

Sponsors

Supporting Organizations

Organization

SugarLoafPLoP´2007 Organizing Committee

Conference Chair
Sérgio Soares (DSC/UPE, Brazil)

Program Committee Co-Chairs
Jerffeson Teixeira de Souza (UECE, Brazil)

Richard P. Gabriel (Sun Microsystems Inc., USA)

Program Committee
Claudia Werner (COPPE/UFRJ, Brazil)

Eugene Wallingford (U. Northern Iowa, USA)
Fabio Kon (IME/USP, Brazil)

Jerffeson Teixeira de Souza (UECE, Brazil)
Jorge L. Ortega Arjona (UNAM, Mexico)

Joseph Yoder (U. Illinois / The Refactory, Inc, USA)
Linda Rising (Independent Consultant, USA)

Lise Hvatum (Schlumberger, USA)
Marcos Cordeiro d'Ornellas (UFSM, Brazil)

Neil Harrison (Utah Valley State College, USA)
Paulo Borba (CIn/UFPE, Brazil)

Paulo Cesar Masiero (ICMC/USP, Brazil)
Richard P. Gabriel (Sun Microsystems Inc., USA)

Robert Hanmer (Lucent Technologies, USA)
Rosana Braga (ICMC/USP, Brazil)
Rossana Andrade (DC/UFC, Brazil)

Sérgio Soares (DSC/UPE, Brazil)

Local Organization
Emanoel Francisco Spósito Barreiros (DSC-UPE, Brazil)

Liliane Sheyla da Silva (DSC-UPE, Brazil)
Márcio Lopes Cornélio (DSC-UPE, Brazil)

Ricardo Massa Ferreira Lima (DSC-UPE, Brazil)
Sérgio Castelo Branco Soares (DSC-UPE, Brazil)
Thaysa Suely Beltrão Paiva (DSC-UPE, Brazil)

Maria Lencastre (DSC-UPE, Brazil)
Tiago Massoni (DSC-UPE, Brazil)

SugarLoafPLoP´2007 Organizing Committee

Shepherds
Alexandre Sztajnberg (UERJ, Brazil)

Ed Fernandez (CSE/FAU, USA)
Eugene Wallingford (U. Northern Iowa, USA)

Francisco José da Silva e Silva (DEINF/UFMA, Brazil)
Jerffeson Teixeira de Souza (UECE, Brazil)
Jorge L. Ortega Arjona (UNAM, Mexico)

Joseph Yoder (U. Illinois / The Refactory, Inc, USA)
Lincoln S. Rocha (DC/UFC, Brazil)

Linda Rising (Independent Consultant, USA)
Lise Hvatum (Schlumberger, USA)

Marcio Barros (UNIRIOTEC, Brazil)
Marcos Cordeiro d'Ornellas (UFSM, Brazil)

Maria Lencastre (DSC/UPE, Brazil)
Neil Harrison (Utah Valley State College, USA)

Paulo Borba (CIn/UFPE, Brazil)
Paulo Cesar Masiero (ICMC/USP, Brazil)

Robert Hanmer (Lucent Technologies, USA)
Rohit Gheyi (CIn/UFPE, Brazil)

Rosana Braga (ICMC/USP, Brazil)
Rossana Andrade (DC/UFC, Brazil)

Rute Castro (DC/UFC, Brazil)
Sérgio Soares (DSC/UPE, Brazil)

Tiago Massoni (CIn/UFPE, Brazil)

Table of Contents

I – Writers’ Workshop

Padrões para Apoio ao Desenvolvimento de Políticas de Privacidade
Luanna Lopes Lobato, Sérgio Donizetti Zorzo (Universidade Federal de São Carlos)

3

The Error Handling Aspect Design Pattern

Fernando Castor Filho (University of São Paulo)
Alessandro Garcia (Lancaster University)
Cecília Mary F. Rubira (State University of Campinas)

22

Applying Scrum and Organizational Patterns to Multi-site Software
Development

Lucas Cordeiro (Universidade Federal do Amazonas)
Cassiano Becker (BenQ Eletroeletrônica S.A)

Raimundo Barreto (Universidade Federal do Amazonas)

46

Um Padrão para Requisitos Duplicados

Ricardo Ramos (Universidade Federal de Pernambuco)
João Araújo, Ana Moreira (Universidade Nova de Lisboa)
Jaelson Castro, Fernanda Alencar (Universidade Federal de Pernambuco)
Rosangela Penteado (Universidade Federal de São Carlos)

68

Analysis Patterns for Customer Relationship Management (CRM)

Mei Fullerton, Eduardo B. Fernandez (Florida Atlantic University)

80

The Parallel Layers Pattern - A Functional Parallelism Architectural Pattern for
Parallel Programming

Jorge L. Ortega-Arjona (Universidad Nacional Autónoma de México)

91

Paginador de Objetos

Wellington Pinheiro, Paulo Fernando, Fabio Kon (Universidade São Paulo)

106

Padrão AutenticaConexão

Marcelo Antônio Albuquerque e Souza (Têxtil União S/A)
Jerffeson Teixeira de Souza (Universidade Estadual do Ceará)

118

Linguagem de Padrões para Avaliação de Conhecimento em Objetos de
Aprendizagem – Parte I

Ingrid T. Monteiro, Clayson Sandro, Cidcley T. de Souza (Centro Federal de
 Educação Tecnológica do Ceará)

124

Patterns for Documenting Frameworks – Process

Ademar Aguiar, Gabriel David (Universidade do Porto)

150

Modelo de Melhoria do Processo de Software para Micro e Pequenas Empresas
baseado em Padrões – Discussão e Levantamento Preliminar

Tarciane de Castro Andrade, Fabrício Gomes de Freitas, Jerffeson Teixeira de Souza
 (Universidade Estadual do Ceará)

162

A Secure Analysis Pattern for Handling Legal Cases

Eduardo B. Fernandez (Florida Atlantic University)
David L. la Red M. (Universidad Nacional del Nordeste)
Jorge Forneron (Universidad Nacional de Pilar)
Valeria E. Uribe, Gisela Rodriguez G. (Universidad Nacional del Nordeste)

178

State MVC: Estendendo o Padrão MVC para Uso no Desenvolvimento de
Aplicações para Dispositivos Móveis

Tiago Barros, Mauro Silva e Emerson Espínola (C.E.S.A.R – Centro de Estudos e
 Sistemas Avançados do Recife)

188

BulkLoader Pattern

Márcio Santos (DATASUS)
Uirá Kulesza, Carlos José Pereira de Lucena (Pontifícia Universidade Católica do Rio
 de Janeiro)

205

II – Pattern Applications

Colaboração entre Padrões Arquiteturais, de Projeto e de Interface na Construção
do Framework Athena

Gabrielle D. Freitas, Luciana V. Lourega, Marcos C. d’Ornellas (Universidade
 Federal de Santa Maria)

223

Uma Proposta de Ambiente para Apoiar a Utilização de Padrões de Software e
Requisitos de Teste no Desenvolvimento de Aplicações

Alessandra Chan (Universidade de São Paulo)
Maria I. Cagnin (Centro Universitário Eurípides de Marília)
José C. Maldonado, Rosana T. V. Braga (Universidade de São Paulo)

235

A Process to Create Analysis Pattern Languages for Specific Domains

Rosana T. V. Braga (Universidade de São Paulo)
Reginaldo Ré (Universidade Tecnológica Federal do Paraná)
Paulo Cesar Masiero (Universidade de São Paulo)

251

POREI: Patterns-Oriented Requirements Elicitation Integrated – Proposta de um
Metamodelo Orientado à Padrão para Integração do Processo de Eliciação de
Requisitos

Kleber Rocha de Oliveira (Faculdades Integradas de Bauru, Universidade de São

 Paulo)
Mauro de Mesquita Spínola (Universidade de São Paulo)

266

Aplicando Padrões de Projeto em Computação Móvel

Mauro Strelow Storch, André Rauber Du Bois, Adenauer Correa Yamin
 (Universidade Católica de Pelotas)

278

Utilização de Padrões para Otimizar a Automação de Testes Funcionais de
Software

Rafael Braga de Oliveira (Universidade de Fortaleza, Serviço Federal de
 Processamento de Dados)
Francisco Nauber Bernardo Góis (Serviço Federal de Processamento de Dados)
Jerffeson Teixeira de Souza (Universidade Estadual do Ceará)
Pedro Porfírio Muniz Farias (Universidade de Fortaleza)

291

Foreword

Once again, pattern community members have got together to discuss and share pattern
experiences. This year, as in 2003, the stage was the beautiful Porto de Galinhas in Pernambuco,
Brazil. During unforgettable four days, participants had the chance to learn and teach patterns,
and about them.

In this SugarLoafPLoP´2007 edition, conference participants had the chance to hear from several
pattern experts in tutorials and invited talks. On the first morning of the event, we had an
inspiring 4-hour lesson on how to write patterns, lead by Joe Yoder. With his undeniable
experience as a pattern writer, Joe showed us “The Straight Scoop” on writing good patterns.
During the evening of that day, Gibeon Aquino entertained us and taught us about patterns
and software metrics. In the next evening, we heard from Richard Gabriel about Ultra-Large-
Scale Systems in the tutorial “Design Beyond Human Abilities”. Finally, in the final morning of
the event, Rosana Braga presented and discussed OO Analysis and Design Patterns.

This year, we had a record number of participants and submissions. In total, 46 pattern
enthusiastic old and new members of our pattern community have attended

SugarLoafPLoP´2007. For the number of submitted paper, we had 38 of them, where 19 were
sent to the Writers´ Workshop track, 13 to Pattern Applications and 6 to the Writing Patterns
track.

In these proceedings, we share with the world a little of our SugarLoafPLoP´2007 experience.
Here, you will find 14 papers describing new patterns (the ones discussed during the Writers´
Workshop sessions) and 6 discussing Pattern Applications. As in previous years, the papers
dealt with a great variety of topics, including: Aspect and OO-based Software Development;
Requirement, Analysis, Design and Architectural Patterns; Organizational Patterns; Educational
Patterns; Patterns for Mobile Development; Documentation Patterns; Patterns for Software
Testing and Quality Assurance; and more.

Several persons deserve our acknowledgment for making SugarLoafPLoP´2007 such an
enjoyable conference. Among them, we emphasize Sérgio Soares, the conference Chair. He
made it seem really easy to organize an event of this magnitude. Thanks Sérgio for the flawless
organization.

That is it !! Another SugarLoafPLoP has passed. But don´t be sad, others will came. 8-)

Thanks, Gracias, Obrigado!

Jerffeson Teixeira de Souza and Richard P. Gabriel

SugarLoafPLoP´2007 Program Committee Chairs

SugarLoafPLoP´2007

Writers’ Workshop

Padrões para apoio ao desenvolvimento de Políticas de
Privacidade

Luanna Lopes Lobato, Sérgio Donizetti Zorzo

Departamento de Computação – Universidade Federal de São Carlos (UFSCar)
Caixa Postal 676 – CEP: 13565-905 – São Carlos – SP– Brasil

{luanna_lobato,zorzo}@dc.ufscar.br

Abstract. This paper presents patterns for privacy policies to be used in web
sites, mostly by e-commerce and e-business sites. In those transactions,
because of their financial aspects, the users need to provide personal
information, and expect integrity, security, and privacy. The patterns are
derived from a study of the 33 most accessed e-commerce sites in Brazil,
where it was possible to observe that they do not use a systematic approach to
develop policies which are clear and friendly and with relevant contents.

Resumo. Este artigo apresenta uma proposta de padronização para as
Políticas de Privacidade utilizadas pelos sites, principalmente pelos sites de e-
commerce e e-business. Nessas transações os usuários disponibilizam suas
informações pessoais, desejando-se a sua integridade, segurança e
privacidade, pois há valores financeiros em compras realizadas na Internet.
Propõe-se essa padronização a partir da realização de um estudo de caso,
onde foram analisados 33 dos sites mais acessados pelos usuários no
comércio eletrônico brasileiro, em que foi possível observar que não são
utilizados parâmetros para o desenvolvimento de políticas claras, amigáveis e
de conteúdos relevantes.

1. Introdução
A partir do Estudo de Caso (Lobato e Zorzo, 2007) de avaliação por inspeção em 33
sites de comércio eletrônico brasileiro mais acessados, de acordo com uma pesquisa
divulgada pela Info Exame1 e e-bit2, observou-se que a maioria desses não utiliza uma
Política de Privacidade com regras e deveres claros aos usuários, e, quando as fazem,
não seguem uma padronização.

 O Estudo de Caso analisa, por inspeção manual, se alguns itens considerados
relevantes, eram apresentados pelos sites, buscando equacionar as características de
privacidade e personalização contempladas. Para cada site avaliado foi registrado os
itens contemplados, acrescidos de observações particularizadas e sumarizadas em uma
tabela. Ao final de toda a análise foi sumarizado o que os sites apresentavam como
vantagens e desvantagens aos usuários, mostrando a porcentagem dos itens
contemplados, não contemplados e os itens que não puderam ser aplicáveis nos sites por
motivos de verificação da inspeção manual.

1 http://www.infoexame.com
2 http://www.e-bit.com

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

3

 Esses itens são as características relevantes que devem ser contempladas nas
Políticas de Privacidade, de forma que os usuários se sintam esclarecidos quanto ao que
os sites disponibilizam como benefícios e problemas em sua utilização.

 As políticas foram um dos tópicos de maior dificuldade de análise durante a
realização do Estudo de Caso, pois essas são apresentadas das mais diferentes formas.
No entanto, essas são, em muitas das vezes, as mais relevantes para obtenção de
informações referentes à prática seguida pelos sites (LOBATO e ZORZO, 2007).

 Uma pesquisa publicada por Turow (2003) mostra alguns dados sobre a relação
dos usuários com as Políticas de Privacidade, ressaltando a insatisfação, a falta de
compreensão e a necessidade de informação dos mesmos quanto às políticas
disponibilizadas.

 Já um trabalho realizado por uma equipe de pesquisadores da North Carolina
State University identificou que dentre 40 Políticas de Privacidade examinadas, 12
requeriam um nível de escolaridade superior para seu entendimento e 7 requeriam o
equivalente ao nível de pós-graduação (ANTON et al., 2004).

 Com base nesses estudos, ressalta-se que tais políticas devem informar aos
usuários sobre o que é feito para garantia da privacidade dos mesmos e quais métodos
são utilizados para prover personalização, bem como, tratar dos assuntos referentes a
manipulação dos dados coletados, utilização de entidades certificadoras,
armazenamento de informações na máquina do usuário, dentre outras questões que
abordam a privacidade, segurança e personalização.

 Preocupados com isso, propõe-se neste artigo uma padronização para as
Políticas de Privacidade a serem disponibilizadas pelos sites, de modo a tentar
aproximá-las ao entendimento do usuário e englobar todos os pontos interessantes a
serem ressaltados em uma política escrita de maneira objetiva e clara.

 Para a padronização foram utilizados padrões (patterns), que, de acordo com
Borches (2001), podem ser entendidos como uma forma de expressar conhecimento por
meio de textos e esboços em um formato estruturado, cuja solução é de sucesso já que
os mesmos podem ser utilizados e aplicados a outros problemas, os quais ocorrem
frequentemente em um determinado contexto. Alexander, Ishikawa e Silverstein (1977)
mencionam que padrão é uma solução de sucesso para um problema recorrente em um
determinado contexto. Já Gamma et al. (1995) diz que os padrões de projeto capturam
soluções que foram desenvolvidas e evoluídas ao longo do tempo. Coplien e Harrison
(2004) apresentam o padrão como uma configuração estrutural recorrente que resolve
um problema em um determinado contexto.

 Os padrões são utilizados em várias abordagens e definidos por diferentes
autores em suas respectivas áreas de atuação, no entanto todas as definições mostram
um principal objetivo para os padrões: o seu reuso. Os padrões de Política de
Privacidade definidos neste artigo abordam principalmente assuntos referentes à
segurança, privacidade e coleta de dados dos usuários.

 A privacidade pode ser entendida como a habilidade de um indivíduo ou grupo
manter suas informações pessoais longe do conhecimento público ou como a
capacidade de controlar o fluxo de informações que pode ser revelada (HAFIZ, 2006).

 Seja no mundo eletrônico quanto no mundo real, a privacidade é algo que se
almeja, de forma que as ações possam ser efetivadas sem que alguém esteja

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

4

monitorando-as. Os indivíduos devem poder viver sem serem perturbados e os usuários
em interação com a web navegar sem serem identificados.

 A privacidade pessoal on-line tem se tornado uma preocupação crescente
durante a navegação na web. Organizações comerciais e governamentais estão sendo
convocadas a implementar controles de segurança e políticas que dêem mais segurança
ao usuário quanto à sua privacidade (ROMANOSKY et al., 2006).

 A medida que os usuários utilizam serviços na rede, deixam rastros que podem
ser utilizados pelas empresas que dispõem de tecnologias suficientes para registrar as
páginas visitadas, bem como o que foi feito em cada uma durante a visita, criando-se
perfis de usuários (LOBATO e ZORZO, 2006). Assim, da próxima vez que o usuário
visitar o site, serão apresentados promoções e recomendações de acordo com o seu
perfil.

 Na web, o fato de muitas pessoas não saberem ao certo para que e o quanto de
seus dados são coletados representa um grande risco à privacidade dos usuários que
utilizam seus serviços (SPIEKERMANN, GROSSKLAGS e BERENDT, 2001).

 Assim, são criadas e descritas Políticas de Privacidade, onde são dadas
informações relevantes aos usuários. Uma das preocupações sobre privacidade é o nível
de consciência do usuário, de forma que a política do site deve ser criada de maneira
objetiva e bem definida, trazendo esclarecimento aos usuários e tornando-os conscientes
sobre os problemas providos da navegação na web.

 Para definição dos padrões, utilizados para embasar o desenvolvimento das
Políticas de Privacidade disponibilizadas pelos sites, seguiu-se alguns princípios
apresentados por Sadicoff, Larrondo-Petrie e Fernandez (2005). De acordo com esses
autores, existem algumas forças que podem ser utilizadas de modo a tornar os usuários
conscientes sobre as políticas seguidas pelos sites para a coleta e utilização de seus
dados, antes dos usuários divulgarem suas informações pessoais, sendo elas:

• As Políticas de Privacidade devem ser exibidas aos usuários de maneira
que sejam claramente entendidas;

• Os usuários devem ser capazes de decidir quais de suas informações
poderão ser coletadas e utilizadas pelos sites;

• Pode haver modificações nas Políticas de Privacidade, e dessa forma, os
usuários devem ser capazes de visualizá-las;

 A seguir são apresentadas as diretivas para embasamento e os padrões de
Política de Privacidade propostos, seguindo o modelo de estruturação para definição dos
Padrões e conceitos de Meszaros e Doble (1996), Gamma et al. (1995) e Buschmann et
al. (1996). São também mostrados os Padrões desenvolvidos, bem como a definição de
cada um deles e ao final, uma aplicação prática desses em uma Política de Privacidade
tomada como exemplo.

2. Diretivas para Embasamento aos Padrões
Além da utilização das características observadas no Estudo de Caso apresentado por
Lobato e Zorzo (2007) para a definição e validação da relevância dos padrões, também
foram considerados alguns princípios impostos por duas organizações. Esses estudos
foram seguidos de forma a definir um escopo de uma solução de sucesso que deva ser
seguido para a criação das Políticas de Privacidade, facilitando o reuso para os demais
projetistas e fácil entendimento aos usuários.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

5

 Existem duas organizações que destacam-se no cenário internacional, com
objetivo de regularizar a proteção de privacidade dos usuários da web: Organization for
Economic Co-operation and Development3 (OECD) e Federal Trade Commission4
(FTC), descritas a seguir.

 A OECD trata da proteção de privacidade dos usuários, disponibilizando e
retratando documentos específicos para sua segurança e a privacidade. Os princípios
estabelecidos pela OECD especificam de que forma as informações pessoais dos
usuários devem ser protegidas, sendo alguns desses apresentados a seguir:

• Princípio do Limite de Coleta: a coleta de dados pessoais deve ser
limitada, e quando essa ocorrer, deve ser feita através de meios legais;

• Princípio da Qualidade dos Dados: os dados pessoais devem ser
autênticos, completos e relevantes para os objetivos onde serão
utilizados;

• Princípio da Especificação de Objetivo: o objetivo da coleta deve ser
especificado antes da efetivação da ação e o uso dos dados devem ser
restritos aos objetivos impostos e declarados nas políticas;

• Princípio da Limitação de Uso: os dados coletados não podem ser
divulgados ou utilizados para outros propósitos além dos especificados,
exceto por uma autoridade da lei ou com o consentimento do proprietário
dos dados;

• Princípio da Segurança: devem ser utilizados mecanismos de segurança
razoáveis para garantir a segurança dos dados;

• Princípio da Transparência: deve ser criada uma política geral que trate
da divulgação sobre as práticas e políticas com respeito a dados pessoais;

• Princípio da Participação Individual: o dono dos dados deve ter acesso a
seus dados, pesquisando, visualizando e modificando-os caso julgue
necessário;

• Princípio da Responsabilidade: um gerenciador deve ser responsável por
cumprir, colocando em prática todos os itens acima.

 A FTC é uma instituição que tem por objetivo cuidar da privacidade e da vida
econômica dos cidadãos, auxiliando no reforço de leis a favor da segurança dos dados
pessoais, vasculhando criminosos de forma a evitar fraudes em bancos e também
possibilitando aos consumidores tomarem decisões de compras, possibilitando assim
que estejam esses melhores informados. Sob o ato da FTC, a comissão zela contra a
deslealdade e a decepção por reforçar promessas de privacidade de companhias sobre
como elas coletam, usam e asseguram informações pessoais dos consumidores
(PITOFSKY et al., 2000).

 Pela FTC são definidos alguns princípios de Práticas Justas de Privacidade,
baseados e desenvolvidos sob uma legislação para as práticas recomendadas de
privacidade que protegem as informações pessoais de serem coletadas e mantidas pelo

3 http://www.oecd.org
4 http://www.ftc.gov

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

6

governo (PITOFSKY et al., 2000). Esses princípios sintetizam os 8 princípios
apresentados pela OECD, e incluem:

• Notificação: os sites devem manter os usuários informados sobre a coleta
de seus dados;

• Escolha: devem ser fornecidas aos usuários opções para escolher como
seus dados pessoais podem ser utilizados;

• Acesso: os usuários devem ter acessos às suas informações pessoais
coletadas, podendo atualizá-las, corrigir e apagar caso seja necessário;

• Segurança: os sites devem ser responsáveis e proteger com segurança as
informações coletadas sobre os usuários.

 É possível observar que as propostas da OECD e da FTC se baseiam na idéia de
que a privacidade está relacionada ao consentimento dos usuários, sobre o que está
sendo feito com seus dados, e ambas visam trazer mais segurança sobre as formas de
uso de dados: coleta, processamento, manutenção, responsabilidade, divulgação e
controle.

 A seguir são apresentados os padrões para Políticas de Privacidade definidos,
seguidos dos objetivos de seu desenvolvimento.

3. Coleção de Padrões Definidos
À medida que cresce o uso da tecnologia também aumenta a preocupação em relação às
novas formas de comércio eletrônico e à comunicação eletrônica, por isso, é preciso
construir proteções adequadas que assegurem interações confiáveis aos usuários.

 Para isso, foram definidos alguns itens que as políticas devem apresentar,
chamados de padrões, de forma a aumentar a segurança oferecida ao usuário e o
conforto na utilização dos sites.

 Nessa seção são apresentados os padrões definidos para Política de Privacidade,
sendo descritos o porquê desses, os problemas observados e a motivação encontrada
para sua definição.

 O formato e estilo de escrita dos padrões foram baseados na “Linguagem de
Padrões para escrita de Padrões” de Meszaros e Doble (1996), onde é especificado que
os padrões são mais fáceis de compreender e aplicar quando alguns elementos estão
presentes no formato utilizado, como:

• Nome (numeração): permite uma referência rápida e comunica a idéia
principal do padrão. Pode-se utilizar uma numeração para facilitar a
localização do padrão;

• Contexto: descreve o problema encontrado para se ter a necessidade de
padronização e a solução implantada;

• Problema: apresenta a problemática a qual o padrão se aplica;

• Forças: informa os aspectos que influenciam a utilização do padrão;

• Solução: apresenta a mensagem para a solução do problema;

• Conseqüências: aborda os resultados decorrentes da aplicação da
solução;

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

7

• Usos Conhecidos: mostra exemplos bem reconhecidos da aplicação
prática do padrão.

 Neste trabalho, além dos elementos base para a definição dos padrões, também
utilizou-se o elemento Padrões Relacionados, o qual foi considerado importante para o
entendimento dos padrões formalizados. Esses devem ser nomes de outros padrões que
tenham alguma relação de contexto com os padrões propostos.

 Com a utilização desses padrões a satisfação dos usuários tende a ser maior, já
que terão informações bem definidas e claras nas Políticas de Privacidade sobre os
serviços oferecidos pelo site e sua segurança.

 Os padrões definidos neste artigo são organizados hierarquicamente em uma
coleção, formando a base para uma futura formalização em linguagem de padrões. São
apresentados agrupados por níveis de abstração, do nível 1 ao 4, e retratados através de
nós, no modo por largura na estrutura de árvore e analisados da esquerda para direita,
seguindo a numeração atribuída a cada nó.

 Cada nó apresenta uma particularidade especial, sendo que apenas o conjunto
desses dão sentido aos padrões apresentados neste artigo. A partir da raiz, foi utilizada
uma distância de um nó para a apresentação dos padrões relacionados, como pode ser
visualizado na Figura 1.

1 – Definir uma
Política de Privacidade

6 - Possuir
Entidade

Certificadora

4 - Contemplar
Assuntos sobre a

Privacidade

9 - Informar
sobre Alterações

na Política

2 - Utilizar a
definição “Política
de Privacidade”

3 - Colocar link da
Política de

Privacidade no fim
da página

5 - Possuir
Mecanismo

de Notificação

Nível 1

Nível 2

Nível 3

Nível 4

7 – Informar sobre
a Finalidade da

Coleta de Dados

8 - Permitir
Remover E-mails

de Listas

Figura 1. Definição dos Padrões para Política de Privacidade

Descrição dos Padrões Propostos
A seguir são apresentados os padrões, seguindo a numeração atribuída na Figura 1. A
numeração evidencia a relevância do padrão dentro do conjunto de padrões, sendo esse
conjunto a linguagem de padrões desenvolvida, seguido das definições, justificativas e
características de cada padrão definido.

 É recomendado utilizar os padrões em conjunto, observando também o uso com
outros padrões já desenvolvidos para a web, de forma a criar uma arquitetura de
soluções eficientes e testadas, já que os padrões representam a solução para um
problema recorrente.

 No detalhamento dos padrões são mostrados alguns exemplos de sua aplicação
nas Políticas de Privacidade e no capítulo 4 do artigo é apresentado um exemplo de uma
Política de Privacidade desenvolvida, onde todos os padrões são empregados.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

8

 1 - Nome: Definir uma Política de Privacidade (nível 1)
__

 O padrão “Definir uma Política de Privacidade” é considerado o principal dentro
do conjunto de padrões propostos, pois deve necessariamente existir para que os demais
possam estar disponíveis, dividindo um problema genérico em um grupo de sub-
problemas solucionados pelos padrões que o completam.

 Contexto: Atualmente a web juntamente com mecanismos eletrônicos de
comunicação estão sendo amplamente utilizados pelos mais diferentes perfis de
usuários. Com isso a segurança dos usuários se torna cada vez mais necessária, já que
dados pessoais podem ser requisitados para muitas operações, como por exemplo, no
comércio eletrônico onde é necessária a coleta de dados para efetivação de negócios.

 Problema: Nem todos os sites disponibilizam uma Política de Privacidade,
quanto mais uma política de fácil entendimento aos usuários e que aborde assuntos
relevantes.

 Além da coleta de informações pessoais feitas durante a navegação dos usuários
na web, podem ser feitos rastreamento de navegação e outras ações para saber as
preferências dos usuários e identificá-los. Isso pode levar a uma invasão na privacidade
do usuário e conseqüente diminuição de segurança, já que o usuário, em muitas das
vezes não tem consciência do que possa estar acontecendo.

 Dessa forma essa coleta vem provocando insegurança aos usuários que
necessitam saber claramente como são armazenadas e distribuídas as suas informações
que são coletadas durante sua navegação pelo site.

 Forças: Sem a disponibilização de uma Política de Privacidade os usuários
podem sentir-se inseguros em relação às práticas feitas pelo site, às regras seguidas e
principalmente em relação a manipulação de seus dados pessoais coletados durante a
navegação, o que pode diminuir a utilização de serviços web por esses usuários.

 Além disso, devem ser considerados aspectos legais, pois sem a definição da
Política de Privacidade os sites podem estar sujeitos a processos jurídicos. Como por
exemplo, se a privacidade do usuário for violada sem seu consentimento e sem qualquer
aviso prévio com notificações, esse pode recorrer a seus direitos constitucionais.

 Solução: É necessário que os sites definam suas Políticas de Privacidade de
forma clara e explicativa, informando aos usuários sobre as práticas e as normas
seguidas, o que é feito com os dados coletados, qual a segurança oferecida, quais
serviços são disponibilizados.

 As políticas são uma forma rápida de comunicação entre o site e o usuário
evitando mensagens direcionadas e específicas, por isso deve ser criada com vistas a
facilitar o entendimento dos usuários e ter relevância nos assuntos abordados. Essas
devem ser criadas de acordo com os princípios estabelecidos pela OECD e FTC,
principalmente utilizando os princípios da Transparência, da Responsabilidade,
Notificação e Segurança.

 No desenvolvimento dessas políticas deve haver preocupação com: i)
usabilidade, para facilitar a utilização de informações e serviços; ii) acessibilidade, para
permitir que usuários com deficiência possam também entendê-la; iii) questões que
tratem sobre a privacidade dos usuários, de modo a trazer maior segurança a eles; iv)

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

9

informações sobre medidas seguidas para prover a personalização, se essa existir, com
vistas a facilitar e minimizar o tempo de buscas dos usuários; v) informar sobre a última
atualização da política, de forma que os usuários possam se manter informados caso
alguma mudança venha ocorrer, dentre outras informações relevantes ao conhecimento
dos usuários.

 Conseqüências: Os usuários se tornam mais confiantes na utilização dos sites e
principalmente em relação aos serviços que demandam, por exemplo, de coleta de dados
pessoais, tendo assim menor receio e maior segurança durante a navegação pelo site.

 Além da vantagem oferecida aos usuários, a Política de Privacidade é de grande
relevância para a empresa, que oferecendo maior segurança ganha mais usuários e ainda
pode até mesmo facilitar sua organização interna em relação aos aspectos que
demandam funcionalidades referentes à segurança, como a coleta de informações.

 Usos Conhecidos: As empresas Extra e Comprafacil disponibilizam em seus
sites Políticas de Privacidade, as quais contemplam assuntos sobre a privacidade e
segurança dos usuários durante a navegação, sendo essas políticas claras e objetivas.

 Padrões Relacionados: 2 - Utilizar a Definição “Política de Privacidade”; 3 -
Colocar Política de Privacidade no fim da página.

__

 2 - Nome: Utilizar a Definição “Política de Privacidade” (nível 2)
__

 Contexto: As palavras “Política de Privacidade” devem ser utilizadas para a
referência feita pelos sites às suas políticas, de modo a facilitar a sua busca pelo usuário.

 Aplica-se ao ambiente web na arquitetura de informação dos sites para construir
uma navegação adequada aos usuários e uma nomenclatura bem definida para a
referência à Política de Privacidade.

 Problema: Muitos usuários podem acabar desistindo de verificar a Política de
Privacidade do site pois a busca pela referência à política se torna cansativa, já que nem
se sabe qual a nomenclatura utilizada para referenciá-la, acarretando na insatisfação do
mesmo.

 Alguns dos sites avaliados no Estudo de Caso, apresentavam palavras diferentes
para identificar a Política de Privacidade, como: Política de Segurança, Segurança,
Compre Seguro, dentre outras (LOBATO e ZORZO, 2007), o que dificulta
substancialmente a localização por essas no site.

 Forças: Muitos sites apresentam palavras diferentes para identificar a Política de
Privacidade, não se preocupando em disponibilizar nomes sugestivos e de fácil
entendimento pelo usuário.

 Em relação a aspectos legais, diferentes definições para Política de Privacidade
podem ser vistas com o propósito de tornar a busca pelas políticas mais difícil.

 Solução: Ter um único nome para referenciar o texto referente às práticas
seguidas pelos sites, às regras impostas, aos serviços e a segurança oferecida aos
usuários. Nesse padrão é sugerido que sempre seja referenciada a política dos sites
através da nomenclatura “Política de Privacidade”.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

10

 Conseqüências: Facilita a busca do usuário pela Política de Privacidade do site,
acarretando em um aumento de sua satisfação durante a navegação, já que os serviços
são dispostos de forma clara e fáceis de serem encontrados.

 Usos Conhecidos: O site da empresa Gol Linhas Aéreas utiliza a expressão
“Política de Privacidade” para referenciar sua Política de Privacidade (LOBATO e
ZORZO, 2007).

 Padrões Relacionados: 1 - Definir uma Política de Privacidade; 3 - Colocar
Política de Privacidade no fim da página; 4 - Contemplar Assuntos sobre a Privacidade;
5 - Informar sobre Alterações na Política; 6 - Possuir Entidade Certificadora; 7 -
Informar sobre a Finalidade da Coleta de Dados; 8 - Permitir Remover E-mails de
Listas; Privacy-Aware Network Client Pattern –descrevem um mecanismo para
implementar este padrão em sites web (SADICOFF, M.; LARRONDO-PETRIE, M. M.
E FERNANDEZ, E. B, 2005).
__

 3 - Nome: Colocar link da Política de Privacidade no fim da página (nível 2)
__

 Contexto: Os sites disponibilizam o link que faz referência à sua Política de
Privacidades nas mais diferentes posições, podendo estar presente no menu suspenso de
serviços disponíveis, apenas na página inicial dos sites ou na parte inferior da página.

 Problema: Como não há um lugar específico onde a Política de Privacidade
possa estar, os usuários perdem tempo na busca pela localização do link que leva à
política. Isso pode tornar a busca pela Política de Privacidade cansativa e frustrante
quando essa localização é sem sucesso, podendo afastar o usuário do site, já que esse
não pôde conhecer as regras seguidas e a política imposta.

 Forças: Facilitar a busca do usuário pela Política de Privacidade.

 Solução: Para facilitar a busca pela política do site, é definida uma posição onde
a referência à Política de Privacidade deve estar. Essa posição deve ser estratégica para
que de qualquer parte do site seja possível localizar a Política de Privacidade.

 Dessa forma é proposto que a referência à Política de Privacidade seja colocada
ao final da página, não atrapalhando o design do site e possibilitando que essa seja
referenciada por todas as páginas pertencentes ao site. Ainda completa-se a esse padrão
a utilização da referência à Política de Privacidade no fim da página no formato
centralizado em relação ao site.

 Conseqüências: Facilita a busca do usuário pela Política de Privacidade do site,
tornando-o mais satisfeito quanto a interface apresentada, já que a usabilidade foi levada
em consideração, e possibilitando que a qualquer momento da navegação essa política
possa ser verificada.

 Usos Conhecidos: O sites das empresas PontoFrio e ShopTime utilizam a
Política de Privacidade na base inferior dos sites e ainda centralizada, tornando-a fácil
de ser encontrada e suficientemente entendível (LOBATO e ZORZO, 2007).

 Padrões Relacionados: 1 – Definir uma Política de Privacidade; 2 – Utilizar a
definição “Política de Privacidade”.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

11

__

 4 - Nome: Contemplar Assuntos sobre a Privacidade (nível 3)
__

 Contexto: A Política de Privacidade deve abordar tópicos de privacidade
referente a segurança dos usuários, de forma a mostrar como a segurança é oferecida, a
privacidade é garantida, a confiabilidade e veracidade dessas informações, de acordo
com os princípios estabelecidos pela OECD, Princípio da Segurança e, FTC, Segurança.

 Problema: Muitos sites não disponibilizam informações relevantes a
privacidade dos usuários, não informam aos usuários sobre quais medidas podem ser
tomadas caso algo venha a ocorrer contra sua privacidade e segurança.

 Não contemplando tais assuntos os usuários podem se sentir ameaçados e
inseguros em relação a navegação pelo site, ocasionando em uma desistência na
utilização dos serviços disponíveis.

 Forças: Traz mais segurança aos usuários podendo esses interagirem melhor
com os sites e principalmente com maior confiabilidade.

 Solução: Disponibilizar nas Políticas de Privacidade informações referente a
segurança e a garantia de privacidade do usuário. Essas devem ser escritas de forma
clara e objetiva, tornando o usuário ciente do perigo em ter sua privacidade invadida
durante a utilização pela web, se esse perigo existir.

 Conseqüências: Com a disponibilização de informações referentes a
privacidade o usuário torna-se mais esclarecido quanto a esses assuntos e
consequentemente, torna-se mais seguro para a utilização do site durante sua navegação
na web.

 Usos Conhecidos: Na Figura 2 é mostrada uma Política de Privacidade que
contempla assuntos referentes à privacidade dos usuários.

Figura 2. Exemplo da Aplicação do Padrão 4

Padrões Relacionados: 2 – Utilizar a definição “Política de Privacidade”.
__

 5 - Nome: Possuir Mecanismo de Notificação (nível 3)
__

 Contexto: A notificação é utilizada para tornar informações conhecidas pelos
usuários. É importante notificar os usuários sobre o resultado de algumas de suas ações

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

12

e até mesmo, alertá-los durante sua navegação pela web, de acordo com os princípios
estabelecidos pela OECD, Princípio da Especificação de Objeto e, FTC, Notificação.

Como, por exemplo, se uma página não possui ambiente seguro e solicita que o
usuário informe seus dados pessoais, é saliente comunicá-los sobre isso. No entanto, é
preciso ponderar para que tal notificação não seja cansativa e desnecessária, o que pode
acabar incomodando o usuário.

 Problema: Os sites não oferecem segurança e, na maioria das vezes, tentam
esconder suas falhas ou a falta de serviços especializados disponíveis, não informando
aos usuários sobre os perigos decorrentes de sua navegação.

 Forças: Manter os usuários informados sobre os perigos e alguns benefícios
provenientes de sua navegação aumenta a confiança depositada no site e
consequentemente a utilização dos serviços disponíveis.

 Solução: Notificar o usuário sobre vantagens e desvantagens oferecidas pelos
sites, informá-los sobre as ações executadas com sucesso ou não. Se, por exemplo, o
usuário for efetivar uma transação que deva ser confidencial, deve ser informado sobre a
segurança oferecida ou a falta dela.

 Essa notificação deve ser feita com a utilização de mensagens, podendo ser
exibidas em janelas de alerta ou através de um tópico descrito na Política de
Privacidade. A utilização de janelas de alerta são mais eficientes, pois chamam mais a
atenção dos usuários, já que são exibidas no momento em que o usuário efetua a ação
que deve ser notificada.

 Conseqüências: Deixa o usuário sempre informado em situações adequadas
sobre os perigos providos de sua navegação e em contrapartida, sobre a segurança
oferecida.

 Usos Conhecidos: Na Figura 3 é mostrado um exemplo de notificação, na qual
o site informa aos usuários sobre alguns cuidados que devem ser tomados durante a
interação com a web, de modo que sua privacidade não seja invadida, a segurança não
seja violada e a oferta de serviços não seja prejudicada.

Figura 3. Exemplo da Aplicação do Padrão 5

 Padrões Relacionados: 2 – Utilizar a definição “Política de Privacidade”; 9 –
Informar sobre Alterações na Política; Privacy-Aware Network Client Pattern –
utilizados como mecanismo para notificar os usuários sobre as mudanças no site
(SADICOFF, M.; LARRONDO-PETRIE, M. M. E FERNANDEZ, E. B, 2005).

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

13

__

 6 - Nome: Possuir Entidade Certificadora (nível 3)
__

 Contexto: Para aumentar a confiança do usuário no site, garantindo que o site
está em conformidade com as regras definidas em sua Política de Privacidade, podem
ser utilizadas entidades certificadoras.

 As entidades certificadoras são marcas de privacidade e de confiança, mostradas
nas páginas dos sites, as quais informam aos visitantes que as práticas de segurança
conduzidas pelos sites, estão de acordo com o que foi proposto em suas Políticas de
Privacidade.

 Esse padrão está de acordo com os princípios estabelecidos pela OECD,
Princípio da Segurança, da Responsabilidade e, FTC, Segurança.

 Problema: A não utilização das entidades certificadoras pelos sites pode fazer
com que o usuário não se sinta seguro, principalmente em sites de comércio eletrônico
onde transações são efetuadas envolvendo número de cartão de crédito e senhas.

 Muitos sites não utilizam tais entidades devido ao preço ou por descumprimento
do que é tratado em suas políticas e, em muitas das vezes, tais certificados são utilizados
de maneira indevida (LOBATO e ZORZO, 2007).

 Forças: Aumenta a confiança do usuário no site, pois provê uma maior
segurança quanto aos serviços oferecidos, permitindo uma navegação tranqüila e a
disponibilização de dados pessoais com maior segurança.

 Solução: Os sites devem se preocupar em disponibilizar os serviços com
garantias do nível de segurança. Isso pode ser obtido com a utilização de certificados de
privacidade, sujeitando-se a passar por avaliação para receber um certificado de que está
em conformidade com as práticas descritas em sua Política de Privacidade.

 Após o recebimento do certificado deve-se utilizá-lo de forma correta, tendo
como endereço a URL ao qual a certificação foi atribuída, observando a data de
vencimento.

 Conseqüências: Regulariza a situação do site com embasamento em entidades
certificadoras reconhecidas e torna o usuário mais tranqüilo durante a navegação no site
e efetivação de transações. No entanto, a utilização dessas deve ser descritas de forma
clara nas políticas, pois muitos usuários não sabem em quais entidades certificadoras
podem confiar.

 Usos Conhecidos: Na Figura 4 é apresentada uma Política de Privacidade, onde
é descrito sobre a certificação atribuída ao site, garantindo o cumprimento das regras
descritas na política. Ainda é informado o nome da entidade certificadora a qual é
responsável pela certificação dada.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

14

Figura 4. Exemplo da Aplicação do Padrão 6

 Padrões Relacionados: 2 - Utilizar a Definição “Política de Privacidade”.
__

 7 - Nome: Informar sobre a Finalidade da Coleta de Dados (nível 3)
__

 Contexto: É importante informar aos usuários sobre a finalidade da coleta de
seus dados para que esse se sinta mais tranqüilo durante a navegação pelo site, já que
tem consciência do que é feito com seus dados coletados.

 Esse padrão é proposto de acordo com os princípios estabelecidos pela OECD,
Princípio do Limite de Coleta, da Qualidade dos Dados, da Especificação de Objetivo.

 Problema: Nem todos os sites estão preocupados com o conforto do usuário no
conhecimento do que é feito com seus dados coletados pelos sites.

 Forças: Aumento na confiança do usuário em relação ao site.

 Solução: Ter um tópico na Política de Privacidade sobre a coleta de dados,
deixando claro aos usuários sobre quais são os dados coletados e sua finalidade. É
relevante informar a vantagem da coleta de dados, como a oferta de personalização,
facilitando suas buscas e otimizando os serviços disponíveis, e bem como as
desvantagens com a coleta, como a disponibilização dos dados coletados para terceiros
ou a identificação do usuário mesmo se ele não desejar.

 Conseqüências: Torna o usuário mais seguro já que esse torna-se consciente
sobre quais dados serão coletados durante sua navegação no site e sua finalidade.

 Em sites de comércio eletrônico é muito importante informar aos usuários sobre
a coleta, pois assim torna-os mais confiantes podendo fazer com que passem de simples
visitantes para grandes consumidores.

 Usos Conhecidos: A Figura 5 mostra que a Política de Privacidade definida
contempla assuntos sobre a finalidade da coleta de dados pessoais dos usuários,
abordando as vantagens e desvantagens que são oferecidas aos usuários.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

15

Figura 5. Exemplo da Aplicação do Padrão 7

 Padrões Relacionados: 2 – Utilizar a definição “Política de Privacidade”.
__

 8 - Nome: Permitir Remover E-mails de Lista (nível 3)
__

 Contexto: Os usuários quando fazem o cadastro nos sites podem optar pelo
recebimento de e-mails promocionais, cadastrando seu e-mail nas listas de promoções,
alertas, novidades, mas com o passar do tempo, tal serviço pode se tornar cansativo e
desnecessário ao usuário.

 Esse padrão está de acordo com os princípios estabelecidos pela OECD,
Princípio da Participação Individual e, FTC, Acesso.

 Problema: Depois dos usuários terem cadastrado seus e-mails nas listas, alguns
sites não permitem que os mesmos possam desfazer tal ação, podendo causar
aborrecimento a eles que passam a considerar o envio de e-mails como envio de spams.

 Forças: Diminuir as frustrações dos usuários deixando-os mais a vontade na
utilização dos sites, possibilitando que tenham o controle do recebimento ou não de e-
mails promocionais mesmo que já tenham cadastrado o e-mail nas listas.

 Solução: Permitir que o usuário remova o e-mail das listas, caso julgue
necessário. Isso pode ser feito apenas disponibilizando no site uma opção de seleção
para esse propósito, onde pode ser disponibilizada uma mensagem, como por exemplo,
“desejo receber e-mails com promoções”, e se o usuário não mais desejar o
recebimento dos e-mails essa opção pode ser desmarcada.

 Conseqüências: Possibilita que o usuário, ao sentir-se incomodado com o
recebimento de e-mails, possa não recebê-los mais.

 Usos Conhecidos: Na Figura 6 é apresentada aos usuários a opção de
recebimento ou não de informativos pelo e-mail, podendo os e-mails serem removidos
das listas aos quais foram cadastrados se assim o usuário desejar.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

16

Figura 6. Exemplo da Aplicação do Padrão 8

 Padrões Relacionados: 2 – Utilizar a definição “Política de Privacidade”.
__

 9 - Nome: Informar sobre Alterações na Política (nível 4)
__

 Contexto: É importante avisar aos usuários se alguma regra ou item imposto na
Política de Privacidade for alterado, de forma que o usuário possa se manter informado
e conscientizado sobre as normas e funcionalidades do site, de acordo com os princípios
estabelecidos pela OECD, Princípio da Responsabilidade e, FTC, Notificação.

 Problema: Os sites alteram suas Políticas de Privacidade sem informar aos
usuários sobre isso sem consultar os usuários se concordam com as novas diretivas.

 Forças: Permitir que o usuário esteja sempre informado sobre as novas diretivas
definidas pelo site, de modo a conscientizá-los das regras seguidas, aumentando a
confiança no site. Um gerenciador deve ser responsável por cumprir o que é descrito na
política do site, colocando em prática todos os itens mencionados na política.

 Solução: Para aplicar tal funcionalidade, colocar uma cláusula na Política de
Privacidade informando de que se houver qualquer alteração nas regras seguidas pelo
site, essas modificações serão expostas na própria Política de Privacidade. É importante
ainda notificar a data da última atualização da Política de Privacidade, de modo que o
usuário possa manter-se informado sempre que novas atualizações forem feitas.

 Há também a opção de disponibilizar uma notificação na página inicial do site
informando que houve mudanças nas diretivas da Política de Privacidade.

 Conseqüências: Deixa o usuário mais esclarecido e aumenta sua confiança no
site já que esse tem como saber quando alguma diretiva referente às regras impostas na
Política de Privacidade do site for alterada. Assim o usuário poderá ter conhecimento
dessa mudança e então verificar se aceita ou não as novas diretrizes impostas.

 Com os usuários conscientes sobre as práticas definidas pelos sites, não haverá
invasão de privacidade, já que a questão de privacidade está diretamente ligada ao
consentimento ou não do usuário em relação às práticas seguidas pelos sites.

 Usos Conhecidos: A Figura 7 mostra exemplo da notificação transcrita no site
referente às possíveis atualizações que possam ocorrer na Política de Privacidade.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

17

Figura 7. Exemplo da Aplicação do Padrão 9

 Padrões Relacionados: 5 – Possuir Mecanismo de Notificação.

4. Resultado Final Aplicando os Padrões Definidos
Após formar a estrutura de base, ou seja, os padrões e explicar suas utilidades foi
desenvolvida uma Política de Privacidade para ser tomada como exemplo.

 Para desenvolvimento dessa política foram utilizados os padrões apresentados
para definição de Política de Privacidade, onde foram observados os requisitos
desejados, analisados as informações que se deve disponibilizar na definição das
Políticas de Privacidade, tentando aproximá-la à política ideal.

Tabela 1. Exemplo de Política de Privacidade

Política de Privacidade

Atualizada em 05/03/2007.

Sobre esta Política de Privacidade
Esta Política de Privacidade foi estabelecida para o “site Exemplo” com o objetivo de
assegurar a confiança e o sigilo das informações dos usuários coletadas.

Sabemos o quanto é importante para você conhecer e estar seguro sobre a utilização dos
seus dados pessoais. Por isso, nos preocupamos em esclarecer e divulgar nossa política de
utilização dessas informações. Assim, você poderá entender melhor quais informações
obtemos e como as utilizamos.

Dados Coletados
Solicitamos informações quando você:

• Se cadastra no site (para agilização do processo de compra e para fins de
estatísticas);

• Efetiva um pedido;

• Responde uma pesquisa on line;

• Participa de uma promoção;

• Cadastra-se em nosso boletim eletrônico (“mail list”).
De forma automatizada, os seguintes dados também são coletados:

• Endereço IP;

• Data e horário do acesso;

• Tempo de leitura de cada página;

• Seqüência de páginas visitadas;

Cadastro
Não é necessário fornecer informações pessoais para navegar no site. Entretanto, para
utilizar alguns dos serviços, será necessário identificar-se, fornecendo previamente alguns
dados de caráter pessoal.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

18

As informações serão armazenadas em um servidor seguro, e não são compartilhadas com
terceiros.

Finalidade da Coleta
Inicialmente os dados coletados terão fins estatísticos. Para analisar, por exemplo, a
quantidade de usuários que leram a Política de Privacidade, as diferenças entre as
preferências de privacidade dos usuários e a freqüência de visita a cada página.

Os dados coletados serão também analisados para obter algumas informações sobre o perfil
dos usuários que acessam o site, de modo a oferecer serviços personalizados.

Ainda utilizamos as informações coletadas por motivos de fins estatísticos, para efetivação
da compra, andamento das operações e entrega de produtos.

Exclusão das Informações
O site possibilita que o usuário exclua e edite suas informações cadastradas no site, caso
julgue necessário.

Segurança
Todos os dados coletados são armazenados em servidores internos e seguros, em um banco
de dados reservado e com acesso restrito ao administrador deste site. Dessa forma, a
manipulação dos dados se dá de maneira automatizada, não permitindo que pessoas não
autorizadas tenham acesso aos mesmos.

Certificação
As práticas efetuadas pelo site seguem as diretivas definidas nessa política e são certificadas
por uma Entidade Certificadora, chamada XXX, a qual garante que a Política de Privacidade
está sendo seguida.

Confira o certificado de segurança clicando aqui.

Ambiente para Transações
Utilizamos um ambiente seguro para transações, fazendo a encriptação de dados,
autenticação de servidor, integridade de mensagem e autenticação de cliente.

Tenha Cautela
É possível que nossas páginas contenham hiperlinks que o levem a sites de terceiros.
Recomendamos a leitura da Política de Privacidade desses sites, uma vez que não temos
nenhuma responsabilidade sobre os mesmos.

Algumas pessoas utilizam do nome de empresas de responsabilidade para enviar e-mails aos
usuários e também podem ser enviados juntos a esses e-mails códigos executáveis. No
entanto, em hipótese alguma, os aceite, pois tais e-mails e executáveis tem o intuito de
coletar suas informações pessoais.

Esteja atento a esses e-mails, prestando atenção no endereço do remetente, e, se possível
entre em contato conosco avisando sobre o ocorrido.

Envio de E-mails
Este site não envia e-mail de propagandas e promoções do site sem a autorização do
usuário.

O site provê estruturas que permitem ao usuário selecionar o aceite ou não de seu e-mail
nas listas de propagandas. Assim, você poderá cancelar o envio de e-mails a qualquer
momento.

Cookies
Cookies são pequenos arquivos de texto enviados ao seu computador e que são
armazenados no mesmo. Estes arquivos servem para reconhecer, acompanhar e armazenar
a navegação do usuário na Internet.

O uso de cookies possibilita ao site oferecer um serviço mais personalizado, de acordo com
as características e interesses dos usuários, possibilitando, inclusive, a oferta de conteúdo e

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

19

publicidade específicos para cada um.

Alterações nesta Política
Para assegurar regras claras e precisas, podemos eventualmente alterar essa política, e
sendo assim, recomendamos sua leitura periodicamente.
Qualquer alteração na Política de Privacidade será transcrita na mesma.

No início da Política de Privacidade é indicada a data da última alteração, para facilitar ao
usuário saber quando houve modificações.

Considerações Finais
Em caso de alguma divergência sobre nossa Política de Privacidade ou reclamações sobre os
serviços prestados, sinta-se livre para entrar em contato conosco:

Nome Fantasia da Empresa ou Site
Nome de registro no CNPJ da Empresa
Endereço físico

Atendimento telefônico:
(0xxXX) XXXX.XXXX das XX:XXhs as XX:XXhs

Atendimento eletrônico:
http://www.empresa.com.br/antendimento
atendimento@empresa.com.br

Como já mencionado, esse modelo de Política de Privacidade foi desenvolvido
baseado nos padrões apresentados. Dessa forma o uso desses padrões se torna viável
durante a elaboração e construção de Políticas de Privacidade que apresente
características relevantes aos usuários e que atendem às verdadeiras exigências que uma
política deve apresentar, sendo essa uma política de sucesso.

Tal modelo de política pode ser utilizado de modo a trazer facilidades aos sites
na definição de suas Políticas de Privacidade e principalmente, trazendo benefícios aos
usuários, já que essas serão definidas de maneira mais clara e objetiva, disponibilizada
em uma linguagem que o usuário entenda, de modo a aumentar sua satisfação na
interação com o site, já que o mesmo se sentirá mais seguro. Ainda é referenciada por
um nome sugestivo, “Política de Privacidade” e de fácil localização.

5. Agradecimentos
Este trabalho foi apoiado pelo Departamento de Computação da Universidade Federal
de São Carlos (UFSCar) e Coordenação de Aperfeiçoamento de Pessoal de Nível
Superior (CAPES), Brasil. Nossos agradecimentos especiais ao Prof. Eduardo B.
Fernandez, nosso shepherd, pelos comentários e sugestões importantes que
proporcionaram melhorias significativas em nosso trabalho.

7. Referências

ALEXANDER, C.; ISHIKAWA, S. e SILVERSTEIN, M. A Pattern Language. Oxford
University Press, New York. 1977.

ANTON, A. et al. The lack of clarity in financial privacy policies and the need for
standardization. IEEE Security & Privacy. 2(2): 36-45 p. 2004.

BORCHERS, J. A Pattern Approach to Interaction Design 2001. John Wiley & Sons,
Inc. Disponível em: <http://portal.acm.org/citation.cfm?id=558433&coll=Portal&dl=G
UIDE&CFID=3720139&CFTOKEN=24769028#>. Acesso em: 16 out. 2006.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

20

BUSCHMANN, F. et al. Pattern-Oriented Software Architecture. vol.1: A System of
Patterns: Chichester, Inglaterra: John Wiley & Sons Ltd. 1996. 476 p.

COPLIEN, J. O. e HARRISON, N. B. Organizational Patterns of Agile Software
Development. Prentice Hall PTR. 2004. 419 p.

GAMMA, E. et al. Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley. 1995.

HAFIZ, M. A collection of Privacy Design Patterns. In: PLoP Pattern Languages of
Programming Design. Potland, Oregon: 2006.Disponível em:
<http://hillside.net/plop/2006/Papers/Library/PLoP2006_mhafiz0_0.pdf>. Acesso em:
14 fev. 2006.

LOBATO, L. L. e ZORZO, S. D. Avaliação dos Mecanismos de Privacidade e
Personalização na Web. In: XXXII Conferencia Latinoamericana de Informática, CLEI,
Agosto 2006. Santiago, Chile: 2006.Disponível em: <www.clei2006.org>. Acesso em:
23 fev. 2007.

LOBATO, L. L. e ZORZO, S. D. Estudo de caso da avaliação por inspeção em sites de
comércio eletrônico. Universidade Federal de São Carlos. São Carlos, SP: 20/10/2006,
p.94. 2007.

MESZAROS, G. e DOBLE, J. MetaPatterns: A Pattern Language for Writing Patterns.
1996. Conference on Pattern Languages of Programming PLoP. Disponível em:
<http://www.hillside.net/patterns/writing/patternwritingpaper.htm>. Acesso em: 13 nov.
2006.

PITOFSKY, R. et al. Privacy online: Fair information practices in the electronic
marketplace. 2000. Federal Trade Commission. Disponível em:
<http://www.ftc.gov/reports/privacy2000/privacy2000.pdf>. Acesso em: 13 nov. 2005.

ROMANOSKY, S. et al. Privacy Patterns for Online Interactions. In: PLoP Pattern
Languages of Programming Design.Potland, Oregon: 2006.Disponível em:
<http://hillside.net/plop/2006/Papers/Library/romanosky_privacy_patterns_plop06.pdf>
Acesso em: 22 fev. 2007.

SADICOFF, M.; LARRONDO-PETRIE, M. M. e FERNANDEZ, E. B. Privacy-Aware
Network Client Pattern. In: Conference on Pattern Languages of Programming PLoP.
2005.Disponível em: <http://hillside.net/plop/2005/proceedings/PLoP2005_msadicoff0
_0.pdf>. Acesso em: 15 fev. 2007.

SPIEKERMANN, S.; GROSSKLAGS, J. e BERENDT, B. E-privacy in 2nd Generation
E-Commerce: privacy preferences versus actual behavior. In: Proceedings of the 3rd
ACM Conference on Electronic Commerce.Tampa, Florida, USA: 2001. Pág. 38-
47.Disponível em: <http://doi.acm.org/10.1145/501158.501163>. Acesso em: 24 jan.
2006.

TUROW, J. Americans and Online Privacy: The System is Broken. 2003. Disponível
em: <http://www.appcpenn.org/04_info_society/2003_online_privacy_version_09.pdf>.
Acesso em: 20 jan. 2006.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

21

The Error Handling Aspect Design Pattern

Fernando Castor Filho1 , Alessandro Garcia2 , Cećılia Mary F. Rubira 3

1 1Department of Computer Science - University of São Paulo
Rua do Matão, 1010. 05508-090, São Paulo - SP, Brazil

2Computing Department - Lancaster University
South Drive, InfoLab 21, LA1 4WA, Lancaster, UK

3Institute of Computing - State University of Campinas
P.O. Box 6176. 13083-970, Campinas - SP, Brazil

fcastor@acm.org, garciaa@comp.lancs.ac.uk, cmrubira@ic.unicamp.br

Abstract. Exception handling is a well-known programming language mecha-
nism for separating error handling code from the normal application code. One
of the fundamental motivations for employing exception handling in the develop-
ment of robust applications is to lexically separate error handling code from the
normal code so that they can be independently modified. However, experience
has shown that the exception handling mechanisms of mainstream programming
languages fail to achieve this goal. In most systems, exception handling code is
interwined with the normal code, hindering maintenance. Moreover, because of
the difficulty in separating error handling code and normal code, the former is
often duplicated across several different places within a system. In this paper
we present a pattern,Error Handling Aspect, which leverages aspect-oriented
programming in order to enhance the separation between error handling code
and normal code. The basic idea of the pattern is to use advice to implement
exception handlers and pointcuts to associate advice to different parts of the
normal code in order to improve the maintainability of the normal code and the
reuse of error handling code.

1. Intent

To separate the error handling measures of a system from the code that implements its
behavior when nothing goes wrong (normal code). TheError Handling Aspect design
pattern leverages aspect-oriented programming (AOP) [Kiczales et al. 1997] techniques
to improve the maintainability of the normal code and its reuse across different applica-
tions. The pattern also aims to reduce duplication of error handling code by making it
easier to reuse within the same application.

2. Context

TheError Handling Aspect design pattern can be applied in everyday software develop-
ment, mainly during the design and implementation phases of the software process, as a
means to improve the flexibility of software systems. However, the benefits of the pattern
are more tangible in situations where

• a software component is expected to be reused in several different contexts, asso-
ciated to different error handling strategies.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

22

• the same piece of error handling code is duplicated across several parts of a soft-
ware system and it is desirable to localize this duplicated code in a single concep-
tual entity.

3. Motivation

Exception handling [Goodenough 1975] mechanisms have been conceived as a means to
structure programs that have to cope with erroneous situations. These mechanisms make
it possible for developers to extend the interface of an operation with additional exit points
that are specific to error recovery. Moreover, they define new constructs for raising ex-
ceptions and associating exception handlers with selected parts of a program. Ideally, an
exception handling mechanism should enhance attributes such as reliability, maintainabil-
ity, and understandability, by making it possible to write programs where: (i) the code for
error handling and the normal code are lexically separate and can be maintained indepen-
dently [Parnas and Würges 1976]; (ii) the impact of the code responsible for error han-
dling in the overall system complexity is minimized [Randell and Xu 1995]; and (iii) an
initial version that does little recovery can evolve to one which uses sophisticated recovery
techniques without a change in the structure of the system [Parnas and Würges 1976].

Separation of concerns is the overarching goal of exception handling mechanisms.
However, the kind of separation promoted by the exception handling mechanisms of
most mainstream object-oriented programming languages brings only limited advantages
[Castor Filho et al. 2006, Cui and Gannon 1992, Lippert and Lopes 2000]. The following
code snippet, extracted from an Eclipse plugin, illustrates this.

public class CRLFDetectInputStream extends FilterInputStream {
...
protected CRLFDetectInputStream(InputStream in, ICVSStorage file) {
super(in);
try {
this.filename = getFileName(file);

} catch (CVSException e) {
this.filename = file.getName();

}
}
...

}

The example above defines the constructor for classCRLFDetectInputStream. This
class is responsible for detecting the carriage return and line feed characters in input
streams. The constructor attempts to obtain the full name offile by retrieving it from
the file system through methodgetFileName(). If something goes wrong,e.g. the file
could not be found, and exceptionCVSException is raised, the handler simply gets the
name stored in variablefile. In order to reuse classCRLFDetectInputStream in
a different system, it might be necessary to change this policy, for example, to interrupt
program execution when the file cannot be accessed in the file system. To achieve this,
it would be necessary to directly modify thecatch block in the constructor. This kind
of undisciplined reuse is generally considered a bad practice in the object-oriented devel-
opment community. A much more desirable approach would be to simply “unplug” the
error handling strategy associated to the constructor and “plug” the new one. However,
this is currently not possible in any of the mainstream programming languages.

The following code snippet illustrates another undesirable situation:

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

23

public class EclipseSynchronizer implements IFlushOperation {
public void endBatching(...) throws CVSException {
try {...} catch (TeamException e) {
throw CVSException.wrapException(e); }

} ...
public IResource[] members(...) throws CVSException {
...
try {...} catch (CoreException e) {
throw CVSException.wrapException(e); }

} ...
}

In the example, two different methods within the same class,endBatching()
andmembers(), implement identical exception handling strategies.TeamException
is a subtype ofCoreException. In Java, it is not possible to implement a single handler
and associate it to both methods, to avoid code duplication.

4. Problem

In languages such as Java, Ada, C++, and C#, it is not possible to “plug” and “unplug”
exception handlers. In these languages, the normal code and error handling code are
entwined within fine-grained units (methods), making it hard to maintain the former in-
dependently from the latter. Also, this hardwiring of the exception handling code hinders
reuse of normal code across different applications, as these applications often have differ-
ent requirements pertaining to error handling.

Another problem is that the exception handling mechanisms of the aforementioned
languages only support the definition of handlers that are local to specific parts of a pro-
gram. Reuse of error handling strategies within an application is possible only to a certain
degree, by extracting error handling measures to new methods. However, in most main-
stream programming languages, the code that catches exceptions and initiates an excep-
tion handling measure has to be scattered throughout the application. As a consequence,
most systems have a considerable amount of duplicated exception handling code.

5. Solution

TheError Handling Aspect design pattern promotes explicit separation between excep-
tion handling code and normal code. It leverages AOP techniques in order to: (i) localize
error handling within units whose sole purpose is to implement this concern; (ii) reduce
the amount of duplicated exception handling code; (iii) make it easier to reuse the normal
code across different applications; and (iv) simplify the task of changing the exception
handling strategies of a system. The overall idea of the pattern is to use advice to im-
plement exception handlers and associate these “aspectized” handlers to different parts of
a program by means of the composition mechanisms provided by AOP languages. For
example, consider the following Java code snippet, extracted from an Eclipse plugin:

public class EclipseSynchronizer implements IFlushOperation {
public void endBatching(...) throws CVSException {
try {...} catch (TeamException e) {
throw CVSException.wrapException(e); }

} ...
public IResource[] members(...) throws CVSException {

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

24

...
try {...} catch (CoreException e) {
throw CVSException.wrapException(e); }

} ...
}

In the example, two different methods within the same class,endBatching()
andmembers(), implement identical exception handling strategies.TeamException
is a subtype ofCoreException. In Java, it is not possible to implement a single
handler and associate it to both methods, to avoid code duplication. TheError Handling
Aspect design pattern leverages features of AOP languages to deal more elegantly with
this problem. Figure 1 shows how the pattern solves this problem. It uses a slightly
modified UML notation derived from the notation proposed by Chavez [Chavez 2004].

Figure 1. An example where the use of Error Handling Aspect avoids duplication
of exception handling code.

In the figure, aspectEclipseSyncHandler defines a pointcut namedeh that
associates advicehandler1 to methodsmembers() andendBatching(). This
advice implements the exception handlers that would otherwise be scattered throughout
the application code and is therefore callled ahandler advice. The name of each ad-
vice in the diagram is followed by the name of a pointcut to which it is bound. The
code snippets in the comments correspond to possible implementations written in the As-
pectJ [Laddad 2003] language. This approach separates the error handling code from the
normal code and localizes it within a single program unit, namely, an error handling as-
pect implementing the different handler advice. As a consequence, code duplication is
avoided and different error handling strategies can be easily plugged and unplugged to
the normal code.

6. Background

6.1. Exception Handling

Exception handling [Cristian 1989, Goodenough 1975] is a mechanism for structuring
error recovery in software systems so that errors can be more easily detected, signaled,
and handled. It is implemented by many mainstream programming languages, such as
Java, Ada, C++, and C#. These languages allow the definition of exceptions and their

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

25

corresponding handlers. The set of exceptions and exceptionhandlers in a system define
its abnormal or exceptional activity.

When an error is detected, an exception is generated, orraised. If the same ex-
ception may be raised in different parts of a program, different handlers may be executed,
depending on the place where the exception was raised. The choice of the handler that
is executed depends on the exception handling context where the exception was raised.
An exception handling context is a region of a program where the same exceptions are
handled in the same manner. Each context has an associated set of handlers that are
executed when the corresponding exceptions are raised. Typical examples of exception
handling contexts in object-oriented languages are blocks, methods, classes, and excep-
tions [Garcia et al. 2001].

The idealized fault-tolerant component(IFTC) [Anderson and Lee 1990] defines
a conceptual framework for structuring exception handling in software systems. An IFTC
is a component (in a broader sense – an object, a software component, a whole system,
etc.) where the parts responsible for the normal and abnormal activities are separated and
well-defined, within its internal structure. The goal of the IFTC approach is to provide
means to structure systems so that the impact of error recovery mechanisms in the overall
system complexity is minimized. One of the most important goals ofError Handling
Aspect is to promote the construction of systems where all the system components are
IFTCs. The following figure presents the internal structure of an IFTC and the types of
messages it exchanges with other components in a system.

Error Recovery

Normal
Activity

Abnormal
Activity

Local Exceptions

Service
Request

Normal
Response

Interface
Exceptions

Failure
Exceptions

Failure
Exceptions

Service
Request

Normal
Response

Interface
Exceptions

When an IFTC receives a service request, it produces anormal responseif the
request is successfully processed. If an IFTC receives an invalid service request, itsignals
an interface exception. If an error is detected during the processing of a valid request,
the normal activity part of the IFTCraisesan internal exception, which is received by
the exceptional activity part of the IFTC. If the IFTC is capable of handling an internal
exception properly, normal activity is resumed. If the IFTC has no handlers for an internal
exception or is unable to handle an exception, itsignalsa failure exception. Interface and
failure exceptions are collectively calledexternal exceptions. An IFTC might alsocatch
external exceptions signaled by other IFTCs and attempt to handle them.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

26

6.2. Aspect-Oriented Programming and AspectJ

AOP was proposed as a means to improve the separation of concern in systems that in-
cludecrosscutting concerns. A crosscutting concern can affect several units of a software
system and usually cannot be isolated by traditional OO programming techniques. A typ-
ical example of crosscutting concern is logging. The implementation of this concern is
usually scattered across the modules in a system, and tangled with code related to other
concerns, because some contextual information must be gathered in order for the recorded
information to be useful. Other common examples of crosscutting concerns include pro-
filing and authentication [Laddad 2003].

AspectJ [Laddad 2003] is a general purpose aspect-oriented extension to Java. It
extends Java with constructs for picking specific points in the program flow, called join
points, and executing pieces of code, called advice, when these points are reached. Join
points are points of interest in the program execution through which crosscutting con-
cerns are composed with other application concerns. AspectJ adds a few new constructs
to Java, in order to support the selection of join points and the execution of advice in
these points. Apointcutpicks out certain join points and contextual information at those
join points. Join points selectable by pointcuts vary in nature and granularity. Examples
include method call and class instantiation.Advicecan runbefore, after, or aroundthe
selected join points. In the latter case, execution of the advice may potentially alter the
flow of control of the application, and replace the code that would be otherwise executed
in the selected join point. AspectJ also allows programmers to modify the static structure
of a program by means of static crosscutting. With static crosscutting, one can introduce
new members in a class or interface, or make a checked exception unchecked.

Aspectsare units of modularity for crosscutting concerns. They are similar to
classes, but may also include pointcuts, advice, and static crosscutting. The code of an
aspect-oriented application written in AspectJ consists of two parts: (i) base code, which
is written in written in Java and implements the non-crosscutting concerns of the system;
and (ii) aspect code, which implements the crosscutting concerns of the system and com-
prises a set of aspects and auxiliary classes. Aspect code is combined with base code
by means of a process called weaving. Therefore, the tool responsible for performing
weaving is calledweaver.

The example below presents an aspect namedConnectionPoolHandler.
Lines 2 and 3 declare a pointcut namedsetManualCommitHandler that captures
calls to the methodsetAutoCommit() of classConnection, independently of re-
turn type (“*”) or list of parameters (“..”). Line 4 softensSQLException for the join
points selected bysetManualCommitHandler. This means thatSQLException
is not statically checked by the Java compiler. At run time, ifSQLException is raised
in a call tosetAutoCommit(), it is wrapped with an unchecked exception named
SoftException, defined by AspectJ. Lines 5-8 declare an advice that is executed af-
ter the join points selected bysetManualCommitHandler if their execution ends by
throwingSQLException (Line 5). This advice captures contextual information on the
selected join points by specifying that the target of the calls tosetAutoCommit() can
be referred to through variablecon.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

27

1 public aspect ConnectionPoolHandler {
2 pointcut setManualCommitHandler() :
3 call(* Connection.setAutoCommit(..));
4 declare soft : SQLException : setManualCommitHandler();
5 after(Connection con) throwing (SQLException e) :
6 setManualCommitHandler() && target(con) {
7 con.close();
8 }
9 }

7. Structure

In the rest of this paper, we call “exception-throwing statement” a statement that poten-
tially throws an exception. Exception-throwing statements appear within “context meth-
ods”. “Context” because, usually, these methods define exception handling contexts. In
the figure, classesNormalClass1 andNormalClass2 define one context method each,
contextMethod1() andcontextMethod2(), respectively. We refer to a set of exception-
throwing statements within the same context method as “exception-throwing code”. Be-
sides pointcuts and advice, error handling aspects can also include methods and fields that
are specific to exception handling. A field in this case can be, for example, a hash table
that stores temporary values that the handler advice use.

Figure 2. General structure of the pattern.

Normal classes.ClassesNormalClass1 andNormalClass2 implement the normal code
of an application. Each has one or more context methods, including one or more
exception-throwing statements apiece.

Concrete error handling aspects.Figure 2 depicts two concrete error handling aspects,
EHAspect1 andEHAspect2. Each one includes one or more handler advice.
The handler advice implement exception handling code that is executed when ex-
ceptions are raised within the context methods. A handler advice may be bound to

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

28

several distinct context methods, in order to avoid duplicating exception handling
code.

Abstract error handling aspects. If a handler advice is common to two or more error
handling aspects, it is useful to move it to an abstract aspect and make the latter
a super-aspect of the other error handling aspects. By binding the advice to an
abstract pointcut and making it concrete in the sub-aspects, duplication of han-
dler advice is avoided. In Figure 2, aspectGenericEHAspect is an example of
abstract error handling aspect.

8. Dynamics

The following scenarios illustrate how the various components of theError Handling
Aspect design pattern interact at runtime.

Scenario 1. Figure 3 depicts the normal execution path when using an error handling
aspect is present. In this scenario, a client invokes a method on a certain object and the
execution of this method is a join point of interest for error handling. No exceptions are
raised, though, and execution proceeds as if the aspect did not exist.

Figure 3. A scenario where no exceptions are thrown.

1. A client invokescontextMethod() on an instance ofNormalClass. As
implied by the name of the method, exceptions might potentially be raised within
it.

2. MethodcontextMethod() is executed.
3. The method returns a normal result to the client object.

Scenario 2. Figure 4 depicts the scenario where a client invokes a method on a certain
object, an exception is raised while the method is being executed, and an error handling
aspect successfully handles the exception.

1. A client invokescontextMethod() on an instance ofNormalClass.
2. WhilecontextMethod() is being executed, exceptionE is raised.
3. Control is transfered to the error handling aspectEHAspect, which attempts to

handleE.
4. The handler ends its execution normally, without raising any exceptions.
5. Control returns to the normal code, which resumes execution. Depending on the

join point to which the handler advice is bound, eithercontextMethod() goes
on executing or it immediately returns some normal (non-exception) response to
the client object.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

29

Figure 4. A scenario where a handler advice successfully handles an exception.

Scenario 3. This scenario shows the dynamics of error handling aspects that simulate
two nestedtry-catch blocks. The scenario depicted in Figure 5 illustrates the case
where the inner handler advice, after failing to handle an exception thrown within a con-
text method, throws an exception that is caught by the outer handler advice. The latter
then signals an exception and this exception is received by the client object. Handler
adviceinnerHandler(), defined by aspectInnerEHAspect, is associated method
contextMethod()or some part of it (e.g. a method call that appears in its body). Han-
dler adviceouterHandler(), defined by aspectOuterEHAspect, is associated to
the same join point asinnerHandler() or some ‘outer’ join point (e.g. the execution
of or calls tocontextMethod()).

Figure 5. A scenario involving nesting of handler advice.

1. A client invokescontextMethod() on an instance ofNormalClass.
2. WhilecontextMethod() is being executed, exceptionE is raised.
3. Control is transferred to handler adviceinnerHandler(), which attempts to

handleE.
4. Handler adviceinnerHandler() raises exceptionE’.
5. Control is transferred to handler adviceouterHandler(), which attempts to

handleE’.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

30

6. Handler adviceouterHandler() raises exceptionE’’.
7. ExceptionE’’ is signaled to the instance ofNormalClass, re-signaled by the

latter, and finally received by the client object.

9. Consequences

TheError Handling Aspect design pattern has the followingbenefits:

• Localization of error handling code. An important benefit ofError Handling
Aspect is that it keeps all the exception handling code localized within program
units whose sole purpose is to implement the exception handling concern. This
localization simplifies system maintenance, as developers do not have to search
through a whole program in order to change a certain exception handler. It also
improves understandability, since it is possible to get an intuitive understanding of
how error handling works in a given system just by looking at the error handling
aspects.

• Reduction of duplicated error handling code. It is easy to encapsulate an excep-
tion handler that would otherwise appear in several parts of a system in a single
handler advice. These parts of the system then become the join points of interest
to which the handler advice will be associated. Notice, though, that this reduction
of duplicated error handling code does not necessarily mean that the pattern will
reduce the overall number of lines of code pertaining to error handling (see the
last item under “Liabilities”, below).

• Arbitrary exception handling contexts. The fundamental precept of theError
Handling Aspect design pattern is that advice implement exception handlers and
are associated to exception throwing code through pointcuts. Because of this, the
only limitation to the types of exception handling contexts that can be defined is
the join point model of the employed aspect-oriented language.

• Pluggability. An error handling aspect can be easily replaced by another error han-
dling aspect implementing different error handling strategies. This feature makes
it easy to reuse the normal code of an application or part of it across different sys-
tems. The capability of reusing the normal code separately from the error handling
code is desirable in cases where different systems require specific error handling
strategies.

• Textual separation. Arguably, the textual separation promoted byError Handling
Aspect (and aspect-oriented techniques in general) makes it easier to understand
how a system works. The rationale is that developers have to grasp smaller con-
ceptual units that implement specific concerns.

Additionally,Error Handling Aspect has the followingliabilities:

• Textual separation. In spite of the advantages of textual separation, it makes it
difficult for a developer examining the base code of an application to have a com-
plete understanding about system behavior. Getting a complete picture requires
an understanding about base code, aspects, and their often non-obvious interac-
tions. In other words, this textual separation does not promote modular reasoning.
It is often argued that tool support can help developers in overcoming this prob-
lem [Lippert and Lopes 2000], but current tools are still not mature enough.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

31

• Inapplicability in some scenarios. Current aspect-oriented languages cannot, in
some fairly common situations, simulate the exception handling mechanisms of
existing programming languages. The design of the base code must take this into
account and avoid these situations. Otherwise,Error Handling Aspect cannot
be applied. When extracting error handling code from an object-oriented imple-
mentation in order to useError Handling Aspect, this means that sometimes the
system has to be refactored a priori, before the exception handling can be “as-
pectized”. This subject is further discussed in the third and last items of the next
section.

• Limited integration with checked exceptions. In languages that use checked excep-
tions, a method is required to either handle all the checked exceptions it encoun-
ters or explicitly declare those it does not in its interface. For example, the Java
compiler statically checks whether programs adhere to this rule and complains
if they do not. As a consequence, in these languages,Error Handling Aspect
results in programs that are not valid, since the exception handlers are moved
from methods to handler advice. Hence, some aspect-oriented languages, such
as CaesarJ [Mezini and Ostermann 2003] and HyperJ [Tarr et al. 1999], have an
inherently limited applicability for implementingError Handling Aspect. They
can only be used in situations where the “aspectization” of error handling results
in programs whose base (non-aspect) code does not violate the language rules for
checked exceptions. This is the case, for example, when a handler throws excep-
tions of the same type as (or a subtype of) the exceptions is catches. In this case,
the context method would already indicate in its signature that it throws the excep-
tion. AspectJ provides a workaround for this problem calledexception softening.
This language feature makes it possible to suppress the checks conducted by the
Java compiler in certain join points. Therefore, the use ofError Handling Aspect
in AspectJ requires that almost all exceptions caught by handler advice become
unchecked.

• Increase in the overall program size. In the early days of AOP, it was often
claimed that its use for structuring exception handling code would result in a re-
duction in application size [Lippert and Lopes 2000]. However, more recent stud-
ies [Bartolomei 2006, Castor Filho et al. 2006] have shown that this is only true
if error handling code is uniform and context-independent. If exception handling
code in an application is non-uniform or strongly context-dependent, reuse of han-
dler code becomes low and the number of lines of code in an application can grow
due to the implementation overhead of AOP. Moreover, the number of operations
(methods and advice) and components (aspects and classes) will almost always
grow due to the use ofError Handling Aspect.

10. Implementation

In this section we discuss some implementation issues of theError Handling Aspect
design pattern. Our discussion revolves around the AOP mechanisms available in the
AspectJ language and, consequently, the exception handling model of Java. As pointed
out by Kersten [Kersten 2005], production-quality AOP languages and frameworks, such

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

32

as AspectJ, Spring AOP1, AspectWerkz2, and JBoss AOP3, are similar in terms of the
mechanisms they support.

1. Type of handler advice to use. Handler advice can be of two types:after andaround.
Whenever possible, we recommend the use ofafteradvice for implementing handlers and
clean-up actions, because they are simpler.After advice are not appropriate, though, for
implementing exception handlers that have a masking behavior [Anderson and Lee 1990].
A handler has a masking behavior if it stops the propagation of the exceptions it catches.
In other words, it does not end its execution by throwing an exception, neither the one
it caught nor a new one. Several common exception handling idioms have a masking
behavior, for example, a handler that logs an exception and ignores it. AspectJ requires
that anafter advice end its execution in the same way as the join point to which it is
associated. Therefore, if the code of anafter advice is executed following the throwing
of an exception, the runtime system of the language assumes that the advice ends its
execution by throwing an exception as well.

To implement handlers that have a masking behavior,aroundadvice are the only
possible choice. They are more powerful thanafter advice, but impose a larger imple-
mentation overhead.Aroundadvice are also useful when an advice emulates the set of
exception handlers associated to a singletry block. In this case, usingafter advice re-
quires much more handwork because each such advice is triggered by only one exception.
Thus, the code to check the actual type of an exception, for the purpose of choosing the
appropriate handler, has to be written by hand. This behavior is achieved automatically
by implementing atry-catch block within anaroundadvice.

2. Organizing error handling aspects. Various approaches are possible for organizing
error handling aspects. Extreme alternatives include: (i) putting all the exception handling
code in a single aspect; (ii) creating a separate aspect for each handling strategy; or (iii)
creating one error handling aspect for each class implementing exception handling code.
In the first case, error handling is contained within a single program unit and it becomes
easier to combine similar handlers, as they are all located within the same place. However,
for medium or large systems, the aspect might end up bloated and very hard to understand
and maintain. The second case seems more reasonable but, in our experience, apparently
similar error handling strategies often include subtleties that make it impossible to com-
bine them in a single handler advice. Therefore, it might result in a very large number of
very simple error handling aspects. The third case also typically results in a large number
of very simple classes, as most classes in a system include only a few exception handlers.

A more moderate approach is to create one handler aspect for each type of ex-
ception and include in such aspects all the possible handling strategies for each exception
type. This approach is conceptually sound and works well when a system employs a
limited number of exceptions and for each such exception there are several possible han-
dling strategies. For applications that use a very large number of exceptions, it does not
scale up well. Another reasonable strategy is to create one handler aspect for each pack-
age in the application. Based on our experience, this approach scales up well in general.

1http://www.springframework.org/docs/reference/aop.html
2http://aspectwerkz.codehaus.org/
3http://www.jboss.org/products/aop

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

33

For a system where other concerns have been aspectized a priori, a feasible strategy is
to create one exception handling aspect per aspectized concern. Each organization has
pros and cons that revolve around the code size vs. system structuring trade-off. The
extreme approaches mentioned in the previous paragraph are usually only beneficial for
small systems or systems with very uniform error handling strategies.

It is commonplace for the same handler advice to be associated with different parts
of a program. Depending on the way in which handler advice are organized amongst the
error handling aspects, this may result in the same advice being necessary in two or more
different aspects. The finer the granularity of these aspects, the higher the likeliness of
this scenario arising. To avoid duplicating handler advice across different error handling
aspects, one can define an abstract aspect from which these aspects inherit. The common
advice is then placed in the abstract aspect and bound to an abstract pointcut that is made
concrete by the inheriting aspects.

3. Association of handler advice to normal code. The ease of associating a handler ad-
vice to exception-throwing code depends on how the handler would be implemented using
only the exception handling mechanism of an object-oriented language. In Java/AspectJ,
it is straightforward to associate a handler advice to normal code when the advice emu-
lates atry-catch block whosetry part surrounds the entire method body, or awhole-
methodtry block. It is a simple matter of binding the handler advice to the execution of
the context method through anexecution pointcut designator. Arguably, the resulting
code is easy to understand and maintain, as it does not depend on the internals of the con-
text method. Moreover, in some cases, due to the limitations of the join point models of
existing aspect-oriented programming languages, binding handler advice to finer-grained
program elements is not possible. In the rest of this section, we assume that, ideally,
the implementation of handler advice should always aim to emulate whole-methodtry
blocks.

Albeit easy to implement, whole-methodtry blocks are often the target of crit-
icism [Papurt 1998]. The main argument against this idiom is that it makes it hard for a
handler to establish the cause of an error when the same exception can be thrown from
more than one place in the code. Therefore, developers often deal with exceptions more
locally. It is commonplace fortry-catch blocks to be tangled within the body of a
method, surrounded by code that does not pertain to error handling. It is also a common
practice to use nestedtry-catch blocks in order to define multiple exception handling
contexts. These scenarios create some complications for the use ofError Handling As-
pect. We discuss them in the rest of this item and in the next one, which addresses nesting
of try-catch blocks.

When acatch block ends its execution by throwing exceptions or returning (exe-
cuting thereturn statement), it is generally easy to implement a corresponding handler
advice and associate it to the exception-throwing code. In this scenario, it does not matter
if the try block surrounds a specific part of the context method or its whole body. After
handler execution, control will be passed to whoever catches the exception thrown by the
handler (in the former case) or to the calling method (in the latter). Therefore, once an ex-
ception is raised by the exception-throwing code, method execution will not be resumed
and it is safe to assume that the handler advice has a whole-methodtry block behav-

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

34

ior. Care should be taken, however, in order to avoid catchingexceptions unintentionally.
There are two cases where this solution might not apply: (i) when the same exception
can be raised by different points in the same context method and different error handling
strategies are applicable for each such point; and (ii) when there are nestedtry blocks.
In the situation described by item (i), the handler advice have to be associated to the spe-
cific exception-throwing statements. Otherwise, the handler advice would need to include
additional logic with the purpose of distinguishing the point in the context method from
where a caught exception was raised. Nesting oftry blocks is discussed in the next item.

The following code snippet shows an example of the aforementioned scenario
written in Java and a modified version using a handler advice. Notice that, in the pure
Java version, thetry block could as well surround the whole method body. Assuming
that m() does not include any othertry-catch block, the behavior of the program
would be the same.

// A pure Java implementation.
public void m() throws E2 {
...
try { doSomethingThatThrowsE1();
...

} catch(E1 e) {
throw new E2(e);

}
doSomethingAfterHandlingE1();

}

// An AspectJ implementation.
// in a class
public void m() throws E2 {
...
doSomethingThatThrowsE1();
...
doSomethingAfterHandlingE1();

}
// in an error handling aspect
pointcut pc() :
execution(public void m());

declare soft : E1 : pc();
after() throwing (E1 e) : pc() {
throw new E2(e);

}

Exception handlers that do not execute any statement that alters the control flow of
a program are calledmaskinghandlers, because they hide the occurrence of the exception
from the rest of the program. Acatch block that logs an exception and then ignores it
is a typical example. WhenError Handling Aspect is being introduced in an existing
object-oriented system, masking handlers often hinder the use of the pattern because the
code that textually follows a maskingcatch block cannot be ignored. The following
code snippet presents an example. The three shaded method calls are exception-throwing
statements that may raise exceptionE and thecatch block masks the occurrence of
exceptionE.

void m(){
try{

m1(); //throws E

m2(); //throws E

m3(); //throws E
}catch(E e){ Logger.log(e); }
doSomething();

}

For the example above, associating a handler advice implementing thecatch
block with each exception-throwing statement individually is not an adequate solution.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

35

For example, if we associated a handler advice with the call tomethodm2(), after ex-
ception handling the call to methodm3() would be executed. However, in the original
implementation, control should be passed to the statement following thetry-catch
block, the call todoSomething(). Binding the handler advice to the execution of con-
text methodm() is also not adequate. After exception handling, control would return to
the caller ofm(). This implies that the call todoSomething()would not be executed.
The bottom line is: we would like to associate a handler advice to a block containing
more than one statement, just like atry block, instead of a single statement or a whole
method. Unfortunately, no existing aspect-oriented language includes mechanisms for
directly selecting a block of statements. If, nevertheless, it is necessary to transform the
try-catch block into a handler advice, the code has to be refactored a priori. A pos-
sible solution is to extract the code within thetry block to a new method and associate
the handler advice to this new method.

4. Nestedtry blocks. In order to useError Handling Aspect to implement nested
try-catch blocks, it is necessary to order the handler advice so that they simulate the
hierarchical structure oftry blocks. In AspectJ, this can be achieved by textually order-
ing handler advice that are associated to the same exception-throwing statements. The
AspectJ weaver considers that the order in which advice appear in the body of an aspect
indicates how they are to be woven into the join point. Advice that appear first are more
internal. In aspect-oriented languages that include specific constructs to describe the order
in which advice are associated to a join point of interest, such as Jasco [Suvee et al. 2003],
the order of advice weaving can be indicated directly.

The case where all the handlers in a method either throw exceptions or return does
not differ much from the situation described in the previous item. All the handler advice
can still be associated to the execution of the context method, but they have to be ordered
so as to simulate the nesting oftry blocks. The following code snippet shows a simple
example of nestedtry blocks in Java and a corresponding AspectJ implementation where
two handler advice are associated to the same method. The lexical position of the two
advice defines the order in which they are woven into the join point thatpc selects.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

36

// A pure Java implementation.
public void m() throws E3 {
...
try { ...
try { ...
throw E1;
...

} catch(E1 e) {
doSomething();
throw new E2(e);

} ...
} catch(E2 e) {
doSomethingElse();
throw new E3(e);

}
}

// in a class
public void m() throws E3 {
...
throw new E1();
...

}
...
// in an error handling aspect
pointcut pc() :
execution(public void m());

declare soft : E1 : pc();
declare soft : E2 : pc();
after() throwing (E1 e) : pc() {
doSomething();
throw new E2(e);

}
after() throwing (E2 e) : pc() {
doSomethingElse();
throw new E3(e);

}

If any of the exception handlers does something other than throwing exceptions
or returning, things get trickier. The same issues discussed above for masking handlers
apply and are further complicated by nesting.

5. Exception softening. In languages that use checked exceptions, e.g. Java, it is often
necessary to suppress the static checks performed by the compiler, in order to allow the
error handling code to be moved to an aspect. In AspectJ, this is achieved by declaring
some exceptions to besoft in the join points of interest. Exception softening affects not
only the softened exception, but all of its subtypes.

An advice associated with a certain join point is implicitly considered part of that
join point by AspectJ. Therefore, softening an exceptionE in an arbitrary join pointJP

will also soften any exceptionsE ′, subtypes ofE, thrown by advice bound toJP . In
order to avoid softening exceptions by accident, as much as possible, developers should
only soften leaves in the exception type hierarchy. When this is not viable, it is necessary
to define an additional advice whose sole responsibility is to extract and throw softened
exceptions wrapped within instances ofSoftException. Such advice must be associ-
ated with join points where the exceptions it throws are are not softened. This issue only
applies ifE ′ is a strict subtype ofE (E ′ 6= E), as it is not necessary to softenE if E

′ and
E are the same exception. The following code snippet presents an example.

// in a class
public void m() throws SubTypeE {
...
throw new SuperTypeE();

}
...
// in an error handling aspect
pointcut mHandler() : execution(public void m());
declare soft : SuperTypeE : mHandler();
after() throwing (SuperTypeE e) : mHandler() {
throw new SubTypeE(e);

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

37

}
after() throwing (SoftException se) throws SubTypeE :

call(public void m()) {
throw new (SubTypeE)se.getWrappedThrowable();

}

In the example,SuperTypeE is a supertype ofSubTypeE. When an instance of
SuperTypeE is thrown from withinm(), the handler advice will catch the exeception,
wrap it with an instance ofSubTypeE, and throw the latter. However,SuperTypeE
is softened within the execution ofm(), the join point with which the handler advice
is associated. Therefore, exceptions thrown by the handler, instances ofSubTypeE in
the example, will also be softened. This will result inm() throwingSoftException
when it should actually be throwingSubTypeE. The second advice in the code snippet,
associated to calls tom(), solves this problem by extracting the instance ofSubTypeE
from the instance ofSoftException and throwing the former.

6. Implementing clean-up actions. Usually clean-up actions (finally blocks) are im-
plemented usingafter advice. This is an appropriate solution in most of the cases, as the
two constructs have similar semantics. There is a situation, however, where the two differ.
According to the Java Language Specification [Gosling et al. 1996], if afinally block
ends its execution with areturn statement, the method of which it is part will return,
independently of whether an exception was thrown or not from the correspondingtry
block. As pointed out previously,afteradvice executed after the throwing of an exception
must also throw an exception. Therefore,around advice are a better choice for imple-
mentingfinally blocks that return. This discussion also applies tofinally blocks
executing loop-specific commands, such asbreak andcontinue. These cases have
some peculiarities, however, and are briefly discussed in the next item.

7. Unsupported error handling strategies. Sometimes handler advice cannot mimic the
behavior of regulartry-catch blocks. This is fairly common when reengineering the
error handling code of an existing object-oriented application in order to useError Han-
dling Aspect. There are three main factors that hinder the use of the pattern: (i) the advice
cannot simulate the flow of control of a regulartry-catch block; (ii) uncaught excep-
tions in languages that use checked exceptions; and (iii) the exception handler depends
on contextual information of the exception-throwing code in a way that the employed
aspect-oriented language cannot capture. The second code snippet in Item 3 of this sec-
tion portrays a situation where it is not possible to applyError Handling Aspect without
first redesigning the normal code. As pointed out previously, in order to simulate the
flow of control of atry-catch block, aspect-oriented languages would need to support
pointcut designators for selecting blocks of code.

In CaesarJ and HyperJ, there are no mechanisms for deactivating the static checks
that the Java compiler performs for checked exceptions. Therefore, in these languages,
Error Handling Aspect can only be applied directly if the raised exceptions also appear
in thethrows clause of the context method. Otherwise, the program has to be modified
in order for the context methods to include the exceptions handled by handler advice in
their throws clause. This limitation often implies in system-wide modifications that
severely counterbalance the benefits yielded by the pattern.

Handlers that depend on the context of the exception-throwing code in certain

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

38

ways are also hard to implement asError Handling Aspects. There are two specific
situations that should be avoided at all costs if one intends to use the pattern to struc-
ture error handling in an entire application. The first situation occurs when a handler
executes loop-specific statements, such asbreak or continue. To the best of our
knowledge, no existing aspect-oriented language allows an advice to include a loop-
specific statement related to a loop defined in the selected join point, i.e., outside of the
advice. This is true even in the face of recent proposals for pointcut designators that se-
lect loops [Harbulot and Gurd 2006]. The second situation to be avoided is the use of
exception handlers that depend on local variables defined by their corresponding context
methods. To the best of our knowledge, no current aspect-oriented language supports the
implementation of advice that access local variables visible at the join points to which
they are associated. Moreover, this is arguably an undesirable feature, as it is a blatant
violation of encapsulation.

11. Sample Code

In this section, we present sample code pertaining to the use of the pattern. To make the
examples more concrete, we show the application ofError Handling Aspect to some
portions of the Eclipse CVS Core Plugin. For each example of pattern use, we also show
the original, pure Java, implementation. For completeness, we also present an example of
Java code whereError Handling Aspect cannot be applied directly.

The code snippet below shows a situation where it is trivial (and usually beneficial)
to apply the pattern. Since the entire body of methodfromString() is surrounded by
atry block, the join point of interest is the execution of the whole method. Moreover, the
handler throws an exception, which makes it possible to implement it as anafteradvice in
the aspectized version (in the bottom part of the code snippet). Another factor that makes
this example simple is the type of the exception thrown by the exception-throwing code in
thetry block. Since it is the same as the exception thrown by thecatch block, it is not
necessary to soften it because it is already declared in the interface offromString().

/*** OBJECT-ORIENTED IMPLEMENTATION - ORIGINAL ***/
public class CVSRepositoryLocation extends PlatformObject

implements ... {
public static CVSRepositoryLocation fromString(String location)

throws CVSException {
try { return fromString(location, false); // throws CVSException
} catch (CVSException e) {
MultiStatus error = new MultiStatus(...);
...
throw new CVSException(error);

}
} ...

}

The following code presents a possible application ofError Handling Aspect to
the example above.

/*** ASPECT-ORIENTED IMPLEMENTATION - REFACTORED ***/
public class CVSRepositoryLocation extends PlatformObject

implements ... {

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

39

...
public static CVSRepositoryLocation fromString(String location)
throws CVSException { return fromString(location, false); }

}
public privileged aspect CoreHandler {
pointcut fromStringEH(String location) : args(location) &&
execution(public static * CVSRepositoryLocation.

fromString(String));
after(String location) throwing (CVSException e) :

fromStringEH(location) {
MultiStatus error = new MultiStatus(...);
...
} ...

}
}

The next example, presented in the code snippet below, is more convoluted. Nei-
ther the execution of methoddeconfigured() nor the exception-throwing statements
within it are adequate join points for error handling. Because of the combination of a
tangledtry-catch block and a masking handler, simply associating a handler advice
to either would result in a program that does not mimic the flow of control of the original
program.

/*** OBJECT-ORIENTED IMPLEMENTATION - ORIGINAL ***/
public class CVSTeamProvider extends RepositoryProvider {
public void deconfigured() {
try {
// when a nature is removed from the project, notify the
// synchronizer that ...
EclipseSynchronizer.getInstance().deconfigure(getProject(),
null); // throws CVSException

internalSetWatchEditEnabled(null); // throws CVSException
internalSetFetchAbsentDirectories(null); // throws CVSException

} catch(CVSException e) { CVSProviderPlugin.log(e); }
ResourceStateChangeListeners.getListener().

projectDeconfigured(getProject());
} ...

}

The following code snippet shows the solution that we employed in order to make
it possible to use the pattern. We created a new method,notifySynchronizer(),
containing part of the code of methoddeconfigured() from the original implemen-
tation . The join point of interest for the error handling concern in this case was the
execution of this new method. We then moved the exception handling code from method
deconfigured() to anaroundadvice.

/*** ASPECT-ORIENTED IMPLEMENTATION - REFACTORED ***/
public class CVSTeamProvider extends RepositoryProvider {
public void deconfigured() {
notifySynchronizer();
ResourceStateChangeListeners.getListener().

projectDeconfigured(getProject());
}
// when a nature is removed from the project, notify the

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

40

// synchronizer that ...
private void notifySynchronizer() {
... // contents of the try block from the original version.

} ...
}
privileged public aspect CoreHandler {
pointcut notifySynchronizerEH() :
execution(private void CVSTeamProvider.notifySynchronizer());

declare soft : CVSException : notifySynchronizerEH();
void around() : notifySynchronizerEH() {
try { proceed();
} catch (CVSException e) { CVSProviderPlugin.log(e); }

}
}

It is subject to debate whether the effect of aspectizing error handling in this ex-
ample was beneficial or harmful. On the one hand, the new method makes sense by
itself. The comment that appears in thetry block, which refers to the part of the
code of methoddeconfigured() that was extracted, clearly showed the intent of
the lines that followed it and made it easy to name the new method. As discussed by
Fowler [Fowler 1999], the ease of naming a new method created through the “Extract
Method” refactoring is a good indicator of whether that method should have been cre-
ated. On the other hand, the original method now comprises only two statements, the
first one a call to the extracted method. This is a localized example of the “Middle
Man” [Fowler 1999] bad smell, where methoddeconfigured() has no reason to be
because it simply delegates what it should be doing to other methods.

The code snippet below presents an example that includes two complicating fac-
tors: (i) thecatch block performs an assignment to one of the local variables of the
containing method; and (ii) thecatch block is a masking handler that is associated to
multiple exception-throwing statements. Besides the complications introduced by the sec-
ond factor, a handler that performs assignments to local variables is a strong obstacle to as-
pectization. Even for a simple example such as the one below, moving the error handling
code to an aspect is infeasible unless the code is redesigned to remove any assignments
to local variables from handlers and clean-up actions. To the best of our knowledge, there
are no general solutions to this problem and workarounds involve knowledge of the inner
workings of the system. Due to these complications, we do not applyError Handling
Aspect to this example.

/*** OBJECT-ORIENTED IMPLEMENTATION ***/
public class FileModificationManager implements

IResourceChangeListener {
private boolean isCleanUpdate(IResource resource) {
if(resource.getType() != IResource.FILE) return false;
long modStamp = resource.getModificationStamp();
Long whenWeWrote;
try {
whenWeWrote = (Long)resource.
getSessionProperty(UPDATE TIMESTAMP); // throws CoreException

resource.setSessionProperty(UPDATE TIMESTAMP,
null); //throws CoreException

} catch(CoreException e) {
CVSProviderPlugin.log(e);

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

41

whenWeWrote = null;
}
return (whenWeWrote!=null && whenWeWrote.longValue() == modStamp);

}
}

12. Known Uses

Lippert and Lopes [Lippert and Lopes 2000] were the first to report to a broader audi-
ence on the use of AOP to modularize error handling. They applied the pattern to an
object-oriented framework called JWAM using an old version of AspectJ. Colyer and
Clement [Colyer and Clement 2004] employedError Handling Aspect to capture data
about component failures in a commercial middleware infrastructure. Due to application
requirements, they could encapsulate all the error handling strategies of the application
within a single abstract aspect, maximizing reuse of handler code.

Soares and coleagues [Soares et al. 2002] usedError Handling Aspect to struc-
ture part of the exception handling code in a web-based healthcare information system
named Health Watcher. This work distinguishes itself from the ones mentioned above be-
cause the authors targeted specifically the exceptions introduced in the system by distribu-
tion and persistence concerns. In Health Watcher, these two concerns were implemented
as aspects.

Castor Filho et al [Castor Filho et al. 2006] used this pattern to structure error
handling in four different systems: (i) a web-based traveller information system; (ii)
Java Pet Store4, a well-known demo for the Java Platform, Enterprise Edition; (iii) the
CVS Core Plugin, part of the basic distribution of the Eclipse5 platform; and (iv) Health
Watcher [Soares et al. 2002]). The first three applications were originally object-oriented,
whereas the fourth included some concerns that were implemented a priori as aspects.
They also empirically analyzed the impact of the pattern in these four systems based on a
set of metrics for quality attributes such as coupling, cohesion, and conciseness.

13. Related Patterns

Error Handling Aspect presents some improvements over theHandler pattern, proposed
by Garcia and Rubira [Garcia and Rubira 2000].Handler leverages a meta-object proto-
col in order to promote a complete textual separation between normal code and error
handling code. One of the differences betweenHandler andError Handling Aspect is
that, in the latter, the use of aspects makes it possible to define arbitrary, both fine- and
coarse-grained, exception handling contexts. The only limitation to what can be selected
as an exception handling context is the join point model of the employed aspect-oriented
language. Moreover, the quantification capabilities of aspect-oriented languages arguably
make it easier to localize error handling code within the aspects. Also, using theError
Handling Aspect, the pointcut descriptions explicitly point out the locations where the
classes and error handling aspects interact. In a reflective solution, these interactions are
intertwined/hardcoded in the method body of meta-objects.

4http://java.sun.com/developer/releases/petstore/
5http://www.eclipse.org

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

42

TheException Introduction pattern [Laddad 2003] leverages AOP to make new
exceptions introduced by aspect-oriented implementations of crosscutting concerns trans-
parent to the base code of an application. The pattern targets languages such as Java,
which use checked exceptions, and makes the introduced exceptions temporarily unchecked
so that they can be handled where it is more appropriate.Exception Introduction uses
Error Handling Aspect to implement the exception handlers for the introduced excep-
tions.

Many authors [Diotalevi 2004, Laddad 2003, Lippert and Lopes 2000] propose
the use of AOP for separating runtime assertion-checking code from the normal code.
This pattern can be used in combination withError Handling Aspect so that both error
detection and error handling code become localized within well-defined program units.
This combined solution results in normal code that is not cluttered by error detection and
handling concerns.

Haase [Haase 2002] presents a comprehensive pattern language comprising eleven
idioms to improve error handling in Java applications. We believe thatError Handling
Aspect pattern can be combined with this pattern language, at the design level, in order
to produce a system that is more flexible and maintainable.

14. Acknowledgements

The authors thank the shepherd for this paper, Robert Hanmer, by the many interesting
comments. We are also grateful to the participants of the Writer’s Workshop, specially
Jorge Ortega-Arjona and Cassiano Becker, for the positive feedback. This work was con-
ducted while Fernando was with the Institute of Computing, State University of Camp-
inas, and supported by FAPESP/Brazil, grant #02/13996-2. He is currently supported by
FAPESP/Brazil, grant #06/04976-9. Alessandro is partially supported by European Com-
mission grant IST-2-004349: European Network of Excellence on Aspect-Oriented Soft-
ware Development (AOSD-Europe), 2004-2008. Alessandro is also supported by the TAO
project, funded by Lancaster University Research Committee. Cecı́lia is partially sup-
ported by CNPq/Brazil, grant #351592/97-0, and by FAPESP/Brazil, grant #2004/10663-
8.

References

Anderson, T. and Lee, P. A. (1990).Fault Tolerance: Principles and Practice. Springer-
Verlag, 2nd edition.

Bartolomei, T. T. (2006). On modularity assessment of aspect-oriented software. Master’s
thesis, Kiel University of Applied Sciences, Kiel, Germany.

Castor Filho, F., Cacho, N., Figueiredo, E. M., Ferreira, R. M., Garcia, A., and Rubira, C.
M. F. (2006). Exceptions and aspects: The devil is in the details. InProceedings of the
14th SIGSOFT FSE, pages 152–162, Portland, USA.

Chavez, C. (2004).A Model-Driven Approach for Aspect-Oriented Design. PhD thesis,
Pontifı́cia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil.

Colyer, A. and Clement, A. (2004). Large-scale AOSD for middleware. InProceedings
of AOSD’04, pages 56–65.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

43

Cristian, F. (1989). Exception handling. InDependability of Resilient Computers. BSP
Professional Books.

Cui, Q. and Gannon, J. (1992). Data-oriented exception handling.IEEE Transactions on
Software Engineering, 18(5):393–401.

Diotalevi, F. (2004). Contract enforcement with aop. IBM DeveloperWorks - http://www-
128.ibm.com/developerworks/library/j-ceaop/.

Fowler, M. (1999). Refactoring: Improving the Design of Existing Code. Addison-
Wesley.

Garcia, A., Rubira, C., Romanovsky, A., and Xu, J. (2001). A comparative study of excep-
tion handling mechanisms for building dependable object-oriented software.Journal
of Systems and Software, 59(2):197–222.

Garcia, A. and Rubira, C. M. F. (2000). An architectural-based reflective approach to
incorporating exception handling into dependable software. In Romanovsky, A. et al.,
editors,Advances in Exception Handling Techniques, LNCS 2022. Springer-Verlag.

Goodenough, J. B. (1975). Exception handling: Issues and a proposed notation.Commu-
nications of the ACM, 18(12):683–696.

Gosling, J., Joy, B., and Steele, G. (1996).The Java Language Specification. Addison-
Wesley.

Haase, A. (2002). Java idioms: Exception handling. InProceedings of EuroPLoP’2002,
pages 41–70.

Harbulot, B. and Gurd, J. R. (2006). A join point for loops in aspectj. InProceedings of
AOSD’06, pages 63–74, Bonn, Germany.

Kersten, M. (2005). Aop tools comparison, part 1: Language mechanisms. AOPWork -
http://www-128.ibm.com/developerworks/java/library/j-aopwork1/index.html.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C. V., Loingtier, J.-M., and
Irwin, J. (1997). Aspect-oriented programming. InProceedings of the 11th ECOOP,
pages 220–242.

Laddad, R. (2003).AspectJ in Action. Manning.

Lippert, M. and Lopes, C. V. (2000). A study on exception detection and handling using
aspect-oriented programming. InProceedings of the 22nd ICSE, pages 418–427.

Mezini, M. and Ostermann, K. (2003). Conquering aspects with caesar. InProceedings
of the 2nd AOSD, pages 90–99.

Papurt, D. M. (1998). The use of exceptions.Journal of Object-Oriented Programming,
11(2):13–17, 32.

Parnas, D. L. and Würges, H. (1976). Response to undesired events in software systems.
In Proceedings of the 2nd ICSE, pages 437–446, San Francisco, USA.

Randell, B. and Xu, J. (1995). The evolution of the recovery block concept. InSoftware
Fault Tolerance, chapter 1, pages 1–21. John Wiley Sons Ltd.

Soares, S., Laureano, E., and Borba, P. (2002). Implementing distribution and persistence
aspects with AspectJ. InProceedings of the 17th OOPSLA, pages 174–190.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

44

Suvee, D., Vanderperren, W., and Jonckers, V. (2003). Jasco:an aspect-oriented ap-
proach tailored for component-based software development. InProceedings of the
AOSD’2003, pages 21–29.

Tarr, P. L., Ossher, H., Harrison, W. H., and Sutton Jr, S. M. (1999). N degrees of sep-
aration: Multi-dimensional separation of concerns. InProceedings of the 21st ICSE,
pages 107–119.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

45

Applying Scrum and Organizational Patterns to Multi-site

Software Development1

Lucas Cordeiro
2
, Cassiano Becker

3
, Raimundo Barreto

2

2Departamento de Ciência da Computação - Universidade Federal do Amazonas (UFAM), Brazil

3
BenQ Eletroeletrônica S.A, Manaus, Brazil

lcc@dcc.ufam.edu.br, cassiano.becker@benq.com, rbarreto@dcc.ufam.edu.br

1
 Copyright © 2007, Lucas Cordeiro, Cassiano Becker and Raimundo Barreto. Permission is granted to

copy for the SugarLoafPLoP 2007 conference. All other rights reserved.

Abstract. This paper describes a pattern language for managing multi-site

software projects which aims at minimizing the main problems present on the

multi-site software development context. The practices and patterns of the

proposed language were first identified from the literature and adapted

according to the authors’ experience after running some multi-site software

projects. This exercise has led to the identification of two new patterns:

“Stories Rework Subsystem”, and “Plan Bugs On a Sustainable Pace", as

well as to an alternative application of the existing “Inversion of Control”

pattern to the organizational context.

Keywords: Multi-site Software Development, Scrum Agile Methodology, Lean

Software Development, Organizational Patterns, Project Management.

1. Introduction

Large software projects are usually split into components and developed by different

teams, in some cases developed at different places. Software development projects, both

large and small, have been consistently difficult to control and manage. Recent studies

show that an average project take twice as long to do as its initial plans [Schwaber and

Beedle 2002]. Communication overhead and effort to create and update documentation

could be pointed as major sources of inefficiency behind project failures.

Communication overhead is often introduced by a mismatch in the functionalities

required by a given component and the way their development is assigned to separate

development teams. In this case, a high rate of communication among teams is

introduced, as components developed by one team depend on the services provided by

components developed by teams located at different places.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

46

 Another problem in large software projects is the increased need for

communicating requirements with a higher degree of formality. Requirements are

essentially written to describe product characteristics that are proposed in response to a

set of business needs. However, customers/users are often not completely sure of what

they want, and their mind is likely to change during the time the product is being

developed. Moreover, external forces such as competitor’s products/services may also

lead to changes or enhancements in requirements. Still, many details of what must be

produced may be found out only during product development. Therefore, the fact that

several development teams may be involved in a project with evolving user

requirements calls for practices to efficiently manage the project (team size and

location) and embrace changes (scope flexibility), even late in the development process.

 Based on this context, we describe in this paper a pattern language composed of

Scrum [Schwaber and Beedle 2002], Lean Software Development [Poppendieck and

Poppendieck 2003] and Organizational patterns [Coplien and Harrison 2004] applied to

the domain of multi-site software development. In our definition, multi-site software

development can be described essentially by characteristics as follows: (i) the project is

split into components and assigned to different development teams, (ii) teams are

physically separated and may be part of different business organizations, (iii) there is a

limited number of teams, such that a two-level hierarchy of coordination is sufficient

(between two and five in our experience) (iv) teams are able to physically meet at non-

prohibitive cost, if required.

 The remainder of this paper is organized as follows: Section 2 provides an

overview of the Scrum agile methodology and Organizational patterns. Section 3

introduces the structure of a pattern language in which the proposed patterns are

included, and shows how these patterns relate to each other. Section 4 describes the

proposed patterns and finally, section 5 summarizes this paper and provides goals of

further research.

2. A Brief Look at the Agile Method and Patterns

This section looks briefly at the Scrum method and at the Organizational patterns that

were used as basis for the pattern language four our multi-site software environment.

2.1. Scrum

Scrum is a simple and straightforward approach to manage the software development

process based on the assumption that environmental (i.e. people) and technical (i.e.

technologies) variables are likely to change during the process [Schwaber and Beedle

2002]. In order to manage these variables, Scrum employs the empirical process control

model which strongly uses a feedback mechanism to monitor and adapt to the

unexpected. Scrum is composed of 14 practices and some of its main practices include:

Sprint practice which is the iteration work organized in 30-calendar-day. The Sprint

Planning practice that consists of two meetings as follows: In the first meeting, the

product backlog which contains a list of features, use cases, enhancements, and defects

of the system is refined and re-prioritized by the product owner, stakeholders and goals

for the next iteration are chosen. In the second meeting, the Scrum team figures out how

to achieve the requests and creates the sprint backlog that contains detailed tasks to be

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

47

accomplished in the current iteration. In the Sprint Review practice, the Scrum team

presents the results obtained at the end of each iteration by showing working software to

the product owner, customers and other stakeholders. In the Daily Scrum practice, daily

meetings are held at the same place and time with special questions to be answered by

the Scrum team.

 The Scrum process consists of three roles and the responsibility of each role is

described as follows: Scrum master is the person responsible for ensuring that Scrum

values, practices and rules are followed by the Scrum team. He/she is also responsible

for mediating between management and Scrum team, as well as listening to progress

and removes block points. Product owner is the person who is officially responsible for

the project. This person creates and prioritizes the product backlog and ensures that it is

visible to everyone. He/she is also responsible for choosing the goals for the next sprint

and reviewing the system with other stakeholders at the end of every iteration.

 Scrum team is responsible for working on the sprint backlog. The amount of

work that will be addressed in the sprint is solely up to the team. They must assess what

can be accomplished in the sprint during the sprint planning meeting. Therefore, the

team has the authority to make most decisions, and ask for any block points to be

removed.

2.2. Organizational Patterns

The organizational patterns described by [Coplien and Harrison 2004] can be combined

with Scrum agile methods with the purpose of structuring the software development

process of organizations. These patterns are split into four different pattern languages as

follows: The project management pattern language provides a set of patterns that

help the organization manage product development, clarify the product requirements,

coordinate project's activities, generate system builds, and keep the team focus on the

project's primary goals.

 The piecemeal growth pattern language provides a set of patterns that help the

organization define the overall management structure and amount of team members per

project, ensure and maintain customer satisfaction, communicate system requirements,

and ensure a common vision for all the people involved in the product development

team. The organizational style pattern language provides a set of patterns that help

the organization eliminate project's overhead and latency, ensure that the organization

structure is compatible with the product architecture, organize work for developing

products with geographically distributed teams, ensure that market needs will be met.

 The people and code pattern language provides a set of patterns that help the

organization define and keep the architecture style of the product, ensure that the

architect is materially involved in implementation, and assign feature development to

people in nontrivial projects. The software configuration management pattern

language is not part of the organizational patterns, but was integrated into the proposed

pattern language. These patterns were defined by [Berczuk 2002] and they offer patterns

that help the development team define mechanisms for managing different versions of

the work products, develop code in parallel, and identify what versions of code make up

a particular component.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

48

3. The Proposed Pattern Language

As previously said, the proposed pattern language is composed by patterns identified

from languages with complementary concerns: the Scrum Methodology, Organizational

Patterns, and Software Configuration Management pattern language. Besides these, the

authors also identified from their experience the adoption of practices that pointed to

two additional patterns. The resulting pattern language diagram is depicted in Figure 1.

From the resulting set of twenty-one patterns, only a subset was elected for a full

description. These obeyed the following criteria:

• A pattern of fundamental importance to description of development process from the

multi-site and agile aspect (“Surrogate Customer”, “Code Line”, and “Integration

Build”).

• A pattern that had not yet been applied to this context before (c.f. “Inversion of

Control”).

• A proposed new pattern identified by the authors (“Stories Rework Subsystem” and

“Plan Bugs on a Sustainable Pace”).

 Although a greater number of patterns from the mentioned sources could be

indeed mapped to the practices in our cases, we restricted the language to the ones

which were more illustrative of the agile and multi-site aspects. It should be noted that

these patterns are not intended to be exclusive to the multi-site development context,

and will occur in many software development efforts.

 The six patterns that will be described are depicted in gray in the pattern

language diagram (see Figure 1). In the figure, the relationship PatternA→PatternB can

be read as “PatternA can exist once PatternB is in place”, that is, PatternA will find a

proper context for its application once PatternB has been applied. As an example, the

“Sprint Planning” pattern, (when the team sits to plan how to fulfill the goals selected

for the next iteration), can be applied and really makes more sense once “Scenarios

Define Problem” is in place (when the problem or product being targeted has been

decomposed in prioritized stories to be worked). In other words, the resulting context

once PatternA is applied can be understood as the initial context for PatternB as the

arrows are followed. In addition, the connections simply suggest the probability of

patterns occurring together.

 Traversing the pattern language diagram vertically also provides a hint on the

patterns positioning in the flow of development activities. On the top position, the first

pattern is the “Work Queue”, which describes the initial set of problems and

requirements intended to be addressed by the iterative and incremental development

effort. Following the arrows downward will present patterns moving into the solution

domain, such as structures for the temporal organization in sprints, multi-site team

distribution and the adoption of selected configuration management practices. The

traversal concludes at the bottom with the “Integration Build” pattern, which will

eventually materialize the results of all processes, practices and tools from each different

development cycle into a concrete and valid functionality increment. The patterns are

described in the next sections, following the sequence that they appear in the diagram.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

49

Figure 1. Proposed Pattern Language Structure. Patterns marked with [a]
belong to Organization Patterns, [b] to Scrum and [c] to Software Configuration
Management Patterns.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

50

4. Patterns for Multi-site Software Development

This section is concerned with describing the patterns presented in section 3 in the

following way: the context in which the pattern is applied, the problem that the pattern

will solve, the forces that limit the pattern application, the solution of the problem, the

related patterns, known uses and finally the resulting context that shows what happens if

the solution is applied. The stars after the pattern name indicate the confidence level for

the pattern in the multi-site environment. Moreover, we also indicate the pattern origin

as follows: “O.P.” (Organizational Patterns), “C.M.” (Configuration Management

Patterns), and “Authors” (the patterns proposed by the authors).

4.1. [**] Surrogate Customer [O.P.]

Alias: Surrogate Product Owner, Feature Leader

Context:

In a project adopting the Scrum methodology, the Product Owner is a central figure. He

is the ultimate reference for product content, and his inputs are a major influence on the

work performed at each sprint. For larger projects, however, when developed in a multi-

site configuration, a single central Product Owner is not likely to be able to respond

to all the demand generated by the distributed development teams to a satisfactory

level of detail.

Problem:

Agile projects rely on close interaction with the customer. Feedback is required at least

at each Sprint review and Release planning, but is encouraged to occur throughout the

sprint course. With the communication boundaries introduced in multi-site projects,

how to maximize information flow and feedback from customers to developers?

Forces:

• The development teams cannot take advantage of constant multi-mode

communication channels due to their physical separation.

• Practical solutions usually involve round-trips from requirements to implementation

in order to meet time and knowledge constraints.

• Domain knowledge cannot be expected to be fully available in the development

team.

• Depending on the project nature (a new solution), a customer might not even exist

yet.

• The product owner or customer might not have the necessary available time or

detailed knowledge to interact with the development team.

Solution:

Software system functionalities should be split and grouped into features. A “Feature

Leader” role is then defined, and will represent the product owner to all teams involved

in the implementation of his/her feature set. The set of Feature Leaders can take

advantage of closer interaction with the “master” product owner and at the same time

will support the remote development teams in specification and decision making in the

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

51

sprint planning and throughout its development. The Feature Leader role will influence

the development by:

• Defining stories and use case models: Stories and their prioritization are the

customer’s main contribution to the project in an agile environment. In a multi-site

organization, the feature leader will provide more specialized support, in the

subsystem or feature level than the product owner.

• Splitting stories: some stories, after their initial estimation, are found to exceed the

capacity left for the iteration at hand. The Feature Leader will be able to help

establish case by case criteria for decomposing the story (see description in Scenarios

Refactor Subsystem).

• Establishing and deciding against trade-offs: when considering different design and

implementation for fulfilling a given story, a set of solutions will present different

balances on product quality. Although trade-offs might have been laid out clearly at

the product-wide level, there might be specific local decisions to consider separately.

• Help establish a domain language: which represents the problem, concepts and

solution at hand and which is understandable for both the developer and customer,

enabling true two-way communication.

• Providing story acceptance criteria: Defining tests based on real examples for happy-

path flows. Additionally, running and looking at partial software releases will usually

provide valuable feedback.

 Figure 2 describes how a solution for multi-site Scrum teams was proposed in

projects the authors participated. In such a set-up, selected team members in the central

Product Team were all co-located, and while engaging in ordinary team member

activities at that level, acted as Product Owners for the separated subsystem teams.

Figure 2. Surrogate Product Owner in a Multi-site Scrum setup

Scrum
Master

Team
Member

Product
Owner

Scrum
Master

Team
 Member

acts as

Surrogate

 Product
Owner

Subsystem
Team

Product
Team

communication

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

52

Related Patterns:

The “Product Owner” role, summarized before in this article, and the “Engage

Customer” pattern are more general patterns which first described the need for closer

interaction and feedback from the customer throughout the entire duration of the

development cycle in agile environments.

Resulting Context:

Increased Feature Leader participation raises product perceived integrity, as the stories

implemented benefit from a synthesis of the interaction and feedback between the

feature leader and the developer.

Developers gain the possibility to discuss and clarify actual design and implementation

alternatives in light of product-wide trade-offs. The creation of a common domain

language representation is facilitated and is likely to emerge more naturally as a result of

the discussions between the Feature Leader and the developer.

However, care must be taken not to over-interact with the development team and cause

undesired congestion effects. These would result from an overflow or new requests or

changes due to reconsideration, if within a given sprint. In that case, the “Firewall”

pattern should be considered.

4.2. [**] Stories Rework Subsystems [Authors]

Context:

In multi-site project, different teams at separated locations will usually define and be

assigned different subsystems (see patterns “Conway’s Law” and “Organization Follows

Location”). For a new story to be fulfilled, usually changes and additional functionalities

must be implemented in more than one subsystem (see pattern:” Subsystem by Skill”).

Furthermore, when an agile process is applied, stories or feature increments must be

integrated and tested in the period of one time limited iteration. In the above

configuration, a tension will generally appear between the goals posed by a system-

wide increment and the goals that each subsystem team is likely to identify as most

important when looking only to their restricted scope.

Problem:

How to coordinate goals and tasks as viewed from the subsystem team standpoint so

that the system evolves as a whole and is integrated to fulfill product-wide stories within

a given iteration?

Forces:

• An integrated version of working software is expected to be available at the end of

each time-limited iteration. Within the course of the iteration, the teams have to make

a decision on where to invest their effort at each moment, if on the evolution of the

system, on or its stabilization for the integration.

• In a structure defined with “Subsystem per Skills”, a separated team will tend to

optimize the responsibilities assigned to their components. This will often conflict

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

53

with the goals of the whole system for that iteration, which depends on the

integration of the functionalities of each subsystem for a given story.

• The problem of suboptimization [Principia] is present: “When you try to optimize the

global outcome for a system consisting of distinct subsystems (…), you might try to

do this by optimizing the result for each of the subsystems separately. This is called

“suboptimization”. The principle of suboptimization states that suboptimization in

general does not lead to global optimization.”

• The more separated or independent the teams working in the system for a given

iteration are, more pronounced these forces will be.

Solution:

Introduce the notion to both subsystem and central teams that a level of rework should

be expected on their subsystems because of the division of the project in sprints. A

(perhaps too) simple analogy to this principle is the practice of fencing around a new

construction building. The fence will be torn down before the building gets inaugurated,

but it is the fencing that allows the construction work to proceed in a controlled way,

better integrating the construction to the surrounding environment while work proceeds.

Therefore, rework in this case should be understood as activities or code that is

produced during the sprint, but which will not be present in the final releases of the

product.

 From the standpoint of subsystem teams, these activities will usually come in the

form of local deviations from what the responsibilities of that subsystem would ideally

imply if that subsystem would be the only one being developed. In practice, these local

concessions are ultimately caused by the need to converge to integrated stories at the

end of each iteration. Examples of activities that could be understood as dimensions of

rework are next described:

• Splitting Stories: depending on the story estimates and on the load of each subsystem

team in the iteration, a given story can be split to still fit the current iteration. It could

be that the amount of work necessary for the split stories is greater than the work for

the original [Cohn 2005] provides valuable advice for establishing splitting criteria.

• Splitting Across Data Boundaries: for example, selecting a subset of fields supported

for a given form.

• Splitting On Operational Boundaries: for example, selecting a smaller number of

operations (CRUD – create, update, delete) or more simple conditions.

• Postponing Cross-Cutting Concerns: for example, leaving out logging, error

handling, or security treatment for the iteration being planned.

• Not meeting performance requirements: postponing non-functional requirement

aspects.

 Because each of these items will probably have to be revisited when the

remaining scope is reconsidered, and because there is at least a small volume of code

adaptation exclusive to the splitting, these practices might be interpreted as a source of

rework. On the other hand, for many larger stories, splitting will be indeed the most

efficient way to keep complexity and risk under control.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

54

 Coding stubs and mock objects in order to compensate for the absence of

subsystem functionality might also be interpreted as unnecessary work for the goals of a

given subsystem. Mock objects or stub interface implementations might be interpreted

as “inventory” effort, as they will not eventually make it as functionality for that given

subsystem. However, when seen from the whole, having such mock objects timely

available to other subsystems might be essential for allowing the rest of the system to

grow optimally.

 Therefore, in order to enable incremental integration to happen in a multi-

site project environment, the notion that subsystems should expect a level of rework

between iterations should be introduced. Project management instruments and

measurement tools should be adapted to accommodate for those aspects, for example,

acknowledging each local concession causing local under-optimization to the affected

team, and focusing measurement on overall progress and performance, rather than local.

[Poppendieck 2003] provides good analysis and recommendation on contractual issues

that arise in an agile environment.

Related Patterns:

• The “Work Split”, “Named Stable Bases” and “Incremental Integration” patterns and

the “Thin Slice Story Writing” approach, all describe situations and techniques

applicable for incremental and iterative methods that focus on optimizing

development output in an environment with complexity and uncertainty

• “Architect Controls Product” has been proposed as a promoter of consensus and

conceptual integrity. It acts as a central role that looks at how the subsystems and

teams involved in the current iteration can integrate for best fulfilling the goals

selected. This integrating role takes the lead for facilitating each subsystem team to

see, within their own subsystem, what compromises they can identify so that the

stories as a whole are optimized, even if this means subsystem increments depart

from ideal. “Surrogate Product Owner” might also fulfill this need, if discussions

focus on the splitting of stories between iterations.

• The “Subsystem by Skill” pattern describes a common organizational pattern where

“Stories Rework Subsystem” is likely to appear.

Resulting Context:

In a multi-site configuration, having this notion included in the planning and design of

solutions at each iteration is a condition for achieving patterns “Named stable bases”

and “Incremental integration”. Blind denial or avoidance the notion of rework might

lead to poor strategies for identifying goals that are manageable within an iteration, and

can the prevent system from growing efficiently while maintaining close integration

points.

 The rework resulting from the compromises taken in each subsystem in a given

iteration will have to be considered and re-estimated on the following iterations,

reinforcing the need for adaptive planning. Within the limits of a single subsystem and a

given iteration, such activities are not generally considered as rework, and are instead

understood as regular refactoring.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

55

 Also important to take into account, the implications for the measures of

performance and quality should be focused first on the feature as a whole, and only

secondarily on the performance of each subsystem. Otherwise, subsystem teams will

perceive a stronger incentive to optimize their characteristics, which will lead to sub-

optimization.

 Typical roles that should benefit from the awareness of this pattern are the ones

involved in the planning of features at the beginning of each sprint (mostly Scrum

Master, Architect and representatives of each distributed team in the planning session).

By acknowledging that some level of sub-optimization (in this context that means

rework between iterations) is natural and might even be required for the optimization of

the system as a whole, conflicting situations might have their causes recognized and

discussed more productively.

 The more predictable the project is (especially in technology and requirements),

the less intermediate integration points will it need, and more work will be able to be

performed by teams in parallel, leading to ideally minimum rework. However, for less

predicable projects, where a more iterative and adaptive approach is more appropriate,

allowing and accounting for rework activities as described in this pattern is likely to lead

to increased overall efficiency and lowered risk.

Known uses:

• The lean principle “See the Whole” from [Poppendieck 2003] emphasizes the

importance of carefully choosing system-wide variables to measure and optimize,

while stating that this will often be accompanied by a relaxation on performance at

the local (subsystem) level.

• [Lehman 2000] in his multi-year studies on software evolution proposes eight laws

for software evolution planning and management. His “Second Law: Growing

Complexity” states that “As an E-type system is evolved, its complexity increases

unless work is done to maintain or reduce it” and introduces the notions of

Progressive and Anti-regressive work. The rational behind the need for anti-

regressive work is closely related to the context and solution here presented.

• The practices of refactoring, as well as the use of stubs and mock objects, are well

established in agile software development. They share the notion of work that is

revisited or discarded as iterations evolve.

4.3. [*] Inversion of Control [Authors]

Aliases: Don’t Call Us We Call You

Context:

In a multi-site organization, communicating and assuring understanding of desired

product characteristics to development teams is further complicated by the added

communication boundaries. The Product Owner is the ultimate responsible for deciding

and prioritizing the stories which make up the solution to the problem. However,

depending on the size of the project, a number of details that will eventually affect the

perceived integrity of the product are likely to pop up during development, and cannot

be expected to be foreseen or discussed with a central product owner timely enough.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

56

If “Surrogate Customer” is applied, as described in this article, the overall team structure

is scaled-up and a communication channel for product characteristics can be established

between the central product team (see Figure 2) and the subsystem teams.

If a degree of detailed specifications are expected for each selected feature during

each sprint, this can easily become a bottleneck in the timeframe of a given iteration.

The separation of teams occurring in a multi-site environment makes this problem even

more important.

Problem:

How to communicate desired product or feature functionality to distributed teams in an

agile context, where the selection of stories to be worked is decided at each iteration?

Forces:

• Users and customers are not able to completely state exactly what they want.

• Even if the software developers know all the requirements, many of the details they

need to develop the software become clear only as they develop the system.

• Even if all the details could be known up front, it is difficult for a developer to absorb

in productive way that many details.

• Even if we could understand all the details, product and project changes occur.

 While the software development literature has produced extensive

recommendations on the characteristics of well written requirements (concrete, testable,

realizable), achieving this in practice is usually easier said than done. Customer state

that describing requirements takes too much of their time, and developers often find that

they lack in detail or are ambiguous.

Solution:

The pattern “Inversion of Control” has been proposed by [Fowler 2004] as an object

oriented design pattern for web application frameworks, in order to eliminate unwanted

dependencies in the wiring between framework and application components. In our

multi-site and organizational context, the “Inversion of Control” analogy is suggested to

describe the way requirements activities can be alternatively handled between the

product definition team (Product Owners and it surrogates) and the distributed

subsystem development teams.

 The solution consists of having the implementing team responsible to

continuously refine and revise requirements and solution specification in the format and

level of detail of their preference (story writing, acceptance tests, schema matrices,

verbal and prose descriptions, diagrams). Documentation should only be produced to the

level of detail and formality which helps in the communication of the problem and its

proposed solution. More recently, developers and analysts have found a reason to move

further into each other’s territory in order to cause their language to overlap on top of

common domain knowledge representation.

 Also, another contribution from agile methods is to promote acceptance tests as

the preferred format for requirements. Acceptance test are usually easier to write than

requirements because they are based on concrete cases and are written by example,

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

57

which also helps eliminate ambiguity. If tests are written in such a way that they allow

for automatic execution, they will also provide for instant feedback and progress

measurement.

 In the “Inversion of Control” pattern, a typical flow of information between the

customer and the development team could be described as follows:

1) The Product Owner and its surrogates are initially involved in laying out the initial

story description, establishing the prioritization of the quality dimensions, providing

examples of happy path tests, and occasionally pointing to existing external standards

where applicable.

2) Based on the initial conversation and a subset of the information above, the

development team can analyze the problem and write an initial proposal for the solution.

In the process of analyzing and proposing a solution, the development team will be in a

better position to provide estimates and propose simplifying or splitting criteria in case

the estimates values or uncertainty level is too high. If a UI interface prototype has not

been given, a sketch can be proposed.

3) The first requirements-analysis-design-validation micro-cycle can be closed a few

days after the start of each iteration, when both the developers and product owner

surrogates meet to review and discuss with the help of the support material produced.

4) During the course of the sprint, details, alternative flows and corner cases will be

identified. The development team is encouraged to constantly feedback its findings and

doubts to be revised by the product owners. Each doubt or limitation raised during the

sprint refinement can be either accepted as part of the solution space provided or can be

fed back to the product backlog in order to be addressed in a further sprint.

Related Patterns:

• “Surrogate Customer”, in this article, established the organizational roles on top of

which this solution can be applied.

• “Community of Trust” is a pre-condition for the shift in the division of labor in the

requirements elicitation and solution creation between product owners and

developers to be effective.

Resulting Context:

When “Inversion of Control” is applied to multi-site requirements communication:

• The proposed solution will naturally include the judgment and limitations seen by the

implementing team for that iteration (could be reworked on a further it).

• Documentation effort will be prioritized only to the efficient and necessary level of

detail and formality which is relevant for the development in the iteration.

• The process of refining the requirements will allow for better estimates and will

increase the engagement from the implementing team.

• Early analysis will cause the development team to raise and communicate their

external dependencies to other subsystems.

Risks and downsides:

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

58

Over reliance on the inversion proposed in this pattern has its danger. The Product

Owner role has the ultimate knowledge and responsibility over the problem domain.

That is, at least the problem description, major constraints and trade-off dimensions

have to be clearly set out by the customer team at the beginning of each iteration,

otherwise the expected bootstrapping for the solution might be at risk. As potential risks

to the application of this pattern, the following items could be pointed:

1) Having the implementing team to deal with documentation requires analysis

capability, which cannot be taken for granted in all teams. In larger projects, however,

we felt that a higher number of individuals was willing to step in explore these skills.

This was sometimes even felt as a factor of motivation for those individuals inclined.

2) The idea of writing documentation is likely to cause discomfort in an agile

environment, and to accommodate for that, the notion of flexibility in both the format

and level of detail in the artifacts was introduced. Content produced focused on detailing

practical limits, exceptional cases, points of variance and screen refinements; all points

that developers felt was key to their technical decisions.

3) The boundary between eliciting requirements and solution providing has to be

agreed between product owners (and it surrogates) with developers so that decision

making is balanced to the level of detail each side has condition to provide. To the

extent of our experience, this balance point varies with team composition, the degree of

novelty (uncertainty) of the requirement being worked, and the level of trust between

teams. Therefore, for this shifting in balance to be effective, it is necessary that

“Community of Trust” [Organizational Patterns] be assured, which is a risk to be

analyzed and mitigated in a multi-site (or multi-company) environment.

4.4. [***] Codeline [C.M.]

Context:

Large software systems are usually split into components or subsystems and developed

by development teams that may be located at different places. Each development team is

responsible for a couple of components or subsystems. They have their own software

processes and tools to deal with software configuration management [Louzado and

Cordeiro 2005]. Each development team has to implement system tasks (e.g., implement

or enhance a requirement and fix a bug) and should not disrupt the activities of other

development teams.

Problem:

Components or subsystems making up the system have dependencies, i.e., component B

needs the services provided by component A. Changes in the interface or semantics of a

component may affect other components of the system. As the components are

developed by different development teams, how to keep them synchronized?

Forces:

• Development teams involved in the system development process have different

software processes and tools to deal with software configuration management.

• The partition of the system functionalities into components is likely to cause

dependencies among components.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

59

• The allocation of these components among different development teams is likely to

require a high rate of communication among development teams.

• The work of different development teams must be integrated at least once a week in

order to provide feedback on the system functionalities to the customer/user.

Solution:

Components that have dependencies should be allocated to the same development team

or at least be allocated to the development teams that are at the same place and/or time

zone. Different codelines should be created, one for each development team in order to

isolate changes and do not disrupt the work of other development teams. Another

development line, called here mainline, should also be created to allow the development

teams to integrate their components and generate new system builds. Interface or

semantics changes in components must be communicated in advance through the

weekly meetings. If describing information is required, then the development team

should create an artifact that helps other development teams adapt to the change.

Related Patterns:

• The “Mainline” pattern [Berczuk and Appleton 2002] is applied when there are many

people to develop a product and merging must be kept as low as possible. Therefore,

it describes a mechanism to keep the number of active development line to a

manageable set.

• The “Active Development Line” [Berczuk and Appleton 2002] pattern is applied to

developers that want to integrate and test their changes very often during the

development process. Therefore, it describes a mechanism to create an active

development line by keeping a rapidly evolving development line stable enough to

developers.

Known Uses:

• The mainline pattern used by [Louzado and Cordeiro 2005] in a multi-site software

development project creates different codelines (one for each partner) and assigns a

codeline policy. Moreover, there is a mainline that allows the build manager to

integrate the components and generate new system builds.

• An agile codeline management proposed by [Berczuk 2003] creates codeline

structures that isolate the components that need to be kept stable from those that are

in active development. He also associates policies (how the codeline should be used)

for each codeline that is created during the project lifetime.

• The codeline practice proposed by [Wingerd and Seiwald 1998] instantiates this

pattern by assigning to each codeline an owner and a policy. They also create a

mainline which provides an ultimate destination for changes (e.g., bug fixing, new

features) and represents the linear evolution of the software product.

Resulting Context:

Components are grouped into subsystems. Each subsystem is allocated to a development

team. Still, there may remain dependencies among subsystems as a higher layer requires

services provided by lower layers. Therefore, after creating the codelines, each

development team is able to work on its own development line without disrupting the

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

60

work of other development teams. The weekly meetings make it possible to synchronize

the teams and improve communication. Weekly meetings enables planning which

system functionalities, enhancements and bug fixing will be part of the next delivery.

On a weekly basis, each development team delivers code to a build manager who is

responsible for generating new versions of the system. Each team delivery comes with

release notes that states what artifacts have been developed.

4.5. [***] Integration Build [C.M.]

Context:

The software is split into components and developed by teams, at different rates. Each

development team is composed by several developers that are responsible for a set of

systems requirements. Each developer works on its own private workspace and is

isolated from the work of other developers [Louzado and Cordeiro 2005]. On the other

hand, working software is expected to be delivered on a frequent basis to

customers/users. Therefore, a means for integrating code frequently is needed with the

purpose of reducing integration problems and providing early feedback to customers.

Problem:

There are several developers working on the production of the software. One developer

may depend on the work of another developer. If both developers take long without

integrating their code (components) into the product codeline, the number of integration

problems might increase substantially. These occur because the system code evolves

during the time between the task creation and completion. In this scenario, several tasks

are integrated into the main trunk and the code in which the team members started

working is different from the code currently available in the main trunk. How to

coordinate the contribution from subsystem teams so that changes in one subsystem are

integrated in a controlled way, while keeping development pace?

 Forces:

• Software integration should occur very often in order to reduce integration problems

and provide frequent feedback to customers/users.

• If developers integrate code and generate product builds very often then there is the

possibility to spend more time integrating than developing code.

• The most important software functionalities must be implemented and integrated as

earlier as possible during the development process in order to provide feedback to

customers/users.

• Software development takes months to be accomplished and if it is integrated very

often, stable versions of the system should be uniquely identified.

Solution:

Each development team should have a unique window to deliver and integrate the code

into the product codeline. For a large system, both daily builds may take place on the

codeline of each development team, as well as should one product build per week. For

each weekly delivery carried out by the development teams, they should assign a tag in

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

61

their codeline and provide the release notes. In addition, they should solve the

integration problems that may take place during the integration process.

 When different teams share a product codeline, “Integration Build” provides

most benefits when performed in a strict sequential mode. That is, only one subsystem

team integrates its changes into the main codeline at a time, even if their components

logically/physically separated from the remaining subsystems. Only after code

increments introduced by one subsystem team are integrated into the product codeline

should the next subsystem team by allowed to integrate its contribution. Integration in

this sense is typically composed by: (i) check-out (update) of latest version from product

codeline (ii) merging it with local changes in the workspace (iii) building and sanity-

testing of merged version in the workspace (iv) check-in of integrated version on the

product codeline. For the last activity, each development team can appoint an integrator

to be responsible for integrating the team’s code into the project’s mainline (see

Codeline pattern). Figure 3 describes a typical workflow with sequential integration.

Figure 3. Sequential Integration

 Moreover, specific dates/times can be assigned to each development team in

order for the integration process to take place. Therefore, this sequential integration

always allows a latest version of the system to be regularly identified. It is important to

emphasize that the sequential integration does not imply that the development team

cannot integrate the latest version of the code in its own codeline.

Related Patterns:

• The “Integration Build” pattern [Berczuk and Appleton 2002] is applied when it is

necessary to make sure that components work together in an iterative and incremental

approach. Therefore, it allows developers to frequently integrate their code by doing

an integration build periodically.

• The “Named Stable Bases” pattern is needed when developers want to integrate

software frequently with the purpose of keeping stability and progress. Therefore, it

locked

Task
creation

Product codeline

Susbsytem3
codeline

SS3 code evolves

locked locked

SS1
updates

SS1
checks in

(i) SS3
updates

(iv) SS3
checks in

SS2
updates

SS2
checks in

(ii)
merge

integration
is blocked

(iii)
tests

integration token

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

62

describes a mechanism to give the stable system a name by which developers can

work against.

• The “Build Prototypes” pattern is applied when requirements and design decision

must be verified in order to reduce the risk of wasted cost and missed expectations.

Therefore, it provides mechanisms to build prototype whose purpose is to help

validate requirements and assess risks.

Known Uses:

• The integration build described by [Louzado and Cordeiro 2005] instantiates this

pattern by adopting an “integration by stage” approach which provides a progressive

integration of the product.

• The incremental integration proposed by [Berczuk 1996] provides a mechanism to

allow developers to build the software periodically. This periodic build is also

checked for interface compatibility and testing. Therefore, it encourages developers

to build from the latest software release and provide time to fix incompatibilities.

• The continuous integration described by [Beck 1999] instantiate this pattern to

allow developers to integrate and release code into the repository every few hours.

One developer integrates at any time and it takes place only when all unit tests have

passed or a smaller piece of the functionality is implemented.

Resulting Context:

If this sequential integration process is adopted in the project, i.e. if one development

team has a specific date/time on the week to integrate the code that do not happen at the

same date/time of another development team then integration problems may

substantially be reduced. Another important benefit is that as the software is built on a

weekly basis then it can provide great feedback to customer/users that need working

software to clarify system requirements. The software that is produced on a weekly basis

receives a unique identification that helps developers identify stable versions of the

system. In addition, it allows customers/users to validate only stable versions of the

system.

4.6. [***] Plan Bugs on a Sustainable Pace [Authors]

Context:

During the sprint planning, each team member decides which system’s functionalities

he/she will implement for the next sprint. The system’s functionalities are decomposed

into activities and are estimated by the team members. At the end of the sprint, the

system’s functionalities (product backlog items) that were committed to that sprint

should be fulfilled by team members in order to be demonstrated to high-level

management and customers. The builds generated during the sprint are tested during the

same period in order to ensure the product’s quality. Therefore, a number of bugs are

likely to be found by the test team for the system’s functionalities that were

implemented in previous or in the current sprint.

Problem:

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

63

The test team is constantly testing and identifying bugs, which are added to an existing

unsolved bugs list found in previous iterations. Depending on the bugs’ criticality, the

team members are expected to solve them as soon as possible in order to ensure the

product quality. But as team members are committed to the activities of the current

sprint, how will they manage to fix these bugs and at the same time ensure that the

committed activities will be fulfilled at the end of the sprint?

Forces:

• The global software builds are generated and tested on a weekly basis. The bugs are

created and assigned directly to the responsible person through a collaborative

development environment tool (CDE).

• The team member responsible for the functionality in which the bug was found

should not be interrupted so often because he/she has to complete the activities that

were committed to the current sprint.

• The bug that was found at a given functionality might be so important to the

customer that it acquires a higher priority than the other activities which are currently

running. Therefore, this bug should be fixed as soon as possible by the responsible

team member.

• The bug that was found at a given functionality might also impact other important

functionalities or might affect the whole system. Therefore, this bug should acquire a

higher priority than the other activities which are currently running.

• The development team implements new features in the current sprint and at the same

time, it must keep the bug rate as low as possible.

Solution:

Introduce a bug planning process in order to control and manage the product’s bugs and

avoid project’s interruptions. In this process, the test team provides the most critical

bugs for each system’s component. After that, each feature leader (see Surrogate

Customer pattern) reviews the critical bugs, selects them based on the criticality, and

informs the project leader. Then the project leader communicates the bugs to be fixed to

the development teams. Each development team evaluates the list of bugs and informs

to the project leader if the bugs will be fixed in the current sprint. This process is

cyclical and its frequency can be higher than the sprint time, as effort for fixing a bug is

typically lower than the effort for implementing a new feature. For sprints of one month,

the recommended frequency is once a week. Also, as the software builds are generated

and tested on a weekly basis (following “Integration Build”), it makes sense for the bug

planning process to take place on a weekly basis (sustainable pace). When planning, the

bugs, priorities, status, and deadlines should be defined by the project leader or by the

person responsible for the feature in which that bug belongs.

 The priority may be classified as critical, high, medium, and low. The priority

level of the bug is according to the feature’s importance and the amount of test cases

that are blocked because of this bug. In addition, the status of the bug may be classified

as new, started, reopened, resolved, and closed. After planning the bugs, the leader of

each development team involved in the project should analyze if the bugs that are

planned can be fulfilled given the workload of its team members. If the bugs can be

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

64

fixed without compromising the goals committed to the current sprint then the leader

sends an e-mail informing that all the bugs are accepted. Otherwise, he/she commits

only the bugs that his/her team will be able to fix and deliver, taking into account

supporting information as priority, effort and risk. It is of utmost importance that

planning and bug-fixing be kept to a sustainable pace during project’s sprint. Frequent

overtime is usually considered a symptom of serious problems in a team. Therefore, if

bugs are planned frequently and according to the team’ workload, overtime is

substantially reduced. As a result, the correct application of this pattern may contribute

to higher code quality as well as happier, more creative, and healthier team.

 It is important to emphasize that in case the bug is committed during the bug

planning but not delivered on the specified deadline, then the leader of the team should

explain the reason why the bug was not fixed and delivered. This situation should not be

common, but can take place if the subsystem team does not investigate enough in detail

or if it is not able to easily reproduce the bug before it commits to it.

Related Patterns:

• The “Don’t Interrupt an Interrupt” pattern can be used when someone is already

working in “interrupt mode” on a critical issue of the project. Therefore, this pattern

advises that the person who is working on this issue should continue handling it

before moving on to the new one.

Known Uses:

• The bug planning described by [Churchville 2006] provides a mechanism to plan

bugs in distributed software development projects by defining the risk, frequency,

and severity. According to the [Churchville 2006], bugs with high-risk fix, low

frequency and severity may not be fixed earlier in the project iterations. Nevertheless,

bugs with high severity have always high priority to be fixed. Therefore, for each bug

to be fixed, the person who plans the bug should evaluate if the bug fixing provides

benefits. On the other hand, the bug fixing should be carried out later in the project.

• The test scripts technique used by [Fowler 2006] represent another approach to plan

bugs during the project’s iteration. In this scenario, the test scripts are written out

before the start of the iteration by a system analyst/tester. These test scripts are

written out based on the customer’s requirements that should be implemented for a

given iteration. During the iteration, regular builds are generated which allows the

customer to correct misunderstandings as well as refine their own understandings. As

the builds are generated, the customer runs the software and spot the bugs found in

the system. After that, the bugs pointed out by the customer are fixed in the same

iteration depending on the bug criticality.

Resulting Context:

If the “Plan Bugs on a Sustainable Pace” is adopted, then the goals committed to the

sprint by the development teams have a higher probability of being fulfilled. In addition,

this bug planning ensures that critical bugs are fixed during the sprint and consequently

it keeps the product’s quality as high as possible. Therefore, the zero-defect policy is

usually not achieved during the sprints. The zero defect policy requires a high effort to

fix the bugs which might directly impact the sprint goals. Nevertheless, the software’s

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

65

bugs should be prioritized according to the features importance, and the decision to

work on them should be evaluated in each project’s sprint.

 Another important result of the application of this pattern is that when the team

leader commits the bug then he/she allocates developers to fix it and ensure that the bug

will be fixed and delivered as promised at the beginning of the bug planning. Therefore,

the development teams concentrate on fixing the bug while carrying out the sprint’s

activities. Another result is that when a critical bug is found by the test team but not

planned, then the development team responsible for that bug is not interrupted to fix it.

5. Conclusions

This paper presented an application of the Scrum methodology, Lean software

development, as well as Organizational patterns in the context of multi-site software

development. This paper describes the application of six selected patterns, with two of

them being proposed as new patterns (“Plan Bugs on a Sustainable Pace” and “Stories

Rework Subsystem”) and one as an alternative application of an existing pattern

(“Inversion of Control”). The first proposed pattern “Plan Bugs on a Sustainable

Pace” is applied when the project is composed of several project’s issues and the level

of interruption is very high. Therefore, this pattern describes mechanisms to plan bugs

on a sustainable pace in order to control and manage the product’s quality and avoid

project’s interruptions.

 The second proposed pattern “Stories Rework Subsystem” is applied when

development teams are separated by layer (as in pattern "Subsystem by Skill") and

stories or feature increments must be integrated and tested within one time limited

iteration. Therefore, this pattern provides means to decompose, refine, and prioritize a

story in order to fit into one iteration. The pattern “Inversion of Control” can be used

in a multi-site organization when the need to communicate and assure understanding of

requirements is of primary concern. Therefore, this pattern describes a mechanism

where the team who will implement the functionality, will be responsible for writing the

detailed requirements of that functionality in their preferred format.

 As most agile practitioners advocate, we also believe that co-location is most

effective for the majority of software development endeavors. However, there are

still a number of reasons that require development to be performed in multi-site

configuration, some of them external to the team’s influence. The main drawback

that we found about this configuration is communication overhead. In this case,

excessive effort is spent to keep the development teams synchronized and to create and

update the documentation. With this paper, we proposed a set of good practices and

Software Engineering patterns that we expect can help minimize the main drawbacks

present on the multi-site context.

References
Beck, K. (1999). Extreme Programming Explained – Embrace Change. Addison-

Wesley.

Beedle, M.; Devos, M.; Sharon Y.; Schwaber, K.; Sutherland, J.; (1999). Scum: An

extension pattern language for hyperproductive software development. In: Harrison,

N.; Foote, B.; Rohnert, H. Pattern Languages of Program Design 4. Addison-Wesley.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

66

Berczuk, S. (1996). Configuration Management Patterns. In the proceedings of the

1996 Pattern Languages of Programming Conference, PloP’96. Available at

http://www.berczuk.com/pubs/PLoP96/. Last visit [3
rd

 June 2007].

Berczuk, S.; Appleton, B. (2002). Software Configuration Management Patterns. First

Edition, Addison-Wesley.

Berczuk, S. (2003). Agile Codeline Management. This paper was published as a

StickyMinds Original article.

Bret, T. (2004). Parallel Development Strategies for Software Configuration

Management. Published at the Summer 2004 issue of Methods & Tools. Available at

http://www.methodsandtools.com/mt/download.php?summer04. Last Visit [3
rd

 June

2007].

Churchville, D. (2006). ExtremePlanner: Agile Project Management for Distributed

Software Teams. http://www.extremeplanner.com/blog/2006/06/biggest-

misconception-in-software.html. Last Visit [7
th

 July 2007].

Cohn, Mike (2005). Agile Estimating and Planning. Robert Martin Series, Prentice

Hall.

Coplien, J. O.; Harrison, N. B. (2004). Organizational Patterns of Agile Software

Development. First Edition, Prentice Hall.

Fowler, M. (2004). Inversion of Control Containers and the Dependency Injection

pattern. Available at http://www.martinfowler.com/articles/injection.html. Last visit

[28
th

 December 2006].

Fowler, M. (2006). Using an Agile Software Process with Offshore Development.

Available at http://www.martinfowler.com/articles/agileOffshore.html. Last visit [7
th

July 2007].

Lehman, M. M. (2000) - Rules and Tools for Software Evolution Planning and

Management http://www.doc.ic.ac.uk/~mml/feast2/papers/pdf/611_2.pdf

Louzado D. A.; Cordeiro, L. C. (2005). Aplicando Padrões de Gerência de

Configuração de Software em Projetos Geograficamente Distribuídos. Proceedings

of the 5º Latin American Conference on Pattern Languages of Programming

(SugarLoafPlop’2005).

Poppendieck, Mary and Poppendieck, Tom (2003) Lean Software Development: An

Agile Toolkit. First Edition, Addison Wesley.

Poppendieck, Tom (2003) The Agile Customer’s Toolkit. Available at

www.poppendieck.com/pdfs/Agile_Customers_Toolkit_Paper.pdf. Last visit [26
th

December 2006].

Principia Cybernetica. Available at http://pespmc1.vub.ac.be/SUBOPTIM.html. Last

visit [26
th

 December 2006].

Schwaber, K., and Beedle, M. (2002). Agile Software Development with Scrum. First

Edition, Series in Agile Software Development, Prentice Hall.

Wingerd L., Seiwald, C. (1998). High-level Best Practices in Software Configuration

Management. Springer Berlin, Vol. 1439, pp. 57-66.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

67

Um Padrão para Requisitos Duplicados

Ricardo Ramos1, João Araújo
2
, Ana Moreira

2
, Jaelson Castro1,,

Fernanda Alencar1, e Rosangela Penteado3

1 Universidade Federal de Pernambuco (UFPE) - Brasil

{rar2, jbc}@cin.ufpe.br, fmra@ufpe.br
2 Universidade Nova de Lisboa (UNL) - Portugal

{ja, amm}@di.fct.unl.pt
3 Universidade Federal de São Carlos (UFSCAR) - Brasil

rosangel@dc.ufscar.br

Abstract. With the insights gained with approaches that deal with the

information duplication problem, this paper shows the pattern

Encapsulated Requirements (Requisitos Encapsulados) that describes a

solution to duplicated requirements. The pattern is independent of

approaches and can be instantiated by any approach that is used to

produce a requirements document.

Resumo. Com as lições aprendidas em abordagens que tratam do

problema de duplicação de informações, este artigo apresenta o padrão

Requisitos Encapsulados que descreve uma solução para duplicação de

requisitos. O padrão é independente de abordagens, podendo ser

instanciado para qualquer abordagem que seja utilizada para produzir

um documento de requisitos.

1 Introdução

A duplicação de informações pode acontecer nas várias fases do desenvolvimento de

um software. Além de dificultar a compreensibilidade pode existir um aumento no

tamanho dos artefatos do sistema e, por conseqüência, do seu custo [Sommerville

2003 e Pressman 2002]. Isso poderia ser evitado caso os projetos fossem estruturados,

especificados e modularizados de forma mais eficiente.

Fowler e outros (2000) propõem refatorações (refactoring, em inglês) para

solucionar as duplicações que ocorrem no código orientado a objetos, enquanto

Kiczales e outros (1997) propõem encapsular as informações duplicadas, espalhadas e

entrelaçadas em aspectos. Apesar de ter tido no início maior enfoque na

implementação, o desenvolvimento de software orientado a aspectos vem sendo

utilizado em todos as fases de desenvolvimento [Rashid et al 2003].

Com base nos ensinamentos da programação orientada a aspectos e da refatoração,

descrevemos aqui o padrão Requisitos Encapsulados para eliminar a duplicação de

informações que podem ocorrer em requisitos. O padrão proposto é independente,

podendo ser utilizado num documento de requisitos produzido por uma abordagem

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

68

qualquer. Neste artigo a estrutura da solução descrita pelo padrão é instanciada para

casos de uso.

O padrão aqui apresentado faz parte de um projeto maior cujo objetivo é avaliar a

qualidade de documentos de requisitos, encontrando trechos que podem ser

melhorados com a aplicação de padrões de requisitos e a utilização de refatorações

[Ramos et al 2006a, 2006b e 2006c].

Este artigo segue a seguinte estrutura: a Seção 2 trata da descrição do padrão

Requisitos Encapsulados, seguindo o formato sugerido por Appleton (2006) e na

Seção 3 são relatadas as conclusões.

2 O Padrão Requisitos Encapsulados

2.1 Propósito

Eliminar duplicações que podem ocorrer em requisitos.

2.2 Problema

Duplicação de informação é um risco ao custo de um sistema [Sommerville, 2003].

Sempre que o mesmo requisito estiver em diversos locais de um documento, criando

múltiplas instâncias, a sua manutenção e a sua evolução tornam-se onerosas. Quando

um engenheiro de software tiver a necessidade de modificar um requisito duplicado,

terá de encontrar todas as suas instâncias e certificar que a mudança é consistente em

todo o documento. Adicionalmente, a inserção de requisitos duplicados num

documento pode aumentar o seu tamanho, dificultando o seu entendimento e

desestimulando a sua leitura.

2.3 Contexto

A duplicação de informações é uma situação que ocorre quando (i) o mesmo requisito

está duplicado em diferentes estruturas de um documento de requisitos ou (ii) o

mesmo requisito está duplicado na mesma estrutura de um documento de requisitos.

Uma duplicação é contextualizada por ter duas descrições semanticamente

idênticas de um mesmo requisito. Porém, as especificações podem estar diferentes

sintaticamente, necessitando assim uma avaliação atenta do engenheiro de software

para identificar o que é uma informação duplicada. Em alguns casos apenas parte de

um requisito pode estar duplicada; nesses casos devemos re-escrever essa parte para

melhor clarificar a duplicação.

O padrão se aplica ao contexto de documentos de requisitos estruturados que

podem ter sido produzidos por qualquer abordagem de descrição de requisitos.

Entretanto, por esta característica de ser independente, é necessário que se instancie

este padrão a abordagem que se deseja utilizar.

Jacobson (2005) faz uma ressalva quanto à duplicação de informações no nível de

requisitos. Segundo o autor, no contexto de casos de uso, em algumas situações a

duplicação é uma forma necessária de reuso de um requisito.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

69

2.4 Forças

As forças que influenciam a utilização da solução descrita pelo padrão são as

seguintes:

1. A duplicação de informações aumenta os custos com a manutenção do

documento de requisitos e o potencial para inserção de erros. Todas as vezes

que uma mudança afetar um desses requisitos duplicados, é preciso modificar

todos os locais onde eles aparecem.

2. A utilização de uma única estrutura para encapsular as informações

duplicadas contribui para:

2.1. aumentar a modularização,

2.2. melhorar a localização,

2.3. diminuir o tamanho do documento de requisitos.

2.5 Solução

A solução que propomos é independente e tem como intenção poder ser instanciada

para qualquer abordagem que produza um documento de requisitos. A descrição do

padrão contém as variáveis que devem ser instanciadas:

<requisito> Necessidades básicas do cliente: uma condição ou capacidade

requisitada por um usuário, para resolver um problema ou alcançar um

objetivo. Em algumas abordagens podem ser expressos por: passos, atividades,

tarefa, uma descrição textual entre outros.

<estrutura> Módulos de decomposição utilizados no documento de requisitos.

Em algumas abordagens podem ser expressos por: casos de uso, meta (goal),

tema (theme), ponto de vista (viewpoint) entre outros.

A solução compreende nas seguintes etapas:

1 - Identificar1 e analisar o <requisito> duplicado. Se o <requisito> for similar,

mas não exatamente o mesmo, existe a necessidade de separar a parte

duplicada. Em alguns casos, a melhor solução é reescrever o <requisito> para

melhor evidenciar a parte duplicada.

2 - Criar uma nova <estrutura> que encapsule o <requisito> e nomeá-la.

3 - Selecionar o <requisito> identificado na etapa 1 como sendo duplicado.

4 - Adicionar os <requisitos> selecionados na nova <estrutura>.

5 - Remover os <requisitos> das <estruturas> originais. Atualizar a numeração,

se houver. Criar os apontadores2 das <estruturas> originais para as novas

<estruturas>.

6 - Averiguar se as <estruturas> estão aceitáveis3 sem os <requisitos> que foram

removidos e se permanecem com as mesmas funcionalidades dos originais.

7 - Atualizar as referências das <estruturas> dependentes.

Se existir a necessidade de manter o relacionamento entre a <estrutura>

original e a nova, o engenheiro de software deverá providenciar os pontos

que façam esse relacionamento. Mecanismos de extensão e inclusão (por

ex., para casos de uso), pontos de corte (em desenvolvimento orientado a

aspectos) entre outros podem ser criados.

1 Segundo as situações descritas no contexto deste padrão.
2 Estes apontadores podem ser desde a adição de uma pré-condição ou mesmo uma relação de

inclusão até a criação de uma estrutura que indique a composição.
3 Se não existe uma quebra da seqüência das informações tornando impossível o entendimento

de forma coerente.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

70

2.6. Estrutura para Casos de Uso

As atividades descritas nesta Seção são instanciadas da solução independente com a

intenção de eliminar a duplicação de requisitos em descrições de casos de uso. A

instanciação das variáveis para casos de uso será: <requisito> = atividade e

<estrutura> = caso de uso.

1 - Identificar, segundo o contexto, e analisar a atividade duplicada. Se a

atividade for similar, mas não exatamente a mesma, existe a necessidade de

separar a parte duplicada. Em alguns casos, a melhor solução é reescrever a

atividade para melhor evidenciar a parte duplicada.

2 - Criar um novo caso de uso que encapsule a atividade e nomeá-lo.

3 - Selecionar a atividade identificada na etapa 1 como sendo duplicada.

4 - Adicionar as atividades selecionadas no novo caso de uso.

5 - Remover as atividades dos casos de uso originais. Atualizar numeração, se

houver. Criar os apontadores dos casos de uso originais para os novos casos

de uso.

6 - Averiguar se os casos de uso estão aceitáveis sem as atividades que foram

removidas e se permanecem com as mesmas funcionalidades dos originais.

7 - Atualizar as referências dos casos de uso dependentes.

Se existir a necessidade de manter o relacionamento entre o caso de uso

original e o novo, o engenheiro de software deverá especificar os pontos

que façam esse relacionamento. Mecanismos de extensão e inclusão

podem ser criados.

2.7. Exemplo

Esta seção apresentará dois exemplos em que ilustramos as duas situações descritas

no contexto do padrão. O primeiro exemplo apresenta a duplicação de requisitos em

duas estruturas distintas, no segundo a duplicação ocorre na mesma estrutura. Será

utilizada, para cada exemplo, a mesma instância do padrão descrita na Seção anterior.

No primeiro exemplo, as figuras 1 e 2 mostram dois casos de uso, Cadastrar

Novo Empregado e Cadastrar Novo Produto, em que as quatro primeiras

atividades são semanticamente e sintaticamente idênticas, caracterizando assim os

requisitos duplicados em dois casos de uso distintos. Nota-se que no fluxo secundário

de atividades, as atividades (4, 4.1 e 4.2) também são idênticas em ambos os casos de

uso. Nesta situação, não é necessário uma re-escrita dos requisitos para melhor

clarificá-los.

As atividades 5, 6 e 7 do caso de uso da Figura 1 são semelhantes às da Figura 2,

porém não caracterizam uma situação de duplicação. Apesar de tratarem do mesmo

interesse, o cadastro de informações, cada caso de uso é especifico no cadastro de um

conjunto de informações distintas.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

71

Figura 1 – Caso de uso Cadastrar Novo Empregado.

Figura 2 – Caso de uso Cadastrar Novo Produto.

A solução para o problema de duplicação de requisitos desses casos de uso

(Figuras 1 e 2) seguiu as seguintes etapas como descritas na estrutura do padrão:

1 - As atividades identificadas foram as realçadas nas Figuras 1 e 2. Nesse caso as

atividades são semanticamente e sintaticamente idênticas não necessitando ser

re escritas.

2 - O caso de uso Login (Figura 3) foi criado.

Caso de uso – Cadastrar Novo Produto

Pós-condições:

 Novo produto é registrado

Fluxo principal de atividades:
 1. Uma janela de identificação é exibida.

 2. O usuário digita o seu nome.

 3. O usuário digita sua senha.

 4. O usuário é validado.

5. O usuário preenche o formulário de cadastro de produto com as

seguintes informações: descrição, tipo, valor, data de entrega,

localização.

 6. O usuário confirma a operação

 7. Os dados do novo produto são guardados.

Fluxo secundário de atividades:

 4. O usuário não é validado.

4.1. Uma mensagem de aviso de senha ou nome de usuário

inválido é mostrada.

 4.2. O fluxo recomeça da atividade 1 do fluxo principal.

Caso de uso – Cadastrar Novo Empregado

Pós-condições:

 Novo empregado é registrado

Fluxo principal de atividades:

 1. Uma janela de identificação é exibida.

 2. O usuário digita o seu nome.

 3. O usuário digita sua senha.

 4. O usuário é validado.

5. O usuário preenche o formulário de cadastro de empregados com as

seguintes informações: nome, login, senha, endereço.

 6. O usuário confirma a operação

 7. Os dados do novo empregado são guardados.

Fluxo secundário de atividades:

 4. O usuário não é validado.

4.1. Uma mensagem de aviso de senha ou nome de usuário

inválido é mostrada.

4.2. O fluxo recomeça da atividade 1 do fluxo principal.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

72

3 - As atividades identificadas na etapa 1 foram selecionadas.

4 - As atividades selecionadas foram adicionadas no caso de uso Login. As

atividades de 1 a 4 do fluxo principal e as 4, 4.1 e 4.2 do fluxo secundário são

basicamente copiadas para o caso de uso Login.

5 - As atividades que foram selecionadas nos casos de uso Cadastrar Novo

Empregado e Cadastrar Novo Produto foram removidas. A numeração

das atividades que restaram foi atualizada. Foi adicionado como pré-condição

nos dois casos de uso (Cadastrar novo Empregado e Cadastrar novo

produto) a descrição da necessidade do usuário estar validado pelo sistema.

As Figuras 4 e 5 mostram os casos de uso após a utilização do padrão.

6 - Os casos de uso Cadastrar Novo Empregado e Cadastrar Novo

Produto estão aceitáveis e permanecem com a mesma funcionalidade dos

originais.

7 - Neste exemplo não há casos de uso dependentes.

Figura 3 – Caso de uso Login.

Figura 4 – Caso de uso Cadastrar Novo Empregado (após a aplicação do padrão).

Pós-condições:

 Usuário validado.

Fluxo principal de atividades:

 1. Uma janela de identificação é exibida.

 2. O usuário digita o seu nome.

 3. O usuário digita sua senha.

 4. O usuário é validado.

Fluxo secundário de atividades:
 4. O usuário não é validado.

4.1. Uma mensagem de aviso de senha ou nome de usuário

inválido é mostrada.

 4.2. O fluxo recomeça da atividade 1 do fluxo principal.

Pré-condições:

 O usuário deve estar validado.

Pós-condições:

 Novo Empregado é registrado

Fluxo principal de atividades:

1. O usuário preenche o formulário de cadastro de empregados com as

seguintes informações: nome, login, senha, endereço.

 2. O usuário confirma a operação.

 3. Os dados do novo empregado são guardados.

Apontador ao Login

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

73

Figura 5 – Caso de uso Cadastrar Novo Produto (após a aplicação do padrão).

O segundo exemplo apresenta uma situação em que a duplicação de informações

acontece no mesmo caso de uso. O caso de uso Iniciar Aplicação, Figuras 6a e

6b, é o primeiro a ser utilizado pelo usuário de um dado sistema. As primeiras

atividades validam o usuário e o atribui um perfil que foi previamente cadastrado pelo

administrador do sistema. Esse perfil dá ao usuário permissão e restrições às opções

do menu do sistema.

A informação duplicada aparece toda vez que é necessário o sistema mostrar a

mensagem de aviso “Esta função não pode ser realizada para esse perfil de usuário”

(em destaque na figura 6b). A mensagem deve aparecer toda vez que o usuário

escolher uma opção do menu que ele não tenha permissão de utilizá-la devido às

restrições do seu perfil.

Figura 6a – Caso de uso Iniciar Aplicação (fluxo principal).

Fluxo principal de atividades

1. O caso de uso inicia quando o usuário inicia a aplicação.

2. O sistema exibe a tela de login.

. . .

5. O sistema valida o usuário e o habilita para as funções próprias de seu perfil.

6. O sistema mostrará a tela de menu principal.

7. O usuário escolhe uma opção.

8. Enquanto o usuário não selecionar a opção “sair” faça:

 8.1. Se o usuário selecionar a opção Ordem de pagamento, então:

 Usar [caso de uso Ordem de Pagamento].

 8.2. Senão, se o usuário selecionar a opção Retornar Produto, então:

 Usar [caso de uso Retornar Produto].

 . . .

 8.6. Senão, se o usuário selecionar a opção Imprimir Relatório, então:

 Usar [caso de uso Imprimir Relatório]

9. O usuário seleciona uma opção.

10. O caso de uso termina.

Pré-condições:

 O usuário deve estar validado.

Pós-condições:

 Novo produto é registrado.

Fluxo principal de atividades:

1. O usuário preenche o formulário de cadastro de produto com as

seguintes informações: descrição, tipo, valor, data de entrega,

localização.

 2. O usuário confirma a operação.

 3. Os dados do novo produto são guardados.

Apontador ao Login

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

74

Figura 6b – Caso de uso Iniciar Aplicação (fluxo secundário).

A aplicação do padrão para o problema de duplicação de requisitos apresentado na

figura 6b seguiu a seguinte seqüência de etapas:

1 - As atividades duplicadas foram identificadas e estão destacadas na figura 6b.

Nessa situação as atividades estão no mesmo fluxo e são semanticamente e

sintaticamente idênticas não necessitando serem re-escritas.

2 - O caso de uso Exibir Mensagem (Figura 7) foi criado.

3 - As atividades identificadas na etapa 1 foram selecionadas.

4 - As atividades selecionadas foram adicionadas no caso de uso Exibir

Mensagem. A atividade “Exibir a mensagem” que está repetida nas atividades

de 8.1 à 8.6 do fluxo secundário é adicionada ao novo caso de uso Exibir

Mensagem, como sendo a atividade 1 do fluxo principal de execução.

5 - As mensagens que foram selecionadas no caso de uso Iniciar Aplicação

foram removidas. Foram adicionados, no mesmo lugar onde estavam às

mensagens, referências ao caso de uso Exibir Mensagem. A Figura 8 mostra

como ficou o caso de uso Iniciar Aplicação após a utilização do padrão.

6 - O caso de uso Iniciar Aplicação (Figura 8) está aceitável e permanece

com a mesma funcionalidade.

7 - Neste exemplo não há casos de uso dependentes, porém caso haja mais algum

caso de uso que necessite utilizar a mensagem deve-se fazer uma referência ao

caso de uso Exibir Mensagem.

Figura 7 – Caso de uso Exibir Mensagem.

Caso de Uso - Exibir Mensagem

Fluxo principal de atividades

1. Exibir a mensagem “Esta função não pode ser realizada para esse perfil de

usuário”.

Fluxo secundário de atividades

8.1. Se o usuário selecionar a opção Ordem de pagamento, então:

Exibir a mensagem “Esta função não pode ser realizada para esse perfil de

usuário”

8.2. Senão, se o usuário selecionar a opção Retornar Produto, então:

Exibir a mensagem “Esta função não pode ser realizada para esse perfil de

usuário”

 . . .

8.6. Senão, se o usuário selecionar a opção Imprimir Relatório, então:

Exibir a mensagem “Esta função não pode ser realizada para esse perfil de

usuário”

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

75

Figura 8 – Caso de uso Iniciar Aplicação parcial (após a aplicação do padrão).

2.8. Contexto Resultante

Após a utilização do padrão os requisitos que são identificados como duplicados são

encapsulados em apenas uma estrutura. Essa solução tem os seguintes resultados

positivos:

1. melhor localização do requisito.

2. diminuição do tamanho do documento de requisitos.

3. facilidade de reuso por outras estruturas do sistema, ou mesmo o reuso do

requisito em outros sistemas.

Os Resultados que podem ser considerados negativos na aplicação deste padrão são:

1. o aumento do número de estruturas do sistema, uma vez que se criará uma

nova estrutura para cada requisito duplicado.

2. a criação de pequenas estruturas que encapsulam requisitos, com poucas

atividades. No caso do documento de requisitos estruturado com casos de uso

pode-se utilizar a solução descrita pelo padrão Large Use Case, proposta por

Gunnar, O. e Karin (2004). Este padrão, quando possível, agrupa casos de uso

que são pequenos e\ou tem poucas funções juntamente com outros que estão

no mesmo contexto.

2.9. Usos Conhecidos

A solução descrita pelo padrão Requisitos Encapsulados para solucionar o problema

da duplicação de informações é conhecida em vários contextos.

Fowler e outros (2000) descrevem, em um catalogo, diversos problemas que

podem ocorrer em nível de código orientado a objetos, esses problemas são chamados

pelos autores de “badsmells”. Para cada problema também são descritas possíveis

soluções com a utilização de refatoração (refactoring, em inglês). Uma das soluções

dada para o badsmell nomeado “Código Duplicado” (Duplicated Code, em inglês) é a

utilização da refatoração “Extrair Classe” (Extract Class, em inglês). Esta solução tem

como conceito central encapsular os trechos de código que estão duplicados em

apenas uma classe.

Fluxo principal de atividades
1. O caso de uso inicia quando o usuário inicia a aplicação.

 . . .

10. O caso de uso termina.

Fluxo secundário de atividades

8.1. Se o usuário selecionar a opção Ordem de pagamento, então:

 Usar [caso de uso Exibir Mensagem]

8.2. Senão, se o usuário selecionar a opção Retornar Produto, então:

 Usar [caso de uso Exibir Mensagem]

 . . .

8.6. Senão, se o usuário selecionar a opção Imprimir Relatório, então:

 Usar [caso de uso Exibir Mensagem]

Apontador ao Exibir Mensagem

Apontador ao Exibir Mensagem

Apontador ao Exibir Mensagem

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

76

Gunnar e Karin (2004) além de descreverem um conjunto de padrões para casos de

uso também descrevem boas praticas para evitar a duplicação de informações em

casos de uso. Em uma dessas é descrita a pratica de utilizar a generalização entre

casos de uso, sempre que possível, para evitar a duplicação de informações. Assim,

esta pratica consiste em mover as informações duplicadas para um único caso de uso.

A Figura 9 ilustra duas situações: (a) informações duplicadas em 2 casos de uso,

Cadastrar Cliente Físico e Cadastrar Cliente Jurídico, (b)

uma possível solução para a situação anterior, em que a generalização da informação

duplicada em um único caso de uso (Cadastrar Cliente) permite que os dois

casos de uso compartilhem desta informação e tratem somente de suas características

especificas.

Figura 9 - Informações duplicadas solucionadas com a utilização da generalização.

Rashid, Moreira e Araújo (2004) descrevem um modelo para utilizar orientação a

aspectos [Kiczales e outros, 1997] em documentos de requisitos. A eliminação de

informações duplicadas é uma entre outras das vantagens promovidas pela utilização

deste paradigma. Esta eliminação consiste em identificar a informação que esta

duplicada e adicioná-la em um aspecto.

Alencar e outros (2006 e 2007) utilizam os recursos da orientação a aspectos para

eliminar informações duplicadas em modelos gerados pelo framework i* [Yu, E.,

1995]. Nesta abordagem o objetivo é melhorar a facilidade de entendimento dos

modelos gerados pelo i*. Diretrizes são elaboradas para ajudar a utilização da

abordagem. Assim como na abordagem de Rashid, Moreira e Araújo (2004) as

informações duplicadas são identificadas e adicionadas em um aspecto.

3 Conclusões

Este artigo apresentou um padrão para requisitos chamado Requisitos Encapsulados

que descreve uma solução para o problema de duplicação de informações no nível de

requisitos. O padrão tem uma solução independente que pode ser instanciada para

qualquer abordagem que seja utilizada para a produção de um documento de

requisitos.

Soluções como a proposta pelo padrão Requisitos Encapsulados são recorrentes na

abordagem orientada a aspectos, cujo objetivo é a modularização dos interesses (do

inglês concerns) que podem estar duplicados, espalhados e/ou entrelaçados com

outros interesses.

Cadastrar Cliente

Cadastrar

Cliente Físico

Cadastrar

Cliente Jurídico

Cadastrar

Cliente Físico

Cadastrar

Cliente Jurídico

Informação duplicada Informação

compartilhada

(a) (b)

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

77

Poucos padrões descrevem soluções para problemas encontrados em descrições de

requisitos. A maioria dos padrões encontrados, para requisitos, descreve soluções para

modelos, como por exemplo, os padrões descritos por Gunnar e Karin (2004).

Como a descrição de requisitos é usualmente informal, muitas falhas, tais como

duplicações de informações, inconsistência de requisitos, pouco reuso e falta de

clareza prejudicam o entendimento do documento de requisitos. Isto gera aumento do

custo no desenvolvimento de um sistema. Se os erros puderem ser corrigidos na fase

de requisitos não serão levados para as fases seguintes do desenvolvimento,

diminuindo assim o custo na manutenção destes erros.

Agradecimentos

Este trabalho foi financiado por vários órgãos de incentivo à pesquisa (CNPq Proc.

304982/2002-4 & Proc. 142248/2004-5; CAPES Proc. BEX 3478/05-0; & CAPES/

GRICES Proc. 129/05).

Referências Bibliográficas

Alencar, F., Moreira, A., Araújo, J, Castro, J., Silva, C., Mylopoulos, J.: Towards an

Approach to Integrate i* with Aspects. In: Proc. of 8th International Bi-Conference

Workshop on Agent-Oriented Information Systems (AOIS-2006), in conj. with

CAiSE’06. Luxembourg, June (2006).

Alencar, F., Moreira, A., Araújo, J., Castro, J., Ramos, R., and Silva, C.: Proposal to

deal with the Complexity of i* Models with Aspects. In: the First International

Conference on Research Challenges on Information Science – RCIS’07.

Ouarzazate, Morocco, April, (2007) (to appear).

Appleton, Brad. Patterns and Software: Essential Concepts and Terminology,

disponível na WWW na URL:

http://www.cmcrossroads.com/bradapp/docs/patterns-intro.html - última visita em

29/12. (2006)

Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring: improving the

design of existing code. Object Technology Series. Addison-Wesley (2000)

Gunnar, O. e Karin, P. “Use Cases Patterns and Blueprints”. In: Addison Wesley

Professional - November (2004)

Jacobson, I., Ng, P.W.: Aspect-Oriented Software Development with Use Cases.

Addison-Wesley (2005)

Kiczales, G.; Lamping, J.; Mendhekar, A. “RG: A Case-Study for Aspect-Oriented

Programming.” In: SPL97. Palo Alto Research Center, Technical Report (1997)

Pressman, R. “Engenharia de Software”. Makron Books, 5ª edição (2002)

Ramos, R. A., Carvalho, A., Monteiro, C., Silva, C., Castro, J. F. B., Alencar, F.,

Afonso, R. “Avaliação da Qualidade de um Documento de Requisitos Orientado a

Aspectos”. In: IX Ibero-American Workshop on Requirements Engineering and

Software Environments - IDEAS'06. La Plata, Argentina (2006a)

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

78

Ramos, R. A., Araújo, J., Castro, J. F. B., Moreira, A., Alencar, F., Silva, C. “Uma

Abordagem de Instanciação de Métricas para Medir Documentos de Requisitos

Orientados a Aspectos”. In: III Workshop Brasileiro de Desenvolvimento de

Software Orientado a Aspectos WASP´2006. Florianópolis, Santa Catarina - Brasil

(2006b)

Ramos, R. A., Araújo, J., Castro, J. F. B., Moreira, A., Alencar, F., Silva, C. “Um

Modelo de Qualidade para Avaliar Documentos de Requisitos Orientados a

Aspectos”. In: Desarrollo de Software Orientado a Aspectos, DSOA 2006,

Asociado a XV Jornadas de Ingeniería del Software y Bases de Datos. Sitges -

Barcelona (2006c)

Rashid, A., Moreira, A. e Araújo, J. “Modularization and Composition of Aspectual

Concerns”. In: International Conference on Aspect-Oriented Software

Development, ACM, Boston, USA (2003)

Sommerville, I. “Engenharia de Software”. Addison- Wesley (2003)

Yu, E.: Modeling Strategic Relationships for Process Reengineering. Ph.D. thesis,

Department of Computer Science, University of Toronto, Canada (1995).

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

79

Analysis patterns for Customer Relationship Management (CRM)

Mei Fullerton and Eduardo B. Fernandez
Dept. of Computer Science and Engineering

Florida Atlantic University
Boca Raton, FL 33431

meifullerton@yahoo.com, ed@cse.fau.edu

1. Introduction
In today's global trading environment, from the traditional way of selling products or services, to
auctioning anything on-line, companies big or small typically have customers or partners from all over
the world. Companies need to keep track of their customers, interact with them, prospect potential
customers, and try to forecast what their customers will be buying in the future. In fact, not just
commercial companies need these functions, but any institution that interacts with individuals or other
institutions, such as universities, clubs, or social associations. We refer to all these as organizations
because they all need similar structure and some related functions to deal with their customers or
members. While universities and clubs for example, do not really trade, they need to attract students or
members, keep track of their information, and interact with them in many ways. A flexible and robust
customer/member data model is needed to capture all this information and accommodate different
cultures, organizational structures, and backgrounds.

We describe here some aspects of recording information about customers for an organization in a
trading community that sells products or services to its customers, which can be other organizations or
individuals (parties). A trading community is defined as a group of entities taking part in some type of
commerce or exchange. It includes persons and organizations. Entities in a trading community may
play roles other than Seller and Buyer, such as Partner, Contact, Distributor, Dealer, Agent, Influencer,
etc. Customer relationship has a broader context than classical customers, not only it represents the
customer model, it also represents multiple organizations and multiple relationships that exist in a
complex matrix-like environment.

There has been much work on related domain-specific areas, such as analysis patterns for Accounting
[Fer02], Course Management for educational settings [Yua03], and Reservations [Fer99], but they do
not capture a generic model that can be specific to the trading community. There have been also some
patterns about specific aspects of CRM, e.g. [Fow97, Hay96, Sil01]. We introduce here the Party
Relationship analysis pattern, which captures relationships of parties with other parties, where the party
is an organization or an individual. Location aspects of these parties are described in the Party
Locations and Contacts pattern. The Customer Relationship Management pattern combines these two
patterns and adds account aspects. These patterns are intended for application or database designers.

Section 2 introduces an example which is used for all the patterns discussed here. Section 3 presents the
Party Relationship pattern, while Section 4 discusses the Party Locations and Contacts pattern. Section
5 presents the CRM pattern. We end with some conclusions. For conciseness, the first two patterns are
presented using simplified templates, while the last pattern uses a complete POSA-like template.

2. Example
Office Enterprise sells office products and services to its customers. It has traditional brick and mortar

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

80

retail stores, but it also sells products on line and via mail catalog. Figure 1 shows some of the typical
parties and relationships that exist in the Office Enterprise's business domain (the lines with arrows
represent possible associations). It has employees. It has customers who can be individuals (B2C
customers) or organizations (B2B customers). It has suppliers who manufacture or distribute products
and who can also sell directly to the company’s customers. It also has partners who may sell products
or provide services to Office Enterprise's customers directly. Office Enterprise communicates with its
customers and suppliers through contacts and addresses. Each customer or supplier may have more
than one contact. They may also have more than one address, such as mailing address, billing address,
or shipping address. Last but not least, Office Enterprise has competitors who compete with it for
suppliers and customers, and it needs to know about them.

Figure 1 – A company and its relationships

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

81

3. Party Relationship Pattern

This pattern describes the parties and the relationships between parties in a trading community or
institutions with members, customers, or users

Context
Organizations in a trading community or institutions which have members or customers need to interact
in many ways.

Problem
Companies or organizations need to interact with many other organizations or individuals to conduct
their business. Those organizations may have complex relationships with the organization and with
each other. How do we model the complex relationship between parties so that the company knows the
answers to the following key questions at all times: Who are my customers? How are they related to
each other? What are their characteristics? Who are my competitors? Who are my partners? Who are
my suppliers?

The solution is affected by the following forces:

• We need to know how other parties are related to our organization so our interactions with them are

appropriate and effective.
• Parties can be individuals or organizations, and we want to consider both types. Otherwise we

would exclude potential customers or partners for example.
• An organization is itself a party and can have relationships to itself as well as to other parties.
• Parties can be related to each other in more than one way, maybe in a peer or hierarchical fashion.
• A party can have many relationships with another party, and furthermore, the relationships are

dynamic, they can change at any given time.
• Relationships are reciprocal, they can be organization-to-organization, person-to-person, or

organization-to-person.
• We need to model inter- and intra- organization relationships, and non-business relationships

(Spouse Of or Child Of are examples of non-business relationships). Non-business relationships
may be useful for special promotions or advertisement.

• We need to describe any type of relationship, including the ability to capture company branches,
competitors, resellers, business partners, etc.

Solution
Define a Party as a Person or an Organization that is of interest in a business context (Figure 2).
Person is a unique individual, while Organization is a legal entity recognized by some government
authority, i.e. a branch, a subsidiary, a legal entity, a holding company, etc. Party relationship links
two Parties to indicate the nature of the relationship between them. This association may also indicate
the direction of the relationship, superior or subordinate, as well as their roles in the relationship. For
example, in an employee/employer relationship, employee is a role while employer is another role.
Some example relationships are: Client of/Contractor to, Supplier to/Distributor for, Seller to/Customer
of, Reports to/Manager of, Employer of/Employee of, and Partner of.

Known Uses
SAP’s mySAP Business Suite includes a CRM package that handles customers and partners [sap07].

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

82

Consequences
This pattern provides the following benefits:
● We can indicate how a party (including our own organization) is related to us and to other parties

and describe the type of relationship it has with them.
● Parties can be individuals or organizations.
● By the use of role names in associations we can indicate how parties interact with each other.
● Parties can be related in any way, there is no restriction in the type of relationship.
● We can model business and non-business relationships, as well as inter- and intra-organization

relationships (as far as they are named entities).

A possible liability is unnecessary complexity for institutions that have few and simple relationships
with other parties.

Related Patterns
This pattern is an extension of the Party Pattern [Fow97]. Fowler describes a party as a person or
organization but does not consider how parties are related to each other. However, he uses this concept
in several specific relationships, e.g. accountability. An earlier version of this pattern comes from
[Hay96], who uses a similar definition and considers reporting relationships between parties. Silverston
[Sil01] considers also party relationships of a more general type. All these books use ad-hoc notation,
not UML, and don’t consider dynamic aspects (we show dynamic aspects in Section 5). A Person
pattern [Rod03] emphasizes the roles played by a person in organizations. [Yod02] describes a Party
Type pattern that represents types of parties.

Figure 2 – Class diagram for the Party Relationship pattern.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

83

4. Party Locations and Contacts Pattern

The Party Locations and Contacts pattern describes the places, the contacts, and the associated
communication channels in a trading community.

Context
Organizations in a trading community or institutions which have members or customers need to interact
in many ways.

Problem
The company needs to know where its parties such as customers, suppliers, partners, competitors are
located, and for a specific purpose, who the contacts are, and how to contact them. How do we model
the multiple locations (including their purposes), and the multiple contacts for a given party? And how
to model multiple communication points for a party or a location for different purposes?

The solution is affected by the following forces:
● Companies or institutions usually have many locations, which are used for different purposes, e.g.

sales outlet, customer information, research group.
● Companies or institutions usually have many contacts, intended for different purposes.
● Communication points can be different, based on the purpose of the communication. For example,

some points are for email contacts, some are for on-site visiting, some are for EDI (Electronic Data
Interchange) communications.

Solution
In the class diagram of Figure 3, every party has many locations, where a Location is essentially an
address of a physical location. A party can have many locations for different purposes, and a location
can be used by many parties. A Party Site describes how a location used for that party. Party Site Use
is the use of a party site (billing, shipping, training) and describes the purpose of that location; for
example, mailing address, home address, billing address, or shipping address.

Contact is a person with whom we can communicate for some purpose, whether in-person, over-the-
phone, or through other electronic means. A party can have many contacts, and a contact can be used
by many parties. A Party Contact links the party and contact and indicates that the contact is used for
the particular party, as well as the role or function of this contact. A Communication Point is an
identifier for a typically electronic point of contact, for example a telephone number, an email address,
a web URL, an EDI, etc. A Party, a Party Contact, or a Party Site can have one or more communication
points for different purposes.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

84

Figure 3 – Party Locations and Contacts Pattern

Known Uses
There are several commercial CRM products that have implemented versions of the Party Locations
and Contacts Pattern. For example:

• RightNow [rig07] has a Locator web package to help their customers find products, store locations,

and contacts.
• Oracle Customer Data Hub [Ora06].
• Siebel Customer Relationship Management Application [Sie06].

Consequences
This pattern provides the following benefits:
● It indicates the locations of a party and what purpose they serve.
● It indicates the contacts of a party with respect to an institution and their purpose.
● It indicates the communication points needed to reach a party.

Again the solution is rather complex for many applications which don’t require so much flexibility.

Related Patterns
This pattern usually complements the Party pattern. For example, the Party pattern in [Hay96] also has
the concept of geographic location. Silverston’s sales force model has the concepts of contact and
contact method [Sil01]. A Contact pattern is described in [Rod03], which describes possible attributes
and collaborations of contacts; that is, it can expand some of the details of our pattern. [Yod02] apply
the Observation pattern of Fowler [Fow97] to describe aspects of a Party, one of which could be
Location.

5. Customer Relationship Management Pattern

This pattern describes the business relationships of an enterprise, considering its interaction with
customers, partners, suppliers, and similar entities. It also describes the locations and contacts to apply
those relationships and some aspects of their accounts. This pattern is a composite pattern made of the
Party Relationship and Party Locations and Contacts patterns.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

85

Context
Organizations in a trading community or institutions which have members or customers need to interact
in many ways.

Problem
An enterprise needs to manage all its related parties, such as customers, prospects, suppliers,
employees, distributors, and their relationships, so the enterprise can gain valuable insight into their
prospect base, understand their needs, increase sales, foster tighter and more profitable relationships
with the customers, and make better business decisions. It also needs to keep track of their locations
and their accounts with the enterprise. For successful business actions, a company needs to know the
answers to questions such as: Who are my customers? What are their preferences? What is the status of
their accounts? Where are they located? How to contact them? To be able to answer the above
questions at all times, the system needs to understand the organization’s customer and other parties’
relationships. It also needs to know about their locations and contacts as well as the status of their
accounts.

The solution is affected by the following forces:

• We need to know how other parties are related to our organization so our interactions with them are

appropriate and effective.
• A party can have many relationships with the organization, and furthermore, the relationships can

change at any given time.
• We need to model inter- and intra- company relationships, non-business relationships and user-

defined relationships.
• We need to model the capability to offer personalized services or products, each customer has

his/her own preferences, and the preferences can change dynamically.
• We need to keep track of the status of their accounts and the type of their accounts.
• Companies or organizations usually have many locations, which are used for different purposes,

e.g. sales outlet, customer information, research group.
• Companies or organizations usually have many contacts, intended for different purposes.
• Communication points can be different, based on the purpose of the communication. For example,

some points are for email contacts, some are for visiting, some are for EDI communications.
• The complete model should be easy to understand and to implement.

Solution
We combine the two patterns shown earlier. These patterns represent the complex relationships among
those entities and model inter and intra company relationships, non-business relationships, and user-
defined relationships. We describe the creation and maintenance of the customer information, including
organizations, locations, and the network of hierarchical relationship among them. We also keep
information about the status of their accounts and their preferences.

Structure
The Customer Relationship Management pattern contains classes from the two previous patterns.
Parties represent persons or organizations which have some business relationship with the organization.
An Account is created once a party makes a purchase or establishes a financial agreement. Accounts
also have locations (are assigned to a site, where each site can have several uses) and can be related to
other accounts.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

86

Figure 4 shows the classes involved. Party represents an entity, either a person or an organization.
Party Relationship links two Parties to indicate the nature of the relationship between them, regardless
of their type. Location is essentially an address of a physical location. A Party Site uniquely identifies
the association between the party and the location and indicates that the particular location is used for
that party. Party Site Use indicates the use of a party site (billing, shipping, training). Contact is a
person with whom we can communicate, whether in-person, over-the-phone, or through other
electronic means. A Party Contact links the party and contact and indicates that the contact is used for
the particular party. Communication Point indicates an electronic point of contact.

Figure 4 – Class Diagram for the Customer Relationship Pattern

Dynamics
The sequence diagram in Figure 5 shows the use case for opening an account. A person or institution
opening an account becomes a party, other entities related to the party such as a location, a contact, and
a communication point are created. Finally, the actual account is created. Other use cases include
adding a contact to a party, adding a communications point to a party, etc.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

87

Figure 5 – Sequence Diagram for opening an Account

Known Uses
There are several commercial CRM products that have implemented customer relationship models. For
example:

• Oracle Customer Data Hub [Ora06] uses the Trading Community Architecture (TCA). TCA is a

common repository for name and address information.
• Siebel Customer Relationship Management Application [Sie06]
• Microsoft CRM software [Mic06]
• SAP’s mySAP Business Suite includes a CRM package [sap07].
• SalesForce CRM Unlimited Edition includes all these functions [sal07].
• NetSuite CRM+ includes all these functions [net07].

Consequences
This pattern has the following benefits:
● A Customer Relationship analysis pattern promotes broader reuse; it can be reused in many

different domains, such as retail companies, financial institutions, educational, public or
government sectors, etc.

● It addresses business, non-business and user-defined relationships.
● It includes the basic information needed for efficient customer relationship management.
● It provides a complete view of a party and all of its relationships with the company, and its

relationships with other members of the trading community.
● It keeps the status of accounts.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

88

The pattern has the following liabilities:
● It may be too complex for small businesses.

Related Patterns
• [Cyp05, Fow97, Hay96, Sil01] present several variations on these patterns as well as some

complementary patterns and related models.
• The Account Analysis Pattern [Fer02] adds more functions to the accounts shown here, including

keeping track of transactions.
• CRM functions interact and may overlap with other business functions such as Order Management,

Sales Force Automation, and Marketing, for which there are some patterns or standard models (see
[Fow97, Hay96, Sil01]).

6. Conclusions and Future Work
Customer/member information is vital to any organization. We have presented two patterns that handle
specific aspects of customer relationships and a composite pattern that combines their functions and
adds a few other functions. These patterns can be used to build conceptual application models for this
domain.

Business information may be highly sensitive; for example, it contains financial information that is
subject to regulations, such as credit card information or purchasing records. Proper security is needed
to handle this information. We are working on an extension of this pattern where role rights and other
security constraints are superimposed on the functional aspects, according to our secure development
methodology [Fer06].

Acknowledgements
We thank our shepherd Tiago L. Massoni for his perceptive and knowledgeable comments that
significantly helped improve the quality of the paper. FAU’s Secure Systems Research Group
(www.cse.fau.edu/~ed) also made valuable comments. The participants in the writers’ workshop at
SugarLoafPLoP 2007 (Richard Gabriel, Joe Yoder, Ademar Aguiar, Maria Lencastre, Rosana Braga,
Jorge Forneron, Jorge Ortega-Arjona, Mark Perry) provided very useful comments.

References

[Cyp05] P. Cyphers, “Trading Community Architecture”,
http://repo.solutionbeacon.net/SBStandardTCAPresentation2005.pdf

[Fer00] E.B. Fernandez and X. Yuan, “Semantic analysis patterns”, Procs. of 19th Int. Conf. on
Conceptual Modeling, ER2000, 183-195. Also available from:
http://www.cse.fau.edu/~ed/SAPpaper2.pdf

[Fer02] E.B.Fernandez and Y.Liu, "The Account Analysis Pattern", Procs. of EuroPLoP (Pattern
Languages of Programs) 2002.
http://www.hillside.net/patterns/EuroPLoP/submissions-2002.html

[Fer06] E.B. Fernandez, M.M. Larrondo-Petrie, T. Sorgente, and M. VanHilst, "A methodology to
develop secure systems using patterns", Chapter 5 in "Integrating security and software engineering:
Advances and future vision", H. Mouratidis and P. Giorgini (Eds.), IDEA Press, 2006, 107-126.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

89

[Fow97] M. Fowler, Analysis Patterns-Reusable Object Models, Addison-Wesley, 1997

[Hay96] D.Hay, Data model patterns-- Conventions of thought, Dorset House Publ., 1996.

[Mic06] Extending Microsoft CRM with Reusable Patterns, http://msdn2.microsoft.com/en-
us/library/ms913853.aspx

[net07] http://www.netsuite.com/portal/products/main.shtml Accessed February, 2007.

[Ora06] Oracle, The Oracle Trading Community Architecture,
http://www.oracle.com/data_hub/cdh.html

[rig07] RightNow Technologies, http://www.rightnow.com/ Accessed February 2007.

[Rod03] A. Rodrigues Silva, “Resources and roles based patterns: The Contact, Person, Organizational
Unit and Organization patterns”, Procs. of EuroPLoP 2003.

[sal07] http://www.salesforce.com/company/ Accessed February 2007.

[sap07] SAP United States, http://www.sap.com/usa/solutions/business-suite/crm/index.epx

[Sie06] Siebel, Customer Relationship Management Applications
http://www.oracle.com/applications/siebel.html

[Sil01] L. Silverston, The data model resource book (revised edition), Vol. 1, Wiley 2001,

[Yod02] J. Yoder and R. Johnson. "The Adaptive Object Model Architectural Style", Procs. of The
Working IEEE/IFIP Conference on Software Architecture 2002 (WICSA3 '02) at the World Computer
Congress in Montreal 2002, August 2002.
http://www.adaptiveobjectmodel.com/WICSA3/ArchitectureOfAOMsWICSA3.htm

[Yua03] X. Yuan and E. B. Fernandez, "An analysis pattern for course management", Procs. of
EuroPLoP'03, 899-907.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

90

The Parallel Layers Pattern
A Functional Parallelism Architectural Pattern for Parallel Programming

Jorge L. Ortega-Arjona
Departamento de Matemáticas
Facultad de Ciencias, UNAM
jloa@fciencias.unam.mx

Abstract. The Parallel Layers pattern is an architectural pattern for parallel programming
used when the problem is understood in terms of functional parallelism. This pattern
describes a solution in a layered form, in which each layer is composed of two or more
components that are able to simultaneously exist and perform the same operation.

1. Introduction

Parallel processing is the division of a problem, presented as a data structure and/or a set of
actions, among multiple processing components that operate simultaneously. The expected
result is a more efficient completion of the solution to the problem. The main advantage of
parallel processing is its ability to handle tasks of a scale that would be unrealistic or not cost-
effective for other systems [CG88, Fos94, ST96, Pan96]. The power of parallelism centres on
partitioning a big problem in order to deal with complexity. Partitioning is necessary to divide
such a big problem into smaller sub-problems that are more easily understood, and may be
worked on separately, on a more “comfortable” level. Partitioning is especially important for
parallel processing, because it enables software components to be not only created separately
but also executed simultaneously.

Requirements of order of data and operations dictate the way in which a parallel computation
has to be performed, and therefore, impact on the software design [OR98]. Depending on how
the order of data and operations are present in the problem description, it is possible to
consider that most parallel applications fall into one of three forms of parallelism: functional
parallelism, domain parallelism, and activity parallelism [OR98]. Examples of each form of
parallelism are the Pipes and Filters pattern [OR05], representing functional parallelism; the
Communicating Sequential Elements pattern [OR00], as an example of domain parallelism;
and Shared Resource [OR03], as an instance of activity parallelism.

2. The Parallel Layers Pattern

The Parallel Layers pattern is an extension of the Layers pattern [POSA96, Shaw95, SG96]
with elements of functional parallelism. Parallelism is introduced when two or more
components of a layer are able to simultaneously exist, normally performing the same
operation. Components can be created statically, waiting for calls from higher layers, or
dynamically, when a call triggers their creation.

 Copyright  2007 Jorge Luis Ortega-Arjona. Permission is granted to copy for the SugarLoafPLoP 2007
conference. All other rights reserved.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

91

Functional parallelism is the form of parallelism described in terms of a series of
simultaneous step ordered operations, applied on ordered data with predictable organization
and interdependencies. As each step represents a change of the input for value or effect over
time, an amount of communication between components in the solution should be considered.
Conceptually, data is repeatedly divided and transformed [CG88, Fos94, Pan96].

Example: Single-Source Shortest Path Algorithm

Search is defined as a systematic examination of a problem space, starting from an initial state
and terminating at some final state or states. Each of the intermediate states, between the
initial and the final states, can be reached by applying an operation on a given state. This
operation is determined by an objective function that assures heading to the final state.

Any search problem can be conveniently represented using a graph. Given a graph is a set of
vertices and edges. Each edge has a positive integer weight representing the distance between
the vertices it connects (Figure 1). The objective, hence, is to search for the shortest path
between the source vertex and the rest of the vertices.

Figure 1. A typical graph

The Single-Source Shortest Path (SSSP) algorithm was originally proposed by Dijkstra, and
described later by Chandy and Misra [CM88]. It is an efficient algorithm for exhaustively
searching into this kind of graph representation. The SSSP algorithm is applied in cycles. In a
cycle, the algorithm selects the vertex with the minimum distance, marking it as having its
minimum distance determined. On the next cycle, all unknown vertices (those vertices whose
minimum distance to the others has not been determined) are examined to see if there is a
shorter path to them via the most recently marked vertex. Algorithmically, the SSSP algorithm
reduces the search time to O(N2) because N-1 vertices are examined on each cycle. Hence, N1
cycles are still required to determine the minimum distances.

A sequential approach considers that the graph can be represented by an adjacency matrix G,
whose elements represent the weight of the edges between vertices. In this approach two
additional data structures are used: a boolean array Known, to determine which vertices have
had their distance established, and an array D to record the most recently established distance
between the source and vertices. A function MinV returns the vertex with the shortest

3

0

1 2

10

20

40 15

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

92

unknown distance of the two vertices passed as its arguments. If one vertex is known, the
other vertex is returned. It is assumed that MinV is not called with two known vertices. The
sequential pseudocode is shown in Figure 2.

Figure 2. Pseudocode for the sequential SSSP algorithm.

However, this algorithm can potentially be carried out more efficiently by:
1. Using a group of parallel components that exploit the tree structure representing the

search, and
2. Simultaneously calculating the value minimum distance for each vertex, and only then,

computing and marking the overall minimum distance vertex.

Context

Starting the design of a software program for a parallel system, using a particular
programming language for certain parallel hardware. Consider the following contextual
assumptions:
• The problem to solve, expressed as an algorithm and data, is found to be an open ended

one, that is, involving tasks of a scale that would be unrealistic or not cost-effective for
other systems to handle. Consider the SSSP algorithm example: since its execution time is
O(N2), if the number of vertices is large enough, the whole computation grows up to an
enormous extent.

• The parallel platform and programming environment to be used are known, offering a
reasonably level of parallelism in terms of number of processors or parallel cycles
available.

• The programming language to be used, based on a certain paradigm, is determined, and a
compiler is commonly available for the parallel platform. Many programming languages

Begin
For i:=0 to N­1
Known[i]:=(i=0) // only source vertex is known

For i:=0 to N­1
D[i]:= G[0,i] // initial distance of source to vertex

LastKnown := 0 // only source is known
KnownCount := 1

While KnownCount < N
MinVertex : = 0
For i:= 1 to N­1 // check the shorter route via last marked vertex

if Not Known[i]
D[i] := Min(D[i], D[LastKnown] + G[LastKnown, i])

MinVertex := MinV(MinVertex, i)
End For
// select next vertex to mark known
LastKnown := MinVertex
Known [LastKnown] := TRUE
KnownCount ++

End While
End

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

93

have parallel extensions for many parallel platforms [Pan96], as it is the case of C, which
can be extended for a particular parallel computer or use libraries to achieve process
communication [ST96].

• The main objective is to execute the tasks in the most time-efficient way.

Problem

An algorithm is composed of two or more simpler sub-algorithms, which can be divided into
further sub-algorithms, and so on, recursively growing as an ordered tree-like structure until
a level in which the sub-parts of the algorithm are the simplest possible. The order of the tree
structure (algorithm, sub-algorithms, sub-sub-algorithms, etc.) is a strict one. Nevertheless,
data can be divided into data pieces which are not strictly dependent, and thus, can be operated
on the same level in a more relaxed order. If the whole algorithm is performed serially, it
could be viewed as a chain of calls to the sub-algorithms, evaluated one level after another.
Generally, performance as execution time is the feature of interest. Thus, how do we solve the
problem (expressed as algorithm and data) in a cost-effective and realistic manner?

Forces

Considering the problem description and granularity and load balance as other elements of
parallel design [Fos94, CT92] the following forces should be considered:
• Perform a computation as a tree structure of ordered sub-computations. For example, in the

SSSP, each minimum distance for each vertex is calculated using the same operation
several times, but using different information per layer.

• Data can be only vertically shared among layers. In the SSSP example, data is distributed
through the tree structure, where autonomous operations are carried out.

• The same group of operations can be independently performed on different pieces of data.
In the SSSP example, the same operation is performed on each subgroup of data to obtain
its minimum distance from the lower layers. So, several distances can be obtained
simultaneously.

• Operations may be different in size and level of complexity. In the SSSP example,
operations are similar from one layer to the next, but the amount of data processed tends to
diminish.

• Dynamic creation and destruction of components is preferred over static, to achieve load
balance. For example, in the SSSP example, the creation of new components in lower
layers can be used to extend the solution to larger problems.

• Improvement in performance is achieved when execution time decreases. Our main
objective is to carry out the computation in the most time-efficient way. The question is:
how can the problem be broken down to optimise performance?

Solution

Use functional parallelism to execute the sub-algorithms, allowing the simultaneous existence
and execution of more than one instance of a layer component through time. Each one of
these instances can be composed of the simplest sub-algorithms. In a layered system, an

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

94

operation involves the execution of operations in several layers. These operations are usually
triggered by a call, and data is vertically shared among layers in the form of arguments for
these function calls. During the execution of operations in each layer, usually the higher layers
have to wait for a result from lower layers. However, if each layer is represented by more than
one component, they can be executed in parallel and service new requests. Therefore, at the
same time, several ordered sets of operations can be carried out by the same system. Several
computations can be overlapped in time [POSA96, Shaw95].

Structure

In this architectural pattern, different operations are carried out by conceptually-independent
entities, ordered in the shape of layers. Each layer, as an implicit different level of abstraction,
is composed of several components that perform the same operation. To communicate, layers
use calls, referring to each other as components of some composed structure. The same
computation is performed by different groups of functionally related components.
Components simultaneously exist and process during the execution time. An Object Diagram,
representing the network of components that follows the parallel layers structure is shown in
Figure 3.

Figure 3. Object Diagram of the Parallel Layers pattern.

Participants

• Layer component. The responsibilities of a layer component are to allow the creation of an
algorithmic tree structure. Hence, it has to provide a level of operation or functionality to
the layer component above, while delegating operations or functionalities to the two or
more layer components below. It also has to allow the flow of data and results, by receiving
data from the layer component above, distributing it to the layers components below,
receiving partial results from these components, and making a result available to the layer

:Layer 1

:Layer 2

:Layer 0

:Layer 1

:Layer 2 :Layer 2:Layer 2

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

95

component above. Each component is independent from the activity of other components.
This makes it easy to execute them in parallel.

Dynamics

As the parallel execution of layer components is allowed, a typical scenario is proposed to
describe its basic run-time behaviour. All layer components are active at the same time,
accepting function calls, operating, and returning or sending another function call to other
components in lower level layers. If a new function call arrives from the client, a free element
of the first layer takes it and starts a new computation.

As stated in the problem description, this pattern is used when it is necessary to perform
repeatedly a computation, as series of ordered operations. The scenario presented here takes
the simple case when two computations, namely Computation 1 and Computation 2, have to
be performed. Computation 1 requires the operations Op.A, which requires the evaluation of
Op.B, which needs the evaluation of Op.C. Computation 2 is less complex than
Computation 1, but requires to perform the same operations Op.A and Op.B. The parallel
execution is as follows (Figure 4):
• The Client calls a component Layer A1 to perform Computation 1. This component calls

to a component Layer B1, which similarly calls a component Layer C1. Both components
Layer A1 and Layer B1 remain blocked waiting to receive a return message from their
respective sub-layers. This is the same behaviour than the sequential version of the Layers
pattern [POSA96].

Figure 4. Interaction Diagram of the Parallel Layers pattern.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

96

• Parallelism is introduced when the Client issues another call for Computation 2. This
cannot be serviced by Layer A1, Layer B1 and Layer C1. Another instance of the
component in Layer A, called Layer A2 - that either can be created dynamically or be
waiting for requests statically - receives it and calls another instance of Layer B, Layer B2,
to service this call. Due to the homogeneous nature of the components of each layer, every
component in a layer can perform exactly the same operation. That is precisely the
advantage of allowing them to operate in parallel. Therefore, any component in Layer B is
capable to serve calls from components in Layer A. As the components of a layer are not
exclusive resources, it is in general possible to have more than one instance to serve calls.
Coordination between components of different layers is based on a kind of client/server
schema. Finally, each component operates with the result of the return message. The main
idea is that all computations are performed in a shorter time.

Implementation

An architectural exploratory approach to design is described below, in which hardware-
independent features are considered early, and hardware-specific issues are delayed in the
implementation process. This method structures the implementation process of parallel
software based on four stages [OR98]. During the first two stages, attention is focused on
concurrency and scalability characteristics. In the last two stages, attention is aimed to shift
locality and other performance-related issues. Nevertheless, it is preferred to present each
stage as general considerations for design instead of providing details about precise
implementation. These implementation details are pointed more precisely in the form of
references to design patterns for concurrent, parallel, and distributed systems of several other
authors [Sch95, Sch98a, Sch98b, POSA00].

1. Partitioning. Initially, it is necessary to define the basic Layer pattern system which will
be used with parallel instances: the computation to be performed is decomposed into a set
of ordered operations, hierarchically defined and related, determining the number of
layers. Following this decomposition, the component representative of each layer can be
defined. For a concurrent execution, the number of components per-layer depends on the
number of requests. Several design patterns have been proposed to deal with layered
systems. Advice and guidelines to recognise and implement these systems can be found in
[POSA96, PLoP94]. Also, consider the patterns used to generate layers, like A Hierarchy
of Control Layers [AEM95] and the Layered Agent Pattern [KMJ96].

2. Communication. The communication required to coordinate the parallel execution of layer
components is determined by the services that each layer provides. Characteristics that
should be carefully considered are the type and size of the shared data to be passed as
arguments and return values, the interface for layer components, and the synchronous or
asynchronous coordination schema. The implementation of communication structures
between components depends on the features of the programming language used. Usually,
if the programming language has defined the communication structures (for instance,
function calls or remote procedure calls), the implementation is very simple. However, if
the language does not support communication between remote components, it is proposed

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

97

the construction of an extension in the form of a communication subsystem. Design
patterns can be used for this. Particularly, patterns like the Broker pattern [POSA96], the
Composite Messages pattern [SC95], the Service Configurator pattern [JS96, POSA00]
and the Visibility and Communication between Control Modules and Actions Triggered by
Events [AEM95] can help to define and implement the required communication structures.

3. Agglomeration. The hierarchical structure is evaluated with respect to the expected
performance. Usually, systems based on identical layer components present a good load-
balance. However, if necessary, using the conjecture-test approach, layer components can
be refined by combination or decomposition of operations, modifying their granularity to
improve performance or to reduce development costs.

4. Mapping. In the best case, each layer component executes simultaneously on a different
processor, if enough processors are available. Usually this is not the case. An approach
proposes to execute each hierarchy of layers on a processor, but if the number of requests
is large, some layers would have to block, keeping the client(s) waiting. Another mapping
proposal attempts to place every layer on a processor. This simplifies the restriction about
the number of requests, but if not all operations require all layers, this may overcharge
some processors, introducing load-balance problems. The most realistic approach seems to
be a combination of both, trying to maximise processor utilisation and minimise
communication costs. In general, mapping of layers to processors is specified static,
allowing an internal dynamic creation of new components to serve new requests. As a
"rule of thumb", a Parallel Layers pattern system will perform best on a shared-memory
machine, but a good performance can be achieved if it can be adapted to a distributed-
memory system with a fast communication network [Pan96, Pfis95].

Example Resolved

The potential parallelism for the SSSP is explained as follows. On each cycle, the current
distance to a given vertex must be compared to the distance to the vertex via the last known
vertex and the minimum recorded as the new distance. This calculation depends only on the
graph array G. Thus, the minimum distance for each vertex can be computed and marked. If
there are N processes, the algorithm would have a running time O(Nlog2N). N-1 cycles are still
required to compute the minimum of all vertices. However, each cycle will require one time
step to update the minimum for each vertex and O(log2N) time steps to compute the overall
minimum vertex.

To move to a parallel solution, we must determine two things:
1. the communications network topology that will be used, and
2. what information will be stored on the processors and what will be passed as messages.

Partitioning

Both communication and computation of a minimum can be done in O(log2N) time by using a
cubic array of processes. In such an arrangement, each process would compute its minimum

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

98

distance; then half of the processes would pick the minimum between its distance and that of a
neighbour in one dimension (Figure 5). Half of these processes would in turn select a
minimum, until the root process selects the global minimum distance vertex. Communication
and selecting the minimum can be done in O(log2N) time, assuring an overall O(Nlog2N)
performance.

Figure 5. Tree representation for the SSSP algorithm.

Communication

The communication for N processes has to consider how to distribute data over the network of
processes. This is done by reviewing the computations of a root and children processes, and
determining what data must be available for the computations.

The root process P0 calculates which of the two vertices has the shorter unknown distance. To
do so, it must have available which vertices have already had their distances marked (the array
Known), and the distance and id of the vertices being compared.

The children processes, on the other hand, must compare their current vertex distance to the
distance between the last known vertex and themselves. Thus, they must have available the
original graph G and the distance and id of the last known vertex. In addition, some children
processes will be calculating the minimum between two vertices, so they will also need to
know which of the vertices are known.

The basic data that needs to be communicated between processes is the id of the vertex and its
most recent distance. This data will be used to calculate the minimum distance vertex and to
announce which vertex has been marked as known. Thus, a message is a two-element array,
one being a vertex id, the second a distance.

Since the message marking a vertex is distributed to all vertices, each process can keep track
of which vertices are known. Thus each should locally store and update the array Known.
Likewise, the graph G, which is not changed during the computation, must be distributed to all
processes and stored locally before computation begins.

P4P0 P6P2 P5P1 P7P3

P0 P2 P1 P3

P0 P1

P0

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

99

Finally, the function MinV would no longer have access to the array D to look up the distances
of the vertices being compared. The parameters must be changed so that the distances of the
vertices being compared are passed as well as the vertex identifiers.

Agglomeration and Mapping

If a 3D-cube is used for the computations (Figure 6), the code for synchronising and
communicating between the root process and the remaining processes would be as the one
shown in Figures 7 and 8, respectively.

Figure 6. A 3D-cube.

Figure 7. root process (Process 0).

Process 0 (the root process)
i := 1
While i < N

// receive distances from 3 neighbours
MinVertex := 0
receive vertex id from z dimension
MinVertex := MinV(MinVertex,Zvertex)
receive vertex id from y dimension
MinVertex := MinV(MinVertex,Yvertex)
receive vertex id from x dimension
MinVertex := MinV(MinVertex,Xvertex)
Known[MinVertex] := TRUE // Update Known array
LastKnown := MinVertex
distribute LastKnown out x, y and z // Inform neighbours of the result
i++

End While
End Process 0

P0 P1

P2 P3

P4

P6 P7

P5

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

100

Figure 8. The children processes (Process k).

Synchronisation is achieved by the links between processes. Thus process 3 cannot compute
the minimum distance vertex between itself and process 7 until process 7 sends its distance.
Once computed, it sends the distance to process 1, which in turn waits until this message is
received to compute the minimum between processes 3 and 1.

Known uses

• The homomorphic skeletons approach, developed from the Bird-Meertens formalism and
based on data types, can be considered as an example of the Parallel Layers pattern:
individual computations and communications are executed by replacing functions at
different levels of abstraction [ST96].

• Tree structure operations like search trees, where a search process is created for each node.
Starting from the root node of the tree, each process evaluates its associated node, and if it

Process k, 1<=k<N
// The remaining processes

i := 1
While i < N

// find overall unknown minimum distance vertex
LocalMinVertex := k
if k < 4 then begin

 // processes 1, 2, and 3 receive and compute min
receive Zvertex from z dimension
LocalMinVertex := MinV(LocalMinVertex,Zvertex)

else
 // processes 4, 5, 6, and 7 send out their vertices

send LocalMinVertex out z dimension
if k < 4 then

 // processes 4, 5, 6, and 7 do nothing
if k = 1 then begin

 // process 1 receives and computes minimum
receive Yvertex from y dimension
LocalMinVertex := MinV(LocalMinVertex,Yvertex)

else
 // processes 2 and 3 send out their vertices

send LocalMinVertex out y
if k = 1 then

 // process 1 sends its local min to process 0
send LocalMinVertex out x

// now receive overall minimum vertex LastKnown from Process 0
if k = 1 then begin

 // process 1 receives from 0, distributes to 3
receive LastKnown in x dimension
send LastKnown in y dimension

else
if k < 4 then

 // processes 2 and 3 receive from 0 and 1, distribute to 4 and 5
receive LastKnown in y dimension
send LastKnown in z dimension

else
 // processes 4, 5, 6, and 7 receive from 0, 1, 2, and 3

receive LastKnown in z dimension
D[k] := Min(D[k],D[LastKnown]+G[LastKnown,k]”)”

 // now update Distances
i++

End While
End Process k

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

101

does not represent a solution, recursively creates a new search layer, composed of processes
that evaluate each node of the tree. Processes are active simultaneously, expanding the
search until they find a solution in a node, report it and terminate [Fos94, NHST94].

• The Gaussian elimination method, used to solve systems of linear equations, is a numerical
problem that is solved using a Parallel Layers structure. The original system of equations,
expressed as a matrix, is reduced to a triangular form by performing linear operations on the
elements of each row as a layer. Once the triangular equivalent of the matrix is available,
other arithmetic operations must be performed by each layer to obtain the solution of each
linear equation [Fos94].

Consequences

Benefits

• The Parallel Layers pattern, as the original Layers pattern, is based on increasing levels of
complexity. This allows the partitioning of the computation of a complex problem into a
sequence of incremental, simple operations [SG96]. Allowing each layer to be presented as
multiple components executing in parallel allows to perform the computation several times,
enhancing performance.

• Changes in one layer do not propagate across the whole system, as each layer interacts at
most with only the layers above and below, that can be affected. Furthermore, standardising
the interfaces between layers usually confines the effect of changes exclusively to the layer
that is changed. [POSA96, SG96].

• Layers support reuse. If a layer represents a well-defined operation, and communicates via
a standardised interface, it can be used interchangeably in multiple contexts. A layer can be
replaced by a semantically equivalent layer without great programming effort [POSA96,
SG96].

• Granularity depends on the level of complexity of the operation that the layer performs. As
the level of complexity decreases, the size of the components diminishes as well.

• Due to several instances of the same computation are executed independently on different
data, synchronisation issues are restricted to the communications within just one
computation.

• Relative performance depends only on the level of complexity of the operations to be
computed, since all components are active [Pan96].

Liabilities

• Not every system computation can be efficiently structured as layers. Considerations of
performance may require a strong coupling between high-level functions and their lower-
level implementations. Load balance among layers is also a difficult issue for performance
[SG96, Pan96].

• Many times, a layered system is not as efficient as a structure of communicating
components. If services in upper layers rely heavily on the lowest layers, all data must be
transferred through the system. Also, if lower layers perform excessive or duplicate work,

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

102

there is a negative influence on the performance. In certain cases, it is possible to consider a
Pipe and Filter architecture instead [POSA96].

• If an application is developed as layers, a lot of effort must be expended in trying to
establish the right levels of complexity, and thus, the correct granularity of different layers.
Too few layers do not exploit the potential parallelism, but too many introduce unnecessary
communications. The granularity and operation of layers is difficult, but related with the
performance quality of the system [POSA96, SG96, NHST94].

• If the level of complexity of the layers is not correct, problems can arise when the
behaviour of a layer is modified. If substantial work is required on many layers to
incorporate an apparently local modification, the use of Layers can be a disadvantage
[POSA96].

Related patterns

The Parallel Layers pattern extends the Layers pattern [POSA96] and the Layers style
[Shaw95, SG96] for parallel systems. Several other related patterns are found in [PLoP94];
more precisely, A Hierarchy of Control Layers pattern, Actions Triggered by Events pattern,
and those under the generic name of Layered Service Composition pattern. The Divide and
Conquer pattern [MSM05] describes a very similar structural solution to the Parallel Layers
pattern. However, its context and problem descriptions do not cope with the basic idea that, in
order to guide the use of parallel programming, it is necessary to analyse how to divide the
algorithm and/or the data to find a suitable partition, and hence, link it with a programming
structure that allows for such a division.

3. Summary

The goal of the present work is to provide software designers and engineers with an overview
of the Parallel Layers pattern as a description of a common structure used for parallel software
systems. Its application depends on the feasibility of the algorithm to be expressed in the form
of a tree, which maps into the layers structure. Also, such an application is based on allowing
data to be divided into pieces which are operated without a dependence among themselves.
The architectural pattern described here is directly related with several developments in the
field of algorithmic analysis, where it is proven its efficiency when dealing with fixed size
problems. This pattern can be also linked with other current pattern developments for
concurrent, parallel and distributed systems. Work on patterns that support the design and
implementation of such systems has been addressed previously by several authors [Sch95,
Sch98a, Sch98b, POSA00].

4. Acknowledgements

The author wishes to thank Joseph W. Yoder, my shepherd, for his important suggestions and
advises for the improvement of this paper. This paper has been developed as part of the
Subproject EN101603 of the Support Program to Institutional Projects for Teaching
Improvement (PAPIME), supported by DGAPA-UNAM.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

103

5. References

[AEM95]Aarsten, A., Gabriele Elia, G., and Giuseppe Menga, G. G++: A Pattern Language for
the Object Oriented Design of Concurrent and Distributed Information Systems, with
Applications to Computer Integrated Manufacturing. Department of Automatica e
Informatica, Politecnico de Torino. In J. Coplien and D. Schmidt (eds.) Pattern Languages of
Program Design. Reading, MA: Addison-Wesley, 1995.

[CG88] Nicholas Carriero and David Gelernter. How to Write Parallel Programs. A Guide to the
Perplexed. Yale University, Department of Computer Science, New Heaven, Connecticut.
May 1988.

[CM88] K. Mani Chandy and J. Misra. Parallel Programming Design. Addison-Wesley, New
York, 1988.

[CT92] K. Mani Chandy and Stephen Taylor. An Introduction to Parallel Programming. Jones
and Bartlett Publishers, Inc., Boston, 1992.

[Fos94] Ian Foster. Designing and Building Parallel Programs, Concepts and Tools for Parallel
Software Engineering. Addison-Wesley Publishing Company, 1994.

[JS96] Prashant Jain and Douglas C. Schmidt. Service Configurator. A Pattern for
DynamicConfiguration and Reconfiguration of Communication Services. Third Annual
Pattern Languages of Programming Conference, Allerton Park, Illinois. September 1996.

[MSM05] Timothy. G. Mattson, Beverly A. Sanders, and Berna L. Massingill. A Pattern
Language for Parallel Programming. Addison Wesley Software Patterns Series, 2005.

[NHST94] Christopher H. Nevison, Daniel C. Hyde, G. Michael Schneider, Paul T. Tymann.
Laboratories for Parallel Computing. Jones and Bartlett Publishers, 1994.

[OR98] Jorge L. Ortega-Arjona and Graham Roberts. Architectural Patterns for Parallel
Programming. Proceedings of the 3rd European Conference on Pattern Languages of
Programming and Computing, EuroPloP'98. Universitätsverlag Konstantz GmbH, 1999.

[OR00] Jorge L. Ortega-Arjona. The Communicating Sequential Elements Pattern. Proceedings
of the 7th Annual Conference on Pattern Languages of Programming, PloP'98. Washigton
University Technical Report wucs-00 29, 2000.

[OR03] Jorge L. Ortega-Arjona. The Shared Resource Pattern. Proceedings of the 10th Annual
Conference on Pattern Languages of Programming, PloP 2003. Washigton University
Technical Report wucs-00 29, 2000.

[OR05] Jorge L. Ortega-Arjona. The Pipes and Filters Pattern. Proceedings of the 10th European
Conference on Pattern Languages of Programming, EuroPloP 2005. Universitätsverlag
Konstantz GmbH, 2005.

[Pan96] Cherri M. Pancake. Is Parallelism for You? Oregon State University. Originally
published in Computational Science and Engineering, Vol. 3, No. 2. Summer, 1996.

[Pfis95] Gregory F. Pfister. In Search of Clusters. The Coming Battle in Lowly Parallel
Computing. Prentice Hall Inc. 1995.

[PLoP94] James O. Coplien and Douglas C. Schmidt (editors). Patterns Languages of
Programming. Addison-Wesley, 1995.

[POSA96] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerland, Michael Stal.
Pattern-Oriented Software Architecture. John Wiley & Sons, Ltd., 1996.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

104

[POSA00] Douglas Schmidt, Michael Stal, Hans Rohnert, Frank Buschmann. Pattern-Oriented
Software Architecture, Volume 2. Patterns for Concurrent and Networked Objects. John Wiley
& Sons, Ltd., 2000.

[SC95] Aamond Sane and Roy Campbell. Composite Messages: A Structural Pattern for
Communication Between Components. OOPSLA'95, Workshop on Design Patterns for
Concurrent, Parallel and Distributed Object-Oriented Systems. October 1995.

[Sch95] Douglas Schmidt. Accepted Patterns Papers. OOPSLA'95 Workshop on Design Patterns
for Concurrent, Parallel and Distributed Object-Oriented Systems.
http://www.cs.wustl.edu/~schmidt/OOPSLA-95/html/papers.html. October, 1995.

[Sch98a] Douglas Schmidt. Design Patterns for Concurrent, Parallel and Distributed Systems.
http://www.cs.wustl.edu/~schmidt/patterns-ace.html. January, 1998.

[Sch98b] Douglas Schmidt. Other Pattern URL's. Information on Concurrent, Parallel and
Distributed Patterns. http://www.cs.wustl.edu/~schmidt/patterns-info.html. January, 1998.

[Shaw95] Mary Shaw. Patterns for Software Architectures. Carnegie Mellon University. In J.
Coplien and D. Schmidt (eds.) Pattern Languages of Program Design. Reading, MA: Addison-
Wesley, 1995.

[SG96] Mary Shaw and David Garlan. Software Architecture: Perspectives on an Emerging
Discipline. Prentice Hall Publishing, 1996.

[ST96] David B. Skillicorn and Domenico Talia. Models and Languages for Parallel
Computation. Computing and Information Science, Queen's University and Universita della
Calabria. October 1996.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

105

Paginador de Objetos

Wellington Pinheiro, Paulo Fernando, Fabio Kon

Departamento de Ciência da Computação

Instituto de Matemática e Estatística – Universidade São Paulo

{wrp,pfgom,kon}@ime.usp.br

Abstract: A wide variety of applications have to manipulate large quantities of

objects in memory. However, often the available memory to store these objects

is not enough to hold the entire set of objects simultaneously. The Object

Paginator pattern presents a solution to the problem of manipulating large

quantities of objects applying a paging mechanism.

Resumo: Várias aplicações necessitam manipular grandes quantidades de

objetos na memória, porém, a memória disponível, normalmente, não é

suficiente para armazenar todo esse conjunto de objetos simultaneamente. O

Padrão Paginador de Objetos apresenta uma solução para o problema da

manipulação de grandes quantidades de objetos, através de um mecanismo de

paginação.

Objetivo

O objetivo do Paginador de Objetos é fornecer um mecanismo que permita o

acesso a um conjunto de objetos por partes, definidas como páginas, mantendo o

controle da navegação nesses objetos da página corrente. O acesso por partes torna-se

necessário, uma vez que todo o conjunto de objetos não pode ser armazenado

simultaneamente no meio de acesso rápido (e.g., memória), sendo que a maioria dos

objetos permanece em um meio de acesso lento (e.g., disco rígido).

Motivação

Suponha uma aplicação que tenha como finalidade gerenciar um grande hospital

público. Uma das características dessa aplicação é armazenar em um meio persistente a

informação de todos os medicamentos que foram consumidos em um determinado mês

(movimentação de medicamentos). Ao final de cada mês, um funcionário do

departamento de suprimentos executa no sistema uma operação de consolidação de

movimentação e a geração de uma listagem apresentando as informações dessa

movimentação consolidada. Essa listagem apresenta basicamente o nome do

medicamento e a quantidade total movimentada.

O sistema em questão utiliza objetos para fazer a representação desses

medicamentos que serão manipulados. Cada objeto contém o nome do medicamento e a

quantidade movimentada. Podem existir várias movimentações de um determinado

medicamento em um só dia.

No cenário apresentado, as operações de consolidação e geração da listagem

necessitam que os medicamentos sejam agrupados e cada grupo processado. Para

executar tais operações é necessário que os objetos sejam todos manipulados na

memória principal. O problema que surge é que o sistema pode manter uma quantidade

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

106

muito grande de medicamentos armazenados no meio persistente, de forma que não é

possível carregar todos os objetos na memória para fazer a consolidação e a geração da

listagem.

Uma forma de resolver o problema é utilizar um mecanismo que permita a

recuperação e a manipulação do conjunto de objetos em partes (páginas na memória de

acesso rápido) garantindo que a navegação no conjunto ocorra por demanda, de uma

forma mais transparente possível.

A Figura 1 apresenta um possível modelo de relacionamento entre classes para

solucionar o problema.

A classe PaginadorDeMedicamento é responsável por controlar a

paginação dos objetos do tipo Medicamento (representações de medicamentos com

suas quantidades movimentadas) em páginas de tamanho e ordenação pré-definidas,

mantendo também informações a respeito da página atual, do primeiro e último objetos

que pertencem à essa página, pois essas informações serão necessárias quando houver

necessidade de acessar outras páginas (anterior, posterior ou uma página específica).

PaginadorDeMedicamento utiliza a classe RecuperadorDeMedicamento

para acessar os objetos que são mantidos em persistência. A classe

GerenciadorDeMedicamentos é cliente de PaginadorDeMedicamento,

definindo o método consolidarMovimentacoes, que utiliza o mecanismo de

paginação para fazer a consolidação das movimentações de medicamentos.

consolidarMovimentacoes faz as requisições das páginas contendo os

medicamentos para PaginadorDeMedicamento, que acessará o mecanismo de

persistência e retornará a nova página. Após o processamento intermediário da página

Figura 1: Solução Concreta para o Problema de Paginação

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

107

de medicamentos, consolidarMovimentacoes poderá pedir ao

PaginadorDeMedicamento a próxima página e assim sucessivamente até que

todos os objetos requisitados tenham sido processados.

Através do PaginadorDeMedicamento o cliente poderá acessar todo o

conjunto de objetos do tipo Medicamento, disponibilizados por páginas, não sendo

necessário manter o conjunto inteiro na memória ao mesmo tempo.

Para facilitar a navegação nos medicamentos da página corrente,

PaginadorDeMedicamento poderá retornar uma implementação de um Iterador

(padrão Iterator [Gamma et al. 1995]) específico para Medicamento.

Aplicabilidade

� Um sistema necessita acessar uma quantidade muito grande de objetos, mas não

pode carregá-los todos de uma vez no meio de acesso mais rápido (memória

principal);

� Permitir a navegação em um conjunto muito grande de objetos, escondendo os

mecanismos de recuperação e acesso, mantendo o estado atual dessa navegação.

Estrutura

Participantes

� Cliente: Qualquer classe que utilize os serviços do

PaginadorEspecifico.

� PaginadorEspecifico: Classe de controle de paginação, com algum

conhecimento a respeito da área de negócio. Deve conhecer as classes que

recuperam dados do meio persistente.

� Entidade: Entidade de negócio que o PaginadorEspecifico

armazenará em páginas e disponibilizará para os clientes. Na prática pode ser

Figura 2: Solução Abstrata para o Problema de Paginação

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

108

qualquer tipo de classe.

� RecuperadorDeEntidade: Classe responsável pela recuperação das

entidades do meio persistente.

Colaborações

� O cliente envia uma mensagem para o PaginadorEspecifico pedindo que

ele carregue e disponibilize alguma página (primeira, última ou página

específica);

� O PaginadorEspecifico acessa um objeto do tipo

RecuperadorDeEntidade para recuperar a lista de objetos armazenados no

meio persistente, obedecendo às informações referentes à página atual e o

pedido de página;

� PaginadorEspecifico recupera uma lista de instâncias de Entidade e a

devolve ao cliente quando este solicitar, através de um mecanismo de iteração.

A Figura 3 apresenta a criação do PaginadorEspecifico e a recuperação

da primeira página de dados, retornando-a ao cliente. Observe o uso do parâmetro

tamPagina na criação do paginador para definir o tamanho da página de objetos que

o paginador armazenará.

A Figura 4 é um exemplo de navegação entre páginas. O método

getEntidades do RecuperadorDeEntidade recebe o intervalo de objetos que

será recuperado da persistência.

Figura 3: Criação do Paginador de Objetos

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

109

Figura 4: Exemplo de Navegação entre Páginas

A Figura 5 mostra como pode ser feita a navegação nos objetos da página

corrente. Para fazer essa navegação pode-se utilizar um iterador específico para o tipo

de entidade utilizada.

Figura 5: Exemplo de Navegação nos Elementos da Página Corrente

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

110

Conseqüências

+ O padrão Paginador de Objetos permite que grandes quantidades de dados,

representados como objetos, possam ser acessados e manipulados sem que estes

estejam todos carregados ao mesmo tempo na memória;

+ Provê o acesso por páginas a um conjunto de objetos, controlando a navegação

sobre esse conjunto;

+ Serve como um controlador de navegação em um conjunto de objetos. Quando

utilizado nesse sentido, a diferença entre o Paginador de Objetos e o Iterator

[Gamma et al. 1995] é o fato do Paginador manter informações a respeito das

páginas na qual está sendo feita a navegação, bem como informações que

permitam a recuperação dessas páginas;

– O uso do Paginador de Objetos pode dificultar tarefas como a mudança na

forma de ordenação dos dados em tempo de execução;

– Devido ao fato do Paginador de Objetos acessar o mecanismo de persistência

para cada página solicitada, pode haver uma degradação de desempenho se

comparado ao método onde todos os objetos são carregados de uma só vez. Em

situações onde alto desempenho é crítico, e a questão memória não é problema,

talvez seja mais interessante considerar o acesso a todos os dados de uma só vez

sem utilizar o Paginador de Objetos.

Implementação

O padrão Paginador de Objetos pode ser implementado utilizando várias estratégias.

Esta seção apresenta algumas dessas estratégias para implementação.

1. A forma mais simples de implementação do Paginador de Objetos é definir a

classe PaginadorEspecifico como apresentada na Figura 1 e criar

mecanismos internos para o controle de navegação entre as páginas;

2. Outra abordagem é fazer com que PaginadorEspecifico seja uma

implementação do padrão Iterator [Gamma et al. 1995], permitindo assim um

nível ainda mais alto de abstração. A desvantagem dessa implementação é o fato

de tornar as semânticas de uso dos iteradores no sistema mais complexo, pois

haveria iteradores de páginas e iteradores de objetos mantidos pela página;

3. A navegação entre páginas pode ser feita de uma forma transparente para o

usuário, fazendo com que PaginadorEspecifico detecte quando o usuário

tenta acessar um objeto que não está na página corrente e fazer a carga

automática dessa página. Dessa forma, o Paginador de Objetos toma uma

característica de memória temporária de objetos (“pool”);

4. Uma implementação mais sofisticada do Paginador de Objetos permite que

objetos possam ser alterados ou removidos enquanto estão sendo iterados.

Caberia ao PaginadorEspecifico notificar a persistência dessas

alterações;

5. Quando uma aplicação utiliza paginadores para diversos tipos de entidades, uma

classe abstrata de paginação pode ser usada com a função de controle de

navegação, e para cada tipo de entidade poderá ser criada uma classe concreta

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

111

que herda desta classe abstrata e implementa operações específicas para um

determinado tipo de entidade a ser tratado;

6. Pode-se ainda definir a classe de paginação como parametrizada (Generics em

JAVA ou Templates em C++) permitindo que o cliente defina qual tipo de

entidade as classes de paginação manipularão.

Exemplo de Código da Solução

Como implementação do Paginador de Objetos, será utilizado o primeiro exemplo

apresentado, o PaginadorDeMedicamento, implementado na linguagem Java.

A classe PaginadorDeMedicamento deve ser responsável pelo controle da

navegação entre páginas e o momento no qual uma nova página será carregada e

disponibilizada (vale observar que o PaginadorDeMedicamento deve solicitar à

alguma classe utilitária que recupere uma determinada página do meio persistente,

garantindo assim um baixo acoplamento com as classes responsáveis pelos mecanismo

de persistência em questão).

A classe PaginadorDeMedicamento contém o atributo tamPagina que

armazenará o tamanho das páginas que serão mantidas pela instância do paginador.

 public class PaginadorDeMedicamento {
 private int tamPagina;

 public int obtemTamanhoDaPagina() {
 return this.tamPagina;
 }
 .
 .
 .

 }

Além de tamPagina, PaginadorDeMedicamento também define um

conjunto de atributos que possuem a finalidade de manter a página atual

(numeroPagina), o número total de páginas armazenado no meio persistente

(totalPaginas), a lista com os objetos da página corrente (medicamentos) e uma

referência para o objeto responsável por recuperar os dados do meio persistente (rm).

 private int numeroPagina = -1;
 private int totalPaginas = 0;
 private List<Medicamento> medicamentos =
 new ArrayList<Medicamento>();
 private RecuperadorDeMedicamento rm =
 new RecuperadorDeMedicamento();

As funcionalidades de navegação nas páginas normalmente resultam no acesso à

persistência para recuperação dos dados, dessa forma, será definido um método no

objeto de acesso a persistência para o qual será passado o intervalo de objetos que serão

recuperados. Existem várias formas de implementar esse mecanismo, e para esse caso,

optamos por um mecanismo simples, baseado em um número seqüencial que é dado a

cada objeto na persistência. PaginadorDeMedicamento define um método que

receberá o número da página desejada e ele se encarregará da carga da página:

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

112

 private void carregaPagina(int numeroPagina) {
 int tamanhoDaPagina = obtemTamanhoDaPagina();
 int i = tamanhoDaPagina * this.numeroPagina;
 int f = i + tamanhoDaPagina;
 this.numeroPagina = numeroPagina;
 this.medicamentos.clear();
 this.medicamentos.addAll(
 this.rm.obtemMedicamentos(i, f));
 }

O método carregaPagina calcula o intervalo de objetos que devem ser

recuperados, atualiza a página corrente, remove da memória principal os objetos da

página anterior e finalmente recupera o conjunto de medicamentos através de uma

solicitação para rm. Os objetos recém recuperados são armazenados nessa nova página

atual.

Para que possa ser feito o cálculo em carregaPagina, é necessário conhecer

o tamanho da página (quantidade de objetos por página). Essa informação é passada na

criação do PaginadorDeMedicamento, como um parâmetro para o construtor:

 public PaginadorDeMedicamento(int tamPagina) {
 this.tamPagina = tamPagina;
 this.totalPaginas = (int) Math.ceil((double)
 rm.getQuantidade() / (double) tamPagina);
 }

Observe que no construtor é feito o cálculo do número total de páginas.

Os métodos de navegação entre páginas são semelhantes, logo, serão

apresentados somente aqueles que solicitam ao PaginadorDeMedicamento a

última página e uma página específica:

 public Iterator ultimaPagina() {
 carregaPagina(totalPaginas);
 return paginaCorrente();
 }

 public Iterator paginaNum(int numPagina) {
 carregaPagina(numPagina);
 return paginaCorrente();
 }

Os métodos que recuperam páginas, na verdade, delegam esse trabalho ao

método carregaPagina. Essa implementação é bem simples, mas no caso de

implementações mais robustas, deve haver verificações de erros na carga ou eventuais

tentativas de navegações em páginas inválidas.

Uma vez que a página foi carregada, o acesso aos objetos dessa página pode ser

disponibilizado através de um Iterator, como é mostrado logo abaixo:

public Iterator paginaCorrente() {
 return new MedicamentoIterator(

this.medicamentos);
}

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

113

O método paginaCorrente cria um objeto personalizado do Iterator

para Medicamento e o devolve ao cliente. Outra forma de implementar esse

mecanismo é fazer com que logo após a carga da página seja criado um objeto do tipo

MedicamentoIterator que é mantido válido enquanto a página não é alterada.

Caso a página seja alterada, os iteradores anteriores devem ser invalidados, não

permitindo que os clientes continuem fazendo uso.

As classes Iterator e IteratorMedicamento são implementações

simples do padrão Iterator [Gamma et al. 1995].

A classe de acesso à persistência pode variar de acordo com as necessidades do

sistema, mas nesse exemplo, RecuperadorDeMedicamento conterá dois métodos

importantes:

 public List<Medicamento> obtemMedicamentos(
int inicio, int fim)

 public int obtemQuantidade()

obtemMedicamentos retorna do meio persistente uma lista de medicamentos

onde as suas chaves estejam no intervalo começando em inicio (inclusivo) e fim

(exclusivo). obtemQuantidade retorna a quantidade total de objetos armazenados

no meio persistente e é utilizado pelo paginador no cálculo da quantidade de páginas

disponíveis.

 public class Cliente {
 public static void main(String[] args) {
 PaginadorDeMedicamento paginador =
 new PaginadorDeMedicamento(10);
 while (paginador.temProxima()) {
 paginador.proximaPagina();
 Iterator it =
 paginador.paginaCorrente();
 while (it.temProximo()) {
 System.out.println(it.proximo());
 }
 }
 }
 }

Por fim, a classe Cliente é um exemplo de cliente que utiliza a estrutura de

paginação.

No do método main é definida uma variável local, paginador, como sendo

um paginador. São utilizados dois laços while, um para fazer a iteração das páginas e

outro para a iteração sobre a coleção de medicamentos mantida em cada página,

apresentando cada um desses medicamentos na saída padrão.

Usos Conhecidos

� Vários sítios de compras pela Internet apresentam o comportamento de

paginação. Por exemplo, os sítios das Lojas Americanas, Submarino e Livraria

Saraiva permitem que o usuário faça pesquisas de seus produtos, obtendo como

retorno uma coleção muito grande desses produtos, eventualmente. O sítio

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

114

permite que o usuário navegue por esse conjunto de produtos através páginas,

oferecendo opções de navegação para próxima página, página anterior além de

outras possibilidades;

� Java Server Faces (JSF) [Burns e Kitain 2006] é um conjunto de especificações

e APIs voltadas para o desenvolvimento de aplicações WEB utilizando o padrão

Model-View-Controller [Krasner e Pope 1988]. O Apache MyFaces [MYF] é

uma implementação do JSF feita pelo Apache Group, que disponibiliza também

uma extensão de componentes chamado de Tomahawk [TOM]. Entre os

componentes do Tomahawk existe o HtmlDataScroller que é responsável por

fazer a paginação de objetos em aplicações WEB. Este componente recebe uma

lista de objetos e faz a paginação de acordo com parâmetros pré-definidos. Entre

outras funcionalidades, esse componente de paginação permite a navegação

entre páginas e a ordenação da coleção de elementos;

� SCORM (Sharable Content Object Reference Model) [SCORM 2006] é um

conjunto de padrões técnicos, desenvolvido pelo Departamento de Defesa

Americano que permite que sistemas de aprendizado baseados na Web

encontrem, importem, compartilhem, reutilizem e exportem conteúdos de

aprendizado de uma forma padrão. SCORM define o uso de objetos de

aprendizado que podem conter vários recursos como textos, imagens e sons,

além de uma regra de navegação e uso desses recursos da maneira a propiciar o

aprendizado. Esses objetos de aprendizado são executados em Sistemas de

Gerenciamento de Aprendizado ou Sistema de Gerenciamento de Conteúdo de

Aprendizado (em inglês referem-se às siglas: LMS – Learning Management

Systems e, LCMS – Learning Content Management Systems) sendo que esses

sistemas devem obedecer às regras de navegação definidas nos objetos de

aprendizagem. Para executar as tarefas de controle do fluxo de navegação, esses

sistemas utilizam um mecanismo de paginação que carrega os recursos na

memória, de acordo com a necessidade. Além das características básicas, esse

mecanismo de paginação também deve ser dotado de uma inteligência adicional

para permitir que seja feita uma análise a respeito da evolução no aprendizado

do usuário, mudando o caminho de aprendizagem e conseqüentemente o fluxo

de paginações.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

115

Padrões Relacionados

� Iterator [Gamma et al. 1995]: O padrão Paginador de Objetos é normalmente

utilizado junto do padrão Iterator para permitir uma navegação através dos

objetos disponibilizados na página corrente. Outra vantagem no uso do Iterator é

permitir que detalhes de navegação (como ordem, por exemplo) fiquem

implementados de forma transparente para o paginador;

� Memento [Gamma et al. 1995]: Para fazer o controle da navegação, os

paginadores podem utilizar o padrão Memento para obter o estado corrente da

navegação e utilizá-lo posteriormente quando necessitar;

� Template Method [Gamma et al. 1995]: Em uma aplicação real pode ser

necessário que vários paginadores específicos para determinados tipos de

objetos sejam criados. Nesse contexto, poderíamos fornecer uma classe abstrata

para os paginadores que definem o comportamento básico de todos os

paginadores (como controle de navegação) e os detalhes necessários para uma

implementação completa seriam delegados para as classes concretas que herdam

dessa classe abstrata utilizando template methods;

� Data Access Object (DAO) [Alur et al., 2001]: Normalmente estamos

interessados em fazer a paginação de um conjunto de dados que estão

armazenados em um mecanismo persistente, assim, seria interessante que o

paginador pudesse acessar os dados abstraindo a forma como estes são

recuperados. O padrão DAO serve como essa camada de abstração que conhece

os detalhes da persistência e fornece uma interface bem definida para a

recuperação dos dados que o paginador necessita. Uma vantagem de utilizar o

padrão DAO é permitir que as classes de controle do paginador fiquem

independentes dos mecanismos de acesso a dados e da persistência;

� Value List Handler [Alur et al., 2001]: O Value List Handler é um paginador para

aplicações distribuídas que permite a implementação de políticas de cache e

controle de navegação em ambientes WEB ou em aplicações multi-camadas;

� Record Set [Fowler 2002]: O padrão paginador pode utilizar um Record Set

para manter os objetos da página corrente. Para que isso seja possível, todos os

métodos das classes responsáveis pela persistência, que retornam dados, devem

retornam um Record Set contendo as informações referentes as entidades que o

cliente está esperando. O paginador pode optar ainda por devolver o próprio

Record Set para que o cliente faça sua manipulação;

� Paging [Noble e Weir 2001]: Paging é um paginador mais específico para

ambientes de pouca memória primária, que permite a execução de programas

“diretamente da memória secundária”. Essa sensação de executar as aplicações

na memória secundária é dada através de um mecanismo de paginação da

memória, onde o ambiente (e,g., sistema operacional) carrega ou descarrega

essas páginas de acordo com a demanda da aplicação, de uma forma

transparente, dando a sensação de que sempre há memória disponível para

alocação.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

116

Referências Bibliográficas

Alur, D., Malks D. e Crupi, J. (2001), Core J2EE Patterns: Best Practices and Design

Strategies. Prentice Hall PTR, Upper Saddle River, NJ, USA.

Burns, E. e Kitain R. (2006) “JavaServer Faces Specification Version 1. 2 - Rev A”,

http://jcp.org/aboutJava/communityprocess/mrel/jsr252/index.html, Acessado em: 29

de Junho de 2007.

Fowler M. (2002), Patterns of Enterprise Application Architecture. Addison-Wesley,

Longman Publishing Co., Inc., Boston, MA, USA.

Gamma E., Helm R., Johnson R. e Vlissides J (1995), Design Patterns, Elements of

Reusable Object-Oriented Software. Addison-Wesley.

Krasner G. E. e Pope S. T. (1988). A cookbook for using the model-view controller user

interface paradigm in smalltalk-80. J. Object Oriented Program, vol. 1, 3ª. edição,

páginas 26–49.

MYF. Apache Myfaces Project. http://myfaces.apache.org/. Acessado em: 29 de Junho

de 2007.

Noble J. e Weir C. (2001) Small memory software: patterns for systems with limited

memory. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Shareable Content Object Reference Model SCORM (2006). http://www.adlnet.org,

Acessado em: 29 de Junho de 2007.

TOM. Myfaces Tomahawk. http://myfaces.apache.org/tomahawk/index.html. Acessado

em: 29 de Junho de 2007.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

117

Padrão AutenticaConexão

Marcelo Antônio Albuquerque e Souza
1
, Jerffeson Teixeira de Souza

2

1
Têxtil União S/A, Rodovia CE021 km 08, Distrito Industrial

61.939-906, Maracanaú – CE

2
Universidade Estadual do Ceará (UECE), Av. Paranjana, 1700, Campus do Itaperi

60.740-903, Fortaleza – CE

marcelo2306@gmail.com, jeff@larces.uece.br

Resumo. Definição de um mecanismo de autenticação para bancos de

dados de forma segura e flexível utilizando schemas públicos independente de

código fonte e transparente para o desenvolvedor.

Palavras-chave : Padrões de Projeto, Autenticação em banco de dados, Encriptação de

dados, Segurança de dados.

Abstract. Define a secure and flexible authentication mechanism for

databases using public schemas, independent of the source code and

transparent to the developer.

Keywords : Design Patterns, Database authentication, Data Encryption, Data security.

Nome

AutenticaConexão

Intenção

Prover um mecanismo de autenticação para diversos bancos de dados (BD) combinando

a persistência de senhas em um schema público e o uso de função encapsulada para

conexão, garantindo a inviolabilidade dessas senhas de acesso e a flexibilidade na

manutenção das mesmas, tornando-as indisponíveis para a aplicação.

Contexto

Ambientes que utilizam aplicações onde a conexão com o BD seja realizada através de

strings literais para usuário e senha (compreendendo usuário como usuário da instância

do BD) e onde ocorram alterações no usuário/senha do Banco de Dados; aplicativos

implantados em organizações diferentes e que por isso sejam necessários diversos

códigos fonte para cada usuário/senha a ser autenticado pelos diferentes BD.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

118

Problema

Em aplicações que utilizem um SGBD (Sistema Gerenciador de Banco de Dados) existe

a necessidade de se efetuar uma conexão com o banco de dados através de um usuário e

respectiva senha e freqüentemente essa informação está na forma de strings escritas

literalmente dentro do código fonte em alguma classe ou rotina do sistema. Quando

ocorre a mudança do nome do usuário ou da senha, é necessário reescrever esse código

fonte. Além disso, a equipe de desenvolvimento tem acesso a um usuário/senha do BD

de produção, o que pode não ser interessante sob o ponto de vista da segurança das

informações.

Forças

 Senhas literais no código fonte são uma potencial falha de segurança, pois são

visíveis a qualquer desenvolvedor que tenha acesso a esse código;

 A simples mudança de senha em um BD pode se tornar uma operação complexa

caso existam várias aplicações diferentes acessando esse BD;

 A demissão de um desenvolvedor pode obrigar a reescrita dessa senha na

aplicação;

 Uma coleção de senhas persistentes facilitaria o trabalho de administração do

BD;

 A persistência de senhas em um schema torna-o um alvo em potencial para

tentativas de quebra da criptografia.

Solução

Substituir usuário/senha de conexão do BD de produção por parâmetros não acessíveis

ao usuário ou desenvolvedor – serão adotadas medidas do lado do BD e do lado da

aplicação.

No lado do BD criar um schema (por exemplo, PublicDB) com uma única tabela (por

exemplo PublicUser):

CREATE TABLE [PublicUser] (

 [Aplicacao] [Char] (10) NOT NULL,

 [Usuario] [Char] (10) NOT NULL,

 [Senha] [Char] (10) NOT NULL

)

Essas três colunas serão obrigatoriamente encriptadas – a segurança do BD estará

totalmente dependente de quão segura será essa função de encriptação. As permissões de

acesso à essa tabela serão concedidas a apenas um usuário e somente com poder de

leitura (sugestão : PublicDBO). A senha de PublicDBO poderá ser de conhecimento

público, visto que esse usuário tem acesso somente à dados encriptados.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

119

Do lado da aplicação criar uma nova conexão à PublicDB através de PublicDBO.

Em seguida encriptamos o nome da aplicação para criar uma string de busca no formato:

Select Usuário, Senha From PublicUser where Sistema = XXXXX

XXXXX será a string resultante da encriptação do nome da aplicação. Obtendo o

usuário/senha vinculado à aplicação passamos os mesmos como parâmetros de um

método/função que irá por fim autenticar o BD de produção. Dessa maneira

conseguimos estabelecer a conexão com o BD sem que fosse necessário escrever o

usuário/senha do BD de produção.

Para o DBA existirá aplicativo que permita ao mesmo alterar os registros de

PublicUser quando ocorrer a mudança de usuário/senha no BD. Essa operação será

sincronizada para não ocorrer erros de conexão.

A função de encriptação poderá utilizar o conceito de chave pública e privada e deverá

estar encapsulada em uma DLL ou qualquer outro meio que impeça a visualização do

código. Observa-se que neste caso não poderá ser usada encriptação de mão única, pois

o DBA precisa desses código encriptados para manter os dados da tabela

PublicUser. A chamada à função de encriptação também estará encapsulada para que

não seja possível a visualização do retorno da função – que é exatamente o que

queremos esconder: o usuário/senha do BD.

Exemplo

Iremos exemplificar usando a função GetPublicAcess cujo parâmetro será o nome

do banco a ser conectado (sDataBasetoFind). A conexão será realizada no banco

público e caso a busca com o valor encriptado de sDataBasetoFind seja bem

sucedida, iremos obter os usuários e senhas válidos desse banco (sUsertoFind e

sPasswordtoFind). Em seguida é realizada a conexão com o banco definido em

sDataBasetoFind.

//GetPublicAcess é uma função encapsulada (o desenvolvedor não pode ter

//acesso ao seu código fonte) que obtém o usuário e senha do banco de

//trabalho definido no parâmetro sDataBasetoFind

Function GetPublicAcess(sDataBasetoFind : String):Boolean;

 //Definição das variáveis privadas que receberão usuário e senha de

 //autenticação

 Var sUsertoFind, sPasswordtoFind : String

begin

 //Bloco try..except para tratamento no caso de insucesso na conexão

 //efetuar encerramento do programa

 try

 //Comandos para inicializar uma conexão em delphi

 dbPublicDB.Params.Clear;

 dbPublicDB.LoginPrompt:=False;

 //Passando os dados para conexão com o schema público

 dbPublicDB.Params.Add('DATABASE NAME=PUBLICDB');

 dbPublicDB.Params.Add('USER NAME=PublicDBO');

 dbPublicDB.Params.Add('PASSWORD=faith');

 dbPublicDB.Connected:=True; //efetua a conexão

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

120

 //definindo componente tquery que irá retornar o usuário e senha

 //encriptados definidos para o banco de trabalho definido pelo parâmetro

 //SdataBasetoFind

 quBusca.database := dbPublicDB; //aponta para PublicDB

 //busca em PublicUser

 quBusca.SQL.Add('select Usuário, Senha from PublicUser');

 quBusca.SQL.Add('where Sistema=:pSis');

 //Encriptar parâmetro pSIs pois pois PublicUser é uma tabela com

 //conteúdo encriptada

 quBusca.ParamByName('pSIS').AsString := Cript(sDataBasetoFind);

 quBusca.Open; //Executa a query

 //Testa se a busca foi bem-sucedida

 if quBusca.Eof then

 Result := false // retorna false para não efetuar a conexão

 else begin

 {obtidos usuário e senha do banco de trabalho}

 sUsertoFind := DeCript(quBusca.fieldbyname('Usuario').AsString);

 sPasswordtoFind := eCript(quBusca.fieldbyname('Senha').AsString);

 quBusca.Close;

 //Prepara a conexão com o banco de trabalho

 dmTable.dbGTF.Connected:=False;

 dmTable.dbApplication.Params.Clear;

 dmTable.dbApplication.aliasname := 'MyAlias';

 //Nesse ponto pode-se estabelecer a conexão pois obteve-se o

 // usuário e senha do banco de trabalho

 dmTable.dbApplication.Params.Add('DATABASE ME='+sDataBasetoFind);

 dmTable.dbApplication.Params.Add('USER NAME='+sUsertoFind);

 dmTable.dbApplication.Params.Add('PASSWORD='+sPasswordtoFind);

 //Se a conexão não for bem-sucedida será processado o bloco except

 dmTable.dbApplication.Connected:=True;

 end;

 //fecha a conexão com PublicDB

 dbPublicDB.Connected := false;

 except

 //Insucesso na conexão

 Result := false;

 end;

end;

//método público de inicialização da aplicação onde ocorre a obtenção das

//senhas e conexão com o BD de trabalho

procedure TfmMain.FormCreate(Sender: TObject);

begin

 //tenta estabelecer a conexão com o banco definido como parâmetro de

 // GetPublicAcess

 if not GetPublicAcess('MyDataBase') then begin

 //Único acesso do desenvolvedor

 Application.MessageBox('Não foi possível conectar ao Banco de

 Dados','Atenção',mb_IconStop);

 Halt; //sai da aplicação

 end else

 begin

 //Conexão bem-sucedida, execução normal do programa a

 //partir desse ponto a conexão com o banco de trabalho está

 //efetuada

 end;

end;

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

121

Contexto Resultante

A informação de usuário e senha do banco de produção passa a ser parâmetro da

aplicação. Deixa de existir na aplicação as strings de usuário e senha para conexão com o

SGBD. Quando houver mudança de senha no banco de produção não será necessário

alterar essas strings no código fonte da aplicação. A equipe de desenvolvimento não terá

acesso ao banco de produção porque não terá conhecimento do usuário/senha

respectivos. No entanto, será necessário gerenciar outro schema no SGBD bem como

desenvolver um algoritmo seguro para encriptação das strings de usuário.

Conseqüências

Positivas

 Aumento da segurança: as senhas do banco de dados deixam de ser visíveis a

qualquer um que tenha acesso ao código fonte. Em vários casos práticos não é

desejável que a equipe de desenvolvimento tenha acesso a essas senhas;

 Diminuição de reescrita de código fonte : usuário/senha como parâmetros da

aplicação, deixa de existir a necessidade de alterar o código quando ocorrer

mudança dos mesmos no banco de dados.

Negativas

 Aumento da complexidade da aplicação: Será necessária uma conexão extra com

o banco de dados; a criação de um schema de autenticação no banco de dados; a

criação de algoritmo de encriptação para manipulação de usuário e senha;

 Não se pode garantir a inviolabilidade de um BD caso um desenvolvedor tenha

acesso ao nome de um banco de produção. Dentro da aplicação ele passa a ter

acesso aos dados desse banco.

Racional

A adoção desse padrão implica na criação de um schema extra no BD e irá demandar um

certo tempo na implementação da classe ou rotina de conexão e da classe ou rotina

responsável pela encriptação dos dados. Esse tempo é largamente compensado pela

produtividade adquirida na eliminação da necessidade de reescrever o código fonte, além

do aumento da segurança da administração de dados, pois a equipe de desenvolvimento

não terá acesso ao usuário/senha dos bancos de produção.

Usos Conhecidos

Têxtil União S/A – Fiação em Maracanaú – Ceará Valença Industrial –

Tecelagem/tinturaria em Valença – Bahia Os sistemas internos das empresas utilizam

esse padrão para conexão e autenticação das máquinas cliente ao servidor de banco de

dados das mesmas.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

122

Padrões Relacionados

Podemos encontrar documentação correlata em Hays, Loutrel e Fernandez [1] cujo

framework aglutina as tarefas de autenticação, controle de acesso e filtragem de dados

em ambientes distribuídos e também em Lehman [2] que dedica um capítulo à

autenticação em banco de dados através da persistência dos parâmetros de conexão em

tabelas de banco de dados. Em Fernandez [3] podemos analisar uma coleção de padrões

para controle e acesso a nível de sistema operacional. Um padrão para autenticação em

ambientes distribuídos pode ser encontrado em Fernandez [4].

Agradecimentos

Para a conclusão desse trabalho foi de fundamental importância a colaboração do Dr.

Eduardo B. Fernandez graças à sua larga experiência em padrões de autenticação pôde

fornecer preciosos conselhos para a melhoria desse documento. Agradecemos o apoio da

Universidade Federal do Ceará, na figura da Dr. Vânia Vidal, coordenadora do curso de

Especialização em Tecnologias da Informação e à Têxtil União S/A, local onde nasceu a

idéia dessa implementação. Agradecemos também aos colegas Anderson Brando, Ellen

Polliana, Kleber Rocha, Rafael Braga, Tiago Barros e todos os outros participantes do

workshop de escritores, grupo B, do SugarLoafPLoP’2007 pela motivação e

comentários essenciais ao aperfeiçoamento do trabalho.

Referências

[1] Viviane Hays, Marc Loutrel, Eduardo B. Fernandez, “The Object Filter and Access

Control Framework”, PloP 2000 Conference,

http://jerry.cs.uiuc.edu/~plop/plop2k/proceedings/Fernandez3/Fernandez3.pdf.

[2] Clay Lehman , “Secure Authentication and Session State Management for Web

Services”, CSC 499 Honors Thesis,

http://www.csc.ncsu.edu/academics/undergrad/honors/lehman/clehman.pdf.

[3] E.B.Fernandez and J.C.Sinibaldi, “More patterns for operating systems access

control”, Procs. EuroPLoP 2003, http://hillside.net/europlop

[4] E. B. Fernandez and R. Warrier, "Remote Authenticator/Authorizer", Procs. of the

Pattern Languages of Programs Conference (PLoP 2003).

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

123

Linguagem de Padrões para Avaliação de Conhecimento

em Objetos de Aprendizagem – Parte I

Ingrid T. Monteiro
1
, Clayson Sandro

1
, Cidcley T. de Souza

1

NASH (Núcleo Avançado em Engenharia de Software Distribuído e Sistemas

Hipermídia) /ITTI (Instituto de Telemática) – Centro Federal de Educação

Tecnologia do Ceará – Fortaleza, CE - Brasil

{ingridtm,claysonsandro}@gmail.com, cidcley@cefetce.br

Abstract. Learning Objects (LO) are resources which have been frequently

applied to support computer-aided learning. In order to assess the

assimilation effectiveness of the knowledge provided by such resources, they

must supply mechanisms through which the learning of the presented contents

can be measured. However, the notion of knowledge evaluation in LOs varies

in several aspects according to the learning goals. Therefore, we present in

the paper the first part of a pattern language regarding the knowledge

evaluation process using LOs. The main goal of the paper is to provide,

though patterns methodology, a set of recommendations to the knowledge of

evaluation possibilities, by using LOs. The main goal of the paper is to provide

a set of recommendations to allow for the better exploitation of LO contents,

related to evaluation, through the successful experience’s documentation.

Resumo. Objetos de Aprendizagem (OA) são recursos que vêm sendo

utilizados largamente para dar suporte ao aprendizado apoiado por

computador. Para que possamos aferir a eficácia na assimilação dos

conhecimentos fornecidos por esses recursos, os mesmos devem oferecer

mecanismos através dos quais se possa avaliar a aprendizagem dos conteúdos

apresentados. Entretanto, a implementação da noção de avaliação de

conhecimentos em OA difere em diversos aspectos de acordo com a intenção

sobre o aprendizado. Nesse sentido, apresentamos nesse artigo a primeira

parte de uma linguagem de padrões relacionados ao processo de avaliação de

conhecimento com a utilização de OA. Esse trabalho tem a intenção de

fornecer diretrizes para um melhor aproveitamento dos conteúdos dos OA, no

que diz respeito à avaliação, a partir da catalogação de experiências bem

sucedidas.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

124

1. Introdução

A necessidade do uso de novas tecnologias no processo de ensino e aprendizagem vem

sendo cada vez mais presente no cotidiano de alunos e professores. Contudo, é preciso

ampliar esta discussão com o objetivo de contextualizar as novas tecnologias da

informação e da comunicação e suas relações com o ensino e aprendizagem na

Educação [1]. Esta discussão surge com o anseio de modificar a forma como a Educação

propõe o ensino e como os materiais educacionais são projetados, desenvolvidos e

entregues àqueles que desejam aprender.

 Atualmente, um dos materiais educacionais que procuram atender a esses

objetivos são os OA – Objeto(s) de Aprendizagem, que são definidos como qualquer

entidade, digital ou não digital, que pode ser utilizada, reutilizada ou referenciada

durante o aprendizado apoiado sobre a tecnologia [2, 3]. Não há definição clara de

limite de tamanho para um OA, existe, porém, o consenso de que ele deve ter um

propósito educacional definido, um elemento que estimule a reflexão do estudante e de

que sua aplicação não se restrinja a um único contexto [4].

 Há diversos fatores que favorecem o uso de OA na área educacional, como por

exemplo: a flexibilidade, a facilidade para atualização, a customização, a

interoperabilidade e, por fim, o aumento do valor de um conhecimento. Os OA tratam

de assuntos específicos utilizando as metodologias adequadas para aprendizagem de seu

conteúdo, aplicando exemplos, testes, entre outras formas, para que o aluno tenha uma

total compreensão do tópico ora apresentado. Todas estas vantagens são mais que

suficientes para justificar a utilização dos OA nas diferentes modalidades de ensino.

 É próprio dos objetos de aprendizagem, principalmente os difundidos na Web,

entre outros fatores, em razão de sua natureza digital, o caráter heterogêneo de conteúdo,

formas de elaboração, recursos utilizados e linguagem adotada. Nesse sentido, levando

em conta esta heterogeneidade, discutir OA, do ponto de vista das possibilidades de

avaliação, acarreta em um desdobramento de outras questões a ela inerentes e que

correspondem às características dos OA. Existem diversas formas de avaliar um aluno

utilizando este recurso: é possível seguir o método mais convencional de avaliação de

perguntas e respostas; expor situações em que o aluno fornece o valor de variáveis,

contribuindo para a construção ou desenrolar destas situações; apresentar uma

explicação preliminar sobre o conteúdo e após isso lançar os questionamentos a

respeito; e outras possibilidades que serão apresentadas no decorrer do artigo.

 Entretanto, mesmo imerso em tamanha diversidade, é possível identificar

padrões relacionados à avaliação do conhecimento assimilado utilizando OA. Para

realizarmos a análise de forma organizada, identificamos alguns aspectos a considerar,

quando se fala em avaliação dentro de OA. Esses aspectos, que são apresentados a

seguir, formam a base para a nossa linguagem de padrões. Um detalhe importante é que,

no escopo da linguagem e do artigo, tratamos apenas dos OA digitais, aplicações

multimídia e interativas. Todos os OA apresentados neste artigo foram coletados em

repositórios disponíveis na internet.

 Antes de ingressarmos na descrição da linguagem de padrões desenvolvida nesta

pesquisa, discutiremos um pouco questões relevantes no contexto do artigo, como

avaliação, padrões de software e sua terminologia, incluindo o conceito de linguagem.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

125

A seção seguinte corresponde à descrição da nossa linguagem, apresentando

resumidamente todos os seus padrões e o relacionamento entre eles. Após esta fase,

ingressamos na descrição formal dos padrões que fazem parte da primeira parte da

linguagem. A última parte do artigo dedica-se a enumerar alguns trabalhos relacionados

a nosso objeto de estudo, indicando aqueles que trazem padrões úteis ao nosso contexto.

2. Conceitos e Terminologias

Dentro do contexto educacional, a avaliação da aprendizagem é muito mais que uma

disciplina de Pedagogia. Ela corresponde a toda uma área de conhecimento da educação,

com muita pesquisa desenvolvida e, ao mesmo tempo, ainda em evolução.

 A idéia de avaliação passou por muitas mudanças, partindo da concepção

quantitativa de medição, até as visões qualitativas mais progressistas. Todas essas

questões podem ser compreendidas tanto em trabalhos que discutem a primeira

abordagem [5] [6], como nos que defendem a segunda [7] [8] [9]. São relevantes ainda

as implicações da avaliação no contexto das novas tecnologias e da educação à distância

[10] [11] [12].

 Para este artigo, entende-se “avaliação” dentro de um OA como todas as formas

pelas quais é necessária a intervenção do aluno no cenário do objeto, no que diz respeito

à expressão do seu entendimento sobre determinado assunto e que, por ventura, possa

ser utilizado como recurso para avaliar a aprendizagem deste conteúdo. As avaliações

podem ser problemas, questões, situações cotidianas, entre outras formas. É desta

avaliação que nos referimos no decorrer do artigo.

 A respeito da teoria dos padrões de software, que teve sua origem nos estudos do

arquiteto Christopher Alexander [13] [14], é importante saber que um padrão descreve

um problema de projeto e uma solução geral para o problema em um contexto particular

[15]. Desta forma, utilizando a definição alexandrina, cada padrão é uma regra de três

partes, que expressa uma relação entre um certo contexto, um problema e uma solução.

 Como forma de orientação para os leitores, os padrões apresentados nesse artigo

são descritos utilizando-se oito elementos. O primeiro elemento, Nome, é a sua forma de

identificação, representado, neste artigo pelo próprio título do tópico. O Contexto indica

a situação em que o padrão deve ser aplicado. O Problema apresenta a questão que

expressa o problema que o padrão resolve. O elemento Forças descreve as forças que

direcionam o padrão para suas possíveis soluções. A Solução apresenta uma resposta à

questão relacionada no elemento Problema e que resolve as forças da melhor forma

possível. O Racional mostra porque a solução resolve o problema, como as forças foram

tratadas e o que há por trás da solução. O Contexto Resultante indica o estado do

sistema após a aplicação do padrão, apresentando freqüentemente suas conseqüências.

Os Usos Conhecidos descrevem alguns dos lugares onde o padrão é utilizado e, por fim,

os Padrões Relacionados identificam, quando existem, outros padrões que são

importantes para o padrão descrito. É importante ressaltar que para este artigo esta seção

traz apenas o relacionamento entre os padrões da linguagem, pois os padrões

relacionados ao desenvolvimento de OA, de uma maneira geral, sem considerar os

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

126

padrões em particular, estão descritos na seção Trabalhos Relacionados. Exemplos

sobre sua aplicação podem ser encontrados em [16].

 Para o caso da nossa linguagem de padrões, os elementos descritos

anteriormente não são todos obrigatórios. Além disso, os elementos Problema e Solução

são suficientes para se ter uma visão geral do padrão, enquanto que os outros elementos

explicam o raciocínio utilizado para a construção do mesmo, permitindo que o leitor

tenha uma visão aprofundada do padrão.

 Algo que ainda precisa ser definido é a expressão linguagem de padrões que

representa o núcleo deste artigo. Conforme definida por Coplien [15], uma linguagem

de padrões é uma coleção de padrões que necessitam de um ao outro para gerar um

sistema. Um padrão isolado resolve um problema isolado; uma linguagem de padrões

constrói um sistema. O autor acredita ainda que é através das linguagens de padrões que

a abordagem de padrões mostra todo seu potencial.

 É importante destacar que a linguagem de padrões deve ser completa, todos os

aspectos do domínio abordado são importantes na definição dos padrões. Entretanto,

cada padrão pode ser usado separadamente ou e conjunto com alguns padrões da

linguagem. Desta forma, um padrão individualmente é considerado útil mesmo se a

linguagem não for usada em sua plenitude [17].

 A seção a seguir apresenta a linguagem de padrões para avaliação do

conhecimento em OA desenvolvida neste artigo. Serão apresentados o escopo da

linguagem, os aspectos considerados em seu desenvolvimento, a descrição resumida de

todos os padrões e o esclarecimento de como eles se relacionam.

3. A Linguagem de Padrões

A linguagem de padrões apresentada nesse trabalho abrange uma quantidade

considerável de fatores relacionados à avaliação do conhecimento através de OA.

Assim, para melhor contextualizar este escopo, definimos um conjunto de aspectos

importantes relacionados à noção de avaliação. É a partir destes aspectos que

organizamos de forma sistemática e didática os padrões apresentados
1
.

 Tomando o OA do ponto de vista da avaliação, seis Aspectos foram então

considerados para nossa análise: Tipo de Avaliação, Propósito do Objeto de

Aprendizagem, Seqüência das Questões, Relação entre Conteúdo e Avaliação, Recursos

Utilizados e Comportamento Diante das Respostas, todos tendo sempre em mente o

contexto da avaliação. Desta forma, cada aspecto define um grupo/conjunto de padrões.

O número de padrões para cada um destes aspectos varia entre dois e quatro, totalizando

dezesseis padrões para a linguagem aqui apresentada. A Tabela 1 relaciona os grupos

que ordenam esta linguagem de padrões, destacando o problema básico que cada

conjunto procura solucionar.

1
 A própria questão da avaliação é demasiadamente abrangente, por isso, não entram no escopo da

linguagem fatores como: eficácia da avaliação, avaliação para determinada disciplina, conteúdo visto

antes da avaliação, percepção do usuário da avaliação por OA, entre outros.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

127

Tabela 1 - Definição dos aspectos/conjuntos da linguagem

ASPECTO DESCRIÇÃO

Tipo de Avaliação Determina quem avalia o aluno.

Propósito do Objeto de

Aprendizagem

Estabelece o principal intuito do OA: conteúdo ou

avaliação.

Seqüência das Questões Trata da forma que se dá a seqüência das questões?

Relação entre Conteúdo

e Avaliação

Determina quem vem primeiro: o conteúdo ou a

avaliação.

Recursos Utilizados Corresponde à maneira de apresentar as questões e

problemas.

Comportamento Diante

das Respostas

Estabelece o que acontece depois que o aluno responde a

uma questão.

 Por questões de espaço, o escopo deste artigo comporta apenas os padrões

relacionados aos dois primeiros aspectos: Tipo de Avaliação e Propósito do Objeto de

Aprendizagem, somando-se entre eles quatro padrões. A seguir será apresentada uma

descrição de todos os seis aspectos considerados no agrupamento dos padrões para esta

linguagem. Apesar de não tratarmos aqui dos padrões pertencentes aos quatro últimos

conjuntos, a sua descrição é importante para que se compreenda a linguagem por inteiro.

 O primeiro aspecto, Tipo de Avaliação, como o nome indica, diz respeito ao tipo

de avaliação presente no OA. A quem se direciona o resultado da avaliação? Quem deve

tomar conhecimento da quantidade de acertos, do desempenho do aluno na resolução

dos problemas? Dessa forma, definimos os seguintes padrões: AUTO-AVALIAÇÃO,

obviamente, em que os alunos são auto-avaliados e AVALIAÇÃO SUPERVISIONADA, em

que os professores têm acesso aos resultados, acompanham o processo de avaliação.

 O aspecto Propósito do Objeto de Aprendizagem relaciona-se com a natureza do

OA: existem alguns estritamente teóricos, que concentram esforços em apenas expor o

conteúdo, sem preocupação com a fixação ou avaliação desse conteúdo. Esta

modalidade de OA não será considerada em nossa análise exatamente por não fornecer

recursos diretos de avaliação
2
. Um segundo tipo é aquele que ainda possui uma ênfase

teórica, oferecendo, entretanto, recursos para fixação e avaliação do conteúdo (OBJETO

DE APRENDIZAGEM TEÓRICO). A última possibilidade nesse grupo são os OA que não

possuem conteúdo explicativo explícito: eles são os próprios exercícios, são a própria

avaliação (OBJETO DE APRENDIZAGEM PRÁTICO). Como não há matéria formal dentro do

OA, para utilizá-lo, ou seja, resolver os problemas existentes, o aluno deve conhecer o

assunto previamente, é preciso que ele tenha passado por uma aula a respeito ou tenha

estudado o conteúdo.

 Seguimos então com a explicação dos aspectos analisados, agora tratando

daqueles cujos padrões não serão descritos formalmente neste artigo, para que, como

dito anteriormente, compreenda-se a relação dos conjuntos entre si e se perceba a

linguagem de padrões em sua essência.

2
 É preciso deixar claro que a não disponibilidade de exercícios ou questionamentos deste tipo de objeto

não compromete sua qualidade pedagógica. O professor pode realizar avaliações externamente ao OA,

utilizando o método que considerar mais conveniente.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

128

 A respeito da seqüência das questões (aspecto Seqüência das Questões),

observou-se que há duas possibilidades: a) As questões são dependentes umas da outras

e dadas de forma seqüencial (SEQÜÊNCIA LINEAR). Para passar à questão seguinte (ou

até para continuar no OA), é preciso resolver o problema, solucionar a pergunta anterior.

b) Os problemas podem ser resolvidos em qualquer ordem (SEQÜÊNCIA NÃO LINEAR).

Caso não saiba a resposta de uma questão, o aluno pode passar para a próxima ou

prosseguir com a “leitura” do OA.

 O aspecto seguinte, Relação entre Conteúdo e Avaliação, considera a relação

entre o conteúdo apresentado e os exercícios, no que diz respeito à ordem de

apresentação das matérias e das avaliações, dentro do OA. Alguns OA expõem todo o

conteúdo primeiro e depois disponibilizam uma ou mais questões para o aluno

(CONTEÚDO ANTES DA AVALIAÇÃO). Outros intercalam conteúdo com exercícios: na

medida em que vão sendo adicionados conceitos, são apresentados exemplos para o

aluno aplicá-los (CONTEÚDO E AVALIAÇÃO INTERCALADOS). Um terceiro tipo

(AVALIAÇÃO ANTES DO CONTEÚDO) é aquele que não apresenta conteúdo inicialmente.

Há, antes dele, uma situação-problema que o aluno deve solucionar. Depois de

resolvida, vem a explicação do assunto envolvido no contexto apresentado.

 O próximo aspecto estabelecido, Recursos Utilizados, está relacionado aos

recursos gráficos e de interface utilizados nas questões e exercícios. Há uma infinidade

deles: de questões de múltipla escolha a simulações, as mais diversas, passando ainda

por preenchimento de lacunas e outras respostas em aberto. Definimos para nossa

linguagem os seguintes padrões: QUESTÕES DE MÚLTIPLA ESCOLHA, QUESTÕES

ABERTAS, SIMULAÇÕES e IMAGENS E GRÁFICOS.

 Comportamento Diante das Respostas, o último aspecto identificado, refere-se

ao tratamento dado pelo objeto às repostas dos alunos. Diz respeito ao que acontece

dentro do OA após um erro ou um acerto. Algumas vezes, é possível retornar e tentar

outra resposta (TENTATIVA E ERRO), outras vezes, é apresentada a conseqüência para a

resposta escolhida (APRESENTAÇÃO DAS CONSEQÜÊNCIAS) e outras vezes, não é possível

conhecer a resposta certa (AUSÊNCIA DE GABARITO).

 Como síntese do que foi dito até aqui, a Tabela 2 apresenta todos os aspectos de

avaliação considerados na pesquisa e os respectivos padrões identificados para cada um

deles. Destacamos em cinza os padrões detalhados neste artigo.

Tabela 2 - Conjuntos da linguagem e seus padrões

ASPECTO PADRÕES

Tipo de Avaliação Auto-Avaliação

Avaliação Supervisionada

Propósito do Objeto de

Aprendizagem

Objeto de Aprendizagem Teórico

Objeto de Aprendizagem Prático

Seqüência das Questões Seqüência Linear

Seqüência Não Linear

Relação Entre Conteúdo e

Avaliação

Conteúdo Antes da Avaliação

Conteúdo e Avaliação Intercalados

Avaliação Antes do Conteúdo

Recursos Utilizados Questões de Múltipla Escolha

Questões Abertas

Simulações

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

129

Imagens e Gráficos

Comportamento Diante das

Respostas

Tentativa e Erro

Apresentação das Conseqüências

Ausência de Gabarito

 O É importante observar que os padrões da linguagem relacionam-se entre si de

duas maneiras, conforme apresentado na Figura 1: a) os padrões de um grupo podem

relacionar-se com os padrões de outro grupo; b) os padrões de um mesmo grupo podem

ou não se relacionar entre si. Em outras palavras, é possível que um OA adote vários

padrões da linguagem ao mesmo tempo. De fato, um OA deve utilizar pelo menos um

padrão (mas não necessariamente apenas um) de cada aspecto considerado, dependendo

da intenção do desenvolvedor. Por exemplo, o primeiro objeto de aprendizagem

mostrado neste artigo (item a do tópico Usos Conhecidos na seção 4.1), usa os seguintes

padrões: AUTO-AVALIAÇÃO, OBJETO DE APRENDIZAGEM PRÁTICO, SEQÜÊNCIA NÃO-

LINEAR, CONTEÚDO E AVALIAÇÃO INTERCALADOS, QUESTÕES DE MÚLTIPLA ESCOLHA,

SIMULAÇÕES, TENTATIVA E ERRO e APRESENTAÇÃO DAS CONSEQÜÊNCIAS. Desta forma,

é possível desenvolver uma variedade imensa de OA, combinando-se os padrões entre si

de cada conjunto.

 Na descrição dos padrões, isto ficará claro com alguns exemplos de OA que

aparecem em mais de um padrão, demonstrando assim o intercâmbio existente entre os

padrões de cada aspecto.

 A Figura 1 a seguir apresenta a relação entre os grupos e padrões da linguagem.

Destacamos em cinza, os padrões descritos neste artigo. Conforme pode ser visto, existe

relacionamento entre todos os grupos (indicado pela seta). Pela imagem, entende-se que

todos os padrões de um grupo devem usar pelo menos um padrão de todos os outros

grupos, com apenas uma exceção: vê se que no grupo Propósito do Objeto de

Aprendizagem, apenas o OBJETO DE APRENDIZAGEM TEÓRICO relaciona-se com os

padrões do grupo Relação entre Conteúdo e Avaliação, pois para utilizar os padrões

deste último grupo, é necessário que exista conteúdo formal no OA, o que não é o caso

do OBJETO DE APRENDIZAGEM PRÁTICO.

 A respeito do relacionamento entre padrões do mesmo grupo, é possível

perceber que três grupos apresentam padrões exclusivos entre si (caixa tracejada). Por

exemplo, se um OA adota o SEQÜÊNCIA LINEAR, ele não pode utilizar o SEQÜÊNCIA

NÃO-LINEAR. Os outros três grupos possuem padrões que podem usar um outro padrão

do mesmo grupo. Por exemplo, nada impede que um OA que use o SIMULAÇÕES, adote

também o QUESTÕES ABERTAS e o QUESTÕES DE MÚLTIPLA ESCOLHA.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

130

Figura 1 – Relação entre os padrões da linguagem

4. Aspecto Tipo de Avaliação

4.1. Padrão AUTO-AVALIAÇÃO

Contexto

Ao desenvolver um OA que ofereça possibilidades de fixação e avaliação do conteúdo,

deseja-se que o aluno seja auto-avaliado, que ele mesmo solucione os problemas

apresentados e tome consciência de seu desempenho.

Problema

Como permitir que um aluno que utilize um OA possa aferir, por si só, o seu

aprendizado?

Forças

OA desenvolvidos para a Web oferecem diversas possibilidades de recursos de layout e

interface, permitindo a criação de ferramentas interativas. Recursos comuns à Internet

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

131

são interessantes para os alunos, pois diferem dos métodos convencionais de sala de

aula.

 Aspectos como idade, conhecimento de tecnologia, disciplina abordada podem

levar os alunos a não gostarem de ser auto-avaliados por meio de OA. Eles podem ter

dificuldades de uso e compreensão da intenção da auto-avaliação.

 A forma como os resultados dos problemas são apresentados aos alunos pode

comprometer a interpretação de sua avaliação.

 A relação entre as questões apresentadas e o conteúdo abordado no OA

determina a qualidade da avaliação.

Solução

Ofereça recursos, dentro dos OA, que possibilitem aos alunos realizarem, de forma

atrativa, sua auto-avaliação. Os alunos devem conhecer seu desempenho nas questões e

problemas. A maneira mais simples é fornecer a resposta certa aos questionamentos, ou

informar se o aluno errou ou acertou. Métodos de contagem de pontos, associados ao

número de acertos são outras formas válidas do aluno perceber como se dá

quantitativamente seu aprendizado. Os questionamentos devem corresponder ao

conteúdo aprendido, para que a análise do aluno se faça de maneira direta. Toda a

construção da avaliação dentro do OA deve ser feita de forma a convidar o aluno a

conhecer seus resultados, a ter consciência do que foi aprendido.

Racional

A adoção do AUTO-AVALIAÇÃO permite que o aluno possa decidir sobre o seu próprio

aprendizado. O padrão estabelece que a avaliação seja feita de forma interessante,

levando o aluno a ter responsabilidade sobre seu conhecimento. É necessário ainda que

esse tipo de avaliação seja aplicado para alunos que tenham maturidade para realizar

uma melhor avaliação dos resultados obtidos. Além disso, deve ser levado em

consideração o teor do conteúdo na elaboração da avaliação.

Contexto Resultante

Objetos de aprendizagem que utilizem o AUTO-AVALIAÇÃO permitem que o aluno tire

conclusões sobre o seu desempenho, através de sua própria análise. Utilizando o padrão,

o método auto-avaliativo contribui na formação do aluno, no que diz respeito à tomada

de consciência, por si só, da evolução de seu aprendizado e de seu desempenho na

fixação do conteúdo estudado. A partir da avaliação feita, o aluno tem condições de

reforçar seu estudo exatamente nos aspectos em que percebeu maior deficiência.

 Uma conseqüência da auto-avaliação enquanto método pedagógico é o

desinteresse do aluno. Ela pode não levar a nada, pois o aluno toma conhecimento de

seu desempenho, mas pode não tomar providências para melhorá-lo. Além disso, o

aluno pode não ter consciência do objetivo da auto-avaliação, pode considerar as

questões nos OA apenas como “exercícios de fixação” ou “joguinhos”, não levando a

sério seus resultados.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

132

Usos Conhecidos

Diversos OA observados utilizam AUTO-AVALIAÇÃO, pois a disponibilidade dos objetos

pela Web favorece o estudo individual e solitário, exigindo do aluno a responsabilidade

sobre sua própria avaliação. Observou-se assim a tendência de se deixar para o aluno a

tarefa de perceber os erros e acertos nas questões resolvidas. Seguem abaixo alguns OA

que utilizam esse padrão, destacando os recursos utilizados para essa auto-avaliação.

a. O salto dos recordes [18]: A idéia principal do objeto é permitir que o aluno

compreenda algumas noções de Mecânica. O aluno deve fornecer as informações de

ângulo e velocidade para um motoqueiro saltar com sucesso de uma rampa. Na tela

do OA, há a indicação dos valores fornecidos pelo aluno (Figura 2). A todo

momento, o aluno vai percebendo seu desempenho e avaliando quais valores deve

usar, pois há a simulação do que ocorre com a moto, a cada valor informado. Pela

imagem: o aluno inicialmente (parte superior da Figura 2) não obteve sucesso com

o salto, há então a representação da explosão da moto (mancha clara indicada pela

seta); depois (parte inferior da Figura 2), ele fornece valores corretos e consegue

atravessar a rampa (moto em destaque). Prosseguindo no OA, há ainda questões

relacionadas ao que ocorreu durante a simulação. Caso o aluno tenha compreendido

bem a dinâmica nos valores das variáveis, vai ter consciência de seu aprendizado na

resolução das questões.

Figura 2 - Auto-avaliação no OA “Salto dos Recordes” Figura 2 - Auto-avaliação no OA “Salto dos Recordes”

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

133

b. A química das cores nos fogos de artifício [19]: Neste OA, o caráter auto-avaliativo

está presente em alguns momentos: depois de toda a explicação do conteúdo, é

fornecida uma tabela com elementos químicos e as cores que eles provocam nos

fogos de artifício. Há um cronômetro (na Figura 3, indicado com uma seta) ao lado

e o aluno deve memorizar a correspondência das cores em até trinta segundos. Este

recurso desafia o aluno a memorizá-las mais rapidamente, além de informar a ele

quanto tempo levou, já que pode prosseguir no OA assim que decorar as cores e

isso pode levar menos tempo que o máximo permitido. Em seguida, é proposto um

exercício que exige do aluno a correspondência das cores com os materiais

apresentados. Além de acertar os elementos, o aluno deve fazê-lo em um tempo

limitado (ilustrado pela queima de uma vela, como se vê na Figura 3). A cada erro

ou acerto o aluno compreende a qualidade da memorização feita momentos antes.

Na imagem, o brilho no céu representa a queima correta do rojão constituído de

sódio, que emite uma cor amarela.

c. Calculadora quebrada [20]: Este é um OA que se caracteriza muito mais como um

jogo de raciocínio. A auto-avaliação existe no desafio de conseguir todos os

números solicitados no tempo determinado (cronômetro indicado na Figura 4 pela

seta escura). O aluno pode avaliar-se também através dos níveis existentes. Pode

concluir como está seu desempenho matemático, a partir de que nível máximo

conseguiu alcançar.

Figura 3 - Auto-avaliação no OA “Química das cores nos fogos de artifício” Figura 3 - Auto-avaliação no OA “Química das cores nos fogos de artifício”

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

134

d. Os Concelhos
3
[21]: É um exemplo da utilização de contagem de pontos para a

auto-avaliação do aluno. É um OA desenvolvido para a disciplina de História e

caracteriza-se por um conjunto de questões de múltipla escolha a respeito dos

Concelhos e documentos históricos de Portugal. Cada pergunta vem acompanhada

de um texto e de algumas imagens relacionados. Ao final do questionário, são

passados para o aluno seus resultados em forma de porcentagem, além de apresentar

as questões que ele acertou, as que ele errou e as respostas corretas. A Figura 5

mostra a primeira questão apresentada e os resultados obtidos, destacando-se a

exibição de uma das questões erradas.

3
 Grafia original do português de Portugal. Refere-se a um acontecimento histórico e tem significado

diferente da palavra “conselho”.

Figura 5 - Auto-avaliação no OA “Os Concelhos”

Figura 4 - Auto-avaliação no OA “Calculadora quebrada” Figura 4 - Auto-avaliação no OA “Calculadora quebrada”

Figura 5 - Auto-avaliação no OA “Os Concelhos”

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

135

Padrões Relacionados

O AUTO-AVALIAÇÃO relaciona-se com o AVALIAÇÃO SUPERVISIONADA de forma não

excludente, pois um mesmo OA pode adotar os dois padrões.

 Os padrões do grupo Propósito do Objeto de Aprendizagem são utilizados para

determinar o foco do OA, que pode ter uma ênfase teórica ou prática.

 A continuidade do OA, ou seja, a “liberdade” de leitura que o aluno possui é

determinada pelos padrões do grupo Seqüência das Questões. São os padrões deste

grupo que determinam se o aluno pode, por exemplo, passar para uma questão seguinte

sem acertar a resposta da anterior.

 Em um OA que adote o AUTO-AVALIAÇÃO, desde que possua conteúdo formal, é

preciso estabelecer a ordem com que os conteúdos e as avaliações são apresentadas. Isto

é feito com os padrões do grupo Relação entre Conteúdo e Avaliação.

 Toda a avaliação dentro do OA é feita através de recursos pedagógicos e de

interface. Os padrões do grupo Recursos utilizados determinam as formas de

apresentação dos problemas dentro do OA.

 Em uma auto-avaliação, a forma de se apresentar a resposta das questões ao

aluno contribui para que ele tome conhecimento da qualidade de sua aprendizagem.

Dessa forma, para decidir a maneira com que as respostas serão apresentadas, devem ser

usados os padrões do grupo Comportamento Diante das Respostas.

4.2. Padrão AVALIAÇÃO SUPERVISIONADA

Contexto

Ao desenvolver um OA que oferece possibilidades de fixação e avaliação do conteúdo,

deseja-se que o professor tome conhecimento do desempenho do aluno, através das

questões propostas no próprio OA.

Problema

Como construir OA em que o professor tome conhecimento dos resultados da avaliação

aplicada ao aluno?

Forças

A utilização de OA muitas vezes se dá sem a presença do professor. O aluno tende a

estudar sozinho ou com algum outro aluno. Essa característica cria uma barreira “física”

para o avaliador.

 Neste método, a avaliação é feita por meio digital, com um recurso diverso

daqueles aos quais os alunos estão habituados, o que pode gerar uma falta de

comprometimento dos alunos.

 Os resultados devem ser apresentados de modo a permitir a compreensão do

professor sobre o desempenho do aluno na assimilação do conteúdo.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

136

 Como os OA possuem vários recursos e características que despertam a atenção

dos alunos, é necessário que a avaliação seja mais agradável e não seja tão “traumática”

como as provas comuns.

 Algumas questões de segurança relacionadas à autoria das respostas devem ser

consideradas quanto à utilização desses resultados na avaliação formal dos alunos.

Solução

Elabore questões e exercícios com algum recurso que permita ao professor ter

conhecimento do resultado do desempenho do aluno. Há diversas maneiras de o

professor conhecer o desempenho do aluno: ele pode acompanhá-lo no uso do OA e ver

como ele se sai nos problemas; pode receber as respostas do aluno ou o resultado das

questões por endereço eletrônico ou por SMS para o celular ou outros dispositivos

móveis; entre outras maneiras. O envio pode ser feito de forma automática pelo OA ou

manualmente pelo próprio aluno, dependendo do formato das questões. No AVALIAÇÃO

SUPERVISIONADA, o importante é fornecer ao professor meios diretos para que ele possa

acompanhar a aprendizagem do aluno. A maneira pela qual os seus resultados são

repassados para o professor é uma escolha do desenvolvedor: eles podem estar

agrupados por blocos de questões, conforme for organizado o OA; podem vir em forma

de porcentagem ou número absoluto de acertos; podem ser ordenadas por questões

certas ou erradas; entre diversas outras formas.

Racional

Com a utilização do AVALIAÇÃO SUPERVISIONADA, o aluno será avaliado pelo professor,

a ele cabe considerar o desempenho do aluno, contabilizando ou não o resultado da

avaliação no esquema de pontuação e notas convencional. Isso fornecerá uma motivação

para que o aluno empenhe-se na utilização do OA. Caso o professor deseje utilizar o OA

para dar notas aos alunos, devem ser consideradas as questões de segurança em relação

ao acesso aos resultados.

Usos Conhecidos

Nos OA listados a seguir, pode-se perceber um certo esforço em levar ao professor o

conhecimento da avaliação do aluno. Nota-se que o resultado da avaliação é muito mais

voltado para o professor, embora também seja importante para o aluno. Alguns OA

oferecem aos usuários a possibilidade de entrar em contato com o professor, por meio

de formulário próprio do objeto, encaminhando a mensagem diretamente para o e-mail

do professor, ou usando outras estratégias, como nos seguintes OA:

a. Geography Quiz [22]. Este objeto consiste em um jogo de perguntas e respostas de

geografia envolvendo os continentes, com variação de pontos entre as questões. Ele

oferece duas maneiras (seta escura na Figura 6) de estabelecer comunicação com o

professor: a) utilizando o comando “Submit Results”, que enviará o resultado do quiz

(quantidade de questões acertadas) diretamente para o e-mail do professor, através de

uma ferramenta de gerenciamento de e-mail (Outlook, Eudora etc); e b) utilizando o

comando “Task Manager”, através do qual o aluno pode comunicar-se com o

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

137

professor, enviando-lhe uma mensagem, preenchida em um formulário (em destaque

na Figura 6).
4

b. É hora de colocar as coisas no lugar! [23]: A idéia principal é que o aluno faça

conexões com elementos ligados à genética e monte essas relações em um quadro,

utilizando imagens e conectores (Figura 7). Como são muitas possibilidades, o

próprio aluno não tem como ter certeza de que seu trabalho está correto. Então, é

recomendado que o professor observe a montagem feita por ele e avalie se está

coerente.

4
 Estes são alguns dos recursos disponibilizados pela ferramenta de autoria Tac-soft [14], a partir da qual

foi feito o objeto de aprendizagem citado.

Figura 6 - AVALIAÇÃO SUPERVISIONADA no OA “Geography Quiz”
Figura 6 - AVALIAÇÃO SUPERVISIONADA no OA “Geography Quiz”

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

138

c. Uma aventura na União Européia [13]: O objeto é semelhante a um jogo que envolve

conhecimentos gerais (cultura, arte, geografia) dos países da Europa. Logo ao entrar

no site, o usuário é convidado a conhecer a colocação dos participantes (Figura 8)

dispostos em forma de ranking
5
 para então iniciar a “aventura” proposta pelo OA. O

professor pode conhecer o desempenho do avaliado por meio de sua colocação no

ranking e utilizar essa informação para adicionar pontos ou bônus nas notas dos

alunos. Na imagem há um exemplo de desafio com o qual o aluno se depara durante

a utilização do OA.

5
 O recurso de ranking também é um recurso oferecido por uma ferramenta de autoria da qual originou-se

o OA em questão. Dessa vez trata-se do Quandary [15].

Figura 8 - AVALIAÇÃO SUPERVISIONADA no OA “Geography

Figura 7 - AVALIAÇÃO SUPERVISIONADA no OA “É hora de colocar as coisas no Figura 7 - AVALIAÇÃO SUPERVISIONADA no OA “É hora de colocar as coisas no lugar!”

Figura 8 - AVALIAÇÃO SUPERVISIONADA no OA “Geography Quiz”

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

139

Padrões Relacionados

Caso se deseje que, além do professor, o aluno também tenha conhecimento dos

resultados de sua avaliação, deve ser utilizado AUTO-AVALIAÇÃO.

 Com os padrões do grupo Propósito do Objeto de Aprendizagem, o professor

determina se a avaliação do aluno será feita em um OA que apresenta a explicação do

conteúdo ou em um OA estritamente prático.

 Os padrões do grupo Seqüência das Questões são utilizados para determinar a

maneira com que os alunos têm acesso às questões (de forma linear ou não), gerando

conseqüências na supervisão do professor. Por exemplo, é mais difícil para ele

acompanhar o andamento na solução de questões que podem ser resolvidas fora de

ordem.

 Através dos padrões do grupo Relação entre Conteúdo e Avaliação, o professor

determina em que momento dentro do OA ocorre a avaliação supervisionada.

 O formato dos problemas também determina a complexidade da avaliação

supervisionada pelo professor. Questões de múltipla escolha, por exemplo, são mais

simples de serem corrigidas. Os padrões do grupo Recursos utilizados são necessários

então para definir estes detalhes.

 O que acontece no OA depois que o aluno lança uma resposta é relevante para o

professor avaliar aspectos como quantidade de tentativas e exatidão das respostas dadas

pelos alunos.

5. Aspecto Propósito do Objeto de Aprendizagem

5.1. Padrão OBJETO DE APRENDIZAGEM TEÓRICO

Contexto

Ao se desenvolver um OA, o professor/desenvolvedor pode aprofundar, nos mais

diversos níveis, o conteúdo apresentado. O OA pode ser a primeira ferramenta pela qual

o aluno está tendo contato com o assunto, ou pode apresentar-se como um reforço, uma

revisão de um conteúdo anteriormente abordado. Neste contexto, considera-se

importante a presença de explicação, de detalhamento do conteúdo estudado, para junto

dele serem apresentados problemas e questionamentos a respeito.

Problema

Como disponibilizar material para os alunos, através do qual eles possam aprender o

assunto de interesse e posteriormente serem avaliados?

Forças

O conteúdo de um OA depende muito da natureza teórica da disciplina e do assunto

abordado em particular. Alguns deles exigem explicações mais detalhadas para que a

avaliação seja feita satisfatoriamente.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

140

 O momento de apresentação do conteúdo para o aluno é um fator relevante. Caso

seja a primeira vez que ele entre em contato com o assunto apresentado, é essencial que

haja a sua descrição, sua fundamentação teórica e não apenas exercícios e avaliações.

 OA que associam conteúdo à avaliação têm uma implementação mais complexa,

no sentido de necessitar uma estruturação pedagógica coerente entre conteúdos e

questões avaliativas.

Solução

Desenvolva OA que agreguem ao mesmo tempo conteúdo e exercícios de fixação e/ou

avaliação. Devem ser objetos que possuam claramente a explicação sobre um

determinado assunto e em outro momento apresente problemas relacionados, não

obrigatoriamente nesta ordem. O importante é reconhecer que teoria e prática aparecem

em blocos distintos. Para o OBJETO DE APRENDIZAGEM TEÓRICO, o objetivo principal é

apresentar o conteúdo e a partir dele lançar problemas para o usuário.

Racional

A utilização de OA teóricos é importante, principalmente, para a introdução de novos

conceitos. Esses OA devem ser acompanhados de exercícios para facilitar a assimilação

do conhecimento. Por conta disso, mesmo sendo complexa a implementação desse tipo

de OA, a sua utilização justifica-se pela eficiência para o aprendizado do aluno, que é

alcançada pela existência de conteúdo formal e avaliação integrados.

Contexto Resultante

A adoção do OBJETO DE APRENDIZAGEM TEÓRICO implica em uma utilização mais

completa do objeto, de forma integrada, em que o aluno não precisa recorrer a fontes

externas. Dependendo do aprofundamento dado, o usuário é capaz de absorver toda a

matéria estudando apenas pelo OA.

Usos Conhecidos

É possível encontrar vários objetos que seguem o OBJETO DE APRENDIZAGEM TEÓRICO,

todos com as seções teóricas bem explícitas dentro do corpo do OA. Listamos aqui

apenas alguns exemplos:

a. A química das cores nos fogos de artifício [19]: Conforme apresentado em sua

descrição inicial, e AUTO-AVALIAÇÃO, é apresentada inicialmente toda a base teórica

a respeito da química relacionada às cores, apresentando sua correspondência com os

elementos químicos (ver Figura 3). Após isso, o aluno pode ser avaliado (AUTO-

AVALIAÇÃO, conforme dito anteriormente), testando seus conhecimentos através dos

problemas apresentados.

b. É hora de colocar as coisas no lugar! [23]: Antes de iniciar a montagem do quadro

com as relações dos elementos de genética, há uma exposição dos conceitos

relacionados, explicando cada um dos elementos exibidos (ver Figura 7). O aluno só

consegue realizar a atividade com sucesso se estudar o conteúdo disponível.

c. A química dentro de um bolo [16]. Este OA também é um bom exemplo de mistura

entre conteúdo e avaliação. O objetivo é abordar a questão do balanceamento de

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

141

substâncias na Química e o OA inicia com uma analogia aos ingredientes de um

bolo. Antes de ser exibido o conteúdo propriamente dito, o aluno é questionado sobre

as proporções necessárias de cada ingrediente para fazer mais de um bolo (Figura 9).

Em seguida, é apresentada a explicação a respeito do balanceamento de equações.

Padrões Relacionados

Um OA teórico é indicado para uso em cojunto tanto com o AUTO-AVALIAÇÃO quanto

com o AVALIAÇÃO SUPERVISIONADA, dependendo de quem vai receber os resultados da

avaliação.

 Os padrões dos grupos Seqüência das Questões e Relação entre Conteúdo e

Avaliação são necessários para determinar, por exemplo, se o aluno tem acesso ao

conteúdo apenas quando acerta uma questão inicial ou se pode “navegar” entre as

questões apresentadas, solucionando-as na ordem que desejar.

 O grupo Recursos Utilizados provê padrões para auxiliar no desenvolvimento de

questões relacionadas ao conteúdo presente no OA.

 Com os padrões do grupo Comportamento Diante das Respostas, é possível

fornecer um retorno ao aluno sobre suas respostas e relacioná-las com o conteúdo

apresentado.

Figura 9 - OA Teórico “A química dentro de um bolo” Figura 9 - OA Teórico “A química dentro de um bolo”

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

142

5.2. Padrão OBJETO DE APRENDIZAGEM PRÁTICO

Contexto

Após o professor explicar um determinado conteúdo, é recomendável que ele ofereça

possibilidades para os alunos testarem seus conhecimentos, fixarem a matéria

apresentada e, em última instância, serem avaliados, por ele ou pelo professor. Outro

caso comum é quando o aluno já sabe um determinado conteúdo, já viu isso em sala ou

estudou por conta própria, e deseja exercitar ou testar seus conhecimentos.

Problema

Como fornecer aos alunos uma forma direta de praticar um determinado conhecimento

assimilado?

Forças

Para que o aluno encaminhe-se diretamente para exercícios e avaliações, é necessário

que ele possua os pré-requisitos teóricos necessários.

 A utilização do objeto de forma indiscriminada (sem a exposição da matéria)

pode dificultar o aprendizado do aluno.

 Os questionamentos e problemas apresentados devem estar de acordo com a

intenção do uso do OA. Assim, o aluno poderá associar a explicação vista anteriormente

(visto em sala de aula ou por conta própria) com o exercício/avaliação proposto nele.

 O desenvolvimento dos problemas e questões depende apenas da criatividade do

desenvolvedor/professor, visto que não há conteúdo formal no OA, aos quais os

problemas devam estar vinculados, como ocorre em OBJETO DE APRENDIZAGEM

TEÓRICO.

Solução

Crie OA que sejam essencialmente práticos, que contenham apenas questões ou

problemas a serem solucionados pelos alunos. Para OBJETO DE APRENDIZAGEM PRÁTICO

não é necessário apresentar qualquer conteúdo
6
, pois a premissa é que ele já seja de

conhecimento do aluno. A característica chave deste padrão é que ele não traz a teoria

dentro do OA, não há explicação da matéria (ela já foi vista), ao aluno cabe apenas a

resolução dos problemas.

Racional

A utilização de OBJETO DE APRENDIZAGEM PRÁTICO é recomendada para a assimilação

de conceitos vistos em sala de aula. É importante que os exercícios sejam realizados no

mesmo nível em que os conteúdos foram apresentados.

6
 Isso não significa que o objeto de aprendizagem com esse caráter prático seja desprovido de conteúdo.

Referimo-nos apenas ao conteúdo formal, descritivo, explicativo, que, no caso deste padrão, realmente

não existe.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

143

Contexto Resultante

O resultado da utilização do OBJETO DE APRENDIZAGEM PRÁTICO é a possibilidade de

uma forma mais direta de avaliação por parte do professor e do aluno. Ambos podem

conhecer mais rapidamente o nível do aprendizado do aluno.

 É possível que a utilização de um OA desenvolvido através desse padrão resulte

numa deficiência do aprendizado. Isso ocorre devido à falta de mecanismos para auxiliá-

lo quando houver dúvidas ou necessidade de maiores esclarecimentos a respeito da

matéria de que trata os problemas.

Usos Conhecidos

Os exemplos de OA mais simples para este padrão são aqueles que se caracterizam

como “jogos” ou desafios (puzzles, quizzes, palavras cruzadas, entre outros), tanto de

habilidade de raciocínio, quanto de nível de conhecimento sobre um determinado

assunto. Como usos conhecidos desse padrão temos:

a. Base Blocks Addition [28]: A utilização do objeto consiste em resolver os problemas

de aritmética propostos, deslocando-se os blocos e seus agrupamentos dentro das

áreas correspondentes de unidades, dezenas, centenas e milhar (Figura 10). O aluno

que utilizar o OA necessariamente terá que possuir noções de soma e multiplicação.

Não há conteúdo explicativo, o usuário deve apenas solucionar os problemas

apresentados.

b. Algebra Balance Scale [18]: Da mesma forma que o OA anterior, este não apresenta

nenhum conteúdo. A idéia principal é relacionar os dois lados de uma equação com

os dois pratos de uma balança e assim descobrir o valor da incógnita da equação

(Figura 11). O objeto apresenta uma seqüência dessas equações que devem ser

solucionadas pelo aluno.

Figura 10 - OA Prático “Base Blocks Figura 10 - OA Prático “Base Blocks Addition”

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

144

c. Um dublê em apuros [19]: Ao utilizar o OA, o usuário deve fornecer um valor para a

distância que um dublê deve saltar de um avião para conseguir cair dentro de um

lago. Não há explicações ou qualquer outro conteúdo, apenas o ambiente para a

simulação de cada valor fornecido pelo aluno. Na Figura 12, nota-se que o dublê

alcançará o lago, pois o valor (2000m) da posição do eixo x informada pelo aluno é

satisfatório.

Padrões Relacionados

Em um OA que utilize o OBJETO DE APRENDIZAGEM PRÁTICO, é preciso definir se

apenas o aluno terá acesso aos resultados de sua avaliação ou se eles serão consultados

pelo professor. Conforme o objetivo, será usado então o AUTO-AVALIAÇÃO ou o

AVALIAÇÃO SUPERVISIONADA.

 As questões apresentadas no objeto prático devem seguir um dos tipos de

seqüência presentes nos padrões do grupo Seqüência das Questões.

Figura 12 - OA Prático “Um dublê em

Figura 11 - OA Prático “Algebra Balance Figura 11 - OA Prático “Algebra Balance Scale”

Figura 12 - OA Prático “Um dublê em apuros”

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

145

 As maneiras pelas quais o aluno vai praticar seu conhecimento por meio das

questões são estabelecidas pelos padrões do grupo Recursos Utilizados.

 O tratamento dado pelo OA às respostas dos alunos é determinado pelos padrões

do grupo Comportamento Diante das Respostas.

6. Trabalhos Relacionados

A utilização de padrões para a catalogação de práticas relacionadas ao desenvolvimento

de material instrucional no suporte educacional pode ser encontrado em trabalhos como

[31], onde foi apresentada a Linguagem de Padrões Cog-Learn. Essa linguagem

relaciona um conjunto de padrões pedagógicos que abordam questões de planejamento e

seqüência de cursos baseados em práticas de aulas presenciais e padrões de IHC, obtidos

de projetos Web e que abordam questões de interação, layout, planejamento e

estruturação de material instrucional. Dentre os padrões apresentados na linguagem

Cog-Learn, podemos identificar alguns padrões cujas abordagens podem ser mapeadas

na elaboração de OA e, portanto, podem ser aplicados junto com os padrões que

apresentamos nesse trabalho, sendo particularmente importantes os padrões

ESTRUTURAÇÃO DO CONHECIMENTO e CONTEXTUALIZAÇÃO, que se preocupam na

organização dos conteúdos de modo a facilitar a apresentação de novos conceitos aos

alunos.

 Já em [32], o foco principal é a definição de padrões para tratar aspectos de

adaptação de materiais instrucionais para novos contextos educacionais. Para esse fim

são descritos padrões relacionados a diferentes áreas de adaptação, como layout e

conteúdos. Também esses padrões podem ser aplicados à criação de OA. De fato, a

adaptação de conteúdos, e particularmente de material utilizado para avaliação, pode ser

necessária de forma a se conseguir uma melhor aplicação dos OA para públicos

diferentes. Nesse contexto, padrões como CORRECT ARRANGEMENT OF ELEMENTS e

TRANSLATION podem ser importantes para facilitar a adaptação de conteúdos para se

atingir um determinado objetivo avaliativo.

 Em [33] diversos padrões são identificados com a finalidade de se identificar

mecanismos de registro de utilização de um recurso instrucional digital. Também aqui

conseguimos visualizar uma importante relação entre esses padrões com os que

apresentamos nesse artigo. De fato, quando falamos de verificar a assimilação de um

determinado conteúdo através de um OA, que é um dos objetivos dos nossos padrões,

também devemos considerar a forma de como se gerar e armazenar informações que

possam fornecer subsídios para se aferir o grau de assimilação desses conteúdos. Assim,

a aplicação do padrão AUTOMATIC GRADING OF STUDENTS' ANSWERS pode fornecer

mecanismos que permitam a geração automática de resultados de avaliações em um OA.

Já a aplicação do padrão CLASSIFICATION OF STUDENTS pode permitir a identificação de

um ranking relacionado às avaliações fornecidas por um determinado OA.

7. Agradecimentos

Os autores agredecem o apoio financeiro concedido pelo CNPq (Conselho Nacional de

Desenvolvimento Científico e Tecnológico) e pelo CPQT (Centro de Pesquisa e

Qualificação Tecnológica). Gostaríamos também de fazer um agradecimento especial ao

nosso shepherd Rohit Gheyi, pelas valiosas sugestões e comentários, que nos fizeram

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

146

refletir em muitos pontos e ajudaram a melhorar bastante o conteúdo e a forma deste

artigo.

Referências Bibliográficas

[1] Fernandes, N.L.R. (2004) Professores e computadores: navegar é preciso, Porto

Alegre: Mediação, pp. 36-41.

[2] Wiley, D.A. (2000), Connecting learning objects to instructional design theory: A

definition, a metaphor, and a taxonomy in D. A. Wiley (Ed.), The Instructional Use

of Learning Objects. Documento on-line, disponível em:

<http://reusability.org/read/chapters/wiley.doc>. Acessado em: 17 de novembro de

2006.

[3] IEEE. Learning Technology Standardization Committee (LTSC). Disponível em: <

http://ieeeltsc.org/>. Acessado em: 19 de novembro de 2006. [4] BETTIO, R.W. de

& Martins, A. Objetos de aprendizado: um novo modelo direcionado ao ensino a

distância. In: 9o. Congresso Internacional de Educação a Distância, 2002, São

Paulo - SP. Acessado em 24 de novembro de 2006. Documento on-line, disponível

em <http://www.universiabrasil.net/materia/materia.jsp?id=5938>.

[5] Bonniol, J.J. & Vial, M. (2001). Modelos de avaliação: textos fundamentais, Porto

Alegre: ARTMED.

[6] Luckesi, C.C., (1996). Avaliação da aprendizagem escolar, São Paulo: Cortez.

[7] Franco, M.L.P.B. (1995). Pressupostos epistemológicos da avaliação educacional.

In SOUZA, C. P. de. Avaliação do rendimento escolar, Campinas: Papirus.

[8] Hadji, C. (2001). A avaliação desmistificada, Porto Alegre: ARTMED.

[9] Hoffmann, J.M.L. (1995). Avaliação mediadora: Uma prática em construção da

pré-escola à universidade, Porto Alegre: Educação e Realidade.

[10] OLIVEIRA, E.S.G. & Costa, M.A. A avaliação na educação a distância: desafios e

progressos, Rio de Janeiro: UFRJ. Documento on-line, disponível em

http://www.universia.pr/congreso/41/41.rtf. Acessado em: 17 de abril de 2007.

[11] OLIVEIRA, E. S. G. et al (2006). A avaliação da aprendizagem na educação a

distância: o diálogo entre avaliação somativa e formativa. In: 1ª Reunião Anual da

ABAVE, 2006, Belo Horizonte. Anais da 1ª Reunião Anual da ABAVE, 2006.

Acesso em: 28 de dezembro de 2006. Disponível em:

http://www.abave.org.br/publicacao.do?acao=buscar&codpublicacao=129&dest=m

ostra.

[12] NEDER, M. L. C. (1996). Avaliação na Educação a Distância: significações para

definição de percursos. In: Educação à Distância, organizado por Oreste Preti.

Cuiabá: UFMT/NEAD. Acesso em 28 de dezembro de dezembro de 2006.

Disponível em: http://www.nead.ufmt.br/documentos/AVALIArtf.rtf.

[13] ALEXANDER, C. et al. (1977). A Pattern Language, New York: Oxford

University Press.

[14] ALEXANDER, C. (1979). The Timeless Way of Building, New York: Oxford

University Press.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

147

[15] COPLIEN, J. O. (1996). Software Patterns, USA: SIGS Books & Multimedia.

[16] BUSCHMANN, F., et al., Pattern-Oriented Software Architecture, John Wiley and

Sons, New York, NY., 1996.

[17] BRAGA, R.T.V. (2001). Introdução aos padrões de software, São Paulo: ICMC –

Universidade de São Paulo. Documento online, disponível em:

http://sugarloafplop2005.icmc.usp.br/NotasDidaticasPadroes.pdf. Acesso em: 17 de

abril de 2007.

[18] Laboratório Didático Virtual – USP. O salto dos recordes. Disponível em:

<http://www.labvirt.futuro.usp.br/applet.asp?time=10:08:28&lom=10707>.

Acessado em 03 de janeiro de 2007.

[19] Laboratório Didático Virtual – USP. A química das cores nos fogos de artifício.

Acessado em 03 de janeiro de 2007. Disponível em:

<http://www.labvirtq.futuro.usp.br/applet.asp?time=10:05:44&lom=10819>.

[20] Racha a Cuca. Calculadora quebrada. Documento on-line, disponível em

<http://rachacuca.com.br/calculadora-quebrada/>. Acessado em 03 de janeiro de

2007.

[21] Centros de Competências Nónio. Os Concelhos. Disponível em:

<http://nonio.eses.pt/asp/nonio2/soft/wpquest/quest/quest.htm>. Acessado em 03 de

janeiro de 2007.

[22] Tac-Software. Geography Quiz. Documento on-line, disponível em:

<http://www.tac-soft.com/Demoquizzes/GeographyMM.html>. Acessado em 03 de

janeiro de 2007.

[23] Rede Interativa Virtual de Educação - Rived. É hora de colocar as coisas no lugar!.

Acessado em 03 de janeiro de 2007. Documento on-line, disponível em:

<http://rived.proinfo.mec.gov.br/curso/objetos/bio/index.htm>.

[24] Centros de Competências Nónio. Uma aventura na União Européia. Documento

on-line, disponível em: <http://nonio.eses.pt/asp/europa/index.htm>. Acessado em

03 de janeiro de 2007.

[25] Tac-Software. Teaching Templates. Documento on-line, disponível em:

<http://www.tac-soft.com/>. Acessado em 03 de janeiro de 2007.

[26] Half-baked Software. Quandary. Documento on-line, disponível em:

<http://www.halfbakedsoftware.com/quandary.php>. Acessado em 03 de janeiro de

2007.

[27] Laboratório Didático Virtual – USP. A química dentro de um bolo. Acessado em 03

de janeiro de 2007. Documento on-line, disponível em:

<http://www.labvirtq.futuro.usp.br/applet.asp?time=17:04:48&lom=10623>.

[28] National Library of Virtual Manipulatives. Base Blocks Addition. Documento on-

line, disponível em: <http://nlvm.usu.edu/en/nav/frames_asid_154_g_2_t_1.html>.

Acessado em 03 de janeiro de 2007.

[29] National Library of Virtual Manipulatives. Algebra Balance Scale. Acessado em 03

de janeiro de 2007. Documento on-line, disponível em:

<http://nlvm.usu.edu/en/nav/frames_asid_201_g_4_t_2.html?open=instructions>.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

148

[30] Laboratório Didático Virtual - USP. Um dublê em apuros. Disponível em:

<http://www.labvirt.futuro.usp.br/applet.asp?time=13:15:26&lom=10536>.

Acessado em 03 de janeiro de 2007.

[31] TALARICO NETO, A; et al. Cog-Learn: uma Linguagem de Padrões para e-

Learning. Revista Brasileira de Informática na Educação, Rio de Janeiro, 13(3), p.

33-50, 2006.

[32] ZIMMERMANN, B., et al. Patterns for Tailoring E-Learning Materials to Make

them Suited for Changed Requirements. VikingPLoP 2006, Helsingör, Dänemark.

2006.

[33] GIBERT-DARRAS, F.; et al. Towards a Design Pattern Language to Track

Students' Problem-Solving Abilities. Artificial Intelligence in Education

Conference: Workshop on Usage Analysis in Learning Systems, Amsterdam, The

Netherlands. 2005.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

149

Patterns for Documenting Frameworks – Process

Ademar Aguiar, Gabriel David

INESC Porto, Faculdade de Engenharia, Universidade do Porto
Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
E-mail: ademar.aguiar@fe.up.pt, gtd@fe.up.pt

Good design and implementation are necessary but not sufficient pre-requisites for the
successful reuse of object-oriented frameworks. Although not always recognized, good
documentation is crucial for effective framework reuse, but it is often hard, costly, and
tiresome to produce it, especially when not aware of its key problems and the best ways to
address them. The patterns here presented are from a set of related patterns that describe
proven solutions to recurrent problems of documenting object-oriented frameworks. In
particular, this document presents process patterns, addressing problems and solutions related
with the process of writing documentation (e.g. which activities, roles and tools are needed?),
which complement the set of artefact patterns previously published by the authors addressing
problems closely related with the documentation itself.

Object-oriented frameworks are a powerful technique for large-scale reuse capable
of delivering high levels of design and code reuse. As software systems evolve in
complexity, object-oriented frameworks are increasingly becoming more important
in many kinds of applications, new domains, and different contexts: industry,
academia, and single organizations.

Although frameworks promise higher development productivity, shorter time-to-
market, and higher quality, these benefits are only gained over time and require
up-front investments. Before being able to use a framework successfully, users
usually need to spend a lot of effort on understanding its underlying architecture
and design principles, and on learning how to customize it, which all together
implies a steep learning curve that can be significantly reduced with good
documentation and training material.

This paper contributes with two additional patterns to the work in progress of
writing a pattern language to help on documenting frameworks 0[2][3][4], and
therefore to help developers on employing frameworks more effectively.

Authors

Abstract

Introduction

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

150

The pattern language comprises a set of interdependent patterns that aim at helping
developers on becoming aware of the typical problems they will face when
documenting object-oriented frameworks. The patterns were mined from existing
literature, lessons learned, and expertise on documenting frameworks, based on a
previous compilation about framework documentation [5].

The pattern language describes a path commonly followed when documenting a
framework, not necessarily from start to end to achieve effective results. In fact,
many frameworks are not documented as completely as suggested by the patterns,
due to different kinds of usage (white-box or black-box) and different balancing of
tradeoffs between cost, quality, detail, and complexity. One of the goals of these
patterns is precisely to expose such tradeoffs in each pattern, and to provide
practical guidelines on how to balance them to find the best combination of
documents, activities and tools to the specific context at hands.

According to the nature of the problems addressed, the patterns are organized in
artefact patterns, which address questions such as which kinds of documents to produce?
what should they include? how to relate them? 0[2][3], and are overviewed in the appendix,
and process patterns, which address questions such as how to do it? which activities, roles
and tools are needed?, are strictly related with the process of cost-effectively
documenting frameworks, and to which belong the patterns here documented.

As the name suggests, this category of patterns are primarily concerned with the
process of documenting object-oriented frameworks, and not so much with the
artefacts themselves, as those are the major concern of the artefacts patterns.

Framework documentation is produced mainly during framework development,
resulting in tutorials and user guides teaching how to use the framework, and
design documents to explain how it works and describe its underlying design
principles and mechanisms, among other documents.

Once produced, framework documentation is then used and reviewed during all
phases of framework development. It is probably at framework instantiation,
during application development, that documentation is used in a more intensive
way. It acts as a means of communicating important information from the original
framework designers, primarily to framework users, but also to other framework
designers and framework maintainers.

The incorporation of comments and feedback from readers is very important for
improving the quality of future revisions of the documentation, so it is important
to establish an effective bidirectional communication mechanism between
documentation authors and readers.

As a framework evolves during the expected long life of the respective framework,
the accompanying documentation must evolve as well, and therefore the
maintenance of documentation is an activity to be taken in consideration during all
framework’s life.

Pattern Language

Process Patterns

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

151

The conceptual life cycle of framework documentation is similar to the typical life
cycle of technical documentation, which can be seen as organized in five basic
activities: configuration, production, organization, usage, and maintenance (see Figure 1).
Although these activities are not all mandatory, neither not necessarily needing to
follow the exact order shown, they reflect very well all what is involved (roles,
activities, and information flows).

Figure 1 - Typical activities of documenting frameworks.

This document presents patterns addressing recurrent problems somehow related
with some of these activities.

To describe all the patterns in a concise way, we have adopted a pattern form
similar to Christopher Alexander's, including the most essential sections,
concretely: Name-Context-Problem-Solution-Consequences [7]. References to other
patterns of this pattern language are formatted as following: ANOTHER PATTERN.
Thumbnails for the artefact patterns are included in the appendix, and thumbnails
for the process patterns are below.

Before going to the detail of each pattern, we will briefly overview all the process
patterns by summarizing each pattern’s intent, which are also depicted in Figure 2.

Figure 2 - Documentation process patterns and their relationships.

Configuration Production

Usage

Organization
documents,

models,
source code

usage
feedback

integrated
contents

templates,
tool setup

Maintenance

refinements

Contents
storage

processed
contents

managermanager

authorauthor readerreader

metadata

toolstools

activity flows role role-assignmentactivity flowsactivity flows role role-assignment

Target
Audiences

Document
Creation

Cross-References Semantic
Consistency

Document
Organization

Contents Publishing
and Presentation

Supporting Tools

is-related-to
patterns

helps

provides focus

requires

requires

requires

supports

requires

implies

requires

Target
Audiences

Document
Creation

Cross-References Semantic
Consistency

Document
Organization

Contents Publishing
and Presentation

Supporting Tools

is-related-to
patterns
is-related-to
patterns
is-related-tois-related-to
patternspatterns

helps

provides focus

requires

requires

requires

supports

requires

implies

requires

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

152

Target Audiences pattern describes one of the first activities in the overall process of
documenting (a framework), which is to define and prioritize the audiences
intended to be addressed by the documentation. Once having defined the
audiences to target, the contents can then be more effectively created and
organized to be presented through the most appropriate views and formats for
those audiences.

Document Creation pattern provides hints on the main activity of documentation. It
explains how to streamline the creation of documentation artefacts (documents,
models, source code fragments, etc.) both by developers and technical writers, in
order to yield good quality and cost-effective documentation.

Cross-References pattern addresses the problem of linking and relating different
documentation artefacts (e.g. explanations, models and source code of examples),
to provide good navigability between all the contents involved, and therefore to
minimize the obstacles to the strategies that readers spontaneously adopt when
trying to understand and learn something new.

Semantic Consistency pattern tells you how to cope with the difficulties of maintaining
the semantic consistency between related software artefacts during development
(source code, models, and documents) to enable their continual review and
modification throughout the lifecycle and thus continuously preserve its accuracy
and value for the readers.

Document Organization pattern provides hints of several kinds (e.g. storage, metadata,
guidelines, conventions, templates) that help to achieve a good organization of all
the possible documentation involved, to keep all the contents consistent, well
structured, well integrated, easy to browse, easy to find, and easy to maintain.

Content Publishing and Presentation pattern describes the ultimate activity of
documentation, the reason why it is produced and organized. The pattern
addresses issues on using documentation, not only to read contents in a
presentation format, but also to browse, search, select, and navigate through the
contents, what sometimes requires processing of contents (transforming, filtering,
composing, etc.), to present them in the most convenient format to the reader.

Tool Support pattern addresses the problem of ensuring quality and reducing the
typical high costs associated with the production and maintenance of framework
documentation. The pattern teaches you how to automate the documentation
process the best as possible, while retaining the flexibility and adaptability to
different developers and environments.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

153

Pattern Target Audiences

You are about to start documenting a framework to preserve and communicate the
knowledge you have that might be helpful to others willing to understand it.

It is commonly accepted that good technical documentation can significantly
improve the process of learning, understanding and reusing frameworks. However,
it is often hard, costly and tiresome to define and write good documentation for a
framework because we need to satisfy different audiences, to encompass several
purposes, and to support different kinds of reuse.

How to drive the documentation activities in order to effectively produce the
most valuable documents for its readers?

Completeness. To be complete, the overall documentation of a framework usually
combines a lot of information that must be produced, organized and maintained
consistent. In concrete, it must include framework information about the
application domain covered, the specific purpose, how-to-use, how it works, and
also internal design details. As a result, this often requires combining a large
diversity of contents, gathered from different types of documents, possibly
represented in different notations, and with different presentation requirements.

Usefulness. To be useful, the contents must be properly tailored to meet the needs of
each category of software engineers involved in framework-based application
development, which may play different roles, may have varying levels of
experience, and therefore look for different kinds of information.

Time and costs. To control documentation costs under affordable values and to
ensure production and maintenance times acceptable, it is wise and mandatory to
restrict or prioritize the set of documents and contents to produce.

Start the process of documenting a framework by clearly defining and
prioritizing the audiences to be addressed.

Typically, there are five main kinds of framework users, with different
documentation requirements, to consider or not as target audience: framework
selectors, application developers, framework developers, framework maintainers, and developers of
other frameworks [5].

Framework selector is someone (manager, project leader, developer) responsible for
deciding which frameworks to use in an application development project.

Framework selectors will look for a short description of the framework's purpose,
the domain covered (FRAMEWORK OVERVIEW) and an explanation of the most
important features of the framework, possibly illustrated with a set of examples
(SPIRAL COOKBOOK, GRADED EXAMPLES).

Application developer is a software engineer that wants to customize a framework to
the needs of the application at hand. In a first place, they want to identify which
points must be customized (CUSTOMIZATION POINTS), and to know how to

Problem

Forces

Solution

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

154

implement such customizations, rather than to understand why it must be exactly
done that way.

The application developer needs prescriptive documentation capable to guide her
find out which hot spots must be used, which set of classes to subclass, which
methods to override, and which objects to interconnect (SPIRAL COOKBOOK). It
must be expected that the application developer is not knowledgeable on the
application domain and she is not an experienced software developer.

Framework developer is a software engineer involved in the design and implementation
of a framework. Framework developers must have a good understanding of the
overall architecture and its rationale.

They need also the most detailed view over the framework design internals
(DESIGN INTERNALS), the application domain (FRAMEWORK OVERVIEW), and the
hot spots that support its flexibility (CUSTOMIZATION POINTS). The information
needed must be described at several levels of abstraction, from a high level of
abstraction to a concrete level of detail. It usually contains several kinds of artifacts
ranging from architectural models and design patterns to abstract algorithms and
concrete source code (TRAVERSABLE CODE).

Framework maintainer is a software engineer responsible for the maintenance and
evolution of a framework. Usually, framework maintainers are the original
framework developers, but this is not always the case.

Their needs in terms of documentation are very similar to those of framework
developers, but the documentation has to be more descriptive, instead of
prescriptive, because original framework designers can’t predict how the
framework might be extended in the future through additional flexibility on
existing hot spots, or in additional hot spots. It is expected that the framework
maintainers are both domain experts and software experts.

Developers of other frameworks usually study existing frameworks, even frameworks for
other domains, to find ways of providing flexibility at the hot spots of the
framework they are developing.

They have special interest on information at a high level of abstraction, such as
abstract solutions and design patterns (DESIGN INTERNALS). The documentation
requirements are similar to those of framework maintainers, except that they don’t
need the concrete details about the framework, but rather the abstract ideas. It is
expected that framework developers are expert software designers but not
necessarily domain experts for the framework they are mining for ideas.

From all these audiences, application developers often represent the majority.
Framework developers are also a very important audience because they are authors
and intensive users of framework documentation simultaneously.

Once defined the concrete audiences to target, it becomes easier to decide which
types of documents are more important to write, which have higher priority, and
what to include in them, considering its usefulness to the audiences on target
(DOCUMENT CREATION). It becomes also easier to decide how to organize the
documents (DOCUMENT ORGANIZATION), and which are the most appropriate

Consequences

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

155

views and formats to present them to target audiences (CONTENT PUBLISHING
AND PRESENTATION).

One possible drawback of defining target audiences is the risk of being more
pragmatic than it should be, and therefore to not consider other audiences not
considered of high-priority but that could also benefit from the documentation.

As a result, having in mind a specific audience, documentation usefulness can be
guaranteed, completeness relaxed, and this will help to reduce documentation
effort therefore being more effective.

To have well-defined target audiences for a document is a good practice of
technical documentation, and although it can’t be proved that this pattern was
followed, for example, JUnit and HotDraw frameworks include different
documents having different audiences in mind, suggesting that existed some kind
of concern about defining audiences to target when writing documentation.

HotDraw. In a paper about the framework authored by Ralph Johnson [8], it is
presented a pattern language to document the HotDraw framework, comprising a
set of patterns, one for each recurrent problem of using the framework. In that
work, the goal is to document the design of the framework, possibly having in
mind, primarily, advanced framework users.

JUnit. The document of JUnit [9], named “A Cook’s Tour”, is devoted to explain
how JUnit was designed, possibly targeted for advanced users, or other framework
developers. Another document, named “JUnit: Test infected: Programmers love
writing tests”, is clearly targeted for typical framework users.

Known Uses

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

156

Pattern Document Creation

You have decided the TARGET AUDIENCES and the types of documents more
valuable to them that must be created.

Contents production typically includes the elaboration of technical documents and
models, and also the formatting and integration of documents and source code. In
addition, to support good contents navigability, it is also very important to cross-
reference all kinds of contents exhaustively.

To be useful and complete, framework documentation must include a lot of
contents, gathered from different types of documents, at different moments of the
development life cycle, and produced by different kinds of people. Besides
knowing what to document and to whom (TARGET AUDIENCES) it is also very
important to know who, how, and when to document.

How to produce the documents required in a cost-effective way,
orchestrating all participants involved, and promoting their cooperation?

Quality. Good technical documentation is the ultimate goal of documentation
writers, and what readers definitely look for. But producing good quality
documentation comes with many issues, of which the difficulty of defining and
assessing its quality is perhaps the first one.

Discipline. A well-defined process identifying roles, techniques, activities, and
guidelines is very important to effectively producing documentation. Although
discipline by itself does not ensure the quality of an activity or final product, there
is however a direct relation between process maturity and product quality.
Discipline helps on improving productivity, reducing costs, and is fundamental to
enable cooperation in large teams. Very prescriptive guidelines and increased
formality can be used to improve discipline, but at the cost of higher inefficiency,
less pleasant activities, and constraining creativity.

Agility. As technical writing requires creativity, it is important to reduce formalities
to the minimum, if we want to face documentation as a set of activities that are
simple, flexible, almost neutral, and easy to adapt. Iteration and feedback are also very
important to evolve quality of documents smoothly and naturally.

Cost. As documentation effort must not outweigh its benefits, it is important to
ensure appropriate mechanization of human activities, and automation of repetitive
tasks.

Value. Documents are written to satisfy the reader, so it is important to assess its
value to the reader.

Create documents by following the most agile process allowed by your
project, guaranteeing that the final resulting artifacts have the required level
of quality and are the most valuable for the readers.

Below you can find a set of roles and practices to adopt to help you on improving
documentation agility.

Problem

Forces

Solution

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

157

The documentation involves the collaboration of different kinds of people in
different phases of the process.

Developers, such as framework developers, and framework maintainers, are
responsible for content creation mostly during the development phase.

Technical writers are responsible to structure, guide, review and conclude the
documentation;

Documentation managers are responsible for configuring and maintaining the
documentation base, namely the template documents, template instances, and
filtering, transforming and formatting documents according to the needs of each
audience.

Depending on the writers’ discipline, documentation managers can enforce or
flexibilize the documentation rules with the goal of achieving good quality. The
more flexible and informal the process, the more attractive it will be for the writers,
because formality often compromises creativity. However, too much flexibility may
result in inconsistent writing styles and presentation, if the writers are not well
disciplined.

Collective ownership. By default, all documents must be readable and editable by
anyone involved in the project. Collective ownership of documents usually leads to
better documents, because everyone can contribute, resulting in richer and more
complete documents. The documents can be reviewed later by a technical writer to
improve its homogeneity, consistency of terms, writing style and formatting.

Collaborative writing. Write in collaboration with other people, to assess the
understandability, completeness, and accuracy of the document.

Create simple documents, but just simple enough. A document easy to read must be
succinct. It shouldn’t contain everything, but only the enough information that
fulfills its purpose and the intended audience. The simplicity and understandability
of contents must be evaluated by the readers.

Create several documents at once. To represent all the aspects of a framework, and to
serve all the audiences and purposes, it is necessary to use different documents (e.g.
recipe, example, hook description, and pattern). Editing them in parallel can help
writers on “dumping” their knowledge more effectively, as writers can document
almost every aspect they have in mind without switching contexts.
Cross-references must be used to link the separated but related documents (CROSS-
REFERENCES).

Publish documents publicly. Publicly available documents, published for everyone to see,
support knowledge transfer and improves communication and understanding. The
feedback from readers is improved and the overall quality of documents is quickly
improved.

Document and update only when needed. To be cost-effective, documents should be
created and iteratively refined only when needed, not when desired.

Reuse documentation. Reuse contents and structure of existing documentation in order
to improve the productivity and quality of the documentation. Reusable contents
must be modular, closed, and readable in any order.

Roles

Core practices

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

158

Use simple tools. Simple tools can help readers focus more on the contents, rather
than on the presentation (SUPPORTING TOOLS). Good examples of simple but
effective documentation tools are wikis.

Define and follow documentation standards. Writers must agree and follow a common set
of documentation conventions and standards on a project.

Document it, to understand it. To document helps on formalizing ideas, by focusing on
single aspects, in isolation from others less relevant, and this helps on the
understanding process.

Once defined the documents to write, and in order to produce the most valuable
documents to the readers on target, it is important to adopt a documentation
process that satisfies the project needs and perfectly balances cost, quality,
discipline and agility.

The adoption of agile documentation practices helps to reduce costs and maximize
the value to the reader, while promoting collaboration between team elements.

In order to achieve good quality documentation with small effort, several well-
documented open-source frameworks follow documentation processes
encompassing some of the agile practices above defined. Very good examples are
Apache and Eclipse frameworks.

In first place, the authors would like to thank Linda Rising, our shepherd, for the
valuable comments and feedback provided during shepherding. We also want to
thank Neil Harrison, Uwe Zdun, Rosana Teresinha Vaccare Braga, and Ralph
Johnson, for the comments and feedback provided during the shepherding of
other patterns from this pattern language for documenting frameworks, and
Eduardo Fernandez, Kevlin Henney, Klaus Marquardt, Sergiy Alpaev, Sami
Lehtonen, Allan Kelly, Ian Graham, Alexander Füllebornand, Martin Schmettow,
Michalis Hadjisimouand, Richard Gabriel, Joseph Yoder, Mark Perry, Maria, and
all the other participants of the writer’s workshops at VikingPLoP’2005,
EuroPLoP’2006, PLoP’2006, and SugarLoafPLoP’2007, for the motivation,
comments and suggestions they provided.

[1] Aguiar, A., and David, G. (2005). Patterns for Documenting Frameworks – Part I. In Proceedings of

VikingPLoP’2005, Helsinki, Finland (to be published).
[2] Aguiar, A., and David, G. (2006). Patterns for Documenting Frameworks – Part II. In Proceedings of

EuroPLoP’2006, Irsee, Germany (workshopped).
[3] Aguiar, A., and David, G. (2006). Patterns for Documenting Frameworks – Part III. In Proceedings

of PLoP’2006, Portland, Oregon, USA (workshopped).
[4] FEUP, doc-it project web site, http://doc-it.fe.up.pt/.
[5] Aguiar, A. (2003). A minimalist approach to framework documentation. PhD thesis, Faculdade de

Engenharia da Universidade do Porto.
[6] Hargis, G. (2004). Developing quality technical information. Prentice-Hall, 2nd edition.
[7] Alexander, C., Ishikawa, S., and Silverstein, M. (1977). A Pattern Language. Oxford University Press.
[8] Johnson, R. (1992). Documenting frameworks using patterns. In Paepcke, A., editor, OOPSLA’92

Conference Proceedings, pages 63–76. ACM Press.
[9] Beck, K. and Gamma, E. (1997). JUnit homepage. Available from http://www.junit.org.

Supplementary
practices

Consequences

Know-Uses

Credits

References

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

159

Appendix

This appendix briefly presents the artefact patterns that complement the process patterns
previously described. They address problems and solutions related with the
documents to produce (which kinds of documents to produce? what should they include? how
to relate them?).

Artefact patterns address problems related with the documentation itself, here seen
as an autonomous and tangible product independent of the process used to create
it. They provide guidance on choosing the kinds of documents to produce, how to
relate them, and what to include there.

Similarly to other technical documentation, the overall quality of framework
documentation is complex to determine and assess, and this is perhaps the first
issue. Documentation must have quality, that is, it must be easy to find, easy to
understand, and easy to use [6]. Task-orientation, organization, accuracy, and visual
effectiveness are among all documentation quality attributes, the most difficult
ones to achieve on framework documentation [5].

From the reader’s point of view, the most important issues are on providing
accurate task-oriented information, well-organized, understandable, and easy to
retrieve with search and query facilities. From the writer’s point of view, the key
issues are on selecting the contents to include, on choosing the best representation
for the contents, and on organizing the contents adequately, so that the
documentation results of good quality, while easy to produce and maintain.

Figure 3 - Documentation artefact patterns and their relationships.

Artefact Patterns

Framework
Overview

Spiral
Cookbook

Customization
Points

Design
Internals

Error Recovery
Guide

Graded
Examples

Documentation
Roadmap

Traversable
Code

Reference
Guide

is-related-to
patterns

where to start?

first recipe

how-to’s

errors

uses

illustrate

how it works?

code

index

Framework
Overview

Spiral
Cookbook

Customization
Points

Design
Internals

Error Recovery
Guide

Graded
Examples

Documentation
Roadmap

Traversable
Code

Reference
Guide

is-related-to
patterns
is-related-to
patterns
is-related-tois-related-to
patternspatterns

where to start?

first recipe

how-to’s

errors

uses

illustrate

how it works?

code

index

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

160

To describe the patterns, we have adopted the Christopher Alexander's pattern
form: Name-Context-Problem-Solution-Example [7]. Before going to the detail of each
pattern, we will overview the pattern language with a brief summary of each
pattern’s intent. For contextual purposes, all the artefact patterns are overviewed
below and depicted in Figure 3 highlighting the two patterns described in this
paper.

Documentation Roadmap helps on deciding what to include in a first global view of the
documentation that can provide readers of different audiences with useful and
effective hints on what to read to acquire the knowledge they are looking for 0.

Framework Overview tells you to provide introductory information, in the form of a
framework overview, briefly describing the domain, the scope of the framework,
and the flexibility offered, because contextual information about the framework is
the first kind of information that a framework user looks 0.

Cookbook & Recipes describes how to provide readers with information that explains
how-to-use the framework to solve specific problems of application development,
and how to combine this prescriptive information with small amounts of
descriptive information to help users on minimally understanding what they are
doing [2].

Graded Examples describes how to provide and organize example applications
constructed with the framework and how to cross-reference them with the other
kinds of artefacts (cookbooks, patterns, and source code) [2].

Customization Points describes how to provide readers with task-oriented information
with more design detail than cookbooks and recipes so that readers can quickly
identify the points of the framework (hot-spots) they need to customize and thus
get a quick understanding about how they are supported (hooks) [3].

Design Internals explains how to provide detailed design information about what can
be adapted and how the adaptation is supported, by referring the patterns that are
used in its implementation and where they are instantiated [3].

Reference Guide tells you what to include as reference information and how to
structure the documentation to make it the most complete and detailed as possible
to assist advanced users when looking for descriptive information about the
artefacts and constructs of the framework.

Traversable Code provides hints on how to organize and present source code, both of
the examples and the framework itself, when desired, to make it easy to browse
and navigate, from, and to, other software artefacts included in the overall
documentation, namely models and documents.

Error Recovery Guide explains how to help users on understanding and solving the
errors they encountered when using the framework by guiding users on the
customization process and revealing the most important design principles and
details.

Patterns overview

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

161

Modelo de Melhoria do Processo de Software para Micro e

Pequenas Empresas baseado em Padrões – Discussão e

Levantamento Preliminar

Tarciane C. Andrade, Fabrício G. Freitas
1
, Jerffeson Teixeira de Souza

Universidade Estadual do Ceará (UECE)

Av. Paranjana, 1700, Campus do Itaperi

60.740-903, Fortaleza – CE

tarciane@gmail.com, fabriciogf@uece.br, jeff@larces.uece.br

Resumo. Este artigo inicia o levantamento e a discussão de um conjunto de

Padrões de Processos de Software, aqui documentados sob a forma de Patlets,

desenvolvidos para lidar com as dificuldades encontradas na implantação de

Modelos de Melhoria do Processo de Software em Micro e Pequenas

Empresas – MPEs de Software. O objetivo é a extração das características

comuns dos modelos de qualidade a fim de auxiliar na implantação da

qualidade de software nas MPEs. O conjunto de Padrões de Processos de

Software é utilizado como um modelo base que permite a introdução de

conceitos fundamentais de qualidade no processo de desenvolvimento de

software nessas empresas a baixo custo.

Palavras-chave: Melhoria do Processo de Software, Qualidade de Software,

Micro e Pequenas Empresas de Software, Padrões de Processos, Patlets.

Abstract. This paper initiates a description and a discussion of a set of

Process Software Patterns, here documented as Patlets, developed to deal

with the difficulties found in the adoption of Software Process Improvement

Models on Small Software Organizations. The goal is the extraction of the

common characteristics of the quality models in order to facilitate the

adoption of software quality in Small Organizations. The set of Process

Software Patterns is to be used as an intermediate quality model, allowing the

introduction of basic concepts of quality in the software development process

in these organizations with low cost.

Keywords: Software Process Improvement, Software Quality, Small Software

Organizations, Process Patterns, Patlets.

1. Introdução

As empresas que trabalham com desenvolvimento de software possuem um desafio:

produção de software de qualidade. Esta qualidade está relacionada principalmente ao

desenvolvimento de sistemas menos propensos a falhas e mais eficientes, ao

cumprimento de prazos e ao menor custo de desenvolvimento possível.

 Essa necessidade de produzir software de qualidade tem exigido cada vez mais

ferramentas e técnicas da Engenharia de Software. Neste sentido, organismos

1
 Apoio financeiro da Fundação Cearense de Pesquisa – FUNCAP.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

162

empresariais, universidades e entidades de pesquisa têm proposto metodologias

desenvolvimento de sistemas, bem como padrões de software e técnicas para melhoria

da qualidade do processo e do produto de software com o intuito de possibilitar a

garantia da qualidade do software.

 Em Engenharia de Software, um Padrão de Software é uma descrição de uma

solução geral para um problema recorrente em qualquer das etapas de desenvolvimento

de um software [Coplien 1996]. Esses padrões podem se apresentar de várias formas,

incluindo padrões de análise, padrões de projeto, padrões organizacionais e padrões de

processo. Um Padrão de Processo, segundo [Coplien 1996], descreve os processos

básicos, que associados a recomendações, definem práticas bem sucedidas e

relacionadas aos processos. O estabelecimento de padrões de processo depende do

conhecimento vasto do domínio da aplicação daquele processo. No caso do domínio de

desenvolvimento de software vários padrões são estabelecidos. Padrões em geral, e

padrões de processo em particular, ajudam na documentação de boas soluções de forma

que estas possam ser reutilizadas com maior facilidade. Os Patlets, [Coplien et. al.

2004], [Grone 2006], [Harrison 1999], são padrões resumidos que contém somente os

elementos essenciais (nome, contexto, problema, solução e usos conhecidos) e servem

para referenciar um padrão completo ou como passo intermediário na documentação de

um padrão completo.

 Existem, atualmente, diversos modelos de qualidade focados na melhoria do

processo de desenvolvimento como um todo, entre eles: ISO 9000:2000 [ISO 2000],

ISO/IEC 15504 [ISO 2003], ISO/IEC 12207 [ISO 2002], CMMI [SEI 2005], PSP [SEI

1997], TSP [SEI 2000], MR-MPS [SOFTEX 2006], PMBOK [PMI 2000] e ISO

10006:2000 [ISO 2000] os quais funcionam como guia de boas práticas durante o

processo de produção de software. As grandes empresas (segundo [MCT 2005],

empresas com mais de 100 empregados) que atuam na área de desenvolvimento de

software têm obtido êxito na implantação de tais modelos, principalmente em virtude da

disponibilidade de recursos humanos e financeiros. As Micro e Pequenas Empresas de

Software – MPEs (segundo [MCT 2005], empresas com até 10 e 50 empregados,

respectivamente), em contrapartida, podem encontrar dificuldade na tentativa de

implantação de tais modelos devido à grande quantidade de processos exigida por eles,

do elevado custo financeiro e da necessidade de envolvimento de vários recursos em

diferentes papéis.

 Nesse contexto, este artigo relata, inicialmente, os problemas enfrentados por

MPEs no ramo de software na tentativa de implantar os modelos de qualidade existentes

no mercado. Em seguida, é apresentado o resultado da extração de características

comuns entre os principais modelos de qualidade de software existentes através da

documentação dessas características na forma de Padrões de Processo, documentados

no formato de patlets. O foco do conjunto de Padrões de Processos aqui apresentados

está na garantia da qualidade de software em todo o processo de desenvolvimento. Além

de contribuir para superar as dificuldades encontradas na implantação dos modelos de

qualidade de software e adequar a sua aplicação à realidade de poucos recursos das

MPEs de software, o conjunto de padrões contribuirá na construção de um modelo de

qualidade simplificado. Dessa forma, o cenário alcançado pela aplicação de tal modelo

simplificado introduz conceitos fundamentais da garantia da qualidade a baixo custo,

apresentando-se como um passo intermediário entre um ambiente de desenvolvimento

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

163

sem garantia da qualidade e a situação encontrada após a implantação de um modelo de

qualidade completo.

2. Dificuldades Encontradas na Melhoria do Processo de Software nas

Micro e Pequenas Empresas

Nas últimas duas décadas o SPI (Software Process Improvement) tem se tornado um

fator chave no aumento da produtividade e qualidade no desenvolvimento do software,

interferindo na competitividade das empresas de software e até mesmo na sobrevivência

no mercado. Os objetivos do SPI são produzir e garantir softwares de qualidade no

tempo estimado, dentro do orçamento previsto e com as funcionalidades desejadas.

 Vários modelos [ISO9000:2000 2000], [ISO12207 2002], [ISO15504 2003],

[CMMI 2005] e metodologias de SPI possuem abordagem direcionada para grandes

empresas de desenvolvimento de software. Entretanto, as MPEs se esforçam para tentar

implantar ou ainda adaptar estes modelos.

 Serrano et. al. [Serrano et. al. 2006] apresentam que as dificuldades encontradas

pelas MPEs em implantar um modelo de qualidade de software se deve à falta de um

guia de implantação direcionado a estas empresas, tão bem como o tempo e o custo para

tal implantação.

 Em [Oktaba 2006], Oktaba utiliza critérios para avaliar se os principais modelos

de SPI atendem às MPEs de software. Os critérios utilizados foram: adequação para

pequenas e médias empresas com baixos níveis de maturidade, baixo custo de

implantação e avaliação, específico para desenvolvimento de software, definido como

um conjunto de processos baseados em práticas reconhecidas internacionalmente.

Nenhum dos modelos avaliados atendeu a todos estes requisitos.

 Em [Laryd et. al. 2000], Laryd et. al. mostram a necessidade de iniciar o

processo de melhoria de qualidade do software o quanto antes nas MPEs. Eles retratam,

em primeiro lugar, a importância de iniciar antes do caos se instalar. Se a primeira

solução não for possível, o melhor é iniciar o programa de melhoria de software

enquanto a empresa ainda é pequena, com poucos analistas e com um simples gerente,

por exemplo. Entretanto, se uma empresa está tendo sucesso, ela tende a crescer. Tende

a aumentar a quantidade de analistas, de desenvolvedores, de gerentes por projetos, de

produtos e serviços. É neste ponto que se observa um aumento das dificuldades do

processo de desenvolvimento, pois se torna difícil de gerenciar, de agrupar as inúmeras

versões dos produtos entre outros. Para evitar esse tipo de problema, uma empresa deve

ter o foco no processo de melhoria do software antes mesmo que se torne necessário, ou

seja, mais ou menos no início da sua estruturação.

 Para [Kelly et. al. 1999], existem diferentes culturas entre pequenas e grandes

empresas. Em pequenas empresas os empregados esperam estar envolvidos em todos os

aspectos do processo de engenharia de software. Em tal situação, o processo de

melhoria de software é visto como introdução de burocracias que restringem a liberdade

individual.

 Brodman e Habra et. al. em [Brodman et. al. 1997], [Habra et. al. 1999] fazem

uma adaptação no CMM para atender as MPEs. Entre os principais problemas

abordados quanto ao CMM que levaram a esta decisão estão: sobrecarga de

documentação, necessidade de gerentes em muitas camadas, excesso de revisões,

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

164

recursos limitados, altos custos com treinamentos, práticas irrelevantes e inadequadas às

micro e pequenas empresas.

 Outras dificuldades encontradas para implantação de modelos de qualidade nas

MPEs são descritas em [Souza et. al. 2002], [Revankar et. al. 2006], [Herndon et. al.

2006]. Pequenas empresas possuem orçamentos reduzidos para melhoria de processos,

o que restringe até mesmo o investimento em treinamentos para os seus membros. Além

disso, a visão do cliente deve acompanhar as mudanças na melhoria do processo de

software da empresa, pois é comum o cliente ter contato direto com a equipe de

desenvolvimento o que compromete o gerenciamento do projeto. Na ausência de um

membro da equipe não há substituto, podendo uma atividade ser cancelada. Um ponto

importante é o apoio da alta gerência na mudança de visão da estrutura da empresa com

a implantação do modelo de qualidade de software.

 Por outro lado, as MPEs mesmo enfrentando todos os problemas, principalmente

com recursos limitados podem disseminar rapidamente os processos implantados, uma

vez que o número de empregados é comparativamente pequeno. Baseado na análise dos

problemas acima, MPEs de software necessitam de uma abordagem diferenciada para

melhoria de processo em comparação com grandes empresas.

3. Conjunto de Patlets de Processos de Software para Micro e Pequenas

Empresas

Diante das dificuldades enfrentadas por MPEs, observaram-se dois tipos de abordagens

para a implantação do processo de melhoria de software em tais empresas. A primeira

delas é a adequação dos modelos existentes com a escolha de apenas um subconjunto de

processos [Kelly et. al. 1999], [Habra et.al. 1999], [Serrano et. al. 2006], [Bezerra et. al.

2005], [Carmody 2006]. A outra abordagem é a criação de um modelo próprio tendo

como base os modelos existentes [Laryd et. al. 2000], [Silva et. al. 2003], [SOFTEX

2006], [Oktaba 2006], [Revankar et. al. 2006]. A escolha de uma destas abordagens

depende, entre outros fatores, do intuito de cada empresa, do orçamento reservado, e da

existência ou não de algum processo de melhoria no desenvolvimento de software na

mesma. Contudo, não existe nenhuma abordagem satisfatória e simples que permita às

empresas que não possuam um processo de garantia da qualidade bem definido,

implantá-la de tal forma que permita, em seguida, a aplicabilidade de qualquer um dos

modelos existentes de forma natural e com o mínimo de custo.

 Portanto, surge a oportunidade da elaboração de um conjunto de Padrões de

Processos, baseados na obtenção de características comuns entre os modelos atuais, que

servirá como guia de implementação de qualquer um dos modelos de qualidade. Assim,

o presente artigo propõe uma nova abordagem para garantir a qualidade no processo de

desenvolvimento de software nas MPEs e facilitar, se for o caso, o emprego dos

modelos de qualidade existentes.

 Como forma de iniciar o trabalho de levantamento dos Padrões de Processo de

Software nos modelos de qualidade e adaptações existentes para MPEs de software foi

documentado um conjunto de patlets. Os patlets foram extraídos a partir do cruzamento

inicial de informações das duas abordagens de melhoria da qualidade de software

citadas anteriormente: processos dos modelos existentes atualmente e processos das

adaptações realizadas pelas MPEs.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

165

 No total foram obtidos seis patlets. Os patlets foram distribuídos em todo o

processo de desenvolvimento de software com levantamento inicial dos papéis de cada

membro da empresa. Neste momento, não foram citados os artefatos, também chamados

de produtos de trabalho, de entrada e saída de cada padrão de processo. Vale ressaltar

também que alguns patlets, futuramente, podem ser desmembrados em outros.

 Os patlets estão documentados e organizados de acordo com o seguinte formato:

• Nome do Padrão: descreve o nome do padrão, e referencia o contexto e o

problema. É através dele que o padrão se torna conhecido;

• Contexto: descreve em quais circunstâncias o problema surge;

• Problema: descreve o problema a ser resolvido;

• Solução: descreve o que é necessário ser feito para resolver o problema;

• Usos Conhecidos: descreve aplicações do padrão em modelos existentes.

 Os patlets encontrados estão descritos de forma sucinta na Tabela 1:

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

166

Tabela 1. Resumo dos Patlets Encontrados

Nome do Padrão Problema Solução

Garantia da

Qualidade dos

Processos e dos

Produtos

Como assegurar que os

processos e produtos de trabalho

estão de acordo com a

metodologia adotada?

Estabeleça critérios de

avaliação, como o quê,

quando e como serão

avaliados;

Revisão por Pares Como detectar os defeitos no

produto de trabalho?

Realize encontros formais ou

informais de revisão;

Gerência de

Configuração

Como controlar os produtos de

trabalho e manter a integridade e

rastreabilidade das suas versões?

Cada membro do projeto deve

armazenar, atualizar e

recuperar os seus respectivos

produtos de trabalho através

de sistema específico;

Medição Como medir o software de forma

quantitativa?

Estabeleça os objetivos das

medições, as perguntas para

cada objetivo, e as métricas

que respondam às perguntas;

Verificação Como assegurar que os produtos

de trabalho refletem

apropriadamente os requisitos

especificados por eles?

Realize testes funcionais,

Revisão por Pares, testes de

integração, por exemplo;

Validação Como assegurar que os

requisitos do cliente foram

atendidos?

Execute as validações através

de testes de aceitação, testes

alfa e beta, teste de

desempenho, por exemplo;

A seguir, descrição detalhada dos patlets encontrados:

Nome do Padrão: Garantia da Qualidade dos Processos e dos Produtos

Contexto: Durante todo o ciclo de desenvolvimento do software é necessário assegurar

que os processos estão sendo seguidos e que os produtos de trabalho produzidos estão

de acordo com a metodologia, procedimentos e padrões previamente definidos.

Problema: Como assegurar que os processos e produtos de trabalho estão de acordo

com a metodologia, procedimentos e padrões adotados e prover a melhoria contínua?

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

167

Solução:

Crie o papel do SQE (Software Quality Engineering) como responsável por garantir

que os processos e produtos de trabalho estão sendo seguidos dentro do projeto. O SQE

não deve acumular papéis em virtude da necessidade de imparcialidade para garantir a

qualidade.

Realize as atividades abaixo, com o papel do SQE:

Para avaliar os processos:

1. Estabeleça critérios de avaliação, como o quê, quando e como serão avaliados;

2. Crie marcos (milestones
2
) no projeto para efetuar a avaliação dos produtos;

3. Utilize os critérios de avaliação, definidos anteriormente, para garantir a

aderência aos processos;

4. Identifique e registre as não conformidades encontradas;

5. Realize ações corretivas quando necessário;

6. Identifique e registre as lições aprendidas que podem melhorar o processo de

desenvolvimento no futuro.

Para avaliar os produtos de trabalho:

1. Defina os produtos de trabalho que devem ser avaliados;

2. Crie marcos no projeto para efetuar a avaliação;

3. Utilize o padrão de Revisão por Pares para revisar os produtos de trabalho de

forma a garantir a aderência à metodologia, padrões e procedimentos;

4. Identifique e registre as não conformidades encontradas;

5. Realize ações corretivas quando necessário;

6. Identifique e registre as lições aprendidas que podem melhorar o processo no

futuro.

Usos Conhecidos:

Herndon et. al. em [Herndon et. al. 2006] escolheram o processo de Garantia da

Qualidade dos Processos e dos Produtos do CMMI [SEI 2005], representação contínua,

para implantar a melhoria da qualidade do software em duas MPEs.

Habra et. al. em [Habra et. al. 1999] construíram um micro modelo de avaliação

baseado nos modelos CMMI e ISO/IEC 15504, chamado de OWPL, onde foram

2 Milestone ou marco é um evento programando que signifique a conclusão de um trabalho principal ou de

um grupo de trabalhos relacionados. Um marco, pela definição, não tem esforço ou uma duração
associada. Um marco é apenas uma bandeira no plano de desenvolvimento para significar que algum
trabalho terminou e é usado como um ponto de verificação do projeto para validar como o projeto está
progredindo e revalidar o trabalho restante.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

168

escolhidos oito processos, entre eles, o processo de Garantia da Qualidade dos

Processos.

Laryd et. al. em [Laryd et. al. 2000] fizeram uma adaptação do CMM para MPEs

e escolheram seis áreas de processos do CMM, entre elas, o processo de Garantia da

Qualidade dos Processos e dos Produtos. Aqui, eles criaram o papel do SQE para

assegurar a imparcialidade da garantia da qualidade. O SQE exerce um único papel no

projeto.

O ISO/IEC 15504 [ISO 2003] contém na categoria de processos de Suporte –

SUP, o processo de Garantia da Qualidade para aderência aos produtos de trabalho e aos

processos.

O CMMI [SEI 2005] utiliza este processo ao garantir que os processos

planejados estão sendo implementados e garantir a entrega de produtos e serviços de

alta qualidade.

O MPS-BR [SOFTEX 2006] utiliza este processo para garantir que os produtos

de trabalho e a execução dos processos estão em conformidade com os planos e recursos

pré-definidos.

Nome do Padrão: Revisão por Pares

Contexto: Em várias fases do desenvolvimento de software é necessário descobrir os

defeitos que possam ser eliminados, incluindo: implementação incompleta dos

requisitos, problemas na integração com outros sistemas, interfaces de projeto

inadequadas, e erros de codificação.

Problema: Como detectar os defeitos no produto de trabalho?

Solução:

1. Membro responsável pelo produto de trabalho a ser revisado: realize encontros

formais ou informais de revisão;

2. Se o produto de trabalho não possuir checklist dos atributos que precisa atender,

faço-o.

3. Entregue, na reunião, o produto de trabalho com respectivo checklist para outro

membro do projeto revisar;

4. Outro membro do projeto: preencha o checklist para verificar a aderência do

produto de trabalho;

5. Devolva o produto de trabalho revisado ao membro responsável com respectivo

checklist para ser analisado.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

169

Usos Conhecidos:

O ISO/IEC 15504 [ISO 2003] utiliza o processo de Revisão por Pares para

realizar a verificação dos produtos de trabalho no processo de Verificação.

No caso do CMMI [SEI 2005] este processo é uma atividade do processo de

Verificação como forma de garantir que os produtos de trabalho estão em conformidade

com seus requisitos.

O TSP [SEI 2000] utiliza o processo de Revisão para efetuar revisões de código

e de projeto.

Nome do Padrão: Gerência de Configuração

Contexto: Em virtude das constantes mudanças durante todas as fases da construção do

software, ocorre a necessidade de controlar e manter a integridade e rastreabilidade

sistemática das versões dos produtos de trabalho.

Problema: Como controlar os produtos de trabalho e manter a integridade e

rastreabilidade das suas versões?

Solução:

1. Identifique os produtos de trabalho, itens de configuração, que necessitam ser

controlados, por exemplo, produtos que são entregues aos clientes e produtos

internos, como documentos, diagramas e códigos-fonte;

2. Estabeleça um mecanismo para gerenciar o controle de versão, através de algum

sistema computacional de controle de versão;

3. Cada membro do projeto deve armazenar, atualizar e recuperar os seus

respectivos produtos de trabalho no sistema;

4. Escolha um analista no projeto (papel de integrador) para ficar responsável pela

definição e criação das linhas de base (baselines
3
) para uso interno ou para

entrega de produto ao cliente;

5. Disponibilize, através do sistema, árvore com histórico das versões e com as

diferenças entre sucessivas linhas de base.

3 Uma baseline ou linha de base reflete um instante específico de um projeto e a situação exata de
determinados itens de configuração no momento da criação da mesma. Pode-se dizer que é uma
"fotografia" dos itens de configuração previamente especificados. Desta forma, a cada nova etapa
executada (requisitos, desenvolvimento, testes, homologação, implantação,) a Gerência de Configuração
deverá criar uma linha de base que servirá como referência para o processo de desenvolvimento.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

170

Usos Conhecidos:

Layrd e Orci em [Laryd et. al. 2000] fizeram uma adaptação do CMM para

micro e pequenas e escolheram seis áreas de processos do CMM, entre elas, o processo

de Gerência de Configuração.

Habra et. al. em [Habra et. al. 1999] construíram um micro modelo de avaliação,

chamado de OWPL, baseado nos modelos CMMI e ISO/IEC 15504, onde foram

escolhidos oito processos, entre eles, o processo de Gerência de Configuração.

Revankar et. al. [Revankar et. al. 2006] desenvolveram um framework de

processos chamado de Rapid-Q com as melhores práticas do CMMI, ISO 9001 e

padrões do IEEE. O Rapid-Q possibilita a implantação e melhoria dos processos de

micro e pequenas empresas de forma modular, flexível e com baixo custo. Entre os

processos escolhidos para compor o Rapid-Q está o processo de Gerência de

Configuração.

Carmody [Carmody 2006] implantou a melhoria dos processos na Universidade

de Medicina de Pittsburgh baseado no nível 2 do CMMI e do ITIL [OGC 2001]. Entre

os processos escolhidos, está o processo de Gerência de Configuração.

O ISO/IEC 15504 [ISO 2002] contém na categoria de processos de Suporte –

SUP, o processo de Gerência de Configuração para garantir o controle das versões dos

produtos de trabalho.

O CMMI [SEI 2005] utiliza este processo ao garantir o controle dos itens de

configuração e manter as linhas de base.

O MPS-BR [SOFTEX 2006] utiliza este processo para estabelecer e manter a

integridade de todos os produtos de trabalho de um processo ou projeto e disponibilizá-

los a todos os envolvidos.

Nome do Padrão: Medição

Contexto: Durante todas as fases ciclo de desenvolvimento de software surge a

necessidade de medir as características do software quantitativamente quanto, por

exemplo, a aspectos gerenciais e técnicos, para auxiliar no apoio a decisões.

Problema: Como medir o software de forma quantitativa?

Solução:

1. Estabeleça os objetivos da medição, que podem ser gerenciais e/ou técnicas, por

exemplo, “controlar as mudanças nos requisitos em determinado período”,

“reduzir defeitos” e “aumentar produtividade”;

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

171

2. Derive de cada objetivo as perguntas cujas respostas determinam se os objetivos

foram ou não alcançados, por exemplo, “qual o percentual de requisitos

alterados?”;

3. A partir das perguntas, decida o que deve ser medido para ser capaz de

responder as perguntas adequadamente (definição das métricas), por exemplo,

“nº de requisitos alterados/nº de requisitos alocados”, “número de defeitos”;

4. Cada membro do projeto deve ficar responsável pela coleta dos dados referentes

ao seu escopo no projeto, por exemplo, o gerente de projeto deve ficar

responsável pela coleta da métrica “nº de requisitos alterados/nº de requisitos

alocados”. A coleta deve ser realizada através de sistema computacional

específico para coleta de métricas;

5. Disponibilize os resultados a todos os membros envolvidos no projeto.

Usos Conhecidos:

 Em Franca et. al. [Franca et. al. 1998] define uma ferramenta para controle de

medições para MPEs baseada no Goal Question Metric [Basili et. al. 1994], onde são

estabelecidos os objetivos a serem medidos, dos objetivos são geradas questões e as

métricas surgem para responder as questões propostas a fim de atender os objetivos

traçados.

Laryd e Orci em [Laryd et. al. 2000] fizeram uma adaptação do CMM para

MPEs e escolheram seis áreas de processos do CMM, entre elas, o processo de

Medição.

A norma ISO 9000:2000 [ISO 2000] está organizada em cinco seções de

requisitos, entre elas a seção de Medição, Análise e Melhorias que tem como foco a

medição, análise dos dados e aperfeiçoamento dos processos e produtos.

O ISO/IEC 15504 [ISO 2003] contém na categoria de processos, de Gestão –

MAN, o processo de Medição para coletar e analisar dados de produtos e processos,

para apoiar nas decisões. As medições são realizadas através da identificação das

necessidades do projeto.

O CMMI [SEI 2005] utiliza este processo ao estabelecer os objetivos das

medições, ao definir os critérios e métricas. Além de analisar os resultados das

medições e registrá-las.

O PSP [ISO 1997] utiliza o processo de Medição Pessoal para registrar

individualmente o tempo gasto em cada etapa do ciclo de desenvolvimento, por

exemplo.

O MPS-BR [SOFTEX 2006] utiliza este processo para coletar e analisar os

dados relativos aos produtos desenvolvidos e aos processos implementados na empresa

e em seus projetos.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

172

Nome do Padrão: Verificação

Contexto: Na tentativa de minimizar os defeitos e riscos associados ao longo de todo o

desenvolvimento do software, surge a necessidade de avaliar se os produtos de trabalho

atendem completamente aos requisitos para eles especificados ou condições impostas a

eles nas atividades anteriores.

Problema: Como assegurar que os produtos de trabalho estão sendo desenvolvidos

adequadamente, ou seja, que refletem apropriadamente os requisitos especificados por

eles?

Solução:

1. Identifique os produtos de trabalho a serem verificados;

2. Defina os métodos de verificação para cada produto de trabalho, por exemplo,

testes funcionais, Revisão por Pares, testes de integração;

3. Execute a verificação dos produtos de trabalho selecionados contra os seus

requisitos através dos métodos definidos anteriormente;

4. Analise e registre os resultados das verificações;

5. Realize ações corretivas quando necessário.

Usos Conhecidos:

Herndon e Salars em [Herndon et. al. 2006] escolheram o processo de

Verificação do CMMI [SEI 2005], representação contínua, para garantir que os

produtos de trabalho estão em conformidade com seus requisitos.

O ISO/IEC 15504 [ISO 2003] contém na categoria de processos de Suporte –

SUP, o processo de Verificação para garantir que os produtos de trabalho estão de

acordo com os requisitos.

O CMMI [SEI 2005] utiliza este processo ao definir os produtos de trabalhos a

serem verificados e utiliza o processo de Revisão por Pares para verificar sua

conformidade.

O TSP [SEI 2000] utiliza o processo de Verificação para verificar os produtos de

trabalho quanto a projeto, lógica, reutilização e registra os defeitos encontrados e os

corrige.

O MPS-BR [SOFTEX 2006] utiliza este processo para confirmar que cada

serviço e/ou produto de trabalho do processo ou do projeto reflete apropriadamente os

requisitos especificados.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

173

Nome do Padrão: Validação

Contexto: Durante a fase de construção do software ocorre a necessidade de garantir

que o software desenvolvido e/ou componente do software atende completamente aos

requisitos definidos pelo cliente.

Problema: Como assegurar que os requisitos para o software do cliente foram

atendidos?

Solução:

1. Identifique os produtos de trabalho a serem validados, por exemplo, protótipos,

versão alfa e beta;

2. Estabeleça o ambiente necessário pra executar a validação como equipamentos e

ferramentas de testes;

3. Execute as validações através de, por exemplo, testes de aceitação, testes alfa e

beta, teste de desempenho;

4. Analise e registre os resultados das atividades de validação;

5. Realize ações corretivas quando necessário.

Usos Conhecidos:

Herndon e Salars em [Herndon et. al. 2006] escolheu, entre outros, o processo de

Validação do CMMI para assegurar que o produto desenvolvido e/ou componentes

estão de acordo com os requisitos impostos pelo cliente.

O ISO/IEC 15504 [ISO 2003] contém na categoria de processos de Suporte –

SUP o processo de Validação para garantir que o produto produzido está de acordo com

acordado com o cliente.

O CMMI [SEI 2005] utiliza este processo para identificar os produtos de

trabalhos a serem validados, executar a validação através de testes, analisar e registrar

os resultados.

O MPS-BR [SOFTEX 2006] utiliza este processo para confirmar que o produto

ou componente do produto atenderá ao seu uso pretendido quando colocado no

ambiente para qual foi desenvolvido.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

174

4. Conclusão e Trabalhos Futuros

Diante do exposto, o presente trabalho está voltado na documentação de um

conjunto de “boas práticas” para obtenção de requisitos mínimos da qualidade de

desenvolvimento de software a fim de reduzir as mudanças e custos ora sofridos com a

implantação dos modelos atuais. O levantamento inicial do conjunto de patlets aqui

proposto visa a unificação das características comuns dos modelos de qualidade com o

objetivo de auxiliar a implantação da qualidade de software em micro e pequenas

empresas reduzindo a necessidade de explorar e pesquisar qual dos modelos existentes

se adequaria melhor às suas realidades.

A relevância deste trabalho de pesquisa está contida no problema relacionado à

quantidade de modelos de melhoria de qualidade existentes hoje no mercado e na

dificuldade que micro e pequenas empresas de software enfrentam para iniciar o

processo de qualidade no desenvolvimento de software.

 Os próximos passos do projeto incluem a captura, documentação e refinamento

dos padrões de processos extraídos dos modelos de melhoria de qualidade de software

existentes, bem como a criação dos artefatos de entrada e saída dos padrões e a

definição dos papéis de cada um no processo de desenvolvimento de software.

Posteriormente, será realizada a validação do conjunto de padrões de processos através

de um estudo de caso com aplicabilidade em uma pequena empresa de software.

Espera-se com a conclusão do projeto obter um conjunto de padrões de processo

de qualidade no desenvolvimento de software de tal forma que auxilie as empresas

interessadas em iniciar a implantação de um modelo de melhoria da qualidade. Com a

implantação desses futuros padrões as empresas estarão aptas a, posteriormente, seguir

qualquer um dos modelos e obter a certificação desejada.

5. Agradecimentos

Especiais agradecimentos ao Prof. Sérgio Soares, nosso shepherd, pelos comentários e

sugestões importantes que ajudaram a melhorar o conteúdo deste artigo. Agradecemos

também aos colegas Anderson Brando, Ellen Polliana, Kleber Rocha, Rafael Braga,

Tiago Barros e todos os outros participantes do workshop de escritores, grupo B, do

SugarLoafPLoP’2007 pela motivação e comentários essenciais ao aperfeiçoamento do

trabalho.

Referências

Ahern, D., Armstrong, J., Clouse, A., Ferguson, J., Hayes, W. and Nidiffer, K. (2005)

“CMMI SCAMPI Distilled: Appraisals for Process Improvement”,

http://www.sei.cmu.edu/cmmi/adoption/books.html.

Anacleto, A., Wangenheim, C., Salviano, C. and Savi, R. (2003) “15504MPE –

Desenvolvendo um método para Avaliação de Processo de Software em MPEs

Utilizando a ISO/IEC 15504”, SIMPROS – Simpósio Brasileiro de Melhoria de

Processos de Software, Recife.

Appleton, B. “Patterns and Software: Essential Concepts and Terminology”,

http://www.cmcrossroads.com/bradapp/docs/patterns-intro.html.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

175

Basili, V., Caldiera, G., Rombach, H. (1994) “The Goal Question Metric Approach”,

Encyclopedia of Software Engineering.

Bezerra, I., Carneiro, D., Nibon, R., Carneiro, R. and Araujo, S. (2005) “Capacitação

em Melhoria de Processo de Software: Uma Experiência da Implantação do SW-

CMM em um Grupo de Pequenas Empresas”, 2005.

Carmody, C. (2006) “A Giant Taking Small Steps”, Proceedings of the First

International Research Workshop for Process Improvement in Small Settings –

Selected Case Studies, Janeiro.

Coplien, J. and Schmidt, D. (1995) “Pattern Languages of Program Design”, Addison-

Wesley.

Coplien, J. O. (1996) “Software Patterns”, SIGS Books & Multimedia, USA.

Coplien, J. and Harrison, N. (2004) “Organizational Patterns of Agile Software

Development”, Prentice Hall.

Dangle, K., Larsen, P. and Shaw, M. (2005) “Software Process Improvement in Small

Organizations: A Case Study”, IEEE Computer Society, Dezembro.

Franca, L., Staa, A. and Lucena, C. (1998) “Medição de Software para Pequenas

Empresas: Uma Solução Baseada na Web”, PUC – Rio.

Grone, B. (2006) “Conceptual Patterns”, 13th Annual IEEE International Symposium

and Workshop on Engineering of Computer Based Systems.

Habra, N., Niyitugabira, E., Lamblin, A.C. and Renault, A., (1999) “Software Process

Improvement for Small Structures: First Results of a Micro-Evaluation Framework”,

in Proceedings of the European Conference on Software Process Improvement

SPI'99, Barcelona, Spain.

Habra, N., Niyitugabira, E., Lamblin, A.C. and Renault, A., (1999) “Software Process

Improvement in Small Organizations Using Gradual Evaluation Schema”, in

Proceedings of the International Conference on Product Focused Software Process

Improvement, Oulu, Finland, 381-396.

Harrison, N. (1999) “A Pattern Language for Shepherds: A Pattern Language for

Shepherding”, Proceedings of the 6th Annual Conference on the Pattern Languages

of Programs, p. 15-18, Agosto.

Herndon, M., Salars, S. (2006) “Two Case Studies in Implementing Model Based

Process Improvement in Small Organizations”, Proceedings of the First International

Research Workshop for Process Improvement in Small Settings – Process

Improvement Approaches and Models, Janeiro.

International Organization for Standardization. (2000) “ISO 9000:2000 Quality

Management System”, http://www.iso.org, Janeiro.

International Organization for Standardization. (2000) “ISO 10006:2000. Quality

management - Guidelines to quality in project management”, http://www.iso.org.

International Organization for Standardization. (2002) “ISO/IEC 12207 Information

Technology – Software Life Cycle Processes”, Amd, 1.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

176

International Organization for Standardization. (2003) “ISO/IEC 15504: Information

Technology – Process Assessment”, http://www.isospice.com.

Johnson, D., Brodman, J. (1997) “Tailoring the CMM for Small Businesses, Small

Organizations, and Small Projects”, IEEE Computer Society, nº 8.

Kelly, D. and Culleton , B. (1999) “Process Improvement for Small Organizations.

Silicon & Software Systems”, IEEE, Outubro.

Laryd, A. and Orci, T. (2000) “Dynamic CMM for Small Organizations”, Proceedings

of the 1st Argentine Symposium on software Engineering (ASSE 2000), p. 133-149.

MCT – Ministério de Ciência e Tecnologia. (2005) “Pesquisa Nacional de Qualidade e

Produtividade no Setor de Software Brasileiro”, Brasil.

OGC-Office of Government Comerce. (2001) “ITIL: The Key to Managing IT Services

Best Practice for Service Support”. United Kingdom Stationery Office.

Oktaba, H. (2006) “MoProSoft: A Software Process Model for Small Enterprises”,

Proceedings of the First International Research Workshop for Process Improvement

in Small Settings – Process Improvement Approaches and Models, Janeiro.

Paulk, M. (1998) “Using the Software CMM in Small Organizations”, The Joint 1998

Proceedings of the Pacific Northwest Software Quality Conference and the Eighth

International Conference on Software Quality, p. 350-361.

Project Management Institute. (2000) “A Guide to the Project Management Body of

Knowledge - PMBOK Guide”.

Revankar, A., Mithare, R. and Nallagonda, V. (2006) “Accelerated Process

Improvements for Small Settings”, Proceedings of the First International Research

Workshop for Process Improvement in Small Settings – Selected Case Studies,

Janeiro.

Serrabo, M., Oca, C. and Cedilho, K. (2006) “An Experience on Implementing the

CMMI in a Small Organization Using the Team Software Process”, Proceedings of

the First International Research Workshop for Process Improvement in Small

Settings – Process Improvement Approaches and Models, Janeiro.

Silva, O., Borges, C., Salviano, C., Crespo, A., Sampaio, A. and Roullier, A. (2003)

“Aplicação da ISO/IEC TR 15504 na Melhoria do Processo de Desenvolvimento de

Software de uma Pequena Empresa”, Simpros.

Softex. (2006) “MPS.BR – Melhoria de Processo do Software Brasileiro,Guia Geral”,

Maio.

Software Engineering Institute. (1997) “The Personal Software Process – PSP”,

http://www.sei.cmu.edu/tsp/psp.html.

Software Engineering Institute. (2000) “TSP – The Team Software Process”, Technical

Report, http://www.sei.cmu.edu/tsp.html.

Software Engineering Institute. (2005) “Capability Maturity Model Integration -

CMMI”, http://www.sei.cmu.edu/cmmi.

Souza, A., Oliveira J. and Jino, M. (2002) “Riscos de Implantação de Processo de

Software em Empresas do Centro-Oeste Brasileiro”, Universidade Católica de Goiás.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

177

 A secure analysis pattern for handling legal cases

Eduardo B. Fernandez (*), David L. la Red M. (**), Jorge Forneron (***), Valeria E.
Uribe (**), and Gisela Rodriguez G. (**)

(*) Dept. of Computer Science and Eng., Florida Atlantic University, Boca Raton, FL, USA
(**) Dpto. de Informática, Facultad de Cs. Exactas, Universidad Nacional del Nordeste, Corrientes,
Argentina
(***) Dpto. de Informática, Facultad de Ciencias Aplicadas, Universidad Nacional de Pilar, Pilar, Paraguay

Abstract
We present here a Secure Semantic Analysis Pattern (SSAP). This is an analysis pattern that combines
functional and security aspects. In particular, this SSAP is intended to describe the handling of legal cases,
where a client is either suing another party (a plaintiff) or is being defended from a suit (a defendant). To
describe SSAPs we have extended a common template with sections on possible attacks (the possible
attacks in each action of a use case), needed policies (to prevent or mitigate the attacks), and secure
structure (the class model of the solution with security constraints).

1. Introduction
We have proposed the use of Semantic Analysis Patterns (SAPs) to build conceptual
models of applications [Fer00]. A SAP is a composite pattern that corresponds to a few
fundamental use cases. Using SAPs is possible to build conceptual models in a simpler
and more reliable way. We have also developed a methodology to build secure systems
[Fer06a]. In this methodology we add instances of security patterns to the functional parts
of the conceptual model to define security constraints at the application level. These
constraints are then enforced by the lower architectural levels.

We can use SAPs as part of our secure system development methodology. We extend the
SAPs to consider possible attacks to the fundamental use cases that define it, and we
define policies to prevent the attacks. This is the application of an idea proposed in
[Fer06b] which emphasizes that the secure design of a system should be based on its
expected types of attacks. Since the SAPs are used to build the conceptual model of an
application, we have now a portion of a conceptual model where functional and security
aspects are integrated from the start. We call this a Secure Semantic Analysis Pattern
(SSAP). In particular, we present here a SSAP to handle legal cases. To describe SSAPs
we have extended the template of [Bus96] with sections on possible attacks (the possible
attacks in each activity of a use case), needed policies (to prevent or mitigate the attacks),
and secure structure (the class model of the solution with security constraints). SSAPs
follow the current tendency in security research of integrating business functions with
security aspects from the beginning of the development life cycle [Nag05, Sch06a].

Section 2 describes a specific SSAP, a pattern for the Secure Handling of Legal Cases.
As indicated, this pattern is intended for system developers trying to incorporate security
in their designs. We do not assume legal expertise and a glossary at the end of the paper
defines basic law terms.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

178

2. Secure Handling of Legal Cases
This pattern describes the handling of legal cases where a client is either suing another
party (a plaintiff) or is being defended from a suit (a defendant). The pattern includes the
necessary policies (in the form of security patterns) to stop or mitigate the expected
attacks.

2.1 Example
The SueThem law firm is having trouble staying in business. It keeps some documents in
electronic form and others in paper. Documents are hard to find and get easily accessed
by unauthorized persons. It is hard for the company to keep track of their customers and
to know how much it should charge them. The conduction of cases is disorganized, which
leads to losing cases because of lack of preparation.

2.2 Context
A legal firm sues parties (persons, organizations, or groups) on behalf of their clients; it
can also defend their clients when they are sued. We call a legal case the sequence of
actions (process) needed to pursue a suit until its completion. The standard legal system
of most countries allows parties to sue other parties. There are different types of lawsuits
but they are not of interest here. Interactions between the people involved can be in
person, by telephone, by regular mail, or by email. Law firms are commercial entities and
must compete with other law firms for clients.

2.3 Problem
A law suit or defense implies a sequence of actions and generates many documents of
several types. If the firm doesn’t organize properly these actions and the corresponding
documents, it will have problems in conducting the suit or defense, which will result in
unnecessary expenses and in a higher possibility of losing the case. Because the
information handed in a case is very sensitive, there is motivation to misuse it. We need
to consider possible attacks and take measures to avoid them. We consider here the main
use cases in this process: Handle Legal Case (for a plaintiff), Handle Legal Case (for a
defendant), and its auxiliary use cases Keep Track of Costs, Research Case, and Billing.
Figure 1 shows the actors involved in these use cases. ‘Other’ represents here people
involved in the case such as witnesses or experts. There are other related use cases such
as writing of wills or divorce cases, which are left out for simplicity and to make the
pattern more reusable. How do we model this system to consider all these factors in a
balanced way?

The solution to this problem is affected by the following forces:
• Unpredictability of activities. The sequence of activities in a case is usually

unpredictable. Depositions, witness court appearances, lawyer briefs to the court
might be required in any sequence depending on the course of the case.

• Unpredictablity of people. Complex cases may require several lawyers with the
assistance of some secretaries. The actual number of these people might be hard to
predict. In addition to the defendant and the plaintiff (and their respective opponents)
we may need witnesses, experts, and other people. Who they are and when they are
needed depends on the case.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

179

• Logistics. The total effort and duration of a case is variable and we need to keep track
of expenses, time used, supplies, etc., so we can bill our clients.

• Precedent searching. Handling cases require searching for precedents (similar cases).
To do research for cases, lawyers and secretaries make use of libraries and the
Internet and may download many documents.

• Access control to information. The information about customers, billing, assignment
of lawyers, and other aspects related to a current case must be accessible only to
authorized persons.

• Control of documents.Legal documents can only be created by authorized persons and
their use (reading or modification) should also be controlled.

• Confidentality. Communications between lawyers and clients must be confidential.
• Auditability. Government regulations apply to law firms and their information must

be easily auditable.

 Figure 1. Use cases for handling legal cases

2.4 Possible attacks
Figure 2 shows an activity diagram for the sequence for handling a case followed by
billing, tracking of costs, and related case research. Following the approach of [Fer06b],
in order to analyze the possible attacks (threats) we consider each activity in the activity
diagram of Figure 2 and see how it can be subverted by the attacker. In this diagram
External People indicates either the opponent or other people involved in the case. The
possible attacks are then:

As plaintiff As defendant

Bill client

Client

Other

Opponent Lawyer

Secretary
<<extend>><<include>>

Handle Legal
Case

Research CaseKeep track
of costs

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

180

 Figure 2. Activity diagram of a case handling

:Contract

:Precedent

:Cost

Start
Case

Prepare

:Brief
:Cost

Court
Appearance

Produce
Outcome

Make
Deposition

Prepare

Bill Client

Research
Case

Client Lawyer Secretary External people

Make
Deposition

:Deposition

:Deposition

:Cost

:Outcome

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

181

 A1 In the ‘start case’ activity, the client or the responsible lawyer might be impostors.
 A2 A lawyer might create a false contract.
 A3 The client or the external people might give a false deposition.
 A4 A lawyer may change a deposition.
 A5 A lawyer or a secretary may produce intentionally incorrect precedents, briefs, or
 costs.
 A6 A secretary may produce an increased or decreased bill.
 A7 A lawyer may change some aspects of the outcome to collect a higher fee.
 A8 A lawyer can disseminate client or case information for monetary gain.
 A9 An external attacker may read/change case information or access client/lawyer
 communications.

2.5 Solution
Because the handling of cases is rather unpredictable and we use a variety of knowledge
experts in its handling, this problem can be conveniently modeled as a Blackboard pattern
[Bus96]. The case itself becomes a blackboard and the experts providing knowledge to
the case are the lawyers, witnesses, or experts. The control is based on the status of the
case and is embodied in the scheduling of activities.

Structure
Figure 3 shows a class diagram of the conceptual model for the functional aspects of this
pattern. Class Case represent the case itself (in the role of Blackboard), and it includes as
components classes Cost (describes accrued costs), CaseDocument, Outcome (the result
of the case), and Scheduling (the control role of the Blackboard). A Client is responsible
for a case, and with each case there are some associated ExternalPeople (opponents,
witnesses, experts). A CaseDocument can be a Contract, a Precedent, a Brief, or a
Deposition. Lawyers and Secretaries are Employees of the Law Firm and can be
assigned to cases (we assume this assignment has been done beforehand). A Secretary in
the case keeps track of Costs. A Lawyer in the case is responsible for the general
conduction of the case, including scheduling.

Dynamics
Figure 4 shows a sequence diagram describing some typical steps for the use case Handle
Legal Case as Plaintiff or Defendant. The Client starts the case with the responsible
lawyer. This lawyer creates an instance of a case and later does some research for it. He
assigns an assistant lawyer to prepare a brief for the court and schedules the client to
make a deposition. The other use cases are simpler and not shown for conciseness.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

182

 Figure 3. Class diagram for the Handle Legal Cases pattern.

 Figure 4 Sequence diagram for use case ‘Handle Case’.

:Client responsible
Lawyer: lawyer2:

:Deposition

:Case

:Brief

startCase

make
deposition

create

create

research

prepareBrief
create

Scheduling

activity
date/time

Client

name
address

Case
number
startDate
endDate

Cost

date
amount

Lawyer

specialty
rank

Secretary

rank

Employee
name
ID
salary

Law Firm

name
address

Outcome

date

External
People

name
address

CaseDoc
number
startDate
endDate

Contract

Precedent

Brief

Deposition

1

1

1

1

1

1

1*

*

*

*

*

*

*

**

*

*

*

* {subset}

{subset}

CanSchedule WorksFor

AssignedTo

KeepsTrackOf

ResponsibleFor

AssignedTo

For

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

183

Secure structure
The attacks identified earlier mean that we need the following policies to avoid or
mitigate them:
 A1 Mutual authentication, to avoid impostors.
 A2 Authorization to restrict only lawyers to create contracts, and logging to record
 possible illegal actions from a lawyer.
 A3 Logging, to keep records for future auditing that could detect false depositions.
 A4 Authorization and document protection against change.
 A5 Authorization and logging, to restrict who can perform these actions and to keep
 records for future auditing.
 A6 Logging, to record suspicious actions of a secretary.
 A7 Separation of duty. Two lawyers must concur on the fees to be charged.
 A8 Logging, to record possible illegal actions of lawyers.
 A9 Authorization and access control to stop external attacks and cryptography to protect
 communications

From these policies we can define abstract security mechanisms to stop or mitigate the
identified threats. Figure 5 shows the relevant part of the conceptual model of Figure 3
with the addition of instances of Authentication, Authorization, and Logging patterns to
realize the identified policies. We assume that the authorization policies follow a Role-
Based Access Control (RBAC) model and the diagram defines the rights for each role.
Both the responsible lawyer (who interacts with the client), and the client must have
information to authenticate each other (requiring two instances of the Authenticator
pattern). The CaseLog (an instance of the Log pattern) records accesses to the case data.
We also need an instance of the Reference Monitor, not show here for simplicity (see
[Fer06b].

Example resolved
The SueThem law firm has now a systematic structure to conduct its cases. All its
documents are reflected in the conceptual model and can be easily retrieved and audited.
The company can now keep track of the costs associated with a case. Documents and
other case information can be protected from illegal access.

Consequences
This pattern has the following advantages:
• The Blackboard structure accommodates well unpredictable sequences of activities.
• We can assign lawyers and secretaries dynamically depending on the course of the

case.
• The model includes knowledge sources that can be the client, the opponent,

witnesses, expert witnesses, and other people.
• It is possible to track the current costs of the case.
• Applying legal regulations to the company is easy because all documents are

described by classes with controlled access and we keep a log of accesses.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

184

• Searching for precedents (similar cases) can be done as part of the case handling, we
can store this information for future use, and we can associate it to the different stages
of the case.

 Figure 5. Security additions to the class diagram.

Liabilities include:
• The order in which some activities are performed has an effect in the outcome but the

lawyers must decide on the scheduling and the pattern does not help here.
• We might not be able to find all possible attacks, which could allow some attacks to

still happen.
• The actual implementation may allow new types of attacks. For example, code flaws

may allow an attacker to get control of the operating system and thus to the case data.

Effect on security:

Lawyer

Responsible AssignedTo

schedule
start
writeOpinion
close
openContract

RLawyerRights
ALawyerRights

writeDeposition
readDeposition

ClientRights

Client readDocs
createDocs

Secretary

SecRights

Case

writeOpinion
chargeTime
writeBrief

Authenticator

Authenticator

CaseLog

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

185

• We can define precise role rights, e.g. an expert can only add to the information, not
change it, a lawyer can decide on the next step, bring new witnesses, but cannot
change depositions.

• A designer building a system of this type can produce software that performs its
functions and is at the same time reasonably secure.

• The RBAC structure enforces authorized access to the information and employees
can make sure that they are talking to the person they intend.

• Cryptographic methods can be added to prevent document modification, e.g. hashing
[Gol06].

Known uses
Many large law firms follow a similar structure.

See also
• The Blackboard pattern [Bus96] is the basis for the central function of the case.
• The client and the external people can be described by a Party pattern to indicate that

they can be individuals or organizations [Fow97].
• Assignment of lawyers and secretaries uses the Resource Assignment pattern [Fer05].
• The rights structure follows an RBAC pattern [Sch06b].
• Authentication is performed by means of instances of the Authenticator pattern

[Sch06b].

Acknowledgements
We thank our shepherd, Jorge Ortega Arjona, who provided valuable suggestions that
have clearly improved this paper. The Secure Systems Research Group at FAU
(www.cse.fau.edu/~security), and the participants in the writers’ workshop at
SugarLoafPLoP 2007 (Richard Gabriel, Joe Yoder, Ademar Aguiar, Maria Lencastre,
Paulo Borba, Rosana Braga, and Mark Perry) provided very useful comments.

References

[Bus96] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal. Pattern
Oriented Software Architecture: A System of Patterns, Volume 1, Wiley, 1996.

[Fer00] E.B. Fernandez and X. Yuan, “Semantic analysis patterns”, Procs. of 19th Int.
Conf. on Conceptual Modeling, ER2000, 183-195. Also available from:
http://www.cse.fau.edu/~ed/SAPpaper2.pdf

[Fer05] E.B.Fernandez, T. Sorgente, and M. VanHilst, "Constrained Resource
Assignment Description Pattern". Proceedings of the Nordic Conference on Pattern
Languages of Programs, Viking PLoP 2005, Otaniemi, Finland, 23-25 September 2005.

[Fer06a] E. B. Fernandez, M.M. Larrondo-Petrie, T. Sorgente, and M. VanHilst, "A
methodology to develop secure systems using patterns", Chapter 5 in "Integrating

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

186

security and software engineering: Advances and future vision", H. Mouratidis and P.
Giorgini (Eds.), IDEA Press, 2006, 107-126.

[Fer06b] E. B. Fernandez, M. VanHilst, M. M. Larrondo Petrie, S. Huang, "Defining
Security Requirements through Misuse Actions", in Advanced Software Engineering:
Expanding the Frontiers of Software Technology, S. F. Ochoa and G.-C. Roman (Eds.),
International Federation for Information Processing, Springer, 2006, 123-137.

[Fow97] M. Fowler, Analysis Patterns-Reusable Object Models, Addison-Wesley, 1997.

[Gol06] D. Gollmann, Computer security (2nd Ed.), Wiley, 2006.

[Nag05] N. Nagaratnam, A. Nadalin, M. Hondo, M. McIntosh, and P. Austel, “Business-
driven application security: From modeling to managing secure applications”, IBM
Systems Journal, Vol. 44, No 4, 2005, 847-867.

[Sch06a] A. Schaad, “Security in Enterprise Resource Planning systems and Service-
Oriented architectures”, Procs. of SACMAT’06, ACM, June 2006, 69-70.

[Sch06b] M. Schumacher, E.B.Fernandez, D. Hybertson, F. Buschmann, and P.
Sommerlad, Security Patterns: Integrating security and systems engineering", Wiley
2006.

Appendix. Glossary of legal terms

Brief--a formal document that sets forth the main contentions with supporting statements
or evidence.

Contract--a binding, legally enforceable agreement between two or more parties.

Defendant--a person required to make answer in a legal action or suit.

Deposition—a testimony taken down in writing under oath.

Expert—a person having or displaying special skill or knowledge derived from training
or experience.

Opponent--one that takes an opposite position (as in a debate, contest, or conflict).

Plaintiff--a person who brings a legal action.

Precedent--something done or said that may serve as an example or rule to authorize or
justify a subsequent act of the same or an analogous kind.

Suit--an action or process in a court for the recovery of a right or claim.

Witness--one who testifies in a cause or before a judicial tribunal.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

187

State MVC: Estendendo o padrão MVC para uso no
desenvolvimento de aplicações para dispositivos móveis

Tiago Barros, Mauro Silva e Emerson Espı́nola

C.E.S.A.R – Centro de Estudos e Sistemas Avançados do Recife

{tgfb, mjcs, ele}@cesar.org.br

Resumo. Aplicações para dispositivos móveis podem ser implementadas para
várias plataformas diferentes, como J2ME, BREW, Symbian, Windows Mobile e
Embedded Linux. No entanto, apesar de diferentes, estas plataformas possuem
certa semelhança em sua arquitetura, pois todas são dirigidas a eventos. O
Padrão SMVC tem por objetivo capturar estas semelhanças ao propor uma ar-
quitetura em que possamos utilizar uma máquina de estados dentro do padrão
MVC.

Abstract. There are many different platforms for mobile application
development such as J2ME, BREW, Symbian, Windows Mobile and Embedded
Linux. Although different, they have some common architecture, because each
platform is event-driven. The SMVC pattern has the intent to catch these
common elements of all platforms by include a state machine inside MVC.

1. Introdução

Em desenvolvimento para dispositivos móveis as funcionalidades são muito centradas em
cenários de uso baseados na interação com o usuário. Tais questões estão facilmente rela-
cionadas com aspectos de manipulação de eventos originados pelos mesmos. Esses even-
tos, no contexto da codificação, são observados sob as seguintes vertentes: apresentação
do modelo de dados; gerenciamento e controle dos eventos; e manipulação da interface
com o usuário.

O padrão de arquitetura MVC (Model-View-Controller) [Krasner and Pope 1998]
é bastante utilizado no desenvolvimento de aplicações para dispositivos móveis pois de-
termina a separação de uma aplicação em três elementos. O Model é formado por en-
tidades que representam os dados da aplicação. A View tem por objetivo realizar a
apresentação destes dados e capturar os eventos do usuário; sendo representada pelas
telas. O Controller faz a ligação entre o Model e a View, realizando o tratamento dos
eventos, atuando sobre o Model e alterando os elementos da View para representar a nova
forma dos dados.

Neste artigo, será apresentada uma extensão do padrão MVC para o desenvol-
vimento de aplicações para dispositivos móveis chamado State MVC (SMVC). O padrão
MVC será instanciado para o contexto de aplicações para dispositivos móveis e dois nı́veis

Copyright (c) 2007, Tiago Barros, Mauro Silva e Emerson Espinola. Permissão de cópia concedida
para a conferência SugarLoaf-PLoP 2007. Todos os outros direitos reservados.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

188

a mais serão sugeridos para que a manipulação de eventos seja realizada de maneira mais
eficiente e escalável.

O SMVC é aplicado em cenários de desenvolvimento onde a mudança de inter-
faces e camada de controle necessitem de rapidez e eficiência, sem que o modelo arqui-
tetural adotado seja um entrave à mudança. O público-alvo principal deste artigo são
desenvolvedores de aplicações para dispositivos móveis.

2. SMVC

2.1. Objetivo
Fornecer uma arquitetura para desenvolvimento de aplicações para dispositivos móveis
baseada numa extensão do MVC para uma maior eficiência, escalabilidade e melhor es-
crita de código.

2.2. Contexto
Ainda que o desenvolvimento para dispositivos móveis necessite de ambientes que são
orientados a eventos, eles não dispõem de uma estrutura adequada para uma programação
eficiente. É comum no desenvolvimento de aplicações em plataformas desta natureza
[Forman and Zahorjan 1994] - BREW, J2ME, Symbian, Embedded Linux e Windows
Mobile - que o código seja confuso, mesclando em um único lugar o tratamento de todos
os eventos da aplicação. Neste código então, torna-se necessário adicionar diversas flags
de controle potencializando o número de erros.

É importante ressaltar que as aplicações de interação com o usuário - especial-
mente para celulares - rodam em um único processo, não permitindo assim o bloqueio de
uma aplicação em detrimento de outra. Para solucionar este conflito, as plataformas utili-
zam uma função de callback1 que faz o tratamento dos eventos enviados para a aplicação.

Muito embora esta solução seja de grande valia do ponto de vista de programação,
uma única função para tratar todos eventos torna a aplicação cada vez mais complexa.
Neste momento, então, é natural que apareçam mecanismos de controle para represen-
tar os diferentes estados da aplicação, por exemplo: ao receber o evento eventX com
o flag1 ligado (TRUE), uma determinada ação deve ser tomada; recebendo o mesmo
evento eventX com flag1 igual a FALSE outra ação deve ser iniciada. Percebe-se que
os valores das flags são de fato os estados existentes na aplicação e são eles que devem
ser tratados.

Desta forma, um tratamento adequado para os estados e eventos, além de tornar
a programação mais simples e intuitiva, proporciona um maior desacoplamento e garante
uma melhor extensibilidade e manutenabilidade da aplicação.

2.3. Problema
Como então manipular eventos e estados garantindo maior fator de produtividade (em li-
nhas de código), facilidade na manutenção e, sobretudo, agregando escalabilidade a novas
funcionalidades? Imprimir simplesmente o padrão MVC nas soluções para dispositivos
móveis não garante o sucesso na implementação.

1Mecanismo utilizado para a realização de operações assı́ncronas. Uma função é passada como
parâmetro e chamada quando a operação termina.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

189

A adoção de padrões arquiteturais que garantem a separação eficiente entre inter-
face e controle facilitam o tratamento dos desafios inerentes à computação móvel.

2.4. Forças

• A adição de novas funcionalidades deve ser facilitada através do desacoplamento
do Controller e da View.

• Projetar a aplicação onde os estados sejam organizados como classes, com
métodos para tratar cada evento.

• Deve minimizar a utilização de recursos (memória) pela aplicação, proporcio-
nando um mecanismo para carregá-los quando necessário e liberá-los quando não
estiverem mais em uso.

• A descentralização do tratamento de eventos deve ser atingida através da
distribuição deste tratamento para os estados.

• A adição, remoção e modificação de estados da aplicação devem ser feitas de
maneira a se evitar grande impacto na arquitetura.

• A reutilização de telas comuns deve ser garantida, através de um mecanismo que
proporcione o gerenciamento destas telas.

2.5. Solução

Para resolver o problema apresentado, um padrão de projeto composto [Riehle 1997] cha-
mado State MVC é sugerido. Este padrão consiste na extensão do padrão MVC, baseada
na composição entre os padrões State [Gamma et al. 1994] e Manager [Sommerlad 1997]
para representar o Controller do MVC, a fim de fornecer uma melhor manipulação e tra-
tamento de eventos e estados. Além disto, um mecanismo para o controle de telas também
baseado no padrão Manager implementa a View, proporcionando reutilização de telas e
facilidade de manutenção.

2.6. Estrutura

A estrutura do SMVC é representada através do digrama de classes UML
[Booch et al. 1998] da Figura 1.

Abaixo segue a descrição de cada classe participante do padrão:

• Application
A classe Application representa o Model do padrão MVC. Além deste papel,
esta classe também faz a interface com a plataforma alvo, representando o ponto
de entrada da aplicação e possuı́ndo métodos de inicialização (StartApp)
e finalização da aplicação (StopApp), bem como os métodos para pausar
(PauseApp) e continuar (ResumeApp) a mesma.

• StateManager
A classe StateManager representa uma máquina de estados, sendo res-
ponsável pela transição dos estados da aplicação e por chamar o método do
estado que trata cada evento recebido pela aplicação. Dentro do padrão MVC,
esta classe, junto com os estados propriamente ditos, representa o Controller.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

190

Figura 1. Diagrama de classes do padrão SMVC

• StateBase
StateBase representa um estado da aplicação. Esta é uma classe abstrata, da
qual todos os estados concretos devem herdar.

• ConcreteState
Deve ser criada uma classe ConcreteState para cada estado da aplicação.
Cada ConcreteState deve implementar um método para cada evento a ser
tratado pelo estado.

• ScreenManager
ScreenManager é responsável por gerenciar as telas da aplicação. Esta classe,
junto com as telas propriamente ditas, representam a View do padrão MVC.

• ScreenBase
A classe ScreenBase é uma classe abstrata da qual todas as telas da aplicação
devem herdar. Ela possui métodos para exibição dos dados da aplicação na tela
do dispositivo.

• ConcreteScreen
Cada tela da aplicação é uma ConcreteScreen. Esta classe herda de
ScreenBase e deve implementar seus métodos abstratos.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

191

2.7. Dinâmica
A Figura 2 mostra o diagrama de seqüência da construção de uma aplicação
que utilize o padrão SMVC. A aplicação tomada por exemplo implementa dois
estados (StateA e StateB) e uma tela (Screen1), que são classes concre-
tas (implementações de ConcreteState e ConcreteScreen) que herdam de
StateBase e ScreenBase, respectivamente.

Figura 2. Construção da aplicação

O primeiro método chamado, ao inicializar a aplicação, é o método Construct
da classe Application. A chamada deste método deve estar integrada com a plata-
forma de desenvolvimento escolhida de forma que ele seja chamado na inicialização da
aplicação. Este método é responsável por instanciar os dados da aplicação, bem como
todos os estados e telas.

Cada estado criado, é responsável por definir quais os eventos que ele vai tratar e
quais os métodos responsáveis por tratar cada evento, através do metodo MapEvent.

Na Figura 3 podemos ver a seqüência de inicialização da aplicação. Depois de
todos os estados e telas da aplicação serem instanciados, o método StartApp da classe
Application é chamado, o qual deve definir o estado inicial do StateManager.

Ao definir o estado inicial, o método OnEnter deste estado é chamado, de-
vendo inicializar os dados necessários ao estado e definir qual será a tela apresentada,
através do método ChangeScreen de ScreenManager. O método ChangeScreen
é responsável por chamar o método OnInactivate da tela anterior (caso exista uma

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

192

Figura 3. Inicialização da aplicação

tela anterior), para que seus dados sejam removidos da memória, e chamar o método
OnActivate da tela atual, para que os dados desta tela sejam criados na memória. De-
pois disto, será chamado o método Paint para que a tela atual seja desenhada.

Depois desta inicialização, a aplicação aguardará por eventos para serem tratados
pelo estado atual. A Figura 4 mostra o diagrama de seqüência para dois exemplos de tra-
tamento de eventos pela aplicação, um evento de OK, e um evento de EXIT. A seqüência
do tratamento de qualquer outro evento é análoga a estes mostrados.

Quando a aplicação recebe um evento, o método HandleEvent de
StateManager é chamado. Este método verifica qual é o estado atual da aplicação
e envia este evento para ser tratado, chamando o método HandleEvent deste estado.
No estado, caso o evento seja um evento de tecla ele será traduzido para um evento signifi-
cativo, de acordo com a tela que está sendo apresentada. No exemplo do primeiro evento,
se a tecla pressionada for a softkey da esquerda e, na tela, esta tecla representa a função
OK, o evento de softkey da esquerda será traduzido para OK.

Depois de traduzido, o estado irá verificar qual é o método responsável por tratar
este evento e irá chamá-lo para que execute. A execução do método tratador do evento
poderá acarretar em alterações no modelo ou na visualização da aplicação, através de cha-
madas de métodos de Application e ScreenManager, respectivamente. Também
é possı́vel mudar o estado da aplicação, alterando o estado atual através do método
ChangeState de StateManager.

2.8. Conseqüências

O SMVC oferece as seguintes vantagens:

• Código Modular
Assim como o MVC, o SMVC desacopla o comportamento do modelo de dados e
da visualização. Além disto, o próprio comportamento é modularizado ao dividir
o Controller em um conjunto de estados.

• Extensibilidade e Manutenabilidade
Devido ao Controller ser implementado como máquina de estados, alterar ou adi-

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

193

Figura 4. Dinâmica do tratamento de eventos

cionar novas funcionalidades consiste em alterar ou adicionar os estados corres-
pondentes, minimizando bastante o impacto destas mudanças na aplicação com-
pleta.

• Reutilização de telas
Como o código de tratamento de eventos está implementado nos estados
(Controller), podemos utilizar uma mesma tela em vários estados, evitando a
inserção de flags no código das telas.

• Redução da memória utilizada
Os estados da aplicação podem carregar os dados necessários ao seu processa-
mento quando tornam-se ativos e liberar esta memória ao tornarem-se inativos,
proporcionando um melhor aproveitamento da memória do dispositivo ao evitar
que os dados necessários a todos os estados estejam sempre na memória.

• Descentralização do tratamento de eventos

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

194

Os eventos são tratados por métodos especı́ficos de cada estado, evitando-se es-
crever uma única função para tratar todos os eventos da aplicação.

Em consequência disto, também oferece as seguintes desvantagens:

• Aumento do número de classes
Com a introdução de StateManager e ScreenManager além da
implementação das classes concretas para os estados e telas, há um aumento no
número de classes. Para aplicações pequenas, a Variação 1 (Seção 2.10) do padrão
pode ser considerada.

• Duplicação de código
Eventos tratados em vários estados podem ter seu código de tratamento duplicado
na implementação dos estados. Neste caso, é sugerida a Variação 2 do padrão
(Seção 2.10), que implementa os estados de forma hierárquica, reusando eventos
comuns em nı́veis de estados intermediários.

2.9. Implementação
Para implementar o padrão SMVC, devemos seguir os seguintes passos:

1. Definir, dentro da plataforma escolhida, de que classe herdaremos a classe
Application. Por exemplo, em J2ME [J2ME 2007], seria a classe Midlet e
em BREW [BREW 2007] a estrutura AEEApplet.

2. Implementar os dois gerenciadores (ScreenManager e StateManager).
Como estas classes são classes genéricas, deverão ser implementadas comple-
tamente desacopladas da aplicação, pois poderão ser reutilizadas nas próximas
aplicações desenvolvidas.

3. Modelar a aplicação como uma máquina de estados, verificando quais eventos
devem ser tratados por cada estado e quais telas serão apresentadas. Neste ponto,
podemos definir se vamos utilizar as variações sugeridas neste artigo.

4. Implementar cada estado modelado, definindo seus métodos tratadores de eventos.
5. Implementar as telas da aplicação.

2.9.1. Exemplo

Foi escolhida a plataforma BREW para demonstração do uso do padrão SMVC. Será
mostrada a implementação de uma aplicação tradicional em BREW. Depois mostraremos
a implementação do padrão proposto. Esta abordagem visa realizar uma análise compa-
rativa da utilização do SMVC.

Uma aplicação em BREW consiste nos seguintes elementos:

• Estrutura base da aplicação
Deve ser criada uma estrutura para a aplicação que contenha a estrutura
AEEApplet como primeiro elemento. Isto faz-se necessário visto que
AEEApplet é a base para qualquer aplicação BREW e é utilizada internamente
nas funções de criação da aplicação. Declarando AEEApplet como primeiro
elemento da estrutura da nossa aplicação permite que se faça um cast da estrutura
da nossa aplicação para a estrutura AEEApplet. Desta forma, pode-se passar
a estrutura da nossa aplicação como parâmetro para as funções do framework de
BREW.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

195

• Função de inicialização
Esta função é responsável por inicializar (alocar memória) todos os dados da
aplicação.

• Função de finalização
Esta função é chamada quando a aplicação termina e é responsável por desalocar
toda a memória alocada na função de inicialização.

• Função de tratamento de eventos
É responsável por receber todos os eventos enviados à aplicação. Geralmente é
implementada como um grande switch que escolhe qual o tratamento adequado,
de acordo com o evento recebido.
Abaixo veremos um exemplo de código da estrutura base de uma aplicação

BREW, bem como o código das funções de inicialização e finalização da aplicação.
typedef struct _HelloWorld
{

AEEApplet a ; // First element of this structure must be AEEApplet
AEEDeviceInfo DeviceInfo; // the hardware device information

int appScreen; // holds application screen ID
} HelloWorld;

// this function is called when your application
// is starting up
boolean HelloWorld_InitAppData(HelloWorld * pMe)
{

// Get the device information for this handset.
pMe->DeviceInfo.wStructSize = sizeof(pMe->DeviceInfo);
ISHELL_GetDeviceInfo(pMe->a.m_pIShell,&pMe->DeviceInfo);

return TRUE;
}

// this function is called when your application
// is exiting
void HelloWorld_FreeAppData(HelloWorld * pMe)
{

// insert your code here for freeing any
// resources you have allocated...

}

Quando a aplicação é inicializada, a função HelloWorld_InitAppData será
chamada para que os recursos necessários à aplicação sejam alocados. Depois disto, toda
a execução da aplicação passa a acontecer na função HelloWorld_HandleEvent,
que será mostrada a seguir.
static boolean HelloWorld_HandleEvent(HelloWorld* pMe,

AEEEvent eCode,
uint16 wParam,
uint32 dwParam)

{
// switch event code
switch (eCode)
{

// App is told it is starting up
case EVT_APP_START:

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

196

// application goes to first screen
pMe->appScreen = FIRST_SCREEN;
// send an event to this app to paint the
// screen
ISHELL_PostEvent(pMe->a->m_pIShell,

HELLOWORLD_CLSID,
EVT_USER_REPAINT,
0,
0);

return(TRUE);

// App is told it is exiting
case EVT_APP_STOP:
// do nothing, just return TRUE
// meaning event was recognized and app
// agrees to be terminated
return(TRUE);

// A key was pressed
case EVT_KEY:
// verify current screen
if (pMe->appScreen == FIRST_SCREEN)
{

// if key is softkey 1,
// goto sencond screen
if (wParam == AVK_SOFT1)
{

pMe->appScreen == SECOND_SCREEN;
}

}
else if (pMe->appScreen == SECOND_SCREEN)
{

// if key is softkey 1,
// goto first screen
if (wParam == AVK_SOFT1)
{

pMe->appScreen == FIRST_SCREEN;
}
// if key is softkey 2,
// exit application
else if (wParam == AVK_SOFT2)
{

ISHELL_CloseApplet(pMe->a->m_pIShell, FALSE);
}

}
// send an event to this app to paint the
// screen
ISHELL_PostEvent(pMe->a->m_pIShell,

HELLOWORLD_CLSID,
EVT_USER_REPAINT,
0,
0);

return(TRUE);

case EVT_USER_REPAINT:

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

197

if (pMe->appScreen == FIRST_SCREEN)
{

// Draw first screen
}
else if (pMe->appScreen == SECOND_SCREEN)
{

// Draw second screen
}

//---
// All other events comes here.
// Once application becomes complex, this
// function will become very big.
//---

}

return FALSE;
}

O código acima é um exemplo tı́pico de construção de aplicações para dispositivos
móveis. Podemos perceber claramente que a variável appScreen representa o controle
da tela ativa na aplicação. No entanto, analisando o tratamento do evento EVT_KEY,
visualizamos que esta variável também é utilizada para representar o estado da aplicação.

O crescimento de complexidade desta aplicação irá implicar na adição de mais
variáveis como esta para determinar o controle das diversas situações de tela e estado.
Esta adição de flags proporciona uma pior manutenabilidade e uma maior sucessão a
erros, por parte do desenvolvedor, além do excesso de diretivas if para verificar estes
valores.

Mostraremos abaixo, como resolver estes problemas ao aplicar o padrão SMVC
na construção de aplicações para dispositivos móveis.
class Application : public AEEApplet
{
public:

// Application entry point for event handling
static bool HandleEvent(Application *app,

UINT16 evCode,
UINT16 wParam,
UINT32 dwParam);

// App memory allocation
int Construct();

// App memory deallocation
static void FreeAppData(Application *app);

// Method that is called when app starts
void StartApp();
// Method that is called when app ends
void StopApp();
// Method that is called when app is suspended
void SuspendApp();
// Method that is called when app resumes its
// execution after being suspended

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

198

void ResumeApp();

private:
// State Manager object
StateManager *iStateManager;

// Screen Manager object
ScreenManager *iScreenManager;

// Application data goes here...
};

A classe Application possui a interface com a plataforma BREW, ao herdar da
estrutura AEEApplet. Além disto esta classe deve implementar os métodos necessários
a sua execução, como os métodos de alocação e desalocação da memória utilizada pela
aplicação (Construct e FreeAppData), bem como o método HandleEvent, res-
ponsável por tratar todos os eventos recebidos.

bool Application::HandleEvent(Application *app,
UINT16 evCode,
UINT16 wParam,
UINT32 dwParam)

{
UINT16 event, ret = FALSE;

switch (evCode)
{

case EVT_APP_START:
{

app->StartApp();
return(TRUE);

}

case EVT_APP_STOP:
{

app->StopApp();
return(TRUE);

}

case EVT_APP_RESUME:
{

app->ResumeApp();
return(TRUE);

}

case EVT_APP_SUSPEND:
{

app->SuspendApp();
return(TRUE);

}

case EVT_KEY_PRESS:
case EVT_KEY:
case EVT_KEY_RELEASE:
// translate the key event in the current dialog
event = app->iScreenManager->TranslateEvent(aeCode,

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

199

awParam,
adwParam);

// if event is not translated, use it "as is"
ret = app->iStateManager->HandleEvent(event,

awParam,
adwParam);

app->iScreenManager->Repaint();
return ret;

// default: send the event to stateManager
default:
{

return app->iStateManager->HandleEvent(evCode,
awParam,
adwParam);

}

} // switch evCode

return(FALSE);
}

Nesta implementação, o método HandleEvent ao receber os eventos de
Start, Stop, Suspend e Resume, irá chamar os métodos de Application res-
ponsáveis por tratá-los.

Caso seja um evento de tecla, este evento será primeiramente traduzido pelo
ScreenManager, de acordo com a tela que está sendo apresentada, e depois enviado ao
StateManager. Qualquer outro evento será enviado diretamente ao StateManager.

O método HandleEvent do StateManager será então responsável por enviar
o evento ao estado ativo, para que seja tratado pelo método correspondente.

Isto descentraliza completamente o tratamento de eventos, evitando a verificação
de estados e telas atuais e proporcionando uma maior modularização e extensibilidade do
código. Abaixo temos o código do método HandleEvent do StateManager.

int StateManager::HandleEvent(UINT16 evCode,
UINT16 wParam,
UINT16 dwParam)

{
int ret = FALSE;

// look for current state and send event to it
if(this->iCurrentState)

ret = this->iCurrentState->HandleEvent(aeCode,
awParam,
adwParam);

return ret;
}

O StateManager também possui o método ChangeState, que é responsável
por alterar o estado ativo, chamando os métodos OnExit e OnEnter do estado anterior
e do novo estado, respectivamente.

int StateManager::ChangeState(const UINT16 &aID)

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

200

{
int ret = FALSE;

StateBase *state = this->Get(aID);

if (state)
{

// call OnExit from previous state
if (this->iCurrentState)

this->iCurrentState->OnExit();

// change the state
this->iCurrentState = state;

// call OnEnter from new state
this->iCurrentState->OnEnter();

ret = TRUE;
}
return ret;

}

A implementação do StateBase pode ser vista a seguir. O método MapEvent
é responsável por mapear eventos em métodos do estado. Este mapeamento pode ser
feito utilizando uma tabela de eventos e métodos. Esta tabela associa cada evento tratado
pelo estado a um método e pode ser consultada posteriormente para chamar o método
desejado.

// Event Handler method pointer
typedef bool (StateBase::*EventHandler)(UINT16 wParam, UINT32 dwParam);

int StateBase::MapEvent(UINT16 aEventCode,EventHandler aEventHandler)
{

int ret = FALSE;
if ((iCurrNumEvents >= 0) &&

(iCurrNumEvents < this->iMaxEvents))
{

iEventTable[iCurrNumEvents].iEventCode = aEventCode;
iEventTable[iCurrNumEvents].iEventHandler = aEventHandler;
iCurrNumEvents++;
ret = TRUE;

}
return ret;

}

O método HandleEvent é responsável por verificar se o estado trata o evento
recebido e chamar o método correspondente.

int StateBase::HandleEvent(UINT16 evCode,
UINT16 wParam,
UINT32 dwParam)

{
int ret = FALSE;

for (int i=0; i<iCurrentNumEvents; i++)
{

// search for event handler in event table

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

201

if ((iEventTable[i].iEventCode == evCode) &&
(iEventTable[i].iEventHandler != NULL))

{
// Call event handler for the event evCode
ret = (this->*(iEventTable[i].iEventHandler))(awParam, adwParam);

}
}

return ret;
}

O ScreenManager também é implementado de acordo com o padrão de projeto
Manager. O método ChangeScreen é responsável por mudar a tela que está sendo
exibida, bem como chamar o método Repaint para que a nova tela seja desenhada.
int ScreenManager::ChangeScreen(UINT16 aId)
{

int ret = FALSE;
ScreenBase *screen = this->GetActiveScreen();

if (screen != NULL) screen->OnInactivate();

this->iActiveScreenId = aId;

screen = this->GetActiveScreen();

if (screen)
{

ret = screen->OnActivate();

if (ret == TRUE)
{

this->Repaint();
}

}

return ret;
}

2.10. Variações
Na Variação 1, é possı́vel alterar o padrão SMVC para que possua um único Manager.
Desta forma, cada tela corresponderia a um único estado. Isto implica num menor número
de classes e redução do overhead, sendo recomendado para aplicações pequenas.

A Variação 2 consiste em utilizar uma Hierarchical State Machine [Samek 2002]
para representar o Controller. Pertencem a uma super classe de estados, os eventos que
são tratados da mesma forma em vários estados. Isto faz com que os estados da aplicação
herdem destes super estados, evitando, assim, a duplicação de código no tratamento des-
tes eventos.

2.11. Usos Conhecidos
O padrão SMVC vem sendo utilizado no desenvolvimento de diversas aplicações para dis-
positivos móveis no CESAR. Por questões de confidencialidade, não podemos listar no-
minalmente as aplicações, no entanto é possı́vel ter uma idéia dos domı́nios de aplicações
que utilizaram este padrão:

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

202

• Aplicações multimı́dia;
• Compartilhamento de imagem;
• Sincronização de informações pessoais;
• Aplicações de slide-show.

2.12. Padrões Relacionados

• MVC [Krasner and Pope 1998]. O SMVC extende o MVC ao fazer a composição
deste padrão com os padrões State e Manager.

• State [Gamma et al. 1994]. O Controller do SMVC é implementado como uma
máquina de estados usando o padrão State.

• Manager [Sommerlad 1997]. A View e o Controller do SMVC utilizam o padrão
Manager para gerenciar as telas e estados da aplicação.

• Hierarchical State Machine [Samek 2002]. Este padrão pode ser utilizado como
forma de reusar eventos comuns em nı́veis de estados intermediários na Variação
2 desse padrão.

• Observer [Gamma et al. 1994]. Este padrão e o Controller do SMVC têm
objetivos semelhantes. Para cada estado, ambos padrões devem modificar seu
comportamento, ou seja, o comportamento de um objeto depende de um estado.

• Strategy [Gamma et al. 1994]. O SMVC e o Strategy se assemelham por terem
classes relacionadas que diferem somente nos seus comportamentos. Tais com-
portamentos são encapsulados e são implementados como uma hierarquia de al-
goritmos.

Agradecimentos
Este trabalho foi suportado pelo C.E.S.A.R - Centro de Estudos e Sistemas

Avançados do Recife.

Agradecemos especialmente a Alexandre Sztajnberg, nosso shepherd, pelos co-
mentários e sugestões importantes que proporcionaram melhorias ao nosso padrão.

Referências

Booch, G., Rumbaugh, J., and Jacobson, I. (1998). The Unified Modeling Language User
Guide. Reading, MA. Addison-Wesley.

BREW (2007). Qualcomm brew - binary runtime environment for wireless. Disponı́vel
em http://www.qualcomm.com/brew/.

Forman, G. H. and Zahorjan, J. (1994). The challenges of mobile computing. IEEE.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1994). Design Patterns: Elements
of Object-Oriented Software. Addison-Wesley.

J2ME (2007). Sun - java 2 micro edition. Disponı́vel em http://java.sun.com/j2me/.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

203

Krasner, G. and Pope, S. (1998). A cookbook for using the model view controller user
interface paradigm in smalltalk-80. In Journal of Object-Orientated Programming,
volume 1(3), pages 26–49.

Riehle, D. (1997). Composite design patterns. In OOPSLA ’97: Proceedings of the 12th
ACM SIGPLAN conference on Object-oriented programming, systems, languages, and
applications, pages 218–228, New York, NY, USA. ACM Press.

Samek, M. (2002). Practical Statecharts in C C++. CMP Books.

Sommerlad, P. (1997). The manager pattern. In Martin, R., Riehle, D., and Buschmann,
F., editors, Pattern Languages of Program Design 3. Addison-Wesley.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

204

BulkLoader Pattern

Márcio Santos
1
, Uirá Kulesza

2
, Carlos José Pereira de Lucena

2

1
DATASUS

{marcio.david}@datasus.gov.br

 2
Departamento de Informática – Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio)

{uira, lucena}@inf.puc-rio.br

Abstract. This paper describes the BulkLoader design pattern, which aims to

minimize the memory amount required by a process that transfers a huge data

amount without change the system architectural layers.

1. Intenção
Este artigo apresenta um padrão de projeto, chamado BulkLoader, que tem o objetivo de

reduzir a quantidade de memória utilizada em processos, onde há transferência ou a criação de

grande quantidade de dados, de forma a não interferir na separação de camadas da aplicação.

2. Exemplo

Esta seção descreve um exemplo de um sistema de informação para gerenciamento de

agendas telefônicas. A Figura 1 representa uma arquitetura orientada a objetos deste sistema

seguindo o padrão arquitetural Layer [2]. De acordo com este padrão, cada camada deve se

comunicar com a camada inferior via uma interface bem definida. Tal interface contém o

conjunto de serviços que a camada oferece para a camada imediatamente superior. Alguns

padrões de projeto foram desenvolvidos de forma a refinar o padrão Layer, no contexto de

sistemas de informação, tais como: Service Layer [1] e Data Acess Object (DAO) [1].

A cópia de informações a partir de uma fonte para um destino de dados é bastante

comum, contudo quando estamos em um sistema em camadas, este se torna um problema

mais complexo devido à especialização de cada camada como visto na Figura 1. Onde

fonte/destino de dados é um repositório onde dados são armazenados. Cada camada possui

responsabilidades específicas, seja ela negócio, interface com o usuário ou mesmo acesso a

dados.

Em geral, são utilizados três tipos de estratégias para o processo de cópia de dados a

partir de uma Fonte, são elas: (i) transformar todos os dados da Fonte em objetos em

memória; (ii) copiar um a um os objetos da Fonte para o Destino, sendo esse último um

repositório de acesso a dados; e (iii) acessar a Fonte de dados a partir da camada de negócios.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

205

Figura 1: Arquitetura OO em camadas de um sistema de gerenciamento de contatos

A interação entre as camadas neste exemplo funciona da seguinte forma: a classe Client

é a classe que recebe as requisições do usuário e esta possui uma referência para a fachada

(classe SystemFacade) que é responsável pelo processamento das informações enviadas pela

camada cliente. Essa fachada mantém uma referência para um objeto do tipo ContactDAO

que é responsável pela persistência de dados de um Contact no banco de dados.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

206

3. Contexto

Aplicações corporativas são projetadas atualmente seguindo as diretrizes do padrão

arquitetural Layer [2]. Nesse padrão arquitetural, cada camada oferece serviços para a camada

imediatamente superior e requer serviços de camadas inferiores. Dessa forma, requisições do

usuário são feitas partindo da camada superior e, em geral, são atendidas pelas camadas

inferiores.

No desenvolvimento de sistemas de informação é freqüente a transferência/cópia de

dados de uma fonte para um destino, podendo esta transferência ser feita de várias formas:

• Arquivo
o XML(eXtensible Markup Language)
o CSV(Comma Separated Value)

• Socket
o HTTP(Hiper text transfer Protocol)
o SOAP(Simple Object Acess Protocol)
o Adhoc

• Mensagens
o JMS(Java Message Service)
o E-mail

• Banco de dados

Durante o processo de cópia, normalmente é necessário algum tipo de validação destes

dados, seja ela para verificar se os dados estão corretos ou se interessam ou não para a

aplicação. Apenas após esse processo de validação, tais dados podem então ser enviados para

o destino.

4. Problema

Como copiar uma grande quantidade de dados tendo validação destes dados sem violar a

separação de camadas e de forma performática com baixo custo de memória ?

5. Forças

As seguintes forças emergem desse problema:

(1) Performance. Em um sistema corporativo geralmente a(s) fachada(s) gerenciam as

transações do sistema (através do uso de serviços de frameworks para gerenciamento de

transações, tais como, EJB e Spring). Esse processo pode causar uma degradação do

desempenho do sistema, pois cada elemento para ser copiado gera uma nova transação,

tornando assim o processo muito lento;

(2) Camadas do sistema. Uma vez que a aplicação foi desenvolvida em camadas e estas

possuem responsabilidades bem definidas, não é interessante para a arquitetura que as

responsabilidades das camadas sejam modificadas para atender a funcionalidade de cópia de

dados. Ou seja, não é interessante que a camada Cliente acesse diretamente os dados

armazenados no banco, ou a camada de negócio saiba qual a estrutura do arquivo que se está

importando. Além disso, sempre que possível é fundamental reusar funcionalidade de classes

já implementadas para a arquitetura.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

207

(3) Uso de memória. A quantidade de memória utilizada não deve comprometer toda a

memória disponível do sistema. Isto pode ocorrer caso a quantidade de dados a serem

transferida seja muito elevada. Assim, deve-se restringir o uso de uma grande quantidade de

memória, mesmo que isso venha a comprometer a performance do processo de transferência

de dados.

(4) Consistência do processamento. O processamento deve ser feito de forma atômica,

ou seja, se ocorrer alguma falha durante o processamento todos os dados anteriores serão

descartados, sendo necessário reiniciar o processo novamente, evitando que a aplicação fique

inconsistente. Uma das formas de alcançar esse processamento atômico, é utilizar os serviços

de transações disponibilizados por frameworks ou plataformas, tais como, o Spring e EJB.

6. Solução

O padrão BulkLoader propõe, para esse problema de transferência de dados, uma

solução que realiza a composição de vários padrões conhecidos. Ele adota os seguintes

padrões:

 (i) o Adapter[4] é usado para abstrair a fonte e o destino dos dados. Tal adapter deve

conter um objeto TransferObject [1], que é usado como buffer dos dados sendo transferidos;

(ii) o Iterator [4] usado para percorrer seqüencialmente a fonte dos dados;

(iii) o Strategy [4] que permite definir diferentes estratégias de validação dos dados

sendo transferidos. Além de tornar possível a reutilização do Iterator para outras estruturas de

dados.

6.1. Estrutura Estática

Na Figura 2 é ilustrada a estrutura do padrão BulkLoader. Ele possui 6 participantes:

• Source – é responsável por prover uma abstração do tipo físico onde os dados estão

armazenados. Possui uma referência para uma instância da classe TransferObject , que é

utilizada como buffer, evitando a criação de várias instâncias. Isso permite melhorar a

performance de duas formas: (i) evitando a criação de várias cópias de objetos; e (ii) evitando

o processamento de um coletor de lixo de memória (garbage collector) ou outras formas de

remoção de instâncias da memória. Esta classe pode ser vista como a implementação do

padrão Adapter [4] para a fonte de dados;

• Iterator – possui a responsabilidade de percorrer a fonte de dados que será copiada.

Representa uma implementação do padrão Iterator [4];

• TransferObject – define uma entidade do sistema, cujos dados estão sendo

transferidos a partir de um Source. Representa uma implementação do padrão TransferObject

[1];

• Validator – esse sendo responsável pela validação dos dados que estão sendo

transferidos do Source para o Target. Ele é implementado seguindo as diretrizes do padrão

Strategy [4], de forma a permitir a variação de estratégias de validação. Diferentes tipos de

classes de validação podem ser criados em função do objeto Source e respectivos

TransferObject sendo considerados;

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

208

• Target – representa uma interface para a fonte de dados (datasource) onde serão

armazenados os dados válidos. Consiste numa implementação do padrão Adapter [4];

• Facade – sua responsabilidade é gerenciar o processo de cópia e transações de negócio

do sistema. Garante dessa forma, que o processo de transferência é atômico, sendo delimitado

por uma transação. Representa uma implementação do padrão Facade [4].

Figura 2: Visão estática da estrutura do padrão.

6.2. Dinâmica

A dinâmica de cooperação dos participantes do padrão BulkLoader foi dividida em

duas partes para simplificar o seu entendimento. A Figura 3 mostra o diagrama de

inicialização do padrão, enquanto a Figura 4 mostra a interação principal do padrão dentro do

processo de cópia.

Figura 3: Cenário de Interação ilustrando o processo de inicialização do padrão

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

209

Na Figura 3, mostra-se o processo de inicialização do padrão, onde o Facade cria o

Iterator passando como referência os objetos Validator e o Source dos dados. Em

seguida, o Facade invoca o método insert() de um Target passando como parâmetro o

Iterator criado. Dessa forma delega para o Target o processo principal da cópia como

pode ser visto na Figura 4.

Figura 4: Cenário de Interação do processo de cópia dos dados

Na Figura 4 é ilustrada a interação dos objetos no processo de cópia. O objeto Target

invoca o método hasNext() do Iterator com o objetivo de verificar se ainda há algum

objeto a ser gravado. O Iterator invoca o método readObject() do Source que por sua vez

verifica se o buffer já foi inicializado. Caso o buffer não tenha sido inicializado, o Source

instancia o TransferObject e, em seguida, carrega no mesmo os respectivos valores da

transferência de dados. O Source então devolve para o Iterator a instância do

TransferObject criada e este por sua vez acessa o Validator para validar tal objeto. Caso

tal objeto TransferObject seja válido, será guardada uma referência para o mesmo, assim

retornando true para o Target. Em seguida, o Target invoca o método next() do Iterator

com o objetivo de recuperar a instância de TransferObject armazenada. Finalmente, o

objeto Target invoca um método para armazenamento do objeto TransferObject, tal como o

método insert(). Esse processo se repete até que o Iterator não possua mais nenhum

objeto para ser processado.

7. Conseqüências

Benefícios:

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

210

• Evita consumo de memória durante o processo de cópia;

• Torna o processo atômico, pois todo o processo ocorre dentro da fachada, e esta é a

classe que delimita a transação, além de reduzir o número de transações no sistema

durante o processo de transferência dos dados;

• Mantém a separação entre camadas sem violar sua estrutura.

Limitações / Desvantagens

• No contexto de sistemas distribuídos, caso o objeto fonte (Source) dos dados esteja

localizado em uma máquina remota, é necessário estender a estrutura do padrão para

garantir o acesso remoto ao Source, através da implementação de um Proxy [4].

• Outra desvantagem é o aumento no número de classes.

8. Usos Conhecidos

O padrão BulkLoader foi adotado no Sistema SISREG (Sistema de Regulação) [5] do

Ministério da Saúde do Governo Federal.

O SISREG é um sistema que foi desenvolvido seguindo as diretrizes do padrão

arquitetural Layer[2]. Ele foi desenvolvido usando as seguintes tecnologias: linguagem de

programação Java; bibliotecas (APIs) Servlet e JSP; e o framework EJB versão 1.1. O sistema

provê uma gama de serviços para seus usuários, tais como: (i) marcação de consultas; (ii)

gerenciamento dos leitos hospitalares regulados pelo sistema; (iii) gerenciamento

orçamentário das solicitações entre os municípios; e (iv) gerenciamento das solicitações de

internação baseadas em laudo médico.

O padrão BulkLoader foi instanciado diversas vezes no contexto do sistema SISREG,

para implementação das seguintes funcionalidades:

• Processamentos de arquivos financeiros vindo do sistema AIH (Autorização de

Internação Hospitalar), para verificação dos procedimentos de internação que foram realmente

autorizados. Nesta instância o source é um adaptador para o arquivo vindo do sistema AIH e

o adaptador destino é o DAO de ocorrências de erros do sistema SISREG;

• Sincronização da base de dados de estabelecimentos de saúde do SISREG com os dados

do cadastro nacional de estabelecimentos de Saúde (CNES). Nesta instância, o source é um

adaptador para a API JDBC que acessa a tabela de estabelecimentos de saúde do CNES. O

adaptador destino é o DAO de estabelecimentos de saúde do sistema SISREG.

• Criação de agendas de consultas. Nesta instância do padrão o source foi implementado

não como uma classe que lê objetos provenientes de uma fonte de dados, mas sim como uma

classe que define um algoritmo de geração automática de agendas baseado em parâmetros

como: intervalo de datas para geração e escala do médico. O adaptador destino é o próprio

DAO de agenda, disponível no sistema SISREG;

9. Implementação

A seguir será apresentada a implementação da carga de um arquivo em um sistema em

camadas utilizando o exemplo descrito na seção Exemplo (Seção 2). Onde será realizado o

processamento de um arquivo de contatos no formato CSV (Comma Separated Values), onde

cada linha do arquivo contém o nome do contato e o seu telefone.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

211

Na Figura 5 ilustra o diagrama de classes do exemplo (Seção 2), adotando o padrão

BulkLoader. Os estereótipos representam os participantes do padrão assumido por cada uma

das classes apresentadas.

Será realizada a carga de uma grande quantidade de dados a partir do referido arquivo.

Neste caso a carga de uma agenda telefônica em formato de texto para um banco de dados

relacional. Durante este processo os dados extraídos do arquivo serão validados (o nome do

contato não pode estar associado a nenhum contato na base de dados), e tais regras de

validação são definidas na classe ContactManager.

A seguir serão apresentadas as classes e suas respectivas implementações utilizando-se

para isso da linguagem de programação Java.

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

212

Figura 5: Exemplo de Instanciação do padrão BulkLoader

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

213

Passo 1: Implementação do Source

Representa o adaptador da fonte de dados que neste exemplo é um arquivo texto. A

classe Source é responsável por ler o arquivo texto e carregar os dados deste arquivo para o

contato, neste exemplo funcionado como um buffer, com o objetivo de minimizar a

quantidade de memória a ser utilizada do processamento do arquivo.

public class Source {

 private Contact contact;

 private BufferedReader br;

 public Source(BufferedReader br) {

 contact = new Contact();

 this.br = br;

 }

 public boolean loadNext() {

 String entity = null;

 do {

 entity = nextRecord();

 load(entity);

 // eventuais erros de processamento podem ser logados no

 // banco de dados ou em um arquivo separado

 } while (entity != null);

 return entity != null;

 }

 public Contact readObject() {

 if (!loadNext()) {

 contact = null;

 }

 return contact;

 }

 private String nextRecord() {

 try {

 return br.readLine();// retorna null se acabou o arquivo

 } catch (IOException e) {

 // pode ser gravado no log da aplicacao relativo ao processamento

 return null;

 }

 }

 private void load(String representacaoEntidade) {

 if (representacaoEntidade != null) {

 StringTokenizer st =

 new StringTokenizer(representacaoEntidade, ",");

 contact.setName(st.nextToken());

 contact.setPhone(st.nextToken());

 }

 }

}

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

214

Passo 2: Implementação do Iterator

Iterator é uma interface semelhante a interface do pattern Iterator [4]. É através

desta interface que o adaptador destino (Target) solicita referência para o próximo contato a

ser persistido na base de dados. Ela possui dois métodos hasNext() e next(), o primeiro

indica se ainda há contatos a serem processados e o segundo retorna a instância do contato a

ser processado.

public interface Iterator {

 public boolean hasNext();

 public Object next();

}

Passo 3: Implementação do TransferObject

Contact é a classe que representa os dados de um contato no caso nome e telefone,

que serão transferidos do arquivo para o sistema.

public class Contact {

 private String name;

 private String phone;

 public String getName() {

 return name;

 }

 public void setName(String name) {

 this.name = name;

 }

 public String getPhone() {

 return phone;

 }

 public void setPhone(String phone) {

 this.phone = phone;

 }

}

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

215

Passo 4: Implementação do DAO

Representa a interface do adaptador[4] de destino, específico para a forma como será

armazenada a entidade e desta forma seguindo o pattern Dao [1]. Esta interface será utilizada

de duas formas uma pelo ValidaTor e outra pela Facade.

public interface Dao {

 public void insert(Iterator iterator);

 public Contact findByName(String name);

}

Passo 5: Implementação de um DAO Concreto

Representa a implementação do adaptador Destino (Target). Neste exemplo consiste

na implementação da interface Dao para gravar o contato em um banco de dados relacional

utilizado-se da API JDBC do java.

public class ContactDaoJdbc implements Dao {

 public Contact findByName(String name) {

 Connection connection = getConeccao();

 PreparedStatement ps =

 connection.prepareStatement("select * from contatcs where name = ?");

 ps.setString(1, name);

 ResultSet rs = ps.executeQuery();

 Contact contact = null;

 if (rs.first()){

 contact = new Contact();

 contact.setName(rs.getString(1));

 contact.setPhone(rs.getString(2));

 }

 return contact;

 }

 public void insert(Iterator iterator) {

 Connection connection = getConeccao();

 PreparedStatement ps =

 connection.prepareStatement("insert into contacts values(?,?)");

 while (iterator.hasNext()) {

 Contact contact = (Contact) iterator.next();

 ps.setString(1, contact.getName());

 ps.setString(2, contact.getPhone());

 ps.addBatch();

 }

 }

...

}

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

216

Passo 6: Implementação do Iterator Concreto

Esta classe é responsável por percorrer toda a fonte de dados de forma a solicitar a

validação dos dados para o Validator a medida que tais dados são recuperados do adaptador

Source.

A dinâmica de funcionamento envolvendo a classe Iterator é a seguinte: (i) o cliente

do Iterator acessa o método hasNext(); (ii) tal método recupera um conjunto de dados a

partir do objeto Source; e (iii) em seguida, delega para o Validator a validação de tal

objeto. Se o objeto não for válido será recuperado outro no Source. Se o objeto for válido,

ficará disponível para o método next().

public class ContactIterator implements Iterator {

 private Source source;

 private Validator validador;

 private Contact contact;

 public ContactIterator(Validator validador, Source fonte) {

 this.validador = validador;

 this.source = fonte;

 }

 public boolean hasNext() {

 boolean valid = false;

 do {

 contact = source.readObject();

 if (contact==null){

 valid = validador.isValid(contact);

 }

 // eventuais erros de processamento podem ser logados no

 // banco de dados ou em um arquivo separado

 } while (contact != null);

 return valid && contact != null;

 }

 public Object next() {

 return contact;

 }

}

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

217

Passo 7: Implementação do Validator

O Validator define uma interface que representa de forma abstrata a estratégia de

validação dos contatos lidos do Source. Implementações de tal interface devem ser criadas de

forma a definir implementações concretas da estratégia de validação. Dessa forma, a

implementação do Validator pode ser caracterizada como uma instanciação do padrão

Strategy [4]..

public interface Validator {

 public boolean isValid(Contact contact);

}

Passo 8: Implementação do Validator Concreto

Define a regra de negócio de validação do objeto Contact. Neste exemplo a regra de

negócio necessita que não haja dois contatos com o mesmo nome. Para realizar tal validação

utiliza-se o adaptador destino, neste caso o DAO, para realizar a consulta do contato por nome.

Caso não exista algum contato com o mesmo nome, o método isValid() retorna true, caso

contrário retorna false.

public class ContactManager implements Validator {

 private Dao dao;

 public ContactManager(Dao dao) {

 this.dao=dao;

 }

 public boolean isValid(Contact contato) {

 Contact entidade = consulta(contato.getName());

 return entidade==null;

 }

 private Contact consulta(String nome) {

 return dao.findByName(nome);

 }

}

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

218

Passo 9: Implementação do Cliente

Classe responsável por receber a solicitação do usuário e montar a requisição a

Facade. Esta classe tem o conhecimento da localização do arquivo que será processado e

desta forma ela consegue construir o adaptador Fonte dos dados.

public class Client {

public void load(){

 try {

 Facade facade = getFacade();

 BufferedReader br =

 new BufferedReader(new FileReader("agenda.csv"));

 Source source = new Source(br);

 facade.load(source);

 } catch (FileNotFoundException e) {

 e.printStackTrace();

 }

}

...

}

Passo 10: Implementação da Fachada

Classe responsável por gerenciar as transações e servir de interface única para o

cliente. Essa classe também pode implementar regras de negócio do sistema.

public class Facade {

 public void load(Source source){

 // Esse método deve ser delimitado por uma transação

 // Tecnologias como EJB (Session Beans) e Spring permitem que se

 // faca isso via arquivos de configuração

 Dao dao = getDao();

 ContactManager contactManager = getManager();

 Iterator ite = new ContactIterator(source,contactManager);

 dao.insert(ite);

 }

 private ContactManager getManager() {

 …

 }

…

}

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

219

10. Padrões Relacionados

O padrão BulkLoader pode ser visto como uma composição de padrões de projeto para

resolver o problema de transferência de dados descritos anteriormente. Os seguintes padrões

fazem parte dessa composição:

• Adapter [4]

Utilizado para abstrair o tipo de fonte de dados que o Source e o Target representam.

• DAO (Data Acess Object)[1]

Uma das formas para implementação dos adaptadores Source e Target

• Strategy [4]

Pode ser utilizado para permitir a variação da estratégia de validação das entidades

vindas do Source.

• Iterator [4]

Utilizado para percorrer a fonte de dados seja ela o arquivo ou banco de dados ou

qualquer outro tipo de meio de armazenamento.

• Transfer Object[1]

É utilizado para armazenar temporariamente os dados, tal qual um buffer.

• Domain Object [3]

Esse padrão pode ser usado para armazenamento dos dados, contudo neste caso o

próprio objeto efetuaria as validações mais simples e de consistência do objeto.

Referências

[1] D. Alur, J. Crupi, D. Malks. Core J2EE Patterns: Best Pratices and Design Strategies.

Prentice Hall, 2001.

[2] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerland, M. Stal. Pattern-oriented

software architeture: a system of patterns. John Wiley & Sons Ltd, New York, 1999.

[3] M. Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley

Professional, 2003.

[4] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley, Reading, MA, 1995.

[5] SISREG – Sistema de Regulação, Ministério da Saúde, DATASUS, Brazil, 2006. URL:

http://www.portalsisreg.epm.br/

SugarLoafPLoP´2007 Proceedings Writers´ Workshop

220

SugarLoafPLoP´2007

Pattern Applications

Colaboração entre padrões arquiteturais, de projeto e de
interface na construção do framework Athena

Gabrielle D. Freitas1, Luciana V. Lourega1, Marcos C. d’Ornellas 1

1Universidade Federal de Santa Maria – Pós-Graduação em Engenharia de Produção
Av. Roraima, Campus Universitário – 97105-900, Santa Maria, RS

{gabi, lourega, ornellas}@inf.ufsm.br

Abstract. This paper presents a solution to implement the Athena framework
which is dedicated to builder graphical user interfaces. It makes interfaces is
a important activity into development process systems, because it through them
that the software will be obtain success. A way to builder those interfaces is use
frameworks. This way, the Athena framework aims to make easy construct im-
age segmentation applications. In order to implement this framework was used
a cooperation between architectural patterns, design patterns and graphical in-
terface patterns. This approach allowed some important characteristics, such
as legibility, easy maintenance and reusability of source-code.

Resumo. Este trabalho apresenta uma solução para implementar o framework
Athena, o qual é dedicado à construção de interfaces gráficas. Produzir in-
terfaces gráficas é uma atividade importante dentro do processo de desenvolvi-
mento de sistemas, uma vez que é por meio delas que o software será bem suce-
dido. Uma forma de construir essas interfaces é por meio da adoção de frame-
works. Assim, o framework Athena tem o objetivo de simplificar o processo de
desenvolvimento de aplicações de segmentação de imagens. Para implementar
esse framework foi utilizada uma cooperação entre padrões arquiteturais, de
projeto e de interface. Essa abordagem permitiu características como legibili-
dade, fácil manutenção e reusabilidade de código-fonte.

1. Introdução

Atualmente, a indústria de desenvolvimento de software tem crescido e ganhado
destaque, tornando-se um mercado bastante competitivo, no qual a qualidade do software
é fator preponderante, influenciando o sucesso ou o fracasso de um sistema. Nesse con-
texto, o software, para ser considerado de qualidade, deve apresentar atributos, como,
facilidade de extensão, flexibilidade, portabilidade e confiança. Dessa forma, o reuso é
um princípio importante uma vez que permite a construção de sistemas pela aplicação de
unidades bem especificadas e testadas.

Existem diversas formas de reuso, como por exemplo, reuso de código, de pro-
jeto, de componentes, de design, de arquitetura, padrões, frameworks, entre outros. Con-
forme Fayad [Fayad et al. 1999], um framework é um conjunto de classes cooperantes
que constroem um projeto reutilizável para uma determinada categoria de software. Com
a utilização de um arcabouço de classes (ou framework), tem-se a definição da arquitetura
da aplicação, da estrutura geral, da divisão do problema em classes, das responsabilidades

SugarLoafPLoP´2007 Pattern Applications

223

de cada uma dessas classes, da colaboração entre os objetos e também, do fluxo de con-
trole do sistema.

Com a generalização dos usuários, a queda do preço do hardware e a aceitação
da Internet ocorreu a popularização do uso dos computadores. Esse fato gerou o cres-
cente interesse no projeto e na implementação de interfaces humano-computador. Nesse
contexto, as interfaces estão sendo consideradas as “embalagens” dos softwares e, como
conseqüência, se as mesmas forem de fácil utilização e de simples aprendizado, o usuário
tende a utilizar a aplicação [Nielsen 1993].

Atualmente, 60% de todo o código em um programa é dedicado a construção de
interfaces gráficas. Sendo assim, frameworks facilitam a construção de interfaces gráfi-
cas por proverem um conjunto de componentes e mecanismos para combinar esses com-
ponentes, a fim de implementar uma interface completa. O framework Athena provê
componentes que permitem a criação de interfaces humano-computador no domínio da
segmentação de imagens, e, para a construção dessa ferramenta, tornou-se necessário a
utilização de diversos padrões.

Dessa forma, o presente trabalho está organizado como segue: na seção 2 é de-
scrito o framework Athena, e na seção 3 são apresentados os principais algoritmos de
segmentação que formam o domínio de atuação do Athena. A forma como os padrões ar-
quiteturais, de projeto e de interface foram utilizados na construção do Athena é discutida
na seção 4. As considerações finais sobre a pesquisa são apresentadas na seção 5.

2. Framework Athena

De acordo com Schmidt [Schmidt et al. 2004], os frameworks mais utilizados para
a construção de interfaces gráficas são wxWindows1, Java Foundation Classes Swing2 e
Qt3. Essas ferramentas apresentam características gerais para a construção de qualquer
tipo de interface gráfica, como componentes gráficos, caixas de diálogos, tratamento de
eventos, estruturas de dados, dentre outros.

À luz das pesquisas realizadas [Freitas 2006], percebe-se a existência de uma la-
cuna no campo do processamento de imagens, o que se deve à carência de um framework
dedicado à construção de interfaces gráficas para algoritmos de segmentação de imagens.
Dessa forma, o Athena tenta preencher essa falha, uma vez que tal framework, além de
apresentar a maioria das características de ferramentas semelhantes, por meio da utiliza-
ção da API Swing, implementa o fluxo de controle comum para as diversas aplicações de
segmentação de imagens.

Como vantagens do Athena citam-se ainda o leiaute predefinido das interfaces, o
fluxo de controle das aplicações e a arquitetura de sistemas que necessitem de algorit-
mos de segmentação de imagens na solução de seus problemas. Para tanto, este frame-
work apresenta um conjunto de componentes inter-relacionados os quais permitem que
as operações gráficas, comuns ao domínio do problema, estejam mapeadas, bem como
providencia a arquitetura básica e o fluxo de controle desse tipo de aplicação.

Portanto, o framework Athena pode liberar o desenvolvedor da tarefa massiva de

1Página oficial do framework: http://www.wxwidgets.org.
2Disponível em http://java.sun.com/products/jfc.
3Página oficial do framework: http://www.trolltech.com/products/qt.

SugarLoafPLoP´2007 Pattern Applications

224

combinar componentes gráficos, permitindo que os mesmos dediquem-se especificamente
aos problemas de segmentação de imagens. Dessa forma, o framework Athena provê aos
desenvolvedores de ferramentas, no domínio da segmentação de imagens que necessitam
de visualização científica de dados, uma forma facilitada para implementar as interfaces
gráficas de suas aplicações.

3. Domínio da Segmentação de Imagens

Um dos passos fundamentais no processo de reduzir informação na imagem é a
segmentação. Dividir a imagem em regiões é útil para identificar unidades estruturais
na cena ou para distinguir objetos de interesse. Assim, a segmentação é descrita como
o processo que subdivide uma imagem em partes ou objetos constituintes. Essa é uma
técnica análoga ao processo visual humano, o qual separa o objeto principal do fundo da
imagem [Russ 1999], constituindo uma etapa decisiva na compreensão da cena.

Segundo Facon [Facon 2001], a segmentação pode ser realizada com base em
similaridades, descontinuidades, proximidades ou outras características presentes na ima-
gem em questão. A segmentação para imagens monocromáticas é realizada com base
nas propriedades de valores de níveis de cinza, que são a descontinuidade e similari-
dade [Gonzales and Woods 2000].

Na primeira categoria, descontinuidade, a abordagem é particionar a imagem
baseada em mudanças bruscas nos níveis de cinza, que ocorrem nas bordas entres os
objetos. A segunda classe de métodos baseia-se em similaridades entre as regiões da ima-
gem, e as principais técnicas são algoritmos de threshold, de crescimento de regiões e de
divisão-fusão.

3.1. Limiarização (Threshold)

Nessa modalidade de segmentação, o objetivo é separar os pixels que pertencem
ao primeiro plano, ou foreground, dos pixels do fundo da imagem, ou background. O
resultado é uma imagem binária, só com duas classes: o fundo preto e os objetos brancos,
ou o contrário. Esse método utiliza o histograma para selecionar um valor de limiar.

Por exemplo, uma imagem de 8 bits, em níveis de cinza, apresenta pixels cujos
brilhos variam de 0 a 255. Escolhe-se um valor de limiar (ou threshold) de 127, fazendo
com que os pixels que estiverem acima desse valor recebam valor um, e os pixels com
valores inferiores a 127 serão transformados para zero (preto) caso a imagem segmentada
seja binária (1 bit). A Figura 1 mostra um exemplo de uma imagem segmentada por meio
do método de threshold, utilizando a ferramenta Quantiphase [Miranda 2004].

3.2. Detecção de Descontinuidades

A forma mais simples para procurar descontinuidades é por meio da varredura
da imagem com uma máscara de convolução (filtragem), na qual os valores numéricos de
peso representam o tipo da máscara [Gonzales and Woods 2000]. Esse processo baseia-se
não somente no valor do pixel em análise, mas também na vizinhança desse ponto.

Uma borda é o limite entre duas regiões com distribuições distintas de níveis de
cinza. Quando tais regiões são homogêneas, a transição entre duas regiões pode ser detec-
tada com base na descontinuidade dos níveis de cinza. Na Figura 2 tem-se um exemplo
da operação de detecção de bordas.

SugarLoafPLoP´2007 Pattern Applications

225

(a) (b) (c)

Figura 1. Segmentação por Threshold. (a) Imagem original. (b) Imagem segmen-
tada com um threshold de 127. (c) Imagem segmentada com um threshold de
194.

(a) (b)

Figura 2. Segmentação por Detecção de Bordas. (a) Imagem original. (b) Imagem
segmentada com o operador Frei-Chen de tamanho 3x3 com limiar de 127.

3.3. Crescimento de Regiões

A detecção de regiões em uma imagem pode ser realizada com o objetivo de ex-
trair uma determinada área ou particionar a imagem em um conjunto de regiões distin-
tas [Facon 2001]. Geralmente, as regiões são homogêneas apresentando uma propriedade
local constante que pode ser o nível de cinza médio. A técnica de crescimento de regiões
agrupa pixels em sub-regiões ou regiões maiores começando por um conjunto de pixels
chamados sementes. A partir deles, a região cresce com a adição de pixels desde que
esses respeitem o critério de similaridade (nível de cinza). Um exemplo de segmentação
por crescimento de regiões pode ser visualisado na Figura 3.

(a) (b)

Figura 3. Segmentação por Crescimento de Regiões. (a) Imagem original com
sementes. (b) Imagem segmentada.

SugarLoafPLoP´2007 Pattern Applications

226

4. Os padrões empregados para construir o framework Athena

Quando desenvolvedores experientes trabalham em um problema particular, não é
comum apresentarem uma solução completamente nova. Geralmente, os desenvolvedores
recorrem a problemas similares que tenham sido resolvidos e reusam a essência dessa
solução para resolver o novo problema [Buschmann et al. 1996]. A idéia de identificar
padrões de problemas para desenvolvimento de sistemas, por meio de catálogos como
os de Gamma et. al [Gamma et al. 2000] e Buschmann et. al [Buschmann et al. 1996],
trouxe uma nova forma de se pensar em projetos de software. Atualmente, diversos tipos
de padrões são descritos na literatura, como por exemplo, padrões de testes, de interfaces
gráficas, de projeto, arquiteturais, entre outros.

Ainda, conforme descrito na seção 1, um framework é uma forma de reuso, tanto
de código como de projeto, sendo formado por um conjunto de componentes que in-
teragem para prover a solução comum ao domínio do problema. Um padrão é uma
forma de descrever um problema a ser resolvido, uma solução e o contexto no qual a
solução trabalha [Buschmann et al. 1996]. Com base nessas definições, é possível afir-
mar que um framework será composto por diversos padrões e esses por sua vez são
mais abstratos que os frameworks [Johnson 1997]. Dessa forma, diversos padrões, en-
tre eles arquiteturais, de projeto e de interface, foram utilizados para construir o frame-
work Athena, possibilitando o reuso de código, da arquitetura e do fluxo de controle
das aplicações envolvendo segmentação de imagens. Esses padrões foram encontrados
em livros ([Buschmann et al. 1996], [Gamma et al. 2000] e [Tidwell 2006]) e em sites
como http://hilside.net.

4.1. Padrão arquitetural Layer

De acordo com Buschmann et. al [Buschmann et al. 1996], um padrão arquite-
tural expressa a estrutura e a organização de sistemas de software. Esse tipo de padrão
provê um conjunto predefinido de subsistemas, especificando suas responsabilidades e
incluindo regras para organizar os relacionamentos entre esses subsistemas.

O contexto do padrão Layer é um sistema complexo que exige uma decomposição,
onde cada camada seria responsável por tarefas distintas [Buschmann et al. 1996]. Com
esse padrão, a mudança em um componente não afetaria outros, pois eles estariam bem
encapsulados, cada qual em sua camada. Esse é exatamente o contexto do framework
Athena, o qual é um sistema formado por diversas sub-tarefas, como por exemplo, en-
trada e saída de arquivos, fluxo de controle, interfaces gráficas e bibliotecas utilizadas
para desenvolver o framework. Além disso, é importante que cada componente ao ser
implementado, apresente a característica de isolamento de mudanças.

O padrão Layer foi empregado na arquitetura do Athena a fim de organizá-la evi-
tando a desestruturação dos componentes. Além disso, o Layer facilita a implementação,
o reuso de camada e de componentes, permite mudanças sem afetar o resto do sistema e
possibilita que as dependências sejam mantidas localmente. A escolha desse não foi triv-
ial, tendo em vista que foi necessário um forte embasamento teórico para escolher qual
padrão arquitetural se adequaria às propostas do framework.

Sendo assim, o framework Athena é estruturado em três camadas: a camada base
formada pela linguagem de programação JAVA e as bibliotecas Swing e JAI; a camada

SugarLoafPLoP´2007 Pattern Applications

227

intermediária, de entrada e saída de arquivos, mensagens e interfaces gráficas; a camada
superior constituída pelo componente principal.

A base da estrutura é utilizada para implementar os componentes do Athena. O
nível intermediário dessa arquitetura tem o objetivo de prover interfaces gráficas aos al-
goritmos de segmentação de imagens e o topo é responsável pelo fluxo de controle e es-
trutura do framework. A arquitetura do Athena, organizada conforme o padrão Layer,
pode ser visualizada na Figura 4. Essa estrutura segue uma variante do padrão, co-
nhecida como Relaxed Layered System, que é menos restritiva sobre o relacionamento
entre as camadas, permitindo que cada camada utilize os serviços dos níveis inferi-
ores [Buschmann et al. 1996].

Figura 4. Arquitetura do framework Athena conforme o padrão Layer.

4.2. Padrão de projeto Strategy

Algumas classes especiais foram criadas, a partir de determinados padrões, para
implementar a arquitetura do framework. Nesse sentido, o padrão Strategy foi adap-
tado, originando a classe strategyComponente, adotada para definir qual compo-
nente o desenvolvedor necessita utilizar. O padrão de projeto Strategy tem o objetivo
de definir uma família de algoritmos, encapsular cada um deles e torná-los intercam-
biáveis [Gamma et al. 2000]. Strategy permite que o algoritmo varie independentemente
dos clientes que o utilizam.

A escolha do desenvolvedor é realizada com base em uma lista de constantes,
chamadas de estratégias, as quais representam os componentes desenvolvidos. A ló-
gica de programação, para a escolha dos componentes, é implementada pelo método
escolheComponente. Por exemplo, para instanciar o componente abrirArquivo,
o desenvolvedor precisa escolher a estratégia de número 0 (representada pela cons-
tante abrir); para o componente salvarArquivo, escolhe-se a estratégia 1 (constante
salvar), e assim sucessivamente. O diagrama que estrutura os componentes do Athena
é mostrado na figura 5.

4.3. Padrão de projeto Façade

De acordo com Buschmann et. al [Buschmann et al. 1996], ao se utilizar o padrão
Layer, estruturando o sistema em estratos, é necessário definir uma interface de acesso a
essas camadas. À luz de suas idéias, o ponto de acesso ao sistema poderia ser implemen-
tado utilizando o padrão de projeto Façade. Deste modo, outra classe especial, utilizada

SugarLoafPLoP´2007 Pattern Applications

228

Figura 5. Diagrama simplificado que representa a arquitetura do framework
Athena.

na implementação da arquitetura e do fluxo de controle, é a acessoCamadaInferior.
A partir do padrão Façade a classe acessoCamadaInferior foi adaptada para faci-
litar a utilização do Athena pelos desenvolvedores. Esse padrão de projeto tem o objetivo
de prover uma interface de acesso unificada para um subsistema [Gamma et al. 2000].
Esse padrão define também uma interface de alto nível que torna o subsistema mais fácil
de ser utilizado. Ao se empregar o Façade facilita-se a comunicação e minimiza-se as
dependências do subsistema. A escolha desse padrão foi simples uma vez que devido ao
objetivo de prover uma interface de acesso unificado ao framework, o padrão encaixou-se
perfeitamente no problema encontrado.

A classe acessoCamadaInferior é necessária para padronizar a forma como
os algoritmos de segmentação, implementados pelos desenvolvedores, irão acessar o
Athena. Essa classe apresenta o atributo imagem (do tipo PlanarImage4), que ar-
mazena a imagem acessada pelo usuário, e o atributo parametrosEntrada, do tipo
Vector, que contem os parâmetros de entrada para tais algoritmos.

Conforme a arquitetura do Athena, ilustrada na figura 5, o fluxo de controle do
framework está assim definido: o desenvolvedor escolhe qual componente instanciar por
meio da estratégia; o componente escolhido fornece uma interface gráfica que permite ao
usuário determinar os parâmetros de entrada para o processo de segmentação. O desen-
volvedor implementa o seu algoritmo de segmentação acessando os atributos da classe
acessoCamadaInferior. O resultado dessa segmentação é uma imagem que deve
ser armazenada nessa mesma classe.

Por exemplo, para um algoritmo de crescimento de regiões é necessário que
o usuário defina um conjunto de pontos chamados sementes. Esses pontos devem
ser armazenados no vetor parametrosEntrada. O desenvolvedor, a partir desses

4Classe ofertada pela biblioteca JAI que armazena os pixels de uma imagem.

SugarLoafPLoP´2007 Pattern Applications

229

pontos, implementa a lógica para a segmentação, sendo que a imagem resultado é
salva no atributo imagem. Dessa forma, evita-se que o desenvolvedor tenha que
entender toda a implementação do framework, sendo necessário conhecer a classe
acessoCamadaInferior.

4.4. Padrão de projeto Observer

O padrão de projeto Observer tem a finalidade de definir uma dependência um-
para-muitos entre objetos, de maneira que, quando um objeto muda de estado, todos os
seus dependentes serão notificados e atualizados automaticamente. Dessa forma, para
atualizar a imagem resultado na tela da aplicação, foi inevitável instanciar um método
chamado avisaObserver, concebido com base no padrão Observer descrito por
Gamma et. al [Gamma et al. 2000]. Assim, à medida que o atributo imagem sofre uma
alteração, o método avisaObserver informa ao componente exibirImagem que a
imagem foi modificada e solicita que essa alteração seja mostrada na tela da aplicação.

4.5. Padrão de projeto Command

As principais finalidades do framework são: a combinação dos componentes, a
utilização/combinação dos componentes implementados fora da estrutura do Athena, o
isolamento de mudanças, a facilidade de extensão e manutenção. Para isso, criou-se uma
estrutura genérica (ilustrada na figura 6) que é seguida por todos os componentes a fim de
alcançar esses objetivos.

Figura 6. Diagrama de classe que define a estrutura interna de cada componente
do Athena

Nessa estrutura, tem-se a classe guiComponente que implementa a inter-
face commandInterface, uma adaptação do padrão Command descrito por Gamma
et. al [Gamma et al. 2000]. Em Java, as ações de cada elemento gráfico presente,
em uma interface, são gerenciados pelo método actionPerformed e pelo ob-
jeto ActionEvent [Welfer 2005]. Entretanto, esse processo sobrecarrega o método
actionPerformed, fazendo com que todas as ações dos componentes sejam definidas
na classe onde actionPerformed é implementado. Esta é uma solução possível, con-
tudo é de difícil manutenção e deselegante.

Uma solução para essa problemática é adotar o padrão Command para modularizar
as requisições. Dessa forma, cada elemento gráfico (um botão, um ícone, um menu,
um combo box, entre outros) é implementado como uma nova classe. Cada uma dessas

SugarLoafPLoP´2007 Pattern Applications

230

classes herdam as características da interface pública chamada commandInterface,
que é o objeto command. Entretanto, a escolha do padrão não foi trivial, uma vez que
vários padrões poderiam resolver a problemática. O padrão Command acaba gerando
uma explosão de pequenas classes (uma para cada componente gráfico), mas a legibili-
dade e a organização do código, providos pelo uso do padrão, tornam essa desvantagem
irrelevante. Um exemplo de código para essa solução é apresentado no código 1.

Código 1: Manipulando requisições do usuário de forma mais elegante.

01. //especificação do objeto Command em um arquivo
02. public interface commandInterface {
03. public void ExecuteAction();
04. }
05. //invocando o objeto Command na guiComponente
06. public void actionPerformed(ActionEvent e){
07. commandInterface obj = (commandInterface)e.getSource();
08. obj.ExecuteAction();
09. }
10. //Classe alusiva a um componente gráfico
11. class BotaoOk extends JButton implements commandInterface{
13. public void ExecuteAction(){
14. dispose();
15. }
16. }

4.6. Os padrões de interface adotados nos componentes do Athena

Os padrões de interface têm a finalidade de auxiliar os projetistas a resolver proble-
mas de design de interfaces Web ou interfaces para aplicações desktop. Da mesma forma
que os padrões arquiteturais e de projeto apresentam uma solução estruturada para pro-
blemas que freqüentemente se repetem, os padrões de interface também provêm soluções
para problemas recorrentes, mas no domínio de construção de interfaces gráficas. A iden-
tificação desses padrões foi trivial, uma vez que a literatura ([Tidwell 2006]) apresenta
diversos exemplos visuais da aplicação dos padrões, o que simplifica e facilita o processo
de escolha, por meio da análise do problema e da solução de cada padrão.

O padrão Titled Sections é adotado quando existem diversos objetos de infor-
mação, sendo que tais objetos precisam ser arranjados espacialmente em uma área li-
mitada. Além disso, o usuário precisa rapidamente compreender a informação e executar
a ação dependendo dessa informação. Dessa forma, o padrão indica que todos os ob-
jetos devem ser arranjados, com base no conteúdo de cada informação em uma grade.
Quando o usuário interage com uma interface com essa organização, ele se sentirá mais
confortável para trabalhar [Tidwell 2006].

Para desenvolver o componente gerarMascara foi necessário a união dos compo-
nentes selecionarLimiar e gerarHistograma porque o usuário deve escolher um valor de
limiar interagindo com o histograma da imagem. Deste modo, percebe-se a importância

SugarLoafPLoP´2007 Pattern Applications

231

de organizar tais elementos em uma única interface empregando o padrão Titled Sections,
visto que esse padrão tem a finalidade de separar seções por conteúdo [Tidwell 2006].

Assim, ao aplicar o padrão Titled Sections, a interface do componente fica sepa-
rada em duas seções: a superior, que apresenta a configuração do operador de detecção
(tipo e tamanho da máscara); a inferior, na qual ocorre a seleção do valor de limiar com-
binando os componentes gerarHistograma e selecionarLimiar. A interface do compo-
nente é ilustrada na figura 7.

Figura 7. A interface do componente gerarMascara com o emprego do padrão
Titled Sections.

O padrão Fill-in-the-blanks é utilizado quando um ou mais campos em um for-
mulário devam ser preenchidos. Como é necessário solicitar uma entrada do usuário,
geralmente um texto ou número, é importante clarificar qual a informação a ser fornecida
pelo mesmo. Esse padrão auxilia a interface a tornar-se auto-explicativa, mostrando para
o usuário qual entrada a digitar ou a escolher. Para a construção do componente selecio-
narLimiar, adotou-se esse padrão, visto que o mesmo auxilia o usuário a compreender
a forma de interação com o sistema [Tidwell 2006]. A interface gráfica do componente
pode ser visualizada na figura 8.

Figura 8. A interface do componente selecionarLimiar emprega o padrão Fill-in-
the-Blanks (áreas retangulares).

SugarLoafPLoP´2007 Pattern Applications

232

O padrão Dropdown Chooser estende o conceito de menu usando um painel para
exibir um valor mais complexo. O problema a ser resolvido é a situação na qual o
usuário tem que fornecer entradas com base em um conjunto de dados. Segundo Tid-
well [Tidwell 2006] esse padrão facilita a interação do usuário, a medida que melhora a
compreensão da interface.

Já o padrão Illustrated Choices é adotado quando se deseja utilizar imagens, ao in-
vés de textos, para mostrar as opções disponíveis. De acordo com Tidwell [Tidwell 2006],
a aplicação desse padrão diminui a carga cognitiva do usuário e, além disso, torna a in-
terface mais atraente. Esses dois padrões de interface foram utilizados no componente
abrirArquivo. O primeiro foi utilizado para permitir a escolha do diretório onde a ima-
gem está armazenada; o segundo, foi aplicado para diminuir a carga cognitiva do usuário,
permitindo que o mesmo “veja” qual arquivo será acessado. A figura 9 mostra a interface
do componente abrirArquivo.

Figura 9. Interface do componente abrirArquivo. A área circulada representa a
aplicação do padrão Illustrated Choices; a área sob o retângulo mostra o emprego
do padrão Dropdown Chooser.

5. Conclusão

A principal contribuição do trabalho é o própio framework Athena, tendo em vista
que o mesmo apresenta soluções aos problemas inerentes à construção de interfaces grá-
ficas no domínio da segmentação de imagens tornando-se uma nova ferramenta, uma vez
que não foi possível encontrar um framework semelhante na literatura. Para construir
esse framework, tornou-se essencial adotar diversos padrões, dentre eles, padrões arquite-
turais, de projeto e de interface.

Nesse sentido, o padrão Layer foi escolhido porque permite estruturar o frame-
work em camadas com funções bem definidas, evitando uma estrutura complexa, com
diversos componentes sem ligação lógica. Esse padrão propiciou também o isolamento
de mudanças em cada camada, o que se torna essencial no ambiente acadêmico de desen-
volvimento de sistemas para a segmentação de imagens.

Do mesmo modo, outros padrões foram empregados para definir a arquitetura do
framework, como por exemplo, o padrão Strategy que simplificou a forma pela qual os
desenvolvedores escolhem os componentes. O padrão Façade foi importante à medida
que possibilitou criar um mecanismo para instanciação dos algoritmos de segmentação
de imagens, implementados pelos desenvolvedores, sem obrigá-los a conhecer todos os
detalhes de construção do framework.

SugarLoafPLoP´2007 Pattern Applications

233

O padrão Observer auxiliou na implementação de um método que permitiu infor-
mar o componente exibirImagem que uma imagem, resultado da aplicação do algoritmo
de segmentação, precisa ser mostrada para o usuário. Outro padrão de projeto importante
foi o Command o qual pode-se implementar uma solução elegante para o tratamento de
requisições dos usuários realizadas via interface gráfica.

Portanto, os diversos padrões que foram utilizados no processo de desenvolvi-
mento do framework Athena possibilitaram o reuso de código, da arquitetura e do fluxo
de controle das aplicações envolvendo segmentação de imagens. Não obstante, a apli-
cação desses padrões permitiu a criação de um framework de forma funcional, garantido
a legibilidade, o reuso de código e a facilidade de extensão do framework.

Referências
Buschmann, F., Meunier, R., Rohnert, H., Sommerland, P., and Stal, M. (1996). Pattern

- oriented software architecture: a system of patterns. John Wiley & Sons Ltd, New
York.

Facon, J. (2001). Processamento e Análise de Imagens. Curso de Mestrado em Infor-
mática Aplicada. Pontifícia Universidade Católica, Paraná.

Fayad, M., Schmidt, D., and Johnson, R. (1999). Implementing Application Frameworks:
Object-Oriented Frameworks at Work. Wiley Computer Publishing, New York.

Freitas, G. D. (2006). Athena: um framework para a construção de interfaces humano-
computador no domínio da segmentação de imagens. Dissertação de mestrado, Pro-
grama de Pós-Graduação em Engenharia de Produção(PPGEP)- Universidade Federal
de Santa Maria.

Gamma, E., Johnson, R., Helm, R., and Vlissides, J. (2000). Padrões de Projeto -
Soluções Reutilizáveis de Software Orientado a Objetos. Bookman, Porto Alegre.

Gonzales, R. C. and Woods, R. E. (2000). Processamento de Imagens Digitais. Edgard
Blücher, São Paulo.

Johnson, R. E. (1997). Components, frameworks, patterns. ACM Special Interest Group
on Software Engineering, pages 10–17.

Miranda, A. N. (2004). QuantiPhase: um programa de processamento e análise de ima-
gens para a caracterização da composição e homogeneidade de materiais. Trabalho
de conclusão de curso, Curso de Ciência da Computação- Universidade Federal de
Santa Maria.

Nielsen, J. (1993). Usability Engineering. Academic Press, New York.

Russ (1999). The Image Processing Handbook. CRC Press LLC, São Paulo.

Schmidt, D. C., Gokhale, A., and Natarajan, B. (2004). Leveraging application frame-
works. ACM Press. Vol. 2, Issue 5, pages 66–75.

Tidwell, J. (2006). Designing Interfaces: Patterns for Effective Interaction Design.
O’Reilly’s . Disponível em: http://designinginterfaces.com/.

Welfer, D. (2005). Padrões de Projeto no desenvolvimento de sistemas de processamento
de imagens. Dissertação de mestrado, Programa de Pós-Graduação em Engenharia de
Produção(PPGEP)- Universidade Federal de Santa Maria.

SugarLoafPLoP´2007 Pattern Applications

234

Uma proposta de ambiente para apoiar a utilização de
padrões de software e requisitos de teste no desenvolvimento

de aplicações

Alessandra Chan1∗, Maria I. Cagnin2, José C. Maldonado1, Rosana T. V. Braga1†

1Instituto de Ciências Matemáticas e de Computação
Universidade de São Paulo

Caixa Postal 668 – 13560-970 – São Carlos – SP – Brasil

2Programa de Pós-Graduação em Ciência da Computação
Centro Universitário Eurı́pides de Marı́lia

Caixa Postal 2041 – 17525-901 – Marı́lia – SP – Brasil

alechan@icmc.usp.br, istela@univem.edu.br,

jcmaldon@icmc.usp.br, rtvb@icmc.usp.br

Resumo. O emprego de padrões de software, requisitos de teste, métodos e pro-
cessos de desenvolvimento na criação de aplicações pode aumentar a produtivi-
dade das equipes e a qualidade do produto final. No entanto, há carência por
ferramentas que apóiem engenheiros de software no emprego de padrões de
software nas diversas etapas de um processo de desenvolvimento e que aux-
iliem na validação das soluções utilizadas. Assim, este artigo apresenta a
proposta de um ambiente Web para desenvolvimento apoiado por padrões e
requisitos de teste, com enfoque nos seus requisitos, arquitetura e aspectos de
implementação. Durante o desenvolvimento de software, o ambiente apresenta
ao engenheiro de software sugestões de padrões que solucionam problemas es-
pecı́ficos de cada etapa do processo, juntamente com requisitos de teste para
auxiliar a validação das aplicações desenvolvidas com o apoio do ambiente.

Abstract. The use of software patterns, test requirements, methods and develop-
ment processes in the creation of applications can increase teams productivity
and the final product quality. However, there is a lack for tools supporting users
on the use of software patterns in the many stages of a development process, be-
yond assisting the validation of the reused solutions. Thus, this article presents
a proposal of a Web environment for development supported by patterns and test
requirements, with focus on its requirements, architecture, and implementation
aspects. During software development, the environment presents to the software
engineer suggestions of patterns that resolve specific problems at each process
stage. For each pattern, the environment also offers test requirements for assist-
ing the validation of applications developed with the environment support.

∗Apoio financeiro do CNPq
†Apoio financeiro da Fapesp

SugarLoafPLoP´2007 Pattern Applications

235

1. Introdução

Padrões de software constituem uma técnica eficaz de reúso, mas utilizá-los em projetos
de desenvolvimento requer um certo custo, principalmente por causa da sua complex-
idade. Além disso, existe uma grande quantidade de padrões na literatura, utilizando
normas distintas de nomenclatura e definição, dificultando a consulta pelo padrão ade-
quado a ser empregado [Pressman 2005]. Assim, é necessário que o projetista possua
um conhecimento de diversos padrões para que utilize os mais adequados na solução de
problemas.

Atualmente, há uma preocupação com teste dos artefatos resultantes de desen-
volvimento com reúso. A atividade de VV&T (Verificação, Validação e Teste) é uma
das principais para a garantia de qualidade, minimizando erros e riscos associados ao de-
senvolvimento [Rocha et al. 2001]. No entanto, essa atividade é uma das mais onerosas
da Engenharia de Software [Maldonado et al. 2004, Myers 2004, Pressman 2005] e, no
mundo competitivo atual, cresce a importância do desenvolvimento de software de alta
qualidade, com preços acessı́veis e em tempo reduzido [Chan 2005]. Nesse contexto, uma
das dificuldades encontradas é a avaliação da qualidade do padrão que se deseja utilizar,
pois há poucos indı́cios de como ele foi validado e de como validar a solução utilizada.
Uma das opções para resolver esse problema é adicionar uma seção no padrão para aux-
iliar os engenheiros de software a validar a solução por ele proposta [Cagnin et al. 2005].

Outro ponto a ser considerado são os problemas que ocorrem durante o desen-
volvimento e manutenção de aplicações, que podem ser evitados por meio da utilização
de processos de desenvolvimento disciplinados, métodos, técnicas e ferramentas, além de
também colaborarem para construção de aplicações com maior qualidade.

Nesse contexto, ferramentas automatizadas têm um papel importante para que
métodos possam ser empregados corretamente, além de apoiar e agilizar o reúso de
padrões de software. O teste de aplicações também pode ser auxiliado pela utilização
de ferramentas, permitindo maior rapidez e confiança na produção de dados sobre a
execução.

Atualmente, ferramentas auxiliam engenheiros de software de diversas maneiras,
como por exemplo, para apoiar a implementação, modelagem de diagramas, controle de
versão, consulta a padrões de software e teste de software. No entanto, não foram encon-
trados na literatura ambientes e ferramentas que apoiassem a utilização de padrões durante
as diversas etapas de um processo de desenvolvimento, além de apoiar a associação de di-
retrizes de teste para facilitar a validação das soluções reusadas. Assim, neste artigo é
proposto o desenvolvimento de um ambiente que apóie a consulta e aplicação de padrões
de software em cada etapa do processo de desenvolvimento de software, documentando
o uso dos padrões nas várias atividades, além de informar aos engenheiros de software os
requisitos de teste necessários para a validação do padrão utilizado.

Esta seção contém uma breve introdução sobre o contexto e motivação do tra-
balho proposto. As demais seções deste artigo estão organizadas nos seguintes tópicos: a
Seção 2 resume os conceitos básicos que envolvem o ambiente proposto, a Seção 3 cita
alguns trabalhos relacionados sobre ferramentas e ambientes encontrados atualmente na
literatura, a Seção 4 apresenta a proposta do ambiente e a Seção 5 apresenta as conclusões
sobre o assunto tratado e os trabalhos futuros.

SugarLoafPLoP´2007 Pattern Applications

236

2. Conceitos Básicos
Esta seção apresenta um resumo dos conceitos básicos para o entendimento dos temas
que envolvem o trabalho proposto. Os seguintes tópicos são abordados: definição de
padrões de software e descrição de elementos obrigatórios em sua composição (Seção
2.1), diferença entre processo e método de desenvolvimento (Seção 2.2), descrição de
terminologias utilizadas dentro das atividades de VV&T e o conceito de requisito de teste
considerado neste trabalho (Seção 2.3).

2.1. Padrões de Software

No final da década de 70, Christopher Alexander introduziu na área da arquitetura as
primeiras definições sobre padrões e linguagem de padrões, além de descrever o seu
método de documentação [Alexander 1977, Alexander 1979]. Posteriormente, na década
de 80, surgiram os primeiros padrões na área de software, com o intuito de captar a es-
trutura essencial e o raciocı́nio de uma famı́lia de soluções bem sucedidas e comprovadas
para um problema recorrente que ocorre dentro de um certo contexto [Appleton 2000].
Além de identificar a solução para um problema, padrões também devem explicar o
porquê da necessidade da solução [Appleton 2000].

Padrões têm sido documentados em diferentes formatos [Braga 2003]. No en-
tanto, algumas informações são consideradas essenciais para diferenciar um padrão
de uma descrição qualquer de um par “problema/solução”, permitindo a sua busca e
utilização correta [Meszaros and Doble 1996]. Segundo o padrão “Presença de Elemento
Obrigatório” (Mandatory Element Present), da linguagem de padrões de Meszaros e
Doble (1996), os seguintes elementos são obrigatórios em um padrão: “Nome do Padrão”,
“Problema”, “Solução”, “Contexto” e “Forças”.

Padrões de Software podem trazer benefı́cios tanto às áreas ligadas diretamente ao
projeto e implementação, quanto às áreas de outras disciplinas que fornecem suporte ao
desenvolvimento de sistemas. Entretanto, se mal utilizados também podem trazer desvan-
tagens como, por exemplo, a perda de eficiência causada pela adição de classes ou de no-
vas camadas da aplicação e a diminuição da legibilidade e da manutenibilidade por causa
do aumento da complexidade do código com a divisão de classes, mensagens, linhas de
código e nı́veis hierárquicos de classes [Santos 2004].

Em razão da grande quantidade de padrões de software encontrados na literatura,
é necessário atentar para sua qualidade. Uma das maneiras de selecionar bons padrões é
verificar se possuem os elementos obrigatórios e se foram utilizados em pelo menos três
aplicações. Além disso, uma outra forma do usuário selecionar e verificar a qualidade de
um padrão é adicionar uma seção especial descrevendo como proceder para validar não
somente o padrão como também as aplicações criadas a partir dele, conforme sugerido
por Cagnin et al. (2005).

2.2. Processos e Métodos de Desenvolvimento

Software é um produto complexo, difı́cil de desenvolver e testar. Freqüentemente, um
software pode apresentar comportamentos inesperados e indesejados, podendo causar
sérios problemas e perdas. Assim, pesquisadores têm se esforçado para aumentar a qual-
idade do software. Uma das hipóteses é que há uma relação direta entre a qualidade do
processo e a qualidade do software desenvolvido [Fuggetta 2000].

SugarLoafPLoP´2007 Pattern Applications

237

Um processo de desenvolvimento de software é o conjunto coerente de polı́ticas,
estruturas organizacionais, tecnologias, procedimentos, atividades e artefatos que são
necessários para entender, desenvolver, implantar e manter um produto de software
[Fuggetta 2000, Segrini et al. 2006].

No entanto, não é trivial decidir o que deve ser incluı́do em um processo de de-
senvolvimento, pois devem ser consideradas as caracterı́sticas da equipe de desenvolvi-
mento e do projeto, o nı́vel de conhecimento em Engenharia de Software, os propósitos da
organização, o orçamento disponı́vel, entre outros fatores. Assim, cada organização deve
definir os seus processos e melhorá-los constantemente, de acordo com a experiência
adquirida durante os projetos [Segrini et al. 2006]. Rocha et al. (2001) consideram três
etapas na definição de uma abordagem flexı́vel de processos: definição de processos
padrão para a organização, especialização dos processos padrão e instanciação para pro-
jetos especı́ficos.

Processos de desenvolvimento, como os propostos por Pressman (2005) e por Mu-
rugesan e Ginige (2005), não definem um método para a sua utilização [Bianchini 2005].
Segundo o dicionário [Houaiss 2006], método é o “procedimento, técnica ou meio de
se fazer alguma coisa”. Um método ensina como desenvolver um software, utilizando
como base um conjunto de princı́pios básicos da Engenharia de Software que abrangem
princı́pios de cada área da tecnologia, incluindo atividades de modelagem e outras
técnicas descritivas [Pressman 2005].

Para o emprego correto de processos e métodos, ferramentas e ambientes podem
fornecer apoio automatizado ou semi-automatizado. Diversos estudos podem ser encon-
trados na literatura atual e alguns deles são citados na Seção 3.

Também merecem destaque os estudos voltados para Web (World Wide Web),
pois as suas aplicações têm se tornado muito importantes no mundo de negócios glob-
alizado atual. Assim, também é crescente a preocupação por processos e métodos para
desenvolvimento Web. No caso de aplicações Web, para gerenciar corretamente o de-
senvolvimento e manutenção, é necessário utilizar técnicas e princı́pios tradicionais de
Engenharia de Software combinados com tratamento dos aspectos especı́ficos da Web
[Brambilla et al. 2002, Bianchini 2005]. Com relaçao aos métodos de desenvolvimento
para Web, podem ser encontrados atualmente vários estudos [Koch 2000, Ceri et al. 2000,
Conallen 2002].

No contexto do trabalho de Bianchini (2005), esses métodos estão sendo estuda-
dos e avaliados para identificar qual o mais apropriado no desenvolvimento de aplicações
para a Web. Considerando o estado atual do trabalho, o processo de desenvolvimento
utilizado por Conallen (2002), pode ser considerado apropriado no desenvolvimento de
aplicações Web e tem sido empregado em estudos de caso para confirmar essa adequação.
O processo proposto por Conallen (2002) é baseado no RUP (Rational Unified Process)
[Kruchten 2000] e propõe a utilização do WAE (Web Application Extension), que de-
fine estereótipos para a representação mais clara dos elementos e regras de negócio das
aplicações para a Web.

Também é importante destacar que, em razão da grande quantidade de padrões de
software existentes na literatura atual, é difı́cil para o usuário identificar o mais adequado a
ser utilizado em uma etapa de um processo de desenvolvimento. Repositórios de padrões

SugarLoafPLoP´2007 Pattern Applications

238

podem ser encontrados [Marinho et al. 2003, Bolchini et al. 2002], mas é necessário que
o usuário tenha um conhecimento prévio da existência do padrão para saber em qual
momento utilizá-lo.

Assim, com relação à apresentação de soluções existentes, um ambiente que,
seguindo um processo de desenvolvimento disciplinado, apóie o usuário na organização e
exibição de padrões de software previamente cadastrados, pode auxiliar no emprego cor-
reto dessas soluções comprovadas, minimizando esforços e melhorando a qualidade do
produto de software.

2.3. Requisitos de Teste
Um software deve ser previsı́vel e consistente sem oferecer surpresa aos seus usuários.
[Myers 2004]. Mesmo que o processo de desenvolvimento de software utilize uma série
de técnicas, métodos e ferramentas, erros no produto ainda podem ocorrer. Assim, um
conjunto de atividades, denominadas de Garantia de Qualidade de Software, são intro-
duzidas durante todo o processo de desenvolvimento de software, destacando-se as ativi-
dades de VV&T, que visam minimizar riscos e erros associados. O teste é a atividade
mais utilizada nesse contexto e constitui um dos elementos para fornecer evidências da
confiabilidade do software [Maldonado 1991, Maldonado et al. 2004].

Dentro da terminologia utilizada nas atividades de VV&T, os seguintes termos são
diferenciados: defeito, engano, erro e falha. O defeito corresponde ao passo, processo ou
definição de dados incorretos. O engano é a ação humana que produz um resultado incor-
reto no programa. O erro é a diferença entre o dado obtido e o dado esperado. A falha é
a produção de uma saı́da diferente da exigida na especificação [Maldonado et al. 2004].

Na atividade de teste é realizada uma análise dinâmica do produto, sendo utilizada
para a identificação de erros e eliminação de falhas e defeitos [Maldonado et al. 2004].
Para localizar a maior quantidade possı́vel de falhas e defeitos, testes devem ser con-
duzidos de maneira sistemática e casos de testes devem ser projetados utilizando técnicas
disciplinadas [Pressman 2005].

Segundo Myers (2004), é impraticável e geralmente impossı́vel encontrar todos
os erros de um programa. Assim, uma estratégia deve ser estabelecida antes de iniciar os
testes [Myers 2004], para que seja coberta adequadamente a lógica do programa e para
garantir que as condições do projeto tenham sido cumpridas [Pressman 2005].

Quatro etapas compõem o teste de software: planejamento de teste, projeto de
casos de teste, execução e avaliação dos resultados [Maldonado et al. 2004, Myers 2004,
Pressman 2005]. Essas etapas devem ser desenvolvidas ao longo do processo de desen-
volvimento e geralmente são concretizadas em três fases: teste de unidade, de integração
e de sistema [Maldonado et al. 2004].

Casos de teste são criados seguindo os requisitos de teste, que são definidos a
partir de critérios de teste, que, por sua vez, são estabelecidos de acordo com as técnicas
de teste escolhidas. De acordo com o tipo de informação que se deseja testar, escolhe-
se a técnica de teste. Em geral, quatro técnicas são utilizadas: Teste Funcional, Teste
Estrutural, Teste Baseado em Erros e Teste Baseado em Máquinas de Estados Finitos
[Maldonado et al. 2004].

Após escolher a técnica, segue-se um critério de teste para avaliar a adequação do

SugarLoafPLoP´2007 Pattern Applications

239

teste e para estabelecer o conjunto de requisitos de teste que serão utilizados para gerar os
casos de teste. Requisitos de teste contêm a idéia do que deve ser testado, não informando
como deve ser realizado esse teste [Wilkinson 2003]. Por fim, casos de teste são criados
com os dados de entrada que devem ser informados ao software e a descrição das saı́das
esperadas [Myers 2004].

A atividade de VV&T é uma das mais onerosas no desenvolvimento de software
[Rocha et al. 2001]. A associação de requisitos de teste a padrões de software pode aux-
iliar engenheiros de software na verificação das soluções propostas e reduzir o tempo de-
spendido na atividade de VV&T [Cagnin et al. 2005]. Outra maneira de reduzir o tempo
é o desenvolvimento de ferramentas de automatização, que são importantes no suporte à
atividade de teste, propiciando maior qualidade e produtividade [Maldonado et al. 2004].

Assim, um ambiente ou ferramenta que apóie e esclareça o usuário quanto à
utilização de requisitos de teste ao empregar um padrão de software pode auxiliar a mini-
mizar omissões no teste de suas aplicações e reduzir o tempo da atividade de VV&T.

3. Trabalhos Relacionados
Como mencionado na Seção 1, ferramentas são utilizadas para fornecer apoio automati-
zado ou semi-automatizado no emprego de métodos de desenvolvimento Web. Além de
auxiliar no emprego de métodos, ferramentas podem também ser utilizadas para auxiliar
engenheiros de software a empregarem padrões de projeto na criação de suas aplicações
[Marinho et al. 2003] e para apoiar a atividade de VV&T. Outro recurso que pode ser uti-
lizado são os ambientes, empregados no auxı́lio de gerência de processos de desenvolvi-
mento de software. Ferramentas e ambientes minimizam a complexidade no desenvolvi-
mento, evitam erros de usuários inexperientes ao utilizarem os métodos ou os padrões,
além de prevenir contra a omissão na verificação, validação e teste de aplicações. Alguns
trabalhos sobre ambientes e ferramentas podem ser citados, sendo que cada um deles pode
fornecer auxı́lio na área de processo de desenvolvimento de software, padrões de software
ou requisitos de teste.

Para apoiar e acompanhar o emprego de processos de desenvolvimento de soft-
ware têm-se, por exemplo, o ambiente WebAPSEE (Web Process-Centered Software En-
gineering Environments) [Lima et al. 2006] e a ferramenta ODE (Ontology-based soft-
ware Development Environment) [Segrini et al. 2006]. O WebAPSEE é utilizado para
auxiliar na modelagem e manutenção de processos, enquanto a ODE é empregada para a
definição de processos de ODE [Falbo et al. 2004].

Diversas ferramentas têm sido construı́das para fornecer apoio no emprego de
padrões de software. Dentre os trabalhos, podemos citar: o repositório de padrões pro-
posto por Marinho et al. (2003) que é integrado ao RUP; o repositório de padrões
de projeto para hipermı́dia e aplicações Web, denominado HPR (Hypermedia Design
Patterns Repository) [Bolchini et al. 2002]; o ambiente FRED (FRamework EDitor)
[Hakala et al. 2001] utilizado no desenvolvimento Java por meio de prototipação; e o
framework GREN (Gestão de REcursos de Negócio) [Braga 2003] utilizado para auxiliar
no desenvolvimento de aplicações utilizando a linguagem de padrões GRN (Gestão de
Recursos de Negócio) [Braga 2003].

Para auxiliar na automatização de teste são encontradas na literatura ferramentas
como: a Proteste [Price and Zorzo 1990], que fornece apoio ao teste estrutural de progra-

SugarLoafPLoP´2007 Pattern Applications

240

mas em Pascal; a Atac (Automatic Test Analysis for C) [Horgan and Mathur 1992], que
apóia a aplicação dos critérios estruturais de fluxo de controle e de dados em programas
C e C++; a JaBUTi (Java Bytecode Understanding and Testing) [Vincenzi et al. 2003],
utilizada para o teste de programas Java; a PokeTool (Potential Uses Criteria Tool for
Program Testing) [Chaim 1991], que apóia a aplicação dos critérios de teste Todos-Nós,
Todos-Arcos e Potenciais-Usos [Maldonado 1991]; e a Proteum [Delamaro 1993] que
apóia o teste de mutação para programas desenvolvidos na linguagem C.

Apesar das inúmeras ferramentas e ambientes encontrados atualmente para aux-
iliar individualmente o emprego de processos de desenvolvimento de software, ou a
aplicação de padrões de projeto ou o apoio ao teste de software, não foram encon-
tradas ferramentas ou ambientes que auxiliassem engenheiros de software a acompanhar
a execução dos seus projetos apoiando a aplicação de padrões nas diversas etapas de um
processo de desenvolvimento de software. Além disso, ainda não existem ferramentas ou
ambientes que incluam uma seção para auxiliar na validação de padrões, uma vez que a
proposta é recente.

Atualmente existem aplicações Web para acompanhamento de projetos, mas não
foram encontradas aplicações Web que apresentem ao usuário os padrões de software mais
adequados para serem empregados na execução de uma etapa do processo de desenvolvi-
mento. Em geral, repositórios, como o HPR, apenas servem como uma base para consulta
sendo necessário que, ao deparar-se com um problema, o usuário lembre da existência do
padrão para poder consultá-lo.

4. Proposta do Ambiente
Nesta seção descreve-se a proposta de um ambiente Web de apoio ao uso de padrões
de software e requisitos de teste durante o processo de desenvolvimento de software
[Chan 2005]. Esta seção está dividida nos seguintes tópicos: a Seção 4.1 apresenta os
requisitos do ambiente, a Seção 4.2 explica a arquitetura adotada no desenvolvimento do
ambiente e a Seção 4.3 contém a descrição dos aspectos de implementação considerados
no trabalho proposto.

4.1. Requisitos do Ambiente

O ambiente proposto é destinado a engenheiros de software que desejam acompanhar o
andamento do projeto de suas aplicações utilizando padrões de software durante o pro-
cesso de desenvolvimento e reusando requisitos de teste associados a esses padrões de
software. Resumidamente, o ambiente possui duas funções principais: cadastro de pro-
cessos de desenvolvimento (e suas respectivas fases, atividades, artefatos, padrões e requi-
sitos de testes) e uso desses processos em projetos de desenvolvimento. Assim, o usuário
tem no ambiente o suporte necessário para definir os processos de desenvolvimento da
organização e utilizá-los em projetos concretos. O desenvolvimento de aplicações Web
pode ser realizado utilizando o ambiente, contanto que seja cadastrado e utilizado um
processo que trate das peculiaridades desse tipo de aplicações. Além de permitir o de-
senvolvimento para a Web, o ambiente é uma aplicação Web permitindo que usuários
compartilhem padrões de software, melhorando a qualidade de seus projetos.

Como pode ser observado no modelo conceitual do ambiente (Figura 1), existem
dois tipos de usuários: o engenheiro de software e o administrador. O engenheiro de

SugarLoafPLoP´2007 Pattern Applications

241

software é capaz de executar as funcionalidades de: cadastro, gerência, instanciação e
acompanhamento da execução de processos de desenvolvimento; criação e gerência de
projetos; criação, gerência e instanciação de padrões de software; criação e gerência de
requisitos de teste; criação e gerência de diagramas de classes e de todos os elemen-
tos necessários na construção desses diagramas; geração de arquivos XMI; impressão de
relatórios; e busca dos elementos cadastrados no ambiente. Além de executar todas as
funcionalidades disponibilizadas para um engenheiro de software, o administrador é ca-
paz de cadastrar, visualizar e gerenciar as contas dos usuários e é o único capaz de alterar
as informações de um processo cadastrado no “Repositório do Ambiente”, que é descrito
com mais detalhes na Seção 4.3.

Figura 1. Modelo Conceitual do Ambiente.

SugarLoafPLoP´2007 Pattern Applications

242

Como mencionado na Seção 2.2, uma abordagem flexı́vel sobre processos envolve
três etapas: a definição, especialização e instanciação do processo. Assim, o ambiente
proposto apóia o cadastro de processos de desenvolvimento, permitindo que os usuários
escolham seus elementos e informem a obrigatoriedade de cada um deles, dando a liber-
dade de definir e especializar de acordo com suas necessidades. Também fornece apoio
à instanciação de processos, por meio de projetos a eles associados, permitindo o acom-
panhamento da execução das fases e atividades para a produção de artefatos necessários
ao projeto. Deve-se observar que no modelo conceitual da Figura 1 não estão incluı́dos
os conceitos pertinentes à instanciação de processos.

Com relação à estrutura do processo de desenvolvimento, ela aborda elementos
básicos do RUP, no entanto, não são utilizados todos eles para que o usuário tenha uma
maior liberdade na definição dos seus processos de desenvolvimento. Cada processo é
composto de fases que, por sua vez, são compostas de atividades. A execução de uma
atividade é atribuı́da a uma pessoa que desempenha um papel no desenvolvimento do
produto. Uma atividade descreve os procedimentos de como o trabalho deve ser real-
izado e pode receber artefatos de entrada e produzir artefatos de saı́da. Um artefato é
um produto de trabalho gerado com a execução de uma atividade, por exemplo, modelos,
elementos de modelo, código-fonte e documentos [Conallen 2002].

O ambiente proposto auxilia na produção de artefatos que são utilizados para iden-
tificar a execução das atividades e, conseqüentemente, das fases de um processo de de-
senvolvimento. Inicialmente, o apoio é fornecido para a criação de diagramas de classes,
sendo acrescentado incrementalmente o auxı́lio ao desenvolvimento de outros artefatos.
Também pode ser utilizado para armazenar informações a respeito dos artefatos produzi-
dos, como por exemplo, onde estão localizados e os padrões de software utilizados, con-
forme discutido na Seção 4.3.

Padrões de software são cadastrados no ambiente e associados a uma fase ou ativi-
dade do processo de desenvolvimento. Assim, quando o usuário estiver em uma determi-
nada fase ou atividade dentro de um projeto que siga tal processo, uma lista de padrões
de software é sugerida a ele, permitindo que visualize quais padrões podem ser aplicados
naquele momento e registrando no ambiente o uso desse padrão. Pode-se também atribuir
a cada padrão uma identificação do domı́nio ao qual pertence, para facilitar o uso desse
padrão em projetos de um domı́nio em particular.

A representação conceitual de um padrão de software por meio de classes de pro-
jeto e associações é realizada na estrutura da solução. Para serem utilizados nos diagra-
mas de classes criados com o apoio do ambiente, padrões de software precisam ser instan-
ciados, ou seja, o usuário deve informar os nomes dos elementos que compõem a estrutura
da solução do padrão no contexto do projeto. Na Tabela 1 é apresentada a descrição do
caso de uso “Instanciar Padrão de Software”, incluindo a descrição dos passos para exe-
cutar essa operação. O ambiente permite que mais de um padrão seja instanciado em uma
fase ou atividade, já que padrões (de projeto por exemplo) podem ser usados em conjunto
para solucionar um problema.

Seguindo a proposta feita por Cagnin et al. (2005), os padrões de software
cadastrados no ambiente possuem uma seção especial com descrição de requisitos de teste
que podem ser utilizados para validar esse padrão e, conseqüentemente, a aplicação sendo

SugarLoafPLoP´2007 Pattern Applications

243

Tabela 1. Caso de Uso “Instanciar Padrão de Software”
Caso de Uso: Instanciar Padrão de Software
Atores Principais: Administrador ou Engenheiro de Software
Interessados e Interesses: Engenheiro de Software: deseja criar uma instância de um padrão de soft-
ware para ser utilizado em um diagrama de classes. A instanciação é realizada para que os elementos
de um padrão de software sejam renomeados adequadamente no contexto do projeto.
Pré-Condição: Administrador ou Engenheiro de Software autenticado no ambiente.
Pós-Condição: Uma instância de um padrão de software é criada e associada a um diagrama de
classes.

Fluxo Básico
Ator Sistema
1. O usuário está preenchendo o formulário de
inserção de itens em um diagrama de classes,
clica na opção de “Procurar” do campo “Padrão
de Software”, seleciona um padrão de software
da lista apresentada e clica no botão “Ok”.

2. O ambiente verifica se foi selecionado um dos
padrões de software da lista.

3. O ambiente exibe a página de instanciação de
padrão de software com o formulário que deve
ser preenchido. São apresentadas todas as classes
da estrutura da solução e para cada uma delas é
apresentado o campo “Nome da Classe Instanci-
ada”. São apresentados todos os relacionamen-
tos da estrutura da solução e para cada um de-
les é apresentado o campo “Nome do Relaciona-
mento”. Também são exibidos dois botões, sendo
eles “Salvar” e “Cancelar”.

4. O usuário preenche os campos do formulário
de cadastro.
5. O usuário clica no botão “Salvar” para enviar
as informações.

6. O ambiente verifica se todos os campos “Nome
da Classe Instanciada” foram preenchidos.
7. O ambiente salva as informações da instância
do padrão de software.
8. O ambiente exibe a página anterior, ou seja,
o diagrama de classes que estava sendo alterado
pelo usuário.

desenvolvida. Esses requisitos de teste podem ser reusados em conjunto com os padrões
de software, ou seja, podem ser reaproveitados pelo usuário na elaboração e execução da
atividade de VV&T.

Classes de projeto são cadastradas previamente para poderem ser empregadas nos
diagramas de classes e nas estruturas da solução de padrões de software. O usuário pode
criar requisitos de teste para validar os atributos de uma classe de projeto contida em
uma estrutura da solução de um padrão. Em sua primeira versão, o ambiente permite o
uso somente de classes de equivalência e valor limite, mas outros tipos de requisitos de
teste podem ser incluı́dos com a evolução do ambiente. Caso o usuário opte por utilizar
um outro ambiente ou ferramenta para continuar o desenvolvimento de sua aplicação, é
fornecida a opção de exportação dos diagramas de classes produzidos pelo ambiente pro-
posto, sendo armazenados em um arquivo no padrão XMI (XML Metadata Interchange)
[World Wide Web Consortium 2005]. Assim, o usuário pode importar para essas outras
ferramentas ou ambientes o arquivo XMI criado. Também é permitido que o usuário
importe para o ambiente proposto os diagramas de classes no formato XMI.

SugarLoafPLoP´2007 Pattern Applications

244

4.2. A Arquitetura

Na Figura 2 é apresentada a arquitetura do ambiente proposto. É utilizada a ar-
quitetura de três camadas e o padrão arquitetural MVC (Model-View-Controller)
[Krasner and Pope 1988]. Na Camada de Apresentação, a Visão é responsável por
armazenar as informações enviadas pelo Navegador do Cliente e enviá-las para o
Controlador, que por sua vez, é responsável por processar as informações recebidas,
transformando-as em solicitações para a Camada de Aplicação. Na Camada de
Aplicação, o Modelo realiza o processamento da lógica do negócio, enviando os da-
dos para a Camada de Persistência, ou requisitando informações dela. A Camada de
Persistência realiza a busca por dados e o armazenamento de informações no Banco de
Dados do ambiente.

Figura 2. Modelo da arquitetura do ambiente.

SugarLoafPLoP´2007 Pattern Applications

245

4.3. Aspectos de Implementação

O ambiente proposto neste artigo é uma aplicação para a Web e está sendo implementado
em Java [Sun Microsystems, Inc. 1999], por ser uma linguagem de programação orien-
tada a objetos, simples, robusta, interpretada, portável, distribuı́da, de arquitetura neutra,
segura, de alto desempenho, multithreaded e dinâmica [Sun Microsystems, Inc. 1999].

Por ser uma aplicação Web, o processo de desenvolvimento proposto por Conallen
(2002) está sendo utilizado para o projeto do ambiente. Para permitir que aplicações Web
sejam modeladas nos diagramas de classes criados pelo ambiente, os estereótipos pro-
postos pelo WAE [Conallen 2002], que é uma extensão da UML (Unified Modeling Lan-
guage) [OMG’s 2006], estão sendo disponibilizados para a modelagem das caracterı́sticas
especı́ficas desse tipo de aplicações.

Com relação ao armazenamento de processos de desenvolvimento no ambiente,
para que um usuário tenha a flexibilidade de escolher entre manter restrito o acesso aos
processos por ele criados ou permitir o compartilhamento com os outros usuários do
ambiente, dois tipos de repositórios de processos de desenvolvimento são oferecidos: o
“Repositório do Ambiente” e o “Repositório do Usuário”. No primeiro, todos os usuários
do ambiente podem visualizar e utilizar os processos nele cadastrados, no entanto, não
podem alterá-los. No segundo, apenas os donos do repositório podem utilizar e alterar os
processos nele cadastrados.

Como mencionado na Seção 4.1, o ambiente auxilia na produção de artefatos.
Como o ambiente está sendo desenvolvido utilizando uma abordagem incremental, a
princı́pio, esse auxı́lio restringe-se apenas à criação de diagramas de classes, sendo que
outros tipos de artefatos podem ser criados separadamente e informados ao ambiente por
meio do nome do arquivo gerado e do caminho para recuperá-lo. Futuramente, outros
tipos de apoio ao desenvolvimento de artefatos podem ser incorporados ao ambiente.

À medida que os artefatos são produzidos ou informados, o ambiente considera
as atividades e, conseqüentemente, as fases como executadas para que o usuário possa
acompanhar a evolução do seu projeto. É oferecida uma opção para que o usuário informe
que o projeto foi finalizado. Após informar a finalização, o ambiente automaticamente
realiza a verificação das fases e atividades marcadas como executadas. Caso alguma fase
ou atividade obrigatória não tenha sido marcada como executada, o ambiente alerta o
usuário sobre a impossibilidade de finalizar o projeto. No entanto, se apenas fases ou
atividades opcionais não tiverem sido executadas, o ambiente apenas avisa sobre quais
delas não foram executadas e sobre o sucesso na finalização do projeto.

Como mencionado na Seção 2.1, alguns elementos são considerados obrigatórios
em um padrão. Assim, o ambiente permite, para cada padrão de sofware, o cadastrado
dos atributos: “Nome do Padrão”, “Problema”, “Solução”, “Contexto”, “Força”, “Estru-
tura da Solução”, “Requisito de Teste”, “Exemplo”, “Contexto Resultante”, “Raciocı́nio”,
“Padrões Relacionados”, “Usos Conhecidos” e “Etapa do Processo de Desenvolvimento”.
É por meio do atributo “Etapa do Processo de Desenvolvimento” que o ambiente recon-
hece quais padrões sugerir para o usuário em uma fase ou atividade.

O campo “Estrutura da Solução” é opcional e seu conteúdo é empregado na
instanciação do padrão, permitindo a criação de partes do diagrama de classes. Por exem-
plo, se uma das fases do processo for a “Modelagem do Sistema” e uma de suas atividades

SugarLoafPLoP´2007 Pattern Applications

246

for a “Criação do Diagrama de Classes”, ao empregar um padrão nessa atividade, a estru-
tura de sua solução pode ser importada, instanciada e as classes passam a fazer parte do
diagrama de classes. Se outros padrões também forem aplicáveis nessa mesma atividade,
eles podem ser instanciados e as novas classes devem ser incorporadas ao diagrama de
classes final.

Caso o campo “Estrutura da Solução” não tenha sido informado pelo engenheiro
de software, o padrão não pode ser instanciado em detalhes, sendo utilizado apenas nas
fases e atividades que não envolvem a criação de diagrama de classes. Mesmo não sendo
utilizado na construção de artefatos, é importante informar os padrões utilizados nas fases
e atividades para que sejam documentados no ambiente, permitindo o acompanhamento
da evolução do projeto em conjunto com o emprego dos padrões e fornecendo a base para
futuras análises estatı́sticas que podem auxiliar os engenheiros de software no desenvolvi-
mento de outros projetos.

O campo “Requisito de Teste” permite ao usuário informar os requisitos de teste
para auxiliar na validação dos padrões de software cadastrados no ambiente. Con-
siderando que a estratégia de teste utilizada pelo usuário depende de diversos fatores,
como por exemplo, custos e cronogramas, não está sendo considerada uma abordagem
especı́fica para a criação dos requisitos de teste para a validação dos padrões de software,
ou seja, o usuário tem a liberdade na elaboração e associação dos requisitos de teste. De-
vido ao caráter incremental no desenvolvimento do ambiente, em um primeiro momento,
o suporte ao cadastro de requistos de teste deve ser realizado apenas para os critérios
Análise do Valor Limite e Particionamento de Equivalência.

Destaca-se que cada Classe de Equivalência é considerada como um requisito de
teste no ambiente. Assim, o usuário pode utilizar apenas o critério Particionamento de
Equivalência, mas não pode utilizar somente o critério Análise do Valor Limite. Podem
ser cadastrados valores limites, mas para que possam ser visualizados como requisitos de
teste, devem ser geradas as classes de equivalência desses valores. A funcionalidade para
gerar automaticamente classes de equivalência a partir de valores limites é oferecida pelo
ambiente.

5. Conclusão
Processos e métodos de desenvolvimento, padrões de software, ferramentas e ambi-
entes têm o objetivo comum de apoiar engenheiros de software no desenvolvimento de
aplicações. Explorando o suporte comum a esses temas, o ambiente proposto neste artigo
têm por objetivo fornecer flexibilidade para o usuário cadastrar processos de desenvolvi-
mento e acompanhar a sua execução, sugerir automaticamente padrões de software para
serem empregados nas fases e atividades do processo de desenvolvimento escolhido pelo
usuário, além de também apoiar a atividade de VV&T por oferecer requisitos de teste
para validar os padrões cadastrados no ambiente.

Com o aumento da quantidade de padrões existentes, cresce também a dificuldade
na visualização e escolha dos padrões mais adequados a serem empregados em um pro-
jeto. Muitas vezes, engenheiros de software sequer recordam a existência de um padrão
de software e da solução por ele proposta. Assim, ao sugerir automaticamente os padrões
cadastrados e relacionados a uma fase ou atividade de um processo de desenvolvimento, o
ambiente pode minimizar as chances do usuário deixar de utilizar um padrão de software

SugarLoafPLoP´2007 Pattern Applications

247

por não lembrar a existência da solução, além de auxiliá-lo na visualização das soluções
existentes. No entanto, um ponto a ser considerado é a qualidade dos padrões armazena-
dos no ambiente. Futuramente planeja-se estabelecer um filtro no cadastro ou um critério
de remoção para que apenas padrões de software válidos sejam mantidos e repassados
entre os usuários, evitando que soluções inválidas comprometam os projetos.

Outro problema é a falha na validação de padrões de software. Na maioria das
vezes, quem utiliza os padrões não são as pessoas que os desenvolveram. Assim, é im-
portante para o engenheiro de software ter diretrizes de como testar a solução proposta
pelo padrão. Seguindo a sugestão de Cagnin et al. (2005), o ambiente proposto permite a
associação de requisitos de teste a padrões de software para auxiliar usuários na validação
dos padrões de software utilizados, podendo minimizar o tempo despendido na atividade
de VV&T.

Uma vez que os padrões de software tenham sido acrescentados ao ambiente,
novos processos de desenvolvimento incorporados ao ambiente também podem fazer uso
dos padrões, já que ao incluir um processo de desenvolvimento é possı́vel associar os
padrões existentes a cada uma de suas fases ou atividades. Além disso, havendo requisitos
de teste associados ao padrão, esses requisitos são automaticamente válidos no contexto
do novo processo.

O ambiente está sendo desenvolvido de maneira incremental, fornecendo apoio,
em um primeiro momento, à construção de diagramas de classes e ao cadastro de requistos
de teste utilizando os critérios Análise do Valor Limite e Particionamento de Equivalência.
Assim, para as fases e atividades que não envolvem a construção de diagramas de classes,
o usuário pode utilizar o ambiente para acompanhar e controlar o emprego de padrões. No
entanto, em trabalhos futuros planeja-se adicionar apoio à construção de outros artefatos
para que o suporte ao emprego de padrões torne-se mais efetivo gradativamente. Também
espera-se que, além de apoio ao cadastro a outros critérios de teste, o ambiente também
forneça um suporte maior à validação de padrões de software utilizados no desenvolvi-
mento de aplicações, como por exemplo, a criação de casos de teste.

Referências
Alexander, C. (1977). A Pattern Language. Oxford University Press.
Alexander, C. (1979). The Timeless Way of Building. Oxford University Press.
Appleton, B. (2000). Patterns and software: Essential concepts and terminology. Online.
Bianchini, S. L. (2005). Avaliação de Metodologias de Desenvolvimento de Sistemas

Web. Master’s thesis, ICMC/USP, São Carlos/SP - Brasil. em andamento.
Bolchini, D., Garzotto, F., Paolini, P., Lowe, D., Cantoni, L., Nanard, J., Rossi, G.,

Schwabe, D., and Ruggeri, R. (2002). HPR - Hypermedia Design Patterns Reposi-
tory. Online.

Braga, R. T. V. (2003). Um Processo para Construção e Instanciação de Frameworks
Baseados em uma Linguagem de Padrões para um Domı́nio Especı́fico. PhD thesis,
ICMC/USP, São Carlos/SP - Brasil.

Brambilla, M., Comai, S., and Fraternali, P. (2002). Hypertext Semantics For Web Ap-
plications. In SEBD Italian National Conference on DataBase Systems, Portoferraio -
Italy.

Cagnin, M. I., Braga, R. T. V., Germano, F., Chan, A., and Maldonado, J. C. (2005).
Extending Patterns with Testing Implementation. In SugarLoafPlop’2005, V Confer-

SugarLoafPLoP´2007 Pattern Applications

248

encia Latino-Americana em Linguagens de Padrões para Programação, Campos do
Jordão/SP - Brasil. Submetido.

Ceri, S., Fraternali, P., and Bongio, A. (2000). Web modeling language (WebML): a
modeling language for designing web sites. In 9th International World Wide Web
Conference, pages 1–22, Amsterdam.

Chaim, M. L. (1991). Poke-tool: Uma Ferramenta Para Suporte ao Teste Estru-
tural de Programas Baseado em Análise de Fluxo de Dados. Master’s thesis,
DCA/FEEC/UNICAMP, Campinas/SP - Brasil.

Chan, A. (2005). Um Ambiente de Apoio ao Uso de Padrões de Software e Requisitos
de Teste no Desenvolvimento de Aplicações Web. Master’s thesis, ICMC/USP, São
Carlos/SP - Brasil. em andamento.

Conallen, J. (2002). Buildind Web Applications with UML. Addison-Wesley, 2nd. edition.
Delamaro, M. E. (1993). Proteum - Um ambiente de teste baseado na analise de mutantes.

Master’s thesis, ICMC/USP, São Carlos/SP - Brasil.
Falbo, R. A., Ruy, F. B., Pezzin, J., and Moro, R. D. (2004). Ontologias e Ambientes

de Desenvolvimento de Software Semânticos. In JIISIC’04 - IV Jornadas Iberoameri-
canas de Ingenierı́a del Software e Ingenierı́a del Conocimiento, Madri - Espanha.

Fuggetta, A. (2000). Software Process: A Roadmap. In ICSE’00 - Future of Software
Engineering Track, pages 25–34, Limerick - Ireland.

Hakala, M., Hautamäki, J., Koskimies, K., Paakki, J., Viljamaa, A., and Viljamaa, J.
(2001). Architecture-Oriented Programming Using FRED. In ICSE ’01: Proceed-
ings of the 23rd International Conference on Software Engineering, pages 823–824,
Washington/DC - USA. IEEE Computer Society.

Horgan, J. R. and Mathur, A. P. (1992). Assessing Testing Tools in Research and Educa-
tion. IEEE Software, 9(3):61–69.

Houaiss, A. (2006). Dicionário Houaiss da Lı́ngua Portuguesa. Online.
Koch, N. (2000). Software Engineering for Adaptive Hypermedia Systems: Refer-

ence Model, Modeling Techniques and Development Process. PhD thesis, Ludwig-
Maximilians University, Munich - Germany.

Krasner, G. E. and Pope, S. T. (1988). A cookbook for using the model view controller
user interface paradigm in Smalltalk-80. In Journal of Object-Orientated Program-
ming, volume 1, pages 26–49.

Kruchten, P. (2000). The Rational Unified Process: An Introduction. Addison-Wesley,
2th. edition. 298 p.

Lima, A., Costa, A., França, B., Reis, C. A. L., and Reis, R. Q. (2006). Gerência Flexı́vel
de Processos de Software com o Ambiente WebAPSEE. In SBES’06 - XIII Sessão de
Ferramentas do SBES, pages 97–102, Florianópolis/SC - Brasil.

Maldonado, J. C. (1991). Critérios Potenciais Usos: Uma Contribuição ao Teste Estru-
tural de Software. PhD thesis, DCA/FEE/UNICAMP, Campinas/SP - Brasil.

Maldonado, J. C., Barbosa, E. F., Vincenzi, A. M. R., and Márcio Eduardo Delamaro,
Simone Rocio Senger Souza, M. J. (2004). Introdução ao Teste de Software. Nota
Didática.

Marinho, F., Santos, M., Pinto, R. N., and Andrade, R. (2003). Uma Proposta de um
Repositório de Padrões de Software Integrado ao RUP. In SugarLoafPlop Proceeding
2003, The Third Latin American Conference on Pattern Languages of Programming,
pages 277–290, Porto de Galinhas/PE - Brasil.

SugarLoafPLoP´2007 Pattern Applications

249

Meszaros, G. and Doble, J. (1996). MetaPatterns: A Pattern Language for Pattern Writing.
In PLoP’1996 - Proceedings of the 8th Pattern Languages of Programs Conference,
Monticello/Illinois - USA.

Myers, G. J. (2004). The art of software testing. John Wiley & Sons, Inc., 2th. edition.
OMG’s (2006). UML Resource Page. Online.
Pressman, R. S. (2005). Engenharia de Software. McGraw-Hill, 6th. edition.
Price, A. M. and Zorzo, A. (1990). Visualizando o Fluxo de Controle de Programas.

In SBES’1990 - IV Simpósio Brasileiro de Engenharia de Software, Águas de São
Pedro/SP - Brasil.

Rocha, A. R. C., Maldonado, J. C., and K, C. W. (2001). Qualidade de Software: Teoria
e Prática. Prentice Hall, 1th. edition.

Santos, M. S. (2004). Uma Proposta para a Integração de Modelos de Padrões de Software
com Ferramentas de Apoio ao Desenvolvimento de Sistemas. Master’s thesis, UFC,
Fortaleza/CE - Brasil.

Segrini, B. M., Bertollo, G., and Falbo, R. A. (2006). Evoluindo a Definição de Processos
de Software em ODE. In SBES’06 - XIII Sessão de Ferramentas do SBES, pages 109–
114, Florianópolis/SC - Brasil.

Sun Microsystems, Inc. (1999). The Java Language: An Overview. Online.
Vincenzi, A. M. R., Wong, W. E., Delamaro, M. E., and Maldonado, J. C. (2003). JaBUTi:

A Coverage Analysis Tool for Java Programs. In Sessão de Ferramentas do 17o

Simpósio Brasileiro de Engenharia de Software, Manaus, AM, Brasil.
Wilkinson, G. (2003). Tests Without Specs. Professional Tester Magazine.
World Wide Web Consortium (2005). Extensible Markup Language Metadata Inter-

change (XMI). Online.

SugarLoafPLoP´2007 Pattern Applications

250

A Process to Create Analysis Pattern Languages
for Specific Domains∗

Rosana T. V. Braga1, Reginaldo Ré2, Paulo Cesar Masiero1

1Instituto de Ciências Matemáticas e de Computação – ICMC
Universidade de São Paulo - USP

Caixa Postal 668 – 13.560-970 – São Carlos – SP – Brazil

2Universidade Tecnológica Federal do Paraná
Campus Campo Mourão

Caixa Postal 271 – 87301-005 – Campo Mourão – PR – Brazil

rtvb@icmc.usp.br, reginaldo@utfpr.edu.br, masiero@icmc.usp.br

Abstract. Pattern languages are a powerful instrument through which knowl-
edge about a specific domain can be documented. When composed of analysis
patterns, they can help novice developers to model systems belonging to a wide
variety of applications in a particular domain. We show a process to system-
atically produce a pattern language for a specific domain. The process starts
with the identification of the domain functionality, then patterns are created to
solve individual problems found in the domain, and finally relationships among
patterns are established. Two analysis pattern languages created by the authors
are used to illustrate the proposed process.

1. Introduction
Software patterns document proven solutions for common problems that occur during
software development [Gamma et al. 1995], so that they can be reused by inexperienced
developers when facing the same problems. The grouping of patterns into a pattern lan-
guage improves reuse even more, as they can lead to the design of complete applica-
tions [Brugali and Menga 1999]. A pattern language is a structured collection of patterns
that support each other to transform requirements and restrictions into an architecture
[Coplien 1998]. A pattern language represents the temporal sequence of decisions that
lead to the complete design of an application, so it can become a method to guide the
development process [Brugali et al. 2000].

In this work, we are particularly interested in using pattern languages to help
novices to model specific-domain systems. So, the patterns of a pattern language can
be used as a guide through which he can find the solutions to each problem he faces when
modeling an application in a certain domain. Each pattern solves a problem and results in
a context that is used as input to other patterns of the pattern language. But how are pat-
tern languages developed? How are the patterns defined in a way that they can be easily
applied when modeling applications in a specific domain?

Our research group has developed three pattern languages [Braga et al. 1999,
Ré et al. 2001, Pazin et al. 2004], after studying many others available in the lit-
erature [Alexander et al. 1977, Aarsten et al. 2000, Beck and Cunningham 1987,

∗Financial support from FAPESP

SugarLoafPLoP´2007 Pattern Applications

251

Brown and Whitenack 1996, Cunningham 1995, Meszaros and Doble 1998]. During the
submission of our pattern languages for publishing, a common question among reviewers
was about how we have created the pattern language. In fact, there is not much written
about this process, as reported in the Related Work Section. The development of a
pattern language requires a deep knowledge about the domain. Nevertheless, a systematic
process could be very useful to achieve a meaningful pattern language.

Thus, considering the absence of a well-defined and detailed process to create
pattern languages, we found important to describe our process, so that other domain ex-
perts can use it to document their knowledge about particular domains in the form of a
pattern language. We consider that, if we have pattern languages for as many domains
as possible, software development will be eased, as developers will have a starting point
for modeling their applications. Furthermore, to leverage reuse to lower abstraction lev-
els, frameworks can be built based on pattern languages, as proposed in another work
of our research group [Braga and Masiero 2002b], in such a way that the framework
and the corresponding pattern language are used together to produce domain-specific
applications [Braga and Masiero 2002c]. Also, tools can be developed to help the in-
stantiation of this framework based only in the knowledge about the pattern language
[Braga and Masiero 2003, Pazin 2004, Shimabukuro et al. 2006], allowing the develop-
ment to concentrate in the system requirements instead of design and implementation
details.

This paper describes a process for creating a domain-specific pattern language,
composed of analysis patterns that can be further used to model concrete applications in
the same domain. Section 2 summarizes related work regarding writing pattern languages.
Section 3 gives an overview of the process. In Section 4 we describe the first step of the
process, which aims at producing a domain class model. In Section 5 we show how to
define an initial set of patterns, that will be refined to produce the pattern language. In
Section 6 we present the process for creating a pattern language graph, to show the order
in which the patterns are used and their interaction. In Section 7 we give details of how
to describe each pattern individually. In Section 8 we show how to validate the pattern
language. Finally, in Section 9, we make our concluding remarks.

2. Related Work
The work of Meszaros [Meszaros and Doble 1998] provides useful guidelines for pat-
tern writing, including several problems and solutions for pattern language writing, but
the focus is on the patterns format and disposition of the patterns throughout the pat-
tern language, i.e., nothing is mentioned about how to discover the patterns based on the
knowledge about a particular domain, or how to organize them or to delimit their scope.

Cunningham [Cunningham 1994] provides several hints about the sequence of
activities to perform when conceiving a pattern language, based on his experience in
writing the CHECKS pattern language [Cunningham 1995]. Though short, his hints are
easy to understand and helped to guide us in the creation of our process.

Buschmann and others [Buschmann et al. 1996] describe a process for pattern
mining that focuses on the creation of individual patterns that will be possibly joined
to form a pattern system. Although a pattern system ties its constituent patterns together,
it does not have the compromise of being complete like a pattern language, which needs to

SugarLoafPLoP´2007 Pattern Applications

252

have at least one pattern available for every aspect of the construction and implementation
of software systems, with no gaps or blanks [Buschmann et al. 1996]. Although they do
not present a process for pattern language creation, they stress the importance of having
complete pattern languages to cover substantial part of the design space of the respective
domains. The rules of thumb that they present to mine new patterns are often applica-
ble when describing each pattern of a pattern language. For example, “find at least three
examples where a particular recurring design or implementation problem is solved effec-
tively by using the same solution schema” is a guideline that can help finding candidate
patterns to form the pattern language.

3. Process overview
Analysis pattern languages for specific domains could be straightfully developed, without
the need of an application domain class model. However, a domain class model is useful
during the development of a pattern language, as the patterns represent a well-succeeded
structure of solutions for problems in the same context [Riehle and Zullighoven 1996].
Our process presents a set of activities that, from a domain class model, obtained through
the first phase of our general process, aims at creating a pattern language. The activities
to be conducted for the creation of the pattern language, the resources needed to execute
them, and the results obtained for each activity are presented in Figure 1.

Figure 1. Pattern Language Creation Process

4. Starting point: a domain analysis model
Patterns are usually documented based on software development practice. Consequently,
to build a pattern language that covers applications in a certain domain, it is necessary to
observe the solutions that are commonly employed to solve recurring problems in that do-
main. Thus, the starting point for creating a pattern language is to obtain a model for the
target domain, i.e., a model that captures the functionality present in the majority of appli-
cations in that domain (step 1.1 of Figure 1). Independently of how the information about
the domain is obtained, our process states that both static and dynamic models should
be produced at the end of this step. The static model can be expressed using an object
oriented notation, as for example a UML [Rational 2000] (Unified Modeling Language)
class diagram, showing only classes, attributes, and methods that are common to all appli-
cations in the domain. Generic names should be assigned to these classes, attributes and

SugarLoafPLoP´2007 Pattern Applications

253

methods, and they should be properly explained in the respective domain glossary. Rela-
tionship among classes also need generic names that reflect semantic aspects inherent to
the domain. The dynamic model can be expressed, for example, by UML sequence dia-
grams, which show the communication between objects to implement system operations.
Again, they should be defined with generic names. UML use case diagrams can also be
created to show dynamic aspects of the domain, focusing on the behavior that is common
to all applications.

The target domain model can be obtained by several means: a domain analysis
can be conducted, using techniques such as those described by Gomaa [Gomaa 1996]
or those selected by Prieto-Diaz [Prieto-Diaz and Arango 1991]; a reverse engineering
can be done in existing applications of the domain, similarly to what has been done by
Ré et. al. [Ré et al. 2001] for the on-line auctions domain; or the practical experience
in the development of applications in a particular domain can be used, as occurred dur-
ing the creation of the GRN pattern language [Braga et al. 1999]. In the last two cases,
experience about a domain can be obtained by building or reverse engineering several
systems in the target domain, at least three as recommended by Roberts and Johnson
[Roberts and Johnson 1998], obtaining intermediate models that represent each of the
three systems. These different models of applications in the same domain can then be
generalized to produce a domain analysis model [Ré et al. 2001]. They can be compared
with each other and, if a certain element is present in the three systems, there is a high
probability that it will be part of the domain model. As a matter of fact, a difficult de-
cision needs to be made at this point by the domain engineer, about whether or not each
element is common to the domain. This decision involves other factors, as for example
the personal experience of the domain engineer and specific goals to be achieved with the
resulting domain model.

Tools that provide automated mechanisms to reverse engineer legacy systems
could be useful in this step. More than obtaining models of the system in higher ab-
straction levels, these tools could also help finding existing patterns in code. However,
this work did not consider the aid of these tools, so all the work was manually done. This
issue could be target of future work.

To illustrate this step, we consider the on-line auction domain, for which we have
created a pattern language [Ré et al. 2001]. Three existing systems were (manually) re-
verse engineered: Arremate.com1, iBazar2, and eBay3. These systems were active when
the reverse engineering was conducted, but nowadays iBazar has been incorporated to
eBay. Intermediate models with dozens of classes were obtained for each of them. Fig-
ure 2 illustrates part of the domain analysis model obtained at the end of this step, with
seventeen classes representing the main functionalities of an auction. The complete model
contains forty classes.

Notice that the domain model contains, besides entities with their attributes, meth-
ods, and relationships, more abstract operations that denote the behavior inherent to an
entity, which are useful to better understand the domain concepts. Operations are more
than methods, as they reflect how system events are treated by the software (probably

1http://www.arremate.com
2http://www.ibazar.com.br
3http://www.ebay.com

SugarLoafPLoP´2007 Pattern Applications

254

User
 IdCode: Integer

 name: String[30]

 SSN: String[9]

 birthDate: Date

 gender: Char

 scholarLevel: Integer

 annualGains: Float

 address: String[30]

 city: String[30]

 state: String[2]

 country: String[20]

 ZipCode: String[9]

 phoneNumber: String[9]

 userType: Char

 msgNewAuction: Char

 msgNewBid: Char

 msgContractChanged: Char

 msgAuctionClosed: Char

 msgNewOffers: Char

 msgProductsFound: Char

 msgUserStatus: Char

 msgWatchedAuctionClosed: Char

 msgBidNotification: Char

 msgAuctionOpened: Char

 msgAuctionClosedWithoutWinner: Char

 msgAuctionWinner: Char

 !notifyNewUser()

 ?registerConfirmation()

 !sendPassword()

 !consultContactInfo()

 blockUser()

Buyer

 !consultContactInfo()

Seller
 paymentDetail: Char

 !consultContactInfo()

Category
 name: String[20]

 description: String[30]interesting

Favorite

 !listFavorites()

select

* *

1 0..4

belongs To
1

*

belongs To

1*

Resource
 description: String[30]

 photo1: File

 photo2: File

 photo3: File

 locale: String[30]

 country: String[20]

 imóvel: Char

 !search()

 !advancedSearch()

 !searchCategory()

 !searchTheme()

belongs To

1

*

Theme
+description: String[30]

classified by

1

*

Auction
 status: Char

 isRestricted: Boolean

 title: String[30]

 openPrice: Float

 dateToOpen: Date

 timeToOpen: Time

 duration: Time

 isPrivate: Boolean

 paymentMode: Char

 deliveryMode: Char

 isRestored: Boolean

 paymentPolicy: Char

 numberOfVisitors: Integer

 !listAuctionsByBuyer()

 !listAuctionsBySeller()

 !listRestrictedAuctions()

 !showAuctionDetails()

 !showSellerDetails()

 defineWinner()

 !?cancelAuction()

 confirmBid()

 close()

 !sendSellerDetails()

 !sendBuyerDetails()

 !notifyWinner()

 !notifySeller()

 !search()

 !searchBySeller()

 !searchByBuyer()

 !searchClosedAuctions()

 !advancedSearch()

 !?anticipatedClose()

 !sendNextWinnerDetails()

 visitorsCounter()

 !listEndingAuctions()

 !listOpenedAuctions()

 !listHotAuctions()

 !listRecomendedAuctions()

 !listFeaturedAuctions()

has

1

*

offer1 *

Reputation
 isPublic: Boolean

 comments: String[100]

 date: Date

 vote: Integer

 changeVoteStatus: Integer

 !listReceivedVotes()

 !listBuyerVotes()

 ?insertVote()

 !listVotesByAuction()

 !listInsertedVotes()

enables

2

indicate

qualify

1

*

1

*indicate

1

*
qualify

1

*

1

Bid
 value: Float

 date: Date

 time: Time

 cancelComments: String[100]

+cancelResponse: Integer

 !listBidsByAuction()

 ?cancel()

 bidDenied()

 checkBidIncrement()

 ?enableProxyBidder()

has

1

*

offer

1

*

DutchBid
 quantity: Float

Increment
 minValueBid: Float

 maxValueValue: Float

 incrementValue: Float

 computeIncrement()

has

1

1

proxyBidder
 maxValueBid: Float

 insertBid()

start

1

1

offer

1

*

DutchAuction
 quantity: Float

 defineWinner()

StandardAuction

 defineWinner()

 defineNextWinner()

BuyAuction
 buyPrice: Float

 defineWinner()

 close()

ReservePriceAuction
 reservePrice: Float

 defineWinner()

 defineNextWinner()

Figure 2. Partial Domain Model for On-line Auctions

invoking more than one method of several different classes). In our notation, extended
from UML, we use special characters before operation names to denote certain types of
behavior. For example, we use the interrogation (?) and exclamation (!) marks to denote
input and output operations, respectively.

5. Partitioning the domain model into a initial list of patterns
The domain analysis model resulting from the previous step is used as basis for identifying
the patterns that compose the pattern language (step 1.2 of Figure 1). This activity is
often dependent on the knowledge and experience about patterns possessed by the pattern
language developer. However, some guidelines should be followed so that the patterns are
defined in a uniform way and with higher possibility of being reused:

1. Existing patterns in the literature should be analyzed, as some of them are likely to
be present in the domain analysis model. Pattern repositories should be searched,
specially with automatic tools, to ease this task. When a pattern is found, the
problem solved by it should be specialized to the specific domain, originating
a new pattern that should be assigned a name reflecting the domain-specific

SugarLoafPLoP´2007 Pattern Applications

255

problem. Durign the creation of the pattern language for the online auction
[Ré et al. 2001], several patterns were found in the literature to represent items
to be dealt with by the application, as for example the patterns ITEM DESCRIP-
TION[Coad et al. 1997] and TYPE-OBJECT [Johnson and Woolf 1998]. So, these
patterns were specialized to the resource being auctioned and originated the first
pattern, which was named IDENTIFY THE RESOURCE.

2. Other analysis pattern languages, for similar domains, should be studied and their
patterns should be observed, e.g., their documentation and relationship. This con-
tributes to enhance the knowledge about patterns and improves the chance of de-
veloping more correct and reusable patterns. At this point, a format for the patterns
can be chosen or, at least, two or three possible formats can be identified. In the
Online Auction (OA) example, the GRN pattern language [Braga et al. 1999] was
used as basis for formatting the patterns.

3. The pattern definition should begin by identifying the basic classes of the domain
model obtained in the previous step. Basic classes are those involved in basic
or main system functions represented in the domain model, i.e., those that are
present in all systems belonging to the domain. This concept is equivalent to the
“core types” defined by Cheesman and Daniels [Cheesman and Daniels 2001] or
to the frozen spots of a framework [Buschmann et al. 1996]. For example, in the
OA domain model of Figure 2, classes Buyer, Seller, Resource, Auction, and Bid
are basic, as they appear in any instances of this domain. Other classes present
in the domain model are complementary classes, as they can appear in certain
systems but not in others.

4. Basic classes identified using the previous guideline should be studied in order to
discover groups of two or more classes that are responsible for important system
functions. This can be done based on the domain class model itself, for example
by highlighting them with a different color or creating smaller models relative to
each function. For example, in Figure 2 we can group classes around Bid (Dutch-
Bid, ProxyBidder and Increment), as they all refer to behavior regarding bids.
It must be observed that this is an incremental process, so later on it could be
changed if necessary. It must also be noticed that the classes belonging to a group
are not necessarily all basic classes, as will be explained in the next guideline.
These groups of classes will represent the main patterns of the pattern language,
as long as each pattern should refer to a specific function performed in the do-
main. This improves reuse, because patterns with short, well defined, and focused
problem/solution pairs are created.

5. Differently from basic classes, complementary classes add improvements to a pat-
tern, or add a different function not present in the domain model. Complementary
classes usually represent functionalities that are optional for the correct function-
ing of systems in the studied domain. So, they are more likely to become optional
patterns, i.e., patterns that can be applied or not when modeling a particular sys-
tem, or they can be joined to existing patterns to form pattern variants, so that they
are considered as optional pattern elements. Again, the pattern language devel-
oper has to decide how to establish which classes make a pattern. The possibility
of creating optional patterns allows them to be ignored during the usage of the pat-
tern language, in case the functionality they offer is not necessary in the particular
application. For example, in the OA domain, the Favorite class is a complemen-

SugarLoafPLoP´2007 Pattern Applications

256

tary class, as it does not appear in all auctions that were investigated in the reverse
engineering. So, the pattern language author has two alternatives: he could create
a separate pattern to include this behavior, or he could add an optional element in
an existing pattern (even if it is a mandatory pattern). In our case, we have chosen
to create a separate pattern, named ENABLE FAVORITE. It should be highlighted
that the concepts of basic and complementary classes are equivalent to the con-
cepts of mandatory and optional features in domain analysis, specially for product
lines engineering.

6. Each pattern should be named - a task that can be eased by observing its functions.
This name is important, as it abstracts the pattern content and allow its identifica-
tion and usage by other analysts. Meszaros and Doble [Meszaros and Doble 1998]
suggest several conventions for pattern naming, as for example, to use an evoca-
tive pattern name, a noun phrase name, or a meaningful metaphor name. In our
example, we have chosen to name patterns with phrases.

7. After identifying and naming patterns, a table can be constructed containing the
pattern name, the problem solved by the pattern, and a summary of the proposed
solution, , as suggested by Meszaros and Doble [Meszaros and Doble 1998]. This
table helps the pattern language developer to keep consistency and to follow each
pattern goal during the remaining steps of the process. See the initial list for the
OA patterns in Table 1.

In summary, the resulting artifacts for this step are a list of patterns, together with
a general description for each of them and information about the classes that compose
them. These results will be used in the remaining steps to write the individual patterns.

6. The pattern language graph
In step 1.3 a graph is defined to show the patterns interaction or the patterns application
flow. Basically, the graph contains pattern names and the order in which they can be
applied, showing also which patterns are mandatory or optional. This information can be
obtained in the summary table produced in the previous step. The graph has to show how
patterns are disposed and how they are applied to obtain the class model for a specific
application. The order in which patterns are applied is usually also shown as a special
pattern component, named “Next Patterns”, which is defined during the pattern writing
(step 1.4).

It is important to notice that the graph shows only the interaction among patterns,
i.e., the order in which patterns are applied during the modeling of applications, but it is
not intended to show how the resulting system works, i.e., it is not a flowchart. The graph
presents a coherent way in which to apply or operate the patterns to achieve the desired
solution.

Besides being influenced by the optional patterns, the patterns application flow
is also influenced by other pattern elements, such as their variants, optional classes, and
elements. Cases may occur in which: a) the application of a certain pattern implies the
inclusion of certain elements in other patterns; b) the application of a pattern requires the
application of another pattern; c) one pattern should be chosen among several patterns; d)
the application of a pattern excludes the application of another pattern; or e) a pattern can
only be applied if another pattern has been previously applied. For example, in Figure 2,

SugarLoafPLoP´2007 Pattern Applications

257

Table 1. Summary of the pattern language
Pattern Problem

IDENTIFY THE

RESOURCE (1)
How do you represent the busi-
ness resources auctioned by the
system?

ENABLE

FAVORITE (2)
How does your application al-
low that resource categories of
more interest be established for
the customers?

AUCTION THE

RESOURCE (3)
How do you handle the different
types of resource auctions per-
formed by your application?

PROMOTE

NEGOTIATION (4)
How does your application sup-
port the negotiation among auc-
tion trading parties?

HANDLE

BIDS (5)
How does your application deal
with the different types of bids
related to the several types of
auction?

MANAGE THE

AUCTION

HOUSE (6)

How does your system manage
the rules followed by the auction
house involved in the auctioning
process?

MANAGE

REPUTATION (7)
How can your application pro-
vide subsidies for the parties to
evaluate each other trustability?

HANDLE

REFUNDING (8)
How can your application pro-
vide ways to refund fees that
were unduly charged?

ENABLE

MESSAGES (9)
How does your application man-
age the messages sent to cus-
tomers?

HANDLE

ADVERTISEMENT

(10)

How does your application man-
age auction advertising?

the Dutch Bid class belongs to a variant of pattern HANDLE BIDS, and it can only be used
if the Dutch Auction variant of pattern AUCTION THE RESOURCE has been used. So, a
dependency can exist among patterns and/or pattern variants application.

A strategy that can be followed when determining the patterns application order
is to start with patterns that represent the most basic domain functionalities and gradually
add patterns that represent more specific functionalities. Finally, the optional patterns
are added, because they represent problems not always present in domain applications.
However, the best place to place an optional pattern should be carefully analyzed, as it
often depends on the application of a mandatory pattern or should be applied immediately
after it. As mentioned before, a mandatory pattern can have optional elements, and thus
cases can occur in which the inclusion of an optional element of a mandatory pattern can
also imply in other further dependencies.

SugarLoafPLoP´2007 Pattern Applications

258

The OA Pattern Language graph is shown in Figure 3. The main language
patterns are split between two categories. The first is composed of required patterns
– (1)IDENTIFY THE RESOURCE, (3)AUCTION THE RESOURCE, (5)HANDLE BIDS,
(6)MANAGE THE AUCTION HOUSE, (7)MANAGE REPUTATION, (8)HANDLE REFUND-
ING, (10)HANDLE ADVERTISEMENT – which should be always applied, as they repre-
sent the essential requirements of an OA system. The second category is formed by pat-
terns that are only desirable – (2)ENABLE FAVOURITES, (4)PROMOTE NEGOTIATION,
(9)ENABLE MESSAGES – but not strictly necessary.

(1) IDENTIFY THE RESOURCE

(10) HANDLE ADVERTISEMENT

(5) HANDLE BIDS

(3) AUCTION THE RESOURCE

(7) MANAGE REPUTATION

(8) HANDLE REFUNDING

(6) MANAGE THE
AUCTION HOUSE

(9) ENABLE MESSAGES

(4) PROMOTE NEGOTIATION

(2) ENABLE FAVORITE

Optional PatternsRequired Patterns

Figure 3. Pattern Language Application Graph

7. Details of each pattern
A pattern is much more than a class structure and its description: it presents all the context
information in which it can be applied, the problem it solves, as well as the forces that act
to form the solution [Fowler 1997]. So, the pattern writing activity (step 1.4) has to be
carefully conducted so that each pattern can be correctly reused. The guidelines proposed
by Meszaros [Meszaros and Doble 1998] are very useful to produce well-written patterns,
so we recommend their use and reinforce them with some basic recommendations for
writing concise patterns.

The pattern language developer needs to establish a format for describing each
pattern. However, independently of the format chosen, for analysis patterns there are
some elements that are more likely to be present, such as “name”, “context”, “prob-
lem”, “structure”, “participants”, “related patterns”, and “next patterns”. The same for-
mat should be used for all patterns, although some elements might be optional. There are

SugarLoafPLoP´2007 Pattern Applications

259

several proposals in the literature for structuring patterns, among which we can mention
the Alexander format [Alexander et al. 1977], from which it was abstracted the Portland
Pattern Form; the Coplien format [Coplien and (eds) 1996]; and the GoF Pattern Form
[Gamma et al. 1995].

Having chosen an appropriate format, the pattern writing begins based on the gen-
eral pattern description and the information about the classes that compose the pattern,
obtained in step 1.2. This means that the pattern solution is the first item to be written, as
it was already defined in step 1.2 and, thus, it is easier to work with. The problem solved
by the pattern was also previously identified, so now it can be written and refined, if nec-
essary. The forces are the next item to be described, based on the problem/solution pair.
Considerations about the context in which the solution is applicable are made, trying to
raise questions about the many issues that lead to the solution and that could be modified
to attend other requirements or different contexts. At this time, pattern variants can be
discovered and included in the pattern language.

To improve the pattern description, the developer can search other patterns in the
same (or correlate) domain, so that analogies can be done to reuse the experience of other
pattern developers. Moreover, during this search the developer can find other patterns
for which the pattern being written is a variant, or patterns that complement it or can be
joined to other pattern languages. Thus, this searching process is important to ensure
that the pattern language references all co-related existing patterns, supplying alternative
solutions in case the current pattern is not applicable. The developer can also search
for analysis and design patterns that enhance the proposed solutions, complementing the
pattern language with references to other patterns or adopting the patterns as a real part
of the pattern language.

The documentation of each pattern is a time consuming task, usually demanding
several iterations to obtain a satisfactory result. While the patterns are being written in
detail, other patterns can be identified, as well as different relationships that might require
to alter the pattern graph. The pattern community recommends that every pattern language
be submitted to a writers’ workshop, for example by submitting it to a PLoP (Pattern
Languages of Programs) Conference, where the developer can improve it based on the
opinions of other experienced pattern authors. The pattern mining process suggested by
Buschmann and others [Buschmann et al. 1996] also contains this specific step of making
a writers’ workshop.

To illustrate this step we show, in Figure 4, part of a pattern of the OA Pattern
Language, which is responsible for handling the different types of online auctions. This
pattern has several optional elements, as for example the various types of auction. During
the pattern instantiation, the application developer chooses the types that fit the business
rules of the specific online auction being developed. Also, there are variants that can
be applied if necessary. Notice that there is a “Following Patterns” section to guide the
pattern language user during the instantiation process.

8. Validation
The pattern language validation (step 1.5) finishes the process of pattern language creation
from a domain class model. The goal is to validate the pattern language through its
application to different systems of the domain. Basically, this activity consists of studying

SugarLoafPLoP´2007 Pattern Applications

260

AUCTION THE RESOURCE

Context
Your application deals with resources that have already been identified and categorized. The
resource auction may be considered as a property transference, in which a resource owned
by a party becomes owned by another party. When a trade is done through an auction,
the resource is put on sale by a trading party and several other parties try to buy it for the
lowest possible price. There are several types of auctions that provide various options for
the trading parties, each with its own rules to define which of the buying parties will be the
winner.

Problem
How do you handle the different types of resource auctions performed by your application?

Forces
• Information about the participants must be stored, both to supply the information

needed for the trading process and for the system functioning.

• It is important that several auction types be available, observing those that are more
appropriate to certain types of resource, the quantity of auctioned resources, effi-
ciency, and restrictions imposed by certain auction types, considering the environ-
ment in which the trade occurs: the Internet.

...

Therefore:
Create classes to represent the different auction types and distinguish the roles played by
participants.

Structure
Figure 1 shows the class diagram for the AUCTION THE RESOURCEpattern.

 Resource

1

1..*

 Standard Auction

?define winner
?define second winner

 Reserve Price Auction
reservePrice
?define winner
?define second winner

 Purchase Auction
purchasePrice
?define winner
?close

 Multiple Auction
quantity
?define winner
?define second winner

 Dutch Auction
quantity
?define winner
?define second winner

11..*
 Offers

Auctions

 Auction
IDcode
title
startDate
startTime
duration
endDate
initialPrice
transportDetail
transportPayment
paymentPolicy
paymentDetails
status
!present
?cancel
?close
?anticipated close
?define winner
!#list auction by destination party
!#list auction by source party
!#list opened auctions
!#list ending auctions
!#search by title
!#search by source party
!#search closed auctions
!#advanced search

 Source Party

!consult contact information

 Destination Party

!consult contact informationParticipant Role

1

*Has

 Participant
...
...

Figure 1: Structure diagram for AUCTION THE RESOURCE

Participants
• Participant : Represents the party - organization or person - who intends to auction or

acquire a resource. It has two specialized classes:Source Party andDestination Party
(see below). Notice that the same participant can play both roles in different auctions.
This is guaranteed by the use of the ROLES pattern. ThestatusLogin attribute
indicates whether the participant has supplied itsIDcode andpassword and,
therefore, can effectively participate in the auctions. It is important to notice that
passwords need special treatment during design, through a security policy , but we
are not considering such issues in this pattern language. This class has some basic

attributes, but other attributes may be added, depending on the particular instance of
the participant.

• Participant Role: Represents the role played by the participant in a specific auction,
which can beSource Party or Destination Party (see below).

...
Example
Figure 2 presents an example of the AUCTION THE RESOURCE pattern adopted by
the online auction site Arremate.com, which usesMultiple Auction for both
single and multiple product items. Arremate.com also uses two other auction types:
Reserve Price Auction and Winner Auction , which is an instantia-
tion of the Purchase Auction . eBay usesDutch Auction to trade mul-
tiple product items andStandard Auction to trade only one item. It also pro-
videsReserve Price Auction andPurchase Auction . iBazar has only
Standard Auction andReserve Price Auction .

11..*

 Product
...
...

 Reserve Price Auction
reservePrice
?define winner
?define second winner

 Winner Auction
purchasePrice
?define winner
?close

 Multiple Auction
quantity
?define winner
?define second winner

1

1..*

 Offers

Auctions

 Auction
IDcode
title
startDate
startTime
duration
endDate
InitialPrice
shippingDetails
shippingPayment
paymentPolicy
paymentDetails
status
warranty
numberOfVisit
!present
?close
?anticipated close
?define winner
!#list auction by buyer
!#list auction by seller
!#list opened auctions
!#list ending auctions
!#search by title
!#search by seller
!#search closed auctions
!#advanced search
count number of visit

 Seller

!consult contact information

 Buyer

!consult contact information

 User Role

1

*
Has

 User
...
...

Figure 2: AUCTION THE RESOURCEexample

Variants
To make the pattern language useful to different auction types, new classes representing the
auction rules may be added as specializations of theAuction class. These new auction
types may need new attributes and methods.

In some systemsStandard Auction is replaced byMultiple Auction .
In this caseMultiple Auction is used both for auctions of a single item and for
several items.
...

Related Patterns
This pattern is an application of patterns ASSOCIATION-OBJECT and TIME ASSOCIA-
TION. It is also a combined application of patterns SPECIFIC ITEM-TRANSACTION and
PARTICIPANT-TRANSACTION. The different auction types can be implemented using the
STRATEGY design pattern.

Following Patterns
After applying the AUCTION THE RESOURCEpattern try to use the PROMOTE NEGOTIA-
TION pattern. If it is not applicable, then use the HANDLE BIDS pattern.

Figure 4. Example of a Pattern in the Online Auction Pattern Language

the requirements documents of applications being modeled, studying and applying the
pattern language based on the requirements document, and evaluating the class model,
comparing the desirable requirements with the application class model.

An important aspect to be considered here is the fact that other applications, rather

SugarLoafPLoP´2007 Pattern Applications

261

than those used to build the pattern language, must be modeled using the pattern language
to enhance its validation and, also, to improve the language itself, as new features can be
incorporated to it.

However, it should be clear that a complete validation of the pattern language
is a very difficult task, as a great number of applications would have to be modeled to
guarantee its uselfulness. Our experience shows that the validation process should try to
model a set of applications that use, at least once, each pattern and pattern variant of the
pattern language.

Figure 5 shows part of a model obtained through the application of the OA Pattern
Language, as a first step for the development of a specific online auction system (Arre-
mate.com). The tags show the roles played by each class in the corresponding patterns.
Notice that, in this particular OA system, only reserve price and standard auction are
allowed, and almost all patterns were applicable (except pattern #9).

9. Concluding Remarks

In this work we present a systematic process to obtain a pattern language for a specific
domain. This pattern language is composed of analysis patterns that can be applied when
modeling applications in that domain. It helps novices to model applications, as each pat-
tern contains insights about the problems to solve in the domain, as well as the solutions
that better solve these problems.

Representing domain knowledge through pattern languages is an effective way
of easing systems modeling. Our research group has conducted an experiment in which
students and professionals had to produce the analysis models of information systems
using or not a pattern language to support them. The results have shown that better
models were produced in less time when using the pattern language, when compared
to those groups that did not use it. These experiments are described in detail elsewhere
[Braga et al. 2003].

After creating the pattern language, it is easier to develop one or more
frameworks that can be used to instantiate the patterns and to create concrete ap-
plications. This can be done by following the process proposed in another work
[Braga and Masiero 2002b]. A tool to automatically instantiate such framework can also
be built [Braga and Masiero 2002a, Braga and Masiero 2003]. The construction of prod-
uct lines for a specific domain can also be easied using such an approach, as the pattern
language could be considered as a domain-specific language used to model concrete mem-
bers of a product family.

Even though we are aware that a pattern language should be complete, as men-
tioned in Section 2, we can not guarantee that pattern languages created using our process
will have this feature. We provide some conditions for that, such as delimiting the scope
of the pattern language and reverse engineering at least three meaningful applications in
the domain, so that the minimum common functionalities are available. But, of course,
new functionalities can appear after the pattern language is created. Thus, we can say it
is complete in a certain moment in time and within a certain scope, but we cannot ensure
its everlasting completeness.

SugarLoafPLoP´2007 Pattern Applications

262

 User
pseudonym
firstName
lastName
e-mail
password
address
phoneNumber
city
zipCode
country
sex
dateOfBirth
statusLogin
!notify register
?confirm register
!send password again

 Auction
IDcode
title
startDate
startTime
duration
endDate
initialPrice
increment
transportDetails
status
!present
?close
?define winner
!#list auctions by destination party
!#list auctions by source party
!#list opened auctions
!#list ending auctions
!#search by title
!#search by source party
!#search closed auctions
!#advanced search

 Marked

!#list marked auctions
!#list auctions in process
!#list auctions finished

0..*

 Message
date
time
textMsg
readingStatus
!warn new messages
!query
!send

Advertisement
startDate
endDate
status
?start ad
?end ad

*

*

 iBazar
rule[0..*]
maxTimeEvaluation
maxTimeUpdateEvaluation
maxTimeSecondWinner
maxTimeUpdateAuction
maxTimeAdvertisement
!show rules
?accept rules
?login

1

0..*

Sends

*
*

Marks

1

*

is Advertised in

Conducts

 User Role

1

*
Has

Reserve Price Auction
reservePrice
?define winner
?define second winner

 Standard Auction

?define winner
?define second winner

1

1..*

Auctions

 Category
name
description
!#list by name
!#search by name

*

1

Belongs to

1

is SubCategory of

0..2

 Product
title
descritpion
photo
!#list by title
!#list by category
!#search by title
!#search by category
!#advanced search

1

0..*

1

is Related to

 Seller

!consult contact information 1

1..*

Offers

*1
Places

 Buyer

!consult contact information

1

1..*

10..*

Indicates

Qualifies1

1 0..*

0..*

Qualifies

Indicates1

0..*

1

0..*

 Reputation
comment
date
vote
!#list received votes
!#list issued votes
!#list votes

Offers

 Enables

P#3:Participant

* 1Uses

P#6:Auction
House

Receives
* *

P#9:
Message P#10:

Advertisement

P#3:
Auction

P#5:
Marked

 Bid
value
date
time
comment
status
!#list auction history

10..* HasP#5:
Bid

P#3:
Participant Role

P#3:
Destination

Party

P#7:
Reputation

P#3:
Source
Party

P#1:Resource

 Answer
answerText
date
time

0..*

is Answered by
1

0..*

 Question
questionText
date
time
!#list auction history
!#list seller history
!#list source history

P#4:Question

Does

P#4:
Answer

P#1:
Category

P#3:Reserve
Price Auction

P#3:Standard
Auction

Figure 5. Example of a System modeled using the Online Auction Pattern Lan-
guage

References

Aarsten, A., Brugali, D., and Menga, G. (2000). A CIM Framework and Pattern Lan-
guage, pages 21–42. Domain-Specific Application Frameworks: Frameworks Experi-
ence by Industry, M. Fayad, R. Johnson, –John Willey and Sons.

Alexander, C. et al. (1977). A Pattern Language. Oxford University Press, New York.

Beck, K. and Cunningham, W. (1987). Using pattern languages for object-oriented

SugarLoafPLoP´2007 Pattern Applications

263

programs. Relatório Técnico n. CR-87-43. available on January 2007 at the URL:
http://c2.com/doc/oopsla87.html.

Braga, R. T. V., Germano, F. S. R., and Masiero, P. C. (1999). A pattern language for
business resource management. In 6th Pattern Languages of Programs Conference
(PLoP’99), Monticello – IL, USA.

Braga, R. T. V., Germano, F. S. R., and Masiero, P. C. (2003). Experiments on pattern
language-based modeling. In 17o SIMPÓSIO BRASILEIRO DE ENGENHARIA DE
SOFTWARE (SBES 2003), Manaus – AM, Brazil.

Braga, R. T. V. and Masiero, P. C. (2002a). GREN-Wizard: a tool to instantiate the GREN
framework. In Caderno de Ferramentas do 16o Simpósio Brasileiro de Engenharia de
Software (SBES 2002), pages 408–413, Gramado-RS.

Braga, R. T. V. and Masiero, P. C. (2002b). A process for framework construction based
on a pattern language. In Proceedings of the 26th Annual International Computer
Software and Applications Conference (COMPSAC), pages 615–620, IEEE Computer
Society, Oxford-England.

Braga, R. T. V. and Masiero, P. C. (2002c). The role of pattern languages in the in-
stantiation of object-oriented frameworks. Lecture Notes on Computer Science, 2426-
Advances in Object-Oriented Information Systems:122–131.

Braga, R. T. V. and Masiero, P. C. (2003). Building a wizard for framework instantiation
based on a pattern language. Lecture Notes on Computer Science, 2817-Evolution of
Object-Oriented Information Systems:95–106.

Brown, K. and Whitenack, B. G. (1996). Crossing Chasms: A Pattern language for
Object-RDBMS Integration, The Static Patterns, pages 227–238. Addison-Wesley. in
Vlissides et al., 1996 Pattern Languages of Program Design 2.

Brugali, D. and Menga, G. (1999). Frameworks and pattern languages: an intriguing
relationship. ACM Computing Surveys, 32(1):2–7.

Brugali, D., Menga, G., and Aarsten, A. (2000). A Case Study for Flexible Manufacur-
ing Systems, pages 85–99. Domain-Specific Application Frameworks: Frameworks
Experience by Industry, M. Fayad, R. Johnson, –John Willey and Sons.

Buschmann, F. et al. (1996). Pattern-Oriented Software Architecture - A System of Pat-
terns. Wiley.

Cheesman, J. and Daniels, J. (2001). UML Components. Addison-Wesley.

Coad, P., North, D., and Mayfield, M. (1997). Object Models: Strategies, Patterns and
Applications. Yourdon Press, 2 edition.

Coplien, J. O. (1998). Software Design Patterns: Common Questions and Answers, pages
311–320. Cambridge University Press. in L. Rising - The Patterns Handbook: Tech-
niques, Strategies, and Applications.

Coplien, J. O. and (eds), D. S. (1996). Pattern Languages of Program Design. Addison-
Wesley, Reading-MA.

SugarLoafPLoP´2007 Pattern Applications

264

Cunningham, W. (1994). Tips for writing pattern languages. Available
on January 2007 at the URL: http://www.c2.com/cgi/wiki?
TipsForWritingPatternLanguages.

Cunningham, W. (1995). The CHECKS Pattern Language of Information Integrity, pages
145–155. Addison-Wesley. in J. Coplien and D. Schmidt (eds.) - Pattern Languages of
Program Design.

Fowler, M. (1997). Analysis Patterns. Addison-Wesley.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). Design Patterns: Elements
of Reusable Object-Oriented Software. Addison Wesley.

Gomaa, H. (1996). Reusable software requirements and architectures for families of
systems. Journal of Systems and Software, pages 189–202.

Johnson, R. E. and Woolf, B. (1998). Type Object, pages 47–65. Addison-Wesley. in
Martin, R.C.; Riehle, D.; Buschmann, F. Pattern Languages of Program Design 3.

Meszaros, G. and Doble, J. (1998). A Pattern Language for Pattern Writing, chapter 29,
pages 529–574. Reading-MA, Addison-Wesley.

Pazin, A. (2004). GAwCRe: Um gerador de aplicações baseadas na web para o domínio
de gestão de clínicas de reabilitação (in portuguese). Master’s thesis, Universidade
Federal de São Carlos, São Carlos – SP.

Pazin, A., Penteado, R., and Masiero, P. C. (2004). SiGCli: A pattern language for reha-
bilitation clinics management. In 4a Conferência Latino-Americana em Linguagem de
Padrões para Programação (SugarLoafPlop), Porto das Dunas - CE, Brasil.

Prieto-Diaz, R. and Arango, G. (1991). Domain Analysis and Software System Modeling.
IEEE Computer Science Press Tutorial.

Ré, R., Braga, R. T. V., and Masiero, P. C. (2001). A Pattern Language for Online Auc-
tions. In 8th Pattern Languages of Programs Conference (PLoP’2001), Monticello –
IL, USA.

Rational, C. (2000). Unified Modeling Language. available on January 2007 at the URL:
http://www.rational.com/uml/references.

Riehle, D. and Zullighoven, H. (1996). Theory and Practice of Object Systems, volume 2,
chapter Understanding and Using Patterns in Softwre Development. John Wiley &
Sons, New York – NY, USA.

Roberts, D. and Johnson, R. (1998). Evolving Frameworks: A Pattern Language for De-
veloping Object-Oriented Frameworks, pages 471–486. Pattern Languages of Program
Design 3, Martin, R.C., Riehle, D. , Buschmann, F. – Addison-Wesley.

Shimabukuro, E. K., Masiero, P. C., and Braga, R. T. V. (2006). Captor: Um gerador
de aplicações configurável (in portuguese). In Anais da XIII Sessão de Ferramentas
do XX Simpósio Brasileiro de Engenharia de Software, pages 121–128, Florianópolis,
SC, Brazil.

SugarLoafPLoP´2007 Pattern Applications

265

POREI: Patterns-Oriented Requirements Elicitation
Integrated – Proposta de um Metamodelo Orientado à

Padrão para Integração do Processo de Eliciação de
Requisitos

Kleber Rocha de Oliveira1,2, Mauro de Mesquita Spínola2

1Tecnologia em Sistemas de Informação – Faculdades Integradas de Bauru (FIB)
17056-100 – Bauru – SP – Brasil

2Departamento de Engenharia de Produção – Universidade de São Paulo (USP)
Cidade Universitária – Caixa Postal 61.548 – 05508-900 – São Paulo – SP – Brasil

kleber@softvip.com.br, mauro.spinola@poli.usp.br

Abstract. The requirements elicitation is essential to the success of software
development projects. Many papers have been written that promulgate specific
elicitation methods. However, none have yet modeled elicitation in a way that
makes clear the critical role played by situational knowledge. This paper
presents a unified model of the requirements elicitation process that
emphasizes the applying the concepts of patterns as it transforms the current
state of the business requirements and the situation to an improved
understanding of the requirements and, potentially, a modified situation. The
values of this model are: (1) an improved understanding of elicitation helps
analysts improve their elicitation efforts and (2) as we improve our ability to
perform elicitation, we improve the likelihood that systems we create will meet
their intended customers’ needs.

Resumo. A atividade de eliciação de requisitos é essencial para o sucesso de
projetos de software. Muitos artigos difundem apenas os métodos de eliciação
de requisitos. Entretanto, é incomum encontrar artigos que modelem a
eliciação como um meio de estabelecer a compreensão e o entendimento de
problemas nas diversas situações. Este artigo apresenta um modelo do
processo de eliciação de requisitos que prioriza a aplicação dos conceitos de
padrões (patterns) na compreensão das necessidades da organização. Os
principais benefícios do modelo são: (1) Melhorar a compreensão no
processo de eliciação e (2) Como podemos evoluir nossas habilidades na
execução das atividades de eliciação, tornando dessa maneira mais
compreensíveis necessidades dos usuários.

1. Introdução
Analistas experientes possuem maior facilidade na atividade de construção de software
por adquirirem conhecimentos de soluções recorrentes que podem ser aplicadas em
diversas situações similares. Tais soluções podem ser documentadas adequadamente no

SugarLoafPLoP´2007 Pattern Applications

266

formato de padrões, sendo que, um padrão pode ser visto como a descrição de uma
solução de um problema recorrente em um determinado ambiente para facilitar a sua
utilização diversas vezes, sem, no entanto implementar a solução da mesma forma duas
vezes [Sommerville and Sawyer 1997].

 Na Engenharia de Software, a idéia de padrões encapsulam as melhores soluções
baseadas em anos de desenvolvimento de aplicações, observação e experiência. Para
encontrar a melhor solução, o desenvolvedor deve entender o problema, o contexto e as
forças que governam esse problema [Gause and Weinberg 1990]. Dessa forma, os
padrões ajudam na construção de sistemas confiáveis, seguindo os passos de outras
construções de sistemas de sucesso [Harrison, Foote and Rohnert 1990].

 Alexander (1979) postula que a proposição por trás dos padrões diz respeito ao
fato de que a qualidade dos sistemas de software pode também ser medida
objetivamente. Ele sabia que as estruturas não poderiam estar separadas do problema
que tentavam resolver. Portanto, em sua pesquisa para identificar e descrever
consistência da qualidade de projeto, ele percebeu que teria que observar diferentes
estruturas projetadas para resolver o mesmo problema [Gamma et.al. 1995]. A esta
concepção, como sabido, deu-se o nome de padrões, na qual definiu como “uma solução
para um problema em um determinado contexto” [Alexander 1979].

 Assim como em outras áreas, a aplicabilidade dos conceitos de patterns na
Engenharia de Requisitos vêm sendo aprimorada nos últimos anos, e os resultados de
cada solução são armazenados para que possam ser reutilizados em novos projetos, mas
habitualmente de forma não estruturada [Shalloway and Trott 2004]. Portanto, esta
pesquisa visa propor um arcabouço baseado em padrões, relacionados ao processo de
eliciação1 de requisitos de software, baseado nos preceitos que levaram Gamma et al. a
criar soluções padronizadas às diversas situações encontradas na Análise Orientada a
Objeto. O intuito é aplicar o modelo na integração dos métodos de eliciação de acordo
com cada situação, proporcionando ao engenheiro de requisitos a compreensão dos
problemas. Este modelo recebe a denominação POREI – Patterns-Oriented
Requirements Engineering Integrated.

2. Patterns e a Produção do Software
No âmbito da engenharia, o arquiteto Alexander observou a semelhança nas soluções
pertinentes à arquitetura urbanista, na qual foi suficiente para que pudesse postular o
famoso conceito de patterns, através da trilogia “A timeless way to builting, A pattern
language e The Oregon Experiment” que constituem o ideário coeso do arquiteto, na
qual defendia a seguinte proposição:

(…) Cada padrão descreve um problema que se coloca, vez
por outra, em nosso entorno, e traz em si mesmo o núcleo da
solução para esse problema, de tal forma que se possa

1 Atividade também é identificada pelo verbo “elicitar”, porém, não se recomenda a utilização deste termo, uma vez
que, a mesma deriva-se de “elicit”, proveniente da língua inglesa,e ausente (até 2007) no idioma português,
segundo a Academia Brasileira de Letras. Debates sobre o termo têm mostrado que “elicitar” é na verdade uma
composição de vários verbos da língua portuguesa, como segue: eliciar + clarear + extrair + descobrir, ou seja,
tornar explícito, obter o máximo de informação para o conhecimento do objeto em questão [Leite 1989]. O verbo
“eliciar” é o que mais se aproxima do termo inglês, portanto, tem sido recomendado sua utilização no meio
acadêmico, inclusive optado nesta artigo.

SugarLoafPLoP´2007 Pattern Applications

267

utilizar essa solução mais de um milhão de vezes, sem
necessidade de repeti-la nunca da mesma maneira
[Alexander 1979].

 O conceito foi adotado e expandido posteriormente por Gamma et. al. (1995) na
obra Design Patterns, onde aborda tais doutrinas para solucionar problemas
relacionados a análise orientada a objetivo na construção de software. Pesquisas
direcionadas a produção de software baseadas nos estudos de patterns tem sido
amplamente difundida, visto os resultados obtidos pelo cientista computacional Richard
Gabriel, que vislumbrou caminhos na aventura teórica de Alexander.

 No elástico mundo do conhecimento, não é incomum a migração de enunciados
e de princípios de um campo da ciência para explicar fenômenos de outra origem
epistemológica. E se a concepção arquitetural se alicerça em analogias, parece razoável
admitir uma interpretação inversa, onde um certo paradigma teórico do pensamento
arquitetônico possa estimular a interpretação de problemas de projetos de outra área da
criação contemporânea [Buschmann 1996] [Gause and Weinberg 1990].

 No prefácio do livro de Gabriel (1996), Christopher Alexander deixa
transparecer surpresa com o fato, mas também alguma mágoa pela incompreensão de
seus pares:

“(...) O que teve de fascinante para mim, na verdade,
inteiramente surpreendente, foi que no ensaio dele (Gabriel),
um cientista da computação, para mim um desconhecido, e
com quem nunca havia me encontrado, me pareceu entender
mais sobre o que tenho feito e o que venho tentando em meu
próprio campo, do que meus próprios colegas arquitetos”.
(Alexander, prefácio [Gabriel 1996]).

 Gabriel (1996) percebe e põe em evidência naquele conjunto de ensaios a
relação possível entre o método gerador de formas e estruturas de Alexander e a
oportunidade de propor uma acepção no campo dos sistemas orientados ao objeto. Isso,
em essência, se dá pelo reconhecimento de que, em um caso e outro, o processo é o de
associação de “entidades” que funcionam como blocos de uma linguagem. Nos dois
casos se está diante de processos que projetarão por analogias. Após a detalhada
interpretação do pensamento de Alexander, lança algumas bases para o
desenvolvimento de uma teoria própria, de certa maneira apontando já os caminhos de
uma interface cognitiva distinta, isto é, uma diferente forma de construir o
conhecimento através de um processo de simulação que, no caso, se vale do
isomorfismo entre entidades arquitetônicas e partes de uma linguagem computacional.
Na concepção de linguagem (informática) de Gabriel estão presentes, entre os principais
aspectos da “teoria alexandriana”:

i) A capacidade de geração de padrões como partes intercambiáveis, capazes de
metamorfoses conforme a atividade e a posição geométrica que ocuparem no programa;
ii) A geração de softwares caracterizados pela autonomia semântica entre suas partes;
iii) A construção de softwares habitáveis, ou seja, configurados por linhas de código
compreensíveis por um grande número de pessoas da comunidade informática;
iv) O desenvolvimento de softwares que possam evoluir a partir de um crescimento
incremental e;

SugarLoafPLoP´2007 Pattern Applications

268

v) Quando necessários, softwares complexos poderiam ser estruturados através de
conexões com outros programas pré-existentes.

 De muitas maneiras, a idéia sintetizada como linguagem de padrões, vis-à-vis o
sentido de totalidades, sugere um processo de sucessivos acoplamentos, de partes
maiores ou menores, na conformação da estrutura do software ou de um sistema. Pode-
se então falar que isso revela um modo onde estrutura e organização convergem para a
idéia de rede, que se realiza nos muitos planos de coordenação e controle do processo.

 Até mesmo em jogos, os conceitos de patterns são aplicáveis. Wright (2001),
criador do SimCity, afirma que sua inspiração original para o jogo foram as 256 regras
de design contidas no livro “A Pattern Language”, [Alexander 1979], cada qual baseada
em um aspecto do comportamento humano. A idéia básica é que o projeto de construção
deve refletir aspectos desse comportamento em diferentes escalas.

 A aplicação de patterns para o entendimento do problema e captura dos
requisitos de um sistema vêem sendo difundido entre diversos grupos de pesquisa, onde
inclusive se produz certa quantidade de artigos sobre o tema e suas aplicabilidades, de
forma satisfatória. Um grupo que tem forte destaque nesta linha de pesquisa é a alemã
Deutsches Elektronen-Synchrotron (DESY) Sócios da Associação de Helmholtz, é um
centro de pesquisa nacional apoiado por fundos de dívida pública, localizada em
Hamburg e Zeuthen (Brandenburg), reconhecidamente um dos principais centros de
aceleração gravítica (prótons e elétrons) no mundo [Deutsches 2006].

 Portanto, propor um modelo para orientar o levantamento de requisitos, baseado
nas práticas primárias e corolários de patterns se torna plenamente viável, pois além de
agilizar o processo de eliciação dos requisitos de software, pode aumentar a qualidade
dos documentos gerados no projeto, inclusive observar falhas nos processos
organizacionais, conseqüentemente sugerir mudanças e melhorias.

3. Reuso Aplicado a Engenharia
Reuso de artefatos em geral tem sido um objetivo primordial em Engenharia de
Requisitos. A própria utilização do termo reuso é uma demonstração do quanto reuso é
essencial e também do quanto ele não está sendo atingido. Todas as tradicionais
disciplinas de Engenharia estão tão intrinsecamente baseadas na grande quantidade de
reuso de elementos, que o termo reuso nem é mencionado. Afinal reuso é parte
integrante de praticamente tudo que se faz em Engenharia. Estas cláusulas comuns
formam uma boa definição de Engenharia, pois estão relacionadas com a criação de
soluções eficientes, para problemas práticos, através da aplicação de conhecimento
científico, construindo coisas a serviço da condição humana [Sawyer , Sommerville and
Viller 1997].

 Para atingir este objetivo, uma Engenharia utiliza conhecimentos científicos
sobre domínios tecnológicos que estão codificados de uma forma que seja diretamente
útil para um engenheiro. Deste modo este conhecimento codificado provê respostas para
questões que ocorrem comumente na prática. Ou seja, este conhecimento deve ser
reutilizado para a geração de soluções [Czarnecki and Eisenercker 2002].

 Engenharia também pode ser entendida pela distinção entre trabalho criativo e
trabalho rotineiro. Trabalhos rotineiros são aqueles que envolvem a solução de
problemas conhecidos e, portanto facilitam a reutilização de grande parte de outras

SugarLoafPLoP´2007 Pattern Applications

269

soluções já aplicadas a problemas similares. A construção de uma rodovia por
engenheiros civis é geralmente um trabalho rotineiro. A menos que o relevo da região
seja tão diferente que requeira soluções novas. Nestes casos, onde soluções novas são
necessárias, o trabalho a ser realizado é denominado de trabalho criativo. Engenharia
está fortemente relacionada com trabalhos rotineiros [Sawyer , Sommerville and Viller
1997].

4. Reutilização de Requisitos
Uma das características de um processo de desenvolvimento maduro de software é a
reutilização de artefatos gerados em seus ciclos iniciais e intermediários [Sommerville
and Sawyer 1997] [Paulk 1993]. No caso da reutilização de requisitos deve-se
contemplar explicitamente o modelo de processos, assim como ter um suporte
automatizado. Os principais motivos de aplicar técnicas de reutilização em Engenharia
de Requisitos, ao menos neste ponto de vista, não é simplesmente reduzir custos e
aumentar a qualidade, que evidentemente são fundamentais, mas também ter boa
performance em produtividade, cumprindo dessa forma os prazos estabelecidos pelos
contratos.

 A introdução sistemática da reutilização em Engenharia de Requisitos pode
levar a uma troca radical entre os planejamentos habituais sobre o processo a seguir,
conduzindo a fazer uma Engenharia de Requisitos baseadas em componentes, de forma
similar a como está sendo produzido em nível de implementação.

 Oportunamente, poderia alegar situações em que o Engenheiro de Requisitos
dispõe de um repositório suficientemente rico, o processo de eliciação-análise-
documentação-validação vai ser substituído por outro em que, as funções que
necessitam de um cliente, se obtiverem os requisitos selecionados em uma série de
requisitos, nos quais relacionamos rastreabilidade, indicam que os componentes de
software deveriam organizar-se para implementar um sistema que dê ao cliente a
solução de seus problemas. Esta situação seria parecida com que a produz quando se
adquire um produto modular pré-fabricado: o cliente escolhe de um catálogo em função
de suas necessidades, conhecendo desde o primeiro momento o custo de sua escolha
[Sommerville and Sawyer 1997].

5. Modelo POREI: Patterns-Oriented Requirements Elicitation Integrated
O modelo apreciado na figura 1, assim como os preceitos de Alexander (1979), cada
padrão descreve um problema que ocorre repetidamente no nosso ambiente e, portanto,
descreve o cerne da solução desse problema, de tal forma que pode-se utilizar essa
solução diversas vezes repetitivamente, sem nunca fazê-la duas vezes do mesmo modo
[Alexander 1979].

 Para que os processos sejam mais reutilizáveis, organizações precisam expressar
elementos comuns e variáveis dentro de um processo. Frameworks fornecem um
mecanismo para obter esta reutilização e são bem apropriados para domínios onde
várias aplicações similares são construídas várias vezes, partindo-se apenas de idéias
[Hollenback and Frakes 1996). Pesquisas voltadas para patterns também têm mostrado
que eles são ferramentas efetivas para a reutilização [Meszaros and Doble 1998]
[Gamma et. al. 1995].

SugarLoafPLoP´2007 Pattern Applications

270

 Portanto, tais pesquisas anteriores serviram para aplicar a idéia de padrões de
projeto a padrões de requisitos. Aqui é descrita uma estrutura para catalogar e descrever
padrões de projeto. Como se vê na figura abaixo, foram identificados 20 padrões de
requisitos, contemplados por muitas pesquisas, mas não aplicados de forma estruturada.

Figura 1. Modelo de Padrão de Requisitos2

 Existem diversos formatos ou templates para a descrição de padrões de
requisitos de softwares. Alguns são quase puramente textuais escritos em prosa livre,
enquanto outros são mais estruturados [Gamma et.al. 1995]. Embora haja tantas opções,
não existe um formato padronizado pela comunidade de software, principalmente
porque diferentes tipos e domínios de padrões podem exigir diferentes maneiras de
apresentar tais padrões. Mesmo assim, há certo consenso geral sobre elementos
essenciais que devem ser contemplados e comunicados por qualquer padrão,
independentemente do formato utilizado [Gamma et.al. 1995] [Shalloway and Trott
2004].

5.1. Definição dos elementos do modelo
As notações gráficas, embora sejam importantes e úteis, não são suficientes. Elas
simplesmente capturam o produto final do processo de projeto como relacionamento
entre os casos de usos e demais diagramas, Para reutilizar os requisitos, devemos
também registrar decisões, alternativas e analises de custos e benefícios que levaram a
ele. É evidente que exemplos concretos reforçam o conhecimento sobre o tema e o
problema [Gamma et.al. 1995] [Shalloway and Trott 2004].

 Assim como o conceito de Design Patterns, será descrito os padrões de
requisitos usando um formato consistente, ou seja, cada padrão é dividido em seções de
acordo com suas características que envolvem: o Nome, a Identificação, o Problema, a
Solução, o Ambiente, as Forças, e principalmente os Exemplos. Tal gabarito fornece
uma estrutura uniforme às informações, tornando os padrões de requisitos mais fáceis
de aprender, comparar e usar.

 A relação dos padrões de requisitos catalogados neste modelo, assim como suas
classificação e intenções são listados na tabela 1 que segue:

2 O Ambiente, a Classificação e os Tipos de Requisitos que fazem parte do modelo apresentado (figura 1), não foram
criados pelos autores, ou seja, são contemplados e utilizados plenamente pela comunidade de software. São
princípios que refletem o que tem sido aprendido sobre projetos em sistemas de informação, de alta qualidade para
problemas específicos.

SugarLoafPLoP´2007 Pattern Applications

271

Tabela 1. Catálogo de padrões de Requisitos

 Os padrões podem variar de acordo com sua granularidade e no nível de
abstração. Pois cada padrão tem suas peculiaridades e torna-se necessário organizá-los
de maneira a fazer sentido sua aplicação. Portanto, nós classificamos os padrões de
requisitos por dois critérios (figura 1). O primeiro critério, baseado no conhecimento do
Domínio da Informação, reflete o tipo de requisito identificados em qualquer ambiente.
Os padrões podem, nessa visão, ter a características de serem dinâmicos, estáticos,
estrutural e inversos. Os padrões dinâmicos estão relacionados com os requisitos

SugarLoafPLoP´2007 Pattern Applications

272

funcionais de um sistema da informação. Os padrões estáticos estão relacionados com
os requisitos não-funcionais do sistema, e que refletem a qualidade do sistema. Já os
padrões estruturais estão ligados aos requisitos técnicos, e por fim, os padrões de
exceção, relacionados aos requisitos de exceção, ou seja, expõem os fluxos alternativos,
assim como regras e exceções à regra básica de parte do sistema.

 O segundo critério, chamado Domínio Cognitivo, especifica se o padrão se
aplica ao Conhecimento, Compreensão, Aplicação, Análise e Síntese. Na tabela 2 segue
as descrições desses Domínios Cognitivos.

Tabela 2. Domínios Cognitivos

 Existem diversas maneiras de se organizar os padrões, pois as maiorias dos
padrões devem ser usados em conjunto. Por exemplo, o padrão User é frequentemente
usado com o Scene e o Interface. Alguns padrões resultam em requisitos semelhantes,
embora tenham intenções diferentes. Outros padrões são alternativos: O Quality pode
ser um padrão alternativo para o Architecture.

 Outra forma, ainda, de organizar padrões de requisitos é de acordo com que eles
mencionam outros padrões no modelo de relacionamento. A figura 2 ilustra estes
relacionamentos graficamente.

SugarLoafPLoP´2007 Pattern Applications

273

Figura 2. Relacionamento dos Padrões de Eliciação de Requisitos.

SugarLoafPLoP´2007 Pattern Applications

274

5.2. Como os padrões solucionam problemas de projeto
Os padrões de requisitos solucionam muitos dos problemas que os engenheiros de
requisitos enfrentam diariamente, e de muitas maneiras diferentes. Apresentaremos a
seguir vários problemas e como os padrões de requisitos solucionam:

- Definindo os usuários (stakeholders): Basicamente todos os sistemas sofrem o impacto
da participação de pessoas, empresas (fornecedores, clientes, parceiros, terceirizados
etc) e até coisas (servidores, outros sistemas, tecnologias em geral etc). Com este padrão
é possível identificar usuários ou coisas que sofrem influência direta e indiretamente do
sistema e definir seu papel, responsabilidades e relacioná-los aos cenários afins.

- Eliciando os cenários: Os cenários são seqüências de interações entre o sistema entre o
sistema e seus atores. Um conjunto de cenários pode dar uma boa descrição de como o
sistema Será sempre usada descrição mínima como a descrição do sistema antes de
entrar no cenário (pré-condições), o fluxo de eventos, as exceções, atividades paralelas
e as descrições dos estados do sistema após a atividade do cenário. O padrão favorece a
reutilização destes fluxo de eventos e suas ligações, reduzindo dessa forma o trabalho
de eliciar determinados requisitos.

- Definindo a qualidade do produto: Muitos dos requisitos seguem normas de qualidade
de produtos e processos, como as publicadas pela ISO, SEI/CMU, NBR, BS entre
outros órgãos regulamentadores espalhados pelo mundo. A qualidade com que as
informações chegam ao seu receptor é muito importante, portando tratar desses itens é
fundamental para agradar aos usuários e patrocinadores dos projetos. Os padrões neste
caso auxiliam na escolha da norma e seu conjunto de critérios de acordo com o histórico
de aplicabilidade como se fosse uma “jurisprudência” na área de Engenharia de
Software.

- Quantificando o tempo útil da tecnologia: Quanto tempo leva para certa tecnologia se
defasar? Quanto não tem profissionais com conhecimento necessário para manipulá-lo?
Ou quando o fornecedor deixa de produzir tal ferramenta? Ou talvez quando as
informações não chegam da forma, velocidade e consistência, que deveria chegar ao seu
receptor? Portanto o padrão de requisitos, de maneira análoga a percepção do usuário
em relação seu carro, sua casa, poderá criar critério que determinem a validade de
determinadas tecnologias em relação ao produto que está comprando. Esses limites
seriam determinados levando em conta critérios como estrutura necessária para garantir
a satisfação dos usuários, tempo de resposta a uma determinar tomada de decisão, e
obviamente deveriam ser calibradas com o passar do tempo através de aplicação de
benchmarking.

- Familiarizar com os termos, siglas e conceitos desconhecidos: Técnica que procura
descrever os símbolos de uma linguagem na área de Engenharia de Requisitos dá-se o
nome de Léxico Ampliado da Linguagem (LAL) [Leite et.al., 1997]. A idéia central do
LAL é a existência da linguagem da aplicação. Esta idéia parte do princípio que no
universo de informações existe uma ou mais culturas e que cada cultura (grupo social)
tem sua linguagem própria. Portanto, o principal objetivo (e desafio) a ser perseguido
pelos engenheiros de requisitos é a identificação de palavras ou frases (peculiares) ao
meio social da aplicação sob estudo. Somente após a identificação dessas frases e
palavras é que se procurará seu significado. A estratégia de eliciar é ancorada na sintaxe

SugarLoafPLoP´2007 Pattern Applications

275

da linguagem, gerar um glossário indexado que a possibilita de confrontar seus
significados e rastrear suas aplicabilidades dentro de um contexto definido.

6. Conclusão
O modelo, que faz parte de uma pesquisa de doutorado, vislumbra os benefícios que a
padronização pode fornecer quando se estabelece uma estrutura aplicável a qualquer
situação. Embora seja evidente a necessidade de uma boa documentação que oriente o
profissional em sua jornada no processo de eliciação dos requisitos, a proposta de
utilizar os conceitos de padrões traz mais eficiência na identificação dos elementos
chaves do ambiente de informação e proporciona a reusabilidade com mais qualidade,
mapeando a solução de problemas recorrente a produção de software.

 A rastreabilidade é também um item a ser observado, pois muitas dessas
soluções dependem de outros artefatos para gerar o resultado esperado, e o modelo
proposto traz essa ligação encapsulada em cada um dos padrões proposto.

 Enfim, as mesmas necessidades e desafios encontrados em outras áreas da
Engenharia são refletidos na área de construção de Sistemas de Informações, portanto
não se devem fechar os olhos para as idéias e soluções que se encontram próximos e
passíveis de exploração, experimentação, adaptação.

Referências
Alexander, C. (1979) “The Timeless Way of Building”, Oxford University Press.

Buschmann, F. et al.(1996) “ Pattern Oriented Software Architecture: A System of
Patterns”, John Wiley & Sons.

Czarnecki, K., Eisenercker, U.W.(2002) “Generative Programming”,Addison-Wesley.

Deutsches.(2006) “Elektronen-Synchrotron: DESY, http://www.desy.de, Agosto.

Gabriel, R. P. (1996) “Patterns of Software: Tales from the software community”,
Oxford: Oxford University Press.

Gamma, E. et al.(1995) “Design Patterns: Elements of Reusable Object-Oriented
Software”, Reading, MA : Addison-Wesley.

Gause, D. C., Weinberg, G. M.(1990) “Are Your Lights On? How to Figure Out What
the Problem Really Is”. 1ed. USA : Dorset House Publishing Co. Inc., 157 p.

Harrison, N.; Foote, B.; Rohnert, H.(1999) “Pattern Languages of Program Design”,
Addison-Wesley.

Hollenbach, C. ; Frakes, W.(1996) “Software Process Reuse in an Industrial Setting”,
Fourth international Conference on Software Reuse, Orlando, Florida, IEEE
Computer Society Press, Los Alamitos, CA, pp 22-30.

Leite, J.C.S.P. (1989) “Viewpoint Analysis: A case Study”, IWSSD'89 Fifth
International Workshop on Software Specification and Design. (Pittsburg,
Pensylvania, USA) 1ed.USA : ACM Sigsoft Engineering. Proceedings, may, p111-
119.

SugarLoafPLoP´2007 Pattern Applications

276

Leite, J.C.S.P. et al.(1997) “Enhancing a Requirements Baseline with Scenarios”,
ISRE'97 Third International Symposium on Requirements Engineering. (Annapolis,
Maryland, USA) 1ed.USA: IEEE CSP, Los Alamitos, CA.Proceedings, p 44-53.

Meszaros, G.; Doble, J. (1998) “A Pattern Language for Pattern Writing”, Reading, MA
: Addison-Wesley.

Paulk, M. C. et al.(1993) “Capability Maturity Model for Software”, Version 1.1.
Technical Report CMU/SEI–93–TR–024, Software Engineering Institute, Carnegie
Mellon University, http://www.sei.cmu.edu, Junho.

Sawyer, P.; Sommerville, I.; Viller, S. (1997) “Requirements Process Improvement
Through The Phased Introduction of Good Practice”, Software Process –
Improvement and Practice, http://www.comp.lancs.ac.uk, Junho.

Shalloway, A; Trott, J.(2004) “Explicando padrões de projeto : uma nova perspectiva
em projeto orientado a objeto”, tradução Ana M. de Alencar Price. Porto Alegre:
Bookman.

Sommerville, I.; Sawyer, P. (1997) “Requirements Engineering (A Good Practice
Guide)”, 1ed. England : John Wiley & Sons Ltd, 391p.

Wright, R.(2001) “Game design: theory and practice”, Interview in ROUSE III, Plano,
Texas: Wordware Publishing.

SugarLoafPLoP´2007 Pattern Applications

277

Aplicando Padrões de Projeto em Computaç̃ao Móvel

Mauro Strelow Storch, Andr é Rauber Du Bois, Adenauer Correa Yamin

1 Escola de Inforḿatica - Universidade Católica de Pelotas(UCPEL)
Pelotas – RS – Brasil

{mstorch,dubois,adenauer}@ucpel.tche.br

Resumo. As rede de computadores estão em constante evolução, causando tam-
bém uma evoluç̃ao de toda a estrutura da computação que atua sobre elas.
Hoje em dia existem vários recursos computacionais conectados em rede, e
pesquisadores tentam tirar proveito do poder computacional disponı́vel nas re-
des de larga escala. Uma nova abordagem para se aproveitar esses recursos se-
ria o uso da mobilidade de código, ou programas ḿoveis. Um programa ḿovel
pode iniciar sua execução em uma ḿaquina da rede e depois mover-se para
outra ḿaquina onde continua a sua execução. Apesar das vantagens adquiri-
das com o uso da computação ḿovel, esse tipo de sistema aindaé muito dif́ıcil
de programar. O objetivo deste trabalhóe implementar padr̃oes de projeto
que tornem mais fácil a programaç̃ao de sistemas com mobilidade de código.
Foram identificados padrões de computação ḿovel e estes foram modelados
como padr̃oes de projeto do tipo Template Method. A grande vantagem desses
padrõesé que o programador ñao precisa se preocupar com a programação
de baixo ńıvel desse tipo de sistema, ele apenas escolhe o padrão de projeto
que descreve o comportamento móvel desejado. Para testar os padrões desen-
volvidos nesse trabalho, implementou-se uma agenda colaborativa distribuı́da
que usa os padrões de projeto identificados para implementar toda logı́stica de
mobilidade de ćodigo do sistema.

Abstract. Nowadays almost all computing resources are connected in networks,
and researchers are trying to take advantage of the computational power avali-
able in large scale networks. A promissing aproach is to use code mobility, or
software mobility. A mobile program can initiate its execution in a host and then
move itself to another host where it continues its execution. Despite the advan-
tages acquired with mobile computation, this kind of system is still very difficult
to program. The objetive of this work is to design Java classes that encapsulate
common patterns of mobile computation. These classes should help in the de-
velopment of systems that use code mobility. We have identified three common
patterns of mobile computation and implemented them as Template Method de-
sign patterns. The advantage of these patterns is that the programmer does not
need to worry about the low level details of programming mobile systems, he
just has to choose the mobility pattern that describes the desired mobile behav-
ior. To test the mobility patterns developed in this work, a distributed meeting
scheduler was implemented that uses the design patterns identified to implement
all the code mobility of the system.

SugarLoafPLoP´2007 Pattern Applications

278

1. Introdução

As redes de computadores estão em constante evolução, principalmente com a
disseminaç̃ao da Internet. Juntòa evoluç̃ao das estruturas de rede, há tamb́em a evoluç̃ao
do software que atua sobre essas estruturas. A idéia de poder compartilhar informações
atrav́es da rede abriu um leque muito grande de opções para utilizaç̃ao de seus recursos.
A partir dai surgiram linhas de pesquisa, não śo para o compartilhamento de informações,
mas tamb́em para o compartilhamento de todos os recursos que uma rede de computa-
dores pode oferecer. Uma abordagem para o compartilhamento de recursos em redes de
larga escala seria o uso demobilidade de ćodigoouprogramas ḿoveis[Fuggetta et al. 1998].
Um programa ḿovel possui a capacidade de mover-se entre as máquinas de uma rede e
executar suas instruções em qualquer uma delas. Desta forma um programa móvel pode
utilizar os recursos disponı́veis localmente em cada uma das máquinas da rede, em uma
perspectiva muito mais flexı́vel que aquela explorada com componentes distribuı́dos em
localizaç̃oes pŕe-fixadas.

Al ém de especificar o algoritmo a ser executado, um programa móvel tamb́em
deve descrever vários outros aspectos decoordenaç̃ao do aplicativo, e.g., como o pro-
grama seŕa dividido entre as v́arias ḿaquinas do sistema, quando partes do programa
devem ser movidas, comunicação, sincronizaç̃ao etc. Dessa maneira, a implementação de
programas que utilizam computações ḿoveisé t̃ao ou mais dif́ıcil do que a implementação
de sistemas distribuı́dos tradicionais. O objetivo deste trabalhoé apresentar padrões de
projeto para computação ḿovel que facilitem a programação desse tipo de sistema. Os
padr̃oes apresentados neste artigo facultam ao programador especificar esse tipo de sis-
tema usando um maior nı́vel de abstraç̃ao.

Em [Du Bois et al. 2005b] foram identificados três padr̃oes como de uso recor-
rentes na computação ḿovel.

Neste artigóe apresentada a modelagem desses padrões como umtemplate method.
Sendo assim, estes padrões foram implementados como classes abstratas na linguagem de
programaç̃aoJava[Java 2006]. Essas classes abstratas permitem que o programador não
se preocupe com os aspectos de baixo nı́vel da coordenaç̃ao de programas ḿoveis. Ao
desenvolver uma aplicação ḿovel o programador deve apenas escolher o padrão que mel-
hor descreve a aplicação e estender a super-classe do padrão implementando ḿetodos
abstratos que descrevem as computações que serão executadaslocalmentenas ḿaquinas
que a computaç̃ao ḿovel irá visitar. Aspectos como sincronização e comunicaç̃ao das
computaç̃oes ḿoveis s̃ao herdados da classe pai.

Este artigóe organizado da seguinte maneira: na Seção 2 os conceitos de Padrões
de Projeto, incluindo o padrão de projetotemplate method, e computação ḿovel s̃ao re-
visados. Em seguida, na Seção 3, os padr̃oes de projeto para programação ḿovel s̃ao ap-
resentados. Para demonstrar a usabilidade dos padrões desenvolvidos, a implementação
de uma agenda colaborativa distribuı́daé descrita na Seção 4. A agenda usa os padrões de
projeto identificados para implementar toda a comunicação de ćodigo ḿovel do sistema.
Finalmente os trabalhos relacionados e as conclusões s̃ao discutidos nas seções (Seç̃ao 5)
e (Seç̃ao 6) respectivamente.

SugarLoafPLoP´2007 Pattern Applications

279

2. Fundamentos

2.1. Padrões de Projeto

Historicamente os Padrões de Projeto foram identificados pelo arquiteto Christo-
pher Alexander no final dos anos 70, que fez a seguinte afirmativa:Cada padr̃ao descreve
um problema no nosso ambiente e o núcleo da sua soluç̃ao, de tal forma que você possa
usar essa soluç̃ao mais de um milh̃ao de vezes, sem nunca fazê-lo da mesma maneira.
Embora Alexander estivesse falando de padrões de construç̃oes civis, o que ele diźe ver-
dadeiro em relaç̃ao aos padr̃oes de projeto utilizados na computação. No centro de ambos
os tipos de padrões est̃ao as soluç̃oes para os problemas em seu devido contexto.

Um padr̃ao descreve uma solução para um problema que ocorre com freqüência
durante o desenvolvimento de software, podendo ser considerado como um par ”pro-
blema/soluç̃ao”[Bushamnn and Meunier 1995]. O uso de padrões proporciona um vo-
cabuĺario comum para a comunicação entre projetistas, criando abstrações num ńıvel su-
perior ao de classes e garantindo uniformidade na estrutura do software [Gall et al. 1996].

Os Padr̃oes de Projeto são classificados, de acordo com a granularidade e nı́vel de
abstraç̃ao, em tr̂es categorias diferentes [Gamma et al. 1995]. São elas:

• De Criação: Criar ou instanciar objetos.
• Estrutural: Reunir objetos existentes.
• Comportamental: Prover uma maneira de manifestar comportamento flexı́vel

(variável).

Os padr̃oes de projeto para computação ḿovel descritos na seção 3 s̃ao modelados
comoTemplate Methodse classificados como padrões do tipo comportamental. Basica-
mente um padrãoTemplate Method́e uma classe abstrata que define um métodogabarito
e descreve o esqueleto de um algoritmo, postergando a definição de alguns passos para as
sub-classes. Este padrão permite que sub-classes redefinam certos passos de um algoritmo
sem mudar sua estrutura.

2.2. Computaç̃ao Móvel

Computaç̃ao Móvel pode ser definida de diferentes formas dependendo daárea.
Quando falamos dehardware, associamos esse termo a mobilidade fı́sica dos equipa-
mentos, comonotebookse laptops. Poŕem naárea desoftwarechamamos Computação
Móvel quando um programa se move entre equipamentos interligados por uma rede de
computadores [Cardelli 1999].

Este artigo trata sobre Computação Móvel naárea desoftware, ou seja,mobilidade
de ćodigo. Nesse caso, uma computação ḿovel pode iniciar sua execução em um nodo
de uma rede e em certo ponto ser movida para um outro nodo da estrutura distribuı́da
dando continuidade a sua execução. Assim a computação pode ser executada localmente
em v́arios nodos, utilizando o ḿaximo dos recursos disponı́veis na rede.

A mobilidade de software traz também vantagens para os usuários de dispositivos
móveis. Um usúario de um dispositivo de pouco poder computacional pode enviar um
programa para ser executado nos recursos computacionais existentes em uma rede e re-
conectar novamente mais tarde para receber os resultados dessa computação.

SugarLoafPLoP´2007 Pattern Applications

280

3. Padrões de Projeto para Computaç̃ao Móvel

3.1. Formas Recorrentes de Computaç̃ao Móvel

Em [Du Bois et al. 2005b], foram identificados três formas recorrentes de compu-
taç̃ao ḿovel que ocorrem em sistemas de aquisição de informaç̃oes distribúıdos [Callan 2000].
Nesse tipo de sistema várias bases de dados são analisadas em busca de alguma informação
em comum. Este tipo de aplicaçãoé considerada umaKiller Applicationpara a computa-
ção ḿovel [Fuggetta et al. 1998]. Os padrões identificados são:

• Mmap: Descreve o multicast de computações aos nodos de uma rede.
• Mfold: Descreve uma computação que visita uma lista de nodos executando ins-

truções e recolhendo valores.
• Mzipper: Descreve uma computação que visita os nodos de uma rede buscando

um valor comum em todos os nodos.

No artigo citado, os padrões s̃ao identificados e implementados em uma extensão
para mobilidade de código da Linguagem funcional Haskell [Haskell 2006]. Os padrões
são implementados comoEsqueletos de Mobilidade, i.e.,funç̃oes de alta ordem, que en-
capsulam padrões recorrentes de computação ḿovel. Uma das principais vantagens dos
Esqueletos para Mobilidadée facilitar a programaç̃ao de aplicaç̃oes ḿoveis. Essa facili-
dade ocorre pois o programador não se preocupa com os aspectos de baixo nı́vel da mo-
bilidade de ćodigo, mas apenas com a implementação da computaç̃ao que seŕa executada
localmentenos nodos da rede.

Um dos problemas dosesqueletos de mobilidadeé o fato de eles estarem modela-
dos e implementados em uma linguagem de pesquisa, usando um paradigma de progra-
maç̃ao de dif́ıcil aceitaç̃ao no mercado de desenvolvimento de software. O objetivo desta
seç̃ao do artigóe modelar e implementar os padrões identificados em [Du Bois et al. 2005b]
usando a linguagem de programação Java. Os nomes dos padrões foram inspirados
em funç̃oes t́ıpicas de linguagens funcionais cujo comportamento, embora não com-
porte distribuiç̃ao e/ou mobilidade, assemelham-se aos padrões propostos. Dessa maneira
pretendemos tornar mais fácil a programaç̃ao de sistemas com mobilidade de software
pois os padr̃oes estar̃ao descritos, modelados e implementados usando um paradigma de
programaç̃ao largamente utilizado no mercado. Para isso os padrões ser̃ao modelados
como padr̃oes de projeto do tipotemplate methode implementados usando a linguagem
de programaç̃ao Java.

3.2. Estrutura para Mobilidade dos Padrões

Para desenvolver os Padrões de Projeto para Computação Móvel, foi necesśaria
a implementaç̃ao de uma estrutura baseada emSocketspara mover e executar programas
remotamente utilizando os recursos existentes na linguagem de programação Java.

A estruturáe composta basicamente de três componentes:

1. InterfaceExecute- Interface Java que descreve como executar objetos remota-
mente. Possui uḿunico ḿetodo abstratoexecutar() que deve ser implemen-
tado por todos os objetos a serem executados remotamente.

2. ClasseRemoteCreate- Esta classe possui dois métodos est́aticos para a criação
remota de objetos. O ḿetodocreateS recebe como argumentos uma máquina

SugarLoafPLoP´2007 Pattern Applications

281

remota e um objeto do tipoExecute, e move uma instância do objeto para a
máquina remota. Assim que o objetoé movido, o seu ḿetodoexecutar() é
chamado. O resultado da chamada aexecutar(), um objeto do tipoSeria-
lizable, é enviado de volta para a máquina que chamou o ḿetodocreateS. A
classeRemoteCreate possui tamb́em um ḿetodocreateA queé uma vers̃ao
asśıncrona do ḿetodocreateS, ou seja, executa o objeto remotamente sem es-
perar por uma resposta.

3. ServidorJMServer - É um servidor presente em todas as máquinas do sistema.
Ele recebe objetos enviados pelo métodoscreateS e createA e os executa
automaticamente.

A estrutura implementadáe bem mais simples que outras existentes em java, e.g., RMI
[Grosso 2001] e Voyager [Voyager 2006], disponibilizando somente os recursos básicos
necesśarios para o desenvolvimento dos padrões de projeto.

3.3. O Padr̃aoMmap
O padr̃ao mais simples de computação ḿovel identificadoé o Mmap, tamb́em

chamado deMulticast. Esse padrão define uma aplicação que envia uma computação a
todos oshostsde uma lista passada como parâmetro. OMmap retorna uma lista, do mesmo
tamanho da lista dehosts, que cont́em o resultado da execução das computações, como
pode ser visto na Figura 1.

Figura 1. mmap - Multicast

A Figura 2 apresenta o diagrama UML da modelagem doMmap como um padr̃ao
de projetoTemplate Method. A classe abstrataMmap possui um atributo privadohosts
que cont́em os nodos da rede a serem visitados eé inicializado atrav́es do construtor da
classe. Oúnico ḿetodo que o programador deve implementar quando estende a classe
Mmap é o ḿetodo abstratoexecutar() que descreve o que a computação deve fazer
em cada uma das ḿaquinas que visita. O ḿetodogoMmap() é o ḿetodogabarito da
classe, que deve ser chamado para que oMmap seja ativado.

Na Figura 3 um exemplo simples de uso doMmap é apresentado. A classeOla
herda as funcionalidade de mobilidade do padrão Mmap e a sua execução consiste em
visitar uma lista dehostse imprimir a string‘Ola!!’ em cadahost. Como o resultado
retornado pela computação remotáe irrelevante, elée simplesmente ignorado no exemplo.

3.4. O Padr̃aoMfold
Este padr̃ao descreve uma computação que visita uma lista de nodos em uma rede,

executando uma computação em cada nodo e combinando os resultados produzidos us-

SugarLoafPLoP´2007 Pattern Applications

282

Figura 2. Diagrama de Classes do Padr ão Mmap

class Ola extends Mmap{

Ola(String[] hosts){ super(hosts); }

public String executar(){
System.out.println("Ola!!");
return "Ok";

}

public static void main(String[] args){
String [] hosts = (...) // lista de hosts

Ola oi=new Ola(hosts);
oi.GoMmap();

}
}

Figura 3. Exemplo de uso do Mmap

ando um operador. Quando atinge aúltima máquina a ser visitada, oMfold devolve o
resultado da computação para a ḿaquina inicial. A Figura 4 ilustra o funcionamento deste
padr̃ao.

A Figura 5 apresenta o diagrama UML da classe que implementa o padrãoMfold.
Da mesma forma que oMmap, este foi modelado como uma classe abstrata onde foi
definido um ḿetodo gabarito (goMfold()) responsável pela mobilidade e dois ḿetodos
abstratos,executar() eoperador() que devem ser implementados quando a classe
Mfold for estendida. O ḿetodoexecutar() descreve a computação que seŕa execu-
tada em cada nodo e o métodooperador() é responśavel por combinar os resultados
produzidos em um acumulador. O construtor da classeMfold recebe como argumen-

Figura 4. Mfold - Sistema de Aquisiç ão de Informaç ões

SugarLoafPLoP´2007 Pattern Applications

283

tos um valor inicial para o acumulador e a lista de nodos a seremvisitados. O ḿetodo
gabaritogoMfold() é usado para iniciar a execução doMfold.

Figura 5. Diagrama de Classes do Padr ão Mfold

O programa da Figura 6 usa o padrão Mfold para visitar nodos de uma rede
e coletar seus nomes. O construtor da classeColetor recebe como argumentos uma
lista vazia, usada como acumulador e a lista de nodos a serem visitados. O método
executar() usagetHostName() para pegar ohostname e o ḿetodooperador()
combina os nomes de todas as máquinas visitadas em uma string. O métodogoMfold()
dentro domain inicia a execuç̃ao doMfold e retorna uma string contendo o nome de
todas as ḿaquinas visitadas pela computação ḿovel.

class Coletor extends Mfold{

Coletor(String[] hosts){
super(hosts,"");

}

public Serializable executar(){

String res="";
try{

res=InetAddress.getLocalHost().getHostName();
}catch(Exception e){System.out.println(e);}
return res;

}

public Serializable operador(Serializable incluir,
Serializable acumulador){

return (acumulador + " " + incluir);
}

public static void main(String[] args)
throws Exception{

(...)
String [] hosts = (...) // lista de hosts
Coletor c=new Coletor(hosts);

resultado=c.goMfold();
System.out.println(resultado);

}
}

Figura 6. Exemplo de uso do Padr ão Mfold

Registra-se que algumas aplicações implementadas com o padrãoMfold tamb́em

SugarLoafPLoP´2007 Pattern Applications

284

podem ser implementadas usando o padrãoMmap, poŕem os programas terão um compor-
tamento operacional completamente diferente, como pode ser visto nas figuras 1 e 4, i.e.,
noMmap o controle da aplicaç̃ao retorna sempre para a máquina inicial e o padrãoMfold
sempre executa acontinuaç̃aoda computaç̃ao na pŕoxima ḿaquina a ser visitada.

3.5. O Padr̃aoMzipper

O Padr̃ao Mzipper descreve uma computação ḿovel que tenta encontrar um
valor que seja satisfatório a todos os nodos de uma rede. O valoré testado com um
predicado em cada nodo, e caso o predicado falhe, a computação é movida para o nodo
inicial da rede, onde um novo valoré gerado e a busca recomeçada. A Figura 7 ilustra o
comportamento do padrão.

Figura 7. Comportamento do Mzipper

A Figura 8 mostra o digrama UML do padrãoMzipper. No construtoŕe passada
a lista de nodos que a computação deveŕa visitar. O ḿetodogoMzipper() é o ḿetodo
gabarito, e os ḿetodo abstratosexecutar() e predicado() ser̃ao implementados
pelas sub-classes. O métodoexecutar() é sempre chamado no primeiro nodo da
lista para gerar um valor inicial. Esse valoré validado nos demais usando o método
predicado(). Quando o predicado falha, a computação é movida novamente para o
primeiro nodo e um novo valoŕe gerado usando oexecutar(). O Mzipper termina
quando todos os nodos concordaram com um valor ou quando o nodo inicial não pode
mais gerar valores para serem comparados.

Figura 8. Diagrama de Classes do Padr ão Mzipper

SugarLoafPLoP´2007 Pattern Applications

285

O programa da Figura 9 apresenta um programa simples que tentaencontrar um
hoŕario livre em agendas distribuı́das nas ḿaquinas de uma rede. O métodoexecutar()
busca um hoŕario livre na ḿaquina inicial. Este horário é ent̃ao testado em todas as
máquinas usando o ḿetodopredicado(). Se uma das ḿaquinas ñao possui esse
hoŕario livre, a computaç̃ao volta para a primeira ḿaquina e chama o ḿetodoexecutar()
novamente para que este gere um novo horário.

class Agenda extends Mzipper{

...

public Horario executar(){
return (horarioLivre());

}
public boolean predicado(Horario horaAtual){
if (verificaHorario(horaAtual)) return true;
else return false;

}

...

public static void main(String[] args){
Serializable resposta;
Agenda agenda=new Agenda();

resposta=agenda.goMzipper();
if(resposta!=null){

System.out.println("Hora livre nas agendas:" + resposta);
}

}
}

Figura 9. Exemplo de uso do padr ão Mzipper

4. Estudo de Caso: Agenda Colaborativa Distribúıda

Nesta seç̃ao descrevemos a implementação de uma aplicação ḿovel que usa os
padr̃oes de projeto descritos para implementar toda logı́stica de computaç̃oes no sistema.
A aplicaç̃ao é umaagenda colaborativa distribuı́da que consiste em uma agenda que
possui uma lista de compromissos e permite agendar compromissos com outras agendas
distribúıdas pela rede. O objetivo da aplicação é disparar uma computação ḿovel que
visita agendas em ḿaquinas remotas tentando achar um horário dispońıvel em todas as
agendas para marcar um compromisso. Quando o horário é achado, este deve ser comuni-
cado a todas as agendas que participam do sistema. Essa aplicação apresenta dois padrões
de mobilidade. O primeiróe a id́eia de uma computação quevisita nodos da rede e realiza
ações, ou seja, visitar os nodos procurando pelo horário. Na seç̃ao 3 vimos dois padrões
que apresentam esse comportamento, i.e., oMfold e oMzipper. O segundo padrão
de computaç̃ao ḿovel é a id́eia de enviar uma computação para todas as ḿaquinas, ou
sejaMmap, informando o hoŕario do compromisso. Nas próximas seç̃oes, duas diferentes
implementaç̃oes da agenda colaborativa são apresentadas usando os padrões descritos an-
teriormente.

A Figura 10 mostra a janela principal da agenda distribuı́da. Esta possui dois
botões que representam os dois Padrões de Projeto para Programação Móvel utilizados
para validaç̃ao dos hoŕarios. Logo abaixo dos botões h́a uma lista onde encontram-se
os endereços IP das máquinas onde estão rodando as outras agendas (aplicações iguais a

SugarLoafPLoP´2007 Pattern Applications

286

esta). Essa lista pode ser modificada através de dois bot̃oes (add, remove), ée nela que
o usúario indica com quais agendas deseja marcar o evento, ou seja, os padrões somente
irão visitar os endereços selecionados.

Figura 10. Janela Principal da Aplicaç ão

4.1. Agendamento com o Padr̃ao Mfold

O agendamento de eventos em agendas remotas usando o padrãoMfold é acionado
com umclick no bot̃aomfold da aplicaç̃ao.

O objetivo doMfold na agendáe visitar uma lista de ḿaquinas e computar a
intersecç̃ao das listas de horários livres de todas as máquinas. A agenda implementada
estende a super-classeMfold implementando os ḿetodosoperador eexecutar. O
métodooperador() retorna a intersecção de dois arrays com horários dispońıveis e
o métodoexecuta() é usado para ler localmente em cada máquina um arquivo que
cont́em os hoŕarios livres de cada agenda. Depois de executar o métodogoMfold(), o
Mfold visita todas os hosts pegando os horários livres de cada agenda (executar())
e computando a intersecção desses horários (operador()). No final oMfold retorna
os hoŕarios livres comuns̀a todas as ḿaquinas. O resultadóe apresentado ao usuário
que escolhe um dos horários para a reunião. O hoŕario selecionadóe ent̃ao enviado para
todas as agendas através doMmap, que faz omulticastde uma computação que faz o
agendamento em todos os hosts do horário escolhido.

4.2. Agendamento usando o PadrãoMzipper

Na implementaç̃ao da agenda distribuı́da a super-classeMzipper é estendida
de forma parecida com o programa apresentado na Figura 9. O métodoexecutar()
é implementado de forma a buscar um horário livre na agenda da ḿaquina em quée
chamado, sendo somente executado na primeira máquina a ser visitada. Após chamar
executar(), o Mzipper visita as outras ḿaquinas testando o horário livre com o
métodopredicado (). predicado() recebe como argumento o horário livre cor-
rente e compara este com os horários livres da ḿaquina sendo visitada. Se o horário
sendo pesquisado também est́a livre na ḿaquina corrente, oMzipper visita a pŕoxima

SugarLoafPLoP´2007 Pattern Applications

287

máquina da lista. Caso contrário, oMzipper volta para a primeira ḿaquina e gera um
novo hoŕario para ser pesquisado usando novamenteexecutar(). No final temos como
resposta um horário que est́a livre em todas as ḿaquinas, ou um valor nulo , que indica
que ñao existe um hoŕario livre comumà todas as agendas visitadas. Se oMzipper con-
segue achar um horário livre, a reunĩaoé marcada em todas as agendas usando oMmap,
assim como foi feito na implementação com oMfold.

4.3. Comparaç̃ao da aplicaç̃ao dos padr̃oes

Apesar da mobilidade necessária na Agenda distribuı́da poder ser descrita us-
ando os padr̃oesMzipper e Mfold, o padr̃ao de mobilidade presente nas diferentes
implementaç̃oesé bem diferente. Na implementação usando oMzipper, a computaç̃ao
move pelas ḿaquinas carregando apenasum hoŕario para ser agendado. Toda a vez que
esse hoŕario é negado por uma das agendas a computação volta para a primeira agenda
e pede um novo horário. J́a na implementaç̃ao usando oMfold, a computaç̃ao car-
rega umalista de hoŕarios livres, e vai cruzando essa lista com as listas encontradas em
cada uma das ḿaquinas que visita. A implementação usando oMfold parece ser mais
oportuna para a agenda distribuı́da j́a que a lista de horários a ser carregadáe pequena.
Dessa maneira a computação ñao precisa voltar para a máquina inicial toda a vez que um
hoŕario é negado por uma ḿaquina remota. Quando a lista de valores a serem compara-
dos nas ḿaquinas remotaśe grande, por exemplo um banco de dados, fica praticamente
imposśıvel carregar toda a base de dados junto com a computação ḿovel. Nesse caso o
padr̃aoMzipper é o mais adequado.

5. Trabalhos Relacionados

Os padr̃oes apresentados neste texto modelados comoTemplate Methods, podem
ser assciados osAlgortithmic Skeletons[Cole 1989], que s̃ao abstraç̃oes para programação
paralela, geralmente implementadas em linguagens funcionais como funções de alta or-
dem, que encapsulam padrões de paralelismo, comunicação e/ou sincronismo de tarefas.
Abstraç̃oes de mais alto nı́vel para a programação distribúıda tamb́em est̃ao surgindo,
como por exemploBehavioursna linguagem Erlang [Erlang 2006]. Computação ḿovel é
um campo relativamente mais novo mas que vem crescendo. Existem várias linguagens
móveis, e.g., [Conchon and Fessant 1999, Du Bois et al. 2005a, Wojciechowski 2000, Knabe 1995,
Voyager 2006, Cardelli 1995], porém poucas abstrações de alto ńıvel para programação
foram desenvolvidas. Podemos destacar osMobility Skeletons, descritos na Seção 3, nos
quais se baseam este trabalho.

Em [Wojciechowski 2000], uma plataforma para computação ḿovel baseada em
agenteśe apresentada. A plataforma utiliza uma linguagem chamadaNomadic Pict[Wojciechowski 2000]
que estende a linguagempict [C.Pierce and Turner 1997] com primitivas para mobilidade.
As primitivas s̃ao divididas em duas classes: primitivas debaixoe alto ńıvel. As primiti-
vas debaixo ńıveldescrevem migração e sincronizaç̃ao de computaç̃oes, como por exem-
plo a primitivamigrate to que move a computação corrente para um outro nodo da
rede. As primitivas dealto ńıvelsão implementadas usando as primitivas de baixo nı́vel e
fornecem uma maior abstração para a comunicação de computaç̃oes baseada no nome dos
agentes e ñao em sua localização. Os padr̃oes apresentados neste artigo fornecem uma
abstraç̃ao para programação ainda maior pois cada padrão encapsula v́arios aspectos de
um algoritmo para comunicação de computaç̃oes.

SugarLoafPLoP´2007 Pattern Applications

288

Outros trabalhos já estudaram padrões de projeto para computação ḿovel, prin-
cipalmente náarea de agentes, e.g. [Lima et al. 2004], porém estes trabalhos focam mais
na modelagem do sistema do que na facilidade de programação e reutilizaç̃ao de ćodigo.

6. Conclus̃ao e Trabalhos Futuros
Este trabalho apresentou um estudo sobre a especificação e implementaç̃ao de

padr̃oes de projeto (design patterns) que representam formas recorrentes de mobilidade
de ćodigo. Mais especificamente, foram descritos, usando padrões de projeto do tipo
Template Method, formas de mobilidade que ocorrem emsistemas de aquisição de infor-
maç̃oes distribúıdos, assim como descrito em [Du Bois et al. 2005b]. As contribuições do
trabalho foram: apresentar as formas de mobilidade em um paradigma de programação e
notaç̃ao largamente utilizada na indústria de software - facilitando assim o seu entendi-
mento, implementar e demonstrar o uso dos padrões atrav́es de exemplos. Os padrões
de projeto apresentados facilitam a programação de software ḿovel já que s̃ao formas
reuśaveis de ćodigo: basta o programador entender o padrão descrito para que ele possa
reusar o ćodigo dos padr̃oes atrav́es de herança. Além disso, quando o programador usa
os padr̃oes, ele śo precisa especificar as computações que serão executadaslocalmenteem
cada nodo da rede. Toda a distribuição e sincronizaç̃ao das tarefaśe herdada da classe-
pai. Para testar os padrões desenvolvidos nesse trabalho, foi implementada uma aplicação,
uma agenda colaborativa distribuı́da, que usa os padrões de projeto identificados para im-
plementar toda a comunicação de ćodigo ḿovel do sistema.

Existem v́arias linhas para projetos futuros. A estrutura implementada para mo-
bilidade dos padr̃oesé baseada emSocketse portantóe necesśario que a classe do objeto
móvel esteja presente em todas os nodos da estrutura. Issoé um problema pois aumenta
o conjunto comum de software em todos os nodos para que o sistema móvel funcione.
O problema pode ser solucionado modificando a estrutura de mobilidade para que esta
faça a atualizaç̃ao remota de classes ou através do uso de uma estrutura pervasiva como
por exemplo oEXEHDA [Yamim 2004] ouVoyager[Voyager 2006]. Uma outráarea
de projeto futuro seria a identificação e implementaç̃ao de outros padrões recorrentes de
computaç̃ao ḿovel atrav́es da ańalise de programas ḿoveis j́a existentes ou baseados em
outros trabalhos, e.g. [Lima et al. 2004].

A estrutura de mobilidade e o código fonte dos Padrões de Projeto para Progra-
maç̃ao Móvel s̃ao de doḿınio público e podem ser acessados em [Strelow Storch 2006].

Referências
Bushamnn, F. and Meunier, R. (1995).A system of Patterns. New York, NY, USA: ACM

Press / Addison Wesley Publishing Co.

Callan, J. (2000). Distributed information retrieval. pages 127–150. Advances in infor-
mation retrieval in Kluwer Academic Publishers.

Cardelli, L. (1995). A language with distributed scope. InConference Record of POPL
’95: 22nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, San Francisco, Calif., pages 286–297, New York, NY.

Cardelli, L. (1999). Mobility and security. InProceedings of the NATO Advanced Study
Institute on Foundations of Secure Computation, pages 3–37, Marktoberdorf, Ger-
many.

SugarLoafPLoP´2007 Pattern Applications

289

Cole, M. (1989).Algorithmic Skeletons: Structured Management of Parallel Computa-
tion. Pitman.

Conchon, S. and Fessant, F. L. (1999). Jocaml: Mobile agents for Objective-Caml. In
First International Symposium on Agent Systems and Applications (ASA’99)/Third In-
ternational Symposium on Mobile Agents (MA’99), Palm Springs, CA, USA.

C.Pierce, B. and Turner, D. N. (1997). Pict: A programming language based on the pi
calculus. Technical report, Computer Science Department, Indiana University.

Du Bois, A. R., Trinder, P., and Loidl, H.-W. (2005a).mHaskell: mobile computation in a
purely functional language.Journal of Universal Computer Science, 11(7):1234–1254.

Du Bois, A. R., Trinder, P., and Loidl, H.-W. (2005b). Towards Mobility Skeletons.
Parallel Processing Letters, 15(3):273–288.

Erlang (2006). Erlang. WWW page, http://www.erlang.org/.

Fuggetta, A., Picco, G., and Vigna, G. (1998). Understanding Code Mobility.Transac-
tions on Software Engineering, 24(5):342–361.

Gall, H. C., Klosch, R. R., and Mittermeir, R. T. (1996). Application patterns in re-
engineering: Identifying and using reusable concepts. In6th International Conference
on Information Processing and Management of Uncertainty in Knowlege-Based Sys-
tems, pages pp. 1099–1106.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995).Design Patterns. Addison-
Wesley.

Grosso, W. (2001).Java RMI. O’Reilly.

Haskell (2006). Linguagem Haskell. http://www.haskell.org.

Java (2006). Linguagem Java. http://java.sun.com.

Knabe, F. C. (1995).Language Support for Mobile Agents. PhD thesis, School of Com-
puter Science, Carnegie mellon University.

Lima, E. F. A., Machado, P. D., Sampaio, F. R., and Figueiredo, J. C. A. (2004). An
approach to modelling and applying mobile agent design patterns.ACM Software
Engineering Notes, 29(4).

Strelow Storch, M. (2006). Padrões de projeto para computação ḿovel.
http://atlas.ucpel.tche.br/˜mstorch.

Voyager (2006). Voyager System. http://www.recursionsw.com/voyager.htm.

Wojciechowski, P. T. (2000).Nomadic Pict: Language and Infrastructure Design for
Mobile Computation. PhD thesis, Wolfson College, University of Cambridge.

Yamim, A. C. (2004). Arquitetura para um Ambiente de Grade Computacional
Direcionado às Aplicaç̃oes Distribuidas, Ḿoveis e Conscientes do Contexto da
Computaç̃ao Pervasiva. Tese de doutorado, Univesidade Federal do Rio Grande do
Sul.

SugarLoafPLoP´2007 Pattern Applications

290

Utilização de Padrões para Otimizar a Automação de

Testes Funcionais de Software
1

Rafael Braga de Oliveira
1,3

, Francisco Nauber Bernardo Góis
3
,

Jerffeson Teixeira de Souza
2
, Pedro Porfírio Muniz Farias

1

1
Universidade de Fortaleza (UNIFOR)

Av. Washington Soares, 1321 – Fortaleza – CE – Brasil

2
Universidade Estadual do Ceará (UECE)

Av. Paranjana, 1700 - Fortaleza – CE - Brasil

3
Serviço Federal de Processamento de Dados (SERPRO)

Av. Pontes Vieira, 832 - Fortaleza – CE - Brasil

{rafael.oliveira, francisco.gois}@serpro.gov.br,

jeff@larces.uece.br, porfirio@unifor.br

Resumo. A automação de testes funcionais tem se tornado um evidente atrativo para equipes de

desenvolvimento de software. Tal fato se deve principalmente à grande redução de custo

observada a médio e a longo prazos com o uso desta prática. Este artigo propõe a aplicação de
padrões para otimizar a automação de testes funcionais de software, introduzindo benefícios

como o aumento da reusabilidade e da manutenibilidade de scripts de teste, e a facilidade de

inclusão de novos casos de teste. O uso de padrões na automação de testes funcionais

representa uma aplicação inovadora de padrões e um diferencial em relação às técnicas de

automação de testes funcionais citadas na literatura.

Palavras-chave: automação de testes; testes funcionais; teste de software, padrões de projeto.

Abstract: The functional testing automation has become a real interest to software development

teams, mainly because of the great cost reduction observed on medium and long terms with the

use of this practice. This article proposes the application of patterns to optimize the software
functional testing automation, introducing benefits as the increase of reusability and

maintainability of tests scripts, and the facility of including new test cases. The use of patterns

on functional testing automation represents an innovative application of patterns and a

improvement in relation to the techniques of the functional testing automation mentioned on the

literature.

Keywords: testing automation; functional testing; software testing, regression testing, design

patterns.

1. Introdução

Para minimizar o custo e proporcionar maior qualidade no desenvolvimento de

software, inúmeros estudos ressaltam a importância de um processo de teste efetivo [1,

2, 3, 4, 16]. Desta forma, quanto mais eficiente e mais eficaz for o teste, menor será o

custo dos reparos e maior será a qualidade do produto.

1 The authors thank SERPRO for supporting this work.

Copyright © 2007, Rafael Braga de Oliveira, Francisco Nauber Bernardo Góis, Jerffeson Teixeira de

Souza and Pedro Porfírio Muniz Farias. Permission is granted to copy for the SugarloafPLoP 2007

Conference. All other rights are reserved.

SugarLoafPLoP´2007 Pattern Applications

291

Evidentemente, quanto mais tarde um defeito é encontrado maior é o custo de

sua correção, podendo, em casos extremos, causar danos irreparáveis. Isto amplia o

incentivo à adoção de mecanismos eficazes e eficientes para a realização de testes

efetivos.

Testar um software é uma tarefa meticulosa e pode se tornar cansativa. Neste

contexto, a automação de parte dos testes é uma alternativa para proporcionar a entrega

de produtos mais confiáveis ao cliente.

Automatizar testes corresponde a desenvolver um novo código, portanto exige

um esforço adicional em relação a testes realizados manualmente. Normalmente, o

planejamento e a elaboração de testes automatizados requerem mais tempo do que o

necessário para testes manuais. A principal vantagem é que a execução dos testes

automatizados é muito mais rápida e torna-se possível repetir a realização dos testes

num baixo custo e numa velocidade bastante superior. Segundo Fewster [2], testes

manuais que levariam horas para serem concluídos, podem ser executados em minutos,

quando automatizados.

Os testes podem ser divididos em testes caixa-branca, onde temos acesso ao

código fonte do programa, e testes caixa-preta, onde não se conhece a estrutura interna

do sistema. Os testes caixa-preta são realizados navegando na interface do sistema,

introduzindo dados e selecionando opções, com o objetivo, normalmente, de verificar se

as funcionalidades (testes funcionais) estão implementadas de acordo com as

especificações.

Os testes caixa-preta podem ser automatizados através da criação e na execução

de scripts de teste utilizando ferramentas Record and Playback. Estas ferramentas

permitem a criação de scripts na forma de programas [3], os quais simulam ações de um

usuário sob a interface do sistema. No contexto deste artigo, a automação de testes

funcionais se limita à criação e à execução de scripts de teste utilizando tais

ferramentas.

Para sistemas de grande porte, podem ser necessárias centenas de scripts para

implementar a automação dos testes. Algumas técnicas, como Data-driven e Keyword-

driven [2], têm sido propostas no intuito de tornar os scripts mais manuteníveis.

Também têm sido desenvolvidos frameworks de forma a organizar e estruturar o uso

destes scripts [10, 11, 12].

Neste artigo, apresenta-se um framework denominado FuncTest, que, além de

aplicar as duas técnicas citadas, faz o uso de padrões [6, 7, 8] para otimizar o projeto de

automação de testes funcionais. Foram utilizados a arquitetura MVC [6], o padrão DAO

(Data Acess Object) [8, 19] e, em duas situações, o padrão Factory Method [5].

Scripts de teste são, de fato, programas. Portanto, podem se beneficiar da

utilização de padrões. Todavia, como normalmente são gerados automaticamente ou

produzidos a partir de trechos de códigos gerados automaticamente, não foram

encontrados registros da utilização de padrões em frameworks usados na automação de

testes funcionais. Recentemente, em [21], foram utilizados padrões para automatizar

testes unitários (caixa-branca).

SugarLoafPLoP´2007 Pattern Applications

292

Além de contribuir para a estruturação e organização de scripts de teste, o

framework FuncTest, no contexto da automação de testes funcionais construídos através

de ferramentas Record and Playback, representa um enfoque inovador do uso de

padrões.

Com a utilização do padrão de arquitetura MVC, associa-se cada passo de um

caso de teste, através de uma tabela, ao seu script correspondente. Isto permite, como

vantagem, uma independência entre casos de teste e scripts. Esta independência

possibilita que um projetista desenvolva os casos de teste enquanto outro

implementador, com experiência no desenvolvimento de scripts, encarrega-se de

desenvolvê-los.

O padrão DAO utilizado acrescentou o benefício de fornecer transparência no

acesso aos dados e permitir que os dados de teste persistam em bases de dados distintas.

A geração dos objetos DAO foi implementada através de uma aplicação do padrão

Factory Method. O padrão Factory Method também foi utilizado para a seleção dos

scripts de teste.

O framework FuncTest se encontra em uso por especialistas de teste de uma

grande empresa estatal de desenvolvimento de software. O processo de

desenvolvimento utilizado na equipe é uma adaptação do RUP aderente ao nível 2 do

CMMI. Uma versão preliminar do framework foi premiada em um congresso

promovido pela empresa em 2006. A versão atual, além de aperfeiçoar a aplicação de

padrões, contempla a utilização de técnicas relevantes para a literatura, bem como

permite configurar a automação através de arquivos XML.

Na próxima seção, discorreremos sobre técnicas para a criação de scripts

funcionais de teste, evidenciando-se problemas que serão tratados em seções

subseqüentes através do uso de padrões. Na seção 3, abordaremos os padrões utilizados.

Na seção 4, apresentaremos o framework proposto. Por fim, na seção 5, serão

apresentados a conclusão e os trabalhos futuros.

2. Técnicas para Criação de Scripts Funcionais

Através de ferramentas Record and Playback, podemos gerar scripts automaticamente

através da gravação de ações de usuário sobre a interface da aplicação ou simplesmente

programar os scripts.

Normalmente, os scripts gerados pelas ferramentas Record and Playback

deverão ser alterados ou, até mesmo, ser inteiramente programados. Por exemplo,

devem ser excluídos comandos desnecessários inseridos pela ferramenta e utilizadas

boas práticas de programação possíveis, como a inclusão de comentários para esclarecer

a lógica do código.

Em [2], são apresentadas as seguintes técnicas para construção de scripts:

 Scripts Lineares;

 Scripts Estruturados;

SugarLoafPLoP´2007 Pattern Applications

293

 Scripts Compartilhados;

 Scripts Data-Driven;

 Scripts Keyword-Driven.

2.1 Scripts Lineares

Os scripts lineares são aqueles desenvolvidos utilizando-se unicamente a técnica Record

and Playback. Portanto, são gravados durante a execução de um teste manual. Estes

scripts conservam todos os comandos realizados durante a gravação. O uso desta

técnica não exige conhecimento de programação por parte do testador. Entretanto, pode

limitar o reuso e a manutenção dos scripts gerados.

Seguem algumas das limitações observadas:

 scripts longos e ilegíveis: normalmente um único script para cada caso de

teste;

 presença de dados “hard-coded”: ocorre quando o script possui dados de teste

em seu código;

 scripts pouco coesos: scripts que realizam outras atividades além de ações

sobre a interface de usuário, que é o seu principal propósito;

 vulneráveis a mudanças do sistema sob teste.

2.2 Scripts Estruturados

A criação de scripts estruturados, assim como na programação estruturada, pressupõe a

utilização de instruções de controle, como seleções e interações. Além disso, um script

pode chamar outro script. Este mecanismo pode ser usado para dividir scripts grandes

em scripts menores e mais gerenciáveis, melhorando o reuso e a manutenibilidade dos

scripts.

Embora estes scripts sejam mais flexíveis, não estão isentos de dados “hard-

coded” e as chamadas entre eles trazem uma dependência que desfavorece o reuso dos

mesmos.

2.3 Scripts Compartilhados

Scripts compartilhados são aqueles utilizados por mais de um caso de teste. O uso desta

técnica visa identificar tarefas repetitivas que possam ser reutilizadas. O

compartilhamento destes scripts pode ser feito entre casos de teste de um mesmo

sistema ou de diferentes sistemas. Embora esta técnica aumente o reuso dos scripts, os

mesmos ainda podem apresentar dados “hard-coded” e chamadas que os tornam

dependentes.

SugarLoafPLoP´2007 Pattern Applications

294

2.4 Scripts Data-driven

Uma das técnicas amplamente utilizadas e essenciais para tornar a automação mais

reutilizável é a técnica Data-driven. Esta técnica propõe a independência entre o código

do script e a massa de dados utilizada durante o teste, evitando dados “hard-coded”.

Para aplicá-la, os dados de entrada deverão ser eliminados do corpo do script e inseri-

los em arquivos de dados independentes ou tabelas. A principal vantagem desta

independência entre o código dos scripts e os dados de teste é permitir que o script seja

reutilizado para vários conjuntos de dados de entrada. Além disso, novos testes podem

ser adicionados sem o conhecimento da linguagem de programação de script

correspondente.

A ilustração seguinte (Figura 1), adaptada de [2], apresenta um exemplo

simplificado do uso desta técnica.

Figura 1 – Exemplo Simplificado de Aplicação da Técnica Data-Driven

2.5 Scripts Keyword-driven

A técnica Keyword-driven propõe a modularização dos scripts, de maneira que cada

módulo seja representado por uma keyword e possua um script a ele associado. As

keywords podem representar eventos simples, como um clique num botão, a serem

aplicados na interface do sistema [12], ou eventos mais complexos como, por exemplo,

o processamento de uma opção do sistema que envolva navegar em várias telas.

Independente da complexidade do módulo, as keywords representam ações, de maior ou

menor complexidade, sobre a interface do sistema.

A figura 2, adaptada de [2], ilustra como esta técnica pode ser aplicada. No

exemplo, temos três casos de teste. Cada linha do caso de teste possui uma keyword e os

dados a ela associados. Para cada keyword, existe um script de suporte especifico, o

qual será responsável por realizar suas ações correspondentes.

Associando-se a técnica Keyword-driven à técnica Data-driven, podemos

garantir a independência tanto dos dados quanto das ações de teste [10].

SugarLoafPLoP´2007 Pattern Applications

295

Figura 2 – Exemplo Simplificado de Aplicação da Técnica Keyword-driven

É importante entender que o projeto de automação de testes deve ser tratado

como qualquer outro projeto de desenvolvimento de software. Portanto, a estruturação

dos testes automatizados pode ser significativamente aprimorada através do uso

apropriado de padrões. Na próxima seção, serão indicados os padrões utilizados na

formulação do framework proposto.

3. Utilização de Padrões

O framework FuncTest faz uso dos padrões Factory Method e DAO. Nesta seção,

descreveremos brevemente tais padrões para, posteriormente, evidenciarmos suas

aplicações no framework.

3.1 Padrão Factory Method

O padrão Factory Method [5], também conhecido como Virtual Constructor, é

especificado utilizando dois níveis: um nível abstrato e um nível concreto.

No nível abstrato, especifica-se a utilização de um construtor virtual, o Factory

Method. Assim, lidando, neste nível, com a construção virtual de objetos, ainda sem

antecipar a classe dos objetos que serão criados. No nível concreto, são criadas classes

que estendem as classes abstratas, implementando apropriadamente o construtor virtual.

No diagrama da Figura 3, tem-se, no nível abstrato, um objeto da classe abstrata

Creator para a criação de objetos da classe abstrata Product. Como ambas as classes são

abstratas, não é possível, neste nível, antecipar a classe concreta que será utilizada.

Especifica-se, então, o método abstrato FactoryMethod(), que prevê a devolução

do produto desejado como resultado. Este método funciona como um construtor virtual.

SugarLoafPLoP´2007 Pattern Applications

296

No nível concreto, tem-se as classes ConcreteProduct, subclasse da classe

Product, e a classe ConcreteCreator, subclasse da classe Creator.

A classe ConcreteCreator implementa o construtor virtual através do método

FactoryMethod(), que retorna um objeto da Classe ConcreteProduct.

Figura 3 - Diagrama de Classes do Padrão Factory Method [5]

3.2 Padrão DAO

O padrão DAO encapsula o modo de acesso aos dados, tornando a obtenção dos dados

transparente para as classes de negócio, e permite a utilização de fontes de dados

distintas. Este padrão elimina a necessidade de conhecimento prévio da fonte de dados e

dos tipos de drivers e interfaces utilizados para acesso à persistência.

No diagrama da Figura 4, é apresentado o relacionamento entre os participantes

deste padrão.

Figura 4 – Diagrama de Classes do Padrão DAO [19]

A classe BussinessObject é a classe de negócio que utilizará o padrão através de

chamada à classe DataAccessObject. A classe DataAccessObject implementa a forma

de acesso as dados, retornando um objeto da classe TransferObject. A classe

SugarLoafPLoP´2007 Pattern Applications

297

DataSource representa a forma de acesso que é encapsulada pela classe

DataAccessObject e, normalmente, refere-se a uma classe que implementa a interface

JDBC, no caso de um sistema J2EE.

4. O Framework FuncTest

O framework FuncTest está sendo utilizado dentro de um processo de desenvolvimento

aderente ao nível 2 do CMMI com o objetivo de melhorar a produtividade na

automatização de testes funcionais.

O FuncTest foi desenvolvido com a utilização da ferramenta Rational XDE

Tester [13, 15, 17], mas poderá ser adaptado a ferramentas similares que também gerem

código Java.

O Rational XDE Tester utiliza uma instância do Eclipse, um ambiente de

desenvolvimento integrado (IDE - Integrated Development Environment). Nela, cada

script é gravado ou programado como uma classe Java. A ferramenta dispõe de um

mapa de objetos que registra uma pontuação para cada objeto do browser, baseado em

suas características. Isto permite que a ferramenta identifique os objetos durante a

execução de um script.

O FuncTest permite que os scripts contenham somente ações de interação com

interface de usuário. Desta forma, outras responsabilidades, como chamada a outros

scripts, acesso a dados e controle de erros, são desvinculadas dos scripts, fortalecendo o

reuso e a manutenibilidade dos mesmos.

Nossa proposta prevê a criação de suítes de teste que contém um número

arbitrário de casos de teste. Cada caso de teste é composto por vários steps. Aplicando-

se a técnica Keyword-driven, associa-se cada passo do caso de teste a uma keyword.

Utilizando a arquitetura MVC, um controlador associa cada keyword ao script

que deverá ser executado.

A arquitetura do FuncTest (Figura 5) permite o controle independente de

chamada dos scripts. Desta forma, evitamos que um script chame outro script,

eliminando o acoplamento entre eles. A seqüência de execução dos scripts é dada

através da seqüência de steps do caso de teste.

Como propõe a técnica Data-driven, os dados de teste são mantidos

desvinculados dos scripts. Assim, eles poderão ser mais facilmente mantidos e

reutilizados. Cada step está associado aos dados de teste necessários á sua execução.

O framework permite que erros, os quais interromperiam a execução da suíte de

testes, possam ser manipulados por scripts especificamente construídos com esta

finalidade.

SugarLoafPLoP´2007 Pattern Applications

298

Figura 5 – Diagrama de Classes do Padrão DAO [19]

Descreveremos na seção 4.1 os pacotes do framework distribuídos segundo a

arquitetura MVC.

O framework é configurado através de um conjunto de arquivos XML. Assim, só

é necessário manipular código java na elaboração dos scripts. Na seção 4.2,

descreveremos os arquivos de configuração do framework.

O funcionamento do FuncTest será abordado na seção 4.3, através de um

diagrama de seqüência. Na seção 4.4, será realizada uma correspondência entre as

classes preconizadas nos padrões e aquelas implementadas no framework.

4.1 Pacotes do Framework

O framework é formado basicamente pelos pacotes Model, View e Controller, e um

conjunto de arquivos de configuração. O diagrama de classes a seguir (Figura 6) mostra

uma visão resumida dos referidos pacotes, contemplando as suas principais classes.

SugarLoafPLoP´2007 Pattern Applications

299

Figura 6 – Diagrama de Classes Resumido do FuncTest

O funcionamento do framework será detalhado adiante, onde poderá ser

esclarecido o papel de seus participantes.

4.2 Arquivos de Configuração

Os arquivos de configuração usados pelo FuncTest seguem o formato XML. São

eles:

 Suite.xml;

 NomeDoCasoDeTeste>.xml;

 Scripts.xml;

 Erros.xml;

 Banco.xml;

 DataSource.xml.

Os dois primeiros arquivos, Suite.xml e <NomeDoCasoDeTeste>.xml, persistem

os dados da camada de visão.

Os arquivos Scripts.xml e Erros.xml estão associados à camada de controle. O

arquivo Scripts.xml representa a tabela onde o Controlador associa cada step do caso de

SugarLoafPLoP´2007 Pattern Applications

300

teste ao script que será executado. O arquivo Erros.xml representa a tabela que registra

os scripts de tratamento de erro a serem chamados pelo Controlador de erros.

A camada de modelo é constituída por um conjunto de scripts e seus respectivos

dados.

Em cada step, está indicado seu respectivo datasource. O arquivo

Datasource.xml indica as informações associadas a cada datasource, incluindo o nome

do SGBD a ser utilizado. Para cada SGBD, o arquivo Banco.xml informa uma classe

correspondente no padrão DAO.

A estrutura de cada um desses arquivos será detalhada a seguir.

Suite.xml

É formado pelo conjunto de tags denominadas CasoTeste. Cada uma desta tags possuirá

duas seções:

Nome: representa o nome do caso de teste;

Arquivo: representa o nome do arquivo XML com a descrição do caso de teste.

<CasoTeste>

 <Nome>NomeDoCasoDeTeste1</Nome>

 <Arquivo>NomeDoCasoDeTeste.xml</Arquivo>

</CasoTeste>

<CasoTeste>

 <Nome>NomeDoCasoDeTeste2</Nome>

 <Arquivo>NomeDoCasoDeTeste.xml</Arquivo>

</CasoTeste>

Quadro 1 - Template para criação do arquivo Suite.xml

<NomeDoCasoDeTeste>.xml

Para cada caso de teste, deve ser criado um arquivo correspondente. Estes arquivos

serão formados pelo conjunto de tags denominadas step. Cada tag step possuirá quatro

elementos:

Nome: representa o nome do step;

DataSource: esta tag é opcional. Ela define uma fonte de dados (datasource) para os

dados de teste. É definida quando o step contemple a inclusão de dados na interface de

usuário;

Numero: esta tag é opcional. Corresponde ao número de vezes que o script será

executado. Deverão existir dados de teste distintos a serem utilizados para cada

execução do script.

SugarLoafPLoP´2007 Pattern Applications

301

<step>

 <Nome>Step01</Nome>

 <Tipo>Script</Tipo>

</step>

<step>

 <Nome>Step02</Nome>

 <DataSource>NomeDataSource00</DataSource>

 <Numero>000</Numero>

</step>

Quadro 2 - Template para criação dos arquivos <NomeDoCasoDeTeste>.xml

Scripts.xml

Contém uma tag indicando o script correspondente a cada step dos casos de teste.

<scripts>

 <Step01>Script01</Step01>

 <Step02>Script02</Step02>

</scripts>

Quadro 3 - Template para criação dos arquivos Scripts.xml

DataSource.xml

Para cada step cuja tag <Tipo> possua o valor “Datasource”, deverá ser descrita a

respectiva fonte de dados. O arquivo Datasource.xml é um repositório que contém as

descrições das diversas fontes de dados utilizadas. No template do Quadro 5 temos um

datasource denominado <NomeDataSource01>. As fontes de dados são descritas por

tags que representam a string de conexão, o nome do banco, a tabela de dados, o login e

a senha do datasource, o nome do driver, o número de colunas a ser selecionado na

tabela e o nome da coluna para a ordenação da consulta.

<DadosDeTeste>

 <NomeDataSource01>

 <Conexao>StringConexao</Conexao>

 <Tabela>NomeTabela</Tabela>

 <Login>Login</Login>

 <Driver>NomeDriver</Driver>

 <Senha>Senha</Senha>

 <Colunas>NumeroColunasTabela</Colunas>

 <Banco>Banco01</Banco>

 <Ordenado>ColunaParaOrdenacao</Ordenado>

 </NomeDataSource01>

</DadosDeTeste>

Quadro 4 - Template para criação dos arquivos DataSource.xml

SugarLoafPLoP´2007 Pattern Applications

302

Banco.xml

Para cada banco de dados, contém uma tag <NomeBanco> que indica a classe DAO

correspondente.

<bancos>

 <ORACLE>DAOOracle</ORACLE>

 <SQLSERVER>DAOSQLServer</SQLSERVER>

 <DB2>DAODB2</DB2>

 <ACESS>DAOAccess</ACESS>

 <INTERBASE>DAOInterbase</INTERBASE>

 <MYSQL>DAOMySQL</MYSQL>

 <SYBASE>DAOSybase</SYBASE>

</bancos>

Quadro 5 - Template para criação dos arquivos Banco.xml

Erros.xml

É formado por um conjunto de tags, cada uma associando uma Exceção ao script que

será executado para o tratamento correspondente.

<erros>

 <Excecao1>Nome.do.Script.que.trata.a.Excecao1 </Excecao1>

 <Excecao2>Nome.do.Script.que.trata.a.Excecao2 </Excecao2>

</erros>

Quadro 6 - Template para criação dos arquivos Erros.xml

A apropriada configuração dos arquivos XML permitirá a associação dos passos

dos casos de teste aos scripts a serem executados com os respectivos dos dados de teste,

se for o caso.

4.3 Uso dos Padrões na Automação de Testes Funcionais

Temos duas utilizações do Factory Method no framework FuncTest. Na primeira

utilização, temos uma Factory para criação de scripts. Neste caso, o framework delega à

Factory a decisão de qual script será criado. Na segunda utilização, temos uma Factory

para geração de um Objeto DAO. Objeto DAO é utilizado para recuperar os dados de

teste.

Os diagramas de classe a seguir (Figuras 7 e 8) evidenciam respectivamente os

dois usos do padrão Factory Method no framework.

SugarLoafPLoP´2007 Pattern Applications

303

Figura 7 – Uso do Padrão Factory Method para a criação de scripts de teste

Figura 8 – Uso do Padrão Factory Method para a criação dos objetos DAO

Na tabela 1, é apresentada uma correspondência entre os participantes do padrão

Factory Method e as classes do framework que implementam este padrão.

Participantes do Padrão Factory

Method

Participantes Correspondentes no FuncTest

Fábrica Script Fábrica DAO

Product RationalTestScript IDAO

ConcreteProduct ConcreteScript DAO

Creator AbstractFabricaScript AbstractFabricaDAO

ConcreteCreator FabricaScript FabricaDAO

Tabela 1 – Correspondência entre participantes do Factory Method e participantes do FuncTest

O diagrama de classes abaixo (Figura 9) evidencia o uso do padrão DAO no framework.

Figura 9 – Uso do Padrão DAO para selecionar a massa de teste

SugarLoafPLoP´2007 Pattern Applications

304

Na tabela 2, é apresentada uma correspondência entre os participantes do padrão

DAO e as participantes do framework que implementam este padrão.

Participantes do Padrão DAO Participantes Correspondentes no FuncTest

BusinessObject Controlador

DataAccessObject DAOBanco

DataSource DataSource

TransferObject Object[]

Tabela 2 – Correspondência entre participantes do DAO e participantes do FuncTest

4.4 Funcionamento do Framework

O funcionamento do FuncTest será apresentado com base no Diagrama de Seqüência a

seguir (Figura 10).

Figura 10 – Diagrama de Seqüência Simplificado do framework FuncTest

A classe Principal inicia o processo de automação requisitando à classe Util,

responsável por deserializar os arquivos XML, os casos de teste contidos no arquivo

Suite.xml. Em seguida, através de um loop, para cada caso de teste, a classe Principal

cria um objeto casoTeste, instância da classe CasoTeste, e solicita a sua execução ao

método executa() da classe Controlador, passando o objeto criado.

Para cada objeto casoTeste, a classe Controlador requisita à classe Util a leitura

o arquivo <NomeDoCasoDeTeste>.xml recuperando os steps do caso de teste

correspondente.

SugarLoafPLoP´2007 Pattern Applications

305

Em cada Step, se existir uma tag <DataSource>, serão recuperadas as

informações da fonte de dados armazenadas no arquivo Datasource.xml. Dentre estas

informações, consta, na tag <Banco>, o SGBD utilizado.

Em seguida, é solicitada à classe FabricaDAO a criação do objeto DAOBanco

apropriado ao SGBD informado. Então a classe Controlador, através do método

retornaDados(), solicita ao objeto DAOBanco os dados de teste a serem utilizados no

script.

Após recuperar os dados do banco, a classe Controlador solicita à classe

FabricaScript o script associado ao step corrente. A FabricaScript, então, retorna o

script informado no arquivo Scripts.xml. Portanto, existe um construtor virtual de

objetos DAO, e outro para a criação de objetos Script.

Caso tenha sido informado o número de execuções necessárias ao script, é feito

um loop que irá repetir a execução do script para os dados retornados no objeto DAO

correspondente.

Havendo falha durante a automação, a classe Controlador requisita o tratamento

do erro à classe ControladorErro, a qual escolherá o script informado no arquivo

Erros.xml.

Na seção 5 serão apresentados a conclusão e os trabalhos futuros.

5. Conclusão

Scripts gerados a partir de ferramentas Record and Playback normalmente são pouco

reutilizáveis e pouco manuteníveis. De forma a minorar este problema, frameworks que

utilizam as técnicas Data-driven e Keyword-driven têm sido propostos para a

automação de testes funcionais.

Neste artigo, foi apresentado um framework para a automação de testes

sistêmicos funcionais denominado FuncTest, que, além das técnicas Data-driven e

Keyword-driven, utiliza a arquitetura MVC e os padrões Factory Method e DAO para

aprimorar a manutenibilidade e a reusabilidade de projetos de automação. O uso de

padrões em frameworks para automação de testes funcionais conduzidos através de

ferramentas Record and Playback representou um enfoque inovador da utilização de

padrões.

A experiência de utilização do framework mostra que este é efetivo quando

automatizamos telas de entrada, consulta e saída de dados. Funcionalidades que

envolvem a execução de processos batch ou telas com regras de negócio complexas

nem sempre são passíveis ou viáveis de automação.

Nos casos onde a interação entre usuário e a tela da aplicação é facilmente

mapeada, o framework se torna uma ferramenta ágil e efetiva. Utilizando o framework

em testes de regressão, diversos erros já foram encontrados nas aplicações testadas. As

dificuldades encontradas na utilização do framework estão relacionadas ao processo de

configuração dos arquivos XML.

O uso do FuncTest num processo de desenvolvimento aderente ao nível 2

CMMI trouxe, dentre outros, os seguintes benefícios ao projeto de teste:

SugarLoafPLoP´2007 Pattern Applications

306

 desacoplamento, através da arquitetura MVC, entre passos do caso de caso de

teste e scripts a serem executados;

 independência entre scripts e dados de teste, segundo a técnica Data-driven;

 modularização dos scripts, através da técnica Keyword-driven, com o controle

independente de chamada de suas chamadas e conseqüente redução do

acoplamento entre eles;

 facilidade de inclusão de novos casos de teste nas suítes de teste;

 transparência no acesso aos dados e independência em relação ao SGBD

utilizado, obtidas através do padrão DAO;

 controle de erros centralizado;

 melhoria no tempo de execução de testes, uma vez que scripts de tratamento

de erro são invocados automaticamente reduzindo as paradas por exceções;

 configuração do framework através de um conjunto de arquivos XML,

tornando necessária a manipulação código java apenas na elaboração dos

scripts;

 melhoria da reusabilidade e da manutenibilidade de scripts;

 melhor legibilidade de código.

A utilização do framework exige, obviamente, as seguintes contrapartidas:

 curva de aprendizado para utilização do framework;

 custo para a configuração do framework.

Estão sendo realizadas medições que indiquem a produtividade obtida com a

utilização do framework.

Além da análise dos resultados obtidos com as medições, como trabalho futuro,

adaptaremos o framework para a utilização da técnica model-based testing [9, 14],

possibilitando a geração automática de casos de teste.

6. Referências Bibliográficas

[1] MYERS, Glenford J. The Art of Software Testing. New York: John Wiley & Sons,

Second Edition, 2004.

[2] FEWSTER, Mark, GRAHAM, Dorothy. Software Test Automation. Addison-

Wesley Professional; 1st edition, 1999.

[3] DUSTIN, Elfriede. Effective Software Testing: 50 Specific Ways to Improve Your

Testing. Addison-Wesley Professional; 1st edition, 2002.

SugarLoafPLoP´2007 Pattern Applications

307

[4] DUSTIN, Elfriede, RASHKA, Jeff, PAUL, John. Automated Software Testing:

Introduction, Management, and Performance. Addison-Wesley Professional; Bk&CD

Rom edition, 1999.

[5] GAMMA, E., HELM, R., JOHNSON, R., VLISSIDES, J. Design Patterns: Elements

of Reusable Object-Oriented Software, Addison-Wesley, 1995.

[6] BUSCHMANN, Frank, MEUNIER, Regine, ROHNERT, Hans, SOMMERLAD,

Peter, STAL, Michael. Pattern-Oriented Software Architecture: A System of

Patterns. New York: John Wiley & Sons, 1996.

[7] SCHMIDT, Douglas, STAL, Michael, ROHNERT, Hans, BUSCHMANN, Frank.

Pattern-Oriented Software Architecture: Patterns for Concurrent and Networked

Objects, Volume 2. October 2000.

[8] ALUR, Deepak, MALKS, Dan, CRUPI, John. Core J2EE Patterns: Best Practices

and Design Strategies, 2 Ed. California: Sun Microsystems, 2003.

[9] DALAL, S. R., JAIN, A., KARUNANITHI, N., BELLCORE, N., LEATON, J. M.,

LOTT, C. M., PATTON, G. C., HOROWITZ, B. M. Model-Based Testing in

Practice. International Conference on Software Engineering, 1999.

[10] FANTINATO, Marcelo, et al. AutoTest – Um Framework Reutilizável para a

Automação de Teste Funcional de Software. Simpósio Brasileiro de Qualidade de

Software, 2004.

[11] Framework automation with IBM Rational Functional Tester: Data-driven.

Disponível em http://www-128.ibm.com/developerworks/rational/library/05/

1108_kelly/.

[12] Framework automation with IBM Rational Functional Tester: Keyword-driven.

Disponível em http://www-128.ibm.com/developerworks/rational/library/06/

0523_kelly/.

[13] Data Driven Testing: How to Create a Data Driven Test with XDE Tester.

Disponível em http://www-128.ibm.com/developerworks/rational/library/384.html.

[14] I. K. El-Far and J. A. Whittaker, “Model-Based Software Testing”. Encyclopedia

of Software Engineering (edited by J. J. Marciniak). Wiley, 2001

[15] Testing Java and Web applications with IBM Rational XDE Tester. Disponível em

http://www-128.ibm.com/developerworks/rational/library/390.html.

[16] PRESSMAN, Roger. Engenharia de Software, 5ª Edição. McGraw-Hill, 2002.

[17] Testing IBM Workplace with IBM Rational XDE Tester. Disponível em

http://www-128.ibm.com/developerworks/lotus/library/xde-tester/.

[19] Core J2EE Patterns - Data Access Object. Disponível em

http://java.sun.com/blueprints/corej2eepatterns/Patterns/DataAccessObject.html.

[20] Kaner, C., “Improving the Maintainability of Automated Test Suites”, Proceedings

of the Thenth International Quality Week, 1997.

[21] Meszaros, Gerard. XUnit Test Patterns: Refactoring Test Code. Prentice Hall,

2007.

SugarLoafPLoP´2007 Pattern Applications

308

http://www-128.ibm.com/developerworks/rational/library/05/
http://www-128.ibm.com/developerworks/rational/library/06/%200523_kelly/
http://www-128.ibm.com/developerworks/rational/library/06/%200523_kelly/
http://www-128.ibm.com/developerworks/rational/library/384.html
http://www-128.ibm.com/developerworks/rational/library/390.html
http://www-128.ibm.com/developerworks/lotus/library/xde-tester/
http://java.sun.com/blueprints/corej2eepatterns/Patterns/DataAccessObject.html

	inicio
	corpo_sem_inicio
	WW
	blank
	ww
	1 - Padrões para apoio ao desenvolvimento de Políticas de Privacidade
	2 - The Error Handling Aspect Design Pattern
	3- Applying Scrum and Organizational Patterns to Multi-site Software Development
	4 - Um Padrão para Requisitos Duplicados
	5 - Analysis patterns for Customer Relationship Management (CRM)
	6 - The Parallel Layers Pattern
	7 - Paginador de Objetos
	8 - Padrão AutenticaConexão
	9 - Linguagem de Padroes para Avaliacao de Conhecimento em Objetos de Aprendizagem – Parte I
	10 - Patterns for Documenting Frameworks – Process
	11 - Modelo de Melhoria do Processo de Software para Micro e Pequenas Empresas baseado em Padrões – Discussão e Levantamento Preliminar
	12 - A secure analysis pattern for handling legal cases
	13 - State MVC Estendendo o padrõo MVC para uso no desenvolvimento de aplicacçõs para dispositivos móveis
	14 - Bulkloader

	PA
	blank
	pa
	1 - Colaboração entre padrões arquiteturais, de projeto e de interface na construção do framework Athena
	2 - Uma proposta de ambiente para apoiar a utilizacao de padroes de software e requisitos de teste no desenvolvimento de aplicacoes
	3 - A Process to Create Analysis Pattern Languages for Specific Domains
	4 - POREI Patterns-Oriented Requirements Elicitation Integrated – Proposta de um Metamodelo Orientado a Padrao para Integração do Processo de Eliciação de Requisitos
	5 - Aplicando Padroes de Projeto em Computacao Movel
	6 - Utilização de Padrões para Otimizar a Automação de Testes Funcionais de Software

