenvolvedores possam ter.

Padronizacio do Cdédigo (Coding standards). Os programadores escrevem o cddigo
seguindo regras comuns enfatizando a comunicag@o por meio do codigo.

Alguns dos papéis identificados em XP: Programador (Programmer), Cliente
(Customer), Testador (Tester), Investigador (Tracker), Orientador (Coach), Consultor
(Consultant) e Gerente (Manager). Ressalta-se que o testador ndo € necessariamente
uma pessoa que realiza somente essa atividade (Beck, 1999).

As praticas do XP apoiam umas as outras, devem ser usadas em conjunto e todas
devem ser aplicadas para se ter agilidade no processo. Aplicar as praticas de forma
isolada pode ndo produzir a agilidade desejada.

3.2. Scrum

O Scrum foi desenvolvido para gerenciar o processo de desenvolvimento de software
em ambientes em que os requisitos estdo em constante mudanca. Ele € apropriado para
equipes pequenas, com até dez integrantes. (Abrahamsson et al., 2002). Schwaber et al.
(2002) sugerem que a equipe contenha de cinco a nove integrantes.

O Scrum ndo exige ou fornece métodos ou praticas especificas de
desenvolvimento de software, mas exige certas praticas de gerenciamento, que sdo
descritas por Abrahamsson et al. (2002):

Pattern Applications

161

SugarLoafPLoP 2005 Proceedings

Tarefas do Produto (Product Backlog): define tudo o que ¢ necessario no produto
final. Contém uma lista priorizada e constantemente atualizada dos requisitos do
sistema que esta sendo construido ou otimizado.

Estimativa de esforco (Effort Estimation): como o Scrum ¢ um processo iterativo a
estimativa de esfor¢o para realizar as tarefas deve ser realizada frequentemente.

Sprint: procedimento de adaptacdo as mudancas de varidveis de ambiente, como
requisitos, tempo, recursos ou tecnologia. Sprints sdo intervalos fixos de tempo, em que
todo o trabalho € realizado. No Scrum um sprint tem duragdo de trinta dias. Durante um
sprint a equipe Scrum se organiza para produzir um incremento do produto. Essa pratica
contém: reunides de planejamento dos sprints (Sprint Planning Meetings), para decidir
os objetivos e funcionalidades do préximo sprint; Tarefas do Sprint (Sprint Backlog),
que ¢ uma lista de itens de trabalho de produto selecionados para o préximo sprint;
Reunides Scrum didrias (Daily Scrum Meetings), de aproximadamente quinze minutos
realizadas para verificar o progresso do projeto e para discutir questdes como: o que foi
feito desde a ultima reunifio e o que precisa ser feito até a proxima.

Reuniio de Revisdo de Sprint (Sprint Review Meeting): no ultimo dia do sprint, os
resultados sdo apresentados.

Segundo Abrahamsson (2002) os papéis identificados no Scrum sdo: Mestre
(Scrum Master), Proprietario do produto (Product Owner), Equipe Scrum (Scrum
Team), Cliente (Customer) e Geréncia (Management).

Por ndo fornecer métodos e praticas especificas de desenvolvimento, o Scrum se
torna um método mais flexivel, ja que o desenvolvimento pode ser tratado da forma que
for melhor para a organizagao.

4. Métodos Ageis e Padroes Organizacionais e de Processo

No estudo realizado foi possivel detectar que padrdes organizacionais e de processo e
métodos ageis estdo diretamente relacionados. Sutherland (2003) afirma que alguns
padrdes de Coplien (1995) influenciaram o desenvolvimento de Scrum, enquanto Beck
(1999) declara que muitas das idéias do XP provém da linguagem de padrdes Episodes
(Cunningham, 1996).

Assim, muitas idéias encontradas nos padrdes organizacionais e de processo
também sdo encontradas nos métodos ageis. Por exemplo, no XP o cliente define a
funcionalidade do sistema a ser desenvolvido por meio das chamadas estorias do
usudrio, e as prioriza em seguida. Na linguagem de padrdes Episodes, os padrdes
Implied Requirement ¢ Work Queue sugerem, respectivamente, que a funcionalidade
seja identificada e depois priorizada. Além desses, outros padrdes organizacionais e de
processo podem ser destacados pela relagdo que possuem com os métodos ageis.

Com base nos estudos realizados, a Tabela 1 mostra alguns padrdes
organizacionais ¢ de processo que sdo usados como pratica nos métodos ageis, porém
ndo existe referéncia para eles nos métodos. A selecdo foi realizada com base nos
conceitos comuns encontrados nos métodos ageis e nesses padrdes. A coluna 1 mostra o
nome do padrdo; na coluna 2 consta a(s) linguagem(ns) de padrdes a(s) qual(is) o
padrdo pertence; um breve resumo do problema que o padrio resolve ¢ apresentado na

Pattern Applications

162

@

SugarLoafPLoP 2005 Proceedings

coluna 3 e a coluna 4

pratica.

indica o(s) método(s) agil (eis) que usa(m) o padrdo como

Tabela 1. Padrées Organizacionais e de Processo e Métodos Ageis

Nome

Linguagem de Padrées

Resumo

Método Agil

Implied Requirement

Project Management
Pattern Language,
Episodes.

O problema ¢ definir as necessidades
do cliente de forma significativa para
os desenvolvedores. Portanto,
selecione e nomeie partes de
funcionalidade e crie uma lista com
essas partes.

XP, Scrum

Work Queue

Project
Pattern
Episodes.

Management
Language,

O problema ¢ conceder tempo para
realizar tudo. Portanto, crie um
cronograma que ¢ simplesmente uma
lista priorizada de trabalho. Use a lista
do Implied Requirement como ponto
de partida e ordene-a, em uma ordem
de implementagdo, de modo que
favoreca os itens mais urgentes ou de
maior prioridade.

XP, Scrum

Size the
Organization

Piecemeal Growth
Pattern Language

Quando a equipe de desenvolvimento
¢ muito grande, raramente os projetos
sdo entregues dentro do prazo e
orcamento previstos. Se a equipe ¢
muito grande a comunicacdo pode
falhar. Se a equipe ¢ pequena, a
produtividade vai diminuir. Por isso,
escolha aproximadamente dez pessoas
para compor a equipe de
desenvolvimento e evite acrescentar
individuos depois de iniciado o
desenvolvimento.

XP, Scrum

Engage Customers

Piecemeal Growth
Pattern Language

Se vocé quer gerenciar um processo
de desenvolvimento incremental que
acomode informacdes fornecidas pelo
cliente, junte o cliente aos
desenvolvedores e arquitetos, nao
somente a0 QA (Quality Assurance)
ou marketing.

XP, Scrum

Developing in Pairs

Piecemeal Growth
Pattern Language

Se vocé quer melhorar a efetividade
individual dos desenvolvedores,
coloque os desenvolvedores para
trabalharem em pares.

XP

Few Roles

Organizational
Pattern Language

Style

As pessoas em um projeto devem se
comunicar para o projeto progredir.
Mas, o custo indireto dessa
comunicagdo pode impedir o
verdadeiro progresso que ela deveria
facilitar. Portanto, tente manter o
nimero de papéis da organizagdo
abaixo de dezesseis.

XP, Scrum

Stand up Meeting

People and Code

Pattern Language

Em tempos de mudangas rapidas é
essencial que todos os membros da
organizacdo recebam as mesmas
informagdes. Portanto, realize
reunides diarias, de aproximadamente

XP, Scrum

Pattern Applications

163

@

SugarLoafPLoP 2005 Proceedings

quinze minutos, com a equipe, para
trocar informagdes sobre o projeto.

Developer Controls | Project Management | Como 0s Desenvolvedores | XP, Scrum
Process Pattern Language contribuem diretamente no
desenvolvimento dos artefatos

visiveis para o usuario final, faga do
desenvolvedor o ponto foco de
informagfo do processo.

Patron Role Piecemeal Growth |E importante dar continuidade ao | Scrum
Pattern Language projeto. Mas, um controle
centralizado pode dificultar o
progresso. Assim, eleja um “Patrono”
para o projeto, para que as barreiras
que impedem o progresso do projeto
sejam removidas.

Surrogate Customer | Piecemeal Growth | E importante trocar idéias com os | XP
Pattern Language clientes. Mas se o cliente ndo estiver
disponivel, cric um papel de
Substituto do Cliente no projeto, com
alguém que ira tentar pensar como o

cliente.
Fire Walls Piecemeal Growth | E importante proteger os | Scrum
Pattern Language desenvolvedores de outras pessoas

envolvidas no projeto, que nédo
participam do desenvolvimento, mas
sentem necessidade de ajudar por
meio de comentarios ou criticas.
Portanto, crie um cargo de gerente,
que protege os desenvolvedores de
interagdes com cargos externos.

Tanto no XP quanto no Scrum as fung¢des que irdo compor a versdo final do
software sdo selecionadas e depois priorizadas. Essas praticas sdo as propostas pelos
padrdes Implied Requirement e Work Queue. Da mesma forma que o padrdo Size the
Organization propde, os dois métodos defendem o uso de equipes pequenas ou médias.
Um dos valores que serve como base para os métodos ageis ¢ a colaboracdo dos
clientes. O padriao Engage Customers sugere que os clientes devem estar proximos dos
desenvolvedores e arquitetos e ndo sé da garantia de qualidade e marketing. Com os
clientes participando, o desenvolvimento se torna mais rapido, pois para conseguir
agilidade os desenvolvedores precisam de respostas rapidas dos clientes. Uma das
praticas do XP ¢ a programagdo em pares, em que todo cddigo produzido € feito em
pares, trabalhando juntos na mesma maquina. O padrio Developing in Pairs sugere que
em pares os desenvolvedores produzem mais do que a soma dos dois individualmente.
Cockburn et al. (2000) afirmam que a programac¢do em pares traz importantes
beneficios ao desenvolvimento de software. Os programadores trabalham mais rapido,
aprendem mais sobre o projeto e o sistema, o codigo desenvolvido é menor e o software
¢ produzido com menos defeitos. Poucos papéis sdo definidos no XP e no Scrum.

Ambos seguem o padrdo Few Roles, que sugere que o numero de papéis em uma
organiza¢do seja de aproximadamente de dezesseis ou menos. Stand up Meetings sio
reunides rapidas de aproximadamente quinze minutos, que ¢ uma das praticas de
gerenciamento do XP e do Scrum, realizada para avaliar o progresso alcangado e
planejar as proximas atividades. Nos dois métodos, o desenvolvedor € o ponto central
do projeto, o que ¢ sugerido pelo padrdo Developer Controls Process. O Padrdao Patron

Pattern Applications 164

@

SugarLoafPLoP 2005 Proceedings

Role e o Padrao Fire walls propdem, respectivamente, que sejam criados papéis para dar
continuidade ao projeto e proteger o desenvolvedores de interagdes externas. No Scrum
isso ¢ responsabilidade do Scrum Master. Outra semelhanga pode ser encontrada no
padrdo Surrogate Customer € na pratica “Cliente junto aos desenvolvedores” (On-site
customer) do XP. O XP defende que o cliente deve estar disponivel todo o tempo, para
que os desenvolvedores possam tirar duvidas sobre o projeto. Entretanto, se ndo for
possivel ter o cliente disponivel, alguém da equipe deve desempenhar esse papel. Essa
pratica ¢ proposta pelo padrao Surrogate Customer.

Além dos padrdes apresentados na Tabela 1, outros podem ser integrados aos
métodos ageis para melhorar ou adaptar o método agil, conforme mostrado na Tabela 2.
Esses padrdes foram identificados com base nos principios dos métodos ageis, e
propdem solugdes que facilitam a comunicagdo, interagcdo e adaptacdo as mudancas que
podem ocorrer no projeto.

Tabela 2. Padroes Organizacionais e de Processo

Nome Linguagem de Padrdes Resumo
Community of Trust Project Management Pattern | O relacionamento social tem um impacto
Language significante na efetividade da equipe.

Faca suas atividades de forma que
demonstre confianga explicitamente. As
acdes devem ser visiveis e evidentes, para
que as pessoas da equipe confiem umas

nas outras.
Self Selecting Team Piecemeal Growth Pattern | Nao existe um critério perfeito para
Language selecionar membros de uma equipe, mas

os interesses dos individuos ndo devem
ser ignorados. Assim, crie equipes
entusiasmadas com as pessoas escolhendo
sua propria equipe.

Unity of Purpose Piecemeal Growth Pattern | Muitos projetos t€ém um inicio dificil com
Language as pessoas se esforcando para trabalharem
juntas. Frequentemente, as pessoas tém
idéias diferentes de como o produto final
deveria ser. Assim, o lider do projeto
deve expor para todos membros da equipe
uma visdo comum ¢ proposito geral.

Matron Role Piecemeal Growth Pattern | Algumas atividades sdo necessarias para
Language manter a equipe prosseguindo no trabalho
técnico. Por isso, assegure que a equipe
contenha uma “Mae”, que vai tratar dos
assuntos sociais € pessoais necessarios
para manter a equipe unida.

Compensate Success Piecemeal Growth Pattern | Estabeleca recompensas para 0s
Language individuos que contribuem para o sucesso
do projeto. Toda a equipe deve receber
recompensas parecidas, para evitar
desmotivacdo individual. Assim, a
organizacdo fica mais focada na
satisfacdo do cliente e no sucesso do
sistema.

Organization Follows | Organizational Style Pattern|Se for necessario distribuir o trabalho
Location Language geograficamente, a comunicacdo pode ser
prejudicada, mas vocé pode limitar os
danos se o trabalho puder ser dividido.

Pattern Applications

165

@

SugarLoafPLoP 2005 Proceedings

Assim, a divisdo de tarefas deve estar de
acordo com a distribui¢do geografica dos
envolvidos no projeto. Responsabilidades
devem ser atribuidas de forma que
decisdes possam ser tomadas localmente.

Face To Face Before|Organizational Style Pattern|A distdncia geografica dificulta a
Working Remotely Language comunicagdo. Assim, inicie um projeto
distribuido com uma reunifo cara a cara
com todos para que se estabeleca uma
uniformidade no projeto.

Standards Linking | Organizational Style Pattern|O isolamento de desenvolvedores ndo
Locations Language deve ocorrer em projetos geograficamente
distribuidos. A equipe deve se comunicar
por meio de interfaces definidas, o codigo
deve interagir. Assim, utilize normas para
representar tudo o que esta relacionado a
arquitetura.

Shaping Circulation Realms | Organizational Style Pattern | A comunicagdo entre os participantes do
Language projeto ¢ fundamental para o sucesso e
ndo se pode esperar que a comunicagdo
aconteca espontaneamente. Portanto, crie
estruturas na organizagéo ou no espago de
trabalho que apdiem a comunicagio.

The Water Cooler Organizational Style Pattern|As organizacdes precisam evitar o
Language isolamento das equipes. Em ambientes
amplos ¢é dificil apoiar a freqiiente
interagdo entre as equipes. Promova
estruturas sociais que ndo estdo
relacionadas ao local de trabalho, onde as
pessoas podem se encontrar, tanto para
pausa quanto para comunicacao.

Os padrdoes Community of Trust, Self Selecting Team, Unity of Purpose e
Compensate Success abordam questdoes relacionadas aos individuos envolvidos no
processo de desenvolvimento. Esses padrdoes podem ser integrados aos métodos ageis
para aumentar a motiva¢do individual, melhorar o relacionamento e bem estar dos
envolvidos no desenvolvimento e, conseqiientemente, agilizar o desenvolvimento de
software.

Em uma pesquisa realizada para ensinar XP para estudantes, Goldman et al.
(2004) destacam alguns aspectos importantes que devem ser observados quando se
adota o XP como processo de desenvolvimento. Foi observado que fornecer lanches
simples para os estudantes ¢ uma forma eficiente de manté-los no desenvolvimento do
software por um longo periodo. Assim, os estudantes permaneciam concentrados no
desenvolvimento. Esse é o caso de aplicacdo do padrdo Matron Role. Outro ponto
destacado foi que os desenvolvedores foram organizados seguindo diretrizes para
facilitar a comunicacdo. Os padrdes Shaping Circulation Realms e The Water Cooler
sdo aplicados com esse objetivo nas organizagdes.

Em um estudo realizado sobre programagdo pareada, Baheti et al. (2002)
mostram que ¢ possivel desenvolver software com programacdo pareada distribuida.
Porém, com os programadores geograficamente divididos, a falta de comunicagido pode
afetar o projeto. Para tratar o problema da comunicacdo em ambientes distribuidos, os
padrdes Organization Follows Location, Standards Linking Locations e Face To Face

Pattern Applications

166

SugarLoafPLoP 2005 Proceedings

Before Working Remotely podem ser aplicados para que a agilidade ndo seja afetada por
falta de comunicagao.

Assim, aspectos importantes do desenvolvimento agil de software sdo abordados
pelos padrdes apresentados. A integragdo de métodos ageis e de padrdes
organizacionais ¢ de processo se torna cada vez mais necessaria, possibilitando um
desenvolvimento de software mais rapido e com qualidade.

5. Consideracoes Finais

Os padrdes organizacionais e de processo apdiam de forma efetiva a construcdo do
software. Assim, se integrados com métodos ageis, o software pode ser desenvolvido de
forma mais rapida e com mais qualidade, pois os padrdes s@o solugdes de sucesso para
problemas recorrentes que podem ser utilizados tanto para melhorar quanto para adaptar
os métodos ageis.

Uma questdo que surge quando os padrdes organizacionais e de processo sdo
abordados é como integra-los aos métodos de desenvolvimento de software.

A linguagem de padrdes apresentada por Beedle et al. (1999) ¢ um exemplo de
integracdo de alguns padrdes organizacionais e de processo com o método agil Scrum.
Por meio dessa combinacdo, Beedle et al. (1999) descrevem de forma mais clara a
estrutura da organizagdo de desenvolvimento de software. Dentre os padrdes integrados
com o Scrum, pode-se destacar dois que foram apresentados na Tabela 1: o Fire Walls e
o Developer Controls Process. O padrao Fire Walls esta relacionado ao Scrum Master,
que deve filtrar as informagdes irrelevantes que ndo contribuem para melhoria do
projeto. Outro relacionamento € o do padrdo Developer Controls Process com o Scrum
Team, que € a equipe de desenvolvimento. Os desenvolvedores, que tem autoridade para
decidir acdes necessarias para alcangar seus objetivos, sdo os pontos chave de
comunicacdo no projeto, por estarem em melhor posicdo para assumir responsabilidade
pelo produto.

Apesar deste estudo sobre padrées mostrar a existéncia de alguns padroes
organizacionais e de processo que podem melhorar o desenvolvimento de software,
existe ainda o desafio de integrar esses padrdes a um método agil (Scrum ou XP) e
estabelecer um processo de desenvolvimento de software 4gil, com solucdes de sucesso
em nivel organizacional e de processo.

6. Referéncias Bibliograficas

Abrahamsson, P.; Salo, O.; Ronkainen, J.; Warsta, J. Agile Software Development
Methods: Reviews and Analysis. Espoo: VTT Publications, 2002. Disponivel em:
<http://www.inf.vtt.fi/pdf/publications/2002/P478.pdf>. Acesso em: 11 mar. 2005.

Baheti, P.; Williams, L.; Gehringer, E.; Stotts, D. Exploring Pair Programming in
Distributed Object-Oriented Team Projects. In Proceedings of XP/Agile Universe
2002, Chicago, Agosto, 2002.

Beck, K. Extreme Programming Explained — Embrace Change. Addison-Wesley. 1999.

Beck, K.; Beedle, M.; Bennekum, A.; Cockburn, A.; Cunningham, W.; Fowler, M.;
Grenning, J.; Highsmith, J.; Hunt, A.; Jeffries, R.; Kern, J.; Marick, B.; Martin, R.;
Mellor, S.; Schwaber, K.; Sutherland, J.; Thomas, D. Manifesto for Agile Software

Pattern Applications

167

E SugarLoafPLoP 2005 Proceedings

Development. 2001. Disponivel em: <http://www.agilemanifesto.org/>. Acesso em:
20 fev. 2005.

Beedle, M. Scrum is an Organization Pattern. 1997. Disponivel em:
<http://www jeffsutherland.org/scrum/scrum_pattern.html>. Acesso em: 23 mar.
2005.

Beedle, M.; Devos, M.; Sharon, Y.; Schwaber, K.; Sutherland, J. SCRUM: A4n
Extension Pattern Language for Hyperproductive Software Development. In:
Harrison, N.; Foote, B.; Rohnert, H. Pattern Languages of Program Design 4.
Addison-Wesley, 1999.

Cockburn, A.; Williams, L. The Costs and Benefits of Pair Programming. In
Proceedings of the First International Conference on Extreme Programming and
Flexible Processes in Software Engineering (XP2000), Junho, 2000.

Cockburn, A.; Highsmith, J. Agile Software Development: The People Factor. IEEE
Computer, 2001.

Cockburn, A. Agile software development. Boston: Addison Wesley, 2002.

Coplien, J. O. 4 Generative Development-Process Pattern Language. In: Coplien, J.;
Schmidt, D. Pattern Languages of Program Design. USA: Addison-Wesley, 1995.

Coplien, J. O.; Schmidt, D. C. Pattern Languages of Program Design. Reading — MA,
USA: Addison-Wesley, 1995.

Coplien, J. O.; Harrison N. B. Organizational Patterns of Agile Software Development.
1. ed. Prentice Hall, 2004.

Cunningham, W. Episodes: A Pattern Language of Competitive Development. In:
Vlissides, J.; Coplien, J.; Kerth, N. Pattern Languages of Program Design 2,
Addison-Wesley, 1996.

Fowler, M.; Beck, K.; Brant, J.; Opdyke, W.; Roberts, D. Refactoring: Improving the
Design of Existing Code. Addison-Wesley, 1999.
Fowler, M. The New Methodology. 2003. Disponivel em:

<http://www.martinfowler.com/articles/newMethodology.html>. Acesso em: 15 jun
2005.

Goldman, A.; Kon, F; Silva, P. J. S.; Yoder J. W. Being Extreme in the Classroom:
Experiences in Teaching XP. In Journal of the Brazilian Computer Society, volume
10, nimero 2, pp. 1-17. Novembro, 2004.

Highsmith, J.; Cockburn, A. Agile Software Development: The Business of Innovation.
[EEE Computer, 2001.

Kerth, H.; Cunningham, W. Using Patterns to Improve our Architectural Vision. IEEE
Software, v.14, n. 1, p. 53-59, 1997.

Larman, C. Applying UML and Patterns: An Introduction to Object-Oriented Analysis
and Design and Iterative Development. 3. ed. Prentice Hall, 2004.

Lycett, M.; Macredie, R. D.; Patel, C.; Paul, R. J. Migrating Agile Methods to
Standardized Development Practice. In: Computer, pp. 79-85. IEEE Computer
Society. Jun. 2003.

Pattern Applications 168

é‘_‘_ SugarlLoafPLoP 2005 Proceedings

Schwaber, K.; Beedle, M. Agile Software Development with SCRUM. Prentice-Hall,
2002.

Sutherland, J. SCRUM: Another Way to Think about Scaling a Project. 2003.
Disponivel em: <http://jeffsutherland.org/scrum/2003 03 01 archive.html>. Acesso
em: 20 mar. 2005.

Taber, C.; Fowler, M. An iteration in the life of an XP project. Cutter IT Journal,

13(11), Novembro, 2000. Versao eletronica disponivel em:
<http://www.martinfowler.com/articles/planningXplteration.html>. Acesso em: 20
set. 2005.

Pattern Applications

169

te.

SugarLoafPLoP 2005 Proceedings

Cooperacao entre Padroes de Projeto na Resolucao de
Problemas de Processamento de Imagens Baseados em Filtros
de Convolucao

Daniel Welfer', Marcos Cordeiro d’Ornellas’

!Departamento de Eletronica e Computagio
Universidade Federal de Santa Maria(UFSM)
97.105-900, Campus Universitério - Centro de Tecnologia
Santa Maria, RS - Brasil

welfer@gmail.com, ornellas@inf.ufsm.br

Abstract. This paper presents a solution to implement convolution filters using
design patterns. Convolution filters are used to solve several problems in the
field of image processing, such as edges enhancement, mathematical morphol-
ogy and smoothing of noisy images. However, the implementation of convolution
filters is very complex because a filter can vary both in type and size. In order
to manage this complexity, a cooperation of design patterns was used in the
construction of a software component with the purpose of codifying these types
of filters. This approach has assured some important characteristics, such as
legibility, easy maintenance and reusability of source-code.

Resumo. Este trabalho apresenta uma solucdo para implementar filtros de con-
volugdo através da aplica¢do de padroes de projeto. Filtros de convolugdo
sdo utilizados para resolver vdrios problemas na drea do processamento de
imagens, tais como realce de bordas, morfologia matemdtica e suavizacdo de
imagens ruidosas. Entretanto, sua implementagdo é muito complexa uma vez
que um filtro pode variar tanto em tipo como em tamanho. Dessa forma, para
gerenciar essa complexidade, foi utilizado uma cooperagdo entre padroes de
projeto na constru¢do de um componente de software para codificar esses tipos
de filtros. Essa abordagem assegurou caracteristicas como legibilidade, fdcil
manutengdo e reusabilidade de codigo-fonte.

1. Introducao

Atualmente, o processamento e a andlise de imagens estdo sendo empregados nas
mais diferentes dreas do conhecimento. Na drea médica, por exemplo, as imagens sao
utilizadas para diagnosticar patologias. No dominio geoespacial, elas sdo utilizadas para
visualizar o estado climdtico de uma regido ou até mesmo para registrar o relevo de outros
planetas [Gosling, 2004], [Akre and Tabirca, 2003]. No campo comercial, as imagens
estdo cada vez mais presentes no cotidiano das pessoas através das cameras digitais e
scanners cada vez mais portateis.

Porém, as imagens digitais, normalmente sdo dependentes de um software que
gerencia todo o seu processamento ou andlise. E €, justamente nesse contexto, que 0s
padrdes de projeto sdo utilizados. Os padrdes de projeto sdo formas de construgdo de
software comprovadamente funcionais que garantem legibilidade, facil manutengdo e re-

utilizacdo de codigo-fonte no desenvolvimento de alguma aplicacdo computacional.
Pattern Applications 170

te.

SugarLoafPLoP 2005 Proceedings

Nesse trabalho, esses padrdes sdo utilizados para implementar uma solug@o adap-
tdvel para o problema dos filtros de convolucao. Para isso, na se¢do 2, € apresentado uma
nog¢ao sobre esses filtros através de um processo conhecido como segmentacdo de ima-
gens. Na se¢do 3, é descrito a colaboracdo entre padrdes de projeto na concepg¢ao de um
componente de software para a solucdo do problema dos filtros de convolucdo. Apds é
descrito as conclusdes finais sobre o trabalho.

2. Filtros de Convolucao: nocoes e aplicacao

Para esclarecer o emprego dos filtros de convolugdo, que aparecem com muita
freqiiéncia em processamento e andlise de imagens digitais, serd utilizado o problema do
realce de bordas no processo de segmentacao de imagens.

Segmentacdo de imagens € o processo pelo qual se particiona uma imagem em
um conjunto de regides similares colocando-as em primeiro ou segundo plano conforme
o objeto de interesse [Ritter and Wilson, 2000], [Russ, 1998]. Esse processo, tipico de
sistemas de visdo computacional, baseia-se na propriedades dos pixels que formam a ima-
gem, isto é, a intensidade que cada um apresenta em sua respectiva banda. Dessa forma,
em uma imagem com valores de pixels no intervalo entre 0 e 255 a borda é detectada
quando hd mudancas bruscas nos niveis de cinza, ou seja, em sua magnitude. Segundo
Gonzalez e Woods, [Gonzalez and Woods, 1992], essa ¢ uma abordagem baseada na des-
continuidade que, por sua vez, precisa ser complementada por um processo também de
segmentacdo conhecido como binarizacdo. Esse dltimo passo, também conhecido como
limiarizac@o ou thresholding, faz-se necessdrio para identificar quais sdo os pixels da
borda dos demais.

Nesse trabalho, a deteccdo de bordas foi aplicado as imagens de banda simples,
necessitando assim, que o aplicativo desenvolvido execute a conversdo da imagem cap-
tada, que por sua vez possui um modelo de cores baseado em trés bandas, isto €, RGB
para o modelo monocromatico.

Uma grande variedade de técnicas sdo usadas para computar as bordas de uma
imagem [Ritter and Wilson, 2000]. Dentre elas, foi utilizada a técnica da transformada
que aproxima o gradiente que, segundo Gonzalez e Woods, [Gonzalez and Woods, 1992]
€ o método mais comum de diferenciagdo em aplicagdes de processamento de imagens.
Para isso, sdo utilizados filtros, conhecidos como mdscaras ou kernels de convolugdo. Eles
recebem essa denominagio, porque operam unicamente no dominio do espaco. Assim,
para a detecc¢do dessas bordas, sdo necessdrias duas convolu¢des na imagem original. A
primeira operacdo de convolucao detecta as bordas na direcao horizontal e a segunda na
direcdo vertical, formando assim, as bases do subespaco de bordas. A literatura apresenta
véarios desses filtros como o de Roberts, Prewit, Sobel e Frei e Chen. Na figura 1, é
demonstrado as mascaras de Frei e Chen na forma de arranjo bidimensional.

Pode-se observar na figura 1, que os coeficientes da mdscara somam zero, o que
significa dizer que em dreas constantes a resposta serd nula(ganho zero) ocorrendo as-
sim, a diferenciacao entre as regioes, isto €, dos pixels que pertencem a borda dos demais
[Ritter and Wilson, 2000]. Apés a aplicacdo dessas mdscaras, utiliza-se um limiar ou
thresholding global sob a imagem segmentada. Esse é um passo bastante conveniente
uma vez que o algoritmo de Frei e Chen ndo consegue definir valores exclusivos para as
bordas, isto €, ainda ndo é conhecido quais sdo realmente os pixels das bordas da ima-
gem [Ritter and Wilson, 2000]. Dessa forma, com a limiariza¢do obtém-se uma imagem
bindria cujo plano de fundo apresentava valor 0 e as bordas valor 1. Assim, para a imagem

f(x,y), seu limiar T(x,y) foi encontrado como mostra a equagao da figura 2:
Pattern Applications 171

E SugarLoafPLoP 2005 Proceedings

-1.0 [-1.414] 1.0 1.0 00 [-10

0.0 0.0 0.0 1.414| 00 |-1414

10 |1414(1.0 1.0 00 | 10
a) b)
Figura 1: O kernel de convolucdo de Frei e Chen : a) filtro vertical e b) filtro
horizontal.
0 se f(z,y) < k
T = ’
o» = {150 Sk

Figura 2: Modelo para encontrar o Thresholding, onde k é o limiar especificado
pelo usuario.

Esse processo de segmentacao foi utilizado em imagens de componentes industri-
ais. A idéia era detectar os contornos dessas pecas e gerar um arquivo texto contendo as
coordenadas espaciais dessas bordas. Através desse arquivo a peca pode ser reconstruida
em ambiente assistido por computador. A figura 3 demonstra a parte de processamento
de imagens desse trabalho. Sublinha-se que, a imagem original depois de ser convertida
para tons de cinza sofreu o processo de equalizacdo para fins de melhorar a distribui¢ao
da sua luminosidade e, conseqiientemente tornar mais nitida suas bordas.

U ES

A) Original B) Realgada C) Segmentada
(gradiente)

Figura 3: As varias etapas necessarias para detectar a borda.

3. Os padroes utilizados para implementar as mascaras de convolucao

De conhecimento da técnica no que diz respeito ao processamento de imagens
necessdrio para esse tipo de segmentacdo, o proximo passo € projetar o componente de
software que automatiza esse processo. Porém, para assegurar as caracteristicas ante-
riormente citadas como o reuso e legibilidade foi aplicado uma abordagem de codifi-
cacdo baseada em padrdes. Esses padrdes sdo apresentados pela literatura, principal-
mente, pelos catdlogos de Gamma et al. [E. Gamma and Vlissides, 1995] e Buschmann
et al. [Buschmann et al., 1996]. Nesse artigo sao utilizados quatro padrdes de construcio

Gamma: o Builder, Strategy, Template Method e Command.
Pattern Applications 172

@

SugarLoafPLoP 2005 Proceedings

3.1. O padrao de criacdo Builder no desenvolvimento de software para
processamento de imagens

O padr@o Builder tem a finalidade de separar um objeto de todas as partes respon-
saveis por sua formacao. Ele é usado quando o objeto possui um grau de complexidade
muito grande e para isso sua constru¢do ocorre em etapas, dai o nome bastante intuitivo
desse padrdo, isto €, construcdo. O objeto complexo vai sendo construido por partes,
sendo que cada uma dessas partes representam um algoritmo distinto que, por sua vez,
contréi o objeto final também chamado pela literatura de produto. A vantagem direta
desse padrdo € a modularidade que apresenta, pois cada uma dessas separacoes entre eta-
pas e o produto final pode ser implementado através de classes distintas. Outra vantagem
citada por Erich Gamma et al. [E. Gamma and Vlissides, 1995], diz respeito ao controle
que o processo de criacdo possui, 0 que ja ndo acontece com o padrao Abstract Factory
por exemplo. Isso é bem intuitivo de ser entendido pois os demais padrdes de projeto de
criagdo, originam os produtos de uma s6 vez, enquanto que o Builder implementa uma
l6gica mais precisa e incremental.

O padrao Builder, assim como o Factory Method, que € outro padriao de criacio
especificado por Gamma ef al., também retorna um objeto a partir de uma dada requisicao.
Porém, como descrito anteriormente, ele possui a vantagem de construir esse objeto a ser
retornado de forma mais modular, isto é, passo-a-passo. Outra vantagem é que, o objeto
complexo que estd sendo construido fica separado de sua representagdao [Metsker, 2002].

No entanto, antes de usar esse padrdo de projeto € necessdrio enfatizar trés as-
pectos essenciais no que diz respeito ao funcionamento do componente de segmentacao
baseado em realce de bordas que estd sendo explicado:

1. Ha diferentes filtros de realce. Assim, o projeto do componente deve permitir que
o usudrio possa escolher dinamicamente qual dessas mdscaras serd utilizada;

2. S6 escolher qual o filtro utilizar ndo basta. O Componente também deve oferecer
diferentes tamanhos para essas mdscaras. Normalmente, na literatura, elas sdo
3x3 ou 8 conectado (como a figura 1), mas também a literatura descreve como
possibilidade de uso mdscaras de tamanho 5x5 e 7x7. Dessa forma, € possivel ter
um mesmo algoritmo operando sob diferentes tamanhos de mascaras.

3. Ap6s escolhida a méscara faz-se necessdrio ainda executar a operacdo de con-
volucdo propriamente dita. Para isso ja se deve ter decidido o nome do filtro e
seu tamanho. Nessa etapa de convolucao sao utilizadas as mdscaras horizontais e
verticais escolhidas anteriormente.

Nesse contexto, a principal vantagem do padrao de criacdo Builder na implemen-
tacdo desse componente €, justamente gerenciar essas varias partes necessdrias para com-
por um objeto. Sua configuracao estrutural € mostrada na figura 4.

O padrao Builder representado pela figura 4 possui um nivel a mais que o Fac-
tory Method. A classe EdgeDetection € uma classe abstrata que tem como fungio
abrigar diferentes implementacdes de filtros segundo um mesmo escopo de operacgdo.
Suas classes bases sd0 RobertsSegmentation(que implementa o filtro de Roberts),
SobelSegmentation(que implementa o filtro de Sobel), PrewittSegmentation
(referente ao filtro de Prewitt) e FreiAndChenSegmentation(referente ao filtro de
Frei e Chen). Cada uma dessas classes possui 0 método makeMask () que tem como
parametro de entrada o tamanho da mdscara que o usudrio optou em utilizar e o método
makeSegmentation () que tem como parametro de entrada o valor do limiar escolhido
e como valor de retorno a imagem ja segmentada. Ambas operacOes sdo abstratas e
surgem nas sub-classes porém com valores diferentes no que se refere a sua mdscara.
A primeira operac@o constréi a mdscara tomando como base seu tamanho e a segunda

Pattern Applications

173

@

SugarLoafPLoP 2005 Proceedings

Director EdgeDetection
+makeMask(+convenColorToGray(src.Planarimage, brightness:int): Planarimage
+makeSegmentation() +threshold(src:Planarimage, thresholding:infy: Planarimage

IRohemSegmemaiion “ SobelSegmentation " PrewittSeg FreiAndChenSeg i l

Figura 4: O modelo estrutural do padrao Builder. O objeto Image é o produto
que esta sendo construido.

realiza a operacdo de convolugdo e depois de binarizacdo. A classe Image representa o
produto complexo que se estd querendo produzir (que no caso € a imagem segmentada).
A classe Director faz parte da especificacdo do padrdao Builder e € a responsavel por
invocar todos os métodos presentes nas classes filhas em um tnico método chamado de
Constructor.

A classe Image recebe a imagem a ser segmentada. E essa imagem original que se
transformard no produto final. Por isso que ela possui uma relacdo de dependéncia entre
as classes filhas. As classes filhas dependem do produto final pois, este, em seu estado
inicial, carrega a imagem a ser processada pela l6gica algoritmica contida no interior
dessas classes concretas.

3.2. O padrao comportamental Strategy no desenvolvimento de software para
processamento de imagens

O Strategy € um padrao que encapsula os detalhes de escolha de determinado al-
goritmo em um contexto onde podem existir familias inteiras de algoritmos. Dessa forma,
para gerenciar qual algoritmo de realce de bordas deve ser invocado, foi utilizado o padrado
de projeto comportamental Strategy. A intengdo desse padrdo pode ser deduzida do seu
proprio nome, isto €, escolher qual estratégia (que € o algoritmo) deve-se utilizar. No en-
tanto, essa estratégia deve ser exclusiva, isto €, ou invoca o algoritmo de Frei e Chen ou de
Roberts e assim consecutivamente. Para tal finalidade, o padrao Strategy encapsula em seu
interior a defini¢do de uma familia de algoritmos referentes a essas diferentes mascaras
de convolucdo, de forma que sejam intercambidveis [E. Gamma and Vlissides, 1995].

Segundo James Cooper, [Cooper, 1998], esse padrao também € muito utilizado
para comprimir arquivos utilizando diferentes algoritmos, capturar video utilizando dife-
rentes esquemas de compressdo e outros. Nesse contexto, esse padrdao executa o papel da
fabrica onde ocorre a manufatura de determinado objeto e que, por sua vez, apresentam
responsabilidades distintas. Essa € a conexdo que ele apresenta com o padrao Builder, isto
€, € através do objeto implementado pelo padriao Strategy que serd invocado determinada
classe filha do padrdo Builder e que, por sua vez, armazena toda a l6gica de determinado
filtro de convolugao.

A figura 5 mostra o projeto completo do componente isto €, os objetos do padrao
Builder com a classe que gerencia a chamada dos algoritmos denominada de St rategy.
3.3. O padrao comportamental Template Method

O outro padrdo utilizado no desenvolvimento desse componente foi o Template
Method. O padrao Template Method possui a finalidade de prover uma légica comum
Pattern Applications 174

@

SugarLoafPLoP 2005 Proceedings

Strategy
-edgeDetection: EdgeDetection
< -director. Director
-imageReturn: Planarimage
#choice(strategyTypeln:ing: Planarmage
Director EdgeDetection
+makeMask() S>> +convertColorToGray(sre Planarimage, brightness:int): Planarimage
+makeSegmentation() +threshold(src:Planarimage, thresholding:int): Planarimage

Figura 5: A visao de projeto completa do componente de segmentacédo baseado
em mascaras de convolucéo.

para todas as sub-classes de um componente. Para isso, a classe mde implementa um
método (que por sua vez encapsula um algoritmo) que € utilizado por todas as sub-classes
evitando assim sua replicacdo em cada uma delas.

Para o processo de segmentacdo ocorrer ndo basta apenas aplicar filtros de con-
volucdo. E necessério ainda, como descrito na secdo 2, tratar a imagem de entrada e
também complementar o processo de realce dos filtros pelo processo de binarizagdao. Se
a imagem que se estd intencionando segmentar for RGB (usualmente conhecidas como
multiespectral ou colorida) o componente de segmentacdo deve converté-la para tons de
cinza, uma vez que € mais simples operar sob esse tipo de imagem além de ser pré-
requisito para o processo de limiarizacdo futura. De outro lado, apds a aplicacdo de
determinada méscara € utilizado o processo de binarizac¢ao (thresholding) para garantir a
exclusdo dos pixels que pertencem a borda daqueles que pertencem ao plano de fundo da
imagem. Assim, cada classe concreta de EdgeDetection, da figura 5, deve implemen-
tar ambas funcionalidades para garantir a eficdcia do componente. No entanto, como a
l6gica de ambas operacdes se mantém igual independente da classe concreta onde estd im-
plementada, € possivel tratd-las de uma forma mais elegante. Para isso, basta implementar
esses métodos na prépria classe abstrata (usualmente chamada de mae) e apenas chama-
los quando for conveniente nas classes filhas. Assim, evita-se replicagdo de c6digo nas
classes concretas (comumente chamada de filhas). Dessa forma, esses métodos se tornam
modelos justificando entdo o seu nome pela literatura.

3.4. O padrao de controle Command

Esse padrdo de projeto foi utilizado para construir a interface grafica do compo-
nente de segmentacdo. Quando esse componente cresce em funcionalidade, como por
exemplo a implementacdo de diversos filtros de convolucdo, naturalmente o usudrio es-
tard habilitado a realizar, via interface gréfica, diversas solicitacdes a esses filtros. Dessa
forma, para gerenciar essa complexidade de requisi¢des por parte do usudrio foi utilizado
o padrao de projeto Command.

Quando um sistema cresce muitas op¢des de funcionamento podem ser requisi-
tadas via interface grafica. Em Java, normalmente esse processo € inteiramente gerenci-
ado pelo método actionPerformed e do objeto ActionEvent . Esse método controla

as requisicoes feitas pelo usudrio como, por exemplo, um click em um botido que serd
Pattern Applications 175

RE

SugarLoafPLoP 2005 Proceedings

seguido pela chamada de algum outro método. Veja na figura 6 como isso ocorre.

Codigo 1: Controlando requisi¢des do usudrio via Interface Grafica.

0l. public void actionPerformed (ActionEvent w) {
02. String opcao = w.getActionCommand() ;

03. if (opcao.equals ("Prewitt")) {

04. Prewitt () ;

05. }

06. if (opcao.equals ("Roberts")) {

07. Roberts () ;

08. }

09.

10. }

Figura 6: Implementacao da geréncia dos algoritmos via componentes graficos

A palavraPrewitt e Roberts dalinha 3 e 6 representam o identificador de deter-
minados componentes gréficos especificados pelo programador. Entretanto, infelizmente,
em um sistema que apresenta muitas operacdes esse método ficaria sobrecarregado além
do que, a mesma classe onde esse método € implementado possivelmente também abri-
gard todos os métodos que implementam as mais distintas operacdes. Essa € uma forma
possivel e funcional, porém nada legivel e portanto, de dificil manutencdo. Ressalta-se
ainda que subtituir a sequéncia de “ifs” pela sentenga “switch-case” apenas tornaria o
c6digo menos intuitivo ainda pois essa dltima estrutura ndo permite controlar varidveis
do tipo “Strings” mas, apenas tipos primitivos. Utilizando palavras para implementar o
controle torna o c6digo mais acessivel o que ndo ocorre com tipos inteiros ou caracteres.

Para resolver este problema, € utilizado uma abordagem mais modular. Cada
componente grafico, que requisita alguma operagdo, ¢ implementado como uma nova
classe. Cada uma dessas classes herda as caracteristicas de uma interface publica chamada
CommandInterFace que é o objeto Command propriamente dito. A figura 7 expde de
maneira mais clara essa solugdo.

Na linha 6 da figura 7 pode-se ver que o método actionPerformed ficou re-
duzido a quatro linhas. Nao s6 nesse caso ele sofreu essa reducao, isto é, ele sempre man-
terd essa caracteristica constante. Através da especificacdo da interface Command todas
as classes criadas como a da linha 11 que tem a inten¢do de prover um item gréfico para re-
alcar as bordas de uma imagem pelo filtro de Prewitt, terdo em seu interior o mesmo nome
do método presente em CommandInterFace,isto €, ExecuteAction () porém com di-
ferentes implementacdes. Com isso € possivel desacoplar o objeto que invoca a operacao
daquele que tem o conhecimento para executd-la [E. Gamma and Vlissides, 1995].

A principal desvantagem desse padrdao € a proliferacdo de pequenas classes
[Cooper, 1998]. Porém, essa desvantagem ndo representa um risco para o sistema, pelo
simples fato de que o aspecto organizacional alcancado pelo padrao Command é muito
grande. Qualquer alteracdo em algum componente grafico pode ser facilmente realizada
pois basta encontrar a sua classe e efetuar as mudangas necessdrias sem mexer no resto
do cédigo. Por exemplo, se a classe da linha 11 necessitar mudar sua finalidade bas-
taria entrar dentro do seu método ExecuteAction () e alterar a chamada do método
Prewitt () para outro qualquer. Para fins de simplificacdo dentro dessas pequenas
classes foram invocados métodos locais. Entretanto, na maioria dos casos, acontece 0

Pattern Applications

176

RE

SugarLoafPLoP 2005 Proceedings

Cédigo 2: Manipulando requisi¢des do usudrio de forma mais elegante.

01. //especificacdo do objeto Command

02. public interface CommandInterFace {

03. public void ExecuteAction();

04. }

05. //invocando o objeto Command

06. public void actionPerformed (ActionEvent e) {

07. CommandInterFace obj = (CommandInterFace)e.getSource();
08. obj.ExecuteAction();

09. 1}

10. //Classe alusiva a um componente grdfico

11. class ListenEdgeDetection extends JMenultem

12. implements CommandInterFace(
13. public void ExecuteAction () {

14. Prewitt () ;

15. }

16. 1}

17.

Figura 7: Uma alternativa de controle mais legivel.

instanciamento dos objetos principais dos componentes que estdo alocados em unidades
do tipo pacote. A figura 8 mostra a interface gréafica desse componente.

& Segmentation Window Q@@

Choose your Segmentation Algorithm below:
" Roberts * 3x3
o (~ 5x5
(e

C 7x7
" Prewit
(¥ Frei and Chen
Choose The Theshold Value: 128

|
|1|||||||||||{||||||||||||
Ok ‘ Exit ‘

Figura 8: A interface do componente de segmentacao.

4. Conclusao

Muitas operag¢des em processamento de imagens se baseiam na aplicacdo de filtros
[Akre and Tabirca, 2003]. Dessa forma, a utilizacdo desses dois padrdes, especialmente
pelo Builder que d4 o suporte central ao componente, podem ser visto com muita uti-
lidade no desenvolvimento de software para imagens. Um bom exemplo € a utilizacdo
desses padrdes para construir um componente para morfologia bindria, onde o elemento
Pattern Applications 177

SugarLoafPLoP 2005 Proceedings

estruturante apresenta diferentes formatos e tamanhos. Assim pode-se utilizar o padrao
Builder para construir passo-a-passo toda a representacao necessdria para implementar
um objeto que representa o elemento estruturante para, posteriormente utiliza-lo em ope-
racdes de dilatacdo, erosdo, abertura, fechamento e outras. Em nivel de aplicacdo esse
componente se segmentacdo baseado em contornos pode ser visto como um pré-requisito
para um componente de morfologia bindria pois, o alvo de estudo dessa parte de mor-
fologia sdo imagens bindrias que por sua vez sdo o resultado final desse componente de
segmentacdo. Assim, também a nivel de funcionalidade um componente acaba ajudando
o outro na resolu¢do de algum problema.

O padrao Command propiciou regras de controle para o gerenciamento de toda a
interface grafica do componente de segmentacdo. Qualquer modificacdo ou agregacao de
novos elementos graficos basta seguir um modelo onde todos esses elementos sdo consi-
derados como classes isoladas que contém operacdes comuns porém com diferentes im-
plementagdes. Assim, quando o componente for se tornando grande e, conseqiientemente
a sua interface grafica também, a principal vantagem oferecida pelo padrao Command é a
forma com que ele gerencia a complexidade resultante da associaciao entre componentes
gréficos e requisicao dos algoritmos dos filtros de convolugdo.

Finalizando, a modelagem do componente através da notacdo UML, propicia ao
desenvolvedor a visdo necessdria para trabalhar a parte mais dificil na concep¢ao de um
sistema. Essa parte é o processo de reconhecer e enxergar a aplicacdo de um determi-
nado padrdo para um problema de imagens. Esse problema no inicio € muito grande,
principalmente no momento de conjugar os varios padrdes identificados que compdem
o componente. E para esse processo de reconhecimento, € necessdrio ter conhecimento
de todos os padrdes apontados pela literatura e, também, conhecimento sobre o problema
na drea de imagens. Se esses dois aspectos estdo dissociados ndo € possivel efetuar uma
implementacdo que assegure caracteristicas como reuso e legibilidade de c6digo-fonte.

Referéncias

Akre, A. and Tabirca, S. (2003). Imaging technologies in java. pages 159-161, Kilkenny
City, Ireland. Proceedings of the 2nd international conference on Principles and prac-
tice of programming in Java.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., and Stal, M. (1996). Pattern -
Oriented Software Architecture: A System of Patterns, volume 1. John Wiley & Sons
Ltd, New York.

Cooper, J. W. (1998). The Design Patterns - Java Companion. Addison-Wesley.

E. Gamma, R. Helm, R. J. and Vlissides, J. (1995). Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley Publishing Company, New York.

Gonzalez, R. C. and Woods, R. E. (1992). Digital Image Processing. Addison-Wesley.

Gosling, J. (2004). The mars mission continues. Disponivel em: <http://www.sun.
com/mars>. Acesso em: abr. 2004. Sun Microsystems, Inc.

Metsker, S. J. (2002). Design Patterns Java Workbook. Addison-Wesley.

Ritter, G. X. and Wilson, J. N. (2000). Handbook of Computer Vision Algorithms in Image
Algebra. CRC Press, New York.

Russ, J. C. (1998). The Image Processing Handbook. CRC Press.

Pattern Applications

178

E SugarLoafPLoP 2005 Proceedings

Aplicacdo de metapadrdes e padrdes em desenvolvimento
de software para sistemas de informacao

Gabriela T. de Souza® 2, Carlo Giovano S. Piresl, Fabiana Gomes Marinhol,
Arnaldo Dias Belchior’

"nstituto Atlantico
Rua Chico Lemos, 946 — 60 822-780 — Fortaleza — CE — Brasil

*Universidade de Fortaleza
Av. Washington Soares, 1321 — Fortaleza — CE — Brasil

{gabi, cgiovano, fabiana} @atlantico.com.br, belchior@unifor.br

Abstract. This work presents a catalogue of metapatterns and their application
in the development of information systems. The considered metapatterns are
implemented by requirement patterns, design patterns and test patterns. RUP
is used as reference of software engineering good practices.

Resumo. Este trabalho apresenta um catdlogo de metapadroes e a aplicagdo
desses metapadroes no desenvolvimento de sistemas de informagdo. Os
metapadrdes propostos sdo implementados por padrdes de requisitos, padroes
de projeto e padroes de teste. O RUP foi utilizado como referéncia de boas
praticas de engenharia de software a serem seguidas.

1. Introduciao

Em sistemas de informacdo, as funcionalidades sdo muito concentradas em cendrios de
uso baseados em manutencdo e consulta de dados, gerando necessidades e problemas
recorrentes durante o desenvolvimento do sistema, que afetam os varios produtos de
trabalho ao longo do ciclo de vida de desenvolvimento de software. Entre estes
problemas podemos citar o tratamento de operacdes para criagdo, atualizagdo, exclusao
e consulta de entidades.

Com o objetivo de minimizar estes problemas, varios modelos e processos foram
propostos para auxiliar o desenvolvimento de produtos de software de qualidade,
destacando-se o RUP (Rational Unified Process) [8]. O RUP é um framework de
processo adaptavel que abrange as melhores praticas do desenvolvimento de software de
mercado e tem sido largamente utilizado em projetos de software.

Desenvolver software usando padrdes pode reduzir o custo e condensar o ciclo
de vida do desenvolvimento, e simultanecamente manter a qualidade dos sistemas
desenvolvidos. Entretanto, o potencial de usar padrdes em sistemas de software ndo ¢
aproveitado inteiramente. Embora diversos padrdes tenham sido desenvolvidos para
analisar, projetar, e implementar o software; ndo existe nenhuma orientagdo ou
metodologia madura que fornece uma abordagem sistemdtica para integrar estes
diferentes tipos de padrdes durante o ciclo de desenvolvimento.

Neste trabalho, propomos o uso de um catdlogo de metapadrdes integrado ao
ciclo de vida de desenvolvimento de software para apoiar a constru¢do de sistemas de
informacdo. Os metapadrdes apresentados sdo implementados por padrdes de requisitos,

Pattern Applications 179

E SugarLoafPLoP 2005 Proceedings

padrdes de projeto e padrdes de teste. Ndo abordamos padrdes de implementagdo. Esses
padrdes serdo tratados em trabalhos futuros.

Este trabalho estd organizado em 5 segdes. A secdo 2 descreve modelos e
processos de software, que sdo propostos para auxiliar no desenvolvimento de software.
Os conceitos de padrdes e metapadroes sdo apresentados na secdo 3. Na secdo 4,
descrevemos o catdlogo de metapadroes proposto. A se¢do 5 apresenta o uso de
metapadrdes e padroes no desenvolvimento de sistemas de informacdo. Finalmente, a
se¢do 6 contém as conclusoes e os direcionamentos para trabalhos futuros.

2. Desenvolvimento de software

Atualmente, existem varios processos de desenvolvimento software com o objetivo de
auxiliar os grupos de desenvolvimento a construirem produtos de software de qualidade,
capazes de atender as necessidades e exigéncias dos usuarios. Apesar de possuirem

abordagens diferentes, as disciplinas descritas a seguir sdo comuns a varios processos
[14].

- Requisitos: define as funcionalidades e as restri¢des do software.

- Andlise e Projeto: produz a arquitetura utilizada como base para o desenvolvimento
do software.

- Implementag@o: produz e libera o cddigo para o cliente final.

- Testes: valida o software para garantir que as funcionalidades e restricdes serdo
atendidas.

- Manutengdo: garante que o software atenda as necessidades de mudanga do
cliente.

Estas disciplinas fundamentais sdo organizadas de acordo com os modelos de
ciclo de vida. O ciclo de vida cascata (classico) é o mais tradicional. Neste ciclo de vida
o desenvolvimento de software ¢ organizado de forma a percorrer cada disciplina em
seqiiéncia apenas uma vez. O ciclo de vida iterativo € uma alternativa mais flexivel para
o desenvolvimento de software. As diversas disciplinas sdo percorridas varias vezes,
gerando um melhor entendimento dos requisitos, planejando uma arquitetura robusta,
elevando a organiza¢do do desenvolvimento e, por fim, liberando uma série de
implementagdes que sdo gradualmente mais completas. No ciclo de vida incremental as
necessidades do usudrio sdo determinadas e os requisitos do sistema sao definidos e, em
seguida, o restante do desenvolvimento € realizado em uma seqiiéncia de incrementos.
O primeiro incremento incorpora partes das capacidades planejadas, o proximo
incremento adiciona mais capacidades e assim por diante até o sistema estar completo
[13].

Na pratica, abordagens hibridas dos ciclos de vida descritos podem ser
utilizadas. O RUP, por exemplo, é um framework de processo iterativo e incremental
que prové uma abordagem disciplinada para o desenvolvimento de software [8].

Conforme apresentado na Figura 1, o RUP possui duas dimensdes. O eixo
horizontal representa o aspecto dindmico do processo e mostra as fases do ciclo de vida
a medida que este se desenvolve. O eixo vertical representa o aspecto estatico do
processo, como ele é descrito em termos de disciplinas [10].

Pattern Applications 180

SugarLoafPLoP 2005 Proceedings

As disciplinas fundamentais do processo de desenvolvimento de software
também estdo presentes na estrutura do RUP. A disciplina de Requisitos ¢ responsavel
por estabelecer e manter concordancia com os clientes e outros envolvidos sobre o que o
sistema deve fazer, oferecer aos desenvolvedores do sistema uma compreensdo melhor
dos requisitos e definir as fronteiras do sistema. O RUP indica a utilizagdo de casos de
uso para definir, detalhar e documentar requisitos. Um caso de uso define um conjunto
de instancias de casos de uso, no qual cada instdncia ¢ uma seqiiéncia de agdes realizada

por um sistema que produz um resultado de valor observavel para determinado ator
[10].

Fases
Disciplinas ‘Inilﬂagﬁa H Elaboragao H Construcdo ” Trans!;in‘

Modelagem de Negdcios

Requisitos

Andlise e Design

Implementac3o
Teste
Implantacéo

Geren. de
Configuracio e Mudanca

Gerenciamento de Projeto i : :
Ambiente e —

[il || il
l“‘l n2 || n°1 | n®2 | noN || n1 | nea

Iteracgdes

| Inicial ||

Figura 1: Ciclo de vida de desenvolvimento do RUP

A disciplina de Andlise e Projeto, por sua vez, visa transformar os requisitos em
um projeto do sistema e desenvolver a arquitetura. O processo ¢ baseado em caso de uso
e desenvolve a andlise e projeto através de Realizagdes de Casos de Uso. A finalidade
da disciplina de Implementag¢do ¢ implementar classes e objetos, testar e integrar os
resultados produzidos. A disciplina de Testes atua em varios aspectos como uma
provedora de servicos para as outras disciplinas, enfatizando principalmente a avaliacdo
da qualidade do produto.

Neste trabalho, propomos um conjunto de metapadrdes e padrdes para apoiar o
processo de desenvolvimento de sistemas de informag¢do baseado no RUP. Os
metapadroes e padrdes propostos podem ser aplicados ao longo de todo o ciclo de vida
de desenvolvimento de software com suas fases e disciplinas de forma integrada e
consistente. Apesar de utilizar o RUP como base para o ciclo de vida de
desenvolvimento de software, a abordagem pode ser facilmente aplicada a outros
processos, dada a existéncia das disciplinas fundamentais.

3. Padrades de software

Um padrao ¢ definido em [1] como uma regra que expressa uma relacdo entre um
determinado contexto, um problema e uma solu¢do. Este conceito tem sido amplamente
utilizado no dominio da engenharia de software como uma forma de descrever boas
solugdes para problemas especificos em todo o ciclo de vida do projeto [2].

Uma classificagdo bastante utilizada para padrdes de software toma como base o
estagio de desenvolvimento de software em que o padrdo € aplicado. Em [2], os padroes

Pattern Applications

181

SugarLoafPLoP 2005 Proceedings

sdo classificados em cinco categorias: padrdes de requisitos, padrdes de analise, padrdes
de projeto, idiomas e padrdes de testes. Os padrdes de testes s@o orientagdes para as
atividades de testes, incluindo documentagdo, execucdo e divulgacdo dos resultados
[11]. Os idiomas sdo orientagdes para codificar padrdes de projeto em uma linguagem
de programagdo especifica. Os padrdoes de projeto sdo utilizados para refinar os
componentes ou relacionamentos entre eles podendo ser usados durante toda a fase de
projeto do software. O objetivo dos padrdes de andlise € construir um modelo de analise
que represente as estruturas conceituais dos processos do negédcio. Os padrdes de
requisitos, por sua vez, documentam as necessidades dos usudrios e 0 comportamento
dos sistemas em um alto nivel de abstracao.

Padroes de Padrées de Padrées de Padrées de
Reauisitos Analise Proieto Testes

>

Requisitos Analise Projeto Implementagéo Testes

Figura 2: Classificagdo pelo ciclo de vida de desenvolvimento (adaptado de [12])

Metapadrdes representam uma abordagem proposta por [9], que consiste na
especificagdo de um conjunto de metapadrdes que descrevem como construir
frameworks. Segundo [9], metapadrdes constituem uma abordagem elegante e poderosa
que pode ser aplicada para classificar e descrever padrdes em um metanivel. Portanto,
metapadrdes ndo substituem as abordagens de padrdes, mas complementam-nas.

O conceito de linguagens de padrdes foi introduzido por [1]. Em uma adaptagdo
para a engenharia de software, Coplien descreveu uma linguagem de padrdes como uma
colegdo de padrdoes que trabalham em conjunto para construir um sistema [4]. As
linguagens de padrdes, além dos padrdoes que as compdem, possuem um titulo,
geralmente possuem uma descricdo ou resumo € um mapa, que consiste de um grafo
que ilustra como seus padrdes estdo relacionados [12]. Segundo [7], uma linguagem de
padrdes deve ser completa morfologicamente e completa funcionalmente. Se os padrdes
ndo sdo completos destas duas maneiras, entdo eles sdo considerados uma simples
colecdo de padrdes ou catdlogo de padrdes, como [6] [5] [3].

4. Catalogo de Metapadroes

Nesta secdo, apresentamos uma breve descricdo dos metapadrdoes e padrdes que
compdem o catdlogo de metapadrdoes proposto para auxiliar o processo de
desenvolvimento de sistemas de informacao. Este trabalho aplica e amplia o conceito de
metapadroes proposto por PREE [9] no contexto de padrdoes de projeto, para
metapadroes no dominio de sistemas de informacdo. O foco deste trabalho esta nos
padroes de requisitos, padrdes de projeto e padrdes de teste. Os padroes de
implementagao serdo abordados em trabalhos futuros.

A Figura 3 apresenta os relacionamento entre os metapadrdes e padrdes. Os
padrdes citados nesta se¢do encontram-se descritos em [15] [16].

Pattern Applications

182

E SugarLoafPLoP 2005 Proceedings

Catalogo

etapadrEn Metapadran Metapadran Metapadran
Meta-CRUD Relstdrio Transagan Assistente

Pacrio
CRUD-MYC

Padréo
Selegdo com
ecundaria

Padréo
Cazo de Uso
Azsisterte

Padréo
Caszo de Uso
Transagan

Padrao
Cazo de Uso
Relatario

Padréo
Registro com
Busca

Padrdo
Teste Relatdrio

Padréo
CazodelUza)—
CRUD

Paclréo
Teste CRUD L

Figura 3: Relacionamento entre os metapadroes e os padroes

Padrén
Manutencéo em
Grade

4.1. Metapadrao Meta-CRUD
Problema

Tratar a manuten¢do das entidades nas diversas fases de um ciclo de vida de
construcdo de software de forma integrada e consistente.

Solucio

Este metapadrdo descreve a estrutura geral para manutencdo de entidades. As
entidades devem ser mantidas através de operagdes de criacdo, consulta, alteracdo e
consulta (CRUD — Create, Read, Update, Delete). A estrutura dessas operagdes deve
considerar o tipo de entidade, sua complexidade e volume de dados tratados.

Padrdes que implementam o metapadrio
- Caso de Uso CRUD;
- CRUD-MVC;
- Registro com Busca;
- Manutencio em Grade;
- Sele¢do com Secundaria;

- Teste CRUD.

4.1.1. Padrao Caso de Uso CRUD
Contexto

Este padrio ¢ utilizado para a documentacdo dos requisitos de manuten¢do em
sistemas da informagao, por meio do uso de modelos e especificagdes de casos de uso.
Os requisitos de manutencdo sdo caracterizados por operagdes de Inclusdo, Consulta,
Alteragao e Exclusdo.

Problema

Como documentar os requisitos funcionais de inser¢ao, atualizagdo, exclusio e
consulta de dados por meio de especificagcdes de casos de uso?

Pattern Applications 183

SugarLoafPLoP 2005 Proceedings

4.1.2. Padrio CRUD-MVC
Contexto

Sistemas de informag¢do requerem funcionalidades de negodcio implementadas
através de interface humano-computador (IHC), componentes para tratamento de regras
de negdcio e acesso a dados para operagdes CRUD e operagdes de negocio.

Problema

Como tratar funcionalidades recorrentes de criagdo, consulta, atualizagdo e
exclusdo de dados em sistemas de informagdo considerando aspectos de apresentacdo e
tratamento de eventos, regras de negocio e persisténcia?

4.1.3. Padrao Registro com Busca
Contexto

Utilizado para as principais entidades de negdcio, com muitos campos e/ou
relacionamentos. Em geral, essas entidades sdo objetos complexos com muitos atributos
e relacionamentos. O enfoque do cenario ¢ de uma busca eficiente seguida de
visualizagdo e edicdo de uma entidade.

Problema

Como criar componentes de cadastro e manutencdo de entidades de negocio
complexas, atendendo a requisitos de interface humano-computador, permitindo a
reutilizagdo de interacdo com usudrio e estrutura comuns aos varios tipos de entidades
complexas existentes em uma aplicagdo de sistema de informagao?

4.1.4. Padrao Manutencao em Grade
Contexto

Sistemas de informagdo utilizam entidades basicas e simples para configuracdo
do sistema. Essas entidades possuem poucos atributos, sem objetos dependentes e
possuem um pequeno numero de instancias, por exemplo, cadastro de unidades
federativas, tipos de endereco, tipo de cliente, entre outras. Entidades bésicas sdo usadas
em relacionamentos com entidades de negocio, por exemplo, no momento de cadastrar
um cliente, ¢ necessario informar a unidade federativa de seu endereco, o tipo de
endereco e o tipo de cliente. A implementacdo de entidades basicas em sistemas de
informacdo ndo alcancga, de forma trivial, um bom grau de reuso e eficiéncia.

Problema

Como implementar funcionalidades de cadastro de entidades bésicas de forma
eficiente e reutilizavel?

4.1.5. Padrao Selecao com Secundaria
Contexto

Utilizado para entidades principais ou secundarias de média ou alta
complexidade com varios atributos e relacionamentos em situagdes que requerem a
selecdo de entidades sob determinado critério para somente depois realizar edicdo ou
inclusdo em objeto de interface auxiliar, e ndo diretamente sobre a grade. A edi¢do em
objeto auxiliar (interface secundaria) facilita a edicdo de um nimero maior de atributos
e relacionamentos.

Pattern Applications

184

SugarLoafPLoP 2005 Proceedings

Problema
Como implementar funcionalidades de sele¢do e manutengdo de entidades de
negocio de média e alta complexidade de forma eficiente e reutilizavel?
4.1.6. Padrao Teste CRUD
Contexto

Este padrdo ¢ utilizado para especificar os casos de teste das operagdes de
Inclusdo, Consulta, Alteracdo e Exclusdo. O padrio indica idéias de testes tipicas e
cenarios de falhas recorrentes para insercdo, atualizacdo, exclusdo e consulta de dados
em sistemas de informacéo, de forma a facilitar e agilizar a execug@o dos testes.

Exemplos de idéias de testes tipicas para inser¢do: a) Inserir entidade ja existe e
verificar resultado b) Inserir entidade ndo existe e consultar em seguida para verificar se
os dados estdo iguais aos dados solicitados na inser¢ao.

Problema
Como especificar os casos de teste dos requisitos funcionais de inserc¢do,
atualizag@o, exclusdo e consulta de dados por meio de especificagdes de testes?
4.2. Metapadriao Relatorio
Problema

Tratar a geracdo de relatorios nas diversas fases do ciclo de vida de
desenvolvimento de software de forma integrada e consistente.

Solucio

Este metapadrao descreve a estrutura geral para geracdo de relatorios. O
relatorio deve permitir a parametrizag¢do (filtros), visualiza¢do e exportacdo de dados.
Estruturas complementares como agrupamento e totalizagdes sdo fornecidas.

Padrodes que implementam o metapadrio
- Caso de Uso Relatério;

- Teste Relatorio.

4.2.1. Padrao Caso de Uso Relatorio
Contexto

Em sistemas de informacdo, uma grande quantidade de dados ¢ armazenada
freqiientemente. Neste contexto, surge a necessidade de visualizar, exportar ou imprimir
dados armazenados com o objetivo de conferir, analisar e tomar decisdes com base
nesses dados.

Problema

Como documentar os requisitos de relatorios que podem incluir a necessidade de
visualizar, exportar ou imprimir dados de entidades de acordo com filtros especificados,
agrupamentos, totalizagdes e informacgdes a serem apresentadas?

Pattern Applications 185

SugarLoafPLoP 2005 Proceedings

4.2.2. Padrao Teste Relatorio
Contexto

Este padrao ¢ utilizado para especificar os casos de teste de relatérios. O padrao
apresenta idéias de testes tipicas e cendrios de falhas recorrentes na visualizacdo,
exportacdo ou impressdo dados de entidades de acordo com filtros especificados,
agrupamentos, totalizagdes e informagdes a serem apresentadas.

Exemplos de idéias de testes tipicas para relatorio: a) Verificar resultados em
combinacdes de filtros de relatério b) Verificar visualizacdo e impressdo c¢) Verificar
totalizagdes, calculos e agrupamentos d) Verificar formato e) Verificar formato e dados
em arquivos exportados.

Problema

Como especificar os casos de teste de relatdrios?

4.3. Metapadrio Assistente
Problema

Tratar o processamento de operacdes complexas, com necessidade de iteragdo
com usuarios, nas diversas fases de um ciclo de vida de desenvolvimento de software de
forma integrada e consistente.

Solucio

Este metapadrdo descreve a estrutura geral para organizar operacdes baseadas
em assistentes. O assistente deve organizar a operacdo em passos, de forma que cada
passo tenha inicio em um ponto onde necessite configuragdes ou decisdes do usuario.

Padroes que implementam o metapadrio
- Caso de Uso Assistente;

- Teste Assistente.

4.3.1. Padrao Caso de Uso Assistente
Contexto

Este padrdo ¢ utilizado para a documentacdo dos requisitos de operacdes
complexas que sdo executadas em diversos passos, onde decisdes ou dados necessitam
serem informados em cada passo através da iteragdo com o usuario.

Problema
Como documentar os requisitos de uma operagdo, na qual diversas decisdes
devem ser tomadas antes que a operagdo possa ser concluida completamente?
4.3.2. Padrao Teste Assistente
Contexto

Este padrdo ¢ utilizado para especificar os casos de teste de operacdes
complexas, na qual diversas decisdes devem ser tomadas antes que a operagao possa ser
concluida completamente. O padrao indica idéias de testes tipicas e cendrios de falhas
recorrentes na seqiiéncia de passos, retorno, parametrizagdo e decisoes.

Pattern Applications

186

SugarLoafPLoP 2005 Proceedings

Exemplos de idéias de testes tipicas para assistente: a) Verificar seqiiéncia
correta dos passos b) verificar mensagens e explicagdes dos passos; c¢) Verificar se as
informacdes dos passos anteriores sdo passadas de forma correta entre os contextos d)
Verificar resultado final da transagao.

Problema
Como especificar os casos de teste de uma operagdo, na qual diversas decisdes
devem ser tomadas antes que a operagdo possa ser concluida completamente?
4.4. Metapadriao Transacgio
Problema

Tratar operagdes longas e complexas no formato de comandos e compostas por
um conjunto de transagdes nas diversas fases de um ciclo de vida de construcdo de
software de forma integrada e consistente.

Solucéo

Este metapadrdo descreve a estrutura geral para organizar operagdes de
comando. A operagdo deve ser disparada por uma parametrizagdo, manter o usuario
informado da evolug¢ao das transacdes e tratar a consisténcia entre as transacoes.

Padrdes que implementam o metapadrio
- Caso de Uso Transagao;

- Teste Transacao.

4.4.1. Padrao Caso de Uso Transacio
Contexto

Este padrao ¢ utilizado para a documentag@o dos requisitos de operagdes que sdo
tratadas como um comando atdmico que processa varias transacdes. Tipicamente
operacdes batch e operacdes que requerem apenas um comando de inicio do caso de uso
pelo usuério tendo pouca entrada de dados e iteracdo com o sistema.

Problema

Como documentar os requisitos de operagdes que possuem a execugdo de longa
duracdo ou que s2o executadas em formato de comando atomico, dando énfase para os
requisitos especiais dessas operagdes?

4.4.2. Padrao Teste Transacao
Contexto

Este padrdo ¢ utilizado para especificar os casos de teste de operacdes que
possuem execucdo de longa duragdo ou que sdo executadas em formato de comando
atomico. O padrdo indica idéias de testes tipicas e cenarios de falhas recorrentes na
parametrizagdo, no tratamento de falhas e na recuperagéo de transagdes.

Exemplos de idéias de testes tipicas para transagdo: a) Verificar se
parametrizacdo da transacdo € requerida de acordo com especificagdo b) Solicitar
execugdo da transa¢do sem informar os pardmetros necessarios ¢) Verificar resultado
final da transa¢@o de acordo com a parametrizacdo; d) Executar da transagdo e provocar

Pattern Applications

187

@

SugarLoafPLoP 2005 Proceedings

falha do durante processamento (interromper aplicagdo por exemplo) e verificar a
consisténcia do resultado.

Problema

Como especificar os casos de teste de operagdes que possuem execucdo de longa
duracdo ou que sdo executadas em formato de comando atémico?

5. Desenvolvimento de um sistema de informac¢des usando metapadroes

Os principais produtos de trabalho no desenvolvimento de um sistema de informagao
sdo gerados nas disciplinas de Requisitos, Andlise e Projeto, Implementagdo e Teste.
Para direcionar a solucdo no contexto de produto de trabalho, propomos a utilizacdo de
metapadrdes, que aplicados a cada disciplina, definem um conjunto de padrdes que
podem ser aplicados.

A Figura 4 apresenta os metapadrdes e padrdes propostos e seus
relacionamentos de acordo com as principais disciplinas do ciclo de vida de
desenvolvimento. Cada um dos padrdes detalha como aplicar uma solucdo geral
indicada nos metapadrdes. Vale a pena ressaltar que os padrdes fornecem a solugio para
a elaboragio dos produtos de trabalho.

= N

f f f
Padrdes de Requisitos Padrdes de Projeto Padrdes de Teste
Caso de Uso Caso de Uso R Seleca Ma =
CRUD & Variantes Relatorio 2 gistra com aleran com nifansy
CRUD - MVC Busca Secundifa em Grade Teste CRUD Teste Relatario

Documentagao de C.U. Transagdo . = = - -
Atributos Relatorio Assistente Transagdo Teste Assistente Teste Transagdo

C.U. Assistenta
\ !\ o\ J

o | o

Pe \
Produtos de Trabalho ‘

Casos de Uso =l | Andlise @ Projeto e | Cpdigo — | Testa

Figura 4: Relacionamento entre os metapadroes e os padrées no ciclo de
desenvolvimento

A aplicagdo de padrdes poderd auxiliar na construgdo de produtos de trabalho de
acordo com o ciclo de desenvolvimento de forma mais consistente, dado que os padroes
sd0 delineados com base nos metapadroes para desenvolvimento de sistemas de
informacgao.

Nas fases iniciais, os metapadrdes associados aos diversos requisitos (casos de
uso) do sistema, sdo identificados. A medida que o ciclo de vida evolui, os produtos de
trabalho derivados sdo desenvolvidos tomando como base o produto gerado na
disciplina anterior. Em paralelo, os padrdes s3o selecionados de acordo com o
metapadro associado ao caso de uso e a disciplina em execugio.

Pattern Applications

188

E SugarLoafPLoP 2005 Proceedings

Nas fases iniciais de desenvolvimento, analistas de requisitos especificam casos
de uso com base nos padrdes de requisitos. Esses casos de uso servem de base para a
analise e projeto. Além dos prdprios casos de uso, o projetista terd como insumo os
padrdes de projeto. Esses padrdes possuem forte consisténcia com a estrutura dos casos
de uso, pois sdo baseados nos mesmos metapadrdes, facilitando o trabalho do projetista.
Da mesma forma, os casos de testes sdo construidos com base nos casos de uso e
padrdes de testes de forma consistente e facilitada. De acordo com o RUP, o codigo ¢
mapeado e criado com base na Andlise e Projeto. Assim, o codigo criado estard
consistente com os padrdes utilizados na Analise e Projeto.

Por exemplo, quando um caso de uso é associado ao metapadrao Meta-CRUD,
durante a execucdo das atividades de especificagdo de casos de uso da disciplina de
Requisitos, o padrdo Caso de Uso CRUD ¢ selecionado para o detalhamento do caso de
uso. Em seguida, durante a Anadlise e Projeto do caso de uso, os padrdes de projeto
associados ao metapadrdo Meta-CRUD sio verificados para uso na criagdo do projeto
do caso de uso. O padrdo ¢ entdo selecionado com base na adequagdo do padrdo ao
contexto e problema. Esse processo € repetido até se chegar na selecdo do padrio Teste
CRUD para criagdo da especificacdo de testes (ver Figura 5).

Selegdo de padrdo de

requisitos aszociado ao ﬂ'CP
meta padrao escolhida = o
Dizciplina de g Espedficagao
requisitos de UC
i
/' 1
~|'|.
Selegdo de " &
= = Selegan de padrao de
metapadrao hatapadrac ¢ ; |m]
Caso de uso » e o g % ASPassEmadn a0 —"~O
B Gl U L meta padrao escolhido —
Dizciplina de = Re 3||23'E3'3'
AEF de UC
I
I
I
|
¥
Selegdo de padrao de
testes aszociade an A0
meta padrio escolhida o
Disciplina de p Espedficagio
Tastes de Taestes

Figura 5: Aplicacio de metapadrdes e padrdes no ciclo de desenvolvimento

6. Conclusoes

Este trabalho apresentou um catalogo de metapadrdes e uma abordagem para definicdo
e uso dos padrdes ao longo do ciclo de desenvolvimento de software em sistemas de
informacdo. Os metapadrdes propostos solucionam problemas genéricos no contexto de
sistemas de informag¢o a partir do uso de padrdes. O trabalho abordou metapadrdes,
padrdes de requisitos, padrdes de projeto e padrdes de teste.

O RUP foi utilizado como referéncia de boas praticas de engenharia de software
a serem seguidas e como base para o ciclo de vida de desenvolvimento de software.

De forma geral, o trabalho forneceu:

- Uma abordagem para a aplicagdo de metapadrdes e padrdes durante o ciclo
de desenvolvimento de sistemas de informagao.

Pattern Applications 189

E SugarLoafPLoP 2005 Proceedings

- Metapadrdes que organizam padrdes de forma integrada e consistente para as
diversas disciplinas de construcdo de software.

- Uma abordagem integrada das disciplinas, do modelo de ciclo de vida
iterativo e de produtos de trabalho do RUP.

Como trabalhos futuros, temos a pesquisa de idiomas derivados de metapadroes
propostos para linguagens como Java. Além disso, o desenvolvimento de um framework
que suporte a aplicacdo dos metapadrdes em linguagens de desenvolvimento pode
facilitar a consisténcia do cédigo com a analise e projeto e aumentar a produtividade.

Referéncias

[1] ALEXANDER, C. et al. A Pattern Language: Towns, Buildings, Construction.
Oxford University Press, New York, NY, 1977.

[2] ANDRADE, R. Capture, Reuse, and Validation of Requirements and Analysis
Patterns for Mobile Systems. Ph.D. Thesis, School of Information Technology and
Engineering (SITE), University of Ottawa, Ottawa, Ontario, Canada, May 2001.

[3] BUSCHMANN, F.; MEUNIER, R.; ROHNERT, H.; SOMMERLAD, P.; STAL,
M. Pattern-Oriented Software Architecture. John Wiley and Sons, New York, NY,

1996.
[4] COPLIEN, J. O. Software Patterns. SIGS books and Multimedia, June 1996.
[5] Core J2EE Pattern Catalog. Disponivel em:

http://java.sun.com/blueprints/corej2eepatterns. Acessado em: 06/04/2005.

[6] GAMMA, E.; HELM, R.; JOHNSON, R.; VLISSIDES, J. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, Reading, MA,
1995.

[7] HANMER, R. Introduction to Pattern Languages. SugarLoafPLoP 2003, The
Third Latin American Conference on Pattern Languages of Programming, Porto de
Galinhas, PE, 2003.

[8] POLLICE, Gary. Using the Rational Unified Process for Small Projects:
Expanding Upon Extreme Programming. Rational Software White Paper.

[9] PREE, W. Design Patterns for Object-Oriented Software Development.
Addison-Wesley, 1995.

[10] RATIONAL UNIFIED PROCESS Tutorial. Versdao 2002 05 00.

[11] RISING, L. The Pattern Almanac 2000. Software Pattern Series, Addison-
Wesley, 2000. ISBN 0-201-61567-3.

[12] SANTOS, M. S. Uma Proposta para a Integracdo de Modelos de Padrdes de
Software com Ferramentas de Apoio ao Desenvolvimento de Sistemas. Dissertacdo
de Mestrado. Universidade Federal do Ceara, Fortaleza, 2004.

[13] Software Development and Documentation, MIL-STD-498, Departamento de
Defesa dos EUA, dezembro de 1994.

[14] SOMMERVILLE, I. Software Engineering. 6th Edition, Addison-Wesley
Publishers Ltd., 2001. ISBN 0-201-39815-X.

Pattern Applications 190

é‘_‘_ SugarlLoafPLoP 2005 Proceedings

[15] SOUZA, G. T. e PIRES, C. G. PATI-MVC: Uma Familia de Padrdes para
Sistemas de Informagao Baseada no Padrao MV C. SugarloafPloP, 2004.

[16] SOUZA, G. T., PIRES, C. G. e Barros, M. Padroes MVC para Sistemas de
Informacdo. SugarloafPloP, 2003.

Pattern Applications 191

E SugarLoafPLoP 2005 Proceedings

Relacionamento de Padrdes de Engenharia de Software e
de Interacdo Humano-Computador para o Desenvolvimento
de Sistemas Interativos

André Constantino da Silva I’T, Junia Coutinho Anacleto Silval, Rosangela
Aparecida Dellosso Penteado', Sérgio Roberto Pereira da Silva’

'Departamento de Computagio — Universidade Federal de Sdo Carlos (UFSCar)
Caixa Postal 676 — CEP 12.565-905 — Sao Carlos — SP — Brazil

*Departamento de Informatica — Universidade Estadual de Maringa (UEM)
Av. Colombo, 5790, Zona 07 — CEP 87.020-900 — Maring4 — PR — Brazil

{andrecons, junia, rosangel}@dc.ufscar.br, srsilva@din.uem.br

Abstract. Many Software Engineering and Human-Computer Interaction
patterns have been identified and published lately. However, as these
knowledge areas are complementary in the interactive system development,
there is a need for researches that consider the unified use of those kinds of
patterns in a development process. In this context, this paper presents a case
study developed in order to demonstrate and detail the application of SE and
HCI patterns in an interactive system development process. As a result, it was
identified nineteen relationships among the applied patterns.

Resumo. Ultimamente muitos padroes tanto de Engenharia de Software
quanto de IHC sdo identificados e divulgados. Entretanto, tendo em vista o
fato dessas areas de conhecimento serem complementares no desenvolvimento
de sistemas interativos, hda uma caréncia de pesquisas que abordam a
aplicagdo conjunta dos padroes dessas dreas durante o processo de
desenvolvimento. Assim, este artigo apresenta um estudo de caso desenvolvido
com o objetivo de abordar e detalhar a aplica¢do de padroes de ES e de IHC
no processo de desenvolvimento de sistemas interativos. Como resultados,
foram identificados dezenove relacionamentos entre os padroes aplicados.

1. Introducio

Este artigo, motivado pelo fato de padrdes serem identificados e aplicados pelas areas
de Engenharia de Software (ES) e de Interagio Humano-Computador (IHC) durante o
desenvolvimento de sistemas interativos, tem por objetivo apresentar um conjunto de
relacionamentos identificados a partir da aplicacdo conjunta de padrdes de ES e de IHC
em um processo de desenvolvimento de sistemas interativos baseado no modelo de
processo Prototipagao.

tBolsista financiado pela Coordenagéo de Aperfeigoamento de Pessoal de Nivel Superior (CAPES).

Pattern Applications 192

SugarLoafPLoP 2005 Proceedings

Sabendo que existe um relacionamento entre as areas de ES e de IHC para
desenvolver sistemas interativos de forma mais abrangente, acredita-se que tal
relacionamento também pode ser expresso através de relacionamentos entre padrdes.
Devido a pouca preocupagdo dos escritos em identificar relacionamentos entre padrdes
de outras areas, tais relacionamentos podem ser coletados durante a aplicacdo de
padrdes na elaboragdo de sistemas em um processo de desenvolvimento que considere
as visoes das areas de IHC e de ES.

Contextualizando, sabe-se que o desenvolvimento de um sistema interativo ¢ um
processo complexo, com diversas preocupacdes a serem consideradas, tais como: a
organizagdo do processo de desenvolvimento e da equipe que realizard as atividades
propostas no processo. Durante a organizagdo de tal processo, devem-se considerar
atividades que englobem a engenharia de requisitos (considerando o levantamento,
especificagdo, andlise e verificacdo dos requisitos do sistema), o projeto, a
implementagdo, ¢ a validagdo e verificagdo do sistema. Devido a natureza de um
sistema interativo, também ¢ necessario considerar atividades que estdo relacionadas a
elaboracdo, avaliagdo e refinamento de protdtipos.

Diversos padrdes de ES e de IHC podem ser aplicados durante a realizagdo das
atividades de um processo de desenvolvimento. Entretanto, uma aplicacdo de padrdes
mais sistematica, envolvendo as visdes de ambas as areas no processo de
desenvolvimento ainda nao ¢ muito divulgada, apresentando poucos artigos na literatura
especializada. Devido a essa caréncia, muitas vezes, os profissionais se limitam a
aplicar sé alguns padrdes, impedindo um melhor aproveitamento do potencial dos
padrdes e a obtengdo de um produto melhor. Relacionar padrdes permite que esforgos
de estudo de padrdes sejam minimizados, pois o relacionamento indicard quais os
possiveis padrdes a serem aplicados em seguida, que ¢ uma das motivagdes deste
trabalho.

Portanto, padrdes existentes na literatura que podem ser aplicados para auxiliar
na realizag¢do dessas atividades foram levantados, estudados e agrupados em categorias,
que sd@o apresentadas na Secdo 2. Em seguida as categorias foram relacionadas as fases
do modelo de processo Prototipacdo, realizando estudos de caso para avaliar a aplicacio
conjunta dos padrdes selecionados, apresentado na Se¢do 3. A partir da aplicacdo
conjunta, foram obtidos alguns relacionamentos entre os padrdes de ES e de IHC, que
sdo discutidos na Secdo 4. Na Sec¢do 5 sdo comentados as consideragdes finais ¢ os
trabalhos futuros.

2. Padrdes de ES e Padroes de IHC

Diversos padroes de ES e de IHC encontrados na literatura foram estudados e
analisados. Para facilitar o estudo e aplicagdo desses padrdes em um processo de
desenvolvimento, eles foram agrupados em categorias. Para os padrdes de ES,
estendem-se aqui as categorias propostas por Buschmann et al. (1996), incluindo as
categorias padroes de processo, padrdes organizacionais, padrdes de analise, padrdes de
persisténcia de dados e padroes de testes:

ePadrdes de Processo: conduzem o desenvolvimento de software, descrevendo
uma abordagem ou série de agdes provadas e de sucesso para o desenvolvimento de
software [Ambler, 1998]. Os padrdes de processo que foram estudados e aplicados

Pattern Applications

193

SugarLoafPLoP 2005 Proceedings

foram os que compdem a linguagem de padroes de Coplien [Coplien, 1995], a
linguagem de padrdes Requirements-Analysis-Process Pattern Language - RAPPel
[Whitenack, 1995], a linguagem de padrdoes Caterpillar’s Fate [Kerth, 1995] e a
linguagem de padrdes para desenvolvimento de protdtipos conceituais efetivos
[Stimmel, 1999];

ePadrées Organizacionais: auxiliam o gerenciamento das pessoas envolvidas
com o processo de software [Ambler, 1998]. Exemplo de padrdes organizacionais sdo
os propostos por Coplien em sua linguagem de padrdes [Coplien, 1995];

ePadrées de Analise: expressam grupos de conceitos que representam uma
constru¢do comum na modelagem de negdcio. Eles podem ser relevantes para um
dominio, ou para varios dominios [Fowler, 1996]. Para a realizacdo deste trabalho
foram considerados os padrdes de andlise definidos por Fowler (1996) e a linguagem de
padrdes para Geréncia de Recurso de Negdcios (GRN) [Braga et al., 1999];

ePadrées Arquiteturais: expressam uma organizagdo estrutural ou esquemas
para sistemas. Pode-se citar, como exemplo, o Model-View-Controller (MVC) e o
Presentation-Abstraction-Control (PAC) [Buschmann et al., 1996] para sistemas
interativos;

ePadrdes de Projeto: refinam subsistemas ou componentes de um sistema, ou a
relagdo entre eles. Nessa categoria tém-se os padrdes identificados por Gamma et al.
(1995) e os por Grand (1998);

ePadrdes de Persisténcia de Dados: descrevem mecanismos para mapear
objetos persistentes para um banco de dados. Como exemplo pode-se citar a colegdo de
padrdes para persisténcia de Yoder et al. (1998), que facilita a implementacido de
sistemas orientados a objetos (OO) com banco de dados relacionais;

ePadroes de Implementacio ou Idiomas: especificos de linguagens de
programacdo, esses padrdoes descrevem como implementar aspectos particulares dos
componentes ou a relacdo entre eles utilizando as caracteristicas da linguagem. Como
exemplo, pode-se citar o padrdo Counted Point [Buschmann et al., 1996];

ePadrdes de Testes: descrevem diferentes métodos de testes de sistemas. Sdo
exemplos dessa categoria os padrdes Black Box Testing, White Box Testing ¢
Acceptance Testing, identificados por Grand (1999).

Entre os autores de padrdes de IHC ndo existe uma defini¢do amplamente aceita.
Segundo Borchers (2000), um padrdo de projeto captura uma solugdo comprovada para
um problema de projeto recorrente em uma forma de fécil entendimento, gerativa e
compreensivel as pessoas. Enquanto que Tidwell (1999) define padrdes como
descrigdes para possiveis boas solugdes para um problema comum de projeto em um
certo contexto, descrevendo as qualidades invariaveis de todas as solucdes. O termo
“qualidades invaridveis” refere-se as caracteristicas comuns e constantes ao analisar
varias aplica¢des do padrao.

Nao se encontra na literatura uma classifica¢do tdo clara dos padrdes de IHC
quanto a encontrada para os padrdes de ES [Buschmann et al., 1996]. Para a realizacio
deste trabalho foram utilizadas as categorias apresentadas por Alpert (2003):

Pattern Applications

194

E SugarLoafPLoP 2005 Proceedings

ePadroes de Interacio Humano-Computador: relacionados com
preocupagdes de alto nivel e algumas vezes com guidelines, envolvendo a psicologia do
usudrio, auxiliando no projeto da interagdo. Podem ser citados, como exemplos, os
padrdes da linguagem de padroes Common Ground [Tidwell, 1999];

ePadroes de Interface com o Usudrio: auxiliam no projeto de detalhamento da
interface com o usudrio, e estdo relacionados com problemas de intera¢do especificos.
Sua solug@o ¢ baseada em componentes de interface com o usudrio. Como exemplo,
pode-se citar os padroes da colecdo Ul Patterns & Techniques [Tidwell, 2003] e os
padrdes para projeto de GUI [Welie, 2003].

As categorias aqui apresentadas foram relacionadas com as etapas do modelo de
processo de Prototipag¢do, por meio de um estudo de caso, conforme apresentado na
proxima Secao.

3. Aplicando Padrdes de ES e de IHC em um Processo de Desenvolvimento

Diversos sdo os modelos de processo propostos pela ES e pela IHC para o
desenvolvimento de sistemas interativos [Sommerville, 2003] [Preece, 1993]. Dentre
esses modelos destaca-se o modelo de processo de Prototipacdo, pois o
desenvolvimento de protdtipos € parte integral do desenvolvimento de um sistema
interativo e por ser uma abordagem altamente participativa [Preece, 1993].

Entretanto, o foco do engenheiro de software difere do foco do especialista em
IHC durante a elaboragdo do protdtipo. Enquanto que o engenheiro de software esta
preocupado em compreender o processo de desenvolvimento, elaborando uma ldégica
interna para o sistema, o especialista em IHC preocupa-se com os aspectos externos, ou
seja, com a interagdo e a interface com o usuario [Silva et al., 2004]. Entretanto ¢
preciso desenvolver o protétipo de tal modo a explorar aspectos de ambas as areas. Tais
fatores influenciaram a escolha do modelo de processo de Prototipagdo como o primeiro
a ser estudado em conjunto com padrdes de IHC e de ES.

Apdés um estudo sobre o modelo de processo Prototipagdo, uma lista de
problemas e consideracdes foi elaborada, as quais sdo apresentadas resumidamente na
Tabela 1. Ponderando os problemas e as consideragdes levantadas, em conjunto com as
categorias de ES e de IHC descritas anteriormente, elaborou-se o modelo de processo de
Prototipa¢do Apoiado por Padrdes [Silva et al., 2004]. Cada etapa foi relacionada as
categorias de padrdes que podem ser aplicados para amenizar as consideragdes
levantadas. Ressaltando que os padrdes de processo e organizacionais podem ser
aplicados em varias etapas, estando, portanto, referenciados do lado externo da Figura.

Planejou-se desenvolver o estudo de caso em duas fases. Durante a primeira fase
o sistema foi desenvolvido sem a aplicac¢do de padrdes, enquanto que na segunda fase os
padrdes foram aplicados durante o processo de desenvolvimento, conforme ¢
apresentado na Figura 1. No estudo de caso que ¢ detalhando neste artigo foi
desenvolvido um sistema para uma lanchonete, que consiste do gerenciamento dos
pedidos realizados pelos clientes através do telefone, e também do controle de itens que
podem ser adicionados aos pedidos, tais como ingredientes, taxa de entrega, etc. Deste
estudo de caso participaram dois especialistas em desenvolvimento e um usuario final,

Pattern Applications 195

@

SugarLoafPLoP 2005 Proceedings

Tabela 1 — Consideragées levantadas para as etapas do modelo de processo

Prototipaciao

Etapa Consideracdes
Coleta e Refinamento de |- Procurar por informagdes que auxiliam a compreender o dominio do
Requisitos problema e os requisitos
- Obter os requisitos do sistema
- Delimitar os requisitos do sistema por completo, o que ¢ uma das
dificuldades do usuario.
Projeto Rapido - Elaborar um projeto da interface com o usudrio que englobe os requisitos a

serem refinados, representando os aspectos que s@o visiveis ao usudrio e o
nivel de conhecimento do usuario.

- Considerar as melhores decisdes relacionadas a funcionalidade no projeto
rapido

- Garantir que 0 processo ndo sera oneroso (tempo e recursos)

Construcdo do Protétipo

- Minimizar o tempo ¢ os recursos despendidos no desenvolvimento

- Assegurar o correto funcionamento do protdtipo para que uma avaliacdo
consistente seja realizada na proxima etapa

- Englobar somente as fun¢des necessarias, ndo ha necessidade de incluir
todas que compordo o produto final.

Avaliagdo do Prototipo
pelo Cliente

- Guiar o usuario para um melhor refinamento dos requisitos desejados,
engajando-o e cuidando para que tenha uma comunicagdo efetiva com o
usuario.

- Preocupar-se em como obter melhor as informagdes do usuario

- Aproveitar a0 maximo o tempo despendido com o usuario na avaliagdo, a
fim de obter informagdes suficientes para detalhar os requisitos

- Fazer um planejamento para permitir a participagdo dos clientes
representativos (usudrios finais do sistema), e que o processo de avaliagdo
ndo seja muito oneroso.

Refinamento do Protétipo

- Coletar criticas e problemas resultantes da avaliagdo do prototipo,
apresentando diretivas de solucdo para as consideragdes levantadas

Engenharia do Produto

- Desenvolver o sistema seguindo praticas de ES ¢ de IHC

Padrdes de Projeto de Gamma et al.

Padrdo Persistent Layer

Ul Patterns & Techniques

GUI Design Patterns

Linguagem de Padroes Common Ground
Padrao MVC

Linguagem de Padrdes GRN

Padrdes de Analise de Fowler

UI Patterns & Techniques
GUI Design Patterns

Linguagem de Padrdes Common Ground

Linguagem de Padroes GRN

Linguagem de Padroes GRN

Inicio
m

Linguagem de Padrdes Common Ground

Coleta e
Refinamento
de Requisitos

- Projeto
Engenharia Répido

do Produto

Refinamento

! Construgdo
do Prototipo

do Prototipo

Avaliagdo do
Prototipo pelo
Usuario

Linguagem de Padrdes Common Ground

Padrdes Organizacionais de Coplien

Padrdes de Processo de Coplien

Linguagem de Padrdes RAPPelL

Linguagem de Padrdes para Desenvolvimento de Protétipos Conceituais Efetivos
Linguagem de Padrdes Catterpillar’s Fate

Figura 1 — Instanciagcdao do Modelo de Processo de Prototipagcao Apoiado por
Padrées para desenvolvimento de um sistema para geréncia de pedidos de uma

lanchonete.

Pattern Applications

196

SugarLoafPLoP 2005 Proceedings

sendo que o especialista que participou da primeira fase ndo conhecia os padrdes,
enquanto que o especialista da segunda fase estudou os padrdes a serem aplicados.

Diversos padrdes de processo que tratam do desenvolvimento de protdtipos
foram encontrados na literatura. O padrdo Prototype [Whitenack, 1995] propde o
desenvolvimento de protdtipos descartaveis, enquanto que o padrio Prototypes
[Coplien, 1995] abrange tanto prototipos descartaveis quanto protdtipos evolucionarios,
apresentando as vantagens e as desvantagens de cada um dos tipos de protdtipos. Tais
padrdoes comentam sobre o engajamento do cliente durante o uso de prototipos.
Portanto, a linguagem de padrdes para desenvolvimento de protdtipos conceituais
efetivos pode ser aplicada em conjunto com tais padrdes para engajar o cliente e
aumentar a sua participacdo. Observa-se aqui um relacionamento entre o padrdo
Prototypes e o padrdo Use It and Lose It [Stimmel, 1999], que tratam sobre o
desenvolvimento de prototipos descartaveis. Esses padrdes também comentam sobre o
uso do protdtipo como base para elaborar os casos de uso, o que sera discutido
posteriormente.

Os padroes que estdo relacionados ao engajamento do cliente no
desenvolvimento de prototipos sdo o Customer Rapport, Engage the Client Early
[Stimmel, 1999] e Come on Baby, Light My Fire. O padrao Customer Rapport apresenta
a necessidade de se ter um bom relacionamento com o cliente, focando o usuario e os
envolvendo no projeto da interface com o usuario dos prototipos ou do produto final. O
padrdo Engage the Client Early também trata o desenvolvimento de prototipos e a
participagdo do usuario, destacando a diretiva de permitir ao usudrio dirigir os esfor¢os
do desenvolvimento. Outra consideragdo ¢ ndo distrair o usudrio com questdes
particulares da interface com o usuario durante o uso de protdtipos, tratado pelo padrio
Come on Baby, Light My Fire.

Na etapa de Coleta e Refinamento de Requisitos foram aplicados padrdes de
processo, organizacionais ¢ de andlise. Os padroes de processo foram escolhidos
seguindo o objetivo dessa etapa (identificar, especificar e validar os requisitos do
sistema), entre eles cita-se o padrdo Behavioral Requirements, que fornece diretivas
para a captura de requisitos comportamentais do sistema.

Para a especificagio de requisitos foi aplicado o padrio Requirements
Specification, que apresenta diretivas para a elaboracdo de um documento de
especificagdo de requisitos, comentando sobre a ado¢do de um modelo de especificacio
que contemple tanto os requisitos identificados quanto os artefatos elaborados, e a
validagdo do documento de requisitos com o cliente. Entretanto, este padrdo nio define
quando finalizar o desenvolvimento do prototipo e iniciar a elaboracdo do documento
de especificacdo de requisitos. Para tal consideracdo, pode-se aplicar o padrdo Let’s
Make a Deal, que apresenta diretivas de quando iniciar a elaboragdo de tal artefato.

Para a validagdo foi aplicado o padrdo Requirements Validation, que apresenta
informacdes a serem consideradas para a realizagdo de reunides de validagdo dos
requisitos. Porém, esse padrdo ndo apresenta uma abordagem, ou passos, que contemple
todo o processo de validag@o, desde o planejamento das reunides até a efetivacdo das
mudangas solicitadas. Para amenizar essa consideragdo, o padrdo Technical Review
[Ambler, 1998] pode ser aplicado apos a aplicagdo do padrdo Requirements Validation.

Pattern Applications

197

E SugarLoafPLoP 2005 Proceedings

Durante a realizagdo do estudo de caso sem aplicar padrdes, percebeu-se que
somente o propdsito do sistema ¢ insuficiente para elaborar questdes para o
levantamento de requisitos. Sao necessarias mais informagdes para se evitar um numero

excessivo de retorno ao usudrio. Assim, parte dos padrdes da linguagem de
padrdes GRN [Braga et al., 1999] foi aplicada como guia para se elaborar questdes ao
usudrio. Para escolher os padrdes foram utilizados como critério o propodsito do sistema,

seguindo os relacionamentos apresentados na linguagem de padrdes.

Ap6s os requisitos identificados serem descritos no documento de especificagao,
conforme o padrdo Requirements Specification, deu-se inicio a etapa de Projeto Réapido,
na qual, foram elaborados mockups das interfaces com o usuario. Nessa etapa foram
aplicados os padrdoes Prototypes e User Interface Requirements, objetivando a
elaboragdo de um prototipo para auxiliar no levantamento e refinamento dos requisitos.

Segundo o padrdo Prototypes, inicialmente deve-se elaborar um prototipo de
baixa fidelidade com a participag¢do do cliente, € em seguida, elaborar protétipos de alta
fidelidade, caso seja necessario. Para a elaboracdo do protdtipo de baixa fidelidade foi
aplicada a abordagem de Dearden er al. (2002), que aplica padrdoes de IHC para
melhorar a comunicagdo entre os usudrios e os especialistas. Prototipos de alta
fidelidade foram elaborados e avaliados em etapas posteriores. A abordagem de
Dearden et al. (2002) ¢ dividida em tré€s passos (I) Introducéo: o facilitador introduz os
conceitos de padrdes e linguagem de padrdes ao usudrio final; e (I) Leitura dos
Padrdes: o facilitador solicita ao usudrio final a ler os padrdes, retirando duvidas do
usuario final; (III) Desenvolvimento da Interface: por meio de prototipagdo em papel,
o usuario final, em conjunto com o facilitador, elabora as interfaces do sistema
utilizando padrdes para se expressar. Apos elaborar uma tela, o facilitador verifica se
essa satisfaz todas as diretivas dos padrdes aplicados.

Um subconjunto de 29 padrdes da linguagem de padroes Common Ground foi
apresentado ao usuario durante a elaboragdo do projeto da interface com o usudrio,
permitindo que ele expressasse seus anseios. A linguagem de padrdes ndo foi
apresentada em sua completitude ao usudrio devido a necessidade de aprendizado e de
traducdo dos padrdes, pois o usudrio ndo conhece a lingua inglesa. Dessa forma,
somente os padrdes diretamente relacionados ao estudo de caso foram utilizados.

Na Figura 2 ¢ apresentada a tela de cadastro de clientes e pedidos que foi
projetada pelo usudrio. Os padrdes de interagdo humano-computador aplicados para a
elaboragdo dessa tela também sdo apresentados nessa Figura. Para o projeto dessa tela
foi aplicado, primeiramente, o padrdo High-Density Information Display (1). Esse
padrdo ¢ um dos trés que podem ser aplicados para definir a forma basica do conteudo a
ser apresentado, que ¢ a primeira consideracdo no projeto da interface com o usuério ao
utilizar a linguagem de padrdes Common Ground [Tidwell, 1999]. Para a escolha de
qual dos trés padrdes aplicar foram considerados os periféricos de saida existentes, visto
que o monitor pode exibir uma vasta quantidade de informagdes em diferentes
resolugdes e tamanhos, e o fato de o usudrio interagir constantemente com o sistema.

Em seguida, foram aplicados os padroes Navigable Spaces (2), pois o sistema ¢
composto por diversas telas e o usudrio necessita navegar entre elas, e Tabular Set (3),
que define a apresentacdo de informagdes através de uma tabela (aplicado, nesse
exemplo, para apresentar os pedidos solicitados). Seguindo os relacionamentos da

Pattern Applications 198

@

SugarLoafPLoP 2005 Proceedings

Forgiving Text Entry (7) FoNE
Structured Text Entry (8)

Good Defaults (11)

linguagem, em seguida foi aplicado o padrdo Go Back to a Safe Place (4), resultando no
botdo fechar na parte superior direita da janela. Também foi aplicado o padrdo Pointer
Shows Affordance (5), resultando na mudan¢a do ponteiro do mouse para I-Bean (I)
quando o ponteiro esta sobre um campo de texto editavel.

Para o detalhamento da interface com o usuario foi aplicado o padrao Form (6).
Esse padrao define diretivas para a apresentacdo de um formulario, na qual o usudrio
podera entrar com os dados necessarios para realizar a tarefa. Nesse exemplo, foram
definidos caixas de textos para a entrada de dados sobre o cliente. Esse padrdo também
foi aplicado, em conjunto com o padrdo Tabular Set (3), para a entrada de dados
relacionados aos pedidos.

Apos a aplicagdo do padrao Form (6), foram aplicados os padrdes Forgiving
Text Entry (7), Structured Text Entry (8), Choice from a Large Set (9) e Small Group of
Related Things (10). O Padrao Forgiving Text Entry e Structured Text Entry foram
aplicados para alguns campos de texto onde existe certa estrutura do dados como, por
exemplo, para o campo “Telefone”. Nesse caso, o usudrio ndo € obrigado a digitar os
caracteres fixos da estrutura (padrdo Forgiving Text Entry) e quando nio existe dado
fornecido pelo usudrio, o campo apresenta a formatacido do telefone esperada (padrio
Structured Text Entry). O padrdo Choice from a Large Set foi aplicado para o campo
“Estado”, na qual o nimero de opg¢des ¢ maior que dez e o usuario necessita escolher
um valor especifico. O padrao Small Group of Related Thing foi aplicado, novamente,
para organizar a localizagdo espacial dos campos para a entrada dos dados do cliente.

s ———— T<} €= Go Back to a Safe Place (4)

Tyor - 20

3 Py Remembered State (12)
2 <& Navigable Spaces (2)

Form (6)——p
' Choice from a Large Set (9)

S

-Pointer Shows Affordance (5)

Tabular Set (3)

g%‘f,y@wo@ . High-Density Information Display (1)

Figura 2 — Padrdes aplicados para desenvolver a tela de cadastro de clientes e
pedidos.

Small Group of Related Things (10)

Pattern Applications

199

SugarLoafPLoP 2005 Proceedings

Aplicando o padrdo Good Defaults (11), valores foram definidos para alguns
campos do formulario como, por exemplo, o campo “Acréscimo”, que considera a taxa
de entrega. O padrdo Remembered State (12) foi aplicado para garantir que os valores
dos campos do formulario ndo sejam alterados, caso o usudrio navegue para outra tela
ou para outro programa.

Devido a dinamica da técnica de Prototipa¢do em Papel, o usuario manifestou
seus interesses no projeto da interface com o usudrio, empregando parte dos
conhecimentos que absorveu do aprendizado de padrdes. As interfaces elaboradas foram
avaliadas pelos especialistas verificando se atendiam ou ndo as diretivas de cada um dos
padroes. Para as diretivas que nido foram atendidas, perguntas foram elaboradas para
que as telas projetadas respeitassem todas as diretivas dos padrdes selecionados. Esta
avaliacdo possibilitou a diminuicdo do nimero de decisdes de projeto que estavam
sendo realizadas na etapa de Constru¢do do Protdtipo, devido ao esquecimento de
detalhes sobre a interface.

Observou-se, deste modo, que os padrdes de IHC complementam a aplicagdo
dos padrdes Prototypes e User Interface Requirements, fornecendo diretivas para
elaborar a interacdo e a interface com o usudrio e um vocabulario de comunicagdo entre
0 usuario e os especialistas.

Na seqiiéncia, um protdtipo foi implementado usando a linguagem de
programacdo Visual Basic, e foi avaliado pelo usuario durante a etapa de Avaliagdo do
Prototipo pelo Usudrio. Para essa etapa houve uma atividade de planejamento, com o
objetivo de definir as tarefas a serem realizadas pelo usudrio durante a avaliacdo.
Durante a execug@o da avaliagdo, o protdtipo era manipulado pelo usuério, sendo
observado pelos especialistas durante a realizagdo das tarefas elaboradas. Observou-se,
durante a interag@o, que o usuario notou a aplica¢cdo dos padrdes de IHC no protétipo.
Algumas vezes, ao descrever um problema encontrado no protétipo, ele tentava fornecer
uma solugdo através dos padrdes aprendidos anteriormente.

ApoOs a etapa de Avaliacdo do Prototipo pelo Usudrio, durante a etapa de
Refinamento do Protdtipo, uma lista foi elaborada com as criticas apresentadas pelos
usuarios e pelos especialistas. Novamente os especialistas utilizaram padrdes para
corrigir essas deficiéncias. Por exemplo, na interface apresentada anteriormente (Figura
2) o usuario ndo citou a necessidade de confirmagdo de algumas operagdes. Mas no caso
de cancelamento de comandas notou a necessidade da confirmag¢do do cancelamento de
pedidos para a prevencdo de erros. Nesse caso o padriao Shield [Welie, 2003] pode ser
aplicado.

No planejamento do estudo de caso foram definidas duas iteragdes no uso do
modelo de processo Prototipa¢do antes da realizacdo da etapa de Engenharia do
Produto, objetivando identificar novos requisitos e refinar os requisitos ja identificados.
A aplicacdo de padrdes durante a segunda iteracdo foi semelhante a primeira, com
excecdo da etapa de Projeto Rapido. Nessa etapa ndo foi elaborado um novo projeto
para a interface com o usudrio, realizando-se somente modificagdes no projeto
existente, conforme as necessidades levantadas na etapa de Refinamento do Prototipo.

A primeira atividade realizada na etapa de Engenharia do Produto ¢ a analise, na
qual foram elaborados os modelos de casos de uso, de classe e de seqiiéncia. Para a
realizacdo dessa atividade foram aplicados os padrdoes de processo Behavioral

Pattern Applications

200

SugarLoafPLoP 2005 Proceedings

Requirements, que apresentam diretivas para a descrigdo dos comportamentos do
sistema através de casos de uso, em conjunto com o padrdo Scenarios Define Problem,
que aconselha a elaboragdo de casos de uso para documentar os comportamentos e
comunicar-se com o cliente. Em seguida, foram aplicados alguns padrdes para escrita de
casos de uso efetivos [Adolph et al., 2002], procurando complementar as diretivas
fornecidas pelos padrdes de processo aplicados. Essa aplicagdo conjunta resultou na
identificagdo de outros trés relacionamentos entre os padrdes de ES, que serdo
discutidos na sec¢do seguinte.

Na fase de Analise também foi aplicado o padr@o de processo Problem Domain
Analysis, que define um conjunto de perguntas a serem respondidas para realizar a
analise. Em seguida, para auxiliar a identificar os objetos do dominio, os
relacionamentos entre os objetos, seus atributos e seus métodos, foram aplicados os
padrdes a linguagem de padrdes GRN [Braga ef al., 1999] em conjunto com o padrdo
Party [Fowler, 1996]. Observa-se aqui um relacionamento entre o padrdo de processo
Problem Domain Analysis e padrdes de andlise, os quais podem ser aplicados para
auxiliar a responder as questdes desse padriao de processo.

Durante a etapa de Projeto, para definir os passos da elabora¢do dos objetos
responsaveis pela interface com o usudrio, foi aplicado o padrao Human Interface Role
Is a Special Interface Role. Esse padrao de processo fornece como diretiva a separag@o
dos objetos da interface com o usudrio dos demais objetos, aplicando, por exemplo, o
padrdo MVC. Esse padrio também indica a elabora¢do de diversas alternativas de
projeto para serem discutidas com a equipe, selecionando em seguida as melhores
alternativas. Podem ser aplicados padrdes de IHC para auxiliar a definir boas
alternativas. Observou-se um outro relacionamento entre o padrdo Human-Interface
Role Is a Special Interface Role e os padrdes de IHC, que serd discutido na se¢do
seguinte.

Como padrao arquitetural foi adotado o padrao MVC. Durante sua aplicagdo foi
empregado também o padrdo Observer, que complementa a solug¢do do padrao MVC, e
os padrdoes de IHC. Buschmann et al. (1996) apresentam dez passos para a
implementagdo do padrio MVC, sendo que o terceiro ¢ o projeto da parte da
visualizacdo da interface com o usudrio, representado pela View. Para auxiliar a realizar
esse passo podem ser aplicados padrdes de IHC. Nesse estudo de caso, os mesmos
padrdes de THC aplicados no protétipo foram aplicados no produto final, pois a
Prototipac¢do se mostrou util como um mecanismo para averiguar quais padroes de IHC
deveriam estar presentes no produto final.

Relacionamentos entre os padrdes de IHC e padrdes de projeto foram
identificados durante a atividade de projeto. Por exemplo, cita-se o requisito de
interface com o usuario no qual o botdo “Cancelar Comanda” (Figura 2) sé deve esta
habilitado se houver algum pedido sendo realizado, resultante da aplicacdo do padrdo
Disabled Irrelevant Things. O botdo € inicialmente desabilitado, pois ndo existem
pedidos sendo realizados. Apds o usuario fornecer o telefone do cliente, o sistema
permite a edicdo do pedido e, entdo, habilita o botdo para cancelar os pedidos
solicitados. Percebe-se que um objeto que pode ser desabilitado ou habilitado estd
relacionado a um contexto composto por um ou mais objetos. O padrdo Observer pode
ser aplicado para que, quando o contexto de tal objeto alterar, o objeto seja informado
sobre tal mudanga, verificando, assim, se ele ¢ relevante ou ndo para o novo contexto e

Pattern Applications

201

SugarLoafPLoP 2005 Proceedings

alterando sua permissdo de manipulag¢do por parte do usudrio. Conclui-se que o padrio
de projeto Observer auxilia a projetar o padrio de interagdo humano-computador
Disabled Irrelevant Things.

Por fim, o produto final foi implementado na linguagem Java, respeitando o
projeto da interface com o usudrio definido durante o desenvolvimento e avaliacdo do
protétipo.

4. Relacionando Padroes de ES e de IHC

Durante a realizagdo do estudo de caso percebeu-se que padrdes de ES e de IHC se
complementam durante o desenvolvimento de um sistema interativo. Varios
relacionamentos foram identificados por meio da leitura dos padrdes e validados com o
estudo de caso descrito na se¢do anterior. Na Tabela 2 s@o apresentados o
relacionamento dos padroes de IHC que complementam os padrdoes de ES. Tais
relacionamentos foram identificados durante a realizagcdo dos estudos de caso.

Observando os relacionamentos identificados entre os padrdes de IHC
complementando os padrdes de ES, percebe-se que os relacionamentos partem dos
padrdes de processo de ES que tratam de alguma forma o desenvolvimento de interfaces
com o usuario, seja durante a elabora¢do de protétipos (padrdo Prototypes [Coplien,
1995]), seja na elaboragdo do produto final (padrao MVC [Buschmann et al., 1996],
aplicado durante a defini¢do da arquitetura do sistema, e o padrao User Interface Role Is
a Special Interface Role [Kerth, 1995], aplicado durante a defini¢dao da solugdo para o
sistema, especificando através de um projeto de software).

Tabela 2 — Relacionamento dos padrées de ES complementados pelos padrées
de IHC

Padrio de ES Relacionamento

Prototypes | Padrdes de IHC complementam o padrio Prototypes, pois fornecem diretivas para
elaboragio da interag@o ¢ do layout de sistemas interativos, inclusive para os prototipos,
que podem ser desenvolvidos resultantes da aplica¢do do padrio Profotypes.

Human Padroes de ITHC podem ser aplicados em conjunto com esse padrio para auxiliar a
Interface Role | definir uma boa solugo ao se realizar o projeto da interface com o usuario, resultante da
is a Special | aplicacdo desse padrdo de ES. Os relacionamentos entre padrdoes de IHC com os padrdes
Interface Role | de projeto podem auxiliar a definir responsabilidades dos objetos da interface com o
usuario que, segundo esse padrio de ES, devem ser identificados.

MVC No projeto das Visdes (View), que representa a interface com o usuario, é possivel
aplicar padrdes de IHC.

Empregando os estudos de caso, também foram coletados relacionamentos entre
os padrdes de ES que complementavam os padrdes de IHC. A Tabela 3 sumariza os
relacionamentos identificados.

Na Tabela 4, é apresentada uma sintese dos relacionamentos identificados entre os
padrdes de ES, identificados através dos estudos de caso realizados. Diversos outros
relacionamentos entre padrdes de ES foram identificados e apresentados por seus
autores, principalmente os relacionamentos com os padrdes de projeto, conforme ¢
possivel perceber durante a leitura de tais padrdes.

Tabela 3 — Relacionamento dos padrées de IHC complementados pelos
padrées de ES

Pattern Applications

202

@

SugarLoafPLoP 2005 Proceedings

Padrio de Padrao de Relacionamento
IHC ES
Composed Little O padrdo Composed Command apresenta diretivas para a linguagem que
Command Language | sera utilizada pelo usudrio para a interagdo com o sistema. O padrdo
Little Language define como objetos colaboram para analisar ¢ realizar a
acdo correspondente ao comando fornecido.
Undo Memento + | O padrdo Undo apresenta diretivas para disponibilizar a operacdo de
Command | desfazer, enquanto que o padrdo Command define uma interface para os
comandos possiveis (e com isso ¢ possivel elaborar uma lista de
operagdes a desfazer) e o padrio Memento realiza a operagdo desfazer
em si, retornando o objeto ao estado anterior.
Tabular Set Iterator O padrdo Tabular Set apresenta diretivas para apresentar os dados por
meio de uma tabela. Entretanto, ¢ desejavel que o objeto que apresenta
a tabela ndo dependa do modo como os dados sejam representados. A
aplicac@o do padréo [terator permite essa independéncia.
Step-by-Step Memento | Uma das diretivas do padrio Step-by-Step Instructions € fornecer a
Instructions possibilidade do usudrio retornar a um passo. Possivelmente um passo
realizado altera o estado de um ou mais objetos. O padrido Memento
permite que o estado anterior do objeto seja recuperado ao retornar um
passo sem que o encapsulamento seja violado.
Disabled Observer | Um determinado objeto que pode se tornar irrelevante esta relacionado
Irrelevant ao contexto que define se ele ¢ irrelevante ou ndo. Esse contexto pode
Things ser formado por outros objetos. O padrdo Observer pode ser aplicado

para informar ao objeto que houve mudangas em seu contexto. Quando
0 objeto ¢ informado sobre a mudanca do seu contexto, ele é capaz de
determinar se é irrelevante ou ndo nesse novo contexto.

Tabela 4 — Relacionamento dos padrées de ES complementados pelos padrées

de ES
Padriao de Padrio de Relacionamento
ES ES
Customer Engage the | O padrido Customer Rapport apresenta diretivas para estabelecer um
Rapport Client Early | bom relacionamento com o cliente, focando os usuarios e envolvendo-os
no projeto da interface com o usuario em conjunto com a elaboracdo de
prototipos. O padrdo Engage the Client Early também trata do
desenvolvimento de diversos prototipos, considerando engajar o usuario
¢ sua participacdo, permitindo-o guiar os esfor¢os do desenvolvimento.
Scenarios Behavioral | O padrio Scenarios Define Problem propde, como solugdo para o
Define Requirements | problema dos documentos de projeto serem veiculos ineficientes para
Problem comunicagdo com o usudrio, o emprego de casos de uso. O padrdo
Behavioral Requirements aprofunda essa questdo e apresenta também
algumas diretivas para a elaboragdo dos casos de uso.
Customer Come on | O padrao Customer Rapport apresenta diretivas para estabelecer um
Rapport Baby, Light | bom relacionamento com o cliente, focando os usudrios e envolvendo-os
My Fire no projeto da interface com o usuario, em conjunto com a elaboragéo de
protdtipos. O padrdo Come on Baby, Light My Fire também trata do
desenvolvimento de prototipos, considerando engajar o usudrio e sua
participa¢@o, mas sem distrai-lo com questdes particulares de interface.
Prototypes Prototype | O padrdo Prototypes apresenta diretivas para elaborar prototipos

descartaveis ou evolucionarios. O padrio Profotype comenta sobre a
elaboracgio de protdtipos descartaveis.

Tabela 4 — Relacionamento dos padrées de ES complementados pelos padrdes

de ES (continuagao)

Pattern Applications

203

@

SugarLoafPLoP 2005 Proceedings

Padrio de Padrao de Relacionamento
ES ES
Prototypes Use It and |O padrao Prototypes apresenta diretivas para elaborar prototipos
Lose It descartaveis ou evoluciondrios. Para o desenvolvimento de protdtipos
descartaveis pode-se aplicar em seguida o padrdo Use It and Lose It que
também fornece diretivas para a elaboragdo de prototipos descartaveis,
considerando o desenvolvimento rapido do protdtipo e o engajamento
do cliente.
Prototype Use It and | O padrio Prototype comenta sobre a elaboracdo de prototipos
Lose It descartaveis para auxiliar a compreender os requisitos. Diversos fatores
estdo relacionados ao desenvolvimento de prototipos, inclusive a
redugdo do tempo de desenvolvimento do prototipo, como apresenta o
padrdo Use It and Lose It.
Let’s Make a | Requirements | O padrio Let’s Make a Deal apresenta diretivas informando quando a
Deal Specification | elaboracdo de protdtipos pode ser finalizada e a elaboracdo de um
documento de requisitos apropriado pode ser iniciada. O padrio
Requirements Specification define diretivas para a elaboracdo de um
documento de requisitos.
Requirements Technical | O padrdo Requirements Validation comenta que todos os interessados
Validation Review devem ler o documento de requisitos em reunides de revisdo. O padrio
Technical Review apresenta diretivas para o planejamento, execugdo e
coleta de resultados de reunides para revisdo de um artefato.
Problem Padroes de | O padrdo Problem Domain Analysis comenta sobre a necessidade de
Domain Analise elaborar uma representacdo para o dominio do sistema, levando em
Analysis conta questdes comuns que sdo deparadas durante a realizagdo de uma
analise. Para apoiar a realizagdo da analise podem ser aplicados padrdes
de andlise encontrados na literatura.
Behavioral Padroes de | O padrdo Behavioral Requirements apresenta diretivas para representar
Requirements | Caso de Uso | o comportamento do sistema por meio de casos de uso. Ele também
apresenta algumas diretivas para a elaboracdo destes casos de uso. Caso
sejam necessarias mais diretivas, é possivel aplicar os padrdes voltados
para a elabora¢do de casos de uso.
Scenarios Padrdes de | O padrdo Scenarios Define Problem propde a elaboracdo de casos de
Define Caso de Uso |uso, como solucdio para o problema dos documentos de projeto, ser de
Problem dificil compreensdo pelo usuario. Para escrever casos de uso que
permitam uma leitura fécil ao usudrio, entre outras caracteristicas, pode-
se aplicar os padrdes para elaboracdo de casos de uso.

5. Conclusoes e Trabalhos Futuros

Como resultado deste trabalho, que estd baseado em um projeto que visa integrar as
visdes de IHC e de ES no desenvolvimento de sistemas interativos, apresentamos 19
relacionamentos coletados durante a aplicagdo de um conjunto de padroes de ES e de
IHC em trés estudos de caso. Acredita-se que um maior nimero de relacionamentos
podem ser identificados através da aplicagdo dos padrdes e da analise destas aplicacdes
no desenvolvimento de sistemas interativos.

Realizar a identificacdo de relacionamentos entre os padrdes das duas areas ¢
uma tarefa ardua, pois existem muito padrdes a considerar. Entretanto, acredita-se que
esses esforcos trazem beneficios, pois por meio da linguagem proposta € possivel um
melhor aproveitamento dos beneficios que os padrdes trazem ao serem aplicados em um
processo de desenvolvimento, realizando a transferéncia de conhecimento entre os
participantes de niveis diferentes e facilitando a comunicagdo entre eles. Relacionar os
padrdes das duas dreas também ¢ util para motivar os especialistas de ambas as areas a

Pattern Applications

204

SugarLoafPLoP 2005 Proceedings

desenvolver o sistema em parceria, 0 que muitas vezes ndo ocorre devido a falta de
comunicacdo, divergéncia de foco e por possuirem formagao diferentes.

Os seguintes resultados foram alcangados: (1) validag¢do da proposta do modelo
de processo Prototipacdo Apoiado por Padrdes; (2) identificacdo de 19 relacionamentos
entre padroes de ES e de IHC; (3) validacdo da proposta da existéncia de
relacionamentos entre padroes de IHC e de ES. Através da avaliagdo desses resultados,
concluimos que: (1) padrdes de ES e de IHC podem se complementar para desenvolver
sistemas interativos de forma mais abrangente, tratando aspectos de ambas as areas; (2)
relevancia na identificacdo de relacionamentos entre padrdes de ES e de IHC.

Como trabalhos futuros pretende-se elaborar uma linguagem para
desenvolvimento de sistemas interativos que considere padrdes de ambas as areas a
partir da coleta dos relacionamentos entre os padrdes, incluindo os aqui apresentados.
Entretanto, percebe-se que, para chegar a uma linguagem de padrdes que considere tal
quantidade de padrdes, € necessario que a linguagem [Meszaros e Double 1996]: 1)
apodie todos os aspectos importantes em um dado dominio, 2) forneca uma tabela
resumindo os padrdes passiveis de serem empregados (padrdo Problem/Solution
Summary), 3) utilize um mesmo exemplo em toda a linguagem (padrio Running
Example), 4) ofereca um glossario de termos (padrdo Glossary), e 5) descreva os
relacionamentos dentro do texto que descreve o padrido (padrdo Pattern Language).
Todas essas questdes serdo consideradas em trabalhos futuros.

Referéncias

Adolph, S., Bramble, P., Cockburn, A., Pols, A. Patterns for Effective Use Cases,
Pearson Education, Inc., EUA, 2002.

Alpert, S. R. (2003) “Getting Organized: Some Outstanding Questions and Issues
Regarding Interaction Design Patterns”, In: Workshop on “Perspectives on HCI
Patterns™ at CHI, 20., 2003.

Ambler, S., Process Patterns: Building Large-Scale Systems Using Object Technology,
Cambridge University Press, 1998.

Borchers, J. O. (2000) “CHI Meets PLoP: An Interaction Patterns Workshop”. In:
SIGCHI Bulletin, Nova lorque, EUA, v. 32, n. 1, p. 9-12.

Braga, R. T., Germano, F. S. R. and Masiero, P. C. (1999) “A Pattern Language for
Business Resource Management”, In: Pattern Languages of Programming
Conference, 6., Monticello, EUA.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P. and Stal, M., Pattern-Oriented
Software Architecture Volume 1: A System of Patterns, John Wiley & Sons Ltd.,
1996.

Coplien, J. O. (1995) “A Generative Development-Process Pattern Language”, In:
Pattern Language of Programming Design, Edited by J. O. Coplien and D. C.
Schmidt, EUA, Addison Wesley Longman Inc.

Dearden, A., Finlay, J., Allgar, E. and McManus, B. (2002) “Using Pattern Languages
in Participatory Design”. Proceedings of Participatory Design Conference, (2002).

Fowler, M., Analysis Patterns: Reusable Object Models, Addison Wesley, 1996.

Pattern Applications

205

SugarLoafPLoP 2005 Proceedings

Gamma, E., Helm, R., Johnson, R. and Vlissides, J., Design Patterns: Elements of
Reusable Object-Oriented Software, Addison Wesley, 1995.

Grand, M., Patterns in Java Volume 1, John Wiley & Sons Inc., 1998.
Grand, M., Patterns in Java Volume 2, John Wiley & Sons Inc., 1999.

Kerth, N. L. (1995) “Caterpillar’s Fate: A Pattern Language for the Transformation
from Analysis to Design”, In: Pattern Language of Programming Design, Edited by
J. O. Coplien and D. C. Schmidt, EUA, Addison Wesley Longman Inc.

Meszaros, G., and Doble, J. (1996) “Metapatterns: A pattern language for pattern
writing”, Proceedings of the 3rd Pattern Languages of Programming Conference,
1996.

Preece, J., A Guide to Usability: Human factors in computing. Addison-Wesley Pub.
Co., Reading, MA, EUA, 1993.

Silva, A. C. da, Silva, J. C. A., Penteado, R. A. D. and Silva, S. R. P. da (2004)
“Integrando a Visdo da ES e da IHC através da Aplicacdo de Padrdes sobre o
Modelo de Prototipag¢do”, In: Simpdsio Brasileiro de Fatores Humanos em Sistemas
Computacionais, 6., Curitiba-PR, Brasil.

Sommerville, I. Engenharia de Software, 6.ed. Addison-Wesley Pub. Co., Sdo Paulo,
SP, Brasil, 2003.

Stimmel, C. L. (1999) “Hold Me, Thrill Me, Kiss Me, Kill Me Pattern Language for
Developing Effective Concept Prototypes”, In: Pattern Languages of Programming
Conference, 6., Monticello, EUA.

Tidwell, J. (1999) “Commond Ground: a Pattern Language for Human-Computer
Interface Design”, http://www.mit.edu/~jtidwell/interaction patterns.html.

Tidwell, J. (2003) “User Interface Patterns and Techniques”, http://time-
tripper.com/uipatterns.

Welie, M. van, (2003) “Pattern in Interaction Design”, http://www.welie.com.

Whitenack, B. (1995) “RAPPeL: A Requirements-Analysis-Process Pattern Language
for Object-Oriented Development”, In: Pattern Language of Programming Design,
Edited by J. O. Coplien and D. C. Schmidt, EUA, Addison Wesley Longman Inc.

Yoder, J. W., Johnson, R. E. and Wilson, Q. D., (1998) “Connecting Business Objects
to Relational Database”, In: Pattern Languages of Progamming Conference, 5.,
Monticello, USA.

Pattern Applications

206

SugarLoafPLoP 2005 Proceedings

Aplicando Padroes de Geréncia de Configuracao de
Software em Projetos Geograficamente Distribuidos’

Dario André Louzado, Lucas Carvalho Cordeiro

Siemens Com Mobile Devices — Siemens Eletroeletronica S.A.
Manaus — AM — Brazil

{dario.louzado, lucas.cordeiro}@siemens.com

Abstract: Software Configuration Management (SCM) plays an important role
in software development projects by controlling the consistency of artifacts
during the whole project life cycle. In this article we discuss how a well-known
SCM pattern language was applied in a medium size outsourced project. For
each applied pattern we explain the context, problem, solution and resulting
context. We present the ideas by looking to the SCM system as continuous
evolving system as the patterns are applied. Special nuances, common to the
complex world of outsourcing, are also emphasized.

Keywords: patterns, software configuration management, outsourcing.

Resumo: Geréncia de Configuracdo de Software (SCM) desempenha um
papel importante no desenvolvimento de projetos de software, controlando a
consisténcia dos artefatos ao longo do ciclo de vida do projeto. Neste artigo é
discutido como uma linguagem de padroes de SCM conhecida foi aplicada em
um projeto terceirizado de tamanho médio. Para cada padrdo aplicado sdo
apresentados contexto de aplicacdo, problemas enfrentados, solu¢des
consideradas assim como o contexto resultante. As idéias sdo apresentadas
olhando para o sistema de SCM como um sistema que evolui na medida em
que os padroes sdo aplicados. Nuances especiais, comuns ao complexo mundo
da terceirizagdo, sdo também enfatizadas.

Palavras-chave: padroes, geréncia de configuracdo de software,
terceirizagdo.

' Copyright © 2005, Dario André Louzado and Lucas Carvalho Cordeiro. Permission is granted to copy
for the SugarLoafPLoP 2005 conference. All other rights reserved.

Pattern Applications

207

SugarLoafPLoP 2005 Proceedings

1. Introducao

Uma disciplina da engenharia de software que vem ganhando crescente destaque em
projetos de software ¢ a geréncia de configuracdo do software, ou software
configuration management — SCM. A razdo para tanto destaque ¢ muito simples. Se
entendermos todo o processo de desenvolvimento de software como um software [1],
SCM pode ser vista como o subsistema de entrada-saida (//0O) deste software.

Indo um pouco mais além, SCM responde pelo controle transacional dos
artefatos de software, isto €, pelo controle da consisténcia do produto de trabalho
produzido pelos desenvolvedores ao longo de todo o ciclo de vida do projeto. Por
exemplo, ao receber o coédigo-fonte de diferentes desenvolvedores, o gerente de
configuracdo do software organiza este material em um espaco de trabalho (workspace)
checa as consisténcias e dispara o processo de geragdo de builds. Como resultado deste
ultimo processo, tem-se uma versdo infermediaria, ou incremento, do software em
construcdo ou manutengdo.

Cédigo Fonte ——» Build do Sistema

SCM

Figura 1. Sistema de entrada e saida SCM

Conforme mostrado na figura 1, o sistema de /O SCM recebe codigo-fonte
(entrada), organiza, verifica as diferengas e consisténcias e produz um build, uma saida,
portanto, deste processo. O exemplo € simples, mas serve para ilustrar o papel da
geréncia de configuragdo em projetos de software. Um build que apresenta problemas
de compilacdo ou integra¢do poderia sacrificar um ou mais dias de trabalho de uma
equipe inteira de desenvolvedores ou testatores. Builds com este tipo de problema
dificultam inclusive a geréncia do projeto pelos lideres, pois a no¢do de progresso é
consideravelmente ofuscada.

Na pratica, as atividades, consideragdes e verificagcdes realizadas pelo gerente da
configuragdo sdo bem menos triviais que o exemplo acima. Neste artigo, estaremos
navegando pela linguagem de padrdes de geréncia de configura¢do definida em [3],
objetivando discutir, para cada padrdo aplicado e para a linguagem como um todo, quais
as consideracdes, dificuldades e solugdes realizadas no contexto de um projeto real
vivenciado pelos autores.

E importante salientar que o propdsito principal deste artigo é focar em assuntos
estratégicos de SCM tais como: prdticas, politicas e organizagdo. Com este objetivo em
mente, o apéndice A fornece uma visdo geral das ferramentas utilizadas no projeto.
Além disso, por questdes de confidencialidade, o artigo abordard apenas do uso da
técnica, omitindo qualquer tipo de informagdo que envolva o escopo ¢ a estratégia do
projeto analisado.

Pattern Applications

208

E SugarLoafPLoP 2005 Proceedings

2. Contexto Geral

O projeto analisado tem por objetivo produzir um software de uso desktop (com
aproximadamente 100,000 LOC) destinado a usuarios finais de aparelhos celulares. Por
ser destinado ao usudrio final em um mercado de massa, trata-se de um projeto critico o
qual demanda um controle rigoroso na configuracdo do software. A Siemens
Communications ¢ uma organizacdo com uma evidente politica de presenga no mercado
(time-to-market), o que evidencia a necessidade de controle sobre o projeto, status da
configuragdo e da qualidade do codigo.

Adicionalmente, o projeto ¢ desenvolvido por quatro parceiros situados
fisicamente em localidades diferentes — Figura 2. Esta realidade demanda uma boa
comunicacdo e uma definicdo clara de responsabilidades, situando ainda mais a geréncia
da configuracdo do software como um instrumento chave neste processo.

P

Siemens

-

Figura 2. Siemens e seus parceiros

Outra particularidade encontrada foi a necessidade de separar um pouco a gestio
dos artefatos de software (atividades de integracdo e geracdo do build). A primeira ¢
atribuicdo do gerente de configuracdo (Configuration Manager, doravante denominado
CM). A segunda ¢ atribuicdo do gerente de build (Build Manager, doravante
denominado BM).

3. Organizacio, arquitetura e geréncia de configuracio de software

Organizagdes estruturam-se de acordo com o mercado para lancar produtos ou solugdes
[2]. Esta estruturacdo influéncia fortemente a arquitetura do software. Conforme os
sistemas de software tornam-se mais complexos, a arquitetura passa a influenciar a
organizacao e suas decisoes.

Uma influéncia importante é a localiza¢do do trabalho, isto é, como um pacote
de trabalho ¢ atribuido a uma determinada equipe. Dois componentes com muita
proximidade e dependéncia sdo atribuidos de forma localizada a um time de
desenvolvedores, minimizando a demanda por canais de comunicago. Esta abordagem
implica em mais agilidade e melhor gestdo dos riscos ao projeto.

Pattern Applications 209

SugarLoafPLoP 2005 Proceedings

4 Arquitetura N

Organizagdo [<-------- > SCM

Figura 3. Influéncias entre organizagao, arquitetura e SCM

De uma maneira geral, o padrdo Architecture Follows Organization [2] discute
como a arquitetura estrutura os canais de comunicagdo em uma organizacio.
Continuando com o cliclo de influéncias, conforme figura 3, tanto as estruturas
organizacional quanto arquitetural influenciam diretamente as praticas, politicas,
planejamento e as ferramentas destinadas a geréncia da configuragdo do software. Esta
fornece, portanto, uma base de sustentag@o para as outras.

Estudando estas dependéncias conceituais, foi desenvolvida uma linguagem de
padrdes destinada a geréncia da configuracdo [3]. Esta linguagem classifica os padrdes
em duas categorias:

e (Codeline: padrdes relacionados ao controle de versdo e ao isolamento de
iniciativas distintas de desenvolvimento em linhas de codificagdo isoladas,
tipicamente implementadas em ferramentas de controle de versdo com o
conceito de branches.

o Workspace: padrdes relacionados ao agrupamento de versdes especificas de
artefatos do projeto em 4reas de trabalho a fim de suportar diferentes atividades
do projeto. Exemplos: gerar um build, executar smoke tests, desenvolver
funcionalidades, integrar software, coletar métricas de codigo, entre outras.

A linguagem de padrdes SCM vem sendo refinada ha pelo menos cinco anos
pelos autores originais e este artigo adiciona uma contribui¢do a partir de uma
experiéncia em projeto com times geograficamente distribuidos. A figura 4 mostra as
interagdes entre os padrdes da linguagem em estudo.

E importante observar a partir do mapa de linguagem de padrdes SCM (figura
4), que a seta padrdo A — padrdo B significa que padrido A precisa do padrdo B para

completa-lo [3]. Deste modo, o padrdo Task Level Commit deve ser implementado para
que o Integration Build funcione.

Pattern Applications

210

E SugarLoafPLoP 2005 Proceedings

| Mainline

K’—_/

Active
Development Line

Release Prep
Codeline

Task
Branch

Private Workspace

Private
Versions

Release
Line

Integration Private Codeline
Build System Build Policy

Repository Smoke Test

Task Level
Commit JV
Unit Test Regression
Third Party Test
Codeline

Figura 4. Padroes de geréncia de configuragao de software [3]

4. Padroes de geréncia de configuracio de software

Esta secdo descreve cada padrido de geréncia de configuracdo de software utilizado no
projeto. A aplicagdo destes padrdes ¢ determinada de acordo com as decisdes de
organizacdo e arquitetura, conforme mencionado na se¢do 3. Deste modo, alguns
padroes de SCM propostos por [3] ndo foram aplicados e os demais sofreram
adaptagdes considerando o contexto especifico do projeto observado.

4.1 Padrao Mainline
4.1.1 Contexto de Aplicaciao

Como mencionado na se¢do 2, o projeto € desenvolvido por quatro parceiros situados
fisicamente em localidades diferentes. Cada parceiro possui sua estrutura organizacional
e diferentes tipos de ferramentas para lidar com geréncia de configuragdo. Sendo assim,
foram criadas cinco diferentes linhas de codificag@o (codelines), uma para cada parceiro
e uma principal gerenciada pela Siemens (figura 5). Além disso, existe uma linha de
codifica¢do chamada de produ¢do com o proposito de receber somente versdes estaveis
do software.

Pattern Applications 211

SugarLoafPLoP 2005 Proceedings

parceiros

siemens

produgao

Figura 5. Linhas de codificagdao
4.1.2 Problemas enfrentados

Alguns componentes possuem dependéncias entre si, por exemplo, qualquer mudanga
na interface e/ou comportamento do componente afeta o trabalho de um ou mais
parceiros. Se todos os parceiros possuem linhas de codifica¢do diferentes, como
resolver este problema de dependéncia de componentes?

4.1.3 Solucoes

Para que fosse possivel utilizar cinco diferentes linhas de codificagdo e ter maior
controle de todas as mudangas de interface/comportamento dos componentes, foi
desenvolvido um processo de comunicagdo de mudanga de interface. Neste processo, 0
parceiro realiza a mudanca na interface/comportamento do componente e depois
notifica todos os parceiros afetados.

Esta adaptacdo ¢ valida, pois, o projeto é norteado por uma arquitetura baseada
em componentes e interfaces bem definidas. Ciclos de integra¢do semanais ocorrem na
linha principal da Siemens (onde sdo gerados os builds e releases) pelos parceiros.
Sendo assim, no término de cada ciclo tem-se uma versdo definitiva do produto que ¢
disponibilizada na linha de producdo para a equipe de teste.

4.1.4 Contexto Resultante

Depois da implementagdo deste processo, cada parceiro foi capaz de trabalhar em sua
propria linha de codificagdo. O processo de comunica¢do de mudanga de interface
possibilitou uma melhor comunicacdo, de acordo com as dependéncias arquiteturais.
Esta comunicagdo aprimorada permitou uma maior transferéncia de responsabilidade
para os parceiros. O foco da Siemens pode ser mantido no controle da linha de
codificacdo principal. A linha de produgdo (principal), incrementada a partir das
integragdes semanais, ¢ a Unica referéncia — ndo-ambigua, portanto — para versdes
oficiais do produto.

4.2 Padrao Active Development Line

4.2.1 Contexto de Aplicacio

O desenvolvimento ocorre em quatro linhas ativas de codificacdo, uma para cada
parceiro. Isto implica dizer que, para cada uma das linhas, uma particdo do sistema (em
termos de sub-sistemas ¢ componentes) deve ser desenvolvida, testada e entregue por
cada parceiro envolvido no projeto.

Pattern Applications

212

SugarLoafPLoP 2005 Proceedings

4.2.2 Problemas enfrentados

A coordenacdo das entregas, a fim de garantir um Unico sistema funcionando nio é uma
tarefa simples. Muitos problemas de retrabalho ou esfor¢o elevado de integra¢do foram
encontrados.

4.2.3 Solucoes

Toda integracdo de cddigo do parceiro € acompanhada por notas de entrega (delivery
notes). As notas de entrega tém o proposito de fornecer as condigdes atuais da entrega,
ou seja, quais componentes foram adicionados ou modificados, quais bugs foram
resolvidos, quais as limitacdes de cada componente e assim por diante. O gerente de
configuragdo de software € responsavel por revisar as notas de entrega e comunicar aos
parceiros eventuais problemas de consisténcia.

4.2.4 Contexto Resultante

Com o adequado preenchimento das notas de entrega ¢ possivel integrar e gerar um
novo build do sistema e, por conseguinte disponibilizar uma versdo estavel do mesmo
na linha principal de codificacdo. Esta pratica tornou viavel a implantacdo de uma
estratégia de integracdo por estdagios, na qual um mesmo ciclo de integracdo ¢ quebrado
em ciclos menores de acordo com as dependéncias entre os componentes.

4.3 Padrao Private Workspace
4.3.1 Contexto de Aplicacio

Diferentes parceiros possuem diferentes estruturas organizacionais, cultura de trabalho e
processos de software. O isolamento geografico demanda um certo isolamento para a
construgdo do software de modo a eliminar o excesso de interferéncia no trabalho diario
de cada desenvolvedor.

4.3.2 Problemas enfrentados

Com o uso de uma linha de codificacdo por parceiro, pode-se isolar as mudangas feitas
por cada um deles e obter um melhor controle do software sendo desenvolvido. Em
cada uma dessas linhas, cada desenvolvedor de cada parceiro pode gerar o seu espaco
de trabalho (workspace).

Mesmo usando diferentes linhas de codificagdo, pdde ser observada a utilizacdo de
forma intrusiva, isto &, parceiro P2 modifica componentes atribuidos ao parceiro P1
(conforme mostrado na figura 6). Este problema causa desperdicio de esforco visto que
ndo ha garantia de consisténcia nas versdes produzidas por P1.

Pattern Applications

213

SugarLoafPLoP 2005 Proceedings

Parceiro 1 P

Implementa
Implementa

Fornece
interfac

Solicita
interface

Figura 6. Mudanca de interface de componentes

4.3.3 Solucoes

O estabelecimento de um processo de comunicagdo de mudanga de interface e a
separacdo de responsabilidades atenuou os problemas enfrentados. A arquitetura bem
definida e o refor¢o da atribui¢do das responsabilidades desempenharam um papel
fundamental na redugdo deste tipo de problema.

4.3.4 Contexto Resultante

Melhoria na comunicagdo entre os times e na integracdo dos componentes implicando
em builds mais estaveis e entregas mais controladas.

4.4 Padrao Integration Build
4.4.1 Contexto de Aplicaciao

Uma data e horario do dia sdo marcados para cada parceiro realizar sua entrega. Quatro
entregas sdo realizadas na semana, de acordo com as dependéncias — integragcdo por
estagios. Esta abordagem favorece a integracdo gradual do produto. Cada uma das
integragdes deve ser acompanhada por notas de entrega e um rétulo (zag) atribuido a
versdo especifica dos componentes sendo entregues (conforme mostrado na figura 7).
As notas de entrega devidamente preenchidas e a tag associada aos componentes
facilitam a integracdo e a geragdo de um novo build do sistema.

4.4.2 Problemas enfrentados

Algumas integragdes ndo foram acompanhadas de notas de entrega devidamente
preenchidas, o que dificultou a implementagio da integracdo por estdgios. Além disso,
a tag era associada a todos os componentes do sistema, dificultando a assimilacdo do
que estava sendo entregue de fato.

Pattern Applications

214

SugarLoafPLoP 2005 Proceedings

4.4.3 Solugoes

Para cada integragdo realizada pelo parceiro, o gerente de configuragdo de software é
responsavel por verificar se a tag foi corretamente atribuida aos devidos componentes e
checar se as notas de entrega condizem com o conjunto de componentes entregues. Com
estas informacdes em maos, o SCM comunica aos parceiros da inconsisténcia da
entrega. Atualmente, um checklist ¢ aplicado a fim de validar e fornecer feedback de
cada entrega.

4.4.4 Contexto Resultante

Builds de integragio sdo produzidas de forma sistematica, com periodicidade definida e
controlada. No caso do projeto em questdo, usou-se a freqii€ncia semanal.

subsistema

componente A

componente B

— componente C parceiro1-2005-03-02-01

— componente D

— componente F

Figura 7. Parceiro 1 atribuindo uma tag aos componentes

4.5 Padrao Third Party Codeline
4.5.1 Contexto de Aplicaciao

Cada parceiro possui uma linha de codificagdo no sistema de controle de versdo. O ciclo
de vida da linha de codificagdo (atualizagdo, desenvolvimento, teste de integracdo
interna e assim por diante) estd sob responsabilidade do parceiro. As atualiza¢des bem
como as entregas devem ocorrer de acordo com politicas bem estabelecidas no inicio do
projeto.

4.5.2 Problemas enfrentados

Ma gestdo das linhas de codifica¢des dedicadas aos parceiros. Muita demanda interna
para integrar e gerar builds, o que afeta diretamente o caminho critico do projeto.

4.5.3 Solucoes

Papéis e responsabilidades foram bem definidos e enfatizados para cada parceiro
envolvido. Neste sentido, foram desenvolvidos, documentados e divulgados todos os
procedimentos e politicas de geréncia de configuragao.

Pattern Applications

215

SugarLoafPLoP 2005 Proceedings

4.5.4 Contexto Resultante

Seguindo todos os procedimentos estabelecidos pela Siemens, cada parceiro foi capaz
de cuidar, com certo grau de independéncia, do ciclo de vida da sua linha de
codificacdo. Boa parte do caminho critico do projeto foi aliviada, gracas a este
redirecionamento de responsabilidade.

4.6 Padrao Task Level Commit
4.6.1 Contexto de Aplicacao

Uma tarefa (ou fask), para o projeto analisado, pode ser mapeada em uma entrega
individual por parceiro. Por exemplo, implementar um novo componente ou servico.
Cada parceiro realiza a sua entrega em uma linha de codificagdo isolada, usando
controle de versdo a partir de tag.

4.6.2 Problemas enfrentados

Cada parceiro ¢ responsavel por tarefas e pelo ciclo de vida de sua linha de codificacao
individual. Em alguns momentos, quando um parceiro depende fortemente da
modificacdo de outro, o dependente terd que aguardar pela conclusdo da tarefa, o que
pode significar tempo improdutivo de espera.

4.6.3 Solucoes

Isolamento das linhas de codificacdo por parceiro ¢ a entrega baseada em tag. Para
contornar o problema da espera por dependéncia, usa-se o conceito de snapshot, ou
fotografia. Nesta abordagem, o parceiro causador da dependéncia prioriza as suas
atividades e, antes da conclusdo da tarefa, aplica um rétulo em sua linha de codificagdo
tornando a versdo disponivel aos demais interessados. Uso intensivo de notas de entrega
com o proposito de comunicar efetivamente o andamento das modificagdes para todos
os envolvidos.

4.6.4 Contexto Resultante

Percepcdo consistente do andamento do projeto pelos lideres de projeto, devido ao
incremento consistente de funcionalidades no software. Maior controle sobre os builds
globais do produto em construcdo a partir de diferentes entregas. Necessidade de
pessoas dedicadas a tarefa de monitorar o andamento das modificacdes e integrar
componentes.

4.7 Padrao Smoke Test
4.7.1 Contexto de Aplicacio

Mesmo entregas bem estruturadas, tal como proposto em Task Level Commit,
demandam uma verificacdo minima de consisténcia. Eventualmente versdes sao
enviadas para outros times remotamente localizados ao redor do globo a fim de executar
testes de diversos tipos.

4.7.2 Problemas enfrentados

Continuo balanceamento entre custo, time-to-market ¢ estabilidade de cada build (figura
8). Dificil decisdo entre langar um build antes ou depois dos Smoke Tests.

Pattern Applications

216

E SugarLoafPLoP 2005 Proceedings

Qualidade

Figura 8. Triangulo magico [19]
4.7.3 Solucoes

Definir funcionalidades prioritarias para a execucdo de smoke ftests. Estratégia de
priorizagdo com base nos componentes que sofreram as mudangas mais criticas desde a
ultima entrega.

4.7.4 Contexto Resultante

Mais tranqiiilidade e confianga antes de repassar versdes intermedidrias do software
para diferentes times de teste geograficamente distribuidos. Menos desperdicio de
esforco e redug@o na demanda por comunicagdo entre os times.

4.8 Padrao Regression Test
4.8.1 Contexto de Aplicaciao

Defeitos criticos sd@o encontrados e corrigidos no software. Dependendo de quéo
criticos, hd uma necessidade de garantir que os mesmos ndo voltardo a se manifestar em
uma nova versao.

4.8.2 Problemas enfrentados

Definicdo de prioridades dos defeitos encontrados no software. Muita comunicagio
entre times de desenvolvimento no projeto com o propodsito de rastrear tais defeitos e
propor solugdes para 0s mesmos.

4.8.3 Solucoes

Criagdo do papel do gerente de versdo intermediaria (Build Manager) para cada um dos
parceiros. O BM ¢é responsavel por fazer o rastreamento dos bugs sob sua
responsabilidade e notificar (com a ajuda da equipe de teste), para cada entrega, quais as
corregdes e pendéncias. Além disso, o BM e arquiteto devem fornecer solugdes e prazos
para os defeitos que se manifestam em uma nova versao do software.

4.8.4 Contexto Resultante

Areas funcionais de alta prioridade estio protegidas pelos testes. Entretanto, ha uma
demanda por comunicacdo para definir qual o nivel de regressdo desejado em cada
execucao de testes.

Pattern Applications 217

SugarLoafPLoP 2005 Proceedings

4.9 Padriao Release Line
4.9.1 Contexto de Aplicaciao

Necessidade de ter uma base unica para a geragdo de versodes oficiais do produto. Linhas
de codificagdo dos parceiros sdo isoladas da linha de codificagdo de produgio,
responsavel pela geracdo de releases oficiais do produto.

4.9.2 Problemas enfrentados

Esfor¢o para a juncdo das linhas de codificagdo dos diversos parceiros (processo de
integra¢do) e necessidade de verificar a consisténcia de cada entrega através de um
checklist desenvolvido pelo gerente de configuracdo de software. Este checklist tem
como finalidade a aceitag@o ou rejeicdo da entrega do parceiro.

4.9.3 Solucoes

A propria linha de codificacdo de produgdo € utilizada como linha para geragdo de um
novo release do produto, evitando o uso de uma linha de codificagdo.

4.9.4 Contexto Resultante

Capacidade de produzir releases do software independentemente de qualquer tarefa de
desenvolvimento em andamento pelos parceiros.

4.10 Padrio Codeline Policy
4.10.1 Contexto de Aplicacio

Diferentes organizagdes, diferentes culturas, todos envolvidos na construcdo de um
unico software. Necessidade de um nivel minimo de uniformidade nas agdes a fim de
garantir a produtividade coletiva dos desenvolvedores.

4.10.2 Problemas enfrentados

Dificuldade para os desenvolvedores assimilarem todas as idéias contidas na politica de
geréncia da linha de codificacdo. Divergéncias entre formas de trabalho, cultura e
metodologia de desenvolvimento de software.

4.10.3 Solucoes

Os parceiros receberam um treinamento de geréncia de configuracdo de software no
inicio do projeto. Desta forma, foram definidos e enfatizados os papéis e
responsabilidades no processo de SCM. Cada parceiro € responsavel pelo ciclo de vida
de sua respectiva linha de codificagdo (atualizagdes, commits, rotulacdo e entregas
oficiais). Concentracdo das responsabilidades mencionadas no papel do Build Manager.
Cada parceiro possui um desenvolvedor desempenhando o papel especial de BM.

4.10.4 Contexto Resultante

Reducdo da sobrecarga e dos ruidos na comunica¢do no grupo. Agilidade na tomada de
decisdo a cada ciclo de integragdo. Facilidade para absorver novos desenvolvedores no
projeto. Maior potencial para que todas as linhas de codificacdo se mantenham mais
estaveis ao longo do projeto.

Pattern Applications

218

SugarLoafPLoP 2005 Proceedings

5 Conclusio

Um projeto desenvolvido em regime de terceirizagdo, envolvendo equipes de diferentes
localidades e de diferentes empresas, influenciou fortemente a estruturacdo das solugdes
de geréncia de configuragdo para o projeto observado. A necessidade de compartilhar
artefatos de software em um contexto global de paises e organizagdes colocou grandes
desafios para o projeto. As diferengas culturais e de processo de software também
contribuem fortemente com a complexidade do ambiente analisado.

As solugdes foram sendo implementadas de acordo com as necessidades do
projeto, gradualmente, bem como o reconhecimento dos padrdes proposta por [3]. Deste
modo, foi possivel identificar os padrdes e tragar as devidas correlagdes com o ambiente
real. Neste ambito, a linguagem contribuiu para a reflexdo e valida¢do das solucdes
vigentes. Considerando fatores como organizagdo, arquitetura e time-to-market, pode-se
também utilizar outras linguagens de padrdo, como por exemplo, os padrdes
organizacionais definidos por [2]. Desta forma, € possivel compreender de forma ampla
o ciclo de influéncia entre organizagdo, arquitetura e geréncia de configuracio.

6 Apéndice “A” — Ferramentas utilizadas

Este apéndice contém informagdes sobre as ferramentas utilizadas pelo projeto para dar
sustentacdo ao emprego dos padrdes de geréncia de configuracdo. As informagdes estdo
contidas na tabela 1.

Tabela 2. Ferramentas empregadas na aplicagido dos padroes de SCM

Ferramenta Aplicacio

Subversion Repositorio de versdes. Criacdo de branches (linhas de
codifica¢do) para permitir o trabalho simultdneo dos diversos
parceiros e posterior integracao [8].

Kdiff3 Checar se ocorre sobreposi¢cdo entre o codigo entregue pelos
parceiros. Permite comparar diretamente trés fontes de dados

[9].

Ant/ make Automacao de tarefas envolvendo o produto do software e os
espacgos de trabalho (workspace) [10]/[11]:

e Geracdo de builds

e Empacotamento de componentes

e Instrumentacdo de codigo para profiling (anélise
dindmica)

e Invocacdo das ferramentas para a andlise estatica do
codigo

Check Infra-estrutura C para execug¢do de testes automatizados
escritos na mesma linguagem [12].

Checkstyle Andlise de padrdes de codificacdo. Deteccdo de praticas
perigoras (anti-patterns) [13].

CCCC Métricas de cddigo: tamanho de modulos e fungcdes em NCSS

Pattern Applications

219

é‘_‘_‘ SugarlLoafPLoP 2005 Proceedings

(non-commented source statement), complexidade ciclomatica
por func¢do. Suporte a C/C++ [14].

JavaNCSS Anélogo ao CCCC, s6 que para Java [15].

Simian Analisador estatico de redundancia no codigo. Suporta
multiplas linguagens: C/C++, Java, C#, entre outras [16].

RPM/ JAR Padrdes para empacotamento de componentes e produtos de
software [17]/[18].

Unix tools grep, sed, find, bash scripts, etc.

Pattern Applications 220

@

SugarLoafPLoP 2005 Proceedings

7 Referéncias

[1]
2]

[3]
[4]

[5]
[6]

[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]

[16]

[17]
[18]

[19]

Osterweil, L., Software Processes are Software Too, ACM, 1987.

Coplien, J., Harrison N., Organizational Patterns for Agile Software
Development, Prentice Hall, 2004.

Berczuk, S., Appleton, B., Software Configuration Management Patterns,
Addison-Wesley, 2002.

Bass, L., Kazman, R., Clements, P., Software Architecture In Practice, SEI
Series in Software Engineering, 2002

McConnel, S., Rapid Development, Microsoft Press, 1996

Fowler, M., Continuous Integration,
http://www.martinfowler.com/articles/continuousIntegration.html, ultima visita
em [09/07/2005].

Gabriel, R., Software Patterns, Oxford Press, 1996

Subversion, http://subversion.tigris.org/, ultima visita em [10/07/2005].

Kdiff3, http://kdiff3.sourceforge.net/, Giltima visita em [10/07/2005].

Apache Ant, http://ant.apache.org/, Gltima visita em [10/07/2005].

GNU make, http://directory.fsf.org/make.html, ultima visita em [10/07/2005].
Check, http://check.sourceforge.net/, ultima visita em [10/07/2005].

Checkstyle, http://checkstyle.sourceforge.net/, ultima visita em [10/07/2005].
CCCC, http://ccce.sourceforge.net/, ultima visita em [10/06/2005].

JavaNCSS, http://www .kclee.de/clemens/java/javancss/, ultima visita em
[10/06/2005].

Simian, http://www.redhillconsulting.com.au/products/simian/, ultima visita em
[10/06/2005].

RPM, http://www.rpm.org/, tltima visita em [10/06/2005].

JAR, http://java.sun.com/j2se/1.5.0/docs/guide/jar/, ultima visita em
[10/06/2005].

Gohner, P. (2003). Lecture notes of Software Engineering for Real-Time
Systems. IAS, Stuttgart.

Pattern Applications

221

E SugarLoafPLoP 2005 Proceedings

Extending Patterns with Testing Implementation *

Maria Istela Cagnin™, Rosana T. V. Braga', Fernio S. Germano',
Alessandra Chan'', José Carlos Maldonado'

Laboratério de Engenharia de Software
Instituto de Ciéncias Matematicas e de Computagao
Universidade de Sao Paulo
Av. do Trabalhador Sdo-Carlense, 400 — 13560-970 Sao Carlos, SP

{istela, rtvb, fernao, alechan, jcmaldon}@icmc.usp.br

Abstract. VV&T activities are a present concern in the context of patterns, as
patterns are used for software development, maintenance, and reengineering,
and VV&T is necessary to assure the quality both of the solutions and of the de-
livered products. Although VV&T activities are important, they are not always
performed as they should be, due to the associated time and cost. In this context,
this paper proposes a strategy that allocated test resources to software patterns.
This allows reusing not only solutions in a certain context, but also the cor-
responding test resources needed to validate applications. Reengineering case
studies were conducted with the support of a pattern language, through which it
has been possible to observe, although without statistical significance, a mean-
ingful reduction of the time spent with VV&T activities when test resources are
allocated to patterns.

1. Introduction

Software patterns are being widely used to enhance productivity. Besides providing so-
lutions to recurring problems, they embed knowledge and the experience of experts in a
domain. Software patterns are used at several abstraction levels: analysis patterns (Coad,
1992; Coad et al., 1997; Larman, 2004), design patterns (Gamma et al., 1995; Larman,
2004), architectural patterns (Beck and Johnson, 1994; Buschmann et al., 1996), testing
patterns (Binder, 1999; DeLano and Rising, 1998), reverse engineering patterns (Demeyer
et al., 2000), reengineering patterns (Stevens and Pooley, 1998; Recchia, 2002; Lemos,
2002), among others.

More specifically, testing patterns provide general guidelines and procedures to
help testers during product quality assessment, but do not capture the expert solution nor
the specific validation aspects of the applications. A good solution should have the corre-
sponding validation captured in the pattern. This allows the reuse of VV&T (Verification,
Validation and Test) information, in addition to the reuse of the solutions.

Several authors (Sommerville, 2000; Harrold, 2000; Pressman, 2001; Rocha et al.,
2001) comment on the importance of testing activities, although they point out that these
activities are not always practiced due to the associated time and cost. Testing resources,
ready to be used, allocated to software patterns, will ease the execution of testing activities

*Copyright (©) 2005, Maria Istela Cagnin and Rosana T. V. Braga and Ferndo S. Germano and Alessandra
Chan and José Carlos Maldonado. Permission is granted to copy for the SugarLoafPLoP 2005 conference.
All other rights reserved.
fFinancial support from FAPESP #00/10881-4.
!Financial support from CNPq.
Pattern Applications 222

SugarLoafPLoP 2005 Proceedings

and, consequently, will make it possible to enhance the quality of delivered products.
Moreover, this can stimulate the execution of tests before coding, in the context of agile
methods (Beck et al., 2001). This way of performing testing activities is called eXtreme
Testing (XT) by Myers (2004) and Test-Driven Development (TDD) by Beck (2002).
The latter is also known as Test-First Development (Larman, 2004). Test creation before
coding requires understanding the specification and the reduction of ambiguity before
coding begins.

This paper proposes considering VV&T activities in any type of software pattern
definition. For that, it proposes a strategy that allocates test resources (requirements,
test cases and other produced documents) to software patterns, through the inclusion of
a new pattern section. As patterns can be used in software development, maintenance,
and reengineering, and testing activities are included in the quality assessment of any
product delivered to users (Rocha et al., 2001), patterns should be concerned with VV&T
activities.

Two reengineering case studies were conducted with the support of an agile
reengineering process, called PARFAIT ! (Cagnin et al., 2003b), that uses the GREN
framework (Braga and Masiero, 2002), which was built based on the GRN pattern lan-
guage (Braga et al., 1999) and belongs to the business resource management domain. In
one of the case studies a pattern language with allocated test requirements was used, and
it was possible to observe the reduction of both time and effort during software reengi-
neering. That is due to the fact that a large percentage of the test cases were based on the
reuse of the test requirements available in the patterns definition.

This paper is organized as follows: in Section 2 related work in the context of this
paper is presented. In Section 3 a strategy that allocates test resources to software patterns
is described. In Section 4 we describe an experience using the proposed strategy in the
patterns of the GRN pattern language, generating a specific strategy. In Section 5 the
results of two reengineering case studies are presented to compare the advantage of the
proposed strategy. In Section 6 conclusions are presented and future work is discussed.

2. Related Work

Tsai et al. (1999) discuss tests in design patterns in object oriented frameworks. They
present a technique, called Message Framework Sequence Specifications (MfSS), to sup-
port template scenario generation used to create types of test scenarios, such as partition
test scenarios and random test scenarios. These scenarios support the test of applica-
tions generated from object oriented frameworks that use extensible design patterns, i.e.,
patterns that allow the addition of new classes and methods to the framework at compila-
tion or runtime. MfSS is an extension of the techniques Method Sequence Specifications
(M1SS), and Message Sequence Specifications (MgSS), which specify the message inter-
action among objects of object oriented applications, through regular expressions.

Weyuker (1998) argues that it is important to make available, with software com-
ponents and their specification, the test cases and the parts of the component that are
exercised with these test cases. The reason is that components need to be tested in each
new environment as they interact with other components. However, Mariani et al. (2004)
observe that components are being used in ways not anticipated by their developers, mak-
ing their specifications invalid, as well as their available test sets. Mariani et al. (2004)

'PARFAIT - from the Portuguese “Processo Agil de Reengenharia baseado em FrAmework no dominio
de sistemas de Informacdo com técnicas VV&T”, which means: An Agile Reengineering Process based on
an Information System Domain Framework using VV&T Activities.

Pattern Applications

223

SugarLoafPLoP 2005 Proceedings

propose an approach for implementing self-testing components, which allows integration
test specifications and suites to be developed by observing both the behavior of the com-
ponent and of the entire system. Self-testing components can self-verify their behavior in
the new context and, thus, in principle, can be reused without any a-priori limitation, so
they are provided with a set of associated test cases that are executed at system deploy-
ment time.

Tevanlinna et al. (2004) present several testing approaches applied in the context
of product families. (Clements and Northrop, 2001). In one of them, called reusable asset
instantiation (McGregor, 2001) apud (Tevanlinna et al., 2004), the test assets are created
as extensively as possible in domain engineering, anticipating variabilities by creating, for
example, document templates and abstract test cases. In application engineering, a full
testing process according to the levels of the V-model > (Germany Ministry of Defense,
1992) (acceptance test, system test, integration test and unit test) is instantiated. The
concrete test assets are used as is, and the abstract assets are extended or refined to test
the product-specific aspects in application engineering (McGregor, 2001). Product family
testing differs from traditional testing in the reuse not only of resources related to the
architecture and components, but also testing resources. It is important to distinguish
between testing resources that belong to the domain and those that belong specifically to
the product. However, the literature lacks testing methods specific to product families,
which should focus primarily on unit and integration test.

As mentioned in the previous section, test resources allocated to patterns and com-
ponents, product families, and frameworks can support the practice of Test-Driven Devel-
opment. Larman (2004) mentions several advantages of this practice, among which are:
the unit tests actually get written: unit test writing is not often done if it is left as for
later; provable, repeatable, automated verification: having hundreds or thousands of
unit tests built in a test tool, during weeks, allows meaningful verification of system cor-
rectness; and the confidence to change things: if a change was made to the system, the
unit test set for the modified classes needs to be executed to know if the change caused
any errors.

3. Patterns with Testing

The strategy proposed in this paper allocates test resources to software patterns. This
strategy was motivated by the importance of easing the application of VV&T activities
in the production of software based on patterns, as mentioned in Section 1. The steps
of the proposed strategy are presented in Table 1. In the specific case of analysis and
design patterns, each element that participates in the pattern is equivalent to the classes
that compose the structure of such patterns.

In step Define types of requirements it is necessary to identify the requirement
types, according to the software aspects that should be considered by the tests, as they are
important to system verification and validation. This depends on the domain and on the
context for the pattern. For example, analysis patterns in the domain of business resource
management require tests related to consistency, integrity, and business rules. In this
case, integrity should be considered because a large volume of data is supplied by users,
and input errors in these data should be avoided. Consistency should be considered be-
cause data needs to be physically stored, for example using a relational or object-oriented
database, so it is necessary to guarantee that the data will be retrieved successfully later
on. Business rules should also be considered so that the system correctly satisfies or-
ganization business rules. Another example of a requirement type is for reengineering

2V-model of software testing that is the traditional way to model testing.

Pattern Applications

224

E SugarLoafPLoP 2005 Proceedings

Table 1: Steps of the strategy for aggregating test resources to software patterns

— Given a software pattern

e Define types of requirements

o Select existing test criteria

e For each type of requirement defined and common to most pattern elements

— Create test requirements based on the selected test criteria

e For each pattern element
— For each test requirement type defined and specific to the pattern element
x Create test requirements based on the selected test criteria
— Classify and document each test requirement created
— Derive test cases

— Map common test cases
— Make the test resources available

patterns, where it is relevant to worry about tests that ensure functional compatibility with
the legacy system. For design patterns, it should be important to test, for example, system
flexibility.

In step Select existing test criteria, it is necessary to decide which existing test
criteria will be used. A test criterion aims at selecting and evaluating test cases to in-
crease the chances of revealing defects or, when this does not occur, to establish a high
confidence level in product correctness (Rocha et al., 2001).

Each test criterion contributes a set of specific test cases, but any one of them offers
a complete set. Thus, test strategies need to be established, containing both functional and
structural criteria, so that it is possible to achieve a complete test set. According to Myers
(2004) and Roper (1994), functional and structural test criteria should be used together so
that one complements the other.

Initially, the type of criterion to be used has to be studied. Functional test criteria
should be selected when the product specification is considered to derive the test require-
ments, for example, when the pattern is an analysis pattern. On the other hand, when
product implementation is considered, structural test criteria can be selected, for example
when the pattern is a design or implementation pattern. After selecting the type of criteria,
observe the goals, cost, efficiency and strength * of the criteria belonging to the selected
type, so that they can be correctly chosen.

Functional test criteria “equivalence partitioning” and “boundary value analysis”
were used in the experience of allocating tests to analysis patterns (see next Section), as
they are the most common in the literature. The “equivalence partitioning” criterion di-
vides the input domain of a program into a finite number of equivalence classes (both
valid and invalid), and derives test cases from these classes. This criterion aims at mini-
mizing the number of test cases, by selecting at most one test case for each equivalence
class, as, in principle, all elements of a class should behave in an equivalent way (Rocha
etal., 2001). In other words, if a test case for a given equivalent class reveals an error, any

3or satisfaction difficulty, which refers to the difficulty of satisfying the criteria after having already

satisfied another (Rocha et al., 2001).
Pattern Applications 225

SugarLoafPLoP 2005 Proceedings

other test case of this class should reveal the same error (Myers, 2004). The functional test
criterion “boundary value analysis” complements the “equivalence partitioning” criterion
and is concerned with creating test cases that consider values directly below or above the
bounds of equivalent classes. According to Myers (2004), test cases that explore boundary
conditions are more worthwhile than those that do not.

In step Create test requirements based on the selected test criteria test require-
ments for the types defined are created, based on the guidelines of each selected test
criterion. Each test requirement should be classified and documented (step Classify and
document each test requirement created). The test requirement classification is related
to “when” the test should be executed. For example, in analysis patterns of the business
resource domain, the execution of a test is done during the data manipulation operations
(i.e., insertion, modification, deletion, and search). In design patterns, the test execution
can be done before (in the design models that are built) or after the system implementa-
tion (in the source code that is created). The documentation should supply the information
needed to support the next step (Derive Test Cases), considering the test requirements’
specification and valid conditions.

In step Map common test cases, the test cases that are common to most pattern
elements are mapped to the patterns that should use them, to encourage reuse. The map-
ping documentation should contain the following information: pattern name, pattern
class, test case number, and previous validations.

In step Make the test resources available, both test requirements and test cases
are included in the pattern documentation, with the introduction of a new section called
VV&T Information. In this section, the test criteria used in the test resources creation
should be mentioned. In the case of pattern languages, systems of patterns or any other
types of pattern collections, test resources that can be used by all patterns should be placed
in a general VV&T Information section that could be shared by all of them, while the test
resources that are specific to each individual pattern and the test cases mapped in step
Map common test cases are placed in its own VV&T Information section. For example,
in the GRN pattern language, the test resources relative to business rules together with
the mapping done in step Map common test cases are placed in the VV&T Information
sections corresponding to the patterns to which they belong, while the test resources corre-
sponding to consistency and integrity are placed on a general VV&T Information section,
because they are applicable to all patterns.

4. Analysis Patterns with Testing: An Experience

The strategy presented in the previous section to allocate test resources to software pat-
terns was used in several analysis patterns that compose the GRN pattern language, for
the business resource management domain (Braga et al., 1999). GRN has fifteen analysis
patterns, some of which are applications or extensions of existing patterns in the literature.

Figure 1 presents GRN patterns, the dependencies among them, and the order in
which they can be applied. This pattern language has three main patterns: RENT THE
RESOURCE (4), TRADE THE RESOURCE (6), and MAINTAIN THE RESOURCE
(9). The application of each of these patterns and, consequently, of the patterns associated
with them, is done according to the goal of the application being modeled. Their use is
not mutually exclusive, as there are applications in which they can be used in parallel (for
example, in a car repair shop that also sells and buys parts, in addition to repairing cars).

According to Figure 1, the patterns are categorized in three groups, depending on
their goal. Group 1 (Identification of the Business Resource) has three patterns, (1),

Pattern Applications

226

E SugarLoafPLoP 2005 Proceedings

(2) and (3), which are concerned with the identification and possible qualification, quan-
tification and storage of the resources managed by the organization. Group 2 (Business
Transactions), has seven patterns, (4) to (10), which are concerned with the operations
performed with the resources by the application. Group 3 (Business Transaction De-
tails) contains five patterns, (11) to (15), which are concerned with the details of the
transactions performed with the resource.

Initially, during the execution of step Define types of requirements of the strat-
egy, three types of test requirements were identified: consistency, integrity, and business.

:

‘ IDENTIFY THE RESOURCE (1) ‘

Group
1 A4
Business {
Resource
Identification

| QUANTIFY THE RESOURCE (2) |

‘ STORE THE RESOURCE (3) ‘

- v \
| RENT THE RESOURCE (4) | TRADE THE RESOURCE (6) | | MAINTAIN THE RESOURCE (9)

Group RESERVE THE QUOTE THE QUOTE THE
2 < Resource (5) TrRADE (7) MAINTENANCE (10)
Business I
Transactions ¢
CHECK RESOURCE
DELIVERY (8)
an i
v
Group » ITEMIZE THE RESOURCE PAY FOR THE RESOURCE IDENTIFY MAINTENANCE
3 TRANSACTION (11) > TRANSACTION (12) TAsks (14)
Business < #
Transaction ¢
Details IDENTIFY MAINTENANCE
IDENTIFY THE TRANSACTION PARTs (15)
Executor (13)

Figure 1: Structure of the GRN pattern language (Braga et al., 1999)

The definition of the consistency test requirement was motivated by the impor-
tance of validating the data submitted to the system before they are stored. The definition
of the integrity test requirement was motivated by the importance of correct storage of
the data processed by the information system in a relational database and, mainly, by the
need to ensure the integrity of the stored data, so that they are later correctly retrieved. The
business test requirement has the goal of assessing the correct treatment of the business
rules and ensuring that the system works properly. This requirement is based on specific
business features, and concerns the business functions embedded in the pattern.

As GRN analysis patterns provide knowledge about the domain functionality, in
the form of solutions to analysis problems, rather than source code, only the functional
test criteria were considered during the execution of step Select existing test criteria.
As discussed in the previous section, the “equivalence partitioning” and “boundary value
analysis” criteria (Myers, 2004) were selected, in addition to the ideas behind the “Input
Validation Test” technique # (Hayes and Offutt, 1999).

“the “Input Validation Test” technique identifies test data that try to show the presence or lack of specific
Pattern Applications 227

SugarLoafPLoP 2005 Proceedings

Table 2 presents the steps of a strategy to allocate test resources to GRN patterns,
based on the strategy proposed in Section 3. Most steps were maintained as a one to
one relationship, except by step Create test requirements based on the selected test
criteria, which was split into three steps (Create consistency test requirements, Create
integrity test requirements and Create business test requirements).

Table 2: Strategy to allocate test resources to GRN patterns

— Define types of requirements

— Select existing test criteria

— Create consistency test requirements
— Create integrity test requirements

— For each GRN pattern

e For each pattern class

— Create business test requirements

— Classify and document each of the test requirements
— Derive test cases

— Map common test cases

— Make the test resources available

Consistency and integrity test requirements that are common to most GRN pat-
tern classes (step Create consistency test requirements and step Create integrity test
requirements) were defined based on the equivalence classes created by applying the se-
lected functional test criteria. The documentation of the equivalence classes was adapted
from the one suggested by (Myers, 2004) and is presented in Table 3.

Table 3: Global Equivalence Classes

| Operation | Requirement Type | Valid Classes | Invalid Classes \

Include, Modify, | consistency checking | integer attribute (1) non integer attribute(2)
Delete
Include, Modify, | consistency checking | attribute value between 1 | attribute value < 1 (4)
Delete and 2147483647 (3)

value > 2147483647 (5)
Include, Modify, | consistency checking | attribute value between O | attribute value < 0 (7)
Delete and 2147483647 (6)
Include, Modify, | consistency and in- | filled attribute value (8) | empty attribute value (9)
Delete tegrity checking

Include, Modity

consistency checking

alphanumeric attribute

value(10)

non-alphanumeric
attribute value (11)

Include, Modify

integrity checking

attribute is foreign key
registered as a primary
key in the associated ta-
ble (47)

attribute is foreign key
and is not registered as a
primary key in the asso-
ciated table (48)

Delete

integrity checking

attribute without pend-
ing relationships (it is
not a foreign key) (49)

attribute with pending
relationships (50)

To create the global consistency equivalence classes, both valid and invalid
equivalence classes have to be considered for each primitive data type (integer,

faults, concerning “input tolerance” (i.e. verifies the system ability to adequately processing input values,
both expected or non-expected).

Pattern Applications

228

SugarLoafPLoP 2005 Proceedings

float, string and date); as well as for other data types (for example, vector,
enumeration, multivalue, etc), which are used by the analysis pattern language.
For attributes whose type is different from the primitive ones, it is necessary to check the
possible valid and invalid equivalence classes, which can be abstracted from the sugges-
tions established in (Cagnin et al., 2004) for the types integer, float, string, and
date, and others can be created to consider specific characteristics of the attribute type.

To create the global integrity equivalence classes, both valid and invalid equiva-
lence classes should be created for each integrity rule of the relational database. In this
work, the integrity rules are limited to primary and foreign keys of relational databases,
so other features such as triggers and stored procedures are not considered.

In step Create business test requirements valid and invalid equivalence classes
are created from specific business functions embedded in the patterns of the analysis pat-
tern language (business rules of the domain for which the analysis pattern languages be-
longs), taking into account its conditions. For example, in a rental, the resource can only
be rented if it is available at the moment. The documentation of the equivalence classes
for the business test requirement was also adapted from that proposed by (Myers, 2004)
and contains additional information compared to the one presented in Table 3: the pat-
tern class to which the requirement belongs, the corresponding table in the RDBMS, the
attribute of the pattern class that is involved in the business rule and a comment about
when the test requirement should be considered, if necessary. In Table 4 an example is
given to illustrate the documentation of the equivalence class for this type of requirement.

Table 4: Equivalence Class for the business test requirement of the “RENT THE
RESOURCE?” class

Operation | Pattern Corresponding Attribute Valid Classes Invalid Classes Comment
Class Table
Include Rent the | ResourceRental situation situation of the | situation of the | Requirement
Resource of the | resource instance | resource instance | should be consid-
resource is “available” | is “unavailable” | ered only if the
instance (51) (52) “Itemize the Re-

source Transaction”
pattern was not
used and if the
“Instantiable ~ Re-
source” sub-pattern
was used.

Notice that the creation of the test requirements , in addition to being based on
the valid and invalid equivalence classes, are also based on the “boundary value analysis”
criterion, by observing the bounds immediately above and below each equivalence class.
In step Create business test requirements, business test requirements were created for
each participating class of each pattern of the GRN pattern language.

All the requirements defined for GRN are classified in step Classify and docu-
ment each test requirement created, according to the data manipulation operation (in-
clude, modify, delete or search) done in the relational database. This occurs because
GRN was used as basis for the construction of the GREN framework (Braga and Masiero,
2002), using MySQL (MySQL, 2003) RDBMS, which is a relational database.

Another activity of step Classify and document each test requirement created
is to document all the requirement types created. To support that, Cagnin et al. (2004)
suggests that the documentation be presented in a tabular format. The documentation
of the test requirements that are common to most patterns should contain the following
information: test requirement number; test requirement type (e.g, integrity, persistence,
or business); type of data manipulation operation treated by the test requirement (e.g.,

Pattern Applications

229

E SugarLoafPLoP 2005 Proceedings

include, modify, delete, or search); equivalence classes numbers used to create the test
requirement; test requirement specification, describing what should be considered by
the input data of the test case to be instantiated in Derive test cases; valid condition to be
considered when analyzing the input data and establishing the expected return; previous
validation, i.e., test requirements that are considered as pre-condition of the test require-
ment being documented; comment, which contains some relevant information regarding
the test requirement; and expected return. A portion of the test requirements documen-
tation that is common to most GRN patterns, created from the global equivalence classes
llustrated in Table 3, is shown in Table 5.

Table 5: Partial Documentation for the consistency and integrity test require-
ments of GRN patterns

Test | Type Operation | Equiv Test Req | Valid Condi- | Previous | Comment| Expected Return
Req Classes Spec tions valida-
Num- tion
ber
TRO1| Consist. Include, 2 non integer | integer at- | — - consistency ver-
Modity, attribute tribute ification error,
Delete, operation cannot
Search proceed
TRO2| Consist. Include, 1,4,8 attribute ==0 | attribute has an | — - consistency ver-
Modity, integer value ification error,
Delete, (greater than 0 operation cannot
Search and less than proceed
2147483648)
TRO3| Consist. Include, 1,3,8 attribute == attribute has an | — - well succeeded ver-
Modify, integer value ification, operation
Delete, (greater than 0 can proceed
Search and less than
2147483648)
TRO4| Consist. Include, 1,3,8 attribute == | attribute has an | — - well succeeded ver-
Modify, 2147483647 integer value ification, operation
Delete, (greater than 0 can proceed
Search and less than
2147483648)
TRO5| Consist. Include, 25,8 attribute > | attribute has an | — - consistency ver-
Modify, 2147483647 integer value ification error,
Delete, (greater than 0 operation cannot
Search and less than proceed
2147483648)
TRO6| Consist. Include, 1,4,8 attribute < 1 attribute has an | — - consistency ver-
Modify, integer value ification error,
Delete, (greater than 0 operation cannot
Search and less than proceed
2147483648)
TRO7| Consist. Include, 9 empty at- | attribute is not | — - consistency ver-
Modify, tribute empty ification error,
Delete, operation cannot
Search proceed
TRO8| Integr. Include 44 register is | register is not | TROl to | — integrity verifica-
logged logged TRO7 tion error, operation
cannot proceed
TRO9| Integr. Modify, 46 registerisnot | register is | TRO1 to | — integrity verifica-
Delete, logged logged TRO7 tion error, operation
Search cannot proceed

To document the business test requirements that are specific to each class of
the GRN patterns, the following information is added: pattern name; class name and
RDBMS table. A portion of the documentation for the business test requirement of GRN
pattern 4 (RENT THE RESOURCE) is presented in Table 6.

Guidelines to support the consistency (step Create consistency test require-
ments) and integrity (step Create integrity test requirements) test requirements cre-
ation, and to ease the test requirements classification (step Classify and document each
of the test requirements) are described in (Cagnin et al., 2004).

Pattern Applications

230

SugarLoafPLoP 2005 Proceedings

In step Derive and document test cases, test cases are derived from the defined
requirements. One test requirement can generate more than one test case, for example,
TC7 and TCS test cases of Table 8. We suggest the tabular format for the test cases doc-
umentation. The documentation of each test case derived from the test requirements that
are common to the majority of the patterns should contain the following information: test
case number; test requirement number (obtained from the test requirement documen-
tation); operation type (obtained from the test requirement documentation); previous
validations, i.e., number of test cases that should be considered as pre-condition; input
data (specifies the value that should be used as input data for the test); and expected
output (specifies the test expected value relative to the input data). It can be noticed
that some information of the test requirement documentation is repeated to ease the test
case readability. In Table 8 a snippet of the test case documentation is presented, which
was derived from the test requirements presented in Table 5 (that table presented those
requirements that are common to most GRN patterns).

To document the test cases derived from the business test requirements, the fol-
lowing information should be added: pattern name (obtained from the test requirement
name) and class name (obtained from the test requirement documentation). In Table 7,
an example of the business test cases documentation for GRN pattern 4 (RENT THE
RESOURCE) is presented. They were derived from the test requirements presented in
Table 6.

In step Map common test cases, a mapping is done between the pattern specific
attributes and the test cases that are common to all patterns. For that, it is necessary to
know, for each pattern attribute, its type and possible length, whether or not this attribute
is a primary key in the corresponding relational database table, and its relationships with
other classes that participate of the pattern (as these are mapped to foreign keys in the
relational database). Then, from the test requirements documentation, test cases derived
from this requirement are obtained. For example, in the specific case of the number
attribute (Resource Rental class of RENT THE RESOURCE pattern), which is an
integer and primary key, we can reuse the test cases shown in Table 8, from the test
requirements shown in Table 5.

Table 9 shows an example that illustrates the mapping between the test cases and
the number attribute of the Resource Rental class (pattern 4 - RENT THE RE-
SOURCE). In this specific case, two columns were added: RDBMS table and attribute,
corresponding to the table and the attribute being validated.

In step Make test resources available, the documentation of the business test
resources is placed in a new pattern section, named VV&T Information. For example, the
equivalence classes presented in Table 4, the test requirements presented in Table 6, the
test cases presented in Table 7 and the mapping presented in Table 9 are made available.

The documentation of the consistency and integrity test resources, which are ap-
plicable to all patterns, is made available at the end of GRN patterns, in a new section,
also named VV&T Information (Tables 3, 5 and 8). In both sections, the functional crite-
ria used to create the test resources (i.e., “equivalence partitioning” and “boundary value
analysis”) should be mentioned.

Pattern Applications

231

SugarLoafPLoP 2005 Proceedings

(P9)uaI ST 9IN0SAI

SSB[O [BIUQY 0N0S
-9y oy Jo senqun

op ey Sromowely | -je 9yl Jo AOU9)SISuod
-o1d jouued uonerado ‘IO UOH | NHYD 9yl 0] ‘sueawl | Ay} oYew 0} [NJIsn ey 0INOSAY
-BOYLIOA AJI[RUONOUNY SSQUISNq | SIY)) . = uomemIs | aIe jey) sased 1S [e Q0INOSAY | oYl WY P wdned KJIPOIA “opnjouf 1L €IDL
SSE[O [RIUQY 92INOS
(3[qe[IRAR ST Q2INOSAI | -9y Yl JO sdnquy
o ey Somowely | -je oyl Jo Aouo)SIsuod
uonerodo ‘uoneoyuLoA Afeuon | NHYO Oyl 0} ‘Sugsll | dY) 2INSUS O} [nJasn ey 90IN0SY
-Ounj SSAUISNQ PIpIAdONS [[Pm | SIY)) . [,, =: UONBMIS | QIR JBY) SISLD 1SI) [[B Q0INOSIY | AUl Y f urned KJIPOJN ‘opnjouf OT¥L 7101
JquINN JquINN
ndinQ pajdadxy ejeqinduy | suonepI[eA SNOIAdIJ sse[) uided wed uonerddg | bay 1S9L, | dse) 18I
usayped NYD ..221N0S3Y 9Y] JUdYy,, 9y} 10} sose]sa] ssauisng :/ ajgelL
SSE[O [RIUY
20N0sIY Y} JO
sanque 3y} Jo
padooid jou KouQ)sisuod ay) Jpajuar,,
-ued uonerado ‘101 oyew 0) [njosn JIqe | == uonemis 90IN0SAY
-I9 uonedyLdA AN dIe Jey) SjuaW | -[IeAR, == UON oue)sur ey KJIPOIN euy | oyl udy
-[euonouny ssaursng — | -oxmborisey [e | -emys 9oInosar 90IN0SAI S 90IN0SIY ‘opnpouy Q0INOSIY | p urened ssouisng 1TdL
SSE[O [eIuay
20n0s3Y 2y} Jo
saynqgre A Jo
Kouo)sIsuod oy dlqereae,,
pasooxd ueo oyeuwr 0) [njosn JIqe | == uonemys 90IN0SY
uonerodo ‘uoneoyr dIe Jey) SjuoW | -[leAe,, == UON due)sur TeIuay KJIPOIN ey | oy Juey
-IOA PIPAIINS [[oM — | -oxmboar)s9) e | -enjis 90INOSAX 90IN0sax IS 0IN0SY “apnpouy 0INOSAY | p uIened ssoursng 0TdL
JIquInN
suonep suon Jad sasse) dIqeL ssep) bay
WIn)IY pajdadxy JuRWWO)) | -I[BA SNOIAdIJ | -Ipuo) preA | -siq bay 1say, Ambgg qaqy | uonerddQ wned unned adA], 189,

¥ wiaped NYD JO SSe|o , |eludy 924n0SaY,, 9y} 10} sjuswaiinbai }sa) ssauisng ay) Jo uoneUaWNI0Q [ellied 9 djgeL

232

Pattern Applications

SugarLoafPLoP 2005 Proceedings

Table 8: Consistency and Integrity test cases for GRN patterns

Test Test Operation Previous Vali- | Input Data Expected Output
case Req dations
number number
TCO1 TRO1 Include, Modify, | — attribute := “A” consistency verification error, op-
Delete, Search eration cannot proceed
TCO02 TRO2 Include, Modify, | — attribute := 0 consistency verification error, op-
Delete, Search eration cannot proceed
TC3 TRO3 Include, Modify, | - attribute := 1 well succeeded verification, oper-
Delete, Search ation can proceed
TC4 TRO4 Include, Modify, | — attribute = | well succeeded verification, oper-
Delete, Search 2147483647 ation can proceed
TCS TRO4 Include, Modify, | - attribute := | well succeeded verification, oper-
Delete, Search 2147483646 ation can proceed
TC6 TROS Include, Modify, | — attribute := | verification error, operation can-
Delete, Search 2147483648 not proceed
TC7 TRO6 Include, Modify, | — attribute := -1 verification error, operation can-
Delete, Search not proceed
TC8 TRO6 Include, Modify, | — attribute := 0 verification error, operation can-
Delete, Search not proceed
TC9 TRO7 Include, Modify, | — attribute := null verification error, operation can-
Delete, Search not proceed
TC10 TROS Include TCO1 to TCO9 attribute := 1 (already | integrity verification error, opera-
registered) tion cannot proceed
TC11 TRO9 Modify, Delete, | TCO1 to TC09 attribute := 2 (not reg- | integrity verification error, opera-
Search istered) tion cannot proceed
Table 9: Test Cases Mapping
Pattern Pattern Class RDBMS Table | Attribute Test Case | Previous
number Validations
Pattern 4: Rent the Re- | Resource Rental ResourceRental | number TC1 to TC11 -
source
Pattern 4: Rent the Re- | Resource Rental ResourceRental | observation TC1 to TC9
source

To reuse the test resources, the reuse guidelines proposed in (Cagnin et al., 2004)
should be used. Basically, they consist of mapping the system functionality to the asso-
ciated GRN patterns and reusing the test resources available, both the specific ones and
those that are common to several patterns. For system functionality that doesn’t corre-
spond to GRN patterns, it is also possible to reuse, maybe after some adaptation, the test
resources that are common to all patterns. Furthermore, guidelines are provided to test
the correct use of the pattern language as a whole, as several issues need to be checked,
such as: whether the pattern sequence was used correctly, according to the GRN struc-
ture (Figure 1) and the following patterns section; whether the mandatory classes of the
pattern were considered, according to the pattern sections structure, participants and vari-
ants; and, when the usage of one pattern requires the application of other patterns, if they
were correctly used. We suggest that all these guidelines are applied incrementally for
each system functional requirement.

5. Case Study

Two reengineering case studies were conducted with the support of the PARFAIT process
(Cagnin et al., 2003b). This process uses the GREN framework for computational support.
As GREN was built based on the GRN pattern language, all classes and relationships
contained in each GRN pattern have a corresponding implementation within the GREN
classes. Variants of each pattern were implemented as framework hot spots °.

Shot spots are framework abstract classes or methods that must be overridden in the specific application
during framework instantiation (Markiewicz and Lucena, 2001).

Pattern Applications

233

SugarLoafPLoP 2005 Proceedings

As GRN belongs to the same domain of the legacy system, it is used to support
its understanding and to build its class diagram. Patterns and variants applied in the
construction of the class diagram are used in the GREN framework instantiation. Users
of the legacy system should participate in the reengineering to refine and validate the
resulting artifacts.

In PARFALIT, the legacy system understanding and the identification of the busi-
ness rules are also obtained by executing the system functions, which is done in a system-
atic way with the support of VV&T activities. Test cases executed in the legacy system
are used later to validate the target system.

The legacy system submitted to reengineering in the case studies is a small sys-
tem (with approximately 6 KLOC) to control book loans in a University library. It was
developed in Clipper and was operative during the case studies conduction.

The first case study was done by an undergraduate student in the fourth year of a
Computing Science course at [ICMC-USP. The test cases used to execute the legacy system
and, afterwards, to validate the target system, were created from scratch with the support
of functional test criteria, namely the “equivalence partitioning” and the “boundary value
analysis”, totalizing 174 equivalence classes and 354 test cases. This was done in about
549:00 hours from a total of 676:29 hours spent on the reengineering, i.e., approximately
81% of the reengineering effort was spent with VV&T activities. More information about
this case study can be found elsewhere (Cagnin et al., 2003a).

The second case study was conducted by an undergraduate student of the second
semester of a Computing Science course at I[CMC-USP. In this case, the test cases used
to execute the legacy system and, afterwards, to validate the target system, were reused,
whenever possible, from the VV&T Information sections of the GRN patterns used to
model the legacy system. The creation of most test cases was totally reused, as presented
in Table 10. This consumed 238:10 hours from a total of 323:40 hours spent in the case
study, i.e., approximately 74% of the reengineering effort was spent to create test cases.
The time spent with VV&T activities (i.e., time spent with test creation and execution)
had a reduction of about 57%, compared with the first case study, and the percentage in
relation to the total reengineering time suffered meaningful reduction of about 52%. More
information about the conduction of this case study can be found in (Cagnin, 2005).

Table 10: Data about VV&T activities collect in the second reengineering case

study
| Data collected | Value | Percentage |
Test cases created from reused equivalence classes 34 4%
Test cases created from scratch (new equivalence | 43 5%
classes)
Test cases created from reused and adapted require- | 80 9,4%
ments
Test cases created from reused test requirements 695 81,6%

The results indicate that there is a reduction in the time spent with tests both in
reengineering and in software development when test resources are allocated to patterns
to ease their reuse. However, we should observe that these results are only clues that the
reengineering time is reduced. Controlled experiments should be conducted to verify this
hypothesis.

Pattern Applications

234

SugarLoafPLoP 2005 Proceedings

6. Conclusion and Future Work

As mentioned in Section 2, a present concern exists in providing test resources associ-
ated to different reuse paradigms (Tsai et al., 1999; Weyuker, 1998; Mariani et al., 2004;
Tevanlinna et al., 2004), to guarantee the quality and reliability of the products created.
Nevertheless, the authors of this paper did not see any evidence in the literature of work
to capture expert solutions as well as the underlying validation aspects. Another problem
we see is that we frequently cannot assess the quality of a pattern we want to use, be-
cause it does not provide indications of how it was validated, except by the known uses
section, which is often vague. This paper presented a strategy to solve these problems,
by including a section in the pattern documentation to help validate the solution in the
pattern. Existing pattern formats, as for example Gamma et al. (1995), Appleton (1997)
and Meszaros and Doble (1998), do not consider this aspect.

The proposed strategy was used in some patterns of the GRN pattern language that
belongs to the business resource management domain. The test resources were reused
during a reengineering case study and the time spent was compared with another case
study performed, without the reuse of test resources. The results have suggested a reduc-
tion of the time spent with VV&T activities. However, controlled case studies need to be
performed to verify these results.

The proposed strategy was used with only a few GRN patterns, which are analysis
patterns. So, it would be desirable to apply the strategy to other patterns, with different
contexts and in other domains, using other test criteria, so that the strategy can be refined
and generalized. We intend to explore these ideas next in the context of Web applications
development.

References
Appleton, B. (1997). Patterns and software: Essential concepts and ter-
minology. site. http://www.cmcrossroads.com/bradapp/docs/

patterns—intro.html. Accessed: December, 2003.

Beck, K. (2002). Test-driven development: by example. The Addison-Wesley signature
series. Addison-Wesley, first edition.

Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M.,
Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin, R. C.,
Mellor, S., Schwaber, K., Sutherland, J., and Thomas, D. (2001). Manifesto for agile
software development. site. http://www.agilemanifesto.org. Accessed:
June, 2003.

Beck, K. and Johnson, R. (1994). Patterns generate architectures. In ECOOP’1994,
8th European Conference on Object-Oriented Programming, pages 139-149, Bologna,
Italy.

Binder, R. V. (1999). Testing Object-Oriented Systems: Models, Patterns, and Tools.
Addison-Wesley, first edition.

Braga, R. T. V., Germano, F. S. R., and Masiero, P. C. (1999). A pattern language for
business resource management. In PLOP’1999, 6th Conference on Pattern Languages
of Programs, pages 1-33, Urbana, IL, USA.

Braga, R. T. V. and Masiero, P. C. (2002). A process for framework construction based on
a pattern language. In COMPSAC’2002, 26th Annual International Computer Software
and Applications Conference, 26, pages 615-620, Oxford, England. IEEE.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M., Sommerlad, P., and
Stal, M. (1996). Pattern-oriented software architecture: A System of Patterns. Wiley
Series in Software Design Patterns. Wiley, first edition.

Pattern Applications

235

E SugarLoafPLoP 2005 Proceedings

Cagnin, M. L. (2005). PARFAIT: A Contribution for Software Reengineering based on
Pattern Languagens and Frameworks. PhD thesis, Instituto de Ciéncias Matemadticas e
de Computacao, Universidade of Sao Paulo, Sao Carlos—SP. (in Portuguese).

Cagnin, M. 1., Maldonado, J. C., Chan, A., Penteado, R. D., and Germano, F. S. (2004).
Reuse on Testing Activity to Reduce Cost and Effort of VV&T in Software Develop-
ment and Reengineering. In XVIII Brazilian Software Engineering Symposium, pages
71-85, Brasilia-DF, Brazil. (in Portuguese).

Cagnin, M. 1., Maldonado, J. C., Germano, F. S., Chan, A., and Penteado, R. D. (2003a).
A reengineering case study using PARFAIT process. In SDMS’2003, Naive Software
Development and Maintenance Symposium, pages 1-10, Rio de Janeiro, RJ. (in Por-
tuguese).

Cagnin, M. 1., Maldonado, J. C., Germano, F. S., and Penteado, R. D. (2003b). PAR-
FAIT: Towards a framework-based agile reengineering process. In ADC’2003, Agile
Development Conference, pages 22-31, Salt Lake City, UTHA, USA. IEEE.

Clements, P. and Northrop, L. (2001). Software Product Lines: Practices and Patterns.
SEI Series in Software Engineering. Addison-Wesley.

Coad, P. (1992). Object-oriented patterns. Communications of the ACM, 35(9):152—159.

Coad, P., North, D., and Mayfield, M. (1997). Object models: Strategies, patterns and
applications. Yourdon Press, second edition.

DeLano, D. E. and Rising, L. (1998). Pattern Languages of Program Design 3, volume 1,
chapter Software Design Patterns: Common Questions and Answers, pages 503-525.
Addison-Wesley, first edition.

Demeyer, S., Ducasse, S., and Nierstrasz, O. (2000). A pattern language for reverse
engineering. In EuroPLOP’2000, 5th European Conference on Pattern Languages of
Programming and Computing, pages 189-208, Irsee, Germany. Andreas Ruping.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). Design Patterns Elements of
Reusable of Object-Oriented Software. Addison-Wesley, second edition.

Germany Ministry of Defense (1992). V-Model: Software Lifecycle Process Model.
Technical Report General Reprint N°250, Germany Ministry of Defense.

Harrold, M. J. (2000). Testing: a roadmap. In ICSE’2000, 22nd International Confer-
ence on Software Engineering, The Future of Software Engineering, pages 61-72, New
York, NY, USA. ACM Press.

Hayes, J. H. and Offutt, A. J. (1999). Increased software reliability through input valida-
tion analysis and testing. In ISSRE’1999, 10th International Symposium on Software
Reliability Engineering, pages 199-209, Boca Raton, FL, USA.

Larman, C. (2004). Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design and Iterative Development. Prentice Hall, third edition.

Lemos, G. S. (2002). PRE/OO - an object-oriented reengineering process emphasing
quality assurance. M.sc. dissertation, Computer Department. Federal University of Sao
Carlos, Sao Carlos-SP, Brazil. 159 p. (in Portuguese).

Mariani, L., Pezze, M., and Willmor, D. (2004). Generation of selft-test components.
Lecture Notes in Computer Science (LNCS), Springer, 3236(2004):337-350.

Markiewicz, M. and Lucena, C. (2001). Object oriented framework development. ACM
Crossroads Student Magazine. Crossroads 7.4, Summer 2001. http://acm.org/
crossroads/xrds7-4/frameworks.html. Accessed: January/2005.

McGregor, J. D. (2001). Structuring test assets in a product line effort. In Proceedings of
the Second International Workshop on Software Product Lines: Economics, Architec-
tures, and Implications, pages 89-92.

Meszaros, G. and Doble, J. (1998). A pattern language for pattern writing, chapter 29, J.
Coplien; D. Schmidt. Pattern Languages of Program Design, pages 529-574. Reading-
MA, Addison-Wesley.

Mpyers, G. J. (2004). The art of software testing. Wiley, second edition.
Pattern Applications 236

E SugarLoafPLoP 2005 Proceedings

MySQL (2003). MySQL Reference Manual. http://www.mysql.com/doc/en/
index.html. Accessed: December/2003.

Pressman, R. (2001). Software Engineering: A Practitioner’s Approach. McGraw-Hill,
Sth edition.

Recchia, E. (2002). Reverse engineering and reengineering based on patterns. Master’s
thesis, Computer Department. Federal University of Sao Carlos, Sdo Carlos-SP, Brazil.
159 p. (in Portuguese).

Rocha, A. R., Maldonado, J., and Weber, K. (2001). Software Quality: Teory and Prac-
tice. Prentice Hall, first edition. (in Portuguese).

Roper, M. (1994). Software Testing. The International Software Engineering Series.
McGraw-Hill.

Sommerville, I. (2000). Software Engineering. Addison-Wesley, sixth edition.

Stevens, P. and Pooley, R. (1998). Systems reengineering patterns. In ACM SIGSOFT
1998, Sixth Internatinal Symposium on the Foundations of Software Engineering, pages
17-23, Orlando, Florida, USA.

Tevanlinna, A., Taina, J., and Kauppinen, R. (2004). Product family testing: a survey.
ACM SIGSOFT Software Engineering Notes, 29(2):12—12.

Tsai, W., Tu, Y., Shao, W., and Ebner, E. (1999). Testing extensible design patterns in
object-oriented frameworks through scenario templates. In COMPSAC’1999, 23rd In-
ternational Computer Software and Applications Conference, pages 166—171, Phoenix,
AZ.

Weyuker, E. J. (1998). Testing component-based software: A cautionary tale. IEEE
Software, 15(5):54-59.

Acknowledgements

The authors would like to thank Linda Rising, who provided several comments to improve
this paper.

Pattern Applications 237

E SugarLoafPLoP 2005 Proceedings

XSpeed: Uma ferramenta para geracio de aplicacdes
distribuidas baseadas em padroes

Lincoln S. Rocha', Rute Nogueiraz, Joio Gustavo Prudéncio, Rossana M. C.
Andrade e Jerffeson Teixeira de Souza

Universidade Federal do Ceara, Departamento de Computagdo, Campus do Pici
Bloco 910, 60455-760, Fortaleza — Ceara — Brasil.

{lincoln, rute,gustavo, rossana, jeff}@lia.ufc.br

Resumo. Este artigo apresenta uma ferramenta, denominada XSpeed, que tem
como objetivo principal aumentar a produtividade no desenvolvimento de
aplicacoes para ambiente distribuido utilizando padroes para resolver
problemas recorrentes neste dominio. XSpeed recebe como entrada um
arquivo XMI contendo o modelo UML de uma aplicagdo e entdo realiza a
geragdo automadtica de codigo para uma plataforma especifica. Também neste
artigo é apresentado um estudo de caso para ilustrar o funcionamento da
ferramenta.

Abstract. This paper presents a tool, called XSpeed, which increases
productivity in the development of applications for a distributed environment
using software patterns to solve recurrent problems in the scope of this
domain. XSpeed receives as input a XMl file, which has the UML model of an
application and then performs an automatic code generation for a specific
platform. A case study is presented to illustrate how this tool works to achieve
its requirements.

1. Introducao

O desenvolvimento de aplicagdes para o ambiente distribuido ¢ um processo complexo
e que requer do engenheiro de software um maior esfor¢o. No intuito de padronizar e
simplificar esta tarefa, especificagdes como CORBA [14] e J2EE [21] surgem como
uma alternativa pratica e vidvel. Da mesma forma, a utilizagdo de padrdes de software e
frameworks, neste contexto, podem contribuir de maneira significativa para o aumento
da reusabilidade, escalabilidade, flexibilidade [18] e diminui¢do da complexidade do
codigo produzido. Em contrapartida, a incorporacdo de especificacdes, padrdes de
software e frameworks ao processo de desenvolvimento pode ocasionar um impacto,
ndo positivo, na curva do aprendizado.

A utilizacdo de ferramentas de geracdo automadtica de aplicagdes é uma
abordagem que traz consigo inimeras vantagens. Além de aumentar a produtividade na
fase de desenvolvimento, garante a ndo ocorréncia de erros na traducio da especificacio
(modelo de alto nivel) para a implementacdo (linguagem alvo), uma vez que essa
atividade ¢ realizada de maneira automatica. Além disso a manutenibilidade da
aplicagdo gerada ¢ facilitada devido a uniformidade e modularidade do coédigo
produzido.

! Bolsista de mestrado financiado pela CAPES.
? Bolsista de mestrado financiado pela FUNCAP.

Pattern Applications 238

SugarLoafPLoP 2005 Proceedings

Este artigo propde uma ferramenta denominada XSpeed, que busca integrar
tecnologias e facilitar a reutilizagdo de padrdes no processo de desenvolvimento de
aplicagdes para ambiente distribuido através da geragdo automatica de codigo a partir de
modelos UML [7], disponibilizados através de arquivos no formato XMI (XML
Metadata Interchange) [15]. Desta maneira, as novas aplicacdes geradas seguirdo um
modelo de arquitetura padronizado, facilitando o entendimento e a manutenibilidade do
sistema como um todo.

O restante deste artigo ¢ descrito como segue: na se¢do 2 encontram-se padrdes
de software e ferramentas relacionadas com o desenvolvimento de aplica¢des para um
ambiente distribuido; na se¢do 3 sdo apresentados os padrdes utilizados para fazer a
validagcdo da ferramenta; na secdo 4 ¢ apresentada uma descricdo da arquitetura do
XSpeed; na se¢do 5 é mostrado um estudo de caso da ferramenta e por fim na secdo 6
sdo apresentadas as conclusdes obtidas neste trabalho bem como sugestdes para
trabalhos futuros.

2. Trabalhos Relacionados

A reutilizacdo de padrdes no desenvolvimento de um software tem emergido como uma
das mais promissoras abordagens para a melhoria da qualidade dos artefatos de
software, pois eles permitem que a experiéncia de desenvolvedores seja documentada e
reutilizada, registrando-se solu¢des de projeto para um determinado problema em um
contexto particular.

A utilizacdo de ferramentas que fazem geragdo automatica de aplicacdes e
utilizam padrdes de soffware como estratégia para a geragdo de cddigo tem se tornado
uma alternativa viavel para diminuir tempo e esfor¢o gastos no processo de
desenvolvimento e manutengdo de soffwares. Nesta se¢do sdo apresentados padrdes e
ferramentas que buscam solucionar problemas envolvidos com o desenvolvimento de
aplicagdes distribuidas.

Em [8], os autores apresentam os padrdes DAP-EJB (Distributed Adapters
Pattern with EJB) e PDC-EJB (Persistent Data Collections with EJB) que auxiliam na
estruturacdo de aplicagdes EJB [23]. Essa estruturagdo pode acontecer em sistemas ja
existentes, sem EJB, bem como em projetos de novos sistemas, os quais obterdo alguns
beneficios como reusabilidade, extensibilidade, modularidade, independéncia de
tecnologia (distribui¢do ou dados) e desempenho.

Além disso, em [17] tem-se o Padrdao de DBCD (Desenvolvimento Baseado em
Componentes Distribuidos), cuja intencdo ¢ a criacdo de componentes distribuidos
reutilizaveis para diferentes dominios de aplicagdes. Este padrdo trabalha com a
integracdo de diferentes tecnologias em uma ferramenta CASE, para apoiar o
Desenvolvimento Baseado em Componentes (DBC), além de cobrir todo o ciclo de vida
dos componentes distribuidos e definir mudangas no coédigo de comunicagdo dos
mesmos.

Em [3] ¢ apresentado um método de implementagdo que orienta a transformagado
progressiva que torna uma aplicacdo inicialmente centralizada em uma distribuida. O
método ameniza a complexidade inerente a sistemas distribuidos e torna os testes mais
efetivos. Além disso, esse método utiliza o Distributed Adapters Pattern (DAP)
apresentado em [2] promovendo uma maior modularidade, reuso, extensibilidade assim
como uma implementagdo progressiva.

A ferramenta Cordel apresentada em [10] promove de forma flexivel a geracéo,
compilacdo e implantacdo automatica de sistemas Web, com base em tecnologias de

Pattern Applications

239

SugarLoafPLoP 2005 Proceedings

objetos distribuidos, a partir de modelos UML, seguindo especificagdes e tecnologias ja
consolidadas. Esses sistemas que adotam mecanismos que favorecem a construgdo de
aplica¢des reutilizaveis, flexiveis e escaldveis trazem consigo a conseqiiéncia natural de
um maior esfor¢o no processo de desenvolvimento, devido a adog@o de especificacdes,
como J2EE ou CORBA que, por sua vez, implicam numa maior necessidade de
aprendizado da tecnologia e uma maior quantidade de codigo a ser escrito.

Além da ferramenta Cordel, pode-se destacar como importante para este
trabalho a ferramenta AndroMDA [4], que trabalha com a gera¢do de codigo fonte a
partir da especificagdo UML. Como conseqiiéncia, o codigo fonte torna-se pouco
relevante, pois os diagramas UML ¢ que sdo essenciais para a implementagdo. Além
disso, a ferramenta sugere o uso de diversas tecnologias para persisténcia dos dados
como Hibernate, Spring ¢ SOAP, ao mesmo tempo em que se propde a diminuir o
tempo de desenvolvimento de programas e promover o uso intensivo de padrdes.

3. Padroes Utilizados

Alguns padrdes foram selecionados e estudados com a finalidade de fazer a validacdo
da ferramenta proposta neste artigo. O critério de selecdo levou em consideracido a
adequagdo do padrio a solugdo proposta. Uma sele¢do mais rigorosa foi deixada para
um momento posterior. A seguir, os padrdes escolhidos sdo apresentados.

O padrdao BD (Business Delegate) [1], normalmente, ¢ utilizado para reduzir o
acoplamento entre os clientes da camada de apresentacdo e os servicos de negocios. O
BD oculta os detalhes de implementagdo por tras do servigo de negdcios, como forma
de pesquisa e acesso em ambientes remotos. A Figura 1 mostra o diagrama de classes
do padrao BD.

Clhient qrCESSES ==POJ0== accesses BusinessService
BusinessDelegate 1 1
1 1.7 -_———

I
o |

USES | [ooksup

1 : EJBSemice || JMSService
==25ingleton== | _ _ _ __ |
Semicelocator

Figura 1. Diagrama de classes do BD [1]

Ja o BO (Business Object) [1] ¢ empregado para separar dados e ldgica de
negdcio usando um modelo orientado a objeto. O BO fara, portando, o encapsulamento
das regras de negbcio e do gerenciamento da camada de persisténcia. Na Figura 2 ¢
exposto o diagrama de classes do BO.

Pattern Applications

240

E SugarLoafPLoP 2005 Proceedings

- ==Husiness0hject== ==BusinessOhject== 0+
Clrent ACCESSES ParemtBO containg DependentBO -
nx*
T T
| I 1
| | | | | contains
ServiceFacade | | ApplicationService ==POJ0== |___} DataStore {___!
Ay persists in persists in

Figura 2. Diagrama de classes do BO [1]

Segundo [1], o acesso a dados muda dependendo da sua origem. O acesso ao
armazenamento persistente, como em um banco de dados, varia muito dependendo do
tipo de armazenamento e da implementacgido do desenvolvedor. Através da utilizagdo do
padrdo DAO (Data Access Object) pode-se extrair e encapsular todos os acessos a
origem de dados em um unico objeto. O DAO gerencia a conexdo com a fonte de dados
para obter e armazenar dados. Seu diagrama de classes pode ser observado na Figura 3.

Clierit DataAccessObject | o.ioccps DataSource

uses

+rreatewvoid
+read:Ohject

! T

| 1 ses |

| +updatevoid |

| +oeletevioid |

| creates fuses | creates
: : creates :

| i ! i
——————— = <=TransferOhject== ResultSet

Data

Figura 3. Diagrama de classes do DAO [1]

4. XSpeed e sua Arquitetura

XSpeed ¢ uma ferramenta que tem como objetivo principal aumentar a produtividade no
desenvolvimento de aplicacdes para ambiente distribuido utilizando padrdes para
resolucdo de problemas recorrentes. A ferramenta recebe como entrada um arquivo no
formato XMI contendo o modelo UML da aplicag@o a ser gerada. Em seguida, mapeia
os padrdes que deverdo ser aplicados como estratégia para resolugdo de problemas e
finalmente faz a geragdo automatica do cddigo interligando as tecnologias especificas
para a resolugdo de cada um dos problemas inerentes ao dominio.

A arquitetura do XSpeed, demonstrada na Figura 4, se divide em trés mddulos
basicos: mddulo de conversdo, médulo de configuracdo e modulo de geragao.

Pattern Applications 241

E SugarLoafPLoP 2005 Proceedings

(Ferramenta de Modelagem jjj
cria l

XMI

2

(Médulo de Conversdo) (Mdrduln de E:onﬂguraga:a

cria l I |&/atualiza
gera
XML -(Mddulo de Geragdo)- App-SRC II

1

Figura 4. Arquitetura geral da ferramenta XSpeed

Arquitetura do XSpeed

4.1. Modulo de Conversio

O modulo de conversdo faz a extracdo das informacdes relacionadas a cada uma das
classes do modelo UML contido no arquivo XMI, disponibilizando-as como uma
instancia do modelo de representacio descrito na Figura 5. Em seguida, esta instancia ¢
armazenada em um arquivo XML intermedidrio que servird como base para geragdo da

aplicagdo.
¥MiData
XMIAttribute
0.7
1
1 o
¥MIPackage | 1 0.* | ¥MIClassData XMIOperation
1 0.*
n.x o 0.* 1
1 1 n=
XMiModel XMIArgument

Figura 5. Modelo de mapeamento do XMI

Pattern Applications 242

E SugarLoafPLoP 2005 Proceedings

Nesta fase, uma filtragem por meio de um parser é concebida sobre o arquivo XMI de
entrada. Apenas informagdes relevantes para o XSpeed sdo selecionadas, tais como a
estrutura e o relacionamento das classes do modelo. Desse modo, ndo sdo avaliadas as
informacdes contidas em outros possiveis diagramas como os de casos de uso,
colaboragdo e seqiiéncia.

4.2. Moédulo de Configuracgio

Neste modulo, € feita uma selecdo manual dos padrdes e das tecnologias, de persisténcia
e acesso remoto, a serem aplicadas sobre as classes do modelo para resolugdo dos
problemas especificos do dominio. XSpeed propde um conjunto de padrdes para
resolucdo de problemas especificos de aplicagdes distribuidas tais como delegagdo de
servico, processamento de ldgica de negocio e persisténcia de dados. A versdo atual da
ferramenta ndo disponibiliza uma interface grafica para realizar os mapeamentos. O
usuario pode utilizar algum editor de XML para alterar o mapeamento default do
arquivo XML intermediario gerado pela ferramenta.

Para resolver o problema de acesso remoto a logica de negbcio, adotou-se o
padrdo BD, apresentado na se¢do 3, integrado ao framework Spring [19] [26] que
fornece uma estrutura transparente de comunicacdo distribuida baseada em RMI
(Remote Method Invocation) [24]. De acordo com o diagrama de classes observado na
Figura 6, o cddigo cliente faz apenas chamadas locais. Assim sendo, toda a
complexidade das chamadas remotas sdo encapsuladas pelo BD. Além de facilitar o
desenvolvimento da aplicacdo cliente, o seu simples uso promove a separagdo explicita
entre a camada de apresentagdo e a tecnologia envolvida na camada de negocio.

DataTransferObject
LA S S
-7 | ~ . == ==
qdcreatesmsesia - l=zygpges h ILJSES
- I -
- I =-
Client | ==accesses== BusinessDelegate =ZACCESSRE== >| BusinessOhject
1 1.7 1 1
Y
n.= e
.. p
== |SeS5FEF 7
==|ooksup==
1 e
_..-’
SpringFramework .

Figura 6. Diagrama de classes do BD adaptado

Na camada de logica de negdcio adotou-se o padrdo BO, descrito na se¢do 3,
que faz o encapsulamento das regras de negécio e do gerenciamento da camada de
persisténcia. O acesso a camada de persisténcia pode acontecer de maneira remota
(Figura 7), portanto, o BO também faz uso do framework Spring.

Pattern Applications 243

SugarLoafPLoP 2005 Proceedings

BusinessDelegate

DataTransferQOhject

.

-
-

¢<USESf=-'H

==containg==

Z S S

|
==l SRS =E=

=ZaCCessesE=

_ﬂ

Z=lSRS==

1 1

-

T~ . ==creates=s

==|ooksup==

L H"-.
0. \ ~.
BusinessOhject 2=3CCREERE"" >| DatalAccessObject
1 11
T ,~"r
s=lgeg== .7

SpringFramework

L7 ==looksup==

Figura 7. Diagrama de classes do BO adaptado

Por fim, elegeu-se o padrio DAO, explanado na se¢do 3, como técnica para
encapsular as diferentes estratégias de persisténcia da aplicagdo. Atualmente XSpeed
possibilita a integracdo de trés tecnologias de persisténcia remota JDBC [22] [16]
nativo, Hibernate [11] [6] e JPox [13] (Figura 8) sendo que as duas ultimas fazem uso
da primeira para persistir dados de maneira transparente.

DataTransferOhject
==containg== ,’F ?“\
==5age=, " t.=acreates==
D..* # - * hl
. N =<jnterfaces=
BusinessOhject S=SALCRSSRSEF DataAccessObject <<accesses>>1 . DataStore -,
1 1 h -
0. - JAN !
L7 1 <= gege= ==creates>>:
- i
==zygege= ==looksup=z i
- Ay
1 e 1 ResultSet
SpringFramework JDBCDAO HibernateDAO JPoxDAO
1.% 1.%
== j5p== ==UsESEFR
1 1
Hibernate JPox ==looksup==

Figura 8. Diagrama de classes do DAO adaptado

Pattern Applications

SugarLoafPLoP 2005 Proceedings

4.3. Médulo de Geracao

Este mddulo ¢ responsavel por fazer a geracdo de cddigo de todas as classes da
aplicagdo. XSpeed faz uma juncdo entre as informagdes contidas no arquivo XML
intermediario e os femplates (Figura 9) que definem a estrutura das classes, inclusive o
formato dos padrdes a serem aplicados. SO entdo a geragdo de codigo € realizada para
uma plataforma especifica. A versdo atual da ferramenta possibilita a geragdo apenas

para a plataforma Java [20].

“clasz name='Person’ inherits0E=">
<attributes=
<attribute name='name' type='java.lang.String' description="/*
<attribute name="age' type='jawva.lang.5tring' description=",>
<attribute name="thelephones type="java.util.Collection' description="¢
<attribute name="'addreszs' type="Address’ description="/=
<fattributes:
<folass:
<olass name='Student' inheritsOf='Ferson'=
<pattarnszx
<delegate pattern="BD" tecnology="Spring'f=
<buginess pattern='"B0" tecnologp="Spring'f=
<pemsistence pattern="0A0" tecnology="dP o=
<fpattarnzx
<attributes=
<attribute name="id' type="int" description=",=
<fattributes:
“felazs=

XML Intermediario

#ififbean.superClass ="

#self $olassHead = "${class.name} extends fbean.superClass")
Helze

#self $olassHead = "${class.name}")

#end

public class folassHead implements java.io. Serializable {

#foreach] Fattribute in ficlass attributasz)
£ Fattribute.description ®f
private Fattribute type $attribute name;
#end

#foreachl Hattribute in Folass. attributes)
public Fattribute type getffattribute.capitalizedHame(id {
return this. Fattribute.name;

i
publicveid setfattribute. capitalizedMame}F attribute type
Fattribute uncapitalizeddame) {
this. Fattribute.name = Fattribute. name;

H
#end

Template

o

[Module de Geragao)

Y

priveate intid;

public Student’y
i

public int getldf
return this.id;

i

publicwoidsetld{int id){
this.id = id;
H
H

public class Studentextends Person implements java.io. Serializable {

Java Code

Figura 9. Processo de geragdo de codigo

O motor de geracdo do XSpeed utiliza o Velocity Template Engine [5] para fazer
0 merge entre as informagdes extraidas do arquivo XML intermediario e os templates.
O Velocity possui uma linguagem de manipulacdo de template: a VTL (Velocity
Template Language), que permite fazer a inser¢do de informagdes de maneira dindmica
dentro do template. O trecho de codigo (Figura 10) a seguir mostra a utilizacdo da VTL
para fazer a geracdo dos atributos de uma classe e seus respectivos métodos de acesso.

Pattern Applications

245

SugarLoafPLoP 2005 Proceedings

#foreach($attribute in $bean.attributes)
A% fattribute. description %/
private §attribute.type $attribute.name;
#end

#foreach fattribute in $fhean.attributes 3
public $attribute.type get$f{attribute. capitalizedhame0 e |
return this.$attribute. name;

public void set${attribute.capitalizednamel($attribute.type $attribute.uncapitalizedname(l) {
this.%attribute. name = $attribute.name;

#end

Figura 10. Template Velocity

5. Estudo de Caso

Nesta secdo sdo mostradas todas as etapas para geragdo de uma aplicagdo para ambiente
distribuido utilizando XSpeed. A aplicagdo escolhida como exemplo consiste na
manuten¢do de um cadastro simplificado de estudantes universitarios. O diagrama de
classes da Figura 11 representa o modelo UML da aplicacéo.

Address

- humber :int

- street - String 1 1 Person 1 0.+ Telephone

- Zip s int - hame ; String -code ;int

- ity : String «has -age :int has > - nurnber :int

- state : String

- country ;int

University
Student | . 1 - hame : String
-id int studies - numberafCourses ©int
- capacity :int

Figura 11. Diagrama de classes da aplicagao

O modelo exibido na Figura 11 pode ser criado e convertido para o formato

XMI por meio de uma ferramenta de modelagem UML, tais como Rational Rose [12],
ArgoUML [25] e Poseidon [9]. A Figura 12 mostra a descricdo das classes Person e
Student no formato resultante da conversao.

Pattern Applications

246

SugarLoafPLoP 2005 Proceedings

</UML:3tructuralFeature.type>
</UML:itcributes

<UML:Aittribute xmi.id = 'I1b83785fml032581cddeimmVeba’ name = 'age' wisibility = 'private!
isl3pecification = 'false' ownerScope = 'instance' changeability = 'changeable' >
<UML:3tructuralFeature. type>
<UML:DataType =mi.idref = 'I1b&378fml03281cddeZmmTefs ' />

</UML:3tructuralFeature. types
</UML:Atcributes
</UNL:Classifier.feature>
</UNL:Class>

<UML:Class xwi.id = 'I1bhS378fml1032581cddeZme7E18' namwme = 'Student' wvisibility = 'public!
isfpecification = 'false' isFoot = 'false' isleaf = 'false' iskbhstract = 'false!
ishctive = 'false!' >
<UML:GeneralizableElement . generalization>
<UML:Generalization xmwi.idref = 'I1kb8378fml032581cddeZmm7d7e' />

</ UML:GeneralizablelElement .generalizations
<UHML:Classifier.feature>

<UML:Actribute xwi.id = 'I1bS378fml032581cddemmVea’’ name = 'id' wisibilitcy = 'priwvate!
igfpecification = 'false' ownerZcope = 'instance' changesbility = 'changeshle!' >
<UML:3tructuralFeature. type>
<UML:DataType Hmi.idref = 'I1bh&378£fml103Z8lcddeimm7efs ' />

</UML:3tructuralFeature. types
</UML:Attributes
</UNL:Classifier.features
</UNL:Class>

<UML:Class xmwi.id = 'I1b&378fml103281cddeimn?Ese' name = 'Person' wisibilicy = 'public!

isSpecification = 'false' isRoot = 'false' isLeaf = 'false' isbbhstract = 'false!

islctive = 'false'>

<UML:Classifier.featurex

<UML:Actribute xmi.id = 'I1b8375fwl032581lcddeimmTecce' name = 'name' visibility = 'private!
isspecification = 'false' ownerScope = 'instance' changeability = 'changesble!' >
<UML:3tructuralFeature. type>
<UML:Class xmwi.idref = 'I1hE375fwl03281cd4doimm7ebh’ />

Figura 12. Estrutura do arquivo XMl

Na fase de conversdo, o arquivo XMI gerado ¢ fornecido como entrada para
XSpeed que, por sua vez, faz a filtragem das informacdes de cada uma das classes para
o seu modelo de representagdo, descrito na secdo 4.1. Em seguida, atualiza o arquivo
XML intermediério incorporando as novas caracteristicas da aplicagdo. A Figura 13
mostra as classes Person e Student descritas no formato deste arquivo com o
mapeamento default da ferramenta.

Pattern Applications

247

te.

SugarLoafPLoP 2005 Proceedings

¢zla== name='Fer=zon' inheristQf='"':
{pattern=s:
sdelegate pattern='BD' tecnology='Spring'«:
<busine=ss pattern='B0' tecnology='Spring'«:
{per=itence pattern='DAD' tecnology='IJFox'~:

<spatterns:

tattributes:
cattribute name='nane' type='java. lang. String' description=''-:
cattribute name='age' type='java . lang. String' description=''-s»

fattribute name='thelephones' type='java. util Collection' description='"'<:
{attribute name='address' type='Address' description=''-:
{s attributes:
(rolass:
<class name='Student’' inheri=t0Qf='Per=zon':
{pattern=s:
¢delegate pattern='EDl' tecnology='Spring'.»
<busine=ss pattern='B0' tecnology='Spring'«:
{per=sitence pattern='DAD' tecnology='IJFox'.~:
{spatterns:
‘attributes:
<attribute name='i1d' type='int' description='"'.":
(s attributes:
crolassr

Figura 13. Arquivo XML intermediario

No exemplo especifico (Figura 14) foi removido, manualmente, o mapeamento
dos padrdes e das tecnologias que incidiam sobre a classe Person.

¢class name='Per=on' inheristQf='"':
cattributes:
{attribute name='nans' type='java.lang. String' description=''-:
{attribute name='age' type='java.lang. String' description=''-:
<attribute name='thelephones' type='java. util Collection' description=''-:
{attribute name='address' type='Address' description=''-:
{sattributes:
¢solasss
¢zlazs name='Student' inheristOf='Per=zon':
spatterns:
<delegate pattern='BED' tecnology='Spring'. >
{buszines=s pattern='BE0' tecnology='Spring'-»
{perzitence pattern='DAD' tecnology='JFPox'-»
< spatterns:
cattributes:
{attribute name='id' type='int' description='"'-:
{sattributes:
<sclasss

Figura 14. Arquivo XML intermediario mapeado

Apds as alteracdes realizadas sobre o arquivo XML intermedidrio, o cddigo ¢
gerado. O diagrama de classes da Figura 15 mostra o novo formato da aplica¢do com a
incorporacdo das classes StudentBDImpl, StudentBOImpl e StudentJPoxDAO e das
interfaces StudentBO e StudentDAOQ.

Pattern Applications

248

SugarLoafPLoP 2005 Proceedings

Address

- humber : int

- street - String " " Person] 0.+ Telephone

- Zip sint - harme : String - code int

- city : Btring «has -age int has P> - nurnber :int

- gtate : String

- country © int [“:‘.

University
Student * " o
__ _==usege= . > - hame : String
: -idrint studies p» - numhberQfCourses | int
[- capacity s int
: AR
X StudenmtBO ' .
1 ! R
! HU,SES” ==gregies==
| K . StudentDAO
i i A
| r ‘\\'
' StudentBOImpl .
StudentBDImpl StudentJPoxDAO
+ created : void
+ created ; void studentBO P _| + readq : Student studentDAQ I+ + created | void

+ readl) : Student
+ update) ; vaid
+ deleted : void

1

1

+ Updated : vaid
+ deleted : void
- validated : void

1 1

+read(: Student
+ updated D waoid
+ geleted : void

- pracess waoid

Figura 15. Diagrama de classes da aplicagdo apds a geragao

A Figura 16 exibe um fragmento de codigo da classe StudentBDImpl que
descreve como ¢ obtido uma instdncia remota de StudentBOImp! utilizando o
framework Spring.

private StudentBO studentBO;

public StudentBO[) throws Exception {
BeanFactoryLocatar heanFactoryLocator = SingletonBeanF actoryLocator getinstance{"springfheanRefF actory xmi™;
BeanFactary beanFactory = heanFactoryLocator.useBeanFacton{'br.ufc.meoc.students™) . getFactonyg;
this. studentB0 = (StudentBOImpl) heanFactory.getBean{"studentB 0",

Figura 16. Obtengédo de um BO

Do mesmo modo (Figura 17), a classe StudentBOImp! obtém uma instancia de
StudentJPoxDAO para fazer o gerenciamento da camada de persisténcia.

private StudentDAQ studentDAD;

public StudentBOImpl() throws Exception {
BeanFactoryLocatar heanFactoryLocator = SingletonBeanF actoryLocator getinstance{"springfheanRefF actory xmi™;
BeanFactory heanFactory = beanFactoryLocator.useBeanFacton("hr.ufe.mec. students").getFactone,
this. studentDAD = (StudentJPoxDADY beanFactary. getBean studentDAD™),

Figura 17. Obtengao de um DAO

Por fim, a Figura 18 exibe o formato do cddigo da StudentJPoxDAO
responsavel por fazer a persisténcia transparente dos objetos da aplicacio.

Pattern Applications 249

SugarLoafPLoP 2005 Proceedings

public class StudentJPoxDAD extends org.springframework. orm. jdo. suppont. JdoDaoSupport {

public void create{Student student) {
getddaTermplatel). makePersistent(student);

}
o)

Figura 18. Persisténcia transparente com JPox

6. Conclusoes e Trabalhos Futuros

Ao fim deste trabalho conclui-se que a utilizagdo de padrdes no desenvolvimento de
aplicagdes, independentemente do dominio de atuag@o, € um processo que requer dos
desenvolvedores um elevado grau de conhecimento especifico sobre onde encontrar os
padrdes, e como e quando utiliza-los. Além disso, observa-se que a utilizacdo de
padrdes no desenvolvimento de aplicagdes distribuidas implica na realizacdo de tarefas
repetitivas e enfadonhas de codificagdo. Nesse contexto, a ferramenta apresentada neste
artigo visa facilitar e difundir a utilizacdo de padrdes com o intuito de maximizar tanto a
produtividade no desenvolvimento de software quanto a qualidade do software gerado.

Como trabalhos futuros, pretende-se fazer a interligagdo da ferramenta com
repositorios de padrdoes para facilitar o processo de identificacdo de padrdes
relacionados para o desenvolvimento de aplicagdes para um dominio especifico. Neste
sentido, deseja-se expandir ao méaximo o escopo de atuagdo da ferramenta a fim de
possibilitar o desenvolvimento de aplicacdes para um nimero maior de dominios.

Pattern Applications

250

SugarLoafPLoP 2005 Proceedings

Referéncias

[1]

2]

[3]

[4]
[5]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Alur, D., Crupi, J., Malks, D. Core J2EE Patterns: Best Practices and Design
Strategies. 2ed Edition. Prentice Hall, 2003.

Alves, V. Progressive development of distributed object-oriented
applications. Master's thesis, Centro de Informatica Universidade Federal
de Pernambuco, Feb, 2001.

Alves, V., Borba, P. An Implementation Method for Distributed Object-Oriented
Applications. In Second Latin American Conference on Pattern Languages of
Programming, SugarLoafPLoP'2002, pages 55-86, Itaipava, Brazil, 5th-7th
August 2002.

AndroMDA Tool. http://www.andromda.org. Acesso em janeiro de 2005.

Apache. Velocity Template Engine (Velocity). http://jakarta.apache.org/velocity.
Acesso em novembro de 2004.

Bauer, C. and King, G. Hibernate in Action. Softbound, 2004.

Booch, G., Rumbaugh, J. and Jacobson, I. The Unified Modeling Language
User Guide. Addison-Wesley, 1999.

Dias, K., Borba, P. Padrdes de projeto para estruturagdo de aplicacdes
distribuidas Enterprise JavaBeans. In Second Latin American Conference on
Pattern Languages of Programming, SugarLoafPLoP'2002, pages 55-86,
Itaipava, Brazil, 5th-7th August 2002.

Gentleware. Poseidon for UML. http://www.gentleware.com/index.php. Acesso
em janeiro de 2005.

Greve, F.GP., Aratjo, J.GR., Andrade, S.S., Maia Filho, E.M.F., Brito, K.S.,
Rocha, L.A., Pinheiro, V.G. Cordel: uma Ferramenta Distribuida para a Geragao
de Aplicagdbes Web. In I2TS 3rd International Information and
Telecommunication Technologies Symposium, Sao Carlos, 2004. I12TS 3rd
International Infor.

Hibernate. Relational Persistence For Idiomatic Java. http://www.hibernate.org.
Acesso em janeiro de 2005.

IBM. Rational Rose. http://www-306.ibm.com/software/rational. Acesso em
dezembro de 2004.

Jpox - JDO. Java Persistent Object (JPOX).http://www.jpox.org/index.jsp.
Acesso em janeiro de 2005.

OMG. CORBA Specification. http://www.corba.org/. Acesso em julho de
2005.

OMG. XML Metadata Interchange (XMD).
www.omg.org/technology/documents/formal/xmi.htm. Acesso em dezembro de
2003.

Reese, G. Database Programming with JDBC and Java. 2nd Edition. O'Reilly,
2000.

Pattern Applications

251

SugarLoafPLoP 2005 Proceedings

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Santana, E., Bianchini, C.P., Prado, A.F., Trevelin, L.C. Um Padr@o para o
Desenvolvimento de Software Baseado em Componentes Distribuidos. In

Second Latin American Conference on Pattern Languages of Programming,
SugarLoafPLoP'2002, pages 175-190, Itaipava, Brazil, 5th-7th August 2002.

Schmidt, D.C., Fayad, M.E., Johnson, R.E. Building Application Frameworks:
Object-Oriented Foundations of Framework Design. Wiley Computing
Publisher, 1999.

Spring. Java/J2EE Application Framework. http://www.springframework.org.
Acesso em janeiro de 2005.

Sun Microsystems. Java Technology. http://java.sun.com, Acesso em janeiro de
2000.

Sun Microsystems. Java 2 Platform, Enterprise Edition (J2EE).
java.sun.com/j2ee, Acesso em dezembro de 2004.

Sun Microsystems. Java Database Connectivity (JDBO).
http://java.sun.com/products/jdbc. Acesso em julho de 2004.

Sun Microsystems. Enterprise JavaBeans Technology (EJB).
http://java.sun.com/products/ejb. Acesso em julho de 2004.

Sun Microsystems. Remote Method Invocation (RMI).
http://java.sun.com/products/jdk/rmi. Acesso em julho de 2005.

Tigris. Modelling tool ArgoUML. http://argouml.tigris.org. Acesso em janeiro
de 2005.

Walls, C., Breidenbach, R. Spring in Action. Softbound, 2005.

Pattern Applications

252

e

SugarLoafPLoP 2005 Proceedings

Pattern Applications

253

