S$ponsors

_aed adracerE (oY

m Fandacao de Amparo 3 Ciéncis e
Teenologia do Estado de Permambuco C A PES

Supporting Organizations

P
Pe i
H|l|5|d{:.n{:t

Py dsdo Braztl do Computagi

l[?ﬁ
UNIVERSIDADE
DE ?ERNANBUCO

UECE

Universidade Estadual do Ceara

SugarLoafPLoP 2007 Organizing Committee

Conference Chair
Sérgio Soares (DSC/UPE, Brazil)

Program Committee Co-Chairs
Jerffeson Teixeira de Souza (UECE, Brazil)
Richard P. Gabriel (Sun Microsystems Inc., USA)

Program Committee
Claudia Werner (COPPE/ UFR]J, Brazil)
Eugene Wallingford (U. Northern Iowa, USA)
Fabio Kon (IME /USP, Brazil)
Jerffeson Teixeira de Souza (UECE, Brazil)
Jorge L. Ortega Arjona (UNAM, Mexico)
Joseph Yoder (U. Illinois / The Refactory, Inc, USA)
Linda Rising (Independent Consultant, USA)
Lise Hvatum (Schlumberger, USA)
Marcos Cordeiro d'Ornellas (UFSM, Brazil)
Neil Harrison (Utah Valley State College, USA)
Paulo Borba (CIn/ UFPE, Brazil)

Paulo Cesar Masiero (ICMC/ USP, Brazil)
Richard P. Gabriel (Sun Microsystems Inc., USA)
Robert Hanmer (Lucent Technologies, USA)
Rosana Braga (ICMC /USP, Brazil)
Rossana Andrade (DC /JUEFC, Brazil)
Sérgio Soares (DSC/ UPE, Brazil)

Local Organization
Emanoel Francisco Spésito Barreiros (DSC-UPE, Brazil)
Liliane Sheyla da Silva (DSC-UPE, Brazil)
Marcio Lopes Cornélio (DSC-UPE, Brazil)
Ricardo Massa Ferreira Lima (DSC-UPE, Brazil)
Sérgio Castelo Branco Soares (DSC-UPE, Brazil)
Thaysa Suely Beltrio Paiva (DSC-UPE, Brazil)
Maria Lencastre (DSC-UPE, Brazil)
Tiago Massoni (DSC-UPE, Brazil)

SugarLoafPLoP 2007 Organizing Committee

Shepherds
Alexandre Sztajnberg (UER], Brazil)

Ed Fernandez (CSE /FAU, USA)
Eugene Wallingford (U. Northern Iowa, USA)
Francisco José da Silva e Silva (DEINE /UFMA, Brazil)
Jerffeson Teixeira de Souza (UECE, Brazil)
Jorge L. Ortega Arjona (UNAM, Mexico)
Joseph Yoder (U. Illinois / The Refactory, Inc, USA)
Lincoln S. Rocha (DC/UEC, Brazil)
Linda Rising (Independent Consultant, USA)
Lise Hvatum (Schlumberger, USA)
Marcio Barros (UNIRIOTEC, Brazil)
Marcos Cordeiro d'Ornellas (UFSM, Brazil)
Maria Lencastre (DSC/ UPE, Brazil)

Neil Harrison (Utah Valley State College, USA)
Paulo Borba (ClIn /UFPE, Brazil)

Paulo Cesar Masiero (ICMC/ USP, Brazil)
Robert Hanmer (Lucent Technologies, USA)
Rohit Gheyi (CIn/ UFPE, Brazil)
Rosana Braga (ICMC /USP, Brazil)
Rossana Andrade (DC /JUEC, Brazil)

Rute Castro (DC/ UFC, Brazil)

Sérgio Soares (DSC/ UPE, Brazil)

Tiago Massoni (CIn/ UFPE, Brazil)

Table of Contents

I - Writers” Workshop

Padrdes para Apoio ao Desenvolvimento de Politicas de Privacidade 3
Luanna Lopes Lobato, Sérgio Donizetti Zorzo (Universidade Federal de Sao Carlos)

The Error Handling Aspect Design Pattern 22
Fernando Castor Filho (University of Sao Paulo)

Alessandro Garcia (Lancaster University)

Cecilia Mary F. Rubira (State University of Campinas)

Applying Scrum and Organizational Patterns to Multi-site Software 46
Development

Lucas Cordeiro (Universidade Federal do Amazonas)

Cassiano Becker (BenQ Eletroeletronica S.A)

Raimundo Barreto (Universidade Federal do Amazonas)

Um Padrao para Requisitos Duplicados 68
Ricardo Ramos (Universidade Federal de Pernambuco)

Jodo Aratjo, Ana Moreira (Universidade Nova de Lisboa)

Jaelson Castro, Fernanda Alencar (Universidade Federal de Pernambuco)

Rosangela Penteado (Universidade Federal de Sao Carlos)

Analysis Patterns for Customer Relationship Management (CRM) 80
Mei Fullerton, Eduardo B. Fernandez (Florida Atlantic University)

The Parallel Layers Pattern - A Functional Parallelism Architectural Pattern for 91
Parallel Programming
Jorge L. Ortega-Arjona (Universidad Nacional Auténoma de México)

Paginador de Objetos 106
Wellington Pinheiro, Paulo Fernando, Fabio Kon (Universidade Sao Paulo)

Padrao AutenticaConexdo
Marcelo Antonio Albuquerque e Souza (Téxtil Unido S/ A)
Jerffeson Teixeira de Souza (Universidade Estadual do Ceard)

118

Linguagem de Padrdes para Avaliacao de Conhecimento em Objetos de

Aprendizagem - Parte I

Ingrid T. Monteiro, Clayson Sandro, Cidcley T. de Souza (Centro Federal de
Educacao Tecnoldgica do Ceara)

124

Patterns for Documenting Frameworks - Process
Ademar Aguiar, Gabriel David (Universidade do Porto)

150

Modelo de Melhoria do Processo de Software para Micro e Pequenas Empresas

baseado em Padroes - Discussio e Levantamento Preliminar

Tarciane de Castro Andrade, Fabricio Gomes de Freitas, Jerffeson Teixeira de Souza
(Universidade Estadual do Ceara)

162

A Secure Analysis Pattern for Handling Legal Cases

Eduardo B. Fernandez (Florida Atlantic University)

David L. la Red M. (Universidad Nacional del Nordeste)

Jorge Forneron (Universidad Nacional de Pilar)

Valeria E. Uribe, Gisela Rodriguez G. (Universidad Nacional del Nordeste)

178

State MVC: Estendendo o Padrao MVC para Uso no Desenvolvimento de

Aplica¢oes para Dispositivos Mdveis

Tiago Barros, Mauro Silva e Emerson Espinola (C.E.S.A.R - Centro de Estudos e
Sistemas Avangados do Recife)

188

BulkLoader Pattern

Marcio Santos (DATASUS)

Uira Kulesza, Carlos José Pereira de Lucena (Pontificia Universidade Catoélica do Rio
de Janeiro)

205

II - Pattern Applications

Colaboracao entre Padrdes Arquiteturais, de Projeto e de Interface na Construcao 223
do Framework Athena
Gabirielle D. Freitas, Luciana V. Lourega, Marcos C. d’Ornellas (Universidade

Federal de Santa Maria)
Uma Proposta de Ambiente para Apoiar a Utilizacao de Padrdes de Software e 235
Requisitos de Teste no Desenvolvimento de Aplicacdes
Alessandra Chan (Universidade de Sao Paulo)
Maria I. Cagnin (Centro Universitario Euripides de Marilia)
José C. Maldonado, Rosana T. V. Braga (Universidade de Sao Paulo)
A Process to Create Analysis Pattern Languages for Specific Domains 251
Rosana T. V. Braga (Universidade de Sdo Paulo)
Reginaldo Ré (Universidade Tecnolégica Federal do Parand)
Paulo Cesar Masiero (Universidade de Sao Paulo)
POREI: Patterns-Oriented Requirements Elicitation Integrated - Proposta deum 266
Metamodelo Orientado a Padrao para Integracao do Processo de Eliciacao de
Requisitos
Kleber Rocha de Oliveira (Faculdades Integradas de Bauru, Universidade de Sao

Paulo)
Mauro de Mesquita Spinola (Universidade de Sao Paulo)
Aplicando Padroes de Projeto em Computacio Movel 278
Mauro Strelow Storch, André Rauber Du Bois, Adenauer Correa Yamin

(Universidade Catolica de Pelotas)

Utilizacao de Padrdes para Otimizar a Automacao de Testes Funcionais de 291

Software

Rafael Braga de Oliveira (Universidade de Fortaleza, Servico Federal de
Processamento de Dados)

Francisco Nauber Bernardo Goéis (Servigo Federal de Processamento de Dados)

Jerffeson Teixeira de Souza (Universidade Estadual do Cear4)

Pedro Porfirio Muniz Farias (Universidade de Fortaleza)

Foreword

Once again, pattern community members have got together to discuss and share pattern
experiences. This year, as in 2003, the stage was the beautiful Porto de Galinhas in Pernambuco,
Brazil. During unforgettable four days, participants had the chance to learn and teach patterns,
and about them.

In this SugarLoafPLoP 2007 edition, conference participants had the chance to hear from several
pattern experts in tutorials and invited talks. On the first morning of the event, we had an
inspiring 4-hour lesson on how to write patterns, lead by Joe Yoder. With his undeniable
experience as a pattern writer, Joe showed us “The Straight Scoop” on writing good patterns.
During the evening of that day, Gibeon Aquino entertained us and taught us about patterns
and software metrics. In the next evening, we heard from Richard Gabriel about Ultra-Large-
Scale Systems in the tutorial “Design Beyond Human Abilities”. Finally, in the final morning of
the event, Rosana Braga presented and discussed OO Analysis and Design Patterns.

This year, we had a record number of participants and submissions. In total, 46 pattern
enthusiastic old and new members of our pattern community have attended
SugarLoafPLoP"2007. For the number of submitted paper, we had 38 of them, where 19 were
sent to the Writers” Workshop track, 13 to Pattern Applications and 6 to the Writing Patterns
track.

In these proceedings, we share with the world a little of our SugarLoafPLoP 2007 experience.
Here, you will find 14 papers describing new patterns (the ones discussed during the Writers”
Workshop sessions) and 6 discussing Pattern Applications. As in previous years, the papers
dealt with a great variety of topics, including: Aspect and OO-based Software Development;
Requirement, Analysis, Design and Architectural Patterns; Organizational Patterns; Educational
Patterns; Patterns for Mobile Development; Documentation Patterns; Patterns for Software
Testing and Quality Assurance; and more.

Several persons deserve our acknowledgment for making SugarLoafPLoP"2007 such an
enjoyable conference. Among them, we emphasize Sérgio Soares, the conference Chair. He

made it seem really easy to organize an event of this magnitude. Thanks Sérgio for the flawless
organization.

That is it !! Another SugarLoafPLoP has passed. But don’t be sad, others will came. 8-)

Thanks, Gracias, Obrigado!

Jerffeson Teixeira de Souza and Richard P. Gabriel
SugarLoafPLoP 2007 Program Committee Chairs

SugarLoafPLoP 2007

Writers’” Workshop

SugarLoafPLoP 2007 Proceedings Writers” Workshop

Padrdes para apoio ao desenvolvimento de Politicas de
Privacidade

Luanna Lopes Lobato, Sérgio Donizetti Zorzo

Departamento de Computacdo — Universidade Federal de S&o Carlos (UFSCar)
Caixa Postal 676 — CEP: 13565-905 — Séo Carlos — SP- Brasil

{luanna_lobato,zorzo}@dc.ufscar.br

Abstract. This paper presents patterns for privacy policies to be used in web
sites, mostly by e-commerce and e-business sites. In those transactions,
because of their financial aspects, the users need to provide personal
information, and expect integrity, security, and privacy. The patterns are
derived from a study of the 33 most accessed e-commerce sites in Brazil,
where it was possible to observe that they do not use a systematic approach to
develop policies which are clear and friendly and with relevant contents.

Resumo. Este artigo apresenta uma proposta de padronizagdo para as
Politicas de Privacidade utilizadas pelos sites, principalmente pelos sites de e-
commerce e e-business. Nessas transagdes os usuarios disponibilizam suas
informacdes pessoais, desejando-se a sua integridade, seguranca e
privacidade, pois ha valores financeiros em compras realizadas na Internet.
Propde-se essa padronizacdo a partir da realizacdo de um estudo de caso,
onde foram analisados 33 dos sites mais acessados pelos usuarios no
comércio eletronico brasileiro, em que foi possivel observar que ndo sao
utilizados parametros para o desenvolvimento de politicas claras, amigaveis e
de conteddos relevantes.

1. Introducéo

A partir do Estudo de Caso (Lobato e Zorzo, 2007) de avaliagdo por inspe¢do em 33
sites de comeércio eletrbnico brasileiro mais acessados, de acordo com uma pesquisa
divulgada pela Info Exame’ e e-bit?, observou-se que a maioria desses ndo utiliza uma
Politica de Privacidade com regras e deveres claros aos usuarios, e, quando as fazem,
ndo seguem uma padronizacao.

O Estudo de Caso analisa, por inspecdo manual, se alguns itens considerados
relevantes, eram apresentados pelos sites, buscando equacionar as caracteristicas de
privacidade e personalizacdo contempladas. Para cada site avaliado foi registrado os
itens contemplados, acrescidos de observacdes particularizadas e sumarizadas em uma
tabela. Ao final de toda a analise foi sumarizado o que os sites apresentavam como
vantagens e desvantagens aos usuarios, mostrando a porcentagem dos itens
contemplados, ndo contemplados e os itens que ndo puderam ser aplicaveis nos sites por
motivos de verificagdo da inspecao manual.

! http://www.infoexame.com

2 http://www.e-bit.com

SugarLoafPLoP 2007 Proceedings Writers” Workshop

Esses itens sdo as caracteristicas relevantes que devem ser contempladas nas
Politicas de Privacidade, de forma que os usuarios se sintam esclarecidos quanto ao que
os sites disponibilizam como beneficios e problemas em sua utilizag&o.

As politicas foram um dos tépicos de maior dificuldade de analise durante a
realizacdo do Estudo de Caso, pois essas sdo apresentadas das mais diferentes formas.
No entanto, essas sdo, em muitas das vezes, as mais relevantes para obtencdo de
informacdes referentes a préatica seguida pelos sites (LOBATO e ZORZO, 2007).

Uma pesquisa publicada por Turow (2003) mostra alguns dados sobre a relacédo
dos usuarios com as Politicas de Privacidade, ressaltando a insatisfacdo, a falta de
compreensdo e a necessidade de informacdo dos mesmos quanto as politicas
disponibilizadas.

Ja um trabalho realizado por uma equipe de pesquisadores da North Carolina
State University identificou que dentre 40 Politicas de Privacidade examinadas, 12
requeriam um nivel de escolaridade superior para seu entendimento e 7 requeriam 0
equivalente ao nivel de pos-graduacdo (ANTON et al., 2004).

Com base nesses estudos, ressalta-se que tais politicas devem informar aos
usuarios sobre o que ¢ feito para garantia da privacidade dos mesmos e quais métodos
sdo utilizados para prover personalizacdo, bem como, tratar dos assuntos referentes a
manipulacdo dos dados coletados, utilizagdo de entidades certificadoras,
armazenamento de informagdes na maquina do usuario, dentre outras questdes que
abordam a privacidade, seguranga e personalizagéo.

Preocupados com isso, propde-se neste artigo uma padronizacdo para as
Politicas de Privacidade a serem disponibilizadas pelos sites, de modo a tentar
aproxima-las ao entendimento do usuario e englobar todos 0s pontos interessantes a
serem ressaltados em uma politica escrita de maneira objetiva e clara.

Para a padronizacdo foram utilizados padrdes (patterns), que, de acordo com
Borches (2001), podem ser entendidos como uma forma de expressar conhecimento por
meio de textos e esbogos em um formato estruturado, cuja solucéo € de sucesso ja que
0s mesmos podem ser utilizados e aplicados a outros problemas, 0os quais ocorrem
frequentemente em um determinado contexto. Alexander, Ishikawa e Silverstein (1977)
mencionam que padrdo é uma solucdo de sucesso para um problema recorrente em um
determinado contexto. J& Gamma et al. (1995) diz que os padrdes de projeto capturam
solucBes que foram desenvolvidas e evoluidas ao longo do tempo. Coplien e Harrison
(2004) apresentam o padrdo como uma configuracdo estrutural recorrente que resolve
um problema em um determinado contexto.

Os padrdes sdo utilizados em varias abordagens e definidos por diferentes
autores em suas respectivas areas de atuacdo, no entanto todas as definicdes mostram
um principal objetivo para os padrdes: o seu reuso. Os padrdes de Politica de
Privacidade definidos neste artigo abordam principalmente assuntos referentes a
seguranca, privacidade e coleta de dados dos usuarios.

A privacidade pode ser entendida como a habilidade de um individuo ou grupo
manter suas informacOes pessoais longe do conhecimento publico ou como a
capacidade de controlar o fluxo de informagGes que pode ser revelada (HAFI1Z, 2006).

Seja no mundo eletronico quanto no mundo real, a privacidade é algo que se
almeja, de forma que as acOes possam ser efetivadas sem que alguém esteja

SugarLoafPLoP 2007 Proceedings Writers” Workshop

monitorando-as. Os individuos devem poder viver sem serem perturbados e 0s usuarios
em interacdo com a web navegar sem serem identificados.

A privacidade pessoal on-line tem se tornado uma preocupacdo crescente
durante a navegacdo na web. Organizacbes comerciais e governamentais estdo sendo
convocadas a implementar controles de seguranca e politicas que déem mais seguranga
ao usuario quanto a sua privacidade (ROMANOSKY et al., 2006).

A medida que os usudrios utilizam servicos na rede, deixam rastros que podem
ser utilizados pelas empresas que dispdem de tecnologias suficientes para registrar as
paginas visitadas, bem como o que foi feito em cada uma durante a visita, criando-se
perfis de usuarios (LOBATO e ZORZO, 2006). Assim, da proxima vez gque 0 usuario
visitar o site, serdo apresentados promocOes e recomendagfes de acordo com 0 Seu
perfil.

Na web, o fato de muitas pessoas ndo saberem ao certo para que e o quanto de
seus dados sdo coletados representa um grande risco a privacidade dos usuarios que
utilizam seus servicos (SPIEKERMANN, GROSSKLAGS e BERENDT, 2001).

Assim, sdo criadas e descritas Politicas de Privacidade, onde sdo dadas
informacdes relevantes aos usuarios. Uma das preocupacgdes sobre privacidade € o nivel
de consciéncia do usuério, de forma que a politica do site deve ser criada de maneira
objetiva e bem definida, trazendo esclarecimento aos usuarios e tornando-o0s conscientes
sobre os problemas providos da navegacao na web.

Para definicdo dos padrOes, utilizados para embasar o desenvolvimento das
Politicas de Privacidade disponibilizadas pelos sites, seguiu-se alguns principios
apresentados por Sadicoff, Larrondo-Petrie e Fernandez (2005). De acordo com esses
autores, existem algumas forgas que podem ser utilizadas de modo a tornar 0s usuarios
conscientes sobre as politicas seguidas pelos sites para a coleta e utilizacdo de seus
dados, antes dos usuarios divulgarem suas informac6es pessoais, sendo elas:

e As Politicas de Privacidade devem ser exibidas aos usuarios de maneira
que sejam claramente entendidas;

e Os usuarios devem ser capazes de decidir quais de suas informacoes
poderdo ser coletadas e utilizadas pelos sites;

e Pode haver modificagBes nas Politicas de Privacidade, e dessa forma, os
usuarios devem ser capazes de visualiza-las;

A seguir sdo apresentadas as diretivas para embasamento e os padrGes de
Politica de Privacidade propostos, seguindo o0 modelo de estruturacdo para definicao dos
Padr@es e conceitos de Meszaros e Doble (1996), Gamma et al. (1995) e Buschmann et
al. (1996). Séo tambem mostrados os Padrdes desenvolvidos, bem como a definigdo de
cada um deles e ao final, uma aplicacdo pratica desses em uma Politica de Privacidade
tomada como exemplo.

2. Diretivas para Embasamento aos Padrdes

Além da utilizacdo das caracteristicas observadas no Estudo de Caso apresentado por
Lobato e Zorzo (2007) para a definicdo e validacdo da relevancia dos padroes, tambem
foram considerados alguns principios impostos por duas organizagdes. Esses estudos
foram seguidos de forma a definir um escopo de uma solugédo de sucesso que deva ser
seguido para a criacdo das Politicas de Privacidade, facilitando o reuso para os demais
projetistas e facil entendimento aos usuarios.

SugarLoafPLoP 2007 Proceedings Writers” Workshop

Existem duas organizacbes que destacam-se no cenario internacional, com
objetivo de regularizar a protecdo de privacidade dos usuarios da web: Organization for
Economic Co-operation and Development® (OECD) e Federal Trade Commission®
(FTC), descritas a seguir.

A OECD trata da protecdo de privacidade dos usudrios, disponibilizando e
retratando documentos especificos para sua seguranca e a privacidade. Os principios
estabelecidos pela OECD especificam de que forma as informagdes pessoais dos
usudrios devem ser protegidas, sendo alguns desses apresentados a seguir:

e Principio do Limite de Coleta: a coleta de dados pessoais deve ser
limitada, e quando essa ocorrer, deve ser feita atraves de meios legais;

e Principio da Qualidade dos Dados: os dados pessoais devem ser
auténticos, completos e relevantes para 0s objetivos onde serdo
utilizados;

e Principio da Especificacdo de Objetivo: o objetivo da coleta deve ser
especificado antes da efetivacdo da acdo e o uso dos dados devem ser
restritos aos objetivos impostos e declarados nas politicas;

e Principio da Limitacdo de Uso: os dados coletados ndo podem ser
divulgados ou utilizados para outros propdsitos além dos especificados,
exceto por uma autoridade da lei ou com o consentimento do proprietario
dos dados;

e Principio da Seguranca: devem ser utilizados mecanismos de seguranca
razoaveis para garantir a seguranca dos dados;

e Principio da Transparéncia: deve ser criada uma politica geral que trate
da divulgacdo sobre as praticas e politicas com respeito a dados pessoais;

e Principio da Participacdo Individual: o dono dos dados deve ter acesso a
seus dados, pesquisando, visualizando e modificando-os caso julgue
necessario;

e Principio da Responsabilidade: um gerenciador deve ser responsavel por
cumprir, colocando em pratica todos os itens acima.

A FTC é uma instituicdo que tem por objetivo cuidar da privacidade e da vida
econbmica dos cidaddos, auxiliando no reforco de leis a favor da seguranca dos dados
pessoais, vasculhando criminosos de forma a evitar fraudes em bancos e também
possibilitando aos consumidores tomarem decisGes de compras, possibilitando assim
que estejam esses melhores informados. Sob o ato da FTC, a comisséo zela contra a
deslealdade e a decepcdo por reforcar promessas de privacidade de companhias sobre
como elas coletam, usam e asseguram informagdes pessoais dos consumidores
(PITOFSKY et al., 2000).

Pela FTC sdo definidos alguns principios de Préticas Justas de Privacidade,
baseados e desenvolvidos sob uma legislacdo para as praticas recomendadas de
privacidade que protegem as informag0es pessoais de serem coletadas e mantidas pelo

% http://www.oecd.org

* http://www.ftc.gov

SugarLoafPLoP 2007 Proceedings Writers” Workshop

governo (PITOFSKY et al., 2000). Esses principios sintetizam os 8 principios
apresentados pela OECD, e incluem:

¢ Notificacdo: os sites devem manter os usuarios informados sobre a coleta
de seus dados;

e Escolha: devem ser fornecidas aos usuarios opcOes para escolher como
seus dados pessoais podem ser utilizados;

e Acesso: 0s usuarios devem ter acessos as suas informacdes pessoais
coletadas, podendo atualiza-las, corrigir e apagar caso seja necessario;

e Seguranca: os sites devem ser responsaveis e proteger com seguranca as
informagdes coletadas sobre 0s usuarios.

E possivel observar que as propostas da OECD e da FTC se baseiam na idéia de
gue a privacidade estd relacionada ao consentimento dos usuarios, sobre o que esta
sendo feito com seus dados, e ambas visam trazer mais seguranca sobre as formas de
uso de dados: coleta, processamento, manutencdo, responsabilidade, divulgacdo e
controle.

A seguir sdo apresentados os padrBes para Politicas de Privacidade definidos,
seguidos dos objetivos de seu desenvolvimento.

3. Colecao de Padrdes Definidos

A medida que cresce o uso da tecnologia também aumenta a preocupacio em relagao as
novas formas de comércio eletrbnico e a comunicacdo eletrénica, por isso, € preciso
construir protecBes adequadas que assegurem interagdes confidveis aos usuarios.

Para isso, foram definidos alguns itens que as politicas devem apresentar,
chamados de padrdes, de forma a aumentar a seguranca oferecida ao usuario e 0
conforto na utilizacdo dos sites.

Nessa secdo sdo apresentados os padrbes definidos para Politica de Privacidade,
sendo descritos 0 porqué desses, 0s problemas observados e a motivacdo encontrada
para sua definicao.

O formato e estilo de escrita dos padrdes foram baseados na “Linguagem de
Padrdes para escrita de Padrdes” de Meszaros e Doble (1996), onde é especificado que
0s padrBes sdao mais faceis de compreender e aplicar quando alguns elementos estdo
presentes no formato utilizado, como:

e Nome (numeracdo): permite uma referéncia rapida e comunica a idéia
principal do padrdo. Pode-se utilizar uma numeracdo para facilitar a
localizagédo do padréo;

e Contexto: descreve o problema encontrado para se ter a necessidade de
padronizacao e a solucdo implantada;

e Problema: apresenta a problematica a qual o padréo se aplica;
e Forgas: informa os aspectos que influenciam a utilizacdo do padrao;
e Solucéo: apresenta a mensagem para a solucéo do problema;

e Consequéncias: aborda os resultados decorrentes da aplicacdo da
solucéo;

SugarLoafPLoP 2007 Proceedings

e Usos Conhecidos: mostra exemplos bem reconhecidos da aplicagéo
prética do padro.

Neste trabalho, além dos elementos base para a definicdo dos padrdes, também
utilizou-se o elemento Padrdes Relacionados, o qual foi considerado importante para o
entendimento dos padrdes formalizados. Esses devem ser nomes de outros padrdes que
tenham alguma relagé@o de contexto com os padrdes propostos.

Com a utilizacdo desses padrdes a satisfacdo dos usuarios tende a ser maior, ja
que terdo informacdes bem definidas e claras nas Politicas de Privacidade sobre os
servigos oferecidos pelo site e sua seguranca.

Os padrdes definidos neste artigo sdo organizados hierarquicamente em uma
colecdo, formando a base para uma futura formalizacdo em linguagem de padrdes. Sdo
apresentados agrupados por niveis de abstragdo, do nivel 1 ao 4, e retratados através de
nos, no modo por largura na estrutura de arvore e analisados da esquerda para direita,
seguindo a numeracao atribuida a cada noé.

Cada n6 apresenta uma particularidade especial, sendo que apenas 0 conjunto
desses dao sentido aos padrdes apresentados neste artigo. A partir da raiz, foi utilizada
uma distancia de um no para a apresentacdo dos padrdes relacionados, como pode ser
visualizado na Figura 1.

Nivel 1 1 — Definir uma
Politica de Privacidade
) 2 - Utilizar a 3 - Colocar link da
Nivel 2 definigao “Politica ,| Poliicade
de Privacidade” Privacidade no fim
da pagina
Nivel 3| 4 - Contemplar 5 - Possuir 6 - Possuir 7 — Informar sobre 8 - Permitir
Assuntos sobre a Mecanismo Entidade a Finalidade da | | Remover E-mails
Privacidade de Notificagdo Certificadora Coleta de Dados de Listas
9 - Informar
Nivel 4 sobre Alteragdes
na Politica

Figura 1. Definicdo dos Padr@es para Politica de Privacidade

Descricdo dos Padrdes Propostos

A seguir sdo apresentados os padrdes, seguindo a numeracdo atribuida na Figura 1. A
numeracdo evidencia a relevancia do padrdo dentro do conjunto de padrBes, sendo esse
conjunto a linguagem de padrdes desenvolvida, seguido das definigdes, justificativas e
caracteristicas de cada padrao definido.

E recomendado utilizar os padrdes em conjunto, observando também o uso com
outros padrbes ja desenvolvidos para a web, de forma a criar uma arquitetura de
solucBes eficientes e testadas, j& que os padrbes representam a solu¢do para um
problema recorrente.

No detalhamento dos padrdes sdo mostrados alguns exemplos de sua aplicacédo
nas Politicas de Privacidade e no capitulo 4 do artigo € apresentado um exemplo de uma
Politica de Privacidade desenvolvida, onde todos os padrbes sao empregados.

Writers” Workshop

SugarLoafPLoP 2007 Proceedings Writers” Workshop

1 - Nome: Definir uma Politica de Privacidade (nivel 1)

O padrdo “Definir uma Politica de Privacidade” é considerado o principal dentro
do conjunto de padrdes propostos, pois deve necessariamente existir para que os demais
possam estar disponiveis, dividindo um problema genérico em um grupo de sub-
problemas solucionados pelos padrdes que o completam.

Contexto: Atualmente a web juntamente com mecanismos eletronicos de
comunicacdo estdo sendo amplamente utilizados pelos mais diferentes perfis de
usuarios. Com isso a seguranca dos usuarios se torna cada vez mais necessaria, ja que
dados pessoais podem ser requisitados para muitas operagdes, como por exemplo, no
comeércio eletrdnico onde € necessaria a coleta de dados para efetivacdo de negocios.

Problema: Nem todos os sites disponibilizam uma Politica de Privacidade,
guanto mais uma politica de facil entendimento aos usuarios e que aborde assuntos
relevantes.

Além da coleta de informacdes pessoais feitas durante a navegacdo dos usuarios
na web, podem ser feitos rastreamento de navegacdo e outras acOes para saber as
preferéncias dos usuérios e identifica-los. Isso pode levar a uma invasdo na privacidade
do usuério e conseqliente diminuicdo de seguranca, ja que 0 usudrio, em muitas das
vezes nao tem consciéncia do que possa estar acontecendo.

Dessa forma essa coleta vem provocando inseguranga aos USUArios que
necessitam saber claramente como sdo armazenadas e distribuidas as suas informacdes
que sdo coletadas durante sua navegacao pelo site.

Forcas: Sem a disponibilizacdo de uma Politica de Privacidade os usuarios
podem sentir-se inseguros em relacdo as praticas feitas pelo site, as regras seguidas e
principalmente em relagdo a manipulacdo de seus dados pessoais coletados durante a
navegacao, o que pode diminuir a utilizacdo de servigos web por esses USUarios.

Além disso, devem ser considerados aspectos legais, pois sem a definicdo da
Politica de Privacidade os sites podem estar sujeitos a processos juridicos. Como por
exemplo, se a privacidade do usuario for violada sem seu consentimento e sem qualquer
aviso prévio com notificacdes, esse pode recorrer a seus direitos constitucionais.

Solucéo: E necesséario que os sites definam suas Politicas de Privacidade de
forma clara e explicativa, informando aos usuérios sobre as praticas e as normas
seguidas, o que é feito com os dados coletados, qual a seguranca oferecida, quais
servigos sdo disponibilizados.

As politicas sdo uma forma rapida de comunicacdo entre o site e 0 USuario
evitando mensagens direcionadas e especificas, por isso deve ser criada com vistas a
facilitar o entendimento dos usuérios e ter relevancia nos assuntos abordados. Essas
devem ser criadas de acordo com o0s principios estabelecidos pela OECD e FTC,
principalmente utilizando os principios da Transparéncia, da Responsabilidade,
Notificagdo e Seguranca.

No desenvolvimento dessas politicas deve haver preocupacdo com: i)
usabilidade, para facilitar a utilizagdo de informac0es e servicos; ii) acessibilidade, para
permitir que usuarios com deficiéncia possam também entendé-la; iii) questdes que
tratem sobre a privacidade dos usuérios, de modo a trazer maior seguranca a eles; iv)

SugarLoafPLoP 2007 Proceedings Writers” Workshop

informacdes sobre medidas seguidas para prover a personalizacéo, se essa existir, com
vistas a facilitar e minimizar o tempo de buscas dos usuarios; v) informar sobre a Gltima
atualizacdo da politica, de forma que os usuarios possam se manter informados caso
alguma mudanca venha ocorrer, dentre outras informacdes relevantes ao conhecimento
dos usuarios.

Consequéncias: Os usuarios se tornam mais confiantes na utilizacdo dos sites e
principalmente em relagéo aos servicos que demandam, por exemplo, de coleta de dados
pessoais, tendo assim menor receio e maior seguranca durante a navegacao pelo site.

Além da vantagem oferecida aos usuarios, a Politica de Privacidade é de grande
relevancia para a empresa, que oferecendo maior seguranca ganha mais usuarios e ainda
pode até mesmo facilitar sua organizagdo interna em relacdo aos aspectos que
demandam funcionalidades referentes a seguranca, como a coleta de informacGes.

Usos Conhecidos: As empresas Extra e Comprafacil disponibilizam em seus
sites Politicas de Privacidade, as quais contemplam assuntos sobre a privacidade e
seguranga dos usudrios durante a navegacao, sendo essas politicas claras e objetivas.

Padrdes Relacionados: 2 - Utilizar a Definicdo “Politica de Privacidade”; 3 -
Colocar Politica de Privacidade no fim da pagina.

2 - Nome: Utilizar a Defini¢éo “Politica de Privacidade” (nivel 2)

Contexto: As palavras “Politica de Privacidade” devem ser utilizadas para a
referéncia feita pelos sites as suas politicas, de modo a facilitar a sua busca pelo usuario.

Aplica-se ao ambiente web na arquitetura de informacéo dos sites para construir
uma navegacdo adequada aos usuarios e uma nomenclatura bem definida para a
referéncia a Politica de Privacidade.

Problema: Muitos usuarios podem acabar desistindo de verificar a Politica de
Privacidade do site pois a busca pela referéncia a politica se torna cansativa, ja que nem
se sabe qual a nomenclatura utilizada para referencia-la, acarretando na insatisfacdo do
mesmao.

Alguns dos sites avaliados no Estudo de Caso, apresentavam palavras diferentes
para identificar a Politica de Privacidade, como: Politica de Seguranca, Seguranga,
Compre Seguro, dentre outras (LOBATO e ZORZO, 2007), o que dificulta
substancialmente a localizag&o por essas no site.

Forcas: Muitos sites apresentam palavras diferentes para identificar a Politica de
Privacidade, ndo se preocupando em disponibilizar nomes sugestivos e de facil
entendimento pelo usuario.

Em relacdo a aspectos legais, diferentes definigdes para Politica de Privacidade
podem ser vistas com o propoésito de tornar a busca pelas politicas mais dificil.

Solucd@o: Ter um unico nome para referenciar o texto referente as praticas
seguidas pelos sites, as regras impostas, aos servigos e a seguranca oferecida aos
usudrios. Nesse padrdo é sugerido que sempre seja referenciada a politica dos sites
através da nomenclatura “Politica de Privacidade”.

10

SugarLoafPLoP 2007 Proceedings Writers” Workshop

Consequéncias: Facilita a busca do usuério pela Politica de Privacidade do site,
acarretando em um aumento de sua satisfacdo durante a navegacao, ja que 0S Servicos
sdo dispostos de forma clara e faceis de serem encontrados.

Usos Conhecidos: O site da empresa Gol Linhas Aéreas utiliza a expressao
“Politica de Privacidade” para referenciar sua Politica de Privacidade (LOBATO e
ZORZO0, 2007).

Padrdes Relacionados: 1 - Definir uma Politica de Privacidade; 3 - Colocar
Politica de Privacidade no fim da pagina; 4 - Contemplar Assuntos sobre a Privacidade;
5 - Informar sobre Alteracbes na Politica; 6 - Possuir Entidade Certificadora; 7 -
Informar sobre a Finalidade da Coleta de Dados; 8 - Permitir Remover E-mails de
Listas; Privacy-Aware Network Client Pattern —descrevem um mecanismo para
implementar este padrdo em sites web (SADICOFF, M.; LARRONDO-PETRIE, M. M.
E FERNANDEZ, E. B, 2005).

3 - Nome: Colocar link da Politica de Privacidade no fim da pagina (nivel 2)

Contexto: Os sites disponibilizam o link que faz referéncia a sua Politica de
Privacidades nas mais diferentes posicGes, podendo estar presente no menu suspenso de
servicos disponiveis, apenas na pagina inicial dos sites ou na parte inferior da pagina.

Problema: Como ndo ha um lugar especifico onde a Politica de Privacidade
possa estar, 0s usuarios perdem tempo na busca pela localiza¢do do link que leva a
politica. Isso pode tornar a busca pela Politica de Privacidade cansativa e frustrante
quando essa localizagdo é sem sucesso, podendo afastar o usuario do site, j& que esse
ndo pbde conhecer as regras seguidas e a politica imposta.

Forcas: Facilitar a busca do usuério pela Politica de Privacidade.

Solucéo: Para facilitar a busca pela politica do site, é definida uma posi¢cdo onde
a referéncia a Politica de Privacidade deve estar. Essa posicdo deve ser estratégica para
que de qualquer parte do site seja possivel localizar a Politica de Privacidade.

Dessa forma é proposto que a referéncia a Politica de Privacidade seja colocada
ao final da péagina, ndo atrapalhando o design do site e possibilitando que essa seja
referenciada por todas as paginas pertencentes ao site. Ainda completa-se a esse padrdo
a utilizacdo da referéncia a Politica de Privacidade no fim da pagina no formato
centralizado em relagéo ao site.

Consequéncias: Facilita a busca do usuario pela Politica de Privacidade do site,
tornando-o mais satisfeito quanto a interface apresentada, ja que a usabilidade foi levada
em consideracao, e possibilitando que a qualquer momento da navegacdo essa politica
possa ser verificada.

Usos Conhecidos: O sites das empresas PontoFrio e ShopTime utilizam a
Politica de Privacidade na base inferior dos sites e ainda centralizada, tornando-a facil
de ser encontrada e suficientemente entendivel (LOBATO e ZORZO, 2007).

Padroes Relacionados: 1 — Definir uma Politica de Privacidade; 2 — Utilizar a
definicdo “Politica de Privacidade”.

11

SugarLoafPLoP 2007 Proceedings

4 - Nome: Contemplar Assuntos sobre a Privacidade (nivel 3)

Contexto: A Politica de Privacidade deve abordar topicos de privacidade
referente a seguranga dos usuérios, de forma a mostrar como a seguranca é oferecida, a
privacidade é garantida, a confiabilidade e veracidade dessas informacgdes, de acordo
com os principios estabelecidos pela OECD, Principio da Seguranca e, FTC, Seguranca.

Problema: Muitos sites ndo disponibilizam informacGes relevantes a
privacidade dos usuarios, ndo informam aos usuarios sobre quais medidas podem ser
tomadas caso algo venha a ocorrer contra sua privacidade e seguranca.

N&do contemplando tais assuntos os usuarios podem se sentir ameacados e
inseguros em relacdo a navegacdo pelo site, ocasionando em uma desisténcia na
utilizacdo dos servicos disponiveis.

Forcas: Traz mais seguranca aos usuarios podendo esses interagirem melhor
com os sites e principalmente com maior confiabilidade.

Solucdo: Disponibilizar nas Politicas de Privacidade informac6es referente a
seguranga e a garantia de privacidade do usuério. Essas devem ser escritas de forma
clara e objetiva, tornando o usuério ciente do perigo em ter sua privacidade invadida
durante a utilizagéo pela web, se esse perigo existir.

Consequéncias: Com a disponibilizacdo de informacdes referentes a
privacidade o usuario torna-se mais esclarecido quanto a esses assuntos e
consequentemente, torna-se mais seguro para a utilizacao do site durante sua navegacgéo
na web.

Usos Conhecidos: Na Figura 2 é mostrada uma Politica de Privacidade que
contempla assuntos referentes a privacidade dos usuarios.

Dados divergentes -
= Dificuldade na
cobranca do cartdo
«: Dificuldade de C
pagamento v Com
it Cancelamente -
Trocas e Devolugbes 0 Submarinffse compromete e a privacidade & a sequranca de seus clientes. Por isso, ndo
Trocas & divulgamos Seus dados cadasjfffis para terceiros, exceto quando estas informagies sdo necessarias
Devolugies para o procesg de entrega# branca ou para participacio em promocies que o cliente tenha
= Vale Trocas solicitado.
i Reembolso
1 Troca Simuttinea
j...5e compromete
| . - 4 =
' com a privacidade .ficado VeMsign [Topo ~
e seguranca
dos usua riosl . i aprovada e possui o certificado de garantia da Verisign, autoridade mundial em
! 3 Internet. Clique no selo abaixo para visualizar a certificacdo:
o Entrega o exierior
. Prazo de entrega
:: Alteracio do CERTISIGN
enderego de entrega
Vales e Cupons
Vale presente .
 Cupom de desconto v Cookies ”
= Vale Compra - 3
< >

Figura 2. Exemplo da Aplicac&do do Padréo 4
Padrdes Relacionados: 2 — Utilizar a defini¢do “Politica de Privacidade”.

5 - Nome: Possuir Mecanismo de Notificagdo (nivel 3)

Contexto: A notificacdo é utilizada para tornar informagfes conhecidas pelos
usuarios. E importante notificar os usuarios sobre o resultado de algumas de suas acoes

12

Writers” Workshop

SugarLoafPLoP 2007 Proceedings Writers” Workshop

e até mesmo, alertd-los durante sua navegacao pela web, de acordo com os principios
estabelecidos pela OECD, Principio da Especificacdo de Objeto e, FTC, Notificacao.

Como, por exemplo, se uma pégina ndo possui ambiente seguro e solicita que o
usudrio informe seus dados pessoais, é saliente comunica-los sobre isso. No entanto, €
preciso ponderar para que tal notificagdo ndo seja cansativa e desnecessaria, 0 que pode
acabar incomodando o usuario.

Problema: Os sites ndo oferecem seguranca e, na maioria das vezes, tentam
esconder suas falhas ou a falta de servicos especializados disponiveis, ndo informando
aos usuarios sobre os perigos decorrentes de sua navegacao.

Forcas: Manter os usuarios informados sobre os perigos e alguns beneficios
provenientes de sua navegacdo aumenta a confianca depositada no site e
consequentemente a utilizacdo dos servigos disponiveis.

Solucdo: Notificar o usuario sobre vantagens e desvantagens oferecidas pelos
sites, informa-los sobre as acBes executadas com sucesso ou ndo. Se, por exemplo, 0
usuario for efetivar uma transacdo que deva ser confidencial, deve ser informado sobre a
seguranca oferecida ou a falta dela.

Essa notificacdo deve ser feita com a utilizacdo de mensagens, podendo ser
exibidas em janelas de alerta ou através de um topico descrito na Politica de
Privacidade. A utilizacdo de janelas de alerta sdo mais eficientes, pois chamam mais a
atencd@o dos usuarios, ja que séo exibidas no momento em que o usudrio efetua a agédo
que deve ser notificada.

Consequéncias: Deixa o usuario sempre informado em situacfes adequadas
sobre os perigos providos de sua navegacdo e em contrapartida, sobre a seguranca
oferecida.

Usos Conhecidos: Na Figura 3 é mostrado um exemplo de notificagdo, na qual
o site informa aos usuarios sobre alguns cuidados que devem ser tomados durante a
interagdo com a web, de modo que sua privacidade ndo seja invadida, a seguranga nao
seja violada e a oferta de servicos ndo seja prejudicada.

Compre Trangiiilo O Processo ae compra a8 q P
cartdo de crédito, que sdo necessarios para |dent|ﬂcarmos quem vocé & e pudermos finz

Palavra da

furEiiadae Agqui no magazineluiza.com temos sigilo e respeito com as suas informacdes. Si

Trabalhos Académicos ﬁnalldade de simplificar suas compras futuras e sua navegacdo. O nimero do seu ca

Fale Conosco made compra. e assim que a administradora do cartdo a confirme, o n

flirculam pela . neluiza.com
Nus esclaregfmos que N& quue atentol!...)a, sugerimos

arqul\uu —~_eh .ente para divul

internet. Mos servidores utilizam o padrdo SSL (Secure Sockets Layer ou Cama
compras on-line®€om absoluta seguranca. Esse software permite criptografar (embaralt
da mesma por parte de terceiros, porque somente o seu computador & o nosso senidor

Para atendermos a todos os gostos e estilos, oferecemos a vocé mais de cinco m
praticidade em seu dia-a-dia. Com apenas um clique vocé escolhe seu produto, fir
mordomial

Figura 3. Exemplo da Aplicacdo do Padréo 5

Padrdes Relacionados: 2 — Utilizar a definicdo “Politica de Privacidade™; 9 —
Informar sobre Alteragbes na Politica; Privacy-Aware Network Client Pattern —
utilizados como mecanismo para notificar os usuarios sobre as mudangas no site
(SADICOFF, M.; LARRONDO-PETRIE, M. M. E FERNANDEZ, E. B, 2005).

13

SugarLoafPLoP 2007 Proceedings Writers” Workshop

6 - Nome: Possuir Entidade Certificadora (nivel 3)

Contexto: Para aumentar a confianca do usuério no site, garantindo que o site
esta em conformidade com as regras definidas em sua Politica de Privacidade, podem
ser utilizadas entidades certificadoras.

As entidades certificadoras sdo marcas de privacidade e de confianca, mostradas
nas paginas dos sites, as quais informam aos visitantes que as praticas de seguranca
conduzidas pelos sites, estdo de acordo com o que foi proposto em suas Politicas de
Privacidade.

Esse padrdo estd de acordo com os principios estabelecidos pela OECD,
Principio da Seguranca, da Responsabilidade e, FTC, Seguranca.

Problema: A ndo utilizacdo das entidades certificadoras pelos sites pode fazer
com que o usuario ndo se sinta seguro, principalmente em sites de comércio eletrnico
onde transacdes sdo efetuadas envolvendo nimero de cartdo de crédito e senhas.

Muitos sites ndo utilizam tais entidades devido ao preco ou por descumprimento
do que € tratado em suas politicas e, em muitas das vezes, tais certificados sdo utilizados
de maneira indevida (LOBATO e ZORZO, 2007).

Forcas: Aumenta a confianga do usuéario no site, pois prové uma maior
seguranca quanto aos servigos oferecidos, permitindo uma navegacao tranqguila e a
disponibilizacdo de dados pessoais com maior seguranca.

Solucdo: Os sites devem se preocupar em disponibilizar os servicos com
garantias do nivel de seguranca. Isso pode ser obtido com a utilizagdo de certificados de
privacidade, sujeitando-se a passar por avaliacdo para receber um certificado de que esta
em conformidade com as praticas descritas em sua Politica de Privacidade.

Apbs o recebimento do certificado deve-se utiliza-lo de forma correta, tendo
como endereco a URL ao qual a certificacdo foi atribuida, observando a data de
vencimento.

Consequéncias: Regulariza a situacdo do site com embasamento em entidades
certificadoras reconhecidas e torna o usuario mais tranquilo durante a navegacéo no site
e efetivacédo de transagdes. No entanto, a utilizacdo dessas deve ser descritas de forma
clara nas politicas, pois muitos usuarios ndo sabem em quais entidades certificadoras
podem confiar.

Usos Conhecidos: Na Figura 4 é apresentada uma Politica de Privacidade, onde
é descrito sobre a certificacdo atribuida ao site, garantindo o cumprimento das regras
descritas na politica. Ainda € informado o nome da entidade certificadora a qual é
responsavel pela certificacdo dada.

14

SugarLoafPLoP 2007 Proceedings Writers” Workshop

Todas as infarmacdes que passam pelo nosso processa de compra s3o protegidas por um -~
sistema tecnoldaico especifico e processadas 100% por computador. As informacées s3o
codificadas pelo software SSL, arquivadas em um ambiente seguro e protegidas por

processos de seguranca auditados periodicamente.

Compras com cartdo de crédito e débito em conta corrente

As informac@es para cobranga também passam por um processamento automatiea -}
computador, ndo sofrendo intervencdo humana. Os nossos procedimentos fge

para garantir mdxima seguranca no processamento da sua compra com cariffo de cred\ e
débito em conta. Além disto, a seguranca do Assineabril.com é certificado pdlla Verisign i
maior autoridade de seguranca na Internet. Portanto, no Assineabril.com sufs compragitom
cart3o de crédito e débito em conta corrente estdo sempre seguras. s /

+ 5SL

Seguranca tecnolégica 4 i

Nossos servidores utilizam o padrds *** € Cert_:lf!cada pEIa Irancga, o SSL, que &
um certificado digital para encriptag Verlslgn I nte a comunicacdo
entre servidor e browser do usudric .5 foram desenhados

para garantir m3xima seguranca no processamento de seu pagamento com cart3o de crédito
e débito em conta correnta.

"Este site contém alguns itens ndo seguros. Deseja Continuar?”

Mo Algumas vezes este aviso pode aparecer, porém nao se preocupe, pois ele refere-se a

algumas imagens ou pecas que estdo no site que ndo sdo codificados. Cabe esclarecer que
algumas destas imagens s3o banners, ilustracdes, "pop-ups”, links, os quais ndo sdo

1TAS propositalmente criptografados para facilitar o seu acesso a pagina a qual vocé estd

navegando e também porque ndo € necessaria a criptografia. Caso a mensagem apareca

clique em continuar e vocé continuard navegando seguramente. "

Figura 4. Exemplo da Aplicac&o do Padréo 6
Padrdes Relacionados: 2 - Utilizar a Definicdo “Politica de Privacidade”.

7 - Nome: Informar sobre a Finalidade da Coleta de Dados (nivel 3)

Contexto: E importante informar aos usuarios sobre a finalidade da coleta de
seus dados para que esse se sinta mais tranquilo durante a navegacao pelo site, ja que
tem consciéncia do que é feito com seus dados coletados.

Esse padrdo € proposto de acordo com os principios estabelecidos pela OECD,
Principio do Limite de Coleta, da Qualidade dos Dados, da Especificacdo de Objetivo.

Problema: Nem todos os sites estdo preocupados com o conforto do usuario no
conhecimento do que é feito com seus dados coletados pelos sites.

Forcas: Aumento na confianca do usuério em relacdo ao site.

Solucdo: Ter um tdpico na Politica de Privacidade sobre a coleta de dados,
deixando claro aos usuarios sobre quais s&o os dados coletados e sua finalidade. E
relevante informar a vantagem da coleta de dados, como a oferta de personalizacéo,
facilitando suas buscas e otimizando os servicos disponiveis, e bem como as
desvantagens com a coleta, como a disponibilizacdo dos dados coletados para terceiros
ou a identificagdo do usuério mesmo se ele ndo desejar.

Consequéncias: Torna o0 usuario mais seguro ja que esse torna-se consciente
sobre quais dados seré@o coletados durante sua navegacédo no site e sua finalidade.

Em sites de comércio eletrdnico é muito importante informar aos usuarios sobre
a coleta, pois assim torna-os mais confiantes podendo fazer com que passem de simples
visitantes para grandes consumidores.

Usos Conhecidos: A Figura 5 mostra que a Politica de Privacidade definida
contempla assuntos sobre a finalidade da coleta de dados pessoais dos usuarios,
abordando as vantagens e desvantagens que sao oferecidas aos usuarios.

15

SugarLoafPLoP 2007 Proceedings Writers” Workshop

sem imv:.* usudrios, obtidas através de nosso site, respeitadas as excecies previstas nesta politica)
no éartiao

Coleta das informagbes

Solicitamas informacfes quando vocé:
1. cadastra-se como cliente, para agilizacdo do processo de compra;
2. efetiva um pedido;
Consdreio 3. responde uma pesquisa onling;
Atacado 4. participa de uma promocio . X
5. cadastra-se para receber informacfes em geral através de correio eletrdnico (e-mail list);

Livros 6. cria uma lista de casamento,
Perfumaria

0,2 gac-mail list vocé poderd cancelar seu cadastro a qualquer momento, bastando seguir as
o,

Casamento

Uso das informacdes...
0rma I:lmevi” o adas apenas para agilizar
g cliente com o Ponto Frio. Entre outras coisas, desejamos ajuda-lo a encontrar as
g vocé precisa mais rapidamente no nosso site e informa-lo sobre atualizactes de
Especiais e novos servicos do Ponto Frio.

SU3 v
informacdes
produtos, ofert

Todas as inforfMicdes consideradas sigilosas, para efeito desta politica, serde usadas
exclusivamente pelo Ponto Frio, objetivando o aprimoramento de nossa relacio comvocé

Infarmacfies nessnais & individuais nin serin vendidas ou renassadas neln Ponto Frin a tercairns %)
>

Figura 5. Exemplo da Aplicac&do do Padréo 7
Padrdes Relacionados: 2 — Utilizar a defini¢do “Politica de Privacidade”.

8 - Nome: Permitir Remover E-mails de Lista (nivel 3)

Contexto: Os usuérios quando fazem o cadastro nos sites podem optar pelo
recebimento de e-mails promocionais, cadastrando seu e-mail nas listas de promocdes,
alertas, novidades, mas com o passar do tempo, tal servi¢co pode se tornar cansativo e
desnecessario ao usuario.

Esse padrdo esta de acordo com os principios estabelecidos pela OECD,
Principio da Participacéo Individual e, FTC, Acesso.

Problema: Depois dos usuérios terem cadastrado seus e-mails nas listas, alguns
sites ndo permitem que os mesmos possam desfazer tal acdo, podendo causar
aborrecimento a eles que passam a considerar o envio de e-mails como envio de spams.

Forcgas: Diminuir as frustracdes dos usuarios deixando-os mais a vontade na
utilizag&o dos sites, possibilitando que tenham o controle do recebimento ou néo de e-
mails promocionais mesmo que ja tenham cadastrado o e-mail nas listas.

Solucd@o: Permitir que o usuario remova o e-mail das listas, caso julgue
necessario. Isso pode ser feito apenas disponibilizando no site uma opcdo de selecdo
para esse propdsito, onde pode ser disponibilizada uma mensagem, como por exemplo,
“desejo receber e-mails com promocdes™, e se 0 usudrio ndo mais desejar o
recebimento dos e-mails essa opcao pode ser desmarcada.

Consequéncias: Possibilita que o usuario, ao sentir-se incomodado com o
recebimento de e-mails, possa nao recebé-los mais.

Usos Conhecidos: Na Figura 6 € apresentada aos usuarios a opcao de
recebimento ou ndo de informativos pelo e-mail, podendo os e-mails serem removidos
das listas aos quais foram cadastrados se assim o usuario desejar.

16

SugarLoafPLoP 2007 Proceedings

B contato ¥ Home / Politica de Privacidade [-]

receber ou ndo informativos sobre promociesWye venham g# Argir, de forma

~==idade do.r" ‘(eemma
...fica disponivel a opgdo

de receber ou ndo

informatiVOS SObl’e leus dados trafegam c/ seguraiiga
promogodes...

gdos em total igile

Livro

Jdo pela renomada empresa de certificados digitais Thawte.com.

Figura 6. Exemplo da Aplicac&o do Padréo 8
Padrdes Relacionados: 2 — Utilizar a defini¢do “Politica de Privacidade”.

9 - Nome: Informar sobre Alteragdes na Politica (nivel 4)

Contexto: E importante avisar aos usuarios se alguma regra ou item imposto na
Politica de Privacidade for alterado, de forma que o usuério possa se manter informado
e conscientizado sobre as normas e funcionalidades do site, de acordo com 0s principios
estabelecidos pela OECD, Principio da Responsabilidade e, FTC, Notificacao.

Problema: Os sites alteram suas Politicas de Privacidade sem informar aos
usuarios sobre isso sem consultar os usuarios se concordam com as novas diretivas.

Forcas: Permitir que o usurio esteja sempre informado sobre as novas diretivas
definidas pelo site, de modo a conscientiza-los das regras seguidas, aumentando a
confianga no site. Um gerenciador deve ser responsavel por cumprir o que é descrito na
politica do site, colocando em prética todos os itens mencionados na politica.

Solucdo: Para aplicar tal funcionalidade, colocar uma clausula na Politica de
Privacidade informando de que se houver qualquer alteracdo nas regras seguidas pelo
site, essas modificagBes serdo expostas na propria Politica de Privacidade. E importante
ainda notificar a data da Gltima atualizacdo da Politica de Privacidade, de modo que o
usuario possa manter-se informado sempre que novas atualizac6es forem feitas.

Ha também a opcdo de disponibilizar uma notificacdo na pagina inicial do site
informando que houve mudancas nas diretivas da Politica de Privacidade.

Consequéncias: Deixa o usuario mais esclarecido e aumenta sua confianca no
site ja que esse tem como saber quando alguma diretiva referente as regras impostas na
Politica de Privacidade do site for alterada. Assim o usuério poderé ter conhecimento
dessa mudanca e entdo verificar se aceita ou ndo as novas diretrizes impostas.

Com os usudrios conscientes sobre as praticas definidas pelos sites, ndo havera
invasdo de privacidade, jA que a questdo de privacidade esta diretamente ligada ao
consentimento ou ndo do usuario em relagdo as préaticas seguidas pelos sites.

Usos Conhecidos: A Figura 7 mostra exemplo da notificacdo transcrita no site
referente as possiveis atualizagdes que possam ocorrer na Politica de Privacidade.

17

Writers” Workshop

SugarLoafPLoP 2007 Proceedings Writers” Workshop

Utilizagao de informagoes

A Americanas.com ndo comercializara suas informacdes pessoais. Tais informacdes poderdo. entretanto, ser agrug
pesga determinados critérios e utilizadas como estatisticas genéricas objetivando um melhor entendimento do p

| P
/) Alteragdes...

"Com T Lul]] «dlquer tempo, dado que o presente documento ndo cria qu
g Americanas.com e seus clientes ou terceiros. Toda alteracdo da politica de privacidade serd veiculz

Figura 7. Exemplo da Aplicacdo do Padréo 9
Padrdes Relacionados: 5 — Possuir Mecanismo de Notificacdo.

4. Resultado Final Aplicando os Padrdes Definidos

Apdbs formar a estrutura de base, ou seja, os padrOes e explicar suas utilidades foi
desenvolvida uma Politica de Privacidade para ser tomada como exemplo.

Para desenvolvimento dessa politica foram utilizados os padrdes apresentados
para definicdo de Politica de Privacidade, onde foram observados os requisitos
desejados, analisados as informacdes que se deve disponibilizar na definicdo das
Politicas de Privacidade, tentando aproxima-la a politica ideal.

Tabela 1. Exemplo de Politica de Privacidade

Politica de Privacidade
Atualizada em 05/03/2007.

Sobre esta Politica de Privacidade
Esta Politica de Privacidade foi estabelecida para o “site Exemplo” com o objetivo de
assegurar a confianca e o sigilo das informagdes dos usuarios coletadas.

Sabemos o quanto é importante para vocé conhecer e estar seguro sobre a utilizacdo dos
seus dados pessoais. Por isso, nos preocupamos em esclarecer e divulgar nossa politica de
utilizacdo dessas informacbes. Assim, vocé podera entender melhor quais informagdes
obtemos e como as utilizamos.

Dados Coletados
Solicitamos informac¢des quando vocé:

® Se cadastra no site (para agilizagdo do processo de compra e para fins de
estatisticas);

Efetiva um pedido;
Responde uma pesquisa on line;

Participa de uma promogao;

® (Cadastra-se em nosso boletim eletrénico (“mail list”).
De forma automatizada, os seguintes dados também sé&o coletados:

® Endereco IP;

® Data e horario do acesso;

® Tempo de leitura de cada pagina;
® Seqléncia de paginas visitadas;

Cadastro

N&o é necessario fornecer informagfes pessoais para navegar no site. Entretanto, para
utilizar alguns dos servicos, sera necessario identificar-se, fornecendo previamente alguns
dados de carater pessoal.

18

SugarLoafPLoP 2007 Proceedings Writers” Workshop

As informacdes serdo armazenadas em um servidor seguro, e ndo sdo compartilhadas com
terceiros.

Finalidade da Coleta

Inicialmente os dados coletados terdo fins estatisticos. Para analisar, por exemplo, a
quantidade de usuéarios que leram a Politica de Privacidade, as diferencas entre as
preferéncias de privacidade dos usuarios e a freqiiéncia de visita a cada pagina.

Os dados coletados serdo também analisados para obter algumas informacgdes sobre o perfil
dos usuarios que acessam o site, de modo a oferecer servigos personalizados.

Ainda utilizamos as informagfes coletadas por motivos de fins estatisticos, para efetivagdo
da compra, andamento das operagdes e entrega de produtos.

Exclusao das Informacdes
O site possibilita que o usuario exclua e edite suas informacgdes cadastradas no site, caso
julgue necessario.

Seguranca

Todos os dados coletados sdo armazenados em servidores internos e seguros, em um banco
de dados reservado e com acesso restrito ao administrador deste site. Dessa forma, a
manipulagdo dos dados se da de maneira automatizada, ndo permitindo que pessoas nao
autorizadas tenham acesso aos mesmos.

Certificacao

As préaticas efetuadas pelo site seguem as diretivas definidas nessa politica e sdo certificadas
por uma Entidade Certificadora, chamada XXX, a qual garante que a Politica de Privacidade
esta sendo seguida.

Confira o certificado de seguranca clicando aqui.

Ambiente para Transacdes
Utilizamos um ambiente seguro para transacfes, fazendo a encriptacdo de dados,
autenticacéo de servidor, integridade de mensagem e autenticacdo de cliente.

Tenha Cautela

E possivel que nossas paginas contenham hiperlinks que o levem a sites de terceiros.
Recomendamos a leitura da Politica de Privacidade desses sites, uma vez que nao temos
nenhuma responsabilidade sobre os mesmos.

Algumas pessoas utilizam do nome de empresas de responsabilidade para enviar e-mails aos
usuarios e também podem ser enviados juntos a esses e-mails cddigos executaveis. No
entanto, em hipdtese alguma, os aceite, pois tais e-mails e executaveis tem o intuito de
coletar suas informagdes pessoais.

Esteja atento a esses e-mails, prestando atencdo no enderegco do remetente, e, se possivel
entre em contato conosco avisando sobre o ocorrido.

Envio de E-mails
Este site ndo envia e-mail de propagandas e promoc¢fes do site sem a autorizacdo do
USuario.

O site prové estruturas que permitem ao usuario selecionar o aceite ou ndo de seu e-mail
nas listas de propagandas. Assim, vocé podera cancelar o envio de e-mails a qualquer
momento.

Cookies

Cookies sdo pequenos arquivos de texto enviados ao seu computador e que sé&o
armazenados no mesmo. Estes arquivos servem para reconhecer, acompanhar e armazenar
a navegacao do usuario na Internet.

O uso de cookies possibilita ao site oferecer um servigo mais personalizado, de acordo com
as caracteristicas e interesses dos usuérios, possibilitando, inclusive, a oferta de contetdo e

19

SugarLoafPLoP 2007 Proceedings Writers” Workshop

publicidade especificos para cada um.

AlteracGes nesta Politica

Para assegurar regras claras e precisas, podemos eventualmente alterar essa politica, e
sendo assim, recomendamos sua leitura periodicamente.

Qualquer alteragcéo na Politica de Privacidade sera transcrita na mesma.

No inicio da Politica de Privacidade € indicada a data da ultima alteracdo, para facilitar ao
usuario saber quando houve modificagdes.

Consideracdes Finais
Em caso de alguma divergéncia sobre nossa Politica de Privacidade ou reclamacgfes sobre os
servigos prestados, sinta-se livre para entrar em contato conosco:

Nome Fantasia da Empresa ou Site
Nome de registro no CNPJ da Empresa
Endereco fisico

Atendimento telefénico:
(OxXxXXX) XXXX.XXXX das XX:XXhs as XX:XXhs

Atendimento eletrénico:
http://www.empresa.com.br/antendimento
atendimento@empresa.com.br

Como ja mencionado, esse modelo de Politica de Privacidade foi desenvolvido
baseado nos padrdes apresentados. Dessa forma o uso desses padrdes se torna viavel
durante a elaboracdo e construcdo de Politicas de Privacidade que apresente
caracteristicas relevantes aos usuarios e que atendem as verdadeiras exigéncias que uma
politica deve apresentar, sendo essa uma politica de sucesso.

Tal modelo de politica pode ser utilizado de modo a trazer facilidades aos sites
na definicdo de suas Politicas de Privacidade e principalmente, trazendo beneficios aos
usuarios, ja que essas serdo definidas de maneira mais clara e objetiva, disponibilizada
em uma linguagem que o usuério entenda, de modo a aumentar sua satisfacdo na
interacdo com o site, ja que 0 mesmo se sentira mais seguro. Ainda é referenciada por
um nome sugestivo, “Politica de Privacidade” e de fécil localizacéo.

5. Agradecimentos

Este trabalho foi apoiado pelo Departamento de Computagédo da Universidade Federal
de S&o Carlos (UFSCar) e Coordenacdao de Aperfeicoamento de Pessoal de Nivel
Superior (CAPES), Brasil. Nossos agradecimentos especiais ao Prof. Eduardo B.
Fernandez, nosso shepherd, pelos comentarios e sugestdes importantes que
proporcionaram melhorias significativas em nosso trabalho.

7. Referéncias

ALEXANDER, C.; ISHIKAWA, S. e SILVERSTEIN, M. A Pattern Language. Oxford
University Press, New York. 1977.

ANTON, A. et al. The lack of clarity in financial privacy policies and the need for
standardization. |IEEE Security & Privacy. 2(2): 36-45 p. 2004.

BORCHERS, J. A Pattern Approach to Interaction Design 2001. John Wiley & Sons,
Inc. Disponivel em: <http://portal.acm.org/citation.cfm?id=558433&coll=Portal&dI=G
UIDE&CFID=3720139& CFTOKEN=24769028#>. Acesso em: 16 out. 2006.

20

SugarLoafPLoP 2007 Proceedings Writers” Workshop

BUSCHMANN, F. et al. Pattern-Oriented Software Architecture. vol.1: A System of
Patterns: Chichester, Inglaterra: John Wiley & Sons Ltd. 1996. 476 p.

COPLIEN, J. O. e HARRISON, N. B. Organizational Patterns of Agile Software
Development. Prentice Hall PTR. 2004. 419 p.

GAMMA, E. et al. Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley. 1995.

HAFIZ, M. A collection of Privacy Design Patterns. In: PLoP Pattern Languages of
Programming Design. Potland, Oregon: 2006.Disponivel em:
<http://hillside.net/plop/2006/Papers/Library/PLoP2006_mhafiz0_0.pdf>. Acesso em:
14 fev. 2006.

LOBATO, L. L. e ZORZO, S. D. Avaliagdo dos Mecanismos de Privacidade e
Personalizacdo na Web. In: XXXII Conferencia Latinoamericana de Informatica, CLEI,
Agosto 2006. Santiago, Chile: 2006.Disponivel em: <www.clei2006.0rg>. Acesso em:
23 fev. 2007.

LOBATO, L. L. e ZORZO, S. D. Estudo de caso da avaliacdo por inspecdo em sites de
comércio eletrénico. Universidade Federal de Sdo Carlos. Sdo Carlos, SP: 20/10/2006,
p.94. 2007.

MESZARQOS, G. e DOBLE, J. MetaPatterns: A Pattern Language for Writing Patterns.
1996. Conference on Pattern Languages of Programming PLoP. Disponivel em:
<http://www.hillside.net/patterns/writing/patternwritingpaper.htm>. Acesso em: 13 nov.
2006.

PITOFSKY, R. et al. Privacy online: Fair information practices in the electronic
marketplace. 2000. Federal Trade Commission. Disponivel em:
<http://www.ftc.gov/reports/privacy2000/privacy2000.pdf>. Acesso em: 13 nov. 2005.

ROMANOSKY, S. et al. Privacy Patterns for Online Interactions. In: PLoP Pattern
Languages of Programming Design.Potland, Oregon: 2006.Disponivel em:
<http://hillside.net/plop/2006/Papers/Library/romanosky_privacy_patterns_plop06.pdf>
Acesso em: 22 fev. 2007.

SADICOFF, M.; LARRONDO-PETRIE, M. M. e FERNANDEZ, E. B. Privacy-Aware
Network Client Pattern. In: Conference on Pattern Languages of Programming PLOP.
2005.Disponivel em: <http://hillside.net/plop/2005/proceedings/PLoP2005 msadicoff0
_0.pdf>. Acesso em: 15 fev. 2007.

SPIEKERMANN, S.; GROSSKLAGS, J. e BERENDT, B. E-privacy in 2nd Generation
E-Commerce: privacy preferences versus actual behavior. In: Proceedings of the 3rd
ACM Conference on Electronic Commerce.Tampa, Florida, USA: 2001. Pag. 38-
47.Disponivel em: <http://doi.acm.org/10.1145/501158.501163>. Acesso em: 24 jan.
2006.

TUROW, J. Americans and Online Privacy: The System is Broken. 2003. Disponivel

em: <http://www.appcpenn.org/04_info_society/2003_online_privacy_version_09.pdf>.
Acesso em: 20 jan. 2006.

21

SugarLoafPLoP 2007 Proceedings Writers” Workshop

The Error Handling Aspect Design Pattern
Fernando Castor Filho! , Alessandro Garci& , Cedlia Mary F. Rubira 3

! IDepartment of Computer Science - University of Sao Paulo
Rua do Matao, 1010. 05508-090, Sao Paulo - SP, Brazil

2Computing Department - Lancaster University
South Drive, InfoLab 21, LA1 4WA, Lancaster, UK

3Institute of Computing - State University of Campinas
P.O. Box 6176. 13083-970, Campinas - SP, Brazil

fcastor@cm org, garci aa@onp. | ancs. ac.uk, cnrubira@ c.uni canp. br

Abstract. Exception handling is a well-known programming language mecha-
nism for separating error handling code from the normal application code. One
of the fundamental motivations for employing exception handling in the develop-
ment of robust applications is to lexically separate error handling code from the
normal code so that they can be independently modified. However, experience
has shown that the exception handling mechanisms of mainstream programming
languages fail to achieve this goal. In most systems, exception handling code is
interwined with the normal code, hindering maintenance. Moreover, because of
the difficulty in separating error handling code and normal code, the former is
often duplicated across several different places within a system. In this paper
we present a patterrrror Handling Aspect, which leverages aspect-oriented
programming in order to enhance the separation between error handling code
and normal code. The basic idea of the pattern is to use advice to implement
exception handlers and pointcuts to associate advice to different parts of the
normal code in order to improve the maintainability of the normal code and the
reuse of error handling code.

1. Intent

To separate the error handling measures of a system from the code that implements its
behavior when nothing goes wrong (normal code). Eh®r Handling Aspect design
pattern leverages aspect-oriented programming (AOP) [Kiczales et al. 1997] techniques
to improve the maintainability of the normal code and its reuse across different applica-
tions. The pattern also aims to reduce duplication of error handling code by making it
easier to reuse within the same application.

2. Context

TheError Handling Aspect design pattern can be applied in everyday software develop-
ment, mainly during the design and implementation phases of the software process, as a
means to improve the flexibility of software systems. However, the benefits of the pattern
are more tangible in situations where

e a software component is expected to be reused in several different contexts, asso-
ciated to different error handling strategies.

22

SugarLoafPLoP 2007 Proceedings Writers” Workshop

e the same piece of error handling code is duplicated across several parts of a soft-
ware system and it is desirable to localize this duplicated code in a single concep-
tual entity.

3. Motivation

Exception handling [Goodenough 1975] mechanisms have been conceived as a means to
structure programs that have to cope with erroneous situations. These mechanisms make
it possible for developers to extend the interface of an operation with additional exit points
that are specific to error recovery. Moreover, they define new constructs for raising ex-
ceptions and associating exception handlers with selected parts of a program. Ideally, an
exception handling mechanism should enhance attributes such as reliability, maintainabil-
ity, and understandability, by making it possible to write programs where: (i) the code for
error handling and the normal code are lexically separate and can be maintained indepen-
dently [Parnas and Wurges 1976]; (ii) the impact of the code responsible for error han-
dling in the overall system complexity is minimized [Randell and Xu 1995]; and (iii) an
initial version that does little recovery can evolve to one which uses sophisticated recovery
techniques without a change in the structure of the system [Parnas and Wirges 1976].
Separation of concerns is the overarching goal of exception handling mechanisms.
However, the kind of separation promoted by the exception handling mechanisms of
most mainstream object-oriented programming languages brings only limited advantages

[Castor Filho et al. 2006, Cui and Gannon 1992, Lippert and Lopes 2000]. The following
code snippet, extracted from an Eclipse plugin, illustrates this.

public class CRLFDetect! nput Streamextends FilterlnputStream {

protected CRLFDetectl|nputStreanm(|InputStreamin, |ICVSStorage file) {
super (in);

try {
this.filenane = getFil eNane(file);

} catch (CVSException e) {
this.filenane = file.getNane();

}
}

-

The example above defines the constructor for cg-Det ect | nput St r eam This

class is responsible for detecting the carriage return and line feed characters in input
streams. The constructor attempts to obtain the full nanfa bk by retrieving it from

the file system through methaggebt Fi | eNane() . If something goes wrong,e.g. the file
could not be found, and excepti@VSExcept i on is raised, the handler simply gets the
name stored in variabliei | e. In order to reuse clasS8RLFDet ect | nput St r eamin

a different system, it might be necessary to change this policy, for example, to interrupt
program execution when the file cannot be accessed in the file system. To achieve this,
it would be necessary to directly modify tleat ch block in the constructor. This kind

of undisciplined reuse is generally considered a bad practice in the object-oriented devel-
opment community. A much more desirable approach would be to simply “unplug” the
error handling strategy associated to the constructor and “plug” the new one. However,
this is currently not possible in any of the mainstream programming languages.

The following code snippet illustrates another undesirable situation:

23

SugarLoafPLoP 2007 Proceedings Writers” Workshop

public class EclipseSynchronizer inplenents |FlushOperation {
public void endBatching(...) throws CVSException {
try {...} catch (TeanException e) {
t hrow CVSExcepti on. wr apException(e); }

oo
public I Resource[] menbers(...) throws CVSException {

try {...} catch (CoreException e) {
t hrow CVSExcepti on. wr apException(e); }

In the example, two different methods within the same clessgiBat chi ng()
andnenber s() , implementidentical exception handling strategiBsanExcept i on
is a subtype o€or eExcept i on. InJava, itis not possible to implement a single handler
and associate it to both methods, to avoid code duplication.

4. Problem

In languages such as Java, Ada, C++, and C#, it is not possible to “plug” and “unplug”
exception handlers. In these languages, the normal code and error handling code are
entwined within fine-grained units (methods), making it hard to maintain the former in-
dependently from the latter. Also, this hardwiring of the exception handling code hinders
reuse of normal code across different applications, as these applications often have differ-
ent requirements pertaining to error handling.

Another problem is that the exception handling mechanisms of the aforementioned
languages only support the definition of handlers that are local to specific parts of a pro-
gram. Reuse of error handling strategies within an application is possible only to a certain
degree, by extracting error handling measures to new methods. However, in most main-
stream programming languages, the code that catches exceptions and initiates an excep-
tion handling measure has to be scattered throughout the application. As a consequence,
most systems have a considerable amount of duplicated exception handling code.

5. Solution

TheError Handling Aspect design pattern promotes explicit separation between excep-
tion handling code and normal code. It leverages AOP techniques in order to: (i) localize
error handling within units whose sole purpose is to implement this concern; (ii) reduce
the amount of duplicated exception handling code; (iii) make it easier to reuse the normal
code across different applications; and (iv) simplify the task of changing the exception
handling strategies of a system. The overall idea of the pattern is to use advice to im-
plement exception handlers and associate these “aspectized” handlers to different parts of
a program by means of the composition mechanisms provided by AOP languages. For
example, consider the following Java code snippet, extracted from an Eclipse plugin:

public class EclipseSynchronizer inplenents |FlushCperation {
public void endBatching(...) throws CVSException {
try {...} catch (TeanException e) {
t hrow CVSExcepti on. w apException(e); }

oo
public I Resource[] menbers(...) throws CVSException {

24

SugarLoafPLoP 2007 Proceedings Writers” Workshop

try {...} catch (CoreException e) {
t hrow CVSExcepti on. w apException(e); }

In the example, two different methods within the same clessiBat chi ng()
andnenber s() , implementidentical exception handling strategiBsanExcept i on
is a subtype ofCor eExcepti on. In Java, it is not possible to implement a single
handler and associate it to both methods, to avoid code duplicatiorEffteeHandling
Aspect design pattern leverages features of AOP languages to deal more elegantly with
this problem. Figure 1 shows how the pattern solves this problem. It uses a slightly
modified UML notation derived from the notation proposed by Chavez [Chavez 2004].

eh =» endBatching()

" 5
EclipseSynchronizer -
- eh = members()

+ endBatching() .
+ members() pointcutﬁ Legend

E Class
pointcut eh() : execution(B‘ Wr % Aspect

* EclipseSynchronizer.endBatching(..))
|| execution(
* EclipseSynchronizer.members(..));

... I fields <-- Join point

advice()_ After advice

... Il methods i
eh _advice()_ Around advice

handler1()_:eh

// handler1() B
after() throwing (CoreException e)
throws CVSException : eh() {
throw CVSException.wrapException(e);

}

Figure 1. An example where the use of Error Handling Aspect avoids duplication
of exception handling code.

In the figure, aspedicl i pseSyncHandl er defines a pointcut namezh that
associates advickandl| er 1 to methodsrenber s() andendBat chi ng(). This
advice implements the exception handlers that would otherwise be scattered throughout
the application code and is therefore calllethandler advice The name of each ad-
vice in the diagram is followed by the name of a pointcut to which it is bound. The
code snippets in the comments correspond to possible implementations written in the As-
pectJ [Laddad 2003] language. This approach separates the error handling code from the
normal code and localizes it within a single program unit, namely, an error handling as-
pect implementing the different handler advice. As a consequence, code duplication is
avoided and different error handling strategies can be easily plugged and unplugged to
the normal code.

6. Background

6.1. Exception Handling

Exception handling [Cristian 1989, Goodenough 1975] is a mechanism for structuring

error recovery in software systems so that errors can be more easily detected, signaled,
and handled. It is implemented by many mainstream programming languages, such as
Java, Ada, C++, and C#. These languages allow the definition of exceptions and their

25

SugarLoafPLoP 2007 Proceedings Writers” Workshop

corresponding handlers. The set of exceptions and excemaiodiers in a system define
its abnormal or exceptional activity.

When an error is detected, an exception is generatedised If the same ex-
ception may be raised in different parts of a program, different handlers may be executed,
depending on the place where the exception was raised. The choice of the handler that
is executed depends on the exception handling context where the exception was raised.
An exception handling context is a region of a program where the same exceptions are
handled in the same manner. Each context has an associated set of handlers that are
executed when the corresponding exceptions are raised. Typical examples of exception
handling contexts in object-oriented languages are blocks, methods, classes, and excep-
tions [Garcia et al. 2001].

Theidealized fault-tolerant compone(FTC) [Anderson and Lee 1990] defines
a conceptual framework for structuring exception handling in software systems. An IFTC
is a component (in a broader sense — an object, a software component, a whole system,
etc.) where the parts responsible for the normal and abnormal activities are separated and
well-defined, within its internal structure. The goal of the IFTC approach is to provide
means to structure systems so that the impact of error recovery mechanisms in the overall
system complexity is minimized. One of the most important goal&rodr Handling
Aspect is to promote the construction of systems where all the system components are
IFTCs. The following figure presents the internal structure of an IFTC and the types of
messages it exchanges with other components in a system.

Interface

Service Normal Failure

Request Response Excepillgns Exceptions
/I\ Error Recovery /I\
Normal Abnormal
Activity Activity
\I/ Local Exceptions
Service Normal Interface Failure
Request Response Exceptions Exceptions

When an IFTC receives a service request, it producesraal responsef the
request is successfully processed. If an IFTC receives an invalid service regsigsilis
aninterface exceptianlf an error is detected during the processing of a valid request,
the normal activity part of the IFTGaisesan internal exceptionwhich is received by
the exceptional activity part of the IFTC. If the IFTC is capable of handling an internal
exception properly, normal activity is resumed. If the IFTC has no handlers for an internal
exception or is unable to handle an exceptiosighalsa failure exception. Interface and
failure exceptions are collectively calledternal exceptionsAn IFTC might alsocatch
external exceptions signaled by other IFTCs and attempt to handle them.

26

SugarLoafPLoP 2007 Proceedings Writers” Workshop

6.2. Aspect-Oriented Programming and AspectJ

AOP was proposed as a means to improve the separation of concern in systems that in-
cludecrosscutting concern\ crosscutting concern can affect several units of a software
system and usually cannot be isolated by traditional OO programming techniques. A typ-
ical example of crosscutting concern is logging. The implementation of this concern is
usually scattered across the modules in a system, and tangled with code related to other
concerns, because some contextual information must be gathered in order for the recorded
information to be useful. Other common examples of crosscutting concerns include pro-
filing and authentication [Laddad 2003].

AspectJ [Laddad 2003] is a general purpose aspect-oriented extension to Java. It
extends Java with constructs for picking specific points in the program flow, called join
points, and executing pieces of code, called advice, when these points are reached. Join
points are points of interest in the program execution through which crosscutting con-
cerns are composed with other application concerns. AspectJ adds a few new constructs
to Java, in order to support the selection of join points and the execution of advice in
these points. Apointcutpicks out certain join points and contextual information at those
join points. Join points selectable by pointcuts vary in nature and granularity. Examples
include method call and class instantiatiokdvicecan runbefore after, or aroundthe
selected join points. In the latter case, execution of the advice may potentially alter the
flow of control of the application, and replace the code that would be otherwise executed
in the selected join point. AspectJ also allows programmers to modify the static structure
of a program by means of static crosscutting. With static crosscutting, one can introduce
new members in a class or interface, or make a checked exception unchecked.

Aspectsare units of modularity for crosscutting concerns. They are similar to
classes, but may also include pointcuts, advice, and static crosscutting. The code of an
aspect-oriented application written in AspectJ consists of two parts: (i) base code, which
is written in written in Java and implements the non-crosscutting concerns of the system;
and (ii) aspect code, which implements the crosscutting concerns of the system and com-
prises a set of aspects and auxiliary classes. Aspect code is combined with base code
by means of a process called weaving. Therefore, the tool responsible for performing
weaving is calledveaver

The example below presents an aspect na@ednect i onPool Handl er.
Lines 2 and 3 declare a pointcut nameett Manual Conmi t Handl er that captures
calls to the methodet Aut oConmmi t () of classConnect i on, independently of re-
turn type (*”) or list of parameters (. ”). Line 4 softensSQLExcept i on for the join
points selected bget Manual Commi t Handl er . This means thaBQLExcepti on
is not statically checked by the Java compiler. At run tim&QLExcept i on is raised
in a call toset Aut oConmi t (), it is wrapped with an unchecked exception named
Sof t Except i on, defined by AspectJ. Lines 5-8 declare an advice that is executed af-
ter the join points selected Iyet Manual Conmi t Handl er if their execution ends by
throwing SQLExcept i on (Line 5). This advice captures contextual information on the
selected join points by specifying that the target of the caltsetbAut oCommi t () can
be referred to through variabteon.

27

SugarLoafPLoP 2007 Proceedings Writers” Workshop

1 public aspect Connecti onPool Handl er {

2 pointcut setManual Conmit Handl er ()

3 call (*» Connection. set AutoCommit(..));

4 declare soft SQLException : set Manual Conmi t Handl er();
5 after(Connection con) throwi ng (SQLException e)

6 set Manual Conmmi t Handl er () && target(con) {

7 con. cl ose();

8

9

}
}

7. Structure

In the rest of this paper, we call “exception-throwing statement” a statement that poten-
tially throws an exception. Exception-throwing statements appear within “context meth-
ods”. “Context” because, usually, these methods define exception handling contexts. In
the figure, classeNormalClass1l andNormalClass2 define one context method each,
contextMethod1() andcontextMethod2(), respectively. We refer to a set of exception-
throwing statements within the same context method as “exception-throwing code”. Be-
sides pointcuts and advice, error handling aspects can also include methods and fields that
are specific to exception handling. A field in this case can be, for example, a hash table
that stores temporary values that the handler advice use.

... Il fields

... /l methods

abstractPC
genericHandler()_:abstractPC

excl

exc2 =» contextMethod1()
NormalClass1 << ; Legend
+ contextMethod1() | =.8X¢1.7 contextMethod1() } = O
EHAspect2 % Aspect
NormalClass2 -<-- Join point
exc1 =p contextMethod2() .
+ contextMethod2() ... I/ fields advice()_ After advice
EHAspect] ... /I methods _advice()_ Around advice
exc2 = pmmmressssss
../l fields handler2()_:exc2 : :
... [l methods L
----------- bemsmeeeen--d---- pointcuts

handler1()_:exc1

Figure 2. General structure of the pattern.

Normal classes.Classe®NormalClass1 andNormalClass2 implement the normal code
of an application. Each has one or more context methods, including one or more
exception-throwing statements apiece.

Concrete error handling aspects.Figure 2 depicts two concrete error handling aspects,
EHAspectl and EHAspect2. Each one includes one or more handler advice.
The handler advice implement exception handling code that is executed when ex-
ceptions are raised within the context methods. A handler advice may be bound to

28

SugarLoafPLoP 2007 Proceedings Writers” Workshop

several distinct context methods, in order to avoid duphcpexception handling
code.

Abstract error handling aspects. If a handler advice is common to two or more error
handling aspects, it is useful to move it to an abstract aspect and make the latter
a super-aspect of the other error handling aspects. By binding the advice to an
abstract pointcut and making it concrete in the sub-aspects, duplication of han-
dler advice is avoided. In Figure 2, asp&@nericEHAspect is an example of
abstract error handling aspect.

8. Dynamics

The following scenarios illustrate how the various components oftiner Handling
Aspect design pattern interact at runtime.

Scenario 1. Figure 3 depicts the normal execution path when using an error handling
aspect is present. In this scenario, a client invokes a method on a certain object and the
execution of this method is a join point of interest for error handling. No exceptions are
raised, though, and execution proceeds as if the aspect did not exist.

P
:CIientCIass‘ ‘:NormalCIass‘ <m>

: ; Legend
Y contextMethod() egen

execute normal

code : [] Object
: L Aspect

return normal
result

Figure 3. A scenario where no exceptions are thrown.

1. A client invokescont ext Met hod() on an instance oNor mal Cl ass. As
implied by the name of the method, exceptions might potentially be raised within
it.

2. Methodcont ext Met hod() is executed.

3. The method returns a normal result to the client object.

Scenario 2. Figure 4 depicts the scenario where a client invokes a method on a certain
object, an exception is raised while the method is being executed, and an error handling
aspect successfully handles the exception.

1. Aclientinvokescont ext Met hod() on an instance dflor mal Cl ass.

2. Whilecont ext Met hod() is being executed, exceptidhis raised.

3. Control is transfered to the error handling asggidfs pect , which attempts to

handleE.

. The handler ends its execution normally, without raising any exceptions.

5. Control returns to the normal code, which resumes execution. Depending on the
join point to which the handler advice is bound, eitbent ext Met hod() goes
on executing or it immediately returns some normal (non-exception) response to
the client object.

N

29

SugarLoafPLoP 2007 Proceedings Writers” Workshop

:CIientCIass‘ ‘ :NormalClass ‘ <m>

. : Legend

[_contextMethod() _ 1 execute normal :
el L}
; | code :] Objet
raise exception E E @ Aspect
: o Join point

execute handler handle
advice

o---aVee s exception E
return normal
result

resume normal activity

Figure 4. A scenario where a handler advice successfully handles an exception.

Scenario 3. This scenario shows the dynamics of error handling aspects that simulate
two nested r y- cat ch blocks. The scenario depicted in Figure 5 illustrates the case
where the inner handler advice, after failing to handle an exception thrown within a con-
text method, throws an exception that is caught by the outer handler advice. The latter
then signals an exception and this exception is received by the client object. Handler
advicei nner Handl er () , defined by asped¢tnner EHAspect , is associated method
cont ext Met hod() or some part of it (e.g. a method call that appears in its body). Han-
dler adviceout er Handl er () , defined by aspecut er EHAspect , is associated to

the same join point asnner Handl er () or some ‘outer’ join point (e.g. the execution

of or calls tocont ext Met hod()).

r contextMethod() &

:CIientCIass‘ ‘ :NormalClass ‘ 4 :InnerEHAspect F 4 :OuterEHAspect F

execute normal

i | code Legend

raise exception E

: E l:l Object

...................... >L handle exception E > Aspect
execute handler H 1) gt
advice innerHandler() 4—, H

raise exception E'

<

execute handler
advice outerHandler()

; I handle exception E'
:I raise exception E"

ignal ion E"
signal exception E" | je&Z-----mmmnnammmmnnnnnn _|...Signal exception E” |

RLRLERELERELELED T

Figure 5. A scenario involving nesting of handler advice.

[ERN

. Aclient invokescont ext Met hod() on an instance dflor mal Cl ass.

. Whilecont ext Met hod() is being executed, excepti@his raised.

3. Control is transferred to handler advicener Handl er () , which attempts to
handleE.

. Handler advicé nner Handl er () raises exceptiok’ .

. Control is transferred to handler advicat er Handl er () , which attempts to
handleE’ .

N

(20N

30

SugarLoafPLoP 2007 Proceedings Writers” Workshop

6.
7.

Handler adviceut er Handl er () raises exceptiok’ ' .
ExceptionE’ ’ is signaled to the instance bbr mal Cl ass, re-signaled by the
latter, and finally received by the client object.

9. Consequences

TheError Handling Aspect design pattern has the followidmgenefits

Localization of error handling code An important benefit oError Handling
Aspect is that it keeps all the exception handling code localized within program
units whose sole purpose is to implement the exception handling concern. This
localization simplifies system maintenance, as developers do not have to search
through a whole program in order to change a certain exception handler. It also
improves understandability, since it is possible to get an intuitive understanding of
how error handling works in a given system just by looking at the error handling
aspects.

Reduction of duplicated error handling cadk is easy to encapsulate an excep-
tion handler that would otherwise appear in several parts of a system in a single
handler advice. These parts of the system then become the join points of interest
to which the handler advice will be associated. Notice, though, that this reduction
of duplicated error handling code does not necessarily mean that the pattern will
reduce the overall number of lines of code pertaining to error handling (see the
last item under “Liabilities”, below).

Arbitrary exception handling contextsThe fundamental precept of tHeror
Handling Aspect design pattern is that advice implement exception handlers and
are associated to exception throwing code through pointcuts. Because of this, the
only limitation to the types of exception handling contexts that can be defined is
the join point model of the employed aspect-oriented language.

Pluggability. An error handling aspect can be easily replaced by another error han-
dling aspect implementing different error handling strategies. This feature makes
it easy to reuse the normal code of an application or part of it across different sys-
tems. The capability of reusing the normal code separately from the error handling
code is desirable in cases where different systems require specific error handling
strategies.

Textual separationArguably, the textual separation promotediyyor Handling
Aspect (and aspect-oriented techniques in general) makes it easier to understand
how a system works. The rationale is that developers have to grasp smaller con-
ceptual units that implement specific concerns.

Additionally, Error Handling Aspect has the followindiabilities:

Textual separation In spite of the advantages of textual separation, it makes it
difficult for a developer examining the base code of an application to have a com-
plete understanding about system behavior. Getting a complete picture requires
an understanding about base code, aspects, and their often non-obvious interac-
tions. In other words, this textual separation does not promote modular reasoning.
It is often argued that tool support can help developers in overcoming this prob-
lem [Lippert and Lopes 2000], but current tools are still not mature enough.

31

SugarLoafPLoP 2007 Proceedings Writers” Workshop

¢ Inapplicability in some scenarioCurrent aspect-oriented languages cannot, in
some fairly common situations, simulate the exception handling mechanisms of
existing programming languages. The design of the base code must take this into
account and avoid these situations. Otherwiseor Handling Aspect cannot
be applied. When extracting error handling code from an object-oriented imple-
mentation in order to usérror Handling Aspect, this means that sometimes the
system has to be refactored a priori, before the exception handling can be “as-
pectized”. This subject is further discussed in the third and last items of the next
section.

e Limited integration with checked exceptiohslanguages that use checked excep-
tions, a method is required to either handle all the checked exceptions it encoun-
ters or explicitly declare those it does not in its interface. For example, the Java
compiler statically checks whether programs adhere to this rule and complains
if they do not. As a consequence, in these languagesy Handling Aspect
results in programs that are not valid, since the exception handlers are moved
from methods to handler advice. Hence, some aspect-oriented languages, such
as CaesarJ [Mezini and Ostermann 2003] and HyperJ [Tarr et al. 1999], have an
inherently limited applicability for implementingrror Handling Aspect. They
can only be used in situations where the “aspectization” of error handling results
in programs whose base (non-aspect) code does not violate the language rules for
checked exceptions. This is the case, for example, when a handler throws excep-
tions of the same type as (or a subtype of) the exceptions is catches. In this case,
the context method would already indicate in its signature that it throws the excep-
tion. AspectJ provides a workaround for this problem ca#iedeption softening
This language feature makes it possible to suppress the checks conducted by the
Java compiler in certain join points. Therefore, the ugerobr Handling Aspect
in AspectJ requires that almost all exceptions caught by handler advice become
unchecked.

e Increase in the overall program sizeln the early days of AOP, it was often
claimed that its use for structuring exception handling code would result in a re-
duction in application size [Lippert and Lopes 2000]. However, more recent stud-
ies [Bartolomei 2006, Castor Filho et al. 2006] have shown that this is only true
if error handling code is uniform and context-independent. If exception handling
code in an application is non-uniform or strongly context-dependent, reuse of han-
dler code becomes low and the number of lines of code in an application can grow
due to the implementation overhead of AOP. Moreover, the number of operations
(methods and advice) and components (aspects and classes) will almost always
grow due to the use drror Handling Aspect.

10. Implementation

In this section we discuss some implementation issues oEther Handling Aspect

design pattern. Our discussion revolves around the AOP mechanisms available in the
AspectJ language and, consequently, the exception handling model of Java. As pointed
out by Kersten [Kersten 2005], production-quality AOP languages and frameworks, such

32

SugarLoafPLoP 2007 Proceedings Writers” Workshop

as AspectJ, Spring AGPAspectWerkz, and JBoss AOP are similar in terms of the
mechanisms they support.

1. Type of handler advice to usédandler advice can be of two typeasfter andaround
Whenever possible, we recommend the usaftar advice for implementing handlers and
clean-up actions, because they are simpAdter advice are not appropriate, though, for
implementing exception handlers that have a masking behavior [Anderson and Lee 1990].
A handler has a masking behavior if it stops the propagation of the exceptions it catches.
In other words, it does not end its execution by throwing an exception, neither the one
it caught nor a new one. Several common exception handling idioms have a masking
behavior, for example, a handler that logs an exception and ignores it. AspectJ requires
that anafter advice end its execution in the same way as the join point to which it is
associated. Therefore, if the code ofafter advice is executed following the throwing

of an exception, the runtime system of the language assumes that the advice ends its
execution by throwing an exception as well.

To implement handlers that have a masking behaai@yundadvice are the only
possible choice. They are more powerful tredter advice, but impose a larger imple-
mentation overheadAroundadvice are also useful when an advice emulates the set of
exception handlers associated to a singlg block. In this case, usingfter advice re-
quires much more handwork because each such advice is triggered by only one exception.
Thus, the code to check the actual type of an exception, for the purpose of choosing the
appropriate handler, has to be written by hand. This behavior is achieved automatically
by implementing d r y- cat ch block within anaroundadvice.

2. Organizing error handling aspectsVarious approaches are possible for organizing
error handling aspects. Extreme alternatives include: (i) putting all the exception handling
code in a single aspect; (ii) creating a separate aspect for each handling strategy; or (iii)
creating one error handling aspect for each class implementing exception handling code.
In the first case, error handling is contained within a single program unit and it becomes
easier to combine similar handlers, as they are all located within the same place. However,
for medium or large systems, the aspect might end up bloated and very hard to understand
and maintain. The second case seems more reasonable but, in our experience, apparently
similar error handling strategies often include subtleties that make it impossible to com-
bine them in a single handler advice. Therefore, it might result in a very large number of
very simple error handling aspects. The third case also typically results in a large number
of very simple classes, as most classes in a system include only a few exception handlers.

A more moderate approach is to create one handler aspect for each type of ex-
ception and include in such aspects all the possible handling strategies for each exception
type. This approach is conceptually sound and works well when a system employs a
limited number of exceptions and for each such exception there are several possible han-
dling strategies. For applications that use a very large number of exceptions, it does not
scale up well. Another reasonable strategy is to create one handler aspect for each pack-
age in the application. Based on our experience, this approach scales up well in general.

http://www. springframewor k. or g/ docs/ r ef er ence/ aop. ht n
2htt p: // aspect wer kz. codehaus. or g/
Shttp://www. j boss. or g/ product s/ aop

33

SugarLoafPLoP 2007 Proceedings Writers” Workshop

For a system where other concerns have been aspectized ia pifieasible strategy is

to create one exception handling aspect per aspectized concern. Each organization has
pros and cons that revolve around the code size vs. system structuring trade-off. The
extreme approaches mentioned in the previous paragraph are usually only beneficial for
small systems or systems with very uniform error handling strategies.

Itis commonplace for the same handler advice to be associated with different parts
of a program. Depending on the way in which handler advice are organized amongst the
error handling aspects, this may result in the same advice being necessary in two or more
different aspects. The finer the granularity of these aspects, the higher the likeliness of
this scenario arising. To avoid duplicating handler advice across different error handling
aspects, one can define an abstract aspect from which these aspects inherit. The common
advice is then placed in the abstract aspect and bound to an abstract pointcut that is made
concrete by the inheriting aspects.

3. Association of handler advice to normal cod@&he ease of associating a handler ad-
vice to exception-throwing code depends on how the handler would be implemented using
only the exception handling mechanism of an object-oriented language. In Java/Aspect],
it is straightforward to associate a handler advice to normal code when the advice emu-
lates a r y- cat ch block whosé r y part surrounds the entire method body, evtele-
method r y block It is a simple matter of binding the handler advice to the execution of
the context method through @xecut i on pointcut designator. Arguably, the resulting
code is easy to understand and maintain, as it does not depend on the internals of the con-
text method. Moreover, in some cases, due to the limitations of the join point models of
existing aspect-oriented programming languages, binding handler advice to finer-grained
program elements is not possible. In the rest of this section, we assume that, ideally,
the implementation of handler advice should always aim to emulate whole-miethyod
blocks.

Albeit easy to implement, whole-method y blocks are often the target of crit-
icism [Papurt 1998]. The main argument against this idiom is that it makes it hard for a
handler to establish the cause of an error when the same exception can be thrown from
more than one place in the code. Therefore, developers often deal with exceptions more
locally. It is commonplace fot r y- cat ch blocks to be tangled within the body of a
method, surrounded by code that does not pertain to error handling. It is also a common
practice to use nested y- cat ch blocks in order to define multiple exception handling
contexts. These scenarios create some complications for the EsmoHandling As-
pect. We discuss them in the rest of this item and in the next one, which addresses nesting
of t ry- cat ch blocks.

When acat ch block ends its execution by throwing exceptions or returning (exe-
cuting ther et ur n statement), it is generally easy to implement a corresponding handler
advice and associate it to the exception-throwing code. In this scenario, it does not matter
if the t r y block surrounds a specific part of the context method or its whole body. After
handler execution, control will be passed to whoever catches the exception thrown by the
handler (in the former case) or to the calling method (in the latter). Therefore, once an ex-
ception is raised by the exception-throwing code, method execution will not be resumed
and it is safe to assume that the handler advice has a whole-mietlyotlock behav-

34

SugarLoafPLoP 2007 Proceedings Writers” Workshop

ior. Care should be taken, however, in order to avoid catcéxogptions unintentionally.
There are two cases where this solution might not apply: (i) when the same exception
can be raised by different points in the same context method and different error handling
strategies are applicable for each such point; and (ii) when there are hestdalocks.

In the situation described by item (i), the handler advice have to be associated to the spe-
cific exception-throwing statements. Otherwise, the handler advice would need to include
additional logic with the purpose of distinguishing the point in the context method from
where a caught exception was raised. Nestingrof blocks is discussed in the next item.

The following code snippet shows an example of the aforementioned scenario
written in Java and a modified version using a handler advice. Notice that, in the pure
Java version, ther y block could as well surround the whole method body. Assuming
thatm() does not include any othém y- cat ch block, the behavior of the program
would be the same.

/1 A pure Java inplenmentation. /1 An AspectJ inplenentation.
public void nm() throws E2 { /1 in a class

. public void m() throws E2 {
try { doSonet hi ngThat Thr owsE1(); .
C doSonet hi ngThat Thr owsEL() ;
} catch(El e) {

t hrow new E2(e); doSonet hi ngAft er Handl i ngEL() ;
¥ }
doSonet hi ngAft er Handl i ngEL() ; /1 in an error handling aspect
} poi nt cut pc()
execution(public void m));
declare soft : E1 : pc();

after() thromwing (EL e) : pc() {
t hrow new E2(e);

}

Exception handlers that do not execute any statement that alters the control flow of
a program are calleshaskinghandlers, because they hide the occurrence of the exception
from the rest of the program. Aat ch block that logs an exception and then ignores it
is a typical example. WheRrror Handling Aspect is being introduced in an existing
object-oriented system, masking handlers often hinder the use of the pattern because the
code that textually follows a maskirgat ch block cannot be ignored. The following
code snippet presents an example. The three shaded method calls are exception-throwing
statements that may raise exceptidrand thecat ch block masks the occurrence of
exceptiorE.

void m(){
try{
mi(); //throws E

m2(); //throws E

n8(); //throws E
tcatch(E e){ Logger.log(e); }
doSonet hi ng() ;

}

For the example above, associating a handler advice implementirgatheh
block with each exception-throwing statement individually is not an adequate solution.

35

SugarLoafPLoP 2007 Proceedings Writers” Workshop

For example, if we associated a handler advice with the caftethodn®() , after ex-
ception handling the call to metha®() would be executed. However, in the original
implementation, control should be passed to the statement followingrtiiecat ch

block, the call tadoSorret hi ng() . Binding the handler advice to the execution of con-
text method() is also not adequate. After exception handling, control would return to
the caller of() . This implies that the call tdoSonet hi ng() would not be executed.

The bottom line is: we would like to associate a handler advice to a block containing
more than one statement, just likeé ay block, instead of a single statement or a whole
method. Unfortunately, no existing aspect-oriented language includes mechanisms for
directly selecting a block of statements. If, nevertheless, it is necessary to transform the
t ry- cat ch block into a handler advice, the code has to be refactored a priori. A pos-
sible solution is to extract the code within they block to a new method and associate
the handler advice to this new method.

4. Nestedt ry blocks In order to useError Handling Aspect to implement nested

t ry- cat ch blocks, it is necessary to order the handler advice so that they simulate the
hierarchical structure dfr y blocks. In AspectJ, this can be achieved by textually order-

ing handler advice that are associated to the same exception-throwing statements. The
AspectJ weaver considers that the order in which advice appear in the body of an aspect
indicates how they are to be woven into the join point. Advice that appear first are more
internal. In aspect-oriented languages that include specific constructs to describe the order
in which advice are associated to a join point of interest, such as Jasco [Suvee et al. 2003],
the order of advice weaving can be indicated directly.

The case where all the handlers in a method either throw exceptions or return does
not differ much from the situation described in the previous item. All the handler advice
can still be associated to the execution of the context method, but they have to be ordered
so as to simulate the nestingtafy blocks. The following code snippet shows a simple
example of nestedr y blocks in Java and a corresponding AspectJ implementation where
two handler advice are associated to the same method. The lexical position of the two
advice defines the order in which they are woven into the join poinftbaelects.

36

SugarLoafPLoP 2007 Proceedings

/1 A pure Java i npl enentation.

public void nm() throws E3 {

try { ...
try { ...
throw EI1;

} catch(El e) {
doSonet hi ng() ;
t hrow new E2(e);

P
} catch(E2 e) {

Writers” Workshop

/1l in a class
public void m() throws E3 {

t hrow new E1();

-

/1 in an error handling aspect
poi ntcut pc()
execution(public void m));
declare soft : E1 : pc();
declare soft : E2 : pc();

doSonet hi ngEl se(); after() throwing (E1 e) pc() {
t hrow new E3(e); doSonet hi ng() ;
} throw new E2(e);
}
after() throwing (E2 e) pc() {

doSonet hi ngEl se();
t hrow new E3(e);

}

If any of the exception handlers does something other than throwing exceptions
or returning, things get trickier. The same issues discussed above for masking handlers
apply and are further complicated by nesting.

5. Exception softening In languages that use checked exceptions, e.g. Java, it is often
necessary to suppress the static checks performed by the compiler, in order to allow the
error handling code to be moved to an aspect. In Aspect], this is achieved by declaring
some exceptions to kmoftin the join points of interest. Exception softening affects not
only the softened exception, but all of its subtypes.

An advice associated with a certain join point is implicitly considered part of that
join point by AspectJ. Therefore, softening an excepfibim an arbitrary join point/ P
will also soften any exceptiong’, subtypes off, thrown by advice bound tdP. In
order to avoid softening exceptions by accident, as much as possible, developers should
only soften leaves in the exception type hierarchy. When this is not viable, it is necessary
to define an additional advice whose sole responsibility is to extract and throw softened
exceptions wrapped within instancesSaff t Except i on. Such advice must be associ-
ated with join points where the exceptions it throws are are not softened. This issue only
applies if E’ is a strict subtype oF (E’ # F), as it is not necessary to softéhif £’ and
E are the same exception. The following code snippet presents an example.

/1 in a class
public void m() throws SubTypeE {

t hr ow new Super TypeE() ;
}

/1 in an error handling aspect
poi ntcut nmHandl er() : execution(public void n());
decl are soft Super TypeE : nHandl er () ;
after() throwi ng (SuperTypeE e) nHandl er () {
t hrow new SubTypeE(e);

37

SugarLoafPLoP 2007 Proceedings Writers” Workshop

}
after() throwi ng (SoftException se) throws SubTypeE :

call (public void m()) {
t hrow new (SubTypeE) se. get WappedThr owabl e() ;

¥

In the exampleSuper TypeEis a supertype dbubTypeE. When an instance of
Super TypeE is thrown from withinn{() , the handler advice will catch the exeception,
wrap it with an instance cbubTypeE, and throw the latter. HoweveBuper TypeE
is softened within the execution of() , the join point with which the handler advice
Is associated. Therefore, exceptions thrown by the handler, instanSeb®f/peE in
the example, will also be softened. This will resultnG) throwing Sof t Excepti on
when it should actually be throwirfgub Ty peE. The second advice in the code snippet,
associated to calls t@() , solves this problem by extracting the instanc&obTypeE
from the instance o%of t Except i on and throwing the former.

6. Implementing clean-up actionsUsually clean-up actions$ { nal | y blocks) are im-
plemented usingfter advice. This is an appropriate solution in most of the cases, as the
two constructs have similar semantics. There is a situation, however, where the two differ.
According to the Java Language Specification [Gosling et al. 1996f,iifreal | y block

ends its execution with met ur n statement, the method of which it is part will return,
independently of whether an exception was thrown or not from the corresponding
block. As pointed out previouslgfteradvice executed after the throwing of an exception
must also throw an exception. Therefoag,ound advice are a better choice for imple-
mentingf i nal | y blocks that return. This discussion also appliesitmal | y blocks
executing loop-specific commands, suchbagak andcont i nue. These cases have
some peculiarities, however, and are briefly discussed in the next item.

7. Unsupported error handling strategiesSometimes handler advice cannot mimic the
behavior of regulat r y- cat ch blocks. This is fairly common when reengineering the
error handling code of an existing object-oriented application in order t&use Han-

dling Aspect. There are three main factors that hinder the use of the pattern: (i) the advice
cannot simulate the flow of control of a regutary- cat ch block; (i) uncaught excep-

tions in languages that use checked exceptions; and (iii) the exception handler depends
on contextual information of the exception-throwing code in a way that the employed
aspect-oriented language cannot capture. The second code snippet in Item 3 of this sec-
tion portrays a situation where it is not possible to aggigor Handling Aspect without

first redesigning the normal code. As pointed out previously, in order to simulate the
flow of control of at r y- cat ch block, aspect-oriented languages would need to support
pointcut designators for selecting blocks of code.

In CaesarJ and HyperJ, there are no mechanisms for deactivating the static checks
that the Java compiler performs for checked exceptions. Therefore, in these languages,
Error Handling Aspect can only be applied directly if the raised exceptions also appear
in thet hr ows clause of the context method. Otherwise, the program has to be modified
in order for the context methods to include the exceptions handled by handler advice in
their t hr ows clause. This limitation often implies in system-wide modifications that
severely counterbalance the benefits yielded by the pattern.

Handlers that depend on the context of the exception-throwing code in certain

38

SugarLoafPLoP 2007 Proceedings Writers” Workshop

ways are also hard to implement Bsror Handling Aspects. There are two specific
situations that should be avoided at all costs if one intends to use the pattern to struc-
ture error handling in an entire application. The first situation occurs when a handler
executes loop-specific statements, suclbasak or conti nue. To the best of our
knowledge, no existing aspect-oriented language allows an advice to include a loop-
specific statement related to a loop defined in the selected join point, i.e., outside of the
advice. This is true even in the face of recent proposals for pointcut designators that se-
lect loops [Harbulot and Gurd 2006]. The second situation to be avoided is the use of
exception handlers that depend on local variables defined by their corresponding context
methods. To the best of our knowledge, no current aspect-oriented language supports the
implementation of advice that access local variables visible at the join points to which
they are associated. Moreover, this is arguably an undesirable feature, as it is a blatant
violation of encapsulation.

11. Sample Code

In this section, we present sample code pertaining to the use of the pattern. To make the
examples more concrete, we show the applicatiokmdr Handling Aspect to some
portions of the Eclipse CVS Core Plugin. For each example of pattern use, we also show
the original, pure Java, implementation. For completeness, we also present an example of
Java code whergrror Handling Aspect cannot be applied directly.

The code snippet below shows a situation where itis trivial (and usually beneficial)
to apply the pattern. Since the entire body of methodntt ri ng() is surrounded by
at r y block, the join point of interest is the execution of the whole method. Moreover, the
handler throws an exception, which makes it possible to implement it aiexadvice in
the aspectized version (in the bottom part of the code snippet). Another factor that makes
this example simple is the type of the exception thrown by the exception-throwing code in
thet r y block. Since it is the same as the exception thrown bytitec h block, it is not
necessary to soften it because it is already declared in the interfaceoafst r i ng() .

[*x+ OBJECT- ORI ENTED | MPLEMENTATI ON - ORI G NAL ***/
public class CVSRepositorylLocation extends Pl atfornbject
i npl enents ... {
public static CVSRepositoryLocation fronString(String |ocation)
t hrows CVSException {
try { return fronString(location, false); // throws CVSException
} catch (CVSException e) {
Mul ti Status error = new Miulti Status(...);

t hr ow new CVSException(error);

}
Yo
}

The following code presents a possible applicatiokwbr Handling Aspect to
the example above.

[xx+ ASPECT- ORI ENTED | MPLEMENTATI ON - REFACTORED * **/
public class CVSRepositorylLocation extends Pl atformbject
i npl enents ... {

39

SugarLoafPLoP 2007 Proceedings Writers” Workshop

public static CVSRepositoryLocation fronString(String |ocation)
throws CVSException { return fronString(location, false); }

¥
public privil eged aspect CoreHandl er {

poi ntcut fronStringEH(String location) : args(location) &

execution(public static *» CVSRepositorylLocati on.
fronString(String));
after(String | ocation) throw ng (CVSException e)
fronStringEH(| ocation) {

Mul ti Status error = new Miulti Status(...);
oo

}

}

The next example, presented in the code snippet below, is more convoluted. Nei-
ther the execution of methateconf i gur ed() nor the exception-throwing statements
within it are adequate join points for error handling. Because of the combination of a
tangledt r y- cat ch block and a masking handler, simply associating a handler advice
to either would result in a program that does not mimic the flow of control of the original
program.

[¥+ OBJECT- ORI ENTED | MPLEMENTATI ON - ORI G NAL **x/
public class CVSTeanProvi der extends RepositoryProvider {
public void deconfigured() {
try {
/1 when a nature is renoved fromthe project, notify the
/1 synchroni zer that
Ecl i pseSynchroni zer. getl nstance(). deconfi gure(getProject(),
null); // throws CVSException
i nt er nal Set Wat chEdi t Enabl ed(null); // throws CVSException
i nt ernal Set Fet chAbsentDirectories(null); // throws CVSException
} catch(CVSException e) { CVSProviderPlugin.log(e); }
Resour ceSt at eChangeli st eners. get Li stener ().
proj ect Deconfi gured(getProject());

The following code snippet shows the solution that we employed in order to make
it possible to use the pattern. We created a new methodi f ySynchr oni zer (),
containing part of the code of methd@conf i gur ed() from the original implemen-
tation . The join point of interest for the error handling concern in this case was the
execution of this new method. We then moved the exception handling code from method
deconf i gur ed() to anaroundadvice.

[*+* ASPECT- ORI ENTED | MPLEMENTATI ON - REFACTORED ***/
public class CVSTeanProvi der extends RepositoryProvider {
public void deconfigured() {
noti fySynchroni zer();
Resour ceSt at eChangeli st eners. get Li stener ().
proj ect Deconfi gured(getProject());
}

/1l when a nature is renoved fromthe project, notify the

40

SugarLoafPLoP 2007 Proceedings Writers” Workshop

/'l synchronizer that
private void notifySynchronizer() {
... Il contents of the try block fromthe original version.
oo
}

privileged public aspect CoreHandl er {
poi ntcut notifySynchroni zer EH()
execution(private void CVSTeanProvi der. notifySynchronizer());
declare soft : CVSException : notifySynchronizerEH();
void around() : notifySynchronizerEH() {
try { proceed();
} catch (CVSException e) { CVSProviderPlugin.log(e); }

}
}

It is subject to debate whether the effect of aspectizing error handling in this ex-
ample was beneficial or harmful. On the one hand, the new method makes sense by
itself. The comment that appears in they block, which refers to the part of the
code of methoddeconf i gur ed() that was extracted, clearly showed the intent of
the lines that followed it and made it easy to name the new method. As discussed by
Fowler [Fowler 1999], the ease of naming a new method created through the “Extract
Method” refactoring is a good indicator of whether that method should have been cre-
ated. On the other hand, the original method now comprises only two statements, the
first one a call to the extracted method. This is a localized example of the “Middle
Man” [Fowler 1999] bad smell, where methd@éconf i gur ed() has no reason to be
because it simply delegates what it should be doing to other methods.

The code snippet below presents an example that includes two complicating fac-
tors: (i) thecat ch block performs an assignment to one of the local variables of the
containing method; and (ii) theat ch block is a masking handler that is associated to
multiple exception-throwing statements. Besides the complications introduced by the sec-
ond factor, a handler that performs assignments to local variables is a strong obstacle to as-
pectization. Even for a simple example such as the one below, moving the error handling
code to an aspect is infeasible unless the code is redesigned to remove any assignments
to local variables from handlers and clean-up actions. To the best of our knowledge, there
are no general solutions to this problem and workarounds involve knowledge of the inner
workings of the system. Due to these complications, we do not dppty Handling
Aspect to this example.

[*x+ OBJECT- ORI ENTED | MPLEMENTATI ON ***/
public class FileMdificationManager inplements
| Resour ceChangeli st ener {
private bool ean i sC eanUpdat e(| Resource resource) {
i f(resource.getType() != I Resource. FILE) return fal se;
| ong nodStanp = resource. get Modi ficationStanp();
Long whenWeW ot e;
try {
whenWeW ot e = (Long)resource.
get Sessi onProperty(UPDATE_TI MESTAMP) ; // throws CoreException
resour ce. set Sessi onProperty(UPDATE_TI MESTAWP,
null); //throws CoreException
} catch(CoreException e) {
CVSPr ovi der Pl ugi n. | og(e);

41

SugarLoafPLoP 2007 Proceedings Writers” Workshop

whenWeWote = nul | ;

}
return (whenWeW ot e! =nul |l && whenWeW ot e. | ongVal ue() == nodSt anmp);

}
}

12. Known Uses

Lippert and Lopes [Lippert and Lopes 2000] were the first to report to a broader audi-
ence on the use of AOP to modularize error handling. They applied the pattern to an
object-oriented framework called JWAM using an old version of AspectJ. Colyer and
Clement [Colyer and Clement 2004] employedor Handling Aspect to capture data
about component failures in a commercial middleware infrastructure. Due to application
requirements, they could encapsulate all the error handling strategies of the application
within a single abstract aspect, maximizing reuse of handler code.

Soares and coleagues [Soares et al. 2002] Bsext Handling Aspect to struc-
ture part of the exception handling code in a web-based healthcare information system
named Health Watcher. This work distinguishes itself from the ones mentioned above be-
cause the authors targeted specifically the exceptions introduced in the system by distribu-
tion and persistence concerns. In Health Watcher, these two concerns were implemented
as aspects.

Castor Filho et al [Castor Filho et al. 2006] used this pattern to structure error
handling in four different systems: (i) a web-based traveller information system; (ii)
Java Pet Stofe a well-known demo for the Java Platform, Enterprise Edition; (iii) the
CVS Core Plugin, part of the basic distribution of the Ecligskatform; and (iv) Health
Watcher [Soares et al. 2002]). The first three applications were originally object-oriented,
whereas the fourth included some concerns that were implemented a priori as aspects.
They also empirically analyzed the impact of the pattern in these four systems based on a
set of metrics for quality attributes such as coupling, cohesion, and conciseness.

13. Related Patterns

Error Handling Aspect presents some improvements overlfandler pattern, proposed

by Garcia and Rubira [Garcia and Rubira 2008&ndler leverages a meta-object proto-

col in order to promote a complete textual separation between normal code and error
handling code. One of the differences betweétamdler andError Handling Aspect is

that, in the latter, the use of aspects makes it possible to define arbitrary, both fine- and
coarse-grained, exception handling contexts. The only limitation to what can be selected
as an exception handling context is the join point model of the employed aspect-oriented
language. Moreover, the quantification capabilities of aspect-oriented languages arguably
make it easier to localize error handling code within the aspects. Also, usiriyiiie
Handling Aspect, the pointcut descriptions explicitly point out the locations where the
classes and error handling aspects interact. In a reflective solution, these interactions are
intertwined/hardcoded in the method body of meta-objects.

4http://java.sun.c:om/developer/releases/petstore/
5http://www.eclipse.org

42

SugarLoafPLoP 2007 Proceedings Writers” Workshop

The Exception Introduction pattern [Laddad 2003] leverages AOP to make new
exceptions introduced by aspect-oriented implementations of crosscutting concerns trans-
parent to the base code of an application. The pattern targets languages such as Java,
which use checked exceptions, and makes the introduced exceptions temporarily unchecked
so that they can be handled where it is more appropriaxeeption Introduction uses
Error Handling Aspect to implement the exception handlers for the introduced excep-
tions.

Many authors [Diotalevi 2004, Laddad 2003, Lippert and Lopes 2000] propose
the use of AOP for separating runtime assertion-checking code from the normal code.
This pattern can be used in combination wiiror Handling Aspect so that both error
detection and error handling code become localized within well-defined program units.
This combined solution results in normal code that is not cluttered by error detection and
handling concerns.

Haase [Haase 2002] presents a comprehensive pattern language comprising eleven
idioms to improve error handling in Java applications. We believeEhatr Handling
Aspect pattern can be combined with this pattern language, at the design level, in order
to produce a system that is more flexible and maintainable.

14. Acknowledgements

The authors thank the shepherd for this paper, Robert Hanmer, by the many interesting
comments. We are also grateful to the participants of the Writer's Workshop, specially
Jorge Ortega-Arjona and Cassiano Becker, for the positive feedback. This work was con-
ducted while Fernando was with the Institute of Computing, State University of Camp-
inas, and supported by FAPESP/Brazil, grant #02/13996-2. He is currently supported by
FAPESP/Brazil, grant #06/04976-9. Alessandro is partially supported by European Com-
mission grant IST-2-004349: European Network of Excellence on Aspect-Oriented Soft-
ware Development (AOSD-Europe), 2004-2008. Alessandro is also supported by the TAO
project, funded by Lancaster University Research Committee. Cecilia is partially sup-
ported by CNPg/Brazil, grant #351592/97-0, and by FAPESP/Brazil, grant #2004/10663-
8.

References

Anderson, T. and Lee, P. A. (199®ault Tolerance: Principles and Practic&pringer-
Verlag, 2nd edition.

Bartolomei, T. T. (2006). On modularity assessment of aspect-oriented software. Master’s
thesis, Kiel University of Applied Sciences, Kiel, Germany.

Castor Filho, F., Cacho, N., Figueiredo, E. M., Ferreira, R. M., Garcia, A., and Rubira, C.
M. F. (2006). Exceptions and aspects: The devil is in the detailBrdneedings of the
14th SIGSOFT FSHpages 152-162, Portland, USA.

Chavez, C. (2004)A Model-Driven Approach for Aspect-Oriented DesighD thesis,
Pontificia Universidade Catblica do Rio de Janeiro, Rio de Janeiro, Brazil.

Colyer, A. and Clement, A. (2004). Large-scale AOSD for middlewareRPrbteedings
of AOSD’04 pages 56—65.

43

SugarLoafPLoP 2007 Proceedings Writers” Workshop

Cristian, F. (1989). Exception handling. Dependability of Resilient ComputeBSP
Professional Books.

Cui, Q. and Gannon, J. (1992). Data-oriented exception handiiE Transactions on
Software Engineerindl8(5):393—-401.

Diotalevi, F. (2004). Contract enforcement with aop. IBM DeveloperWorks - http://www-
128.ibm.com/developerworks/library/j-ceaop!/.

Fowler, M. (1999). Refactoring: Improving the Design of Existing Codé&ddison-
Wesley.

Garcia, A., Rubira, C., Romanovsky, A., and Xu, J. (2001). A comparative study of excep-
tion handling mechanisms for building dependable object-oriented softwatenal
of Systems and Softwa9(2):197-222.

Garcia, A. and Rubira, C. M. F. (2000). An architectural-based reflective approach to
incorporating exception handling into dependable software. In Romanovsky, A. et al.,
editors,Advances in Exception Handling TechniqueNCS 2022. Springer-Verlag.

Goodenough, J. B. (1975). Exception handling: Issues and a proposed ndfatiomu-
nications of the ACM, 18(12):683—696.

Gosling, J., Joy, B., and Steele, G. (1998he Java Language SpecificatioAddison-
Wesley.

Haase, A. (2002). Java idioms: Exception handlingPtaceedings of EuroPLoP’2002
pages 41-70.

Harbulot, B. and Gurd, J. R. (2006). A join point for loops in aspectjPioceedings of
AOSD’0q pages 63—-74, Bonn, Germany.

Kersten, M. (2005). Aop tools comparison, part 1: Language mechanisms. AOPWork -
http://www-128.ibm.com/developerworks/java/library/j-aopworkl/index.html.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C. V., Loingtier, J.-M., and
Irwin, J. (1997). Aspect-oriented programming. Rroceedings of the 11th ECOOQP
pages 220-242.

Laddad, R. (2003)AspectJ in ActionManning.

Lippert, M. and Lopes, C. V. (2000). A study on exception detection and handling using
aspect-oriented programming. Rroceedings of the 22nd ICSgages 418-427.

Mezini, M. and Ostermann, K. (2003). Conquering aspects with caes&rotreedings
of the 2nd AOSDpages 90-99.

Papurt, D. M. (1998). The use of exceptiodsurnal of Object-Oriented Programming
11(2):13-17, 32.

Parnas, D. L. and Wurges, H. (1976). Response to undesired events in software systems.
In Proceedings of the 2nd ICSRages 437-446, San Francisco, USA.

Randell, B. and Xu, J. (1995). The evolution of the recovery block conce@ottware
Fault Tolerancechapter 1, pages 1-21. John Wiley Sons Ltd.

Soares, S., Laureano, E., and Borba, P. (2002). Implementing distribution and persistence
aspects with AspectJ. Rroceedings of the 17th OOPS|pages 174-190.

44

SugarLoafPLoP 2007 Proceedings Writers” Workshop

Suvee, D., Vanderperren, W., and Jonckers, V. (2003). Jamca@spect-oriented ap-
proach tailored for component-based software developmenPrdoeedings of the
AOSD’2003 pages 21-29.

Tarr, P. L., Ossher, H., Harrison, W. H., and Sutton Jr, S. M. (1999). N degrees of sep-
aration: Multi-dimensional separation of concerns.Phoceedings of the 21st ICSE
pages 107-1109.

45

SugarLoafPLoP 2007 Proceedings Writers” Workshop

Applying Scrum and Organizational Patterns to Multi-site
Software Development’

Lucas Cordeiroz, Cassiano Becker3, Raimundo Barreto®
*Departamento de Ciéncia da Computacio - Universidade Federal do Amazonas (UFAM), Brazil

3BenQ Eletroeletronica S.A, Manaus, Brazil

lcc@dcc.ufam.edu.br, cassiano.becker@beng.com, rbarreto@dcc.ufam.edu.br

Abstract. This paper describes a pattern language for managing multi-site
software projects which aims at minimizing the main problems present on the
multi-site software development context. The practices and patterns of the
proposed language were first identified from the literature and adapted
according to the authors’ experience after running some multi-site software
projects. This exercise has led to the identification of two new patterns:
“Stories Rework Subsystem”, and “Plan Bugs On a Sustainable Pace", as
well as to an alternative application of the existing “Inversion of Control”
pattern to the organizational context.

Keywords: Multi-site Software Development, Scrum Agile Methodology, Lean
Software Development, Organizational Patterns, Project Management.

1. Introduction

Large software projects are usually split into components and developed by different
teams, in some cases developed at different places. Software development projects, both
large and small, have been consistently difficult to control and manage. Recent studies
show that an average project take twice as long to do as its initial plans [Schwaber and
Beedle 2002]. Communication overhead and effort to create and update documentation
could be pointed as major sources of inefficiency behind project failures.
Communication overhead is often introduced by a mismatch in the functionalities
required by a given component and the way their development is assigned to separate
development teams. In this case, a high rate of communication among teams is
introduced, as components developed by one team depend on the services provided by
components developed by teams located at different places.

! Copyright © 2007, Lucas Cordeiro, Cassiano Becker and Raimundo Barreto. Permission is granted to
copy for the SugarLoafPLoP 2007 conference. All other rights reserved.

46

SugarLoafPLoP 2007 Proceedings Writers” Workshop

Another problem in large software projects is the increased need for
communicating requirements with a higher degree of formality. Requirements are
essentially written to describe product characteristics that are proposed in response to a
set of business needs. However, customers/users are often not completely sure of what
they want, and their mind is likely to change during the time the product is being
developed. Moreover, external forces such as competitor’s products/services may also
lead to changes or enhancements in requirements. Still, many details of what must be
produced may be found out only during product development. Therefore, the fact that
several development teams may be involved in a project with evolving user
requirements calls for practices to efficiently manage the project (feam size and
location) and embrace changes (scope flexibility), even late in the development process.

Based on this context, we describe in this paper a pattern language composed of
Scrum [Schwaber and Beedle 2002], Lean Software Development [Poppendieck and
Poppendieck 2003] and Organizational patterns [Coplien and Harrison 2004] applied to
the domain of multi-site software development. In our definition, multi-site software
development can be described essentially by characteristics as follows: (i) the project is
split into components and assigned to different development teams, (ii) teams are
physically separated and may be part of different business organizations, (iii) there is a
limited number of teams, such that a two-level hierarchy of coordination is sufficient
(between two and five in our experience) (iv) teams are able to physically meet at non-
prohibitive cost, if required.

The remainder of this paper is organized as follows: Section 2 provides an
overview of the Scrum agile methodology and Organizational patterns. Section 3
introduces the structure of a pattern language in which the proposed patterns are
included, and shows how these patterns relate to each other. Section 4 describes the
proposed patterns and finally, section 5 summarizes this paper and provides goals of
further research.

2. A Brief Look at the Agile Method and Patterns

This section looks briefly at the Scrum method and at the Organizational patterns that
were used as basis for the pattern language four our multi-site software environment.

2.1. Scrum

Scrum is a simple and straightforward approach to manage the software development
process based on the assumption that environmental (i.e. people) and technical (i.e.
technologies) variables are likely to change during the process [Schwaber and Beedle
2002]. In order to manage these variables, Scrum employs the empirical process control
model which strongly uses a feedback mechanism to monitor and adapt to the
unexpected. Scrum is composed of 14 practices and some of its main practices include:
Sprint practice which is the iteration work organized in 30-calendar-day. The Sprint
Planning practice that consists of two meetings as follows: In the first meeting, the
product backlog which contains a list of features, use cases, enhancements, and defects
of the system is refined and re-prioritized by the product owner, stakeholders and goals
for the next iteration are chosen. In the second meeting, the Scrum team figures out how
to achieve the requests and creates the sprint backlog that contains detailed tasks to be

47

SugarLoafPLoP 2007 Proceedings Writers” Workshop

accomplished in the current iteration. In the Sprint Review practice, the Scrum team
presents the results obtained at the end of each iteration by showing working software to
the product owner, customers and other stakeholders. In the Daily Scrum practice, daily
meetings are held at the same place and time with special questions to be answered by
the Scrum team.

The Scrum process consists of three roles and the responsibility of each role is
described as follows: Scrum master is the person responsible for ensuring that Scrum
values, practices and rules are followed by the Scrum team. He/she is also responsible
for mediating between management and Scrum team, as well as listening to progress
and removes block points. Product owner is the person who is officially responsible for
the project. This person creates and prioritizes the product backlog and ensures that it is
visible to everyone. He/she is also responsible for choosing the goals for the next sprint
and reviewing the system with other stakeholders at the end of every iteration.

Scrum team is responsible for working on the sprint backlog. The amount of
work that will be addressed in the sprint is solely up to the team. They must assess what
can be accomplished in the sprint during the sprint planning meeting. Therefore, the
team has the authority to make most decisions, and ask for any block points to be
removed.

2.2. Organizational Patterns

The organizational patterns described by [Coplien and Harrison 2004] can be combined
with Scrum agile methods with the purpose of structuring the software development
process of organizations. These patterns are split into four different pattern languages as
follows: The project management pattern language provides a set of patterns that
help the organization manage product development, clarify the product requirements,
coordinate project's activities, generate system builds, and keep the team focus on the
project's primary goals.

The piecemeal growth pattern language provides a set of patterns that help the
organization define the overall management structure and amount of team members per
project, ensure and maintain customer satisfaction, communicate system requirements,
and ensure a common vision for all the people involved in the product development
team. The organizational style pattern language provides a set of patterns that help
the organization eliminate project's overhead and latency, ensure that the organization
structure is compatible with the product architecture, organize work for developing
products with geographically distributed teams, ensure that market needs will be met.

The people and code pattern language provides a set of patterns that help the
organization define and keep the architecture style of the product, ensure that the
architect is materially involved in implementation, and assign feature development to
people in nontrivial projects. The software configuration management pattern
language is not part of the organizational patterns, but was integrated into the proposed
pattern language. These patterns were defined by [Berczuk 2002] and they offer patterns
that help the development team define mechanisms for managing different versions of
the work products, develop code in parallel, and identify what versions of code make up
a particular component.

48

SugarLoafPLoP 2007 Proceedings Writers” Workshop

3. The Proposed Pattern Language

As previously said, the proposed pattern language is composed by patterns identified
from languages with complementary concerns: the Scrum Methodology, Organizational
Patterns, and Software Configuration Management pattern language. Besides these, the
authors also identified from their experience the adoption of practices that pointed to
two additional patterns. The resulting pattern language diagram is depicted in Figure 1.

From the resulting set of twenty-one patterns, only a subset was elected for a full
description. These obeyed the following criteria:

e A pattern of fundamental importance to description of development process from the
multi-site and agile aspect (“Surrogate Customer”, “Code Line”, and “Integration
Build”).

® A pattern that had not yet been applied to this context before (c.f. “Inversion of
Control”).

® A proposed new pattern identified by the authors (“Stories Rework Subsystem” and
“Plan Bugs on a Sustainable Pace”).

Although a greater number of patterns from the mentioned sources could be
indeed mapped to the practices in our cases, we restricted the language to the ones
which were more illustrative of the agile and multi-site aspects. It should be noted that
these patterns are not intended to be exclusive to the multi-site development context,
and will occur in many software development efforts.

The six patterns that will be described are depicted in gray in the pattern
language diagram (see Figure 1). In the figure, the relationship PatternA—PatternB can
be read as “PatternA can exist once PatternB is in place”, that is, PatternA will find a
proper context for its application once PatternB has been applied. As an example, the
“Sprint Planning” pattern, (when the team sits to plan how to fulfill the goals selected
for the next iteration), can be applied and really makes more sense once “Scenarios
Define Problem” is in place (when the problem or product being targeted has been
decomposed in prioritized stories to be worked). In other words, the resulting context
once PatternA is applied can be understood as the initial context for PatternB as the
arrows are followed. In addition, the connections simply suggest the probability of
patterns occurring together.

Traversing the pattern language diagram vertically also provides a hint on the
patterns positioning in the flow of development activities. On the top position, the first
pattern is the “Work Queue”, which describes the initial set of problems and
requirements intended to be addressed by the iterative and incremental development
effort. Following the arrows downward will present patterns moving into the solution
domain, such as structures for the temporal organization in sprints, multi-site team
distribution and the adoption of selected configuration management practices. The
traversal concludes at the bottom with the “Integration Build” pattern, which will
eventually materialize the results of all processes, practices and tools from each different
development cycle into a concrete and valid functionality increment. The patterns are
described in the next sections, following the sequence that they appear in the diagram.

49

SugarLoafPLoP 2007 Proceedings

Writers” Workshop

Blyiork Queue
bl (Product Backlog)

¥
Bl Engage Customer
PlProduct Owner)

/

BIS rrogate
Customer (4.1) 51 Organization
Follows
'/ Location
I Sprint
PIFgature \ Revl:ew
Assignment
P Conway's
/ Law
Bl Scenarios \
Define
Prablem Bl Subsystem *
by Skill ®'Named
/ \ Stable Bases
Stories Rework O o
Subsystem (4.2) Sprint
Planning ¥
¥ Code Line (4.4)
(Code Ownership)
/ ‘|
|
|
¥
Inversion of Pl Sprint ¥ Task \
Control (4.3) Branch ||
|
IR |
- I !
BIE oy Roles / llJ \ \

I
[—
Flan Bugs on

\ |
|
|
: ¥l Stand-up
Sustainable Pl Firewall | \

Meeting \
Pace (4.6) ‘ ® Daily Scrum) | M‘\‘ v
Integration

Build (4.5)

Figure 1. Proposed Pattern Language Structure. Patterns marked with [a]
belong to Organization Patterns, [b] to Scrum and [c] to Software Configuration
Management Patterns.

50

SugarLoafPLoP 2007 Proceedings Writers” Workshop

4. Patterns for Multi-site Software Development

This section is concerned with describing the patterns presented in section 3 in the
following way: the context in which the pattern is applied, the problem that the pattern
will solve, the forces that limit the pattern application, the solution of the problem, the
related patterns, known uses and finally the resulting context that shows what happens if
the solution is applied. The stars after the pattern name indicate the confidence level for
the pattern in the multi-site environment. Moreover, we also indicate the pattern origin
as follows: “O.P.” (Organizational Patterns), “C.M.” (Configuration Management
Patterns), and “Authors” (the patterns proposed by the authors).

4.1. [**] Surrogate Customer [O.P.]
Alias: Surrogate Product Owner, Feature Leader
Context:

In a project adopting the Scrum methodology, the Product Owner is a central figure. He
is the ultimate reference for product content, and his inputs are a major influence on the
work performed at each sprint. For larger projects, however, when developed in a multi-
site configuration, a single central Product Owner is not likely to be able to respond
to all the demand generated by the distributed development teams to a satisfactory
level of detail.

Problem:

Agile projects rely on close interaction with the customer. Feedback is required at least
at each Sprint review and Release planning, but is encouraged to occur throughout the
sprint course. With the communication boundaries introduced in multi-site projects,
how to maximize information flow and feedback from customers to developers?

Forces:

e The development teams cannot take advantage of constant multi-mode
communication channels due to their physical separation.

e Practical solutions usually involve round-trips from requirements to implementation
in order to meet time and knowledge constraints.

e Domain knowledge cannot be expected to be fully available in the development
team.

e Depending on the project nature (a new solution), a customer might not even exist
yet.

e The product owner or customer might not have the necessary available time or
detailed knowledge to interact with the development team.

Solution:

Software system functionalities should be split and grouped into features. A “Feature
Leader” role is then defined, and will represent the product owner to all teams involved
in the implementation of his/her feature set. The set of Feature Leaders can take
advantage of closer interaction with the “master” product owner and at the same time
will support the remote development teams in specification and decision making in the

51

SugarLoafPLoP 2007 Proceedings Writers” Workshop

sprint planning and throughout its development. The Feature Leader role will influence
the development by:

® Defining stories and use case models: Stories and their prioritization are the
customer’s main contribution to the project in an agile environment. In a multi-site
organization, the feature leader will provide more specialized support, in the
subsystem or feature level than the product owner.

e Splitting stories: some stories, after their initial estimation, are found to exceed the
capacity left for the iteration at hand. The Feature Leader will be able to help
establish case by case criteria for decomposing the story (see description in Scenarios
Refactor Subsystem).

e Establishing and deciding against trade-offs: when considering different design and
implementation for fulfilling a given story, a set of solutions will present different
balances on product quality. Although trade-offs might have been laid out clearly at
the product-wide level, there might be specific local decisions to consider separately.

e Help establish a domain language: which represents the problem, concepts and
solution at hand and which is understandable for both the developer and customer,
enabling true two-way communication.

¢ Providing story acceptance criteria: Defining tests based on real examples for happy-
path flows. Additionally, running and looking at partial software releases will usually
provide valuable feedback.

Figure 2 describes how a solution for multi-site Scrum teams was proposed in
projects the authors participated. In such a set-up, selected team members in the central
Product Team were all co-located, and while engaging in ordinary team member
activities at that level, acted as Product Owners for the separated subsystem teams.

—
~-~._ communication

~
RS

_.--1 Product
Owner

~
~
~
N

Scrum Prod UCt AN
Master Team |
Q Team . /,’
. - Member Tl L
S~ e acts as -] :’v:\
-.___ | Surrogate T AN
w{ Product [~ \
Owner '
Subsystem !
Team ,

Team
Member

Figure 2. Surrogate Product Owner in a Multi-site Scrum setup

52

SugarLoafPLoP 2007 Proceedings Writers” Workshop

Related Patterns:

The “Product Owner” role, summarized before in this article, and the “Engage
Customer” pattern are more general patterns which first described the need for closer
interaction and feedback from the customer throughout the entire duration of the
development cycle in agile environments.

Resulting Context:

Increased Feature Leader participation raises product perceived integrity, as the stories
implemented benefit from a synthesis of the interaction and feedback between the
feature leader and the developer.

Developers gain the possibility to discuss and clarify actual design and implementation
alternatives in light of product-wide trade-offs. The creation of a common domain
language representation is facilitated and is likely to emerge more naturally as a result of
the discussions between the Feature Leader and the developer.

However, care must be taken not to over-interact with the development team and cause
undesired congestion effects. These would result from an overflow or new requests or
changes due to reconsideration, if within a given sprint. In that case, the “Firewall”
pattern should be considered.

4.2, [**] Stories Rework Subsystems [Authors]
Context:

In multi-site project, different teams at separated locations will usually define and be
assigned different subsystems (see patterns “Conway’s Law” and “Organization Follows
Location”). For a new story to be fulfilled, usually changes and additional functionalities
must be implemented in more than one subsystem (see pattern:” Subsystem by Skill”).

Furthermore, when an agile process is applied, stories or feature increments must be
integrated and tested in the period of one time limited iteration. In the above
configuration, a tension will generally appear between the goals posed by a system-
wide increment and the goals that each subsystem team is likely to identify as most
important when looking only to their restricted scope.

Problem:

How to coordinate goals and tasks as viewed from the subsystem team standpoint so
that the system evolves as a whole and is integrated to fulfill product-wide stories within
a given iteration?

Forces:

® An integrated version of working software is expected to be available at the end of
each time-limited iteration. Within the course of the iteration, the teams have to make
a decision on where to invest their effort at each moment, if on the evolution of the
system, on or its stabilization for the integration.

e In a structure defined with “Subsystem per Skills”, a separated team will tend to
optimize the responsibilities assigned to their components. This will often conflict

53

SugarLoafPLoP 2007 Proceedings Writers” Workshop

with the goals of the whole system for that iteration, which depends on the
integration of the functionalities of each subsystem for a given story.

e The problem of suboptimization [Principia] is present: “When you try to optimize the
global outcome for a system consisting of distinct subsystems (...), you might try to
do this by optimizing the result for each of the subsystems separately. This is called
“suboptimization”. The principle of suboptimization states that suboptimization in
general does not lead to global optimization.”

e The more separated or independent the teams working in the system for a given
iteration are, more pronounced these forces will be.

Solution:

Introduce the notion to both subsystem and central teams that a level of rework should
be expected on their subsystems because of the division of the project in sprints. A
(perhaps too) simple analogy to this principle is the practice of fencing around a new
construction building. The fence will be torn down before the building gets inaugurated,
but it is the fencing that allows the construction work to proceed in a controlled way,
better integrating the construction to the surrounding environment while work proceeds.
Therefore, rework in this case should be understood as activities or code that is
produced during the sprint, but which will not be present in the final releases of the
product.

From the standpoint of subsystem teams, these activities will usually come in the
form of local deviations from what the responsibilities of that subsystem would ideally
imply if that subsystem would be the only one being developed. In practice, these local
concessions are ultimately caused by the need to converge to integrated stories at the
end of each iteration. Examples of activities that could be understood as dimensions of
rework are next described:

e Splitting Stories: depending on the story estimates and on the load of each subsystem
team in the iteration, a given story can be split to still fit the current iteration. It could
be that the amount of work necessary for the split stories is greater than the work for
the original [Cohn 2005] provides valuable advice for establishing splitting criteria.

e Splitting Across Data Boundaries: for example, selecting a subset of fields supported
for a given form.

e Splitting On Operational Boundaries: for example, selecting a smaller number of
operations (CRUD - create, update, delete) or more simple conditions.

e Postponing Cross-Cutting Concerns: for example, leaving out logging, error
handling, or security treatment for the iteration being planned.

e Not meeting performance requirements: postponing non-functional requirement
aspects.

Because each of these items will probably have to be revisited when the
remaining scope is reconsidered, and because there is at least a small volume of code
adaptation exclusive to the splitting, these practices might be interpreted as a source of
rework. On the other hand, for many larger stories, splitting will be indeed the most
efficient way to keep complexity and risk under control.

54

SugarLoafPLoP 2007 Proceedings Writers” Workshop

Coding stubs and mock objects in order to compensate for the absence of
subsystem functionality might also be interpreted as unnecessary work for the goals of a
given subsystem. Mock objects or stub interface implementations might be interpreted
as “inventory” effort, as they will not eventually make it as functionality for that given
subsystem. However, when seen from the whole, having such mock objects timely
available to other subsystems might be essential for allowing the rest of the system to
grow optimally.

Therefore, in order to enable incremental integration to happen in a multi-
site project environment, the notion that subsystems should expect a level of rework
between iterations should be introduced. Project management instruments and
measurement tools should be adapted to accommodate for those aspects, for example,
acknowledging each local concession causing local under-optimization to the affected
team, and focusing measurement on overall progress and performance, rather than local.
[Poppendieck 2003] provides good analysis and recommendation on contractual issues
that arise in an agile environment.

Related Patterns:

e The “Work Split”, “Named Stable Bases” and “Incremental Integration” patterns and
the “Thin Slice Story Writing” approach, all describe situations and techniques
applicable for incremental and iterative methods that focus on optimizing
development output in an environment with complexity and uncertainty

e “Architect Controls Product” has been proposed as a promoter of consensus and
conceptual integrity. It acts as a central role that looks at how the subsystems and
teams involved in the current iteration can integrate for best fulfilling the goals
selected. This integrating role takes the lead for facilitating each subsystem team to
see, within their own subsystem, what compromises they can identify so that the
stories as a whole are optimized, even if this means subsystem increments depart
from ideal. “Surrogate Product Owner” might also fulfill this need, if discussions
focus on the splitting of stories between iterations.

e The “Subsystem by Skill” pattern describes a common organizational pattern where
“Stories Rework Subsystem” is likely to appear.

Resulting Context:

In a multi-site configuration, having this notion included in the planning and design of
solutions at each iteration is a condition for achieving patterns “Named stable bases”
and “Incremental integration”. Blind denial or avoidance the notion of rework might
lead to poor strategies for identifying goals that are manageable within an iteration, and
can the prevent system from growing efficiently while maintaining close integration
points.

The rework resulting from the compromises taken in each subsystem in a given
iteration will have to be considered and re-estimated on the following iterations,
reinforcing the need for adaptive planning. Within the limits of a single subsystem and a
given iteration, such activities are not generally considered as rework, and are instead
understood as regular refactoring.

55

SugarLoafPLoP 2007 Proceedings Writers” Workshop

Also important to take into account, the implications for the measures of
performance and quality should be focused first on the feature as a whole, and only
secondarily on the performance of each subsystem. Otherwise, subsystem teams will
perceive a stronger incentive to optimize their characteristics, which will lead to sub-
optimization.

Typical roles that should benefit from the awareness of this pattern are the ones
involved in the planning of features at the beginning of each sprint (mostly Scrum
Master, Architect and representatives of each distributed team in the planning session).
By acknowledging that some level of sub-optimization (in this context that means
rework between iterations) is natural and might even be required for the optimization of
the system as a whole, conflicting situations might have their causes recognized and
discussed more productively.

The more predictable the project is (especially in technology and requirements),
the less intermediate integration points will it need, and more work will be able to be
performed by teams in parallel, leading to ideally minimum rework. However, for less
predicable projects, where a more iterative and adaptive approach is more appropriate,
allowing and accounting for rework activities as described in this pattern is likely to lead
to increased overall efficiency and lowered risk.

Known uses:

e The lean principle “See the Whole” from [Poppendieck 2003] emphasizes the
importance of carefully choosing system-wide variables to measure and optimize,
while stating that this will often be accompanied by a relaxation on performance at
the local (subsystem) level.

e [Lehman 2000] in his multi-year studies on software evolution proposes eight laws
for software evolution planning and management. His “Second Law: Growing
Complexity” states that “As an E-type system is evolved, its complexity increases
unless work is done to maintain or reduce it” and introduces the notions of
Progressive and Anti-regressive work. The rational behind the need for anti-
regressive work is closely related to the context and solution here presented.

e The practices of refactoring, as well as the use of stubs and mock objects, are well
established in agile software development. They share the notion of work that is
revisited or discarded as iterations evolve.

4.3. [*] Inversion of Control [Authors]
Aliases: Don’t Call Us We Call You
Context:

In a multi-site organization, communicating and assuring understanding of desired
product characteristics to development teams is further complicated by the added
communication boundaries. The Product Owner is the ultimate responsible for deciding
and prioritizing the stories which make up the solution to the problem. However,
depending on the size of the project, a number of details that will eventually affect the
perceived integrity of the product are likely to pop up during development, and cannot
be expected to be foreseen or discussed with a central product owner timely enough.

56

SugarLoafPLoP 2007 Proceedings Writers” Workshop

If “Surrogate Customer” is applied, as described in this article, the overall team structure
is scaled-up and a communication channel for product characteristics can be established
between the central product team (see Figure 2) and the subsystem teams.

If a degree of detailed specifications are expected for each selected feature during
each sprint, this can easily become a bottleneck in the timeframe of a given iteration.
The separation of teams occurring in a multi-site environment makes this problem even
more important.

Problem:

How to communicate desired product or feature functionality to distributed teams in an
agile context, where the selection of stories to be worked is decided at each iteration?

Forces:
e Users and customers are not able to completely state exactly what they want.

e Even if the software developers know all the requirements, many of the details they
need to develop the software become clear only as they develop the system.

e Even if all the details could be known up front, it is difficult for a developer to absorb
in productive way that many details.

e Even if we could understand all the details, product and project changes occur.

While the software development literature has produced extensive
recommendations on the characteristics of well written requirements (concrete, testable,
realizable), achieving this in practice is usually easier said than done. Customer state
that describing requirements takes too much of their time, and developers often find that
they lack in detail or are ambiguous.

Solution:

The pattern “Inversion of Control” has been proposed by [Fowler 2004] as an object
oriented design pattern for web application frameworks, in order to eliminate unwanted
dependencies in the wiring between framework and application components. In our
multi-site and organizational context, the “Inversion of Control” analogy is suggested to
describe the way requirements activities can be alternatively handled between the
product definition team (Product Owners and it surrogates) and the distributed
subsystem development teams.

The solution consists of having the implementing team responsible to
continuously refine and revise requirements and solution specification in the format and
level of detail of their preference (story writing, acceptance tests, schema matrices,
verbal and prose descriptions, diagrams). Documentation should only be produced to the
level of detail and formality which helps in the communication of the problem and its
proposed solution. More recently, developers and analysts have found a reason to move
further into each other’s territory in order to cause their language to overlap on top of
common domain knowledge representation.

Also, another contribution from agile methods is to promote acceptance tests as
the preferred format for requirements. Acceptance test are usually easier to write than
requirements because they are based on concrete cases and are written by example,

57

SugarLoafPLoP 2007 Proceedings Writers” Workshop

which also helps eliminate ambiguity. If tests are written in such a way that they allow
for automatic execution, they will also provide for instant feedback and progress
measurement.

In the “Inversion of Control” pattern, a typical flow of information between the
customer and the development team could be described as follows:

1) The Product Owner and its surrogates are initially involved in laying out the initial
story description, establishing the prioritization of the quality dimensions, providing
examples of happy path tests, and occasionally pointing to existing external standards
where applicable.

2) Based on the initial conversation and a subset of the information above, the
development team can analyze the problem and write an initial proposal for the solution.
In the process of analyzing and proposing a solution, the development team will be in a
better position to provide estimates and propose simplifying or splitting criteria in case
the estimates values or uncertainty level is too high. If a Ul interface prototype has not
been given, a sketch can be proposed.

3) The first requirements-analysis-design-validation micro-cycle can be closed a few
days after the start of each iteration, when both the developers and product owner
surrogates meet to review and discuss with the help of the support material produced.

4) During the course of the sprint, details, alternative flows and corner cases will be
identified. The development team is encouraged to constantly feedback its findings and
doubts to be revised by the product owners. Each doubt or limitation raised during the
sprint refinement can be either accepted as part of the solution space provided or can be
fed back to the product backlog in order to be addressed in a further sprint.

Related Patterns:

e “Surrogate Customer”, in this article, established the organizational roles on top of
which this solution can be applied.

e “Community of Trust” is a pre-condition for the shift in the division of labor in the
requirements elicitation and solution creation between product owners and
developers to be effective.

Resulting Context:
When “Inversion of Control” is applied to multi-site requirements communication:

¢ The proposed solution will naturally include the judgment and limitations seen by the
implementing team for that iteration (could be reworked on a further it).

¢ Documentation effort will be prioritized only to the efficient and necessary level of
detail and formality which is relevant for the development in the iteration.

e The process of refining the requirements will allow for better estimates and will
increase the engagement from the implementing team.

e FEarly analysis will cause the development team to raise and communicate their
external dependencies to other subsystems.

Risks and downsides:

58

SugarLoafPLoP 2007 Proceedings Writers” Workshop

Over reliance on the inversion proposed in this pattern has its danger. The Product
Owner role has the ultimate knowledge and responsibility over the problem domain.
That is, at least the problem description, major constraints and trade-off dimensions
have to be clearly set out by the customer team at the beginning of each iteration,
otherwise the expected bootstrapping for the solution might be at risk. As potential risks
to the application of this pattern, the following items could be pointed:

1) Having the implementing team to deal with documentation requires analysis
capability, which cannot be taken for granted in all teams. In larger projects, however,
we felt that a higher number of individuals was willing to step in explore these skills.
This was sometimes even felt as a factor of motivation for those individuals inclined.

2) The idea of writing documentation is likely to cause discomfort in an agile
environment, and to accommodate for that, the notion of flexibility in both the format
and level of detail in the artifacts was introduced. Content produced focused on detailing
practical limits, exceptional cases, points of variance and screen refinements; all points
that developers felt was key to their technical decisions.

3) The boundary between eliciting requirements and solution providing has to be
agreed between product owners (and it surrogates) with developers so that decision
making is balanced to the level of detail each side has condition to provide. To the
extent of our experience, this balance point varies with team composition, the degree of
novelty (uncertainty) of the requirement being worked, and the level of trust between
teams. Therefore, for this shifting in balance to be effective, it is necessary that
“Community of Trust” [Organizational Patterns] be assured, which is a risk to be
analyzed and mitigated in a multi-site (or multi-company) environment.

4.4. [***] Codeline [C.M.]
Context:

Large software systems are usually split into components or subsystems and developed
by development teams that may be located at different places. Each development team is
responsible for a couple of components or subsystems. They have their own software
processes and tools to deal with software configuration management [Louzado and
Cordeiro 2005]. Each development team has to implement system tasks (e.g., implement
or enhance a requirement and fix a bug) and should not disrupt the activities of other
development teams.

Problem:

Components or subsystems making up the system have dependencies, i.e., component B
needs the services provided by component A. Changes in the interface or semantics of a
component may affect other components of the system. As the components are
developed by different development teams, how to keep them synchronized?

Forces:

e Development teams involved in the system development process have different
software processes and tools to deal with software configuration management.

e The partition of the system functionalities into components is likely to cause
dependencies among components.

59

SugarLoafPLoP 2007 Proceedings Writers” Workshop

e The allocation of these components among different development teams is likely to
require a high rate of communication among development teams.

® The work of different development teams must be integrated at least once a week in
order to provide feedback on the system functionalities to the customer/user.

Solution:

Components that have dependencies should be allocated to the same development team
or at least be allocated to the development teams that are at the same place and/or time
zone. Different codelines should be created, one for each development team in order to
isolate changes and do not disrupt the work of other development teams. Another
development line, called here mainline, should also be created to allow the development
teams to integrate their components and generate new system builds. Interface or
semantics changes in components must be communicated in advance through the
weekly meetings. If describing information is required, then the development team
should create an artifact that helps other development teams adapt to the change.

Related Patterns:

e The “Mainline” pattern [Berczuk and Appleton 2002] is applied when there are many
people to develop a product and merging must be kept as low as possible. Therefore,
it describes a mechanism to keep the number of active development line to a
manageable set.

e The “Active Development Line” [Berczuk and Appleton 2002] pattern is applied to
developers that want to integrate and test their changes very often during the
development process. Therefore, it describes a mechanism to create an active
development line by keeping a rapidly evolving development line stable enough to
developers.

Known Uses:

¢ The mainline pattern used by [Louzado and Cordeiro 2005] in a multi-site software
development project creates different codelines (one for each partner) and assigns a
codeline policy. Moreover, there is a mainline that allows the build manager to
integrate the components and generate new system builds.

® An agile codeline management proposed by [Berczuk 2003] creates codeline
structures that isolate the components that need to be kept stable from those that are
in active development. He also associates policies (how the codeline should be used)
for each codeline that is created during the project lifetime.

e The codeline practice proposed by [Wingerd and Seiwald 1998] instantiates this
pattern by assigning to each codeline an owner and a policy. They also create a
mainline which provides an ultimate destination for changes (e.g., bug fixing, new
features) and represents the linear evolution of the software product.

Resulting Context:

Components are grouped into subsystems. Each subsystem is allocated to a development
team. Still, there may remain dependencies among subsystems as a higher layer requires
services provided by lower layers. Therefore, after creating the codelines, each
development team is able to work on its own development line without disrupting the

60

SugarLoafPLoP 2007 Proceedings Writers” Workshop

work of other development teams. The weekly meetings make it possible to synchronize
the teams and improve communication. Weekly meetings enables planning which
system functionalities, enhancements and bug fixing will be part of the next delivery.
On a weekly basis, each development team delivers code to a build manager who is
responsible for generating new versions of the system. Each team delivery comes with
release notes that states what artifacts have been developed.

4.5, [***] Integration Build [C.M.]
Context:

The software is split into components and developed by teams, at different rates. Each
development team is composed by several developers that are responsible for a set of
systems requirements. Each developer works on its own private workspace and is
isolated from the work of other developers [Louzado and Cordeiro 2005]. On the other
hand, working software is expected to be delivered on a frequent basis to
customers/users. Therefore, a means for integrating code frequently is needed with the
purpose of reducing integration problems and providing early feedback to customers.

Problem:

There are several developers working on the production of the software. One developer
may depend on the work of another developer. If both developers take long without
integrating their code (components) into the product codeline, the number of integration
problems might increase substantially. These occur because the system code evolves
during the time between the task creation and completion. In this scenario, several tasks
are integrated into the main trunk and the code in which the team members started
working is different from the code currently available in the main trunk. How to
coordinate the contribution from subsystem teams so that changes in one subsystem are
integrated in a controlled way, while keeping development pace?

Forces:

e Software integration should occur very often in order to reduce integration problems
and provide frequent feedback to customers/users.

e If developers integrate code and generate product builds very often then there is the
possibility to spend more time integrating than developing code.

¢ The most important software functionalities must be implemented and integrated as
earlier as possible during the development process in order to provide feedback to
customers/users.

e Software development takes months to be accomplished and if it is integrated very
often, stable versions of the system should be uniquely identified.

Solution:

Each development team should have a unique window to deliver and integrate the code
into the product codeline. For a large system, both daily builds may take place on the
codeline of each development team, as well as should one product build per week. For
each weekly delivery carried out by the development teams, they should assign a tag in

61

SugarLoafPLoP 2007 Proceedings

their codeline and provide the release notes. In addition, they should solve the
integration problems that may take place during the integration process.

When different teams share a product codeline, “Integration Build” provides
most benefits when performed in a strict sequential mode. That is, only one subsystem
team integrates its changes into the main codeline at a time, even if their components
logically/physically separated from the remaining subsystems. Only after code
increments introduced by one subsystem team are integrated into the product codeline
should the next subsystem team by allowed to integrate its contribution. Integration in
this sense is typically composed by: (i) check-out (update) of latest version from product
codeline (ii) merging it with local changes in the workspace (iii) building and sanity-
testing of merged version in the workspace (iv) check-in of integrated version on the
product codeline. For the last activity, each development team can appoint an integrator
to be responsible for integrating the team’s code into the project’s mainline (see
Codeline pattern). Figure 3 describes a typical workflow with sequential integration.

SS1 SS1 §82 SS2 integration O integration token
updates checks in updates checks in is blocked fegration toke
locked locked locked P Product codeline

isss O
Task updates
creation

(iv) SS3
checks in

Susbsytem3
P codeline

(i)

tests

SS3 code evolves

Figure 3. Sequential Integration

Moreover, specific dates/times can be assigned to each development team in
order for the integration process to take place. Therefore, this sequential integration
always allows a latest version of the system to be regularly identified. It is important to
emphasize that the sequential integration does not imply that the development team
cannot integrate the latest version of the code in its own codeline.

Related Patterns:

e The “Integration Build” pattern [Berczuk and Appleton 2002] is applied when it is
necessary to make sure that components work together in an iterative and incremental
approach. Therefore, it allows developers to frequently integrate their code by doing
an integration build periodically.

e The “Named Stable Bases” pattern is needed when developers want to integrate
software frequently with the purpose of keeping stability and progress. Therefore, it

62

Writers” Workshop

SugarLoafPLoP 2007 Proceedings Writers” Workshop

describes a mechanism to give the stable system a name by which developers can
work against.

e The “Build Prototypes” pattern is applied when requirements and design decision
must be verified in order to reduce the risk of wasted cost and missed expectations.
Therefore, it provides mechanisms to build prototype whose purpose is to help
validate requirements and assess risks.

Known Uses:

¢ The integration build described by [Louzado and Cordeiro 2005] instantiates this
pattern by adopting an “integration by stage” approach which provides a progressive
integration of the product.

¢ The incremental integration proposed by [Berczuk 1996] provides a mechanism to
allow developers to build the software periodically. This periodic build is also
checked for interface compatibility and testing. Therefore, it encourages developers
to build from the latest software release and provide time to fix incompatibilities.

e The continuous integration described by [Beck 1999] instantiate this pattern to
allow developers to integrate and release code into the repository every few hours.
One developer integrates at any time and it takes place only when all unit tests have
passed or a smaller piece of the functionality is implemented.

Resulting Context:

If this sequential integration process is adopted in the project, i.e. if one development
team has a specific date/time on the week to integrate the code that do not happen at the
same date/time of another development team then integration problems may
substantially be reduced. Another important benefit is that as the software is built on a
weekly basis then it can provide great feedback to customer/users that need working
software to clarify system requirements. The software that is produced on a weekly basis
receives a unique identification that helps developers identify stable versions of the
system. In addition, it allows customers/users to validate only stable versions of the
system.

4.6. [***] Plan Bugs on a Sustainable Pace [Authors]
Context:

During the sprint planning, each team member decides which system’s functionalities
he/she will implement for the next sprint. The system’s functionalities are decomposed
into activities and are estimated by the team members. At the end of the sprint, the
system’s functionalities (product backlog items) that were committed to that sprint
should be fulfilled by team members in order to be demonstrated to high-level
management and customers. The builds generated during the sprint are tested during the
same period in order to ensure the product’s quality. Therefore, a number of bugs are
likely to be found by the test team for the system’s functionalities that were
implemented in previous or in the current sprint.

Problem:

63

SugarLoafPLoP 2007 Proceedings Writers” Workshop

The test team is constantly testing and identifying bugs, which are added to an existing
unsolved bugs list found in previous iterations. Depending on the bugs’ criticality, the
team members are expected to solve them as soon as possible in order to ensure the
product quality. But as team members are committed to the activities of the current
sprint, how will they manage to fix these bugs and at the same time ensure that the
committed activities will be fulfilled at the end of the sprint?

Forces:

® The global software builds are generated and tested on a weekly basis. The bugs are
created and assigned directly to the responsible person through a collaborative
development environment tool (CDE).

e The team member responsible for the functionality in which the bug was found
should not be interrupted so often because he/she has to complete the activities that
were committed to the current sprint.

e The bug that was found at a given functionality might be so important to the
customer that it acquires a higher priority than the other activities which are currently
running. Therefore, this bug should be fixed as soon as possible by the responsible
team member.

e The bug that was found at a given functionality might also impact other important
functionalities or might affect the whole system. Therefore, this bug should acquire a
higher priority than the other activities which are currently running.

¢ The development team implements new features in the current sprint and at the same
time, it must keep the bug rate as low as possible.

Solution:

Introduce a bug planning process in order to control and manage the product’s bugs and
avoid project’s interruptions. In this process, the test team provides the most critical
bugs for each system’s component. After that, each feature leader (see Surrogate
Customer pattern) reviews the critical bugs, selects them based on the criticality, and
informs the project leader. Then the project leader communicates the bugs to be fixed to
the development teams. Each development team evaluates the list of bugs and informs
to the project leader if the bugs will be fixed in the current sprint. This process is
cyclical and its frequency can be higher than the sprint time, as effort for fixing a bug is
typically lower than the effort for implementing a new feature. For sprints of one month,
the recommended frequency is once a week. Also, as the software builds are generated
and tested on a weekly basis (following “Integration Build”), it makes sense for the bug
planning process to take place on a weekly basis (sustainable pace). When planning, the
bugs, priorities, status, and deadlines should be defined by the project leader or by the
person responsible for the feature in which that bug belongs.

The priority may be classified as critical, high, medium, and low. The priority
level of the bug is according to the feature’s importance and the amount of test cases
that are blocked because of this bug. In addition, the status of the bug may be classified
as new, started, reopened, resolved, and closed. After planning the bugs, the leader of
each development team involved in the project should analyze if the bugs that are
planned can be fulfilled given the workload of its team members. If the bugs can be

64

SugarLoafPLoP 2007 Proceedings Writers” Workshop

fixed without compromising the goals committed to the current sprint then the leader
sends an e-mail informing that all the bugs are accepted. Otherwise, he/she commits
only the bugs that his/her team will be able to fix and deliver, taking into account
supporting information as priority, effort and risk. It is of utmost importance that
planning and bug-fixing be kept to a sustainable pace during project’s sprint. Frequent
overtime is usually considered a symptom of serious problems in a team. Therefore, if
bugs are planned frequently and according to the team’ workload, overtime is
substantially reduced. As a result, the correct application of this pattern may contribute
to higher code quality as well as happier, more creative, and healthier team.

It is important to emphasize that in case the bug is committed during the bug
planning but not delivered on the specified deadline, then the leader of the team should
explain the reason why the bug was not fixed and delivered. This situation should not be
common, but can take place if the subsystem team does not investigate enough in detail
or if it is not able to easily reproduce the bug before it commits to it.

Related Patterns:

e The “Don’t Interrupt an Interrupt” pattern can be used when someone is already
working in “interrupt mode” on a critical issue of the project. Therefore, this pattern
advises that the person who is working on this issue should continue handling it
before moving on to the new one.

Known Uses:

e The bug planning described by [Churchville 2006] provides a mechanism to plan
bugs in distributed software development projects by defining the risk, frequency,
and severity. According to the [Churchville 2006], bugs with high-risk fix, low
frequency and severity may not be fixed earlier in the project iterations. Nevertheless,
bugs with high severity have always high priority to be fixed. Therefore, for each bug
to be fixed, the person who plans the bug should evaluate if the bug fixing provides
benefits. On the other hand, the bug fixing should be carried out later in the project.

e The test scripts technique used by [Fowler 2006] represent another approach to plan
bugs during the project’s iteration. In this scenario, the test scripts are written out
before the start of the iteration by a system analyst/tester. These test scripts are
written out based on the customer’s requirements that should be implemented for a
given iteration. During the iteration, regular builds are generated which allows the
customer to correct misunderstandings as well as refine their own understandings. As
the builds are generated, the customer runs the software and spot the bugs found in
the system. After that, the bugs pointed out by the customer are fixed in the same
iteration depending on the bug criticality.

Resulting Context:

If the “Plan Bugs on a Sustainable Pace” is adopted, then the goals committed to the
sprint by the development teams have a higher probability of being fulfilled. In addition,
this bug planning ensures that critical bugs are fixed during the sprint and consequently
it keeps the product’s quality as high as possible. Therefore, the zero-defect policy is
usually not achieved during the sprints. The zero defect policy requires a high effort to
fix the bugs which might directly impact the sprint goals. Nevertheless, the software’s

65

SugarLoafPLoP 2007 Proceedings Writers” Workshop

bugs should be prioritized according to the features importance, and the decision to
work on them should be evaluated in each project’s sprint.

Another important result of the application of this pattern is that when the team
leader commits the bug then he/she allocates developers to fix it and ensure that the bug
will be fixed and delivered as promised at the beginning of the bug planning. Therefore,
the development teams concentrate on fixing the bug while carrying out the sprint’s
activities. Another result is that when a critical bug is found by the test team but not
planned, then the development team responsible for that bug is not interrupted to fix it.

5. Conclusions

This paper presented an application of the Scrum methodology, Lean software
development, as well as Organizational patterns in the context of multi-site software
development. This paper describes the application of six selected patterns, with two of
them being proposed as new patterns (“Plan Bugs on a Sustainable Pace” and “Stories
Rework Subsystem™) and one as an alternative application of an existing pattern
(“Inversion of Control”). The first proposed pattern “Plan Bugs on a Sustainable
Pace” is applied when the project is composed of several project’s issues and the level
of interruption is very high. Therefore, this pattern describes mechanisms to plan bugs
on a sustainable pace in order to control and manage the product’s quality and avoid
project’s interruptions.

The second proposed pattern “Stories Rework Subsystem” is applied when
development teams are separated by layer (as in pattern "Subsystem by Skill") and
stories or feature increments must be integrated and tested within one time limited
iteration. Therefore, this pattern provides means to decompose, refine, and prioritize a
story in order to fit into one iteration. The pattern “Inversion of Control” can be used
in a multi-site organization when the need to communicate and assure understanding of
requirements is of primary concern. Therefore, this pattern describes a mechanism
where the team who will implement the functionality, will be responsible for writing the
detailed requirements of that functionality in their preferred format.

As most agile practitioners advocate, we also believe that co-location is most
effective for the majority of software development endeavors. However, there are
still a number of reasons that require development to be performed in multi-site
configuration, some of them external to the team’s influence. The main drawback
that we found about this configuration is communication overhead. In this case,
excessive effort is spent to keep the development teams synchronized and to create and
update the documentation. With this paper, we proposed a set of good practices and
Software Engineering patterns that we expect can help minimize the main drawbacks
present on the multi-site context.

References
Beck, K. (1999). Extreme Programming Explained — Embrace Change. Addison-
Wesley.

Beedle, M.; Devos, M.; Sharon Y.; Schwaber, K.; Sutherland, J.; (1999). Scum: An
extension pattern language for hyperproductive software development. In: Harrison,
N.; Foote, B.; Rohnert, H. Pattern Languages of Program Design 4. Addison-Wesley.

66

SugarLoafPLoP 2007 Proceedings Writers” Workshop

Berczuk, S. (1996). Configuration Management Patterns. In the proceedings of the
1996 Pattern Languages of Programming Conference, PloP’96. Available at
http://www.berczuk.com/pubs/PLoP96/. Last visit [3rd June 2007].

Berczuk, S.; Appleton, B. (2002). Software Configuration Management Patterns. First
Edition, Addison-Wesley.

Berczuk, S. (2003). Agile Codeline Management. This paper was published as a
StickyMinds Original article.

Bret, T. (2004). Parallel Development Strategies for Software Configuration
Management. Published at the Summer 2004 issue of Methods & Tools. Available at
http://www.methodsandtools.com/mt/download.php?summer(04. Last Visit [3rd June

2007].
Churchville, D. (2006). ExtremePlanner: Agile Project Management for Distributed
Software Teams. http://www.extremeplanner.com/blog/2006/06/biggest-

misconception-in-software.html. Last Visit [7th July 2007].

Cohn, Mike (2005). Agile Estimating and Planning. Robert Martin Series, Prentice
Hall.

Coplien, J. O.; Harrison, N. B. (2004). Organizational Patterns of Agile Software
Development. First Edition, Prentice Hall.

Fowler, M. (2004). Inversion of Control Containers and the Dependency Injection
pattern. Available at http://www.martinfowler.com/articles/injection.html. Last visit
[28™ December 2006].

Fowler, M. (2006). Using an Agile Software Process with Offshore Development.
Available at http://www.martinfowler.com/articles/agileOffshore.html. Last visit [7™
July 2007].

Lehman, M. M. (2000) - Rules and Tools for Software Evolution Planning and

Management http://www.doc.ic.ac.uk/~mml/feast2/papers/pdf/611 2.pdf

Louzado D. A.; Cordeiro, L. C. (2005). Aplicando Padrdes de Geréncia de
Configuragdo de Software em Projetos Geograficamente Distribuidos. Proceedings

of the 5° Latin American Conference on Pattern Languages of Programming
(SugarLoafPlop’2005).

Poppendieck, Mary and Poppendieck, Tom (2003) Lean Software Development: An
Agile Toolkit. First Edition, Addison Wesley.

Poppendieck, Tom (2003) The Agile Customer’s Toolkit. Available at
www.poppendieck.com/pdfs/Agile_Customers_Toolkit Paper.pdf. Last visit [26™
December 2006].

Principia Cybernetica. Available at http://pespmcl.vub.ac.be/SUBOPTIM.html. Last
visit [26™ December 2006].

Schwaber, K., and Beedle, M. (2002). Agile Software Development with Scrum. First
Edition, Series in Agile Software Development, Prentice Hall.

Wingerd L., Seiwald, C. (1998). High-level Best Practices in Software Configuration
Management. Springer Berlin, Vol. 1439, pp. 57-66.

67

SugarLoafPLoP 2007 Proceedings Writers” Workshop

Um Padrao para Requisitos Duplicados

. = .. 2)
Ricardo Ramos', Jodo Aratjo”, Ana Moreira”, Jaelson Castro®,
Fernanda Alencar!, e Rosangela Penteado?

! Universidade Federal de Pernambuco (UFPE) - Brasil
{rar2, jbc} @cin.ufpe.br, fmra@ufpe.br
2 Universidade Nova de Lisboa (UNL) - Portugal
{ja, amm} @di.fct.unl.pt
3 Universidade Federal de Sao Carlos (UFSCAR) - Brasil
rosangel @dc.ufscar.br

Abstract. With the insights gained with approaches that deal with the
information duplication problem, this paper shows the pattern
Encapsulated Requirements (Requisitos Encapsulados) that describes a
solution to duplicated requirements. The pattern is independent of
approaches and can be instantiated by any approach that is used to
produce a requirements document.

Resumo. Com as li¢cdes aprendidas em abordagens que tratam do
problema de duplica¢do de informagdes, este artigo apresenta o padrao
Requisitos Encapsulados que descreve uma solucdo para duplicagdo de
requisitos. O padrdo € independente de abordagens, podendo ser
instanciado para qualquer abordagem que seja utilizada para produzir
um documento de requisitos.

1 Introducao

A duplicagdo de informagdes pode acontecer nas vdrias fases do desenvolvimento de
um software. Além de dificultar a compreensibilidade pode existir um aumento no
tamanho dos artefatos do sistema e, por conseqiiéncia, do seu custo [Sommerville
2003 e Pressman 2002]. Isso poderia ser evitado caso os projetos fossem estruturados,
especificados e modularizados de forma mais eficiente.

Fowler e outros (2000) propdem refatoracdes (refactoring, em inglés) para
solucionar as duplicacdes que ocorrem no cddigo orientado a objetos, enquanto
Kiczales e outros (1997) propdem encapsular as informacdes duplicadas, espalhadas e
entrelacadas em aspectos. Apesar de ter tido no inicio maior enfoque na
implementagdo, o desenvolvimento de software orientado a aspectos vem sendo
utilizado em todos as fases de desenvolvimento [Rashid et al 2003].

Com base nos ensinamentos da programacdo orientada a aspectos e da refatoracéo,
descrevemos aqui o padrido Requisitos Encapsulados para eliminar a duplicagdo de
informagdes que podem ocorrer em requisitos. O padrdo proposto é independente,
podendo ser utilizado num documento de requisitos produzido por uma abordagem

68

SugarLoafPLoP 2007 Proceedings Writers” Workshop

qualquer. Neste artigo a estrutura da solugdo descrita pelo padrdo € instanciada para
casos de uso.

O padrio aqui apresentado faz parte de um projeto maior cujo objetivo ¢ avaliar a
qualidade de documentos de requisitos, encontrando trechos que podem ser
melhorados com a aplicagdo de padrdes de requisitos e a utilizagdo de refatoracdes
[Ramos et al 2006a, 2006b e 2006c].

Este artigo segue a seguinte estrutura: a Se¢do 2 trata da descricdo do padrdo
Requisitos Encapsulados, seguindo o formato sugerido por Appleton (2006) e na
Secdo 3 sdo relatadas as conclusdes.

2 O Padrao Requisitos Encapsulados

2.1 Proposito

Eliminar duplicacdes que podem ocorrer em requisitos.

2.2 Problema

Duplica¢do de informacio € um risco ao custo de um sistema [Sommerville, 2003].
Sempre que o mesmo requisito estiver em diversos locais de um documento, criando
multiplas instancias, a sua manuten¢do e a sua evolucio tornam-se onerosas. Quando
um engenheiro de software tiver a necessidade de modificar um requisito duplicado,
terd de encontrar todas as suas instincias e certificar que a mudanca € consistente em
todo o documento. Adicionalmente, a inser¢do de requisitos duplicados num
documento pode aumentar o seu tamanho, dificultando o seu entendimento e
desestimulando a sua leitura.

2.3 Contexto

A duplicacdo de informagdes é uma situa¢do que ocorre quando (i) 0 mesmo requisito
estd duplicado em diferentes estruturas de um documento de requisitos ou (ii) o
mesmo requisito estd duplicado na mesma estrutura de um documento de requisitos.

Uma duplicacdio € contextualizada por ter duas descricdes semanticamente
idénticas de um mesmo requisito. Porém, as especificagdes podem estar diferentes
sintaticamente, necessitando assim uma avaliacdo atenta do engenheiro de software
para identificar o que é uma informacgdo duplicada. Em alguns casos apenas parte de
um requisito pode estar duplicada; nesses casos devemos re-escrever essa parte para
melhor clarificar a duplicacio.

O padrdo se aplica ao contexto de documentos de requisitos estruturados que
podem ter sido produzidos por qualquer abordagem de descri¢do de requisitos.
Entretanto, por esta caracteristica de ser independente, € necessirio que se instancie
este padrdo a abordagem que se deseja utilizar.

Jacobson (2005) faz uma ressalva quanto a duplica¢do de informacdes no nivel de
requisitos. Segundo o autor, no contexto de casos de uso, em algumas situagdes a
duplica¢do € uma forma necessaria de reuso de um requisito.

69

SugarLoafPLoP 2007 Proceedings Writers” Workshop

2.4 Forcas

As forcas que influenciam a utilizacdo da solu¢do descrita pelo padrdo sdo as
seguintes:

1. A duplicacdo de informacdes aumenta os custos com a manutencdo do
documento de requisitos e o potencial para insercdo de erros. Todas as vezes
que uma mudanca afetar um desses requisitos duplicados, é preciso modificar
todos os locais onde eles aparecem.

2. A utilizacio de uma unica estrutura para encapsular as informacdes
duplicadas contribui para:

2.1. aumentar a modularizagao,
2.2. melhorar a localizacdo,
2.3. diminuir o tamanho do documento de requisitos.

2.5 Solucao

A solugdo que propomos € independente e tem como inten¢do poder ser instanciada
para qualquer abordagem que produza um documento de requisitos. A descricdo do
padrdo contém as varidveis que devem ser instanciadas:

<requisito> Necessidades bdsicas do cliente: uma condi¢do ou capacidade
requisitada por um usudrio, para resolver um problema ou alcancar um
objetivo. Em algumas abordagens podem ser expressos por: passos, atividades,
tarefa, uma descrig¢do textual entre outros.

<estrutura> Moddulos de decomposicdo utilizados no documento de requisitos.
Em algumas abordagens podem ser expressos por: casos de uso, meta (goal),
tema (theme), ponto de vista (viewpoint) entre outros.

A soluc@o compreende nas seguintes etapas:

1 - Identificar! e analisar o <requisito> duplicado. Se o <requisito> for similar,
mas ndo exatamente o mesmo, existe a necessidade de separar a parte
duplicada. Em alguns casos, a melhor solugdo é reescrever o <requisito> para
melhor evidenciar a parte duplicada.

2 - Criar uma nova <estrutura> que encapsule o <requisito> e nomea-la.

3 - Selecionar o <requisito> identificado na etapa 1 como sendo duplicado.

4 - Adicionar os <requisitos> selecionados na nova <estrutura>.

5 - Remover os <requisitos> das <estruturas> originais. Atualizar a numeragao,
se houver. Criar os apontadores’? das <estruturas> originais para as novas
<estruturas>.

6 - Averiguar se as <estruturas> estdo aceitdveis® sem os <requisitos> que foram
removidos e se permanecem com as mesmas funcionalidades dos originais.

7 - Atualizar as referéncias das <estruturas> dependentes.

Se existir a necessidade de manter o relacionamento entre a <estrutura>
original e a nova, o engenheiro de software deverd providenciar os pontos
que facam esse relacionamento. Mecanismos de extensdo e inclusdo (por
ex., para casos de uso), pontos de corte (em desenvolvimento orientado a
aspectos) entre outros podem ser criados.

I'Segundo as situagdes descritas no contexto deste padrio.

2 Estes apontadores podem ser desde a adi¢io de uma pré-condi¢do ou mesmo uma relagdo de
inclusdo até a criagdo de uma estrutura que indique a composicéo.

3 Se nfo existe uma quebra da seqiiéncia das informagdes tornando impossivel o entendimento
de forma coerente.

70

SugarLoafPLoP 2007 Proceedings Writers” Workshop

2.6. Estrutura para Casos de Uso

As atividades descritas nesta Se¢@o sdo instanciadas da solu¢do independente com a
inten¢do de eliminar a duplicacdo de requisitos em descricdes de casos de uso. A
instanciacdo das varidveis para casos de uso serd: <requisito> = atividade e
<estrutura> = caso de uso.

1 - Identificar, segundo o contexto, e analisar a atividade duplicada. Se a
atividade for similar, mas nio exatamente a mesma, existe a necessidade de
separar a parte duplicada. Em alguns casos, a melhor solug@o € reescrever a
atividade para melhor evidenciar a parte duplicada.

2 - Criar um novo caso de uso que encapsule a atividade e nomea-lo.
3 - Selecionar a atividade identificada na etapa 1 como sendo duplicada.
4 - Adicionar as atividades selecionadas no novo caso de uso.

5 - Remover as atividades dos casos de uso originais. Atualizar numeracio, se
houver. Criar os apontadores dos casos de uso originais para 0s novos casos
de uso.

6 - Averiguar se os casos de uso estdo aceitdveis sem as atividades que foram
removidas e se permanecem com as mesmas funcionalidades dos originais.

7 - Atualizar as referéncias dos casos de uso dependentes.

Se existir a necessidade de manter o relacionamento entre o caso de uso
original e o novo, o engenheiro de software deverd especificar os pontos
que facam esse relacionamento. Mecanismos de extensdo e inclusdo
podem ser criados.

2.7. Exemplo

Esta secdo apresentard dois exemplos em que ilustramos as duas situacdes descritas
no contexto do padrdo. O primeiro exemplo apresenta a duplicagdo de requisitos em
duas estruturas distintas, no segundo a duplicacdo ocorre na mesma estrutura. Serd
utilizada, para cada exemplo, a mesma instincia do padrao descrita na Se¢do anterior.

No primeiro exemplo, as figuras 1 e 2 mostram dois casos de uso, Cadastrar
Novo Empregado e Cadastrar Novo Produto, em que as quatro primeiras
atividades sdo semanticamente e sintaticamente idénticas, caracterizando assim 0S
requisitos duplicados em dois casos de uso distintos. Nota-se que no fluxo secundério
de atividades, as atividades (4, 4.1 e 4.2) também sdo idénticas em ambos os casos de
uso. Nesta situagdo, ndo € necessdrio uma re-escrita dos requisitos para melhor
clarifica-los.

As atividades 5, 6 e 7 do caso de uso da Figura 1 sdo semelhantes as da Figura 2,
porém ndo caracterizam uma situacio de duplicacdo. Apesar de tratarem do mesmo
interesse, o cadastro de informagdes, cada caso de uso € especifico no cadastro de um
conjunto de informagdes distintas.

71

SugarLoafPLoP 2007 Proceedings Writers” Workshop

Caso de uso — Cadastrar Novo Empregado
Pés-condicoes:
Novo empregado € registrado
Fluxe principal de atividades: ___________________ .
1. Uma janela de identificacdo € exibida. !
2. O usudrio digita o seu nome. !
3. O usudrio digita sua senha. 1
4. O usudrio é validado. |
""""""" dasfio-de empregados com as
seguintes informag¢des: nome, login, senha, endereco.
6. O usudrio confirma a operacio
7. Os dados do novo empregado sdo guardados.
Fluxo secundario de atividades:

: 4. O usudrio ndo € validado. !
: 4.1. Uma mensagem de aviso de senha ou nome de usudrio
! invélido é mostrada.
| 4.2. O fluxo recomega da atividade 1 do fluxo principal.
1

[}
1
1
1
1
1
1
1
[

Figura 1 — Caso de uso Cadastrar Novo Empregado.

Caso de uso — Cadastrar Novo Produto
Pés-condicoes:
Novo produto é registrado
' 1. Uma janela de identificagdo € exibida.
1 2. O usudrio digita o seu nome.
i 3. O usudrio digita sua senha.
4. Ousudrio ¢ validado. .
5. O wusudrio preenche o formuldrio de cadastro de produto com as
seguintes informacdes: descricdo, tipo, valor, data de entrega,
localizacao.
6. O usudrio confirma a operacio
7. Os dados do novo produto sdo guardados.
Fluxo secundario de atividades:
""" 4. O usudrio ndo é validado. T
4.1. Uma mensagem de aviso de senha ou nome de usudrio
invélido é mostrada.

4.2. O fluxo recomega da atividade 1 do fluxo principal.

Figura 2 — Caso de uso Cadastrar Novo Produto.

A solucdo para o problema de duplicagdo de requisitos desses casos de uso
(Figuras 1 e 2) seguiu as seguintes etapas como descritas na estrutura do padrao:

1 - As atividades identificadas foram as realcadas nas Figuras 1 e 2. Nesse caso as
atividades sdo semanticamente e sintaticamente idénticas ndo necessitando ser

re escritas.

2 - O caso de uso Login (Figura 3) foi criado.

72

SugarLoafPLoP 2007 Proceedings Writers” Workshop

3 - As atividades identificadas na etapa 1 foram selecionadas.

4 - As atividades selecionadas foram adicionadas no caso de uso Login. As
atividades de 1 a 4 do fluxo principal e as 4, 4.1 e 4.2 do fluxo secundério sdo
basicamente copiadas para o caso de uso Login.

5 - As atividades que foram selecionadas nos casos de uso Cadastrar Novo
Empregado € Cadastrar Novo Produto foram removidas. A numeragdo
das atividades que restaram foi atualizada. Foi adicionado como pré-condi¢do
nos dois casos de uso (Cadastrar novo Empregado € Cadastrar novo
produto) a descri¢do da necessidade do usudrio estar validado pelo sistema.
As Figuras 4 e 5 mostram os casos de uso ap6s a utilizagdo do padrio.

6-0s casos de uso Cadastrar Novo Empregado € Cadastrar Novo
Produto estdo aceitdveis e permanecem com a mesma funcionalidade dos

originais.

7 - Neste exemplo ndo hé casos de uso dependentes.

Pés-condicoes:
Usudrio validado.
Fluxo principal de atividades:
1. Uma janela de identificagdo € exibida.
2. O usudrio digita o seu nome.
3. O usudrio digita sua senha.
4. O usudrio ¢ validado.
Fluxo secundario de atividades:
4. O usudrio ndo ¢ validado.
4.1. Uma mensagem de aviso de senha ou nome de usudrio
invélido é mostrada.
4.2. O fluxo recomega da atividade 1 do fluxo principal.

Figura 3 — Caso de uso Login.

Pré-condicoes:
O usudrio deve estar validado. =|Apontador ao Login|
Pés-condicoes:
Novo Empregado € registrado
Fluxo principal de atividades:
1. O usudrio preenche o formuldrio de cadastro de empregados com as
seguintes informacgdes: nome, login, senha, endereco.
2. O usudrio confirma a operacio.
3. Os dados do novo empregado sdo guardados.

Figura 4 — Caso de uso Cadastrar Novo Empregado (apds a aplicagdo do padrdo).

73

SugarLoafPLoP 2007 Proceedings Writers” Workshop

Pré-condicoes:

O usudrio deve estar validado. »Apontador ao Login |

Pés-condicoes:
Novo produto € registrado.
Fluxo principal de atividades:

1. O usudrio preenche o formuldrio de cadastro de produto com as
seguintes informacdes: descricdo, tipo, valor, data de entrega,
localizacdo.

2. O usudrio confirma a operacao.

3. Os dados do novo produto sdo guardados.

Figura 5 — Caso de uso Cadastrar Novo Produto (apds a aplicagcdo do padrdo).

O segundo exemplo apresenta uma situa¢do em que a duplicacdo de informagdes
acontece no mesmo caso de uso. O caso de uso Iniciar Aplicacéo, Figuras 6a e
6b, é o primeiro a ser utilizado pelo usudrio de um dado sistema. As primeiras
atividades validam o usudrio e o atribui um perfil que foi previamente cadastrado pelo
administrador do sistema. Esse perfil da ao usudrio permissdo e restricdes as opcdes
do menu do sistema.

A informacdo duplicada aparece toda vez que é necessdrio o sistema mostrar a
mensagem de aviso “Esta fung¢do ndo pode ser realizada para esse perfil de usudrio”
(em destaque na figura 6b). A mensagem deve aparecer toda vez que o usudrio
escolher uma opcdo do menu que ele ndo tenha permissdo de utilizd-la devido as
restrigdes do seu perfil.

Fluxo principal de atividades
1. O caso de uso inicia quando o usudrio inicia a aplicag@o.
2. O sistema exibe a tela de login.

5. O sistema valida o usudrio e o habilita para as fungdes préprias de seu perfil.
6. O sistema mostrard a tela de menu principal.
7. O usudrio escolhe uma opcao.
8. Enquanto o usudrio ndo selecionar a op¢ao “sair” faga:
8.1. Se o usudrio selecionar a op¢do Ordem de pagamento, entdo:
Usar [caso de uso Ordem de Pagamento].
8.2. Sendo, se o usudrio selecionar a op¢do Retornar Produto, entdo:
Usar [caso de uso Retornar Produto].

8.6. Sendo, se o usudrio selecionar a op¢do Imprimir Relatério, entdo:
Usar [caso de uso Imprimir Relatério]
9. O usudrio seleciona uma opcao.
10. O caso de uso termina.

Figura 6a — Caso de uso Iniciar Aplicacdo (fluxo principal).

74

SugarLoafPLoP 2007 Proceedings Writers” Workshop

Fluxo secundario de atividades

Figura 6b — Caso de uso Iniciar Aplicagdo (fluxo secundario).

A aplicacdo do padrio para o problema de duplicacio de requisitos apresentado na
figura 6b seguiu a seguinte seqiiéncia de etapas:
1 - As atividades duplicadas foram identificadas e estdo destacadas na figura 6b.
Nessa situacdo as atividades estdo no mesmo fluxo e sdo semanticamente e
sintaticamente idénticas ndo necessitando serem re-escritas.

2-0Ocasodeuso Exibir Mensagem (Figura 7) foi criado.
3 - As atividades identificadas na etapa 1 foram selecionadas.

4 - As atividades selecionadas foram adicionadas no caso de uso Exibir
Mensagem. A atividade “Exibir a mensagem” que estd repetida nas atividades
de 8.1 a 8.6 do fluxo secundario é adicionada ao novo caso de uso Exibir
Mensagem, como sendo a atividade 1 do fluxo principal de execucdo.

5 - As mensagens que foram selecionadas no caso de uso Iniciar Aplicagdo
foram removidas. Foram adicionados, no mesmo lugar onde estavam as
mensagens, referéncias ao caso de uso Exibir Mensagem. A Figura 8 mostra
como ficou o caso de uso Iniciar Aplicacgao apds a utilizacdo do padrio.

6 -0 caso de uso Iniciar Aplicacdo (Figura 8) estd aceitdvel e permanece
com a mesma funcionalidade.

7 - Neste exemplo ndo ha casos de uso dependentes, porém caso haja mais algum
caso de uso que necessite utilizar a mensagem deve-se fazer uma referéncia ao
caso de uso Exibir Mensagem.

Caso de Uso - Exibir Mensagem
Fluxo principal de atividades
1. Exibir a mensagem “Esta fun¢do ndo pode ser realizada para esse perfil de
usudrio”.

Figura 7 — Caso de uso Exibir Mensagem.

75

SugarLoafPLoP 2007 Proceedings Writers” Workshop

Fluxo principal de atividades
1. O caso de uso inicia quando o usudrio inicia a aplicag@o.

10. O caso de uso termina.
Fluxo secundario de atividades
8.1. Se o usudrio selecionar a op¢do Ordem de pagamento, entdo:
Usar [caso de uso Exibir Mensagem] —>|Ap0ntador ao Exibir Mensagem |
8.2. Sendo, se o usudrio selecionar a op¢ao Retornar Produto, entdo:
Usar [caso de uso Exibir Mensagem]—»{Apontador ao Exibir Mensagem |

8.6. Sendo, se o usudrio selecionar a opcao Imprimir Relatdrio, entdo:
Usar [caso de uso Exibir Mensagem]—»Apontador ao Exibir Mensagem |

Figura 8 — Caso de uso Iniciar Aplicacdo parcial (ap6s a aplicacio do padrio).

2.8. Contexto Resultante

Ap6s a utilizacdo do padrio os requisitos que sdo identificados como duplicados sdo
encapsulados em apenas uma estrutura. Essa solucdo tem os seguintes resultados
positivos:

1. melhor localizagd@o do requisito.

2. diminuicdo do tamanho do documento de requisitos.

3. facilidade de reuso por outras estruturas do sistema, ou mesmo o reuso do
requisito em outros sistemas.

Os Resultados que podem ser considerados negativos na aplicagdo deste padrio sio:

1. o aumento do ndmero de estruturas do sistema, uma vez que se criard uma
nova estrutura para cada requisito duplicado.

2. a criagdo de pequenas estruturas que encapsulam requisitos, com poucas
atividades. No caso do documento de requisitos estruturado com casos de uso
pode-se utilizar a solucdo descrita pelo padrdo Large Use Case, proposta por
Gunnar, O. e Karin (2004). Este padrao, quando possivel, agrupa casos de uso
que sdo pequenos e\ou tem poucas fungdes juntamente com outros que estdo
Nno mesmo contexto.

2.9. Usos Conhecidos

A solugdo descrita pelo padrdo Requisitos Encapsulados para solucionar o problema
da duplica¢do de informagdes é conhecida em véarios contextos.

Fowler e outros (2000) descrevem, em um catalogo, diversos problemas que
podem ocorrer em nivel de cddigo orientado a objetos, esses problemas sdo chamados
pelos autores de “badsmells”. Para cada problema também sdo descritas possiveis
solucdes com a utilizacdo de refatoragdo (refactoring, em inglés). Uma das solugdes
dada para o badsmell nomeado “Cédigo Duplicado” (Duplicated Code, em inglés) € a
utilizagdo da refatoracio “Extrair Classe” (Extract Class, em inglés). Esta solucio tem
como conceito central encapsular os trechos de cdédigo que estdo duplicados em
apenas uma classe.

76

SugarLoafPLoP 2007 Proceedings Writers” Workshop

Gunnar e Karin (2004) além de descreverem um conjunto de padrdes para casos de
uso também descrevem boas praticas para evitar a duplicagdo de informagdes em
casos de uso. Em uma dessas € descrita a pratica de utilizar a generaliza¢do entre
casos de uso, sempre que possivel, para evitar a duplicagdo de informagdes. Assim,
esta pratica consiste em mover as informagdes duplicadas para um dnico caso de uso.
A Figura 9 ilustra duas situagdes: (a) informagdes duplicadas em 2 casos de uso,
Cadastrar Cliente Fisico e Cadastrar Cliente Juridico, (b)
uma possivel solu¢do para a situacdo anterior, em que a generaliza¢do da informacao
duplicada em um tnico caso de uso (Cadastrar Cliente) permite que os dois
casos de uso compartilhem desta informagdo e tratem somente de suas caracteristicas
especificas.

e @ ________ (b)
| Informagao duplicada : : Informagédo |
- | compartilhada :

—— e — — ——

Cadastrar Cliente

Cadastrar Cadastrar <::::::::>

Cliente Fisico Cliente Juridico Cadastrar Cadastrar

Cliente Fisico Cliente Juridico

Figura 9 - Informacdes duplicadas solucionadas com a utilizagdo da generalizagéo.

Rashid, Moreira e Aratijo (2004) descrevem um modelo para utilizar orientagdo a
aspectos [Kiczales e outros, 1997] em documentos de requisitos. A eliminacdo de
informagdes duplicadas € uma entre outras das vantagens promovidas pela utilizacio
deste paradigma. Esta eliminacdo consiste em identificar a informagdo que esta
duplicada e adiciona-la em um aspecto.

Alencar e outros (2006 e 2007) utilizam os recursos da orientacdo a aspectos para
eliminar informag¢des duplicadas em modelos gerados pelo framework i* [Yu, E.,
1995]. Nesta abordagem o objetivo é melhorar a facilidade de entendimento dos
modelos gerados pelo i*. Diretrizes s3o elaboradas para ajudar a utilizacdo da
abordagem. Assim como na abordagem de Rashid, Moreira e Aradjo (2004) as
informagdes duplicadas sdo identificadas e adicionadas em um aspecto.

3 Conclusoes

Este artigo apresentou um padrdo para requisitos chamado Regquisitos Encapsulados
que descreve uma solugdo para o problema de duplicacdo de informagdes no nivel de
requisitos. O padrdo tem uma solucdo independente que pode ser instanciada para
qualquer abordagem que seja utilizada para a producdo de um documento de
requisitos.

Solucdes como a proposta pelo padrdo Requisitos Encapsulados sdo recorrentes na
abordagem orientada a aspectos, cujo objetivo é a modularizacdo dos interesses (do
inglés concerns) que podem estar duplicados, espalhados e/ou entrelacados com
outros interesses.

77

SugarLoafPLoP 2007 Proceedings Writers” Workshop

Poucos padrdes descrevem solucdes para problemas encontrados em descri¢cdes de
requisitos. A maioria dos padrdes encontrados, para requisitos, descreve solucdes para
modelos, como por exemplo, os padrdes descritos por Gunnar e Karin (2004).

Como a descricdo de requisitos é usualmente informal, muitas falhas, tais como
duplicacdes de informagdes, inconsisténcia de requisitos, pouco reuso e falta de
clareza prejudicam o entendimento do documento de requisitos. Isto gera aumento do
custo no desenvolvimento de um sistema. Se os erros puderem ser corrigidos na fase
de requisitos ndo serdo levados para as fases seguintes do desenvolvimento,
diminuindo assim o custo na manuten¢@o destes erros.

Agradecimentos

Este trabalho foi financiado por vdrios 6rgdos de incentivo a pesquisa (CNPq Proc.
304982/2002-4 & Proc. 142248/2004-5; CAPES Proc. BEX 3478/05-0; & CAPES/
GRICES Proc. 129/05).

Referéncias Bibliograficas

Alencar, F., Moreira, A., Aratjo, J, Castro, J., Silva, C., Mylopoulos, J.: Towards an
Approach to Integrate i* with Aspects. In: Proc. of 8th International Bi-Conference
Workshop on Agent-Oriented Information Systems (AOIS-2006), in conj. with
CAiSE’06. Luxembourg, June (2006).

Alencar, F., Moreira, A., Aratjo, J., Castro, J., Ramos, R., and Silva, C.: Proposal to
deal with the Complexity of i* Models with Aspects. In: the First International
Conference on Research Challenges on Information Science — RCIS’07.
Ouarzazate, Morocco, April, (2007) (to appear).

Appleton, Brad. Patterns and Software: Essential Concepts and Terminology,
disponivel na WWW na URL:
http://www.cmcrossroads.com/bradapp/docs/patterns-intro.html - dltima visita em
29/12. (2006)

Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring: improving the
design of existing code. Object Technology Series. Addison-Wesley (2000)

Gunnar, O. e Karin, P. “Use Cases Patterns and Blueprints”. In: Addison Wesley
Professional - November (2004)

Jacobson, 1., Ng, P.W.: Aspect-Oriented Software Development with Use Cases.
Addison-Wesley (2005)

Kiczales, G.; Lamping, J.; Mendhekar, A. “RG: A Case-Study for Aspect-Oriented
Programming.” In: SPL97. Palo Alto Research Center, Technical Report (1997)

Pressman, R. “Engenharia de Software”. Makron Books, 5% edi¢do (2002)

Ramos, R. A., Carvalho, A., Monteiro, C., Silva, C., Castro, J. F. B., Alencar, F.,
Afonso, R. “Avaliacdo da Qualidade de um Documento de Requisitos Orientado a
Aspectos”. In: IX Ibero-American Workshop on Requirements Engineering and
Software Environments - IDEAS'06. La Plata, Argentina (2006a)

78

SugarLoafPLoP 2007 Proceedings Writers” Workshop

Ramos, R. A., Aratjo, J., Castro, J. F. B., Moreira, A., Alencar, F., Silva, C. “Uma
Abordagem de Instanciagdo de Métricas para Medir Documentos de Requisitos
Orientados a Aspectos”. In: III Workshop Brasileiro de Desenvolvimento de
Software Orientado a Aspectos WASP2006. Florianépolis, Santa Catarina - Brasil
(2006b)

Ramos, R. A., Aratjjo, J., Castro, J. F. B., Moreira, A., Alencar, F., Silva, C. “Um
Modelo de Qualidade para Avaliar Documentos de Requisitos Orientados a
Aspectos”. In: Desarrollo de Software Orientado a Aspectos, DSOA 2006,
Asociado a XV Jornadas de Ingenieria del Software y Bases de Datos. Sitges -
Barcelona (2006¢)

Rashid, A., Moreira, A. e Araijo, J. “Modularization and Composition of Aspectual
Concerns”. In: International Conference on Aspect-Oriented Software
Development, ACM, Boston, USA (2003)

Sommerville, I. “Engenharia de Software”. Addison- Wesley (2003)

Yu, E.: Modeling Strategic Relationships for Process Reengineering. Ph.D. thesis,
Department of Computer Science, University of Toronto, Canada (1995).

79

SugarLoafPLoP 2007 Proceedings Writers” Workshop

Analysis patterns for Customer Relationship Management (CRM)

Mei Fullerton and Eduardo B. Fernandez
Dept. of Computer Science and Engineering

Florida Atlantic University
Boca Raton, FL 33431
meifullerton@yahoo.com, ed@cse.fau.edu

1. Introduction

In today's global trading environment, from the traditional way of selling products or services, to
auctioning anything on-line, companies big or small typically have customers or partners from all over
the world. Companies need to keep track of their customers, interact with them, prospect potential
customers, and try to forecast what their customers will be buying in the future. In fact, not just
commercial companies need these functions, but any institution that interacts with individuals or other
institutions, such as universities, clubs, or social associations. We refer to all these as organizations
because they all need similar structure and some related functions to deal with their customers or
members. While universities and clubs for example, do not really trade, they need to attract students or
members, keep track of their information, and interact with them in many ways. A flexible and robust
customer/member data model is needed to capture all this information and accommodate different
cultures, organizational structures, and backgrounds.

We describe here some aspects of recording information about customers for an organization in a
trading community that sells products or services to its customers, which can be other organizations or
individuals (parties). A trading community is defined as a group of entities taking part in some type of
commerce or exchange. It includes persons and organizations. Entities in a trading community may
play roles other than Seller and Buyer, such as Partner, Contact, Distributor, Dealer, Agent, Influencer,
etc. Customer relationship has a broader context than classical customers, not only it represents the
customer model, it also represents multiple organizations and multiple relationships that exist in a
complex matrix-like environment.

There has been much work on related domain-specific areas, such as analysis patterns for Accounting
[Fer02], Course Management for educational settings [YuaO3], and Reservations [Fer99], but they do
not capture a generic model that can be specific to the trading community. There have been also some
patterns about specific aspects of CRM, e.g. [Fow97, Hay96, Sil01]. We introduce here the Party
Relationship analysis pattern, which captures relationships of parties with other parties, where the party
IS an organization or an individual. Location aspects of these parties are described in the Party
Locations and Contacts pattern. The Customer Relationship Management pattern combines these two
patterns and adds account aspects. These patterns are intended for application or database designers.

Section 2 introduces an example which is used for all the patterns discussed here. Section 3 presents the
Party Relationship pattern, while Section 4 discusses the Party Locations and Contacts pattern. Section
5 presents the CRM pattern. We end with some conclusions. For conciseness, the first two patterns are
presented using simplified templates, while the last pattern uses a complete POSA-like template.

2. Example

Office Enterprise sells office products and services to its customers. It has traditional brick and mortar

80

SugarLoafPLoP 2007 Proceedings Writers” Workshop

retail stores, but it also sells products on line and via mail catalog. Figure 1 shows some of the typical
parties and relationships that exist in the Office Enterprise's business domain (the lines with arrows
represent possible associations). It has employees. It has customers who can be individuals (B2C
customers) or organizations (B2B customers). It has suppliers who manufacture or distribute products
and who can also sell directly to the company’s customers. It also has partners who may sell products
or provide services to Office Enterprise's customers directly. Office Enterprise communicates with its
customers and suppliers through contacts and addresses. Each customer or supplier may have more
than one contact. They may also have more than one address, such as mailing address, billing address,
or shipping address. Last but not least, Office Enterprise has competitors who compete with it for
suppliers and customers, and it needs to know about them.

Lo
L

D

Coniacts]

B2B Customers B2C Customers

Y

non
0|0
0o
0|0

“—p \\“
+«— ""\.'13

Bl '3
Your Business S

Employees Office Enterprise Suppliers

I
)

Partners Competitors

Figure 1 — A company and its relationships

81

SugarLoafPLoP 2007 Proceedings Writers” Workshop

3. Party Relationship Pattern

This pattern describes the parties and the relationships between parties in a trading community or
institutions with members, customers, or users

Context
Organizations in a trading community or institutions which have members or customers need to interact
in many ways.

Problem

Companies or organizations need to interact with many other organizations or individuals to conduct
their business. Those organizations may have complex relationships with the organization and with
each other. How do we model the complex relationship between parties so that the company knows the
answers to the following key questions at all times: Who are my customers? How are they related to
each other? What are their characteristics? Who are my competitors? Who are my partners? Who are
my suppliers?

The solution is affected by the following forces:

e We need to know how other parties are related to our organization so our interactions with them are
appropriate and effective.

e Parties can be individuals or organizations, and we want to consider both types. Otherwise we
would exclude potential customers or partners for example.

e Anorganization is itself a party and can have relationships to itself as well as to other parties.

e Parties can be related to each other in more than one way, maybe in a peer or hierarchical fashion.

e A party can have many relationships with another party, and furthermore, the relationships are
dynamic, they can change at any given time.

e Relationships are reciprocal, they can be organization-to-organization, person-to-person, or
organization-to-person.

e We need to model inter- and intra- organization relationships, and non-business relationships
(Spouse Of or Child Of are examples of non-business relationships). Non-business relationships
may be useful for special promotions or advertisement.

e We need to describe any type of relationship, including the ability to capture company branches,
competitors, resellers, business partners, etc.

Solution

Define a Party as a Person or an Organization that is of interest in a business context (Figure 2).
Person is a unique individual, while Organization is a legal entity recognized by some government
authority, i.e. a branch, a subsidiary, a legal entity, a holding company, etc. Party relationship links
two Parties to indicate the nature of the relationship between them. This association may also indicate
the direction of the relationship, superior or subordinate, as well as their roles in the relationship. For
example, in an employee/employer relationship, employee is a role while employer is another role.
Some example relationships are: Client of/Contractor to, Supplier to/Distributor for, Seller to/Customer
of, Reports to/Manager of, Employer of/Employee of, and Partner of.

Known Uses
SAP’s mySAP Business Suite includes a CRM package that handles customers and partners [sap07].

82

SugarLoafPLoP 2007 Proceedings Writers” Workshop

Consequences

This pattern provides the following benefits:

e We can indicate how a party (including our own organization) is related to us and to other parties
and describe the type of relationship it has with them.

e Parties can be individuals or organizations.

o By the use of role names in associations we can indicate how parties interact with each other.

o Parties can be related in any way, there is no restriction in the type of relationship.

e We can model business and non-business relationships, as well as inter- and intra-organization
relationships (as far as they are named entities).

A possible liability is unnecessary complexity for institutions that have few and simple relationships
with other parties.

Related Patterns

This pattern is an extension of the Party Pattern [Fow97]. Fowler describes a party as a person or
organization but does not consider how parties are related to each other. However, he uses this concept
in several specific relationships, e.g. accountability. An earlier version of this pattern comes from
[Hay96], who uses a similar definition and considers reporting relationships between parties. Silverston
[Sil01] considers also party relationships of a more general type. All these books use ad-hoc notation,
not UML, and don’t consider dynamic aspects (we show dynamic aspects in Section 5). A Person
pattern [Rod03] emphasizes the roles played by a person in organizations. [Yod02] describes a Party
Type pattern that represents types of parties.

PartyRelationzhip

+subject | [T T T T 7] type
Party dezcription
parkyt arne .
partyMurnber +abject
status

]

Perzon Organization
S5M
dateOBirth ELIJ-IrranSI’[Eqrrugba
gender crediScoe

Figure 2 — Class diagram for the Party Relationship pattern.

83

SugarLoafPLoP 2007 Proceedings Writers” Workshop

4. Party Locations and Contacts Pattern

The Party Locations and Contacts pattern describes the places, the contacts, and the associated
communication channels in a trading community.

Context
Organizations in a trading community or institutions which have members or customers need to interact
in many ways.

Problem

The company needs to know where its parties such as customers, suppliers, partners, competitors are
located, and for a specific purpose, who the contacts are, and how to contact them. How do we model
the multiple locations (including their purposes), and the multiple contacts for a given party? And how
to model multiple communication points for a party or a location for different purposes?

The solution is affected by the following forces:

e Companies or institutions usually have many locations, which are used for different purposes, e.g.
sales outlet, customer information, research group.

e Companies or institutions usually have many contacts, intended for different purposes.

e Communication points can be different, based on the purpose of the communication. For example,
some points are for email contacts, some are for on-site visiting, some are for EDI (Electronic Data
Interchange) communications.

Solution

In the class diagram of Figure 3, every party has many locations, where a Location is essentially an
address of a physical location. A party can have many locations for different purposes, and a location
can be used by many parties. A Party Site describes how a location used for that party. Party Site Use
is the use of a party site (billing, shipping, training) and describes the purpose of that location; for
example, mailing address, home address, billing address, or shipping address.

Contact is a person with whom we can communicate for some purpose, whether in-person, over-the-
phone, or through other electronic means. A party can have many contacts, and a contact can be used
by many parties. A Party Contact links the party and contact and indicates that the contact is used for
the particular party, as well as the role or function of this contact. A Communication Point is an
identifier for a typically electronic point of contact, for example a telephone number, an email address,
aweb URL, an EDI, etc. A Party, a Party Contact, or a Party Site can have one or more communication
points for different purposes.

84

SugarLoafPLoP 2007 Proceedings Writers” Workshop

PartySitell s PartySite — -
] CommunicationP aint . PartyContact
tpe * partpSiteMumber | 1 . 1
commment b partpSiteM ame h purpoze - ke
zhatusz rmailztop ghatusz isPrinary
status |
! |
| 1
I I
| 1
I 1
Location | 1 | Contact
! Party !
street | . ! contactM ame
city partyM ame ; fitle
zipcods ¢<locatedity > partyM umber izD ecisiont aker
cauntry shatus
Figure 3 — Party Locations and Contacts Pattern
Known Uses

There are several commercial CRM products that have implemented versions of the Party Locations
and Contacts Pattern. For example:

« RightNow [rig07] has a Locator web package to help their customers find products, store locations,
and contacts.

o Oracle Customer Data Hub [Ora06].

« Siebel Customer Relationship Management Application [Sie06].

Consequences

This pattern provides the following benefits:

¢ Itindicates the locations of a party and what purpose they serve.

¢ It indicates the contacts of a party with respect to an institution and their purpose.
¢ Itindicates the communication points needed to reach a party.

Again the solution is rather complex for many applications which don’t require so much flexibility.

Related Patterns

This pattern usually complements the Party pattern. For example, the Party pattern in [Hay96] also has
the concept of geographic location. Silverston’s sales force model has the concepts of contact and
contact method [Sil01]. A Contact pattern is described in [Rod03], which describes possible attributes
and collaborations of contacts; that is, it can expand some of the details of our pattern. [Yod02] apply
the Observation pattern of Fowler [Fow97] to describe aspects of a Party, one of which could be
Location.

5. Customer Relationship Management Pattern

This pattern describes the business relationships of an enterprise, considering its interaction with
customers, partners, suppliers, and similar entities. It also describes the locations and contacts to apply
those relationships and some aspects of their accounts. This pattern is a composite pattern made of the
Party Relationship and Party Locations and Contacts patterns.

85

SugarLoafPLoP 2007 Proceedings Writers” Workshop

Context
Organizations in a trading community or institutions which have members or customers need to interact
in many ways.

Problem

An enterprise needs to manage all its related parties, such as customers, prospects, suppliers,
employees, distributors, and their relationships, so the enterprise can gain valuable insight into their
prospect base, understand their needs, increase sales, foster tighter and more profitable relationships
with the customers, and make better business decisions. It also needs to keep track of their locations
and their accounts with the enterprise. For successful business actions, a company needs to know the
answers to questions such as: Who are my customers? What are their preferences? What is the status of
their accounts? Where are they located? How to contact them? To be able to answer the above
questions at all times, the system needs to understand the organization’s customer and other parties’
relationships. It also needs to know about their locations and contacts as well as the status of their
accounts.

The solution is affected by the following forces:

e We need to know how other parties are related to our organization so our interactions with them are
appropriate and effective.

e A party can have many relationships with the organization, and furthermore, the relationships can
change at any given time.

e We need to model inter- and intra- company relationships, non-business relationships and user-
defined relationships.

e We need to model the capability to offer personalized services or products, each customer has
his/her own preferences, and the preferences can change dynamically.

e We need to keep track of the status of their accounts and the type of their accounts.

e Companies or organizations usually have many locations, which are used for different purposes,
e.g. sales outlet, customer information, research group.

e Companies or organizations usually have many contacts, intended for different purposes.

e Communication points can be different, based on the purpose of the communication. For example,
some points are for email contacts, some are for visiting, some are for EDI communications.

e The complete model should be easy to understand and to implement.

Solution

We combine the two patterns shown earlier. These patterns represent the complex relationships among
those entities and model inter and intra company relationships, non-business relationships, and user-
defined relationships. We describe the creation and maintenance of the customer information, including
organizations, locations, and the network of hierarchical relationship among them. We also keep
information about the status of their accounts and their preferences.

Structure

The Customer Relationship Management pattern contains classes from the two previous patterns.
Parties represent persons or organizations which have some business relationship with the organization.
An Account is created once a party makes a purchase or establishes a financial agreement. Accounts
also have locations (are assigned to a site, where each site can have several uses) and can be related to
other accounts.

86

SugarLoafPLoP 2007 Proceedings Writers” Workshop

Figure 4 shows the classes involved. Party represents an entity, either a person or an organization.
Party Relationship links two Parties to indicate the nature of the relationship between them, regardless
of their type. Location is essentially an address of a physical location. A Party Site uniquely identifies
the association between the party and the location and indicates that the particular location is used for
that party. Party Site Use indicates the use of a party site (billing, shipping, training). Contact is a
person with whom we can communicate, whether in-person, over-the-phone, or through other
electronic means. A Party Contact links the party and contact and indicates that the contact is used for
the particular party. Communication Point indicates an electronic point of contact.

AccountRelationship

Lype
stahis
AccountSite comment
T
e rritary 1 1
K e coount : —'—|
1 | Account
I
! accourtMumber
: * |accountM ame
zalesChanmel
cuztamerType
AccountSkellze CommunicationFaint | i PartyContact
—
t-";p? pUrpoEeE _ro;.a_
d zhatus lsrrrnary
isPrimary |
| +okject
PartySite ; Contact : 1‘ PatyFelaticnzhip
) . 4 R
> part_l,lS!teNumber o contactM ame I Part type
1 par_t_l,lSlteName title . N v dezcription
;'::'tljts':'p isDecisionh aker partyM ame
T partyMHumber +subTec:t
I 1‘-' status
I B
FartySitellse |
1
type = <<locabe dity »
comment Location
statuz
street
city Perzon Organization
jpcod
oy 55N DUNSH urber
date0lfRirth numdfEmp
gendsr credits core

Figure 4 — Class Diagram for the Customer Relationship Pattern

Dynamics

The sequence diagram in Figure 5 shows the use case for opening an account. A person or institution
opening an account becomes a party, other entities related to the party such as a location, a contact, and
a communication point are created. Finally, the actual account is created. Other use cases include
adding a contact to a party, adding a communications point to a party, etc.

87

SugarLoafPLoP 2007 Proceedings Writers” Workshop

:aPerson :System
openAccount T

createParty T o
> :Party

|
createlLocation! P
: :Location
i —
createContact l
: :Contact
: [
createCommunicationPoint

I
I
'r :CommunicationPoint ‘
I

|
|
createAccount :
i 5/ :Account
|

|
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
:
R — i
|
|
|

Figure 5 — Sequence Diagram for opening an Account

Known Uses
There are several commercial CRM products that have implemented customer relationship models. For
example:

Oracle Customer Data Hub [Ora06] uses the Trading Community Architecture (TCA). TCA is a
common repository for name and address information.

Siebel Customer Relationship Management Application [Sie06]

Microsoft CRM software [Mic06]

SAP’s mySAP Business Suite includes a CRM package [sap07].

SalesForce CRM Unlimited Edition includes all these functions [sal07].

NetSuite CRM+ includes all these functions [net07].

Consequences
This pattern has the following benefits:

A Customer Relationship analysis pattern promotes broader reuse; it can be reused in many
different domains, such as retail companies, financial institutions, educational, public or
government sectors, etc.

It addresses business, non-business and user-defined relationships.

It includes the basic information needed for efficient customer relationship management.

It provides a complete view of a party and all of its relationships with the company, and its
relationships with other members of the trading community.

It keeps the status of accounts.

88

SugarLoafPLoP 2007 Proceedings Writers” Workshop

The pattern has the following liabilities:
e It may be too complex for small businesses.

Related Patterns

o [Cyp05, Fow97, Hay96, Sil01] present several variations on these patterns as well as some
complementary patterns and related models.

« The Account Analysis Pattern [Fer02] adds more functions to the accounts shown here, including
keeping track of transactions.

« CRM functions interact and may overlap with other business functions such as Order Management,
Sales Force Automation, and Marketing, for which there are some patterns or standard models (see
[Fow97, Hay96, Sil01]).

6. Conclusions and Future Work

Customer/member information is vital to any organization. We have presented two patterns that handle
specific aspects of customer relationships and a composite pattern that combines their functions and
adds a few other functions. These patterns can be used to build conceptual application models for this
domain.

Business information may be highly sensitive; for example, it contains financial information that is
subject to regulations, such as credit card information or purchasing records. Proper security is needed
to handle this information. We are working on an extension of this pattern where role rights and other
security constraints are superimposed on the functional aspects, according to our secure development
methodology [Fer06].

Acknowledgements

We thank our shepherd Tiago L. Massoni for his perceptive and knowledgeable comments that
significantly helped improve the quality of the paper. FAU’s Secure Systems Research Group
(www.cse.fau.edu/~ed) also made valuable comments. The participants in the writers’ workshop at
SugarLoafPLoP 2007 (Richard Gabriel, Joe Yoder, Ademar Aguiar, Maria Lencastre, Rosana Braga,
Jorge Forneron, Jorge Ortega-Arjona, Mark Perry) provided very useful comments.

References

[Cyp05] P. Cyphers, “Trading Community Architecture”,
http://repo.solutionbeacon.net/SBStandard TCAPresentation2005.pdf

[Fer00] E.B. Fernandez and X. Yuan, “Semantic analysis patterns”, Procs. of 19th Int. Conf. on
Conceptual Modeling, ER2000, 183-195. Also available from:
http://www.cse.fau.edu/~ed/SAPpaper2.pdf

[Fer02] E.B.Fernandez and Y.Liu, "The Account Analysis Pattern"”, Procs. of EuroPLoP (Pattern
Languages of Programs) 2002.
http://www.hillside.net/patterns/EuroPLoP/submissions-2002.html

[FerO6] E.B. Fernandez, M.M. Larrondo-Petrie, T. Sorgente, and M. VanHilst, "A methodology to

develop secure systems using patterns”, Chapter 5 in "Integrating security and software engineering:
Advances and future vision", H. Mouratidis and P. Giorgini (Eds.), IDEA Press, 2006, 107-126.

89

SugarLoafPLoP 2007 Proceedings Writers” Workshop

[Fow97] M. Fowler, Analysis Patterns-Reusable Object Models, Addison-Wesley, 1997
[Hay96] D.Hay, Data model patterns-- Conventions of thought, Dorset House Publ., 1996.

[Mic06] Extending Microsoft CRM with Reusable Patterns, http://msdn2.microsoft.com/en-
us/library/ms913853.aspx

[net07] http://www.netsuite.com/portal/products/main.shtml Accessed February, 2007.

[Ora06] Oracle, The Oracle Trading Community Architecture,
http://www.oracle.com/data_hub/cdh.html

[rig07] RightNow Technologies, http://www.rightnow.com/ Accessed February 2007.

[Rod03] A. Rodrigues Silva, “Resources and roles based patterns: The Contact, Person, Organizational
Unit and Organization patterns”, Procs. of EuroPLoP 2003.

[sal07] http://www.salesforce.com/company/ Accessed February 2007.

[sap07] SAP United States, http://www.sap.com/usa/solutions/business-suite/crm/index.epx

[Sie06] Siebel, Customer Relationship Management Applications
http://www.oracle.com/applications/siebel.html

[Sil01] L. Silverston, The data model resource book (revised edition), Vol. 1, Wiley 2001,

[Yod02] J. Yoder and R. Johnson. "The Adaptive Object Model Architectural Style", Procs. of The
Working IEEE/IFIP Conference on Software Architecture 2002 (WICSAS '02) at the World Computer
Congress in Montreal 2002, August 2002.
http://www.adaptiveobjectmodel.com/WICSA3/ArchitectureOfAOMsWICSA3.htm

[Yua03] X. Yuan and E. B. Fernandez, "An analysis pattern for course management", Procs. of
EuroPLoP'03, 899-907.

90

SugarLoafPLoP 2007 Proceedings Writers” Workshop

The Parallel Layers Pattern
A Functional Parallelism Architectural Pattern for Parallel Programming
Jorge L. Ortega-Arjona

Departamento de Matematicas

Facultad de Ciencias, UNAM
jloa@ciencias. unam nx

Abstract. The Parallel Layers pattern is an architectural pattern for parallel programming
used when the problem is understood in terms of functional parallelism. This pattern
describes a solution in a layered form, in which each layer is composed of two or more
components that are able to simultaneously exist and perform the same operation.

1. Introduction

Parallel processing is the division of a problem, presented as a data structure and/or a set of
actions, among multiple processing components that operate simultaneously. The expected
result is a more efficient completion of the solution to the problem. The main advantage of
parallel processing isits ability to handle tasks of a scale that would be unrealistic or not cost-
effective for other systems [CG88, Fos94, ST96, Pan96]. The power of parallelism centres on
partitioning a big problem in order to deal with complexity. Partitioning is necessary to divide
such a big problem into smaller sub-problems that are more easily understood, and may be
worked on separately, on a more “comfortable’ level. Partitioning is especially important for
parallel processing, because it enables software components to be not only created separately
but also executed simultaneously.

Requirements of order of data and operations dictate the way in which a parallel computation
has to be performed, and therefore, impact on the software design [OR98]. Depending on how
the order of data and operations are present in the problem description, it is possible to
consider that most parallel applications fall into one of three forms of parallelism: functional
parallelism, domain parallelism, and activity parallelism [OR98]. Examples of each form of
paralelism are the Pipes and Filters pattern [ORO05], representing functional parallelism; the
Communicating Sequential Elements pattern [OR00], as an example of domain parallelism;
and Shared Resource [OR03], as an instance of activity parallelism.

2. TheParallel LayersPattern

The Parallel Layers pattern is an extension of the Layers pattern [POSA96, Shaw95, SG96]
with elements of functional parallelism. Parallelism is introduced when two or more
components of a layer are able to simultaneously exist, nhormally performing the same
operation. Components can be created statically, waiting for calls from higher layers, or
dynamically, when a call triggers their creation.

Copyright 0 2007 Jorge L uis Ortega-Arjona. Permission is granted to copy for the SugarL oaf PLoP 2007
conference. All other rights reserved.

91

SugarLoafPLoP 2007 Proceedings Writers” Workshop

Functional parallelism is the form of parallelism described in terms of a series of
simultaneous step ordered operations, applied on ordered data with predictable organization
and interdependencies. As each step represents a change of the input for value or effect over
time, an amount of communication between components in the solution should be considered.
Conceptually, datais repeatedly divided and transformed [CG88, Fos94, Pan96].

Example: Single-Sour ce Shortest Path Algorithm

Search is defined as a systematic examination of a problem space, starting from an initial state
and terminating at some final state or states. Each of the intermediate states, between the
initial and the final states, can be reached by applying an operation on a given state. This
operation is determined by an objective function that assures heading to the final state.

Any search problem can be conveniently represented using a graph. Given a graph is a set of
vertices and edges. Each edge has a positive integer weight representing the distance between
the vertices it connects (Figure 1). The objective, hence, is to search for the shortest path
between the source vertex and the rest of the vertices.

10
Q22
40 15

Figure 1. A typical graph

The Single-Source Shortest Path (SSSP) algorithm was originally proposed by Dijkstra, and
described later by Chandy and Misra [CM88]. It is an efficient algorithm for exhaustively
searching into this kind of graph representation. The SSSP algorithm is applied in cycles. In a
cycle, the algorithm selects the vertex with the minimum distance, marking it as having its
minimum distance determined. On the next cycle, all unknown vertices (those vertices whose
minimum distance to the others has not been determined) are examined to see if there is a
shorter path to them via the most recently marked vertex. Algorithmically, the SSSP algorithm
reduces the search time to O(N?) because N-1 vertices are examined on each cycle. Hence, N1
cyclesare still required to determine the minimum distances.

A sequential approach considers that the graph can be represented by an adjacency matrix G,
whose elements represent the weight of the edges between vertices. In this approach two
additional data structures are used: a boolean array Known, to determine which vertices have
had their distance established, and an array D to record the most recently established distance
between the source and vertices. A function MinV returns the vertex with the shortest

92

SugarLoafPLoP 2007 Proceedings Writers” Workshop

unknown distance of the two vertices passed as its arguments. If one vertex is known, the
other vertex is returned. It is assumed that MinV is not called with two known vertices. The
sequential pseudocode is shown in Figure 2.

Begin
For i:=0 to N-1
Known[i]:=(i=0) // only source vertex is known
For i:=0 to N-1
D[i]:= G[0,i] // initial distance of source to vertex
LastKnown := 0 // only source is known
KnownCount := 1

While KnownCount < N
MinVertex : = 0
For i:= 1 to N-1 // check the shorter route via last marked vertex
if Not Known[i]
D[i] := Min(D[i], D[LastKnown] + G[LastKnown, i])
MinVertex := MinV(MinVertex, i)
End For
// select next vertex to mark known
LastKnown := MinVertex
Known [LastKnown] := TRUE
KnownCount ++
End While
End

Figure 2. Pseudocode for the sequential SSSP algorithm.

However, this algorithm can potentially be carried out more efficiently by:

1. Using a group of parallel components that exploit the tree structure representing the
search, and

2. Simultaneoudly calculating the value minimum distance for each vertex, and only then,
computing and marking the overall minimum distance vertex.

Context

Sarting the design of a software program for a parallel system, using a particular
programming language for certain parallel hardware. Consider the following contextual
assumptions:

- The problem to solve, expressed as an agorithm and data, is found to be an open ended
one, that is, involving tasks of a scale that would be unrealistic or not cost-effective for
other systems to handle. Consider the SSSP algorithm example: since its execution timeis
O(N?), if the number of vertices is large enough, the whole computation grows up to an
enormous extent.

« The parallel platform and programming environment to be used are known, offering a
reasonably level of paralelism in terms of number of processors or parallel cycles
available.

- The programming language to be used, based on a certain paradigm, is determined, and a
compiler is commonly available for the parallel platform. Many programming languages

93

SugarLoafPLoP 2007 Proceedings Writers” Workshop

have parallel extensions for many parallel platforms [Pan96], asiit is the case of C, which
can be extended for a particular parallel computer or use libraries to achieve process
communication [ST96].
The main objective is to execute the tasks in the most time-efficient way.

Problem

An algorithm is composed of two or more simpler sub-algorithms, which can be divided into
further sub-algorithms, and so on, recursively growing as an ordered tree-like structure until
a level in which the sub-parts of the algorithm are the simplest possible. The order of the tree
structure (algorithm, sub-algorithms, sub-sub-algorithms, etc.) is a strict one. Nevertheless,
data can be divided into data pieces which are not strictly dependent, and thus, can be operated
on the same level in a more relaxed order. If the whole algorithm is performed serialy, it
could be viewed as a chain of calls to the sub-algorithms, evaluated one level after another.
Generally, performance as execution time is the feature of interest. Thus, how do we solve the
problem (expressed as algorithm and data) in a cost-effective and realistic manner?

Forces

Considering the problem description and granularity and load balance as other elements of

parallel design [Fos94, CT92] the following forces should be considered:
Perform a computation as a tree structure of ordered sub-computations. For example, in the
SSSP, each minimum distance for each vertex is calculated using the same operation
severa times, but using different information per layer.
Data can be only vertically shared among layers. In the SSSP example, data is distributed
through the tree structure, where autonomous operations are carried out.
The same group of operations can be independently performed on different pieces of data.
In the SSSP example, the same operation is performed on each subgroup of data to obtain
its minimum distance from the lower layers. So, several distances can be obtained
simultaneously.
Operations may be different in size and level of complexity. In the SSSP example,
operations are similar from one layer to the next, but the amount of data processed tends to
diminish.
Dynamic creation and destruction of components is preferred over static, to achieve load
balance. For example, in the SSSP example, the creation of new components in lower
layers can be used to extend the solution to larger problems.
Improvement in performance is achieved when execution time decreases. Our main
objective is to carry out the computation in the most time-efficient way. The question is.
how can the problem be broken down to optimise performance?

Solution
Use functional parallelism to execute the sub-algorithms, allowing the simultaneous existence

and execution of more than one instance of a layer component through time. Each one of
these instances can be composed of the simplest sub-algorithms. In a layered system, an

94

SugarLoafPLoP 2007 Proceedings Writers” Workshop

operation involves the execution of operations in several layers. These operations are usually
triggered by a call, and data is vertically shared among layers in the form of arguments for
these function calls. During the execution of operations in each layer, usually the higher layers
have to wait for aresult from lower layers. However, if each layer is represented by more than
one component, they can be executed in parallel and service new requests. Therefore, at the
same time, several ordered sets of operations can be carried out by the same system. Several
computations can be overlapped in time [POSA96, Shaw95].

Sructure

In this architectural pattern, different operations are carried out by conceptually-independent
entities, ordered in the shape of layers. Each layer, as an implicit different level of abstraction,
is composed of several components that perform the same operation. To communicate, layers
use calls, referring to each other as components of some composed structure. The same
computation is performed by different groups of functionally related components.
Components simultaneously exist and process during the execution time. An Object Diagram,
representing the network of components that follows the paralel layers structure is shown in
Figure 3.

:Layer 1 ‘Layer 1

:Layer 2 :Layer 2 :Layer 2 :Layer 2

Figure 3. Object Diagram of the Parallel Layers pattern.

Participants

Layer component. The responsibilities of alayer component are to alow the creation of an
algorithmic tree structure. Hence, it has to provide a level of operation or functionality to
the layer component above, while delegating operations or functionalities to the two or
more layer components below. It also hasto allow the flow of data and results, by receiving
data from the layer component above, distributing it to the layers components below,
receiving partial results from these components, and making a result available to the layer

95

SugarLoafPLoP 2007 Proceedings

Writers” Workshop

component above. Each component is independent from the activity of other components.
This makesit easy to execute them in parallel.

Dynamics

As the paralldl execution of layer components is allowed, a typical scenario is proposed to
describe its basic run-time behaviour. All layer components are active at the same time,
accepting function calls, operating, and returning or sending another function call to other
components in lower level layers. If a new function call arrives from the client, a free element
of the first layer takes it and starts a new computation.

As stated in the problem description, this pattern is used when it is necessary to perform
repeatedly a computation, as series of ordered operations. The scenario presented here takes
the simple case when two computations, namely Computation 1 and Computation 2, have to
be performed. Computation 1 requires the operations Op.A, which requires the evaluation of
Op.B, which needs the evaluation of Op.C. Computation 2 is less complex than
Computation 1, but requires to perform the same operations Op.A and Op.B. The parallel
execution is as follows (Figure 4):
The Client calls a component Layer A1l to perform Computation 1. This component calls
to a component Layer B1, which similarly calls a component Layer C1. Both components
Layer Al and Layer B1 remain blocked waiting to receive a return message from their
respective sub-layers. This is the same behaviour than the sequential version of the Layers
pattern [POSA96].

Figure 4. Interaction Diagram of the Parallel Layers pattern.

96

Client Layer &l Layer A2 Layer Bl Layer B2 Layer C1
J:I_ Funection _I:L Fucti J“ ‘1 — -
Tat— Uﬁl o > Function
— —— 2 —— >
utichon . — '4_‘
call Fﬁmm - fF'hl%‘lD.‘E |:
c
L 1 tehiwn L | tp.
IS “«-lj Op.E
ot retu'rgg'jl L |
L T retun L
T| Op. 4
Lg—return) [
—Ij_ T T T T T

SugarLoafPLoP 2007 Proceedings Writers” Workshop

Parallelism is introduced when the Client issues another call for Computation 2. This
cannot be serviced by Layer Al, Layer B1 and Layer C1. Another instance of the
component in Layer A, called Layer A2 - that either can be created dynamically or be
waiting for requests statically - receivesit and calls another instance of Layer B, Layer B2,
to service this call. Due to the homogeneous nature of the components of each layer, every
component in a layer can perform exactly the same operation. That is precisely the
advantage of alowing them to operate in parallel. Therefore, any component in Layer B is
capable to serve calls from components in Layer A. As the components of a layer are not
exclusive resources, it is in general possible to have more than one instance to serve calls.
Coordination between components of different layers is based on a kind of client/server
schema. Finally, each component operates with the result of the return message. The main
ideaisthat all computations are performed in a shorter time.

I mplementation

An architectural exploratory approach to design is described below, in which hardware-
independent features are considered early, and hardware-specific issues are delayed in the
implementation process. This method structures the implementation process of parallel
software based on four stages [OR98]. During the first two stages, attention is focused on
concurrency and scalability characteristics. In the last two stages, attention is aimed to shift
locality and other performance-related issues. Nevertheless, it is preferred to present each
stage as general considerations for design instead of providing details about precise
implementation. These implementation details are pointed more precisely in the form of
references to design patterns for concurrent, parallel, and distributed systems of several other
authors [Sch95, Sch98a, Sch98b, POSAQO].

1. Partitioning. Initialy, it is necessary to define the basic Layer pattern system which will
be used with parallel instances. the computation to be performed is decomposed into a set
of ordered operations, hierarchicaly defined and related, determining the number of
layers. Following this decomposition, the component representative of each layer can be
defined. For a concurrent execution, the number of components per-layer depends on the
number of requests. Several design patterns have been proposed to deal with layered
systems. Advice and guidelines to recognise and implement these systems can be found in
[POSA96, PLoP94]. Also, consider the patterns used to generate layers, like A Hierarchy
of Control Layers[AEM95] and the Layered Agent Pattern [KMJ96].

2. Communication. The communication required to coordinate the parallel execution of layer
components is determined by the services that each layer provides. Characteristics that
should be carefully considered are the type and size of the shared data to be passed as
arguments and return values, the interface for layer components, and the synchronous or
asynchronous coordination schema. The implementation of communication structures
between components depends on the features of the programming language used. Usually,
if the programming language has defined the communication structures (for instance,
function calls or remote procedure calls), the implementation is very simple. However, if
the language does not support communication between remote components, it is proposed

97

SugarLoafPLoP 2007 Proceedings Writers” Workshop

the construction of an extension in the form of a communication subsystem. Design
patterns can be used for this. Particularly, patterns like the Broker pattern [POSA96], the
Composite Messages pattern [SC95], the Service Configurator pattern [JS96, POSAQO]
and the Visibility and Communication between Control Modules and Actions Triggered by
Events [AEM95] can help to define and implement the required communication structures.

3. Agglomeration. The hierarchical structure is evaluated with respect to the expected
performance. Usually, systems based on identical layer components present a good |oad-
balance. However, if necessary, using the conjecture-test approach, layer components can
be refined by combination or decomposition of operations, modifying their granularity to
improve performance or to reduce development costs.

4. Mapping. In the best case, each layer component executes simultaneously on a different
processor, if enough processors are available. Usually this is not the case. An approach
proposes to execute each hierarchy of layers on a processor, but if the number of requests
is large, some layers would have to block, keeping the client(s) waiting. Another mapping
proposal attempts to place every layer on a processor. This simplifies the restriction about
the number of requests, but if not al operations require al layers, this may overcharge
some processors, introducing load-balance problems. The most realistic approach seemsto
be a combination of both, trying to maximise processor utilisation and minimise
communication costs. In general, mapping of layers to processors is specified static,
allowing an internal dynamic creation of new components to serve new requests. As a
"rule of thumb", a Parallel Layers pattern system will perform best on a shared-memory
machine, but a good performance can be achieved if it can be adapted to a distributed-
memory system with afast communication network [Pan96, Pfis95].

Example Resolved

The potential parallelism for the SSSP is explained as follows. On each cycle, the current
distance to a given vertex must be compared to the distance to the vertex via the last known
vertex and the minimum recorded as the new distance. This calculation depends only on the
graph array G. Thus, the minimum distance for each vertex can be computed and marked. If
there are N processes, the algorithm would have a running time O(Nlog;N). N-1 cycles are il
required to compute the minimum of all vertices. However, each cycle will require one time
step to update the minimum for each vertex and O(log.N) time steps to compute the overall
minimum vertex.

To moveto aparalel solution, we must determine two things:

1. the communications network topology that will be used, and

2. what information will be stored on the processors and what will be passed as messages.
Partitioning

Both communication and computation of a minimum can be done in O(log:N) time by using a
cubic array of processes. In such an arrangement, each process would compute its minimum

98

SugarLoafPLoP 2007 Proceedings Writers” Workshop

distance; then half of the processes would pick the minimum between its distance and that of a
neighbour in one dimension (Figure 5). Half of these processes would in turn select a
minimum, until the root process selects the global minimum distance vertex. Communication
and selecting the minimum can be done in O(log:N) time, assuring an overall O(Nlog:N)
performance.

PO

/

PO Pl

PO P2 Pl P3

PO P4 P2 P6 Pl P5 P3 pP7

Figure 5. Tree representation for the SSSP algorithm.

Communication

The communication for N processes has to consider how to distribute data over the network of
processes. This is done by reviewing the computations of a root and children processes, and
determining what data must be available for the computations.

The root process PO calculates which of the two vertices has the shorter unknown distance. To
do so, it must have available which vertices have already had their distances marked (the array
Known), and the distance and id of the vertices being compared.

The children processes, on the other hand, must compare their current vertex distance to the
distance between the last known vertex and themselves. Thus, they must have available the
original graph G and the distance and id of the last known vertex. In addition, some children
processes will be calculating the minimum between two vertices, so they will also need to
know which of the vertices are known.

The basic data that needs to be communicated between processesisthe id of the vertex and its
most recent distance. This data will be used to calculate the minimum distance vertex and to
announce which vertex has been marked as known. Thus, a message is a two-element array,
one being a vertex id, the second a distance.

Since the message marking a vertex is distributed to all vertices, each process can keep track
of which vertices are known. Thus each should locally store and update the array Known.
Likewise, the graph G, which is not changed during the computation, must be distributed to all
processes and stored locally before computation begins.

99

SugarLoafPLoP 2007 Proceedings Writers” Workshop

Finally, the function MinV would no longer have access to the array D to look up the distances
of the vertices being compared. The parameters must be changed so that the distances of the
vertices being compared are passed as well as the vertex identifiers.

Agglomeration and Mapping
If a 3D-cube is used for the computations (Figure 6), the code for synchronising and

communicating between the root process and the remaining processes would be as the one
shown in Figures 7 and 8, respectively.

Figure 6. A 3D-cube.

Process 0 (the root process)
iz:=1
While i < N
// receive distances from 3 neighbours
MinVertex := 0
receive vertex id from z dimension
MinVertex := MinV(MinVertex,Zvertex)
receive vertex id from y dimension
MinVertex := MinV(MinVertex,Yvertex)
receive vertex id from x dimension
MinVertex := MinV(MinVertex,Xvertex)
Known[MinVertex] := TRUE // Update Known array
LastKnown := MinVertex
distribute LastKnown out x, y and z // Inform neighbours of the result
i++
End While
End Process 0

Figure 7. root process (Process 0).

100

SugarLoafPLoP 2007 Proceedings Writers” Workshop

Process k, 1<=k<N
// The remaining processes
iz:=1
While i < N
// find overall unknown minimum distance vertex
LocalMinVertex := k
if k < 4 then begin
// processes 1, 2, and 3 receive and compute min
receive Zvertex from z dimension
LocalMinVertex := MinV(LocalMinVertex, Zvertex)
else
// processes 4, 5, 6, and 7 send out their vertices
send LocalMinVertex out z dimension
if k < 4 then
// processes 4, 5, 6, and 7 do nothing
if k = 1 then begin
// process 1 receives and computes minimum
receive Yvertex from y dimension
LocalMinVertex := MinV(LocalMinVertex,Yvertex)
else
// processes 2 and 3 send out their vertices
send LocalMinVertex out y
if k = 1 then
// process 1 sends its local min to process 0
send LocalMinVertex out x
// now receive overall minimum vertex LastKnown from Process 0
if k = 1 then begin
// process 1 receives from 0, distributes to 3
receive LastKnown in x dimension
send LastKnown in y dimension
else
if k < 4 then
// processes 2 and 3 receive from 0 and 1, distribute to 4 and 5
receive LastKnown in y dimension
send LastKnown in z dimension
else
// processes 4, 5, 6, and 7 receive from 0, 1, 2, and 3
receive LastKnown in z dimension

D[k] := Min(D[k],D[LastKnown]+G[LastKnown,k]"”)"
// now update Distances
i++

End While

End Process k

Figure 8. The children processes (Process k).

Synchronisation is achieved by the links between processes. Thus process 3 cannot compute
the minimum distance vertex between itself and process 7 until process 7 sends its distance.
Once computed, it sends the distance to process 1, which in turn waits until this message is
received to compute the minimum between processes 3 and 1.

Known uses

The homomorphic skeletons approach, developed from the Bird-Meertens formalism and
based on data types, can be considered as an example of the Parallel Layers pattern:
individual computations and communications are executed by replacing functions at
different levels of abstraction [ST96].

Tree structure operations like search trees, where a search process is created for each node.
Starting from the root node of the tree, each process evaluates its associated node, and if it

101

SugarLoafPLoP 2007 Proceedings Writers” Workshop

does not represent a solution, recursively creates a new search layer, composed of processes
that evaluate each node of the tree. Processes are active simultaneoudy, expanding the
search until they find a solution in a node, report it and terminate [Fos94, NHST94].

The Gaussian elimination method, used to solve systems of linear equations, is a numerical
problem that is solved using a Parallel Layers structure. The original system of equations,
expressed as a matrix, is reduced to atriangular form by performing linear operations on the
elements of each row as a layer. Once the triangular equivalent of the matrix is available,
other arithmetic operations must be performed by each layer to obtain the solution of each
linear equation [FOs94].

Consequences
Benefits

The Parallel Layers pattern, as the original Layers pattern, is based on increasing levels of
complexity. This allows the partitioning of the computation of a complex problem into a
sequence of incremental, ssimple operations [SG96]. Allowing each layer to be presented as
multiple components executing in parallel alows to perform the computation several times,
enhancing performance.

Changes in one layer do not propagate across the whole system, as each layer interacts at
most with only the layers above and below, that can be affected. Furthermore, standardising
the interfaces between layers usually confines the effect of changes exclusively to the layer
that is changed. [POSA96, SG96].

Layers support reuse. If alayer represents a well-defined operation, and communicates via
a standardised interface, it can be used interchangeably in multiple contexts. A layer can be
replaced by a semantically equivalent layer without great programming effort [POSA96,
SG96].

Granularity depends on the level of complexity of the operation that the layer performs. As
the level of complexity decreases, the size of the components diminishes as well.

Due to severa instances of the same computation are executed independently on different
data, synchronisation issues are restricted to the communications within just one
computation.

Relative performance depends only on the level of complexity of the operations to be
computed, since all components are active [Pan96].

Liabilities

Not every system computation can be efficiently structured as layers. Considerations of
performance may require a strong coupling between high-level functions and their lower-
level implementations. Load balance among layers is also a difficult issue for performance
[SG96, Pan96].

Many times, a layered system is not as efficient as a structure of communicating
components. If services in upper layers rely heavily on the lowest layers, all data must be
transferred through the system. Also, if lower layers perform excessive or duplicate work,

102

SugarLoafPLoP 2007 Proceedings Writers” Workshop

there is a negative influence on the performance. In certain cases, it is possible to consider a
Pipe and Filter architecture instead [POSA96].

If an application is developed as layers, a lot of effort must be expended in trying to
establish the right levels of complexity, and thus, the correct granularity of different layers.
Too few layers do not exploit the potential parallelism, but too many introduce unnecessary
communications. The granularity and operation of layers is difficult, but related with the
performance quality of the system [POSA 96, SG96, NHST94].

If the level of complexity of the layers is not correct, problems can arise when the
behaviour of a layer is modified. If substantial work is required on many layers to
incorporate an apparently local modification, the use of Layers can be a disadvantage
[POSA96].

Related patterns

The Parallel Layers pattern extends the Layers pattern [POSA96] and the Layers style
[Shaw95, SG96] for parallel systems. Severa other related patterns are found in [PLoP94];
more precisely, A Hierarchy of Control Layers pattern, Actions Triggered by Events pattern,
and those under the generic name of Layered Service Composition pattern. The Divide and
Conquer pattern [MSMO05] describes a very similar structural solution to the Parallel Layers
pattern. However, its context and problem descriptions do not cope with the basic idea that, in
order to guide the use of paralel programming, it is necessary to analyse how to divide the
algorithm and/or the data to find a suitable partition, and hence, link it with a programming
structure that allows for such adivision.

3. Summary

The goal of the present work is to provide software designers and engineers with an overview
of the Parallel Layers pattern as a description of acommon structure used for parallel software
systems. Its application depends on the feasibility of the algorithm to be expressed in the form
of atree, which maps into the layers structure. Also, such an application is based on allowing
data to be divided into pieces which are operated without a dependence among themselves.
The architectural pattern described here is directly related with several developments in the
field of agorithmic anaysis, where it is proven its efficiency when dealing with fixed size
problems. This pattern can be also linked with other current pattern developments for
concurrent, parallel and distributed systems. Work on patterns that support the design and
implementation of such systems has been addressed previously by several authors [Sch95,
Sch98a, Sch98b, POSAQOQ].

4. Acknowledgements
The author wishes to thank Joseph W. Y oder, my shepherd, for his important suggestions and
advises for the improvement of this paper. This paper has been developed as part of the

Subproject EN101603 of the Support Program to Institutional Projects for Teaching
Improvement (PAPIME), supported by DGAPA-UNAM.

103

SugarLoafPLoP 2007 Proceedings Writers” Workshop

5. References

[AEMO95]Aarsten, A., Gabriele Elia, G., and Giuseppe Menga, G. G++: A Pattern Language for
the Object Oriented Design of Concurrent and Distributed Information Systems, with
Applications to Computer Integrated Manufacturing. Department of Automatica e
Informatica, Politecnico de Torino. In J. Coplien and D. Schmidt (eds.) Pattern Languages of
Program Design. Reading, MA: Addison-Wesley, 1995.

[CG88] Nicholas Carriero and David Gelernter. How to Write Parallel Programs. A Guide to the
Perplexed. Yae University, Department of Computer Science, New Heaven, Connecticut.
May 1988.

[CM88] K. Mani Chandy and J. Misra. Parallel Programming Design. Addison-Wesley, New
Y ork, 1988.

[CT92] K. Mani Chandy and Stephen Taylor. An Introduction to Parallel Programming. Jones
and Bartlett Publishers, Inc., Boston, 1992.

[Fos94] lan Foster. Designing and Building Parallel Programs, Concepts and Tools for Parallel
Software Engineering. Addison-Wesley Publishing Company, 1994.

[JS96] Prashant Jain and Douglas C. Schmidt. Service Configurator. A Pattern for
DynamicConfiguration and Reconfiguration of Communication Services. Third Annual
Pattern Languages of Programming Conference, Allerton Park, Illinois. September 1996.

[MSMO05] Timothy. G. Mattson, Beverly A. Sanders, and Berna L. Massingill. A Pattern
Language for Parallel Programming. Addison Wesley Software Patterns Series, 2005.

[NHST94] Christopher H. Nevison, Daniel C. Hyde, G. Michael Schneider, Paul T. Tymann.
Laboratories for Parallel Computing. Jones and Bartlett Publishers, 1994.

[OR98] Jorge L. Ortega-Arjona and Graham Roberts. Architectural Patterns for Parallel
Programming. Proceedings of the 3¢ European Conference on Pattern Languages of
Programming and Computing, EuroPloP'98. Universitdtsverlag Konstantz GmbH, 1999.

[ORO00] Jorge L. Ortega-Arjona. The Communicating Sequential Elements Pattern. Proceedings
of the 7th Annual Conference on Pattern Languages of Programming, PloP'98. Washigton
University Technical Report wucs-00 29, 2000.

[ORO3] Jorge L. Ortega-Arjona. The Shared Resource Pattern. Proceedings of the 10th Annual
Conference on Pattern Languages of Programming, PloP 2003. Washigton University
Technical Report wucs-00 29, 2000.

[ORO5] Jorge L. Ortega-Arjona. The Pipes and Filters Pattern. Proceedings of the 10th European
Conference on Pattern Languages of Programming, EuroPloP 2005. Universitétsverlag
Konstantz GmbH, 2005.

[Pan96] Cherri M. Pancake. Is Parallelism for You? Oregon State University. Originaly
published in Computational Science and Engineering, Vol. 3, No. 2. Summer, 1996.

[Pfis95] Gregory F. Pfister. In Search of Clusters. The Coming Battle in Lowly Parallel
Computing. Prentice Hall Inc. 1995.

[PLOP94] James O. Coplien and Douglas C. Schmidt (editors). Patterns Languages of
Programming. Addison-Wesley, 1995.

[POSA96] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerland, Michael Stal.
Pattern-Oriented Software Architecture. John Wiley & Sons, Ltd., 1996.

104

SugarLoafPLoP 2007 Proceedings Writers” Workshop

[POSAO00Q] Douglas Schmidt, Michael Stal, Hans Rohnert, Frank Buschmann. Pattern-Oriented
Software Architecture, Volume 2. Patterns for Concurrent and Networ ked Objects. John Wiley
& Sons, Ltd., 2000.

[SC95] Aamond Sane and Roy Campbell. Composite Messages: A Sructural Pattern for
Communication Between Components. OOPSLA'95, Workshop on Design Patterns for
Concurrent, Parallel and Distributed Object-Oriented Systems. October 1995.

[Sch95] Douglas Schmidt. Accepted Patterns Papers. OOPSLA'95 Workshop on Design Patterns
for Concurrent, Paralle and Distributed Object-Oriented Systems.
http://www.cs.wustl.edu/~schmidt/OOPSL A-95/html/papers.html. October, 1995.

[Sch98a] Douglas Schmidt. Design Patterns for Concurrent, Parallel and Distributed Systems.
http://www.cs.wustl.edu/~schmidt/patterns-ace.html. January, 1998.

[Sch98b] Douglas Schmidt. Other Pattern URL's. Information on Concurrent, Parallel and
Distributed Patterns. http://www.cs.wustl.edu/~schmidt/patterns-info.html. January, 1998.

[Shaw95] Mary Shaw. Patterns for Software Architectures. Carnegie Mellon University. In J.
Coplien and D. Schmidt (eds.) Pattern Languages of Program Design. Reading, MA: Addison-
Wedey, 1995.

[SG96] Mary Shaw and David Garlan. Software Architecture: Perspectives on an Emerging
Discipline. Prentice Hall Publishing, 1996.

[ST96] David B. Skillicorn and Domenico Talia. Models and Languages for Parallel

Computation. Computing and Information Science, Queen's University and Universita della
Calabria. October 1996.

105

SugarLoafPLoP 2007 Proceedings Writers” Workshop

Paginador de Objetos
Wellington Pinheiro, Paulo Fernando, Fabio Kon

Departamento de Ciéncia da Computacao
Instituto de Matematica e Estatistica — Universidade Sao Paulo

{wrp, pfgom, kon}@ime.usp.br

Abstract: A wide variety of applications have to manipulate large quantities of
objects in memory. However, often the available memory to store these objects
is not enough to hold the entire set of objects simultaneously. The Object
Paginator pattern presents a solution to the problem of manipulating large
quantities of objects applying a paging mechanism.

Resumo: Virias aplicacoes necessitam manipular grandes quantidades de
objetos na memoria, porém, a memoria disponivel, normalmente, ndo é
suficiente para armazenar todo esse conjunto de objetos simultaneamente. O
Padrdao Paginador de Objetos apresenta uma solucdo para o problema da
manipulacdo de grandes quantidades de objetos, através de um mecanismo de
paginagdo.

Objetivo

O objetivo do Paginador de Objetos € fornecer um mecanismo que permita o
acesso a um conjunto de objetos por partes, definidas como pédginas, mantendo o
controle da navegacdo nesses objetos da pdgina corrente. O acesso por partes torna-se
necessario, uma vez que todo o conjunto de objetos ndo pode ser armazenado
simultaneamente no meio de acesso rapido (e.g., memoria), sendo que a maioria dos
objetos permanece em um meio de acesso lento (e.g., disco rigido).

Motivacao

Suponha uma aplicacdo que tenha como finalidade gerenciar um grande hospital
publico. Uma das caracteristicas dessa aplicacdo € armazenar em um meio persistente a
informagdo de todos os medicamentos que foram consumidos em um determinado més
(movimentagdo de medicamentos). Ao final de cada més, um funciondrio do
departamento de suprimentos executa no sistema uma operacdo de consolida¢do de
movimentacdo e a geracdo de uma listagem apresentando as informacdes dessa
movimentacdo consolidada. Essa listagem apresenta basicamente o nome do
medicamento e a quantidade total movimentada.

O sistema em questdo utiliza objetos para fazer a representacdo desses
medicamentos que serdo manipulados. Cada objeto contém o nome do medicamento e a
quantidade movimentada. Podem existir vdrias movimentacdes de um determinado
medicamento em um s6 dia.

No cendrio apresentado, as operagdes de consolidagdo e geracdo da listagem
necessitam que os medicamentos sejam agrupados e cada grupo processado. Para
executar tais operacdes € necessdrio que os objetos sejam todos manipulados na
memoria principal. O problema que surge é que o sistema pode manter uma quantidade

106

SugarLoafPLoP 2007 Proceedings Writers” Workshop

muito grande de medicamentos armazenados no meio persistente, de forma que ndo é
possivel carregar todos os objetos na memoria para fazer a consolidagdo e a geragao da
listagem.

Uma forma de resolver o problema é utilizar um mecanismo que permita a
recuperacdo e a manipulacdo do conjunto de objetos em partes (paginas na memoria de
acesso rapido) garantindo que a navegacao no conjunto ocorra por demanda, de uma
forma mais transparente possivel.

A Figura 1 apresenta um possivel modelo de relacionamento entre classes para
solucionar o problema.

PaginadorDeMedicamento

primeiraPaginad ;. terator
ultimaPaginad © Iterator
proximaPaginald ;o [terator
paginaanterior] ;. terator
temProximad ; boolean
paginaCaorrented © Iterator
paginakluminumPagina o int) o Kerator
obtemPaginaklum ;. int

1 T :
{{UE}E:»:»
™ ¢ i
I
I

Medicamento AV
RecuperadorDeMedicamento

GerenciadorDerMedicamentos .

———————— >

+ consolidarMovimentacoes) waid

++++++ ++

- hame : 3tring
- guantidade : int

+ getMedicamentasiinicio ; int, final ; inty ; List
+ gethomed : tring + getQuantidaded : int

+ setMoameinome ; Stringd © woid

+ getQuantidade : int

+ setQuantidade(guanticdade : int) woid

Figura 1: Solucao Concreta para o Problema de Paginacao

A classe PaginadorDeMedicamento € responsdvel por controlar a
paginagao dos objetos do tipo Medicamento (representacdes de medicamentos com
suas quantidades movimentadas) em paginas de tamanho e ordenagdo pré-definidas,
mantendo também informacgdes a respeito da pagina atual, do primeiro e dltimo objetos
que pertencem a essa pagina, pois essas informacdes serdo necessdrias quando houver
necessidade de acessar outras paginas (anterior, posterior ou uma pagina especifica).
PaginadorDeMedicamento utiliza a classe RecuperadorDeMedicamento
para acessar os objetos que sao mantidos em persisténcia. A classe
GerenciadorDeMedicamentos é cliente de PaginadorDeMedicamento,
definindo o método consolidarMovimentacoes, que utiliza o mecanismo de
paginacdo para fazer a consolidacio das movimentagdes de medicamentos.
consolidarMovimentacoes faz as requisicoes das péginas contendo os
medicamentos para PaginadorDeMedicamento, que acessard o mecanismo de
persisténcia e retornard a nova pagina. Apds o processamento intermedidrio da pigina

107

SugarLoafPLoP 2007 Proceedings Writers” Workshop

de medicamentos, consolidarMovimentacoes podera pedir ao
PaginadorDeMedicamento a préxima pdgina e assim sucessivamente até que
todos os objetos requisitados tenham sido processados.

Através do PaginadorDeMedicamento o cliente poderd acessar todo o
conjunto de objetos do tipo Medicamento, disponibilizados por pédginas, ndo sendo
necessario manter o conjunto inteiro na memoria a0 mesmo tempo.

Para facilitar a navegacdo nos medicamentos da péagina corrente,
PaginadorDeMedicamento poderd retornar uma implementacdo de um Iterador
(padrao Iterator [Gamma et al. 1995]) especifico para Medicamento.

Aplicabilidade

e Um sistema necessita acessar uma quantidade muito grande de objetos, mas nao
pode carregé-los todos de uma vez no meio de acesso mais ripido (memoria
principal);

e Permitir a navegacdo em um conjunto muito grande de objetos, escondendo os
mecanismos de recuperacgdo e acesso, mantendo o estado atual dessa navegacao.

Estrutura
PaginadorEspecifico
+ primeiraPaginal ;. terator
+ ultimaFaginad : lterator
Cliente _ffLiSEff) + proxirmaPaginad - [terator
+ paginadnterior(. Nerator
+ temProximanl : bhoolean
+ paginacorrente : terator
+ paginabuminumPagina ; int) ;. [terator
+ obtemPaginatumi ; int
|
1 ﬂ} | <<usess
___________ A
|
. \L v
RecuperadorDeEntidade
Entidade
+ obtemEntidades{inicia : int, final ; int) : List
+ obtemQuantidaded © int
Figura 2: Solucao Abstrata para o Problema de Paginacao
Participantes
e Cliente: Qualquer classe que utilize 0s Servigcos do

PaginadorEspecifico.

® PaginadorEspecifico: Classe de controle de paginagdo, com algum
conhecimento a respeito da drea de negdcio. Deve conhecer as classes que
recuperam dados do meio persistente.

e Entidade: Entidade de negécio que o PaginadorEspecifico
armazenard em paginas e disponibilizard para os clientes. Na pratica pode ser

108

SugarLoafPLoP 2007 Proceedings Writers” Workshop

qualquer tipo de classe.

® RecuperadorDeEntidade: Classe responsdvel pela recuperacdo das
entidades do meio persistente.

Colaboracoes

e O cliente envia uma mensagem para o PaginadorEspecifico pedindo que
ele carregue e disponibilize alguma pédgina (primeira, ultima ou pédgina
especifica);

e O PaginadorEspecifico acessa um objeto do tipo
RecuperadorDeEntidade para recuperar a lista de objetos armazenados no
meio persistente, obedecendo as informacdes referentes a pagina atual e o
pedido de pégina;

® PaginadorEspecifico recupera uma lista de instancias de Entidade e a
devolve ao cliente quando este solicitar, através de um mecanismo de iteragao.

A Figura 3 apresenta a criacdo do PaginadorEspecifico e a recuperacao
da primeira pagina de dados, retornando-a ao cliente. Observe o uso do parametro
tamPagina na criagdo do paginador para definir o tamanho da péagina de objetos que
o paginador armazenara.

Cliente . o crpatas > .
1. CreateMessage(tamPaging ;;l_ag_ma::::—urE:
Laginacores < <Creates >

ecifico . -
Redes 1.1: CreatedMessaged| persisiencia ;

Eecuperador
DeEntidade

1.2 obtemEntidades{1, tamPagina+ 1)

< <Crestes >
1.2. 1 CreateMessage(| aptidade
' Entidacie

1
i
1

[} devolye tamPagina + 1 instancias \

1.3: armazenalnternamentef

L |
I ~ |
- | [Executa até 'T |
tamPagina wvezes] |
; | |
| |
: |
|
|

Ji dewvalve pagina de Entidades

L

e |

Figura 3: Criacdao do Paginador de Objetos

A Figura 4 € um exemplo de navegacdo entre pdginas. O método
getEntidades do RecuperadorDeEntidade recebe o intervalo de objetos que
serd recuperado da persisténcia.

109

SugarLoafPLoP 2007 Proceedings Writers” Workshop

paginadar : persistencia :
- Aiente FaginadorEspe FecuperadorDe
’ Cifico Entidade
| 1 obternPaginaMurng Fl I
A0 retorna ndmero da pagina corrente |
3 paginaNumiy o | |
= - B30 Pl 2 1 obtemEntidadesinicio, final |

- _ [/ devobve terador | | I

I I

M 2 temProximan |
- _/idevolve verdadeiro jj |

I

I

4.1 abtemEntidades{inicia, final

Figura 4: Exemplo de Navegacao entre Paginas

A Figura 5 mostra como pode ser feita a navegacdo nos objetos da pégina
corrente. Para fazer essa navegacdo pode-se utilizar um iterador especifico para o tipo
de entidade utilizada.

ﬁ paginadar :
. A FaginadorEspe
: I||Ente Cifico
! 1. paginaCarrented | < <Creates >
1.1. CreateMessage(listaEntidades iterador :
[terator

1/ devolve iterador |

2 proximan |

3 temProximaong

4. proxima

-

Figura 5: Exemplo de Navegacao nos Elementos da Pagina Corrente

110

SugarLoafPLoP 2007 Proceedings Writers” Workshop

Conseqiiéncias

+ O padrio Paginador de Objetos permite que grandes quantidades de dados,
representados como objetos, possam ser acessados € manipulados sem que estes
estejam todos carregados a0 mesmo tempo na memoria;

+ Prové o acesso por paginas a um conjunto de objetos, controlando a navegacdao
sobre esse conjunto;

+ Serve como um controlador de navegacdo em um conjunto de objetos. Quando
utilizado nesse sentido, a diferenca entre o Paginador de Objetos e o Iterator
[Gamma et al. 1995] é o fato do Paginador manter informagdes a respeito das
paginas na qual estd sendo feita a navegacdo, bem como informacdes que
permitam a recuperagao dessas paginas;

— O uso do Paginador de Objetos pode dificultar tarefas como a mudanga na
forma de ordenagao dos dados em tempo de execucao;

— Devido ao fato do Paginador de Objetos acessar o mecanismo de persisténcia
para cada pégina solicitada, pode haver uma degradacdo de desempenho se
comparado ao método onde todos os objetos sdo carregados de uma sé vez. Em
situacdes onde alto desempenho € critico, e a questdo memoria ndo € problema,
talvez seja mais interessante considerar o acesso a todos os dados de uma sé vez
sem utilizar o Paginador de Obijetos.

Implementacao

O padrao Paginador de Objetos pode ser implementado utilizando varias estratégias.
Esta secdo apresenta algumas dessas estratégias para implementagao.

1. A forma mais simples de implementacdo do Paginador de Objetos € definir a
classe PaginadorEspecifico como apresentada na Figura 1 e criar
mecanismos internos para o controle de navegagdo entre as paginas;

2. Outra abordagem ¢é fazer com que PaginadorEspecifico seja uma
implementacdo do padrdo lterator [Gamma et al. 1995], permitindo assim um
nivel ainda mais alto de abstracdo. A desvantagem dessa implementacao € o fato
de tornar as semanticas de uso dos iteradores no sistema mais complexo, pois
haveria iteradores de padginas e iteradores de objetos mantidos pela pagina;

3. A navegacgdo entre pdginas pode ser feita de uma forma transparente para o
usudrio, fazendo com que PaginadorEspecifico detecte quando o usudrio
tenta acessar um objeto que ndo estd na pdgina corrente e fazer a carga
automdtica dessa pagina. Dessa forma, o Paginador de Objetos toma uma
caracteristica de memoria tempordria de objetos (“pool”);

4. Uma implementacdo mais sofisticada do Paginador de Objetos permite que
objetos possam ser alterados ou removidos enquanto estdo sendo iterados.
Caberia ao PaginadorEspecifico notificar a persisténcia dessas
alteracoes;

5. Quando uma aplicagdo utiliza paginadores para diversos tipos de entidades, uma
classe abstrata de paginacdo pode ser usada com a funcdo de controle de
navegacdo, e para cada tipo de entidade poderd ser criada uma classe concreta

111

SugarLoafPLoP 2007 Proceedings Writers” Workshop

que herda desta classe abstrata e implementa operacdes especificas para um
determinado tipo de entidade a ser tratado;

6. Pode-se ainda definir a classe de paginacdo como parametrizada (Generics em
JAVA ou Templates em C++) permitindo que o cliente defina qual tipo de
entidade as classes de pagina¢do manipularao.

Exemplo de Codigo da Solucao

Como implementa¢do do Paginador de Objetos, serd utilizado o primeiro exemplo
apresentado, o PaginadorDeMedicamento, implementado na linguagem Java.

A classe PaginadorDeMedicamento deve ser responsavel pelo controle da
navegacdo entre paginas € o momento no qual uma nova pégina serd carregada e
disponibilizada (vale observar que o PaginadorDeMedicamento deve solicitar a
alguma classe utilitdria que recupere uma determinada pdgina do meio persistente,
garantindo assim um baixo acoplamento com as classes responsaveis pelos mecanismo
de persisténcia em questao).

A classe PaginadorDeMedicamento contém o atributo tamPagina que
armazenard o tamanho das paginas que serdo mantidas pela instancia do paginador.

public class PaginadorDeMedicamento {
private int tamPagina;

public int obtemTamanhoDaPagina () {
return this.tamPagina;

}

}

Além de tamPagina, PaginadorDeMedicamento também define um
conjunto de atributos que possuem a finalidade de manter a pagina atual
(numeroPagina), o numero total de paginas armazenado no meio persistente
(totalPaginas), a lista com os objetos da pagina corrente (medicamentos) e uma
referéncia para o objeto responsavel por recuperar os dados do meio persistente (rm).

private int numeroPagina = -1;

private int totalPaginas = 0;

private List<Medicamento> medicamentos =
new ArrayList<Medicamento> () ;

private RecuperadorDeMedicamento rm =
new RecuperadorDeMedicamento();

As funcionalidades de navegac¢do nas paginas normalmente resultam no acesso a
persisténcia para recuperagdo dos dados, dessa forma, serd definido um método no
objeto de acesso a persisténcia para o qual serd passado o intervalo de objetos que serdao
recuperados. Existem vdrias formas de implementar esse mecanismo, € para esse caso,
optamos por um mecanismo simples, baseado em um nimero seqiiencial que é dado a
cada objeto na persisténcia. PaginadorDeMedicamento define um método que
receberd o nimero da pdgina desejada e ele se encarregard da carga da pagina:

112

SugarLoafPLoP 2007 Proceedings Writers” Workshop

private void carregaPagina(int numeroPagina) {
int tamanhoDaPagina = obtemTamanhoDaPaginal();
int 1 = tamanhoDaPagina * this.numeroPagina;
int £ = i + tamanhoDaPagina;
this.numeroPagina = numeroPagina;
this.medicamentos.clear();
this.medicamentos.addAll (

this.rm.obtemMedicamentos (i, f));

}

O método carregaPagina calcula o intervalo de objetos que devem ser
recuperados, atualiza a péagina corrente, remove da memoria principal os objetos da
pagina anterior e finalmente recupera o conjunto de medicamentos através de uma
solicitacdo para rm. Os objetos recém recuperados sdo armazenados nessa nova pagina
atual.

Para que possa ser feito o cdlculo em carregaPagina, € necessario conhecer
o tamanho da pagina (quantidade de objetos por pagina). Essa informacdo é passada na
criacdo do PaginadorDeMedicamento, como um pardmetro para o construtor:

public PaginadorDeMedicamento (int tamPagina) {
this.tamPagina = tamPagina;
this.totalPaginas = (int) Math.ceil ((double)
rm.getQuantidade () / (double) tamPagina);

}

Observe que no construtor € feito o cdlculo do nimero total de paginas.

Os métodos de navegacdo entre péginas sdo semelhantes, logo, serdo
apresentados somente aqueles que solicitam ao PaginadorDeMedicamento a
ultima pagina e uma péagina especifica:

public Iterator ultimaPagina() {
carregaPagina (totalPaginas) ;
return paginaCorrente();

}

public Iterator paginaNum(int numPagina) {
carregaPagina (numPagina) ;
return paginaCorrente();

}

Os métodos que recuperam paginas, na verdade, delegam esse trabalho ao
método carregaPagina. Essa implementacdo ¢ bem simples, mas no caso de
implementagdes mais robustas, deve haver verificagdes de erros na carga ou eventuais
tentativas de navegacdes em pdginas invélidas.

Uma vez que a pagina foi carregada, o acesso aos objetos dessa pagina pode ser
disponibilizado através de um Iterator, como € mostrado logo abaixo:

public Iterator paginaCorrente() {
return new MedicamentolIterator (
this.medicamentos) ;

113

SugarLoafPLoP 2007 Proceedings Writers” Workshop

O método paginaCorrente cria um objeto personalizado do Iterator
para Medicamento e o devolve ao cliente. Outra forma de implementar esse
mecanismo € fazer com que logo apds a carga da péagina seja criado um objeto do tipo
MedicamentoIterator que € mantido vdlido enquanto a pagina ndo € alterada.
Caso a pagina seja alterada, os iteradores anteriores devem ser invalidados, nao
permitindo que os clientes continuem fazendo uso.

As classes Iterator e IteratorMedicamento sao implementacdes
simples do padrdo Iterator [Gamma et al. 1995].

A classe de acesso a persisténcia pode variar de acordo com as necessidades do
sistema, mas nesse exemplo, RecuperadorDeMedicamento conterd dois métodos
importantes:

public List<Medicamento> obtemMedicamentos (
int inicio, int fim)

public int obtemQuantidade ()

obtemMedicamentos retorna do meio persistente uma lista de medicamentos
onde as suas chaves estejam no intervalo comecando em inicio (inclusivo) e fim
(exclusivo). obtemQuantidade retorna a quantidade total de objetos armazenados
no meio persistente e € utilizado pelo paginador no cdlculo da quantidade de paginas
disponiveis.

public class Cliente {
public static void main(String[] args) {
PaginadorDeMedicamento paginador =
new PaginadorDeMedicamento (10);
while (paginador.temProxima()) {
paginador.proximaPagina () ;
Iterator it =
paginador.paginaCorrente () ;
while (it.temProximo()) {
System.out.println(it.proximo());

}

}

Por fim, a classe Cliente € um exemplo de cliente que utiliza a estrutura de
paginacao.

No do método main € definida uma varidvel local, paginador, como sendo
um paginador. Sdo utilizados dois lagos while, um para fazer a iteracdo das paginas e
outro para a iteracdo sobre a colecdo de medicamentos mantida em cada pégina,
apresentando cada um desses medicamentos na saida padrao.

Usos Conhecidos

e Virios sitios de compras pela Internet apresentam o comportamento de
paginagdo. Por exemplo, os sitios das Lojas Americanas, Submarino e Livraria
Saraiva permitem que o usudrio fagca pesquisas de seus produtos, obtendo como
retorno uma colecdo muito grande desses produtos, eventualmente. O sitio

114

SugarLoafPLoP 2007 Proceedings Writers” Workshop

permite que o usudrio navegue por esse conjunto de produtos através paginas,
oferecendo opg¢des de navegacdo para proxima pagina, pagina anterior além de
outras possibilidades;

e Java Server Faces (JSF) [Burns e Kitain 2006] € um conjunto de especificagdes
e APIs voltadas para o desenvolvimento de aplicagcdes WEB utilizando o padrao
Model-View-Controller [Krasner e Pope 1988]. O Apache MyFaces [MYF] ¢é
uma implementagao do JSF feita pelo Apache Group, que disponibiliza também
uma extensdo de componentes chamado de Tomahawk [TOM]. Entre os
componentes do Tomahawk existe o HtmlDataScroller que € responsavel por
fazer a paginagdo de objetos em aplicacoes WEB. Este componente recebe uma
lista de objetos e faz a paginagao de acordo com parametros pré-definidos. Entre
outras funcionalidades, esse componente de paginagdo permite a navegacao
entre paginas e a ordena¢do da colecdo de elementos;

e SCORM (Sharable Content Object Reference Model) [SCORM 2006] é um
conjunto de padrdes técnicos, desenvolvido pelo Departamento de Defesa
Americano que permite que sistemas de aprendizado baseados na Web
encontrem, importem, compartilhem, reutilizem e exportem conteidos de
aprendizado de uma forma padrdo. SCORM define o uso de objetos de
aprendizado que podem conter varios recursos como textos, imagens € sons,
além de uma regra de navegacao e uso desses recursos da maneira a propiciar o
aprendizado. Esses objetos de aprendizado sdo executados em Sistemas de
Gerenciamento de Aprendizado ou Sistema de Gerenciamento de Conteudo de
Aprendizado (em inglés referem-se as siglas: LMS — Learning Management
Systems e, LCMS — Learning Content Management Systems) sendo que esses
sistemas devem obedecer as regras de navegacdo definidas nos objetos de
aprendizagem. Para executar as tarefas de controle do fluxo de navegacao, esses
sistemas utilizam um mecanismo de paginagdo que carrega Os recursos ha
memoria, de acordo com a necessidade. Além das caracteristicas basicas, esse
mecanismo de paginacdo também deve ser dotado de uma inteligéncia adicional
para permitir que seja feita uma analise a respeito da evolucdo no aprendizado
do usudrio, mudando o caminho de aprendizagem e conseqiientemente o fluxo
de paginacgdes.

115

SugarLoafPLoP 2007 Proceedings Writers” Workshop

Padroes Relacionados

e [terator [Gamma et al. 1995]: O padrdao Paginador de Objetos é normalmente
utilizado junto do padrdo Iterator para permitir uma navegacdo através dos
objetos disponibilizados na pédgina corrente. Outra vantagem no uso do Iterator é
permitir que detalhes de navegacdo (como ordem, por exemplo) fiquem
implementados de forma transparente para o paginador;

e Memento [Gamma et al. 1995]: Para fazer o controle da navegagdo, os
paginadores podem utilizar o padrio Memento para obter o estado corrente da
navegacao e utiliza-lo posteriormente quando necessitar;

e Template Method [Gamma et al. 1995]: Em uma aplicacdo real pode ser
necessario que varios paginadores especificos para determinados tipos de
objetos sejam criados. Nesse contexto, poderiamos fornecer uma classe abstrata
para os paginadores que definem o comportamento bdsico de todos os
paginadores (como controle de navegacdo) e os detalhes necessarios para uma
implementagao completa seriam delegados para as classes concretas que herdam
dessa classe abstrata utilizando template methods;

e Data Access Object (DAO) [Alur et al., 2001]: Normalmente estamos
interessados em fazer a paginacdo de um conjunto de dados que estdao
armazenados em um mecanismo persistente, assim, seria interessante que o
paginador pudesse acessar os dados abstraindo a forma como estes sao
recuperados. O padrao DAO serve como essa camada de abstracdo que conhece
os detalhes da persisténcia e fornece uma interface bem definida para a
recuperagdo dos dados que o paginador necessita. Uma vantagem de utilizar o
padrao DAO ¢é permitir que as classes de controle do paginador fiquem
independentes dos mecanismos de acesso a dados e da persisténcia;

e Value List Handler [Alur et al., 2001]: O Value List Handler ¢ um paginador para
aplicagdes distribuidas que permite a implementagdo de politicas de cache e
controle de navegacao em ambientes WEB ou em aplicacdes multi-camadas;

e Record Set [Fowler 2002]: O padrdao paginador pode utilizar um Record Set
para manter os objetos da pagina corrente. Para que isso seja possivel, todos os
métodos das classes responsdveis pela persisténcia, que retornam dados, devem
retornam um Record Set contendo as informagdes referentes as entidades que o
cliente estd esperando. O paginador pode optar ainda por devolver o préprio
Record Set para que o cliente faca sua manipulagio;

e Paging [Noble e Weir 2001]: Paging € um paginador mais especifico para
ambientes de pouca memoria primdria, que permite a execu¢do de programas
“diretamente da memoria secunddria”. Essa sensacdo de executar as aplicagdes
na memoria secunddria € dada através de um mecanismo de paginagdo da
memoria, onde o ambiente (e,g., sistema operacional) carrega ou descarrega
essas pdginas de acordo com a demanda da aplicacio, de uma forma
transparente, dando a sensacdo de que sempre hd memoria disponivel para
alocacdo.

116

SugarLoafPLoP 2007 Proceedings Writers” Workshop

Referéncias Bibliograficas

Alur, D., Malks D. e Crupi, J. (2001), Core J2EE Patterns: Best Practices and Design
Strategies. Prentice Hall PTR, Upper Saddle River, NJ, USA.

Burns, E. e Kitain R. (2006) “JavaServer Faces Specification Version 1. 2 - Rev A”,

http://jcp.org/aboutlava/communityprocess/mrel/jsr252/index.html, Acessado em: 29
de Junho de 2007.

Fowler M. (2002), Patterns of Enterprise Application Architecture. Addison-Wesley,
Longman Publishing Co., Inc., Boston, MA, USA.

Gamma E., Helm R., Johnson R. e Vlissides J (1995), Design Patterns, Elements of
Reusable Object-Oriented Software. Addison-Wesley.

Krasner G. E. e Pope S. T. (1988). A cookbook for using the model-view controller user
interface paradigm in smalltalk-80. J. Object Oriented Program, vol. 1, 3% edig¢do,
paginas 26—49.

MYF. Apache Myfaces Project. http://myfaces.apache.org/. Acessado em: 29 de Junho
de 2007.

Noble J. e Weir C. (2001) Small memory software: patterns for systems with limited
memory. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Shareable Content Object Reference Model SCORM (2006). http://www.adlnet.org,
Acessado em: 29 de Junho de 2007.

TOM. Myfaces Tomahawk. http://myfaces.apache.org/tomahawk/index.html. Acessado
em: 29 de Junho de 2007.

117

SugarLoafPLoP 2007 Proceedings Writers” Workshop

Padrao AutenticaConexao
Marcelo Antdnio Albuquerque e Souza', Jerffeson Teixeira de Souza’

'Téxtil Unido S/A, Rodovia CE021 km 08, Distrito Industrial
61.939-906, Maracanau — CE

*Universidade Estadual do Ceara (UECE), Av. Paranjana, 1700, Campus do Itaperi
60.740-903, Fortaleza — CE

marcelo2306@gmail.com, jeff@larces.uece.br

Resumo. Definicdo de um mecanismo de autenticagdo para bancos de
dados de forma segura e flexivel utilizando schemas publicos independente de
codigo fonte e transparente para o desenvolvedor.

Palavras-chave : Padroes de Projeto, Autenticagdo em banco de dados, Encripta¢do de
dados, Seguranga de dados.

Abstract. Define a secure and flexible authentication mechanism for
databases using public schemas, independent of the source code and
transparent to the developer.

Keywords : Design Patterns, Database authentication, Data Encryption, Data security.

Nome

AutenticaConexdo

Intencao

Prover um mecanismo de autenticagdo para diversos bancos de dados (BD) combinando
a persisténcia de senhas em um schema publico ¢ o uso de fungdo encapsulada para
conexdo, garantindo a inviolabilidade dessas senhas de acesso e a flexibilidade na
manutengdo das mesmas, tornando-as indisponiveis para a aplicagao.

Contexto

Ambientes que utilizam aplicagdes onde a conexdo com o BD seja realizada através de
strings literais para usudrio e senha (compreendendo usudrio como usudrio da instancia
do BD) e onde ocorram alteragdes no usudrio/senha do Banco de Dados; aplicativos
implantados em organizacdes diferentes e que por isso sejam necessarios diversos
codigos fonte para cada usudrio/senha a ser autenticado pelos diferentes BD.

118

SugarLoafPLoP 2007 Proceedings Writers” Workshop

Problema

Em aplicagdes que utilizem um SGBD (Sistema Gerenciador de Banco de Dados) existe
a necessidade de se efetuar uma conexdo com o banco de dados através de um usudario e
respectiva senha e freqiientemente essa informacdo estd na forma de strings escritas
literalmente dentro do cédigo fonte em alguma classe ou rotina do sistema. Quando
ocorre a mudanga do nome do usudrio ou da senha, € necessario reescrever esse codigo
fonte. Além disso, a equipe de desenvolvimento tem acesso a um usudrio/senha do BD
de producgdo, o que pode ndo ser interessante sob o ponto de vista da seguranca das
informagoes.

Forgcas

= Senhas literais no cddigo fonte sdo uma potencial falha de seguranca, pois sao
visiveis a qualquer desenvolvedor que tenha acesso a esse codigo;

= A simples mudanca de senha em um BD pode se tornar uma operagdo complexa
caso existam varias aplicagdes diferentes acessando esse BD;

= A demissdao de um desenvolvedor pode obrigar a reescrita dessa senha na
aplicacao;

= Uma colecdo de senhas persistentes facilitaria o trabalho de administragdo do
BD;

= A persisténcia de senhas em um schema torna-o um alvo em potencial para
tentativas de quebra da criptografia.

Solucao

Substituir usuario/senha de conexdao do BD de produgdo por pardmetros ndo acessiveis
ao usudrio ou desenvolvedor — serdo adotadas medidas do lado do BD e do lado da
aplicagao.

No lado do BD criar um schema (por exemplo, Pub1icDB) com uma Unica tabela (por
exemplo PublicUser):

CREATE TABLE [PublicUser] (
[Aplicacao] [Char] (10) NOT NULL,
[Usuario] [Char] (10) NOT NULL,
[Senha] [Char] (10) NOT NULL
)
Essas trés colunas serdo obrigatoriamente encriptadas — a seguranga do BD estara
totalmente dependente de quao segura serd essa fungdo de encriptagdo. As permissoes de
acesso a essa tabela serdo concedidas a apenas um usuario e somente com poder de
leitura (sugestdo : PublicDBO). A senha de PublicDBO podera ser de conhecimento

publico, visto que esse usudrio tem acesso somente a dados encriptados.

119

SugarLoafPLoP 2007 Proceedings Writers” Workshop

Do lado da aplicagdo criar uma nova conexdo a PublicDB através de PublicDBO.
Em seguida encriptamos o nome da aplicag@o para criar uma string de busca no formato:

Select Usuario, Senha From PublicUser where Sistema = XXXXX

XXXXX sera a string resultante da encriptacio do nome da aplicacdo. Obtendo o
usuario/senha vinculado a aplicacdo passamos 0s mesmos como pardmetros de um
método/funcdo que ird por fim autenticar o BD de produgdo. Dessa maneira
conseguimos estabelecer a conexdo com o BD sem que fosse necessario escrever o

usudrio/senha do BD de producao.

Para o DBA existira aplicativo que permita ao mesmo alterar os registros de
PublicUser quando ocorrer a mudanga de usuario/senha no BD. Essa operacao sera
sincronizada para ndo ocorrer erros de conexao.

A fun¢do de encriptacdo poderd utilizar o conceito de chave publica e privada e devera
estar encapsulada em uma DLL ou qualquer outro meio que impeca a visualizacdo do
codigo. Observa-se que neste caso nao podera ser usada encriptagdo de mao unica, pois
o DBA precisa desses cddigo encriptados para manter os dados da tabela
PublicUser. A chamada a fun¢do de encriptacdo também estara encapsulada para que

ndo seja possivel a visualizacdo do retorno da funcdo — que ¢ exatamente o que
queremos esconder: o usudrio/senha do BD.

Exemplo

Iremos exemplificar usando a fungdo GetPublicAcess cujo parametro serd o nome
do banco a ser conectado (sDataBasetoFind). A conexdo sera realizada no banco
publico e caso a busca com o valor encriptado de sDataBasetoFind seja bem
sucedida, iremos obter os usudrios e senhas validos desse banco (sUsertoFind e
sPasswordtoFind). Em seguida ¢ realizada a conexao com o banco definido em
sDataBasetoFind.

//GetPublicAcess ¢é uma funcdo encapsulada (o desenvolvedor ndo pode ter
//acesso ao seu cbébdigo fonte) que obtém o usudrio e senha do banco de
//trabalho definido no parédmetro sDataBasetoFind

Function GetPublicAcess (sDataBasetoFind : String) :Boolean;
//Definicdo das variaveis privadas que receberdo usudrio e senha de
//autenticacéo
Var sUsertoFind, sPasswordtoFind : String

begin
//Bloco try..except para tratamento no caso de insucesso na conexao
//efetuar encerramento do programa
try

//Comandos para inicializar uma conexdo em delphi
dbPublicDB.Params.Clear;
dbPublicDB.LoginPrompt:=False;

//Passando os dados para conexdo com o schema publico
dbPublicDB.Params.Add ('DATABASE NAME=PUBLICDB') ;
dbPublicDB.Params.Add ('USER NAME=PublicDBO') ;
dbPublicDB.Params.Add ('PASSWORD=faith');
dbPublicDB.Connected:=True; //efetua a conexdo

120

SugarLoafPLoP 2007 Proceedings Writers” Workshop

//definindo componente tquery que 1rd retornar o usudrio e senha
//encriptados definidos para o banco de trabalho definido pelo pardmetro
//SdataBasetoFind

quBusca.database := dbPublicDB; //aponta para PublicDB

//busca em PublicUser
quBusca.SQL.Add('select Usuéario, Senha from PublicUser');
quBusca.SQL.Add ('where Sistema=:pSis');

//Encriptar parédmetro pSIs pois pois PublicUser ¢é uma tabela com
//contetdo encriptada

quBusca.ParamByName ('pSIS') .AsString := Cript (sDataBasetoFind) ;
quBusca.Open; //Executa a query

//Testa se a busca foil bem-sucedida

if quBusca.Eof then
Result := false // retorna false para ndo efetuar a conexdo

else begin
{obtidos usudrio e senha do banco de trabalho}
sUsertoFind := DeCript (quBusca.fieldbyname ('Usuario') .AsString);
sPasswordtoFind := eCript (quBusca.fieldbyname ('Senha') .AsString);
quBusca.Close;

//Prepara a conexdo com o banco de trabalho
dmTable.dbGTF.Connected:=False;
dmTable.dbApplication.Params.Clear;
dmTable.dbApplication.aliasname := 'MyAlias';

//Nesse ponto pode-se estabelecer a conexdo pois obteve-se o

// usuadrio e senha do banco de trabalho
dmTable.dbApplication.Params.Add ('DATABASE ME='+sDataBasetoFind) ;
dmTable.dbApplication.Params.Add ('USER NAME='+sUsertoFind) ;
dmTable.dbApplication.Params.Add ('PASSWORD="+sPasswordtoFind) ;

//Se a conexdo ndo for bem-sucedida serd processado o bloco except
dmTable.dbApplication.Connected:=True;
end;

//fecha a conexdo com PublicDB
dbPublicDB.Connected := false;

except
//Insucesso na conexao
Result := false;
end;
end;

//método publico de inicializacdo da aplicacdo onde ocorre a obtencdo das
//senhas e conexdo com o BD de trabalho
procedure TfmMain.FormCreate (Sender: TObject);

begin
//tenta estabelecer a conexdo com o banco definido como parédmetro de
// GetPublicAcess
if not GetPublicAcess ('MyDataBase') thenbegin
//Unico acesso do desenvolvedor
Application.MessageBox ('Ndo foi possivel conectar ao Banco de
Dados', 'Atencdo',mb_IconStop);
Halt; //sai da aplicacéao

end else
begin
//Conexdo bem-sucedida, execucdo normal do programa a
//partir desseponto a conexdo com o banco de trabalho estéa
//efetuada
end;

end;

121

SugarLoafPLoP 2007 Proceedings Writers” Workshop

Contexto Resultante

A informag¢do de usuario e senha do banco de producdo passa a ser parametro da
aplicag¢do. Deixa de existir na aplicagdo as strings de usudrio e senha para conexao com o
SGBD. Quando houver mudanga de senha no banco de producdo nio sera necessario
alterar essas strings no cédigo fonte da aplicagdo. A equipe de desenvolvimento nio tera
acesso ao banco de produgdo porque ndo tera conhecimento do usuario/senha
respectivos. No entanto, serd necessario gerenciar outro schema no SGBD bem como
desenvolver um algoritmo seguro para encriptagdo das strings de usuario.

Conseqiiéncias
Positivas

= Aumento da seguranca: as senhas do banco de dados deixam de ser visiveis a
qualquer um que tenha acesso ao codigo fonte. Em véarios casos praticos nao ¢
desejavel que a equipe de desenvolvimento tenha acesso a essas senhas;

= Diminui¢do de reescrita de codigo fonte : usudrio/senha como parametros da
aplicacdo, deixa de existir a necessidade de alterar o cddigo quando ocorrer
mudanga dos mesmos no banco de dados.

Negativas

= Aumento da complexidade da aplicacdo: Sera necessaria uma conexao extra com
o banco de dados; a criagao de um schema de autenticacao no banco de dados; a
criagdo de algoritmo de encriptacdo para manipulagdo de usuario e senha;

= Nao se pode garantir a inviolabilidade de um BD caso um desenvolvedor tenha
acesso ao nome de um banco de producgdo. Dentro da aplicagdo ele passa a ter
acesso aos dados desse banco.

Racional

A adogao desse padrao implica na criagcdo de um schema extra no BD e ird demandar um
certo tempo na implementagdo da classe ou rotina de conexao e da classe ou rotina
responsavel pela encriptagdo dos dados. Esse tempo ¢ largamente compensado pela
produtividade adquirida na eliminagdo da necessidade de reescrever o cddigo fonte, além
do aumento da seguranca da administragdo de dados, pois a equipe de desenvolvimento
nao tera acesso ao usuario/senha dos bancos de produgao.

Usos Conhecidos

Téxtil Unido S/A — Fiacdo em Maracanait — Ceara Valenga Industrial -
Tecelagem/tinturaria em Valenca — Bahia Os sistemas internos das empresas utilizam
esse padrdo para conexdo e autenticacdo das maquinas cliente ao servidor de banco de
dados das mesmas.

122

SugarLoafPLoP 2007 Proceedings Writers” Workshop

Padroes Relacionados

Podemos encontrar documentagdo correlata em Hays, Loutrel e Fernandez [1] cujo
framework aglutina as tarefas de autenticag@o, controle de acesso e filtragem de dados
em ambientes distribuidos e também em Lehman [2] que dedica um capitulo a
autenticacdo em banco de dados através da persisténcia dos pardmetros de conexdo em
tabelas de banco de dados. Em Fernandez [3] podemos analisar uma cole¢do de padrdes
para controle e acesso a nivel de sistema operacional. Um padrdo para autenticacdo em
ambientes distribuidos pode ser encontrado em Fernandez [4].

Agradecimentos

Para a conclusdao desse trabalho foi de fundamental importancia a colaboragdo do Dr.
Eduardo B. Fernandez gracas a sua larga experiéncia em padrdes de autenticacdo pode
fornecer preciosos conselhos para a melhoria desse documento. Agradecemos o apoio da
Universidade Federal do Cear4, na figura da Dr. Vania Vidal, coordenadora do curso de
Especializagdo em Tecnologias da Informacao e a Téxtil Unido S/A, local onde nasceu a
idéia dessa implementagdo. Agradecemos também aos colegas Anderson Brando, Ellen
Polliana, Kleber Rocha, Rafael Braga, Tiago Barros e todos os outros participantes do
workshop de escritores, grupo B, do SugarLoafPLoP’2007 pela motivacdo e
comentarios essenciais ao aperfeicoamento do trabalho.

Referéncias

[1] Viviane Hays, Marc Loutrel, Eduardo B. Fernandez, “The Object Filter and Access
Control Framework”, PloP 2000 Conference,
http://jerry.cs.uiuc.edu/~plop/plop2k/proceedings/Fernandez3/Fernandez3.pdf.

[2] Clay Lehman , “Secure Authentication and Session State Management for Web
Services”, CSC 499 Honors Thesis,
http://www.csc.ncsu.edu/academics/undergrad/honors/lehman/clehman.pdf.

[3] E.B.Fernandez and J.C.Sinibaldi, “More patterns for operating systems access
control”, Procs. EuroPLoP 2003, http://hillside.net/europlop

[4] E. B. Fernandez and R. Warrier, "Remote Authenticator/Authorizer", Procs. of the
Pattern Languages of Programs Conference (PLoP 2003).

123

SugarLoafPLoP 2007 Proceedings Writers” Workshop

Linguagem de Padroes para Avaliacao de Conhecimento
em Objetos de Aprendizagem — Parte 1

Ingrid T. Monteiro', Clayson Sandro’, Cidcley T. de Souza’

NASH (Nucleo Avancado em Engenharia de Software Distribuido e Sistemas
Hipermidia) /ITTI (Instituto de Telemética) — Centro Federal de Educacdo
Tecnologia do Ceard — Fortaleza, CE - Brasil

{ingridtm, claysonsandro}@gmail.com, cidcley@cefetce.br

Abstract. Learning Objects (LO) are resources which have been frequently
applied to support computer-aided learning. In order to assess the
assimilation effectiveness of the knowledge provided by such resources, they
must supply mechanisms through which the learning of the presented contents
can be measured. However, the notion of knowledge evaluation in LOs varies
in several aspects according to the learning goals. Therefore, we present in
the paper the first part of a pattern language regarding the knowledge
evaluation process using LOs. The main goal of the paper is to provide,
though patterns methodology, a set of recommendations to the knowledge of
evaluation possibilities, by using LOs. The main goal of the paper is to provide
a set of recommendations to allow for the better exploitation of LO contents,
related to evaluation, through the successful experience’s documentation.

Resumo. Objetos de Aprendizagem (OA) sdo recursos que vém sendo
utilizados largamente para dar suporte ao aprendizado apoiado por
computador. Para que possamos aferir a eficdcia na assimilacdo dos
conhecimentos fornecidos por esses recursos, os mesmos devem oferecer
mecanismos através dos quais se possa avaliar a aprendizagem dos contetidos
apresentados. Entretanto, a implementacdo da nogdo de avaliacdo de
conhecimentos em OA difere em diversos aspectos de acordo com a intengdo
sobre o aprendizado. Nesse sentido, apresentamos nesse artigo a primeira
parte de uma linguagem de padrées relacionados ao processo de avaliacdo de
conhecimento com a utilizacdo de OA. Esse trabalho tem a intenc¢do de
fornecer diretrizes para um melhor aproveitamento dos contetidos dos OA, no
que diz respeito a avalia¢do, a partir da catalogagcdo de experiéncias bem
sucedidas.

124

SugarLoafPLoP 2007 Proceedings Writers” Workshop

1. Introducao

A necessidade do uso de novas tecnologias no processo de ensino e aprendizagem vem
sendo cada vez mais presente no cotidiano de alunos e professores. Contudo, € preciso
ampliar esta discussdo com o objetivo de contextualizar as novas tecnologias da
informacdo e da comunicacdo e suas relagdes com o ensino e aprendizagem na
Educagdo [1]. Esta discussdo surge com o anseio de modificar a forma como a Educacao
propde o ensino € como os materiais educacionais sdo projetados, desenvolvidos e
entregues aqueles que desejam aprender.

Atualmente, um dos materiais educacionais que procuram atender a esses
objetivos sdo os OA — Objeto(s) de Aprendizagem, que sdo definidos como qualquer
entidade, digital ou ndo digital, que pode ser utilizada, reutilizada ou referenciada
durante o aprendizado apoiado sobre a tecnologia [2, 3]. Ndo ha defini¢do clara de
limite de tamanho para um OA, existe, porém, o consenso de que ele deve ter um
proposito educacional definido, um elemento que estimule a reflexdo do estudante e de
que sua aplica¢do ndo se restrinja a um unico contexto [4].

Ha diversos fatores que favorecem o uso de OA na drea educacional, como por
exemplo: a flexibilidade, a facilidade para atualizacdo, a customizacdo, a
interoperabilidade e, por fim, o aumento do valor de um conhecimento. Os OA tratam
de assuntos especificos utilizando as metodologias adequadas para aprendizagem de seu
conteddo, aplicando exemplos, testes, entre outras formas, para que o aluno tenha uma
total compreensdo do topico ora apresentado. Todas estas vantagens sdo mais que
suficientes para justificar a utiliza¢do dos OA nas diferentes modalidades de ensino.

E préprio dos objetos de aprendizagem, principalmente os difundidos na Web,
entre outros fatores, em razao de sua natureza digital, o carater heterogéneo de conteudo,
formas de elaboracdo, recursos utilizados e linguagem adotada. Nesse sentido, levando
em conta esta heterogeneidade, discutir OA, do ponto de vista das possibilidades de
avaliacdo, acarreta em um desdobramento de outras questdes a ela inerentes e que
correspondem as caracteristicas dos OA. Existem diversas formas de avaliar um aluno
utilizando este recurso: é possivel seguir o método mais convencional de avaliacdo de
perguntas e respostas; expor situagdes em que o aluno fornece o valor de varidveis,
contribuindo para a constru¢do ou desenrolar destas situacdes; apresentar uma
explicacdo preliminar sobre o contetido e apds isso langar os questionamentos a
respeito; e outras possibilidades que serdo apresentadas no decorrer do artigo.

Entretanto, mesmo imerso em tamanha diversidade, € possivel identificar
padrdes relacionados a avaliagdo do conhecimento assimilado utilizando OA. Para
realizarmos a andlise de forma organizada, identificamos alguns aspectos a considerar,
quando se fala em avaliacdo dentro de OA. Esses aspectos, que sdo apresentados a
seguir, formam a base para a nossa linguagem de padrdes. Um detalhe importante € que,
no escopo da linguagem e do artigo, tratamos apenas dos OA digitais, aplicagdes
multimidia e interativas. Todos os OA apresentados neste artigo foram coletados em
repositdrios disponiveis na internet.

Antes de ingressarmos na descri¢do da linguagem de padrdes desenvolvida nesta
pesquisa, discutiremos um pouco questdes relevantes no contexto do artigo, como
avaliagdo, padroes de software e sua terminologia, incluindo o conceito de linguagem.

125

SugarLoafPLoP 2007 Proceedings Writers” Workshop

A secdo seguinte corresponde a descricdio da nossa linguagem, apresentando
resumidamente todos os seus padrdes e o relacionamento entre eles. Apds esta fase,
ingressamos na descricdo formal dos padrdoes que fazem parte da primeira parte da
linguagem. A ultima parte do artigo dedica-se a enumerar alguns trabalhos relacionados
a nosso objeto de estudo, indicando aqueles que trazem padrdes tteis a0 nosso contexto.

2. Conceitos e Terminologias

Dentro do contexto educacional, a avaliacdo da aprendizagem € muito mais que uma
disciplina de Pedagogia. Ela corresponde a toda uma area de conhecimento da educacao,
com muita pesquisa desenvolvida e, a0 mesmo tempo, ainda em evolugao.

A idéia de avaliagdo passou por muitas mudangas, partindo da concepcao
quantitativa de medicdo, até as visdes qualitativas mais progressistas. Todas essas
questdes podem ser compreendidas tanto em trabalhos que discutem a primeira
abordagem [5] [6], como nos que defendem a segunda [7] [8] [9]. Sdo relevantes ainda
as implicagcdes da avaliacdo no contexto das novas tecnologias e da educagdo a distancia
[10] [11] [12].

Para este artigo, entende-se “avaliacdo” dentro de um OA como todas as formas
pelas quais € necessdria a intervencao do aluno no cendrio do objeto, no que diz respeito
a expressdo do seu entendimento sobre determinado assunto e que, por ventura, possa
ser utilizado como recurso para avaliar a aprendizagem deste conteido. As avaliacdes
podem ser problemas, questdes, situagdes cotidianas, entre outras formas. E desta
avaliagdo que nos referimos no decorrer do artigo.

A respeito da teoria dos padroes de software, que teve sua origem nos estudos do
arquiteto Christopher Alexander [13] [14], € importante saber que um padrio descreve
um problema de projeto e uma solugdo geral para o problema em um contexto particular
[15]. Desta forma, utilizando a definicdo alexandrina, cada padrdo é uma regra de trés
partes, que expressa uma relacio entre um certo contexto, um problema e uma solucao.

Como forma de orientag¢do para os leitores, os padroes apresentados nesse artigo
sdo descritos utilizando-se oito elementos. O primeiro elemento, Nome, € a sua forma de
identificacdo, representado, neste artigo pelo proprio titulo do topico. O Contexto indica
a situacdo em que o padrdo deve ser aplicado. O Problema apresenta a questio que
expressa o problema que o padrdo resolve. O elemento Forcas descreve as forcas que
direcionam o padrio para suas possiveis solugdes. A Solucdo apresenta uma resposta a
questdo relacionada no elemento Problema e que resolve as forcas da melhor forma
possivel. O Racional mostra porque a solucao resolve o problema, como as for¢as foram
tratadas e o que hd por trds da solugdo. O Contexto Resultante indica o estado do
sistema apds a aplicacdo do padrdo, apresentando freqiientemente suas conseqiiéncias.
Os Usos Conhecidos descrevem alguns dos lugares onde o padrao € utilizado e, por fim,
os Padroes Relacionados identificam, quando existem, outros padrdoes que sdo
importantes para o padrio descrito. E importante ressaltar que para este artigo esta se¢do
traz apenas o relacionamento entre os padroes da linguagem, pois os padroes
relacionados ao desenvolvimento de OA, de uma maneira geral, sem considerar os

126

SugarLoafPLoP 2007 Proceedings Writers” Workshop

padrées em particular, estdo descritos na se¢do Trabalhos Relacionados. Exemplos
sobre sua aplicacao podem ser encontrados em [16].

Para o caso da nossa linguagem de padrdes, os elementos descritos
anteriormente nao sao todos obrigatdrios. Além disso, os elementos Problema e Solucdo
sao suficientes para se ter uma visao geral do padriao, enquanto que os outros elementos
explicam o raciocinio utilizado para a constru¢do do mesmo, permitindo que o leitor
tenha uma visdo aprofundada do padrao.

Algo que ainda precisa ser definido € a expressdo linguagem de padroes que
representa o nucleo deste artigo. Conforme definida por Coplien [15], uma linguagem
de padrdes € uma colecdo de padrdes que necessitam de um ao outro para gerar um
sistema. Um padrdo isolado resolve um problema isolado; uma linguagem de padrdes
constréi um sistema. O autor acredita ainda que € através das linguagens de padrdes que
a abordagem de padrdes mostra todo seu potencial.

E importante destacar que a linguagem de padrdes deve ser completa, todos os
aspectos do dominio abordado sdo importantes na definicio dos padrdes. Entretanto,
cada padrio pode ser usado separadamente ou e conjunto com alguns padrdes da
linguagem. Desta forma, um padrao individualmente é considerado ttil mesmo se a
linguagem nao for usada em sua plenitude [17].

A secdo a seguir apresenta a linguagem de padrdoes para avaliagdo do
conhecimento em OA desenvolvida neste artigo. Serdo apresentados o escopo da
linguagem, os aspectos considerados em seu desenvolvimento, a descri¢do resumida de
todos os padrdes e o esclarecimento de como eles se relacionam.

3. A Linguagem de Padroes

A linguagem de padrdes apresentada nesse trabalho abrange uma quantidade
considerdvel de fatores relacionados a avaliacdo do conhecimento através de OA.
Assim, para melhor contextualizar este escopo, definimos um conjunto de aspectos
importantes relacionados 24 nocdo de avaliacio. E a partir destes aspectos que

. . L. g san ~ 1
organizamos de forma sistematica e didética os padrdes apresentados .

Tomando o OA do ponto de vista da avaliacdo, seis Aspectos foram entdo
considerados para nossa andlise: Tipo de Avaliacdo, Propdsito do Objeto de
Aprendizagem, Seqiiéncia das Questoes, Relacdo entre Contetido e Avalia¢do, Recursos
Utilizados e Comportamento Diante das Respostas, todos tendo sempre em mente o
contexto da avaliacdo. Desta forma, cada aspecto define um grupo/conjunto de padrdes.
O ntimero de padrdes para cada um destes aspectos varia entre dois e quatro, totalizando
dezesseis padrdes para a linguagem aqui apresentada. A Tabela 1 relaciona os grupos
que ordenam esta linguagem de padrdes, destacando o problema basico que cada
conjunto procura solucionar.

1 Lot ~ s~ z . . ~

A prépria questdo da avaliagdo é demasiadamente abrangente, por isso, ndo entram no escopo da
linguagem fatores como: eficdcia da avaliacdo, avaliacdo para determinada disciplina, conteido visto
antes da avaliacdo, percep¢do do usudrio da avaliacdo por OA, entre outros.

127

SugarLoafPLoP 2007 Proceedings Writers” Workshop

Tabela 1 - Definicdo dos aspectos/conjuntos da linguagem

ASPECTO DESCRICAO
Tipo de Avalia¢do Determina quem avalia o aluno.
Propésito do Objeto de | Estabelece o principal intuito do OA: conteido ou
Aprendizagem avaliagdo.

Seqiiéncia das Questdes | Trata da forma que se d4 a seqii€éncia das questdes?
Relagdo entre Contetddo | Determina quem vem primeiro: o conteido ou a

e Avaliacdo avaliacdo.

Recursos Utilizados Corresponde a maneira de apresentar as questdes e
problemas.

Comportamento Diante | Estabelece o que acontece depois que o aluno responde a

das Respostas uma questao.

Por questdes de espaco, o escopo deste artigo comporta apenas os padrdes
relacionados aos dois primeiros aspectos: Tipo de Avaliagcdo e Proposito do Objeto de
Aprendizagem, somando-se entre eles quatro padrdes. A seguir serd apresentada uma
descricao de todos os seis aspectos considerados no agrupamento dos padrdes para esta
linguagem. Apesar de ndo tratarmos aqui dos padrdes pertencentes aos quatro ultimos
conjuntos, a sua descri¢do € importante para que se compreenda a linguagem por inteiro.

O primeiro aspecto, Tipo de Avaliacdo, como o nome indica, diz respeito ao tipo
de avaliacdo presente no OA. A quem se direciona o resultado da avaliacao? Quem deve
tomar conhecimento da quantidade de acertos, do desempenho do aluno na resolucao
dos problemas? Dessa forma, definimos os seguintes padrdes: AUTO-AVALIACAO,
obviamente, em que os alunos sdao auto-avaliados € AVALIACAO SUPERVISIONADA, em
que os professores tém acesso aos resultados, acompanham o processo de avaliacao.

O aspecto Propdsito do Objeto de Aprendizagem relaciona-se com a natureza do
OA: existem alguns estritamente tedricos, que concentram esfor¢cos em apenas expor o
conteido, sem preocupacdo com a fixacdo ou avaliacdo desse conteido. Esta
modalidade de OA nao serd considerada em nossa andlise exatamente por nao fornecer
recursos diretos de avaliacio”. Um segundo tipo é aquele que ainda possui uma énfase
tedrica, oferecendo, entretanto, recursos para fixagao e avaliagdo do conteido (OBJETO
DE APRENDIZAGEM TEORICO). A ultima possibilidade nesse grupo sido os OA que ndo
possuem conteddo explicativo explicito: eles sao os proprios exercicios, s@o a propria
avaliagao (OBJETO DE APRENDIZAGEM PRATICO). Como nao hd matéria formal dentro do
OA, para utilizé-lo, ou seja, resolver os problemas existentes, o aluno deve conhecer o
assunto previamente, € preciso que ele tenha passado por uma aula a respeito ou tenha
estudado o contetddo.

Seguimos entdo com a explicacdo dos aspectos analisados, agora tratando
daqueles cujos padrdes ndo serdo descritos formalmente neste artigo, para que, como
dito anteriormente, compreenda-se a relacdo dos conjuntos entre si e se perceba a
linguagem de padrdes em sua esséncia.

2 4 . . - . vy e L. . . .

E preciso deixar claro que a nao disponibilidade de exercicios ou questionamentos deste tipo de objeto
nio compromete sua qualidade pedagégica. O professor pode realizar avaliagdes externamente ao OA,
utilizando o método que considerar mais conveniente.

128

SugarLoafPLoP 2007 Proceedings Writers” Workshop

A respeito da seqiiéncia das questdes (aspecto Segiiéncia das Questoes),
observou-se que ha duas possibilidades: a) As questdes sdo dependentes umas da outras
e dadas de forma seqiiencial (SEQUENCIA LINEAR). Para passar a questdo seguinte (ou
até para continuar no OA), € preciso resolver o problema, solucionar a pergunta anterior.
b) Os problemas podem ser resolvidos em qualquer ordem (SEQUENCIA NAO LINEAR).
Caso nao saiba a resposta de uma questdo, o aluno pode passar para a préxima ou
prosseguir com a “leitura” do OA.

O aspecto seguinte, Relacdo entre Contetido e Avaliacdo, considera a relagdo
entre o conteido apresentado e os exercicios, no que diz respeito a ordem de
apresentacdo das matérias e das avaliagdes, dentro do OA. Alguns OA expdem todo o
contedido primeiro e depois disponibilizam uma ou mais questdes para o aluno
(CONTEUDO ANTES DA AVALIACAO). Outros intercalam conteido com exercicios: na
medida em que vao sendo adicionados conceitos, sdo apresentados exemplos para o
aluno aplicd-los (CONTEUDO E AVALIACAO INTERCALADOS). Um terceiro tipo
(AVALIACAO ANTES DO CONTEUDO) € aquele que ndo apresenta contetido inicialmente.
H4, antes dele, uma situacdo-problema que o aluno deve solucionar. Depois de
resolvida, vem a explicacdo do assunto envolvido no contexto apresentado.

O proximo aspecto estabelecido, Recursos Utilizados, esta relacionado aos
recursos graficos e de interface utilizados nas questdes e exercicios. H4 uma infinidade
deles: de questdes de multipla escolha a simulacdes, as mais diversas, passando ainda
por preenchimento de lacunas e outras respostas em aberto. Definimos para nossa
linguagem os seguintes padrdoes: QUESTOES DE MULTIPLA ESCOLHA, QUESTOES
ABERTAS, SIMULACOES e IMAGENS E GRAFICOS.

Comportamento Diante das Respostas, o ultimo aspecto identificado, refere-se
ao tratamento dado pelo objeto as repostas dos alunos. Diz respeito ao que acontece
dentro do OA ap6s um erro ou um acerto. Algumas vezes, é possivel retornar e tentar
outra resposta (TENTATIVA E ERRO), outras vezes, € apresentada a conseqiiéncia para a
resposta escolhida (APRESENTACAO DAS CONSEQUENCIAS) e outras vezes, nao € possivel
conhecer a resposta certa (AUSENCIA DE GABARITO).

Como sintese do que foi dito até aqui, a Tabela 2 apresenta todos os aspectos de
avaliacdo considerados na pesquisa e os respectivos padrdes identificados para cada um
deles. Destacamos em cinza os padrdes detalhados neste artigo.

Tabela 2 - Conjuntos da linguagem e seus padroes

ASPECTO PADROES

Tipo de Avaliacdo Auto-Avaliacao

Avaliacdo Supervisionada
Propésito do Objeto de Objeto de Aprendizagem Tedrico
Aprendizagem Objeto de Aprendizagem Pritico
Seqiiéncia das Questdes Seqiiéncia Linear

Seqiiéncia Ndo Linear
Relagdo Entre Contetido e Conteudo Antes da Avaliacio
Avaliacdo Conteddo e Avaliacio Intercalados

Avaliacdo Antes do Conteddo
Recursos Utilizados Questdes de Multipla Escolha

Questdes Abertas

Simulagdes

129

SugarLoafPLoP 2007 Proceedings Writers” Workshop

Imagens e Gréficos
Comportamento Diante das Tentativa e Erro

Respostas Apresentacao das Conseqiiéncias
Auséncia de Gabarito

O E importante observar que os padrdes da linguagem relacionam-se entre si de
duas maneiras, conforme apresentado na Figura 1: a) os padrées de um grupo podem
relacionar-se com os padrdes de outro grupo; b) os padrdes de um mesmo grupo podem
ou ndo se relacionar entre si. Em outras palavras, é possivel que um OA adote véarios
padrdes da linguagem ao mesmo tempo. De fato, um OA deve utilizar pelo menos um
padrao (mas ndo necessariamente apenas um) de cada aspecto considerado, dependendo
da intencdo do desenvolvedor. Por exemplo, o primeiro objeto de aprendizagem
mostrado neste artigo (item a do tépico Usos Conhecidos na se¢do 4.1), usa os seguintes
padroes: AUTO-AVALIACAO, OBJETO DE APRENDIZAGEM PRATICO, SEQUENCIA NAO-
LINEAR, CONTEUDO E AVALIACAO INTERCALADOS, QUESTOES DE MULTIPLA ESCOLHA,
SIMULACOES, TENTATIVA E ERRO € APRESENTACAO DAS CONSEQUENCIAS. Desta forma,
€ possivel desenvolver uma variedade imensa de OA, combinando-se os padrdes entre si
de cada conjunto.

Na descricao dos padrdes, isto ficard claro com alguns exemplos de OA que
aparecem em mais de um padrdo, demonstrando assim o intercambio existente entre os
padrdes de cada aspecto.

A Figura 1 a seguir apresenta a relacdo entre os grupos e padrdes da linguagem.
Destacamos em cinza, os padrdes descritos neste artigo. Conforme pode ser visto, existe
relacionamento entre todos os grupos (indicado pela seta). Pela imagem, entende-se que
todos os padrdes de um grupo devem usar pelo menos um padrdo de todos os outros
grupos, com apenas uma excecdo: v€ se que no grupo Propdsito do Objeto de
Aprendizagem, apenas o OBJETO DE APRENDIZAGEM TEORICO relaciona-se com os
padrées do grupo Relacdo entre Conteiido e Avaliagdo, pois para utilizar os padroes
deste dltimo grupo, € necessario que exista contetido formal no OA, o que ndo € o caso
do OBJETO DE APRENDIZAGEM PRATICO.

A respeito do relacionamento entre padrdes do mesmo grupo, € possivel
perceber que trés grupos apresentam padrdes exclusivos entre si (caixa tracejada). Por
exemplo, se um OA adota o SEQUENCIA LINEAR, ele ndo pode utilizar o SEQUENCIA
NAO-LINEAR. Os outros trés grupos possuem padrdes que podem usar um outro padrao
do mesmo grupo. Por exemplo, nada impede que um OA que use o SIMULACOES, adote
também o QUESTOES ABERTAS € 0 QUESTOES DE MULTIPLA ESCOLHA.

130

SugarLoafPLoP 2007 Proceedings

L 2

| Auto-Avaliagio |

Tipo de Avaliagio

Avaliagio

Supervidonada

!
1

r
NN W NN

T T T T T Trtopositn do Ohjeto de Aprendizagem |
O bjeto de O bjeto de
Aprendizagem Teorico | |Aprendizagem Priatico
I Sequéncia das Questoes
;: Sequencia | | Sequéncia Hio
1 Linear Linear 1

Relau;au:u Erfre Conteldo & .ﬂ-.'-.-‘ahal;al:ll

Conteudo Antes
da Avaliagio

Contedide e Avaliagio

Intercalados

Avaliagio Antes 1

- 1
do Conteudo I
=

Quedies de

Multipla Escolha

GQuestoes
Abertas

Recurzos WMilizados

Imagens e

Griaficos

Com portam ento Diante das Respostas

Tentativa e Errol

Apresentagiio Das

Conseqiiéncias

Auséncia de

Gabarito

- Padries dependentes |_ P e S ED

_— _I exclusivos

Legenda

D Padriies ndo-exclusivos

4. Aspecto Tipo de Avaliacdo

Figura 1 — Relacao entre os padrbes da linguagem

4.1. Padrao AUTO-AVALIACAO

Contexto

Writers” Workshop

Ao desenvolver um OA que oferega possibilidades de fixacdo e avaliagdo do conteudo,
deseja-se que o aluno seja auto-avaliado, que ele mesmo solucione os problemas
apresentados e tome consciéncia de seu desempenho.

Problema

Como permitir que um aluno que utilize um OA possa aferir, por si s6, o seu

aprendizado?

Forcas

OA desenvolvidos para a Web oferecem diversas possibilidades de recursos de layout e
interface, permitindo a criagdo de ferramentas interativas. Recursos comuns a Internet

131

SugarLoafPLoP 2007 Proceedings Writers” Workshop

sdo interessantes para os alunos, pois diferem dos métodos convencionais de sala de
aula.

Aspectos como idade, conhecimento de tecnologia, disciplina abordada podem
levar os alunos a ndo gostarem de ser auto-avaliados por meio de OA. Eles podem ter
dificuldades de uso e compreensao da inten¢do da auto-avaliagdo.

A forma como os resultados dos problemas sao apresentados aos alunos pode
comprometer a interpretacdo de sua avaliacao.

A relacdo entre as questdes apresentadas e o conteido abordado no OA
determina a qualidade da avaliacao.

Solucao

Ofereca recursos, dentro dos OA, que possibilitem aos alunos realizarem, de forma
atrativa, sua auto-avaliacdo. Os alunos devem conhecer seu desempenho nas questdes e
problemas. A maneira mais simples € fornecer a resposta certa aos questionamentos, ou
informar se o aluno errou ou acertou. Métodos de contagem de pontos, associados ao
nimero de acertos sdo outras formas vdlidas do aluno perceber como se da
quantitativamente seu aprendizado. Os questionamentos devem corresponder ao
conteido aprendido, para que a andlise do aluno se faca de maneira direta. Toda a
constru¢do da avaliacdo dentro do OA deve ser feita de forma a convidar o aluno a
conhecer seus resultados, a ter consciéncia do que foi aprendido.

Racional

A adoc¢@o do AUTO-AVALIACAO permite que o aluno possa decidir sobre o seu préprio
aprendizado. O padrao estabelece que a avaliacdo seja feita de forma interessante,
levando o aluno a ter responsabilidade sobre seu conhecimento. E necessario ainda que
esse tipo de avaliacdo seja aplicado para alunos que tenham maturidade para realizar
uma melhor avaliacdo dos resultados obtidos. Além disso, deve ser levado em
consideragao o teor do contetdo na elaboragdo da avaliagao.

Contexto Resultante

Objetos de aprendizagem que utilizem o AUTO-AVALIACAO permitem que o aluno tire
conclusdes sobre o seu desempenho, através de sua propria andlise. Utilizando o padrio,
o método auto-avaliativo contribui na formagao do aluno, no que diz respeito a tomada
de consciéncia, por si sO, da evolu¢do de seu aprendizado e de seu desempenho na
fixacdo do conteido estudado. A partir da avaliacdo feita, o aluno tem condicdes de
reforcar seu estudo exatamente nos aspectos em que percebeu maior deficiéncia.

Uma conseqiiéncia da auto-avaliagdo enquanto método pedagdgico € o
desinteresse do aluno. Ela pode ndo levar a nada, pois o aluno toma conhecimento de
seu desempenho, mas pode ndo tomar providéncias para melhord-lo. Além disso, o
aluno pode ndo ter consciéncia do objetivo da auto-avaliacdo, pode considerar as
questdes nos OA apenas como “exercicios de fixagao” ou “joguinhos”, ndo levando a
sério seus resultados.

132

SugarLoafPLoP 2007 Proceedings Writers” Workshop

Usos Conhecidos

Diversos OA observados utilizam AUTO-AVALIACAO, pois a disponibilidade dos objetos
pela Web favorece o estudo individual e solitdrio, exigindo do aluno a responsabilidade
sobre sua prépria avaliagdo. Observou-se assim a tendéncia de se deixar para o aluno a
tarefa de perceber os erros e acertos nas questdes resolvidas. Seguem abaixo alguns OA
que utilizam esse padrdo, destacando os recursos utilizados para essa auto-avaliacdo.

a. O salto dos recordes [18]: A idéia principal do objeto é permitir que o aluno
compreenda algumas nocdes de Mecénica. O aluno deve fornecer as informacdes de
angulo e velocidade para um motoqueiro saltar com sucesso de uma rampa. Na tela
do OA, hd a indicacdo dos valores fornecidos pelo aluno (Figura 2). A todo
momento, o aluno vai percebendo seu desempenho e avaliando quais valores deve
usar, pois hd a simulacdo do que ocorre com a moto, a cada valor informado. Pela
imagem: o aluno inicialmente (parte superior da Figura 2) ndo obteve sucesso com
o salto, ha entdo a representacido da explosdo da moto (mancha clara indicada pela
seta); depois (parte inferior da Figura 2), ele fornece valores corretos e consegue
atravessar a rampa (moto em destaque). Prosseguindo no OA, hd ainda questdes
relacionadas ao que ocorreu durante a simulag¢do. Caso o aluno tenha compreendido
bem a dindmica nos valores das varidveis, vai ter consciéncia de seu aprendizado na
resolugdo das questdes.

v B
33.75 mis

Figura 2 - Auto-avaliagdo no OA “Salto dos Recordes”

133

SugarLoafPLoP 2007 Proceedings Writers” Workshop

b. A quimica das cores nos fogos de artificio [19]: Neste OA, o cardter auto-avaliativo
estd presente em alguns momentos: depois de toda a explicagdo do conteido, é
fornecida uma tabela com elementos quimicos e as cores que eles provocam nos
fogos de artificio. H4 um crondmetro (na Figura 3, indicado com uma seta) ao lado
e o aluno deve memorizar a correspondéncia das cores em até trinta segundos. Este
recurso desafia o aluno a memoriza-las mais rapidamente, além de informar a ele
quanto tempo levou, ja que pode prosseguir no OA assim que decorar as cores e
isso pode levar menos tempo que o maximo permitido. Em seguida, é proposto um
exercicio que exige do aluno a correspondéncia das cores com os materiais
apresentados. Além de acertar os elementos, o aluno deve fazé-lo em um tempo
limitado (ilustrado pela queima de uma vela, como se vé na Figura 3). A cada erro
ou acerto o aluno compreende a qualidade da memorizacdo feita momentos antes.
Na imagem, o brilho no céu representa a queima correta do rojao constituido de
soddio, que emite uma cor amarela.

LabVirt

——

is Minerais €
%gg’os de Artificio

Os fogos de artificio utilizam sais
de diferentes metais na mistura
explosiva (pélvora). Quando
detonados, esses sais produzem
cores diferentes. Veja a tabela
com os diferentes sais_€ suas i verde
cores caracteristicas: e e e —

ordem de cores que apdtec: '

coloracio

amarela

calcio

é cobre
potassio L*;_
e

Figura 3 - Auto-avaliagdo no OA “Quimica das cores nos fogos de artificio”

c. Calculadora quebrada [20]: Este ¢ um OA que se caracteriza muito mais como um
jogo de raciocinio. A auto-avaliagdo existe no desafio de conseguir todos os
numeros solicitados no tempo determinado (crondmetro indicado na Figura 4 pela
seta escura). O aluno pode avaliar-se também através dos niveis existentes. Pode
concluir como estd seu desempenho matematico, a partir de que nivel maximo
conseguiu alcancar.

134

SugarLoafPLoP 2007 Proceedings

Writers” Workshop

A maioria das
teclas cairam da
calculadora. VVocé

Level 1

tem 4 minutos para
fazer estes nume-
ros.
—— 12
7y 15
8 20
10 50

Eric
calcu

Tempo restante: 3: 43 _

=3
Level 5
Level B
Level 1 |

-

Figura 4 - Auto-avaliacao no OA “Calculadora quebrada”

Os Concelhos’[21]: E um exemplo da utilizacdo de contagem de pontos para a

auto-avaliacio do aluno. E um OA desenvolvido para a disciplina de Histéria e
caracteriza-se por um conjunto de questdes de multipla escolha a respeito dos
Concelhos e documentos histéricos de Portugal. Cada pergunta vem acompanhada
de um texto e de algumas imagens relacionados. Ao final do questiondrio, sdo
passados para o aluno seus resultados em forma de porcentagem, além de apresentar
as questdes que ele acertou, as que ele errou e as respostas corretas. A Figura 5
mostra a primeira questdo apresentada e os resultados obtidos, destacando-se a

exibicao

de uma das questdes erradas.

= OSCONCELHOS N

Lé atentamente o documento. Este
documento & uma...

|2

]

Carta de Doag&o

I"Eu Afonso, fago carta de foral aos homens de L3
Fenela, e a tados 0s gue ai moararem dou e concedo: —
vos 0 meu castelo de Penela, com 0s seus termos

e fontes e pastagens e terras desbravadas e por
desbravar {.). Os que lavrarem com um jugo de

bois pagar-me-4o0 dois quarteiros, metade de trigo e %

i~

-

Carta de Feira

o

Carta de Foral

(B33 B3 JHE S

Obtiveste 70

QUESTIONARIO

*ERRASTE ESTA PERGUNTA™
035 gvizinhose referidos no documento, eram...

- Todos os hahitantes do concelho de Penela

- 0 hahitantes de um concelho vizinho

- Os moaradores de uma mesma do concelho de
Fenela
Resposta certa: Todos os hahitantes do concelho de
FPenela

Js juizes de Penela tinham o direito de
- Julgar os habitantes de Penela e de outros
concelhos

%0

|2

perguntas.

Figura 5 - Auto-avaliacao no OA “Os Concelhos”

? Grafia original do portugués de Portugal. Refere-se a um acontecimento histérico e tem significado
diferente da palavra “conselho”.

135

SugarLoafPLoP 2007 Proceedings Writers” Workshop

Padroes Relacionados

O AUTO-AVALIACAO relaciona-se com o AVALIACAO SUPERVISIONADA de forma nio
excludente, pois um mesmo OA pode adotar os dois padroes.

Os padrées do grupo Propasito do Objeto de Aprendizagem sdo utilizados para
determinar o foco do OA, que pode ter uma &nfase tedrica ou pratica.

A continuidade do OA, ou seja, a “liberdade” de leitura que o aluno possui é
determinada pelos padrdoes do grupo Segiiéncia das Questoes. Sao os padrdes deste
grupo que determinam se o aluno pode, por exemplo, passar para uma questao seguinte
sem acertar a resposta da anterior.

Em um OA que adote o0 AUTO-AVALIACAO, desde que possua contetido formal, é
preciso estabelecer a ordem com que os contetidos e as avaliagdes sao apresentadas. Isto
¢ feito com os padrdes do grupo Relagdo entre Contetido e Avaliacdo.

Toda a avaliacdo dentro do OA ¢ feita através de recursos pedagdgicos e de
interface. Os padrdes do grupo Recursos utilizados determinam as formas de
apresentacdo dos problemas dentro do OA.

Em uma auto-avalia¢do, a forma de se apresentar a resposta das questdes ao
aluno contribui para que ele tome conhecimento da qualidade de sua aprendizagem.
Dessa forma, para decidir a maneira com que as respostas serdo apresentadas, devem ser
usados os padrdes do grupo Comportamento Diante das Respostas.

4.2. Padrao AVALIACAO SUPERVISIONADA

Contexto

Ao desenvolver um OA que oferece possibilidades de fixacdo e avaliacdo do contetdo,
deseja-se que o professor tome conhecimento do desempenho do aluno, através das
questdes propostas no préprio OA.

Problema
Como construir OA em que o professor tome conhecimento dos resultados da avalia¢do
aplicada ao aluno?

Forcas

A utilizagdo de OA muitas vezes se dd sem a presenca do professor. O aluno tende a
estudar sozinho ou com algum outro aluno. Essa caracteristica cria uma barreira “fisica”
para o avaliador.

Neste método, a avaliagdo € feita por meio digital, com um recurso diverso
daqueles aos quais os alunos estdo habituados, o que pode gerar uma falta de
comprometimento dos alunos.

Os resultados devem ser apresentados de modo a permitir a compreensao do
professor sobre o desempenho do aluno na assimilacao do contetido.

136

SugarLoafPLoP 2007 Proceedings Writers” Workshop

Como os OA possuem vdrios recursos e caracteristicas que despertam a atencao
dos alunos, é necessario que a avaliagdo seja mais agraddvel e ndo seja tdo “traumadtica”
como as provas comuns.

Algumas questdes de seguranca relacionadas a autoria das respostas devem ser
consideradas quanto a utilizacao desses resultados na avaliagao formal dos alunos.

Solucao

Elabore questdes e exercicios com algum recurso que permita ao professor ter
conhecimento do resultado do desempenho do aluno. H4 diversas maneiras de o
professor conhecer o desempenho do aluno: ele pode acompanha-lo no uso do OA e ver
como ele se sai nos problemas; pode receber as respostas do aluno ou o resultado das
questdes por endereco eletronico ou por SMS para o celular ou outros dispositivos
moveis; entre outras maneiras. O envio pode ser feito de forma automatica pelo OA ou
manualmente pelo préprio aluno, dependendo do formato das questdes. No AVALIACAO
SUPERVISIONADA, o importante € fornecer ao professor meios diretos para que ele possa
acompanhar a aprendizagem do aluno. A maneira pela qual os seus resultados sdo
repassados para o professor € uma escolha do desenvolvedor: eles podem estar
agrupados por blocos de questdes, conforme for organizado o OA; podem vir em forma
de porcentagem ou nimero absoluto de acertos; podem ser ordenadas por questdes
certas ou erradas; entre diversas outras formas.

Racional

Com a utilizagdo do AVALIACAO SUPERVISIONADA, o aluno serd avaliado pelo professor,
a ele cabe considerar o desempenho do aluno, contabilizando ou ndo o resultado da
avaliacdo no esquema de pontuagdo e notas convencional. Isso fornecerd uma motivagao
para que o aluno empenhe-se na utilizagao do OA. Caso o professor deseje utilizar o OA
para dar notas aos alunos, devem ser consideradas as questdes de seguranga em relacao
ao acesso aos resultados.

Usos Conhecidos

Nos OA listados a seguir, pode-se perceber um certo esforco em levar ao professor o
conhecimento da avaliagdo do aluno. Nota-se que o resultado da avaliagdo € muito mais
voltado para o professor, embora também seja importante para o aluno. Alguns OA
oferecem aos usudrios a possibilidade de entrar em contato com o professor, por meio
de formulério préprio do objeto, encaminhando a mensagem diretamente para o e-mail
do professor, ou usando outras estratégias, como nos seguintes OA:

a. Geography Quiz [22]. Este objeto consiste em um jogo de perguntas e respostas de
geografia envolvendo os continentes, com variagdo de pontos entre as questdes. Ele
oferece duas maneiras (seta escura na Figura 6) de estabelecer comunicagdo com o
professor: a) utilizando o comando “Submit Results”, que enviard o resultado do quiz
(quantidade de questdes acertadas) diretamente para o e-mail do professor, através de
uma ferramenta de gerenciamento de e-mail (Outlook, Eudora etc); e b) utilizando o
comando “Task Manager”, através do qual o aluno pode comunicar-se com o

137

SugarLoafPLoP 2007 Proceedings

Writers” Workshop

professor, enviando-lhe uma mensagem, preenchida em um formulario (em destaque
na Figura 6)."

Mastermind
Which South American country takes ité nawne from a line of
latitude?
[Instructions]| Check Answer] %
| |_ Festart H Close Quiz]
Round 1
Europe 200 400 600 800 1000
South America % 400 500 800 1000 Player 1:
North America 200 400 800 800 1000 Player 2:
Australasia 200 400 800 800 1000

[Task Manager][Submit Results] -

Good Afternoon

Welcome to the Teaching Templates Quiz Maker Task Manager

Select an exere

Would you like to send an e-m

+ To:

+ Subject
Teaching

yuumame@yuurservercum

W

* To:
;yourname@yuursemer.cum

* Subject:

'Teaching Templates Quiz Maker

Send message

Fiqura 6 - AVALIACAO SUPERVISIONADA no OA “Geography Quiz”

b. E hora de colocar as coisas no lugar! [23]: A idéia principal é que o aluno faca
conexdes com elementos ligados a genética e monte essas relacdes em um quadro,
utilizando imagens e conectores (Figura 7). Como sdo muitas possibilidades, o
préprio aluno nao tem como ter certeza de que seu trabalho estd correto. Entdo, é
recomendado que o professor observe a montagem feita por ele e avalie se estd

coerente.

* Estes sdo alguns dos recursos disponibilizados pela ferramenta de autoria Tac-soft [14], a partir da qual
foi feito o objeto de aprendizagem citado.

138

SugarLoafPLoP 2007 Proceedings Writers” Workshop

o it Cromossomos @

Eles sempre aparecem comn essa
forma de X. Mas no & sermpre
que eles ficarn assirmn. Assirn &
s quando eles estic
duplicados. Assim & o mamento
emn qua podamos obsarvd-los no
niclec das células ac
ricroscdpio Sptico, Assim =las
ficararn conhecides: coisas que

2

29779799

Figura 7 - AVALIACAO SUPERVISIONADA no OA “E hora de colocar as coisas no lugar!”

c. Uma aventura na Unido Européia [13]: O objeto € semelhante a um jogo que envolve
conhecimentos gerais (cultura, arte, geografia) dos paises da Europa. Logo ao entrar
no site, o usudrio é convidado a conhecer a colocacdo dos participantes (Figura 8)
dispostos em forma de ranking’ para entdo iniciar a “aventura” proposta pelo OA. O
professor pode conhecer o desempenho do avaliado por meio de sua colocagdo no
ranking e utilizar essa informag@o para adicionar pontos ou bdonus nas notas dos
alunos. Na imagem hd um exemplo de desafio com o qual o aluno se depara durante
a utilizagcao do OA.

BEM VINDO A WVINCI

®inci & uma pequena localidade italiana, pero
de Flarenca. Al nasceu Leonardo da Vinci
fque, para alérm de ter sido um grande pintor 2
escultor do Renascimento, foi também um
grande inwventor.

- OS GRANDES B o e

Uma Aventura na Unido Europeia

desenhos de

i VEN DORES I

[o¥ e & s - ele imaginadas,
"-i [Waoltar ao Inicio] 7_/‘:‘ gt F oo aate
s MNome: Nara 26-06-2003 235005 - fiossnlinadebn
=] Escala: .| Clarke Richardson 1 jaragledas
L' Localidade:Ajax ON Canada T R e v ge
' i fpass wen AT % v Este e outros
=1 A T) 27}? " esbogos estdo
== Nome: Adam Ismail 27032003 113406 | & T Taugacd SR A8 ‘reunidos num
Co] Eccola: T hluseu na sua
= Localidade:Camaxide terra natal
| l Jra acontece que & absolutamente
“ Mome: Furkan Ismail SONESOniEnE] | mecessario que encontres este desenho. Em
= =3 Escola: escola E.B. 23 Vieira Da Silva que piso do MMuseu se encontra ele?
Localidade:Carnaxide
,+ 2° andar Aoui vai o link para este site:
e =
Nome: Ricardo Gaspar 27-02-2003 13:03:54 o apdar @ 1 -Leonardo Da Minci

Localidade:Linda-a-Velha B N
rés-do-chio

Escola: Escola E.B.2.3 VIEIRA DA SILVA

Ora bem, para gue serve 3 minha bela
“assoura MMagica? Agui vou eu. ...

Figura 8 - AVALIACAO SUPERVISIONADA no OA “Geography Quiz”

> O recurso de ranking também é um recurso oferecido por uma ferramenta de autoria da qual originou-se
0 OA em questdo. Dessa vez trata-se do Quandary [15].

139

SugarLoafPLoP 2007 Proceedings Writers” Workshop

Padroes Relacionados

Caso se deseje que, além do professor, o aluno também tenha conhecimento dos
resultados de sua avaliagdo, deve ser utilizado AUTO-AVALIACAO.

Com os padroes do grupo Propdsito do Objeto de Aprendizagem, o professor
determina se a avaliacdo do aluno serd feita em um OA que apresenta a explica¢do do
conteido ou em um OA estritamente pratico.

Os padrdes do grupo Segiiéncia das Questoes sdo utilizados para determinar a
maneira com que os alunos tém acesso as questdes (de forma linear ou ndo), gerando
conseqiiéncias na supervisdo do professor. Por exemplo, é mais dificil para ele
acompanhar o andamento na solu¢do de questdes que podem ser resolvidas fora de
ordem.

Através dos padroes do grupo Relacdo entre Conteiido e Avaliagcdo, o professor
determina em que momento dentro do OA ocorre a avaliagdo supervisionada.

O formato dos problemas também determina a complexidade da avalia¢do
supervisionada pelo professor. Questdes de mudltipla escolha, por exemplo, sdao mais
simples de serem corrigidas. Os padroes do grupo Recursos utilizados sao necessarios
entdo para definir estes detalhes.

O que acontece no OA depois que o aluno langa uma resposta é relevante para o
professor avaliar aspectos como quantidade de tentativas e exatiddo das respostas dadas
pelos alunos.

5. Aspecto Proposito do Objeto de Aprendizagem
5.1. Padrao OBJETO DE APRENDIZAGEM TEORICO

Contexto

Ao se desenvolver um OA, o professor/desenvolvedor pode aprofundar, nos mais
diversos niveis, o contetido apresentado. O OA pode ser a primeira ferramenta pela qual
o aluno esta tendo contato com o assunto, ou pode apresentar-se como um refor¢o, uma
revisdo de um conteudo anteriormente abordado. Neste contexto, considera-se
importante a presenca de explicacdo, de detalhamento do contetido estudado, para junto
dele serem apresentados problemas e questionamentos a respeito.

Problema
Como disponibilizar material para os alunos, através do qual eles possam aprender o
assunto de interesse e posteriormente serem avaliados?

Forcas

O contetido de um OA depende muito da natureza tedrica da disciplina e do assunto
abordado em particular. Alguns deles exigem explicacdoes mais detalhadas para que a
avaliacdo seja feita satisfatoriamente.

140

SugarLoafPLoP 2007 Proceedings Writers” Workshop

O momento de apresentacao do contetido para o aluno é um fator relevante. Caso
seja a primeira vez que ele entre em contato com o assunto apresentado, € essencial que
haja a sua descri¢do, sua fundamentacao tedrica e nao apenas exercicios e avaliagdes.

OA que associam conteddo a avaliagdo tém uma implementagao mais complexa,
no sentido de necessitar uma estruturacdo pedagdgica coerente entre conteidos e
questdes avaliativas.

Solucao

Desenvolva OA que agreguem ao mesmo tempo contetido e exercicios de fixa¢do e/ou
avaliacdo. Devem ser objetos que possuam claramente a explicacdo sobre um
determinado assunto e em outro momento apresente problemas relacionados, ndo
obrigatoriamente nesta ordem. O importante é reconhecer que teoria e pratica aparecem
em blocos distintos. Para o0 OBJETO DE APRENDIZAGEM TEORICO, o objetivo principal é
apresentar o conteido e a partir dele langar problemas para o usuério.

Racional

A utilizag¢do de OA tedricos € importante, principalmente, para a introducao de novos
conceitos. Esses OA devem ser acompanhados de exercicios para facilitar a assimila¢do
do conhecimento. Por conta disso, mesmo sendo complexa a implementacao desse tipo
de OA, a sua utilizacdo justifica-se pela eficiéncia para o aprendizado do aluno, que é
alcancada pela existéncia de contetido formal e avaliagdo integrados.

Contexto Resultante

A adogdo do OBJETO DE APRENDIZAGEM TEORICO implica em uma utilizagdo mais
completa do objeto, de forma integrada, em que o aluno ndo precisa recorrer a fontes
externas. Dependendo do aprofundamento dado, o usudrio € capaz de absorver toda a
matéria estudando apenas pelo OA.

Usos Conhecidos

E possivel encontrar virios objetos que seguem o OBJETO DE APRENDIZAGEM TEORICO,
todos com as secdes tedricas bem explicitas dentro do corpo do OA. Listamos aqui
apenas alguns exemplos:

a. A quimica das cores nos fogos de artificio [19]: Conforme apresentado em sua
descricdo inicial, e AUTO-AVALIACAO, é apresentada inicialmente toda a base tedrica
a respeito da quimica relacionada as cores, apresentando sua correspondéncia com os
elementos quimicos (ver Figura 3). Apds isso, o aluno pode ser avaliado (AUTO-
AVALIACAO, conforme dito anteriormente), testando seus conhecimentos através dos
problemas apresentados.

b. E hora de colocar as coisas no lugar! [23]: Antes de iniciar a montagem do quadro
com as relacdes dos elementos de genética, ha uma exposicdo dos conceitos
relacionados, explicando cada um dos elementos exibidos (ver Figura 7). O aluno sé
consegue realizar a atividade com sucesso se estudar o conteudo disponivel.

c. A quimica dentro de um bolo [16]. Este OA também € um bom exemplo de mistura

z

entre conteido e avaliacdo. O objetivo é abordar a questdo do balanceamento de

141

SugarLoafPLoP 2007 Proceedings Writers” Workshop

substancias na Quimica e o OA inicia com uma analogia aos ingredientes de um
bolo. Antes de ser exibido o contetido propriamente dito, o aluno é questionado sobre
as proporcdes necessdrias de cada ingrediente para fazer mais de um bolo (Figura 9).
Em seguida, € apresentada a explicacdo a respeito do balanceamento de equagdes.

ica dentro de urm bolo

N
00+O@+o®+o +o?-|-oLJJ—4;£;a

xie_ farinha copo de leite col. de mang.anna col. de fermento xic. agucar Bolos

Simulagao: A guim

[La l::’!v‘ift

Preencha cada ingrediente com o valor adequado

Por exemplo, ao reagir1 C + 1 Oz,
eu tenho um produto formado a
partir deles que é chamado gas
carbonico. A molécula formada é
COz, e tem um atomo de carbono
e dois de oxigénio.
Olha so como fica:
1C + 102 21CO:

Figura 9 - OA Tedrico “A quimica dentro de um bolo”

Padroes Relacionados

Um OA tedrico € indicado para uso em cojunto tanto com o AUTO-AVALIACAO quanto
com 0 AVALIACAO SUPERVISIONADA, dependendo de quem vai receber os resultados da
avaliagdo.

Os padrdes dos grupos Segiiéncia das Questoes e Relacdo entre Contelido e
Avaliag¢do sdo necessdrios para determinar, por exemplo, se o aluno tem acesso ao
conteddo apenas quando acerta uma questdo inicial ou se pode “navegar” entre as
questdes apresentadas, solucionando-as na ordem que desejar.

O grupo Recursos Utilizados prové padrdes para auxiliar no desenvolvimento de
questdes relacionadas ao conteudo presente no OA.

Com os padrdes do grupo Comportamento Diante das Respostas, € possivel
fornecer um retorno ao aluno sobre suas respostas e relaciond-las com o conteudo
apresentado.

142

SugarLoafPLoP 2007 Proceedings Writers” Workshop

5.2. Padrao OBJETO DE APRENDIZAGEM PRATICO

Contexto

Apbs o professor explicar um determinado conteido, é recomendavel que ele ofereca
possibilidades para os alunos testarem seus conhecimentos, fixarem a matéria
apresentada e, em ultima instancia, serem avaliados, por ele ou pelo professor. Outro
caso comum ¢ quando o aluno ja sabe um determinado contetdo, ja viu isso em sala ou
estudou por conta prépria, e deseja exercitar ou testar seus conhecimentos.

Problema

Como fornecer aos alunos uma forma direta de praticar um determinado conhecimento
assimilado?

Forcas

Para que o aluno encaminhe-se diretamente para exercicios e avaliacdes, € necessario
que ele possua os pré-requisitos tedricos necessarios.

A utilizagdo do objeto de forma indiscriminada (sem a exposicdo da matéria)
pode dificultar o aprendizado do aluno.

Os questionamentos e problemas apresentados devem estar de acordo com a
intenc¢do do uso do OA. Assim, o aluno podera associar a explica¢do vista anteriormente
(visto em sala de aula ou por conta propria) com o exercicio/avaliagdao proposto nele.

O desenvolvimento dos problemas e questdes depende apenas da criatividade do
desenvolvedor/professor, visto que nao ha conteido formal no OA, aos quais os
problemas devam estar vinculados, como ocorre em OBJETO DE APRENDIZAGEM
TEORICO.

Solucao

Crie OA que sejam essencialmente praticos, que contenham apenas questdes ou
problemas a serem solucionados pelos alunos. Para OBJETO DE APRENDIZAGEM PRATICO
ndo é necessério apresentar qualquer conteido®, pois a premissa é que ele ji seja de
conhecimento do aluno. A caracteristica chave deste padrdo é que ele ndo traz a teoria
dentro do OA, nao ha explicagdo da matéria (ela ja foi vista), ao aluno cabe apenas a
resolucao dos problemas.

Racional

A utilizagdo de OBJETO DE APRENDIZAGEM PRATICO é recomendada para a assimilagio
de conceitos vistos em sala de aula. E importante que os exercicios sejam realizados no
mesmo nivel em que os contetidos foram apresentados.

6 ~ e . . P P . . .

Isso ndo significa que o objeto de aprendizagem com esse cardter pritico seja desprovido de conteddo.
Referimo-nos apenas ao conteido formal, descritivo, explicativo, que, no caso deste padrdo, realmente
ndo existe.

143

SugarLoafPLoP 2007 Proceedings Writers” Workshop

Contexto Resultante

O resultado da utilizacdo do OBJETO DE APRENDIZAGEM PRATICO € a possibilidade de
uma forma mais direta de avaliagdo por parte do professor e do aluno. Ambos podem
conhecer mais rapidamente o nivel do aprendizado do aluno.

E possivel que a utiliza¢do de um OA desenvolvido através desse padrio resulte
numa deficiéncia do aprendizado. Isso ocorre devido a falta de mecanismos para auxilid-
lo quando houver dividas ou necessidade de maiores esclarecimentos a respeito da
matéria de que trata os problemas.

Usos Conhecidos

Os exemplos de OA mais simples para este padrdo sdo aqueles que se caracterizam
como ‘“‘jogos” ou desafios (puzzles, quizzes, palavras cruzadas, entre outros), tanto de
habilidade de raciocinio, quanto de nivel de conhecimento sobre um determinado
assunto. Como usos conhecidos desse padrao temos:

a. Base Blocks Addition [28]: A utiliza¢do do objeto consiste em resolver os problemas
de aritmética propostos, deslocando-se os blocos e seus agrupamentos dentro das
areas correspondentes de unidades, dezenas, centenas e milhar (Figura 10). O aluno
que utilizar o OA necessariamente terd que possuir nocdes de soma e multiplicacdo.
Nao ha contetido explicativo, o usudrio deve apenas solucionar os problemas

apresentados.
1000's 100's 10's 1's Create Problem |
Solve the
= problem
' 1
228
7777777777777777777 e | +958
(TIrrrrrrr(
i i o 1
0 @ @
(ITTTrrirrri
A A Y ﬁ
i i i i 1 Mezxt Problem |

Figura 10 - OA Pratico “Base Blocks Addition”

b. Algebra Balance Scale [18]: Da mesma forma que o OA anterior, este ndo apresenta
nenhum contetddo. A idéia principal € relacionar os dois lados de uma equagao com
os dois pratos de uma balanga e assim descobrir o valor da incgnita da equagao
(Figura 11). O objeto apresenta uma seqiiéncia dessas equacdes que devem ser
solucionadas pelo aluno.

144

SugarLoafPLoP 2007 Proceedings Writers” Workshop

Click and drag quantities from bins to balance beam pans to represent
the equation.

Zx t+4=x+7

Figura 11 - OA Pratico “Algebra Balance Scale”

c. Um dublé em apuros [19]: Ao utilizar o0 OA, o usudrio deve fornecer um valor para a
distancia que um dublé deve saltar de um avido para conseguir cair dentro de um
lago. Nao hd explicagdes ou qualquer outro conteudo, apenas o ambiente para a
simulacdo de cada valor fornecido pelo aluno. Na Figura 12, nota-se que o dublé
alcangard o lago, pois o valor (2000m) da posicao do eixo x informada pelo aluno é

satisfatorio.
Digite a posigdo no &ixo "x" [2900m | [1435 |
s000m - da gual 0 dublé deve salfar. posigao atual do aviso tempo altura 2500m
S0 velocidade 80mls
4000m o posicgao do lagoa 2500m

tempo de queda 22,65

oom \Nec2| 200

Hx&a

Figura 12 - OA Pratico “Um dublé em apuros”

e 5

Padroes Relacionados

Em um OA que utilize o OBJETO DE APRENDIZAGEM PRATICO, é preciso definir se
apenas o aluno terd acesso aos resultados de sua avaliag@o ou se eles serdo consultados
pelo professor. Conforme o objetivo, serd usado entdo o AUTO-AVALIACAO ou o
AVALIACAO SUPERVISIONADA.

As questdes apresentadas no objeto pritico devem seguir um dos tipos de
seqiiéncia presentes nos padrdes do grupo Segiiéncia das Questoes.

145

SugarLoafPLoP 2007 Proceedings Writers” Workshop

As maneiras pelas quais o aluno vai praticar seu conhecimento por meio das
questdes sao estabelecidas pelos padroes do grupo Recursos Utilizados.

O tratamento dado pelo OA as respostas dos alunos € determinado pelos padroes
do grupo Comportamento Diante das Respostas.

6. Trabalhos Relacionados

A utilizacao de padrdes para a catalogacdo de praticas relacionadas ao desenvolvimento
de material instrucional no suporte educacional pode ser encontrado em trabalhos como
[31], onde foi apresentada a Linguagem de Padroes Cog-Learn. Essa linguagem
relaciona um conjunto de padrdes pedagdgicos que abordam questdes de planejamento e
seqiiéncia de cursos baseados em préticas de aulas presenciais e padrdes de IHC, obtidos
de projetos Web e que abordam questdes de interacdo, layout, planejamento e
estruturacdo de material instrucional. Dentre os padrdes apresentados na linguagem
Cog-Learn, podemos identificar alguns padrdes cujas abordagens podem ser mapeadas
na elaboracdo de OA e, portanto, podem ser aplicados junto com os padrdes que
apresentamos nesse trabalho, sendo particularmente importantes os padroes
ESTRUTURACAO DO CONHECIMENTO € CONTEXTUALIZACAO, que se preocupam na
organizacdo dos contetidos de modo a facilitar a apresentacdo de novos conceitos aos
alunos.

Ja em [32], o foco principal € a definicio de padrdes para tratar aspectos de
adaptacdo de materiais instrucionais para novos contextos educacionais. Para esse fim
sao descritos padrdes relacionados a diferentes dreas de adaptacdo, como layout e
conteidos. Também esses padrées podem ser aplicados a criacdo de OA. De fato, a
adaptagdo de conteudos, e particularmente de material utilizado para avaliag¢do, pode ser
necessaria de forma a se conseguir uma melhor aplicacio dos OA para publicos
diferentes. Nesse contexto, padroes como CORRECT ARRANGEMENT OF ELEMENTS e
TRANSLATION podem ser importantes para facilitar a adaptacdo de conteidos para se
atingir um determinado objetivo avaliativo.

Em [33] diversos padrdes sdo identificados com a finalidade de se identificar
mecanismos de registro de utilizacdo de um recurso instrucional digital. Também aqui
conseguimos visualizar uma importante relacdo entre esses padrdes com os que
apresentamos nesse artigo. De fato, quando falamos de verificar a assimilacdo de um
determinado contetido através de um OA, que é um dos objetivos dos nossos padrdes,
também devemos considerar a forma de como se gerar e armazenar informacdes que
possam fornecer subsidios para se aferir o grau de assimila¢do desses contetidos. Assim,
a aplicacdo do padrao AUTOMATIC GRADING OF STUDENTS' ANSWERS pode fornecer
mecanismos que permitam a geragdo automatica de resultados de avaliagdes em um OA.
Ja a aplicac@o do padrao CLASSIFICATION OF STUDENTS pode permitir a identificacdo de
um ranking relacionado as avaliagdes fornecidas por um determinado OA.

7. Agradecimentos

Os autores agredecem o apoio financeiro concedido pelo CNPq (Conselho Nacional de
Desenvolvimento Cientifico e Tecnoldgico) e pelo CPQT (Centro de Pesquisa e
Qualificacdo Tecnoldgica). Gostariamos também de fazer um agradecimento especial ao
nosso shepherd Rohit Gheyi, pelas valiosas sugestdes e comentérios, que nos fizeram

146

SugarLoafPLoP 2007 Proceedings Writers” Workshop

refletir em muitos pontos e ajudaram a melhorar bastante o conteido e a forma deste
artigo.

Referéncias Bibliograficas

[1] Fernandes, N.L.R. (2004) Professores e computadores: navegar é preciso, Porto
Alegre: Mediagao, pp. 36-41.

[2] Wiley, D.A. (2000), Connecting learning objects to instructional design theory: A
definition, a metaphor, and a taxonomy in D. A. Wiley (Ed.), The Instructional Use

of Learning Objects. Documento on-line, disponivel em:
<http://reusability.org/read/chapters/wiley.doc>. Acessado em: 17 de novembro de
2006.

[3] IEEE. Learning Technology Standardization Committee (LTSC). Disponivel em: <
http://ieeeltsc.org/>. Acessado em: 19 de novembro de 2006. [4] BETTIO, R.W. de
& Martins, A. Objetos de aprendizado: um novo modelo direcionado ao ensino a
distancia. In: 90. Congresso Internacional de Educag¢do a Distancia, 2002, Sao
Paulo - SP. Acessado em 24 de novembro de 2006. Documento on-line, disponivel
em <http://www.universiabrasil.net/materia/materia.jsp?id=5938>.

[5] Bonniol, J.J. & Vial, M. (2001). Modelos de avaliacdo: textos fundamentais, Porto
Alegre: ARTMED.

[6] Luckesi, C.C., (1996). Avaliacdo da aprendizagem escolar, Sao Paulo: Cortez.

[7] Franco, M.L.P.B. (1995). Pressupostos epistemologicos da avaliacdo educacional.
In SOUZA, C. P. de. Avaliacao do rendimento escolar, Campinas: Papirus.

[8] Hadji, C. (2001). A avaliacdo desmistificada, Porto Alegre: ARTMED.

[9] Hoffmann, J.M.L. (1995). Avaliagcdo mediadora: Uma prdtica em constru¢do da
pré-escola a universidade, Porto Alegre: Educagao e Realidade.

[I0]OLIVEIRA, E.S.G. & Costa, M.A. A avaliacdo na educacdo a distancia: desafios e
progressos, Rio de Janeiro: UFRJ. Documento on-line, disponivel em
http://www.universia.pr/congreso/41/41.rtf. Acessado em: 17 de abril de 2007.

[ITTJOLIVEIRA, E. S. G. et al (2006). A avaliacdo da aprendizagem na educacdo a
distancia: o didlogo entre avaliacdo somativa e formativa. In: 1* Reunido Anual da
ABAVE, 2006, Belo Horizonte. Anais da 1* Reunido Anual da ABAVE, 2006.

Acesso em: 28 de dezembro de 2006. Disponivel em:
http://www.abave.org.br/publicacao.do?acao=buscar&codpublicacao=129&dest=m
ostra.

[12]NEDER, M. L. C. (1996). Avalia¢do na Educagdo a Distdncia: significagbes para
definicdo de percursos. In: Educacdo a Distancia, organizado por Oreste Preti.
Cuiabd: UFMT/NEAD. Acesso em 28 de dezembro de dezembro de 2006.
Disponivel em: http://www.nead.ufmt.br/documentos/AVALIArtf.rtf.

[13]JALEXANDER, C. et al. (1977). A Pattern Language, New York: Oxford
University Press.

[14]ALEXANDER, C. (1979). The Timeless Way of Building, New York: Oxford
University Press.

147

SugarLoafPLoP 2007 Proceedings Writers” Workshop

[1S]JCOPLIEN, J. O. (1996). Software Patterns, USA: SIGS Books & Multimedia.

[16] BUSCHMANN, F., et al., Pattern-Oriented Software Architecture, John Wiley and
Sons, New York, NY., 1996.

[17] BRAGA, R.T.V. (2001). Introdugcdo aos padroes de software, Sdo Paulo: ICMC —
Universidade de Sdao Paulo. Documento online, disponivel em:
http://sugarloafplop2005.icmc.usp.br/NotasDidaticasPadroes.pdf. Acesso em: 17 de
abril de 2007.

[18] Laboratério Didatico Virtual — USP. O salto dos recordes. Disponivel em:
<http://www labvirt.futuro.usp.br/applet.asp?time=10:08:28 &lom=10707>.
Acessado em 03 de janeiro de 2007.

[19]Laboratério Didatico Virtual — USP. A quimica das cores nos fogos de artificio.
Acessado em 03 de janeiro de 2007. Disponivel em:
<http://www labvirtq.futuro.usp.br/applet.asp?time=10:05:44&lom=10819>.

[20]Racha a Cuca. Calculadora quebrada. Documento on-line, disponivel em
<http://rachacuca.com.br/calculadora-quebrada/>. Acessado em 03 de janeiro de
2007.

[21]Centros de Competéncias No6nio. Os Concelhos. Disponivel em:
<http://nonio.eses.pt/asp/nonio2/soft/wpquest/quest/quest.htm>. Acessado em 03 de
janeiro de 2007.

[22] Tac-Software. Geography Quiz. Documento on-line, disponivel em:
<http://www .tac-soft.com/Demoquizzes/GeographyMM.htmlI>. Acessado em 03 de
janeiro de 2007.

[23]Rede Interativa Virtual de Educacio - Rived. E hora de colocar as coisas no lugar!.
Acessado em 03 de janeiro de 2007. Documento on-line, disponivel em:
<http://rived.proinfo.mec.gov.br/curso/objetos/bio/index.htm>.

[24]Centros de Competéncias Nonio. Uma aventura na Unido Européia. Documento
on-line, disponivel em: <http://nonio.eses.pt/asp/europa/index.htm>. Acessado em
03 de janeiro de 2007.

[25] Tac-Software. Teaching Templates. Documento on-line, disponivel em:
<http://www.tac-soft.com/>. Acessado em 03 de janeiro de 2007.

[26]Half-baked Software. Quandary. Documento on-line, disponivel em:
<http://www.halfbakedsoftware.com/quandary.php>. Acessado em 03 de janeiro de

2007.
[27] Laboratério Didético Virtual — USP. A quimica dentro de um bolo. Acessado em 03
de janeiro de 2007. Documento on-line, disponivel em:

<http://www labvirtq.futuro.usp.br/applet.asp?time=17:04:48 &lom=10623>.

[28]National Library of Virtual Manipulatives. Base Blocks Addition. Documento on-
line, disponivel em: <http://nlvm.usu.edu/en/nav/frames_asid_154_g_2_t_1.html>.
Acessado em 03 de janeiro de 2007.

[29] National Library of Virtual Manipulatives. Algebra Balance Scale.Acessado em 03
de janeiro de 2007. Documento on-line, disponivel em:
<http://nlvm.usu.edu/en/nav/frames_asid_201_g_4_t_2.html?open=instructions>.

148

SugarLoafPLoP 2007 Proceedings Writers” Workshop

[30]Laboratério Didatico Virtual - USP. Um dublé em apuros. Disponivel em:
<http://www labvirt.futuro.usp.br/applet.asp?time=13:15:26&lom=10536>.
Acessado em 03 de janeiro de 2007.

[31]TALARICO NETO, A; et al. Cog-Learn: uma Linguagem de Padroes para e-
Learning. Revista Brasileira de Informética na Educagdo, Rio de Janeiro, 13(3), p.
33-50, 2006.

[32]ZIMMERMANN, B., et al. Patterns for Tailoring E-Learning Materials to Make
them Suited for Changed Requirements. VikingPLoP 2006, Helsingor, Danemark.
2006.

[33]GIBERT-DARRAS, F.; et al. Towards a Design Pattern Language to Track
Students' Problem-Solving Abilities. Artificial Intelligence in Education

Conference: Workshop on Usage Analysis in Learning Systems, Amsterdam, The
Netherlands. 2005.

149

SugarLoafPLoP 2007 Proceedings

Patterns for Documenting Frameworks -

Authors Ademar Aguiar, Gabriel David

INESC Porto, Faculdade de Engenharia, Universidade do Porto
Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal

E-mail: ademar.aguiat@fe.up.pt, gtd@fe.up.pt

Writers” Workshop

Process

Abstract Good design and implementation are necessary but not sufficient pre-requisites for the

successful reuse of object-oriented frameworks. Although not always recognized, good

documentation is crucial for effective framework reuse, but it is often hard, costly, and

tiresome to produce it, especially when not aware of its key problems and the best ways to

address them. The patterns here presented are from a set of related patterns that describe

proven solutions to recurrent problems of documenting object-oriented frameworks. In

particular, this document presents process patterns, addressing problems and solutions related

with the process of writing documentation (e.g. which activities, roles and tools are needed?),

which complement the set of artefact patterns previously published by the authors addressing

problems closely related with the documentation itself.

Introduction Object-oriented frameworks are a powerful technique for large-scale reuse capable

of delivering high levels of design and code reuse. As software systems evolve in

complexity, object-oriented frameworks are increasingly becoming more important

in many kinds of applications, new domains, and different contexts: industry,

academia, and single organizations.

Although frameworks promise higher development productivity, shorter time-to-

market, and higher quality, these benefits are only gained over time and require

up-front investments. Before being able to use a framework successfully, users

usually need to spend a lot of effort on understanding its undetlying architecture

and design principles, and on learning how to customize it, which all together

implies a steep learning curve that can be significantly reduced with good

documentation and training material.

This paper contributes with two additional patterns to the work in progress of

writing a pattern language to help on documenting frameworks 0[2][3][4], and

therefore to help developers on employing frameworks more effectively.

150

SugarLoafPLoP 2007 Proceedings Writers” Workshop

Pattern Language The pattern language comprises a set of interdependent patterns that aim at helping
developers on becoming aware of the typical problems they will face when
documenting object-oriented frameworks. The patterns were mined from existing
literature, lessons learned, and expertise on documenting frameworks, based on a
previous compilation about framework documentation [5].

The pattern language describes a path commonly followed when documenting a
framework, not necessarily from start to end to achieve effective results. In fact,
many frameworks are not documented as completely as suggested by the patterns,
due to different kinds of usage (white-box or black-box) and different balancing of
tradeoffs between cost, quality, detail, and complexity. One of the goals of these
patterns is precisely to expose such tradeoffs in each pattern, and to provide
practical guidelines on how to balance them to find the best combination of
documents, activities and tools to the specific context at hands.

According to the nature of the problems addressed, the patterns are organized in
artefact patterns, which address questions such as which kinds of documents to produce?
what should they inciude? how to relate them? 0[2][3], and are overviewed in the appendix,
and process patterns, which address questions such as bow to do it? which activities, roles
and tools are needed?, are strictly related with the process of cost-effectively
documenting frameworks, and to which belong the patterns here documented.

Process Patterns ~ As the name suggests, this category of patterns are primarily concerned with the
process of documenting object-oriented frameworks, and not so much with the
artefacts themselves, as those are the major concern of the artefacts patterns.

Framework documentation is produced mainly during framework development,
resulting in tutorials and user guides teaching how to use the framework, and
design documents to explain how it works and describe its underlying design
principles and mechanisms, among other documents.

Once produced, framework documentation is then used and reviewed during all
phases of framework development. It is probably at framework instantiation,
during application development, that documentation is used in a more intensive
way. It acts as a means of communicating important information from the original
framework designers, primarily to framework users, but also to other framework
designers and framework maintainers.

The incorporation of comments and feedback from readers is very important for
improving the quality of future revisions of the documentation, so it is important
to establish an effective bidirectional communication mechanism between
documentation authors and readers.

As a framework evolves during the expected long life of the respective framework,
the accompanying documentation must evolve as well, and therefore the
maintenance of documentation is an activity to be taken in consideration during all
framework’s life.

151

SugarLoafPLoP 2007 Proceedings Writers” Workshop

The conceptual life cycle of framework documentation is similar to the typical life
cycle of technical documentation, which can be seen as organized in five basic
activities: configuration, production, organigation, usage, and maintenance (see Figure 1).
Although these activities are not all mandatory, neither not necessarily needing to
follow the exact order shown, they reflect very well all what is involved (roles,
activities, and information flows).

processed
contents

templates,
tool setup

documents,
models,
source code

integrated
contents

metadata

A 4

Maintenance

manager

7 activity — flows role - --- role-assignment

Figure 1 - Typical activities of documenting frameworks.

This document presents patterns addressing recurrent problems somehow related
with some of these activities.

To describe all the patterns in a concise way, we have adopted a pattern form
similar to Christopher Alexandet's, including the most essential sections,
concretely: Name-Context-Problem-Solution-Consequences 7). References to other
patterns of this pattern language are formatted as following: ANOTHER PATTERN.
Thumbnails for the artefact patterns are included in the appendix, and thumbnails
for the process patterns are below.

Before going to the detail of each pattern, we will briefly overview all the process
patterns by summarizing each pattern’s intent, which are also depicted in Figure 2.

Target helps Document supports Contents Publishing
Audiences Organization and Presentation

requires
requires
A4
provides focus D t requires _
> . » Supporting Tools
Creation
h

A

requires

J requires
pattems : impli Semantic
—> is-related-to Cross-References [~]
Consistency

Figure 2 - Documentation process patterns and their relationships.

152

SugarLoafPLoP 2007 Proceedings Writers” Workshop

Target Audiences pattern describes one of the first activities in the overall process of
documenting (a framework), which is to define and prioritize the audiences
intended to be addressed by the documentation. Once having defined the
audiences to target, the contents can then be more effectively created and
organized to be presented through the most appropriate views and formats for
those audiences.

Document Creation pattern provides hints on the main activity of documentation. It
explains how to streamline the creation of documentation artefacts (documents,
models, source code fragments, etc.) both by developers and technical writers, in
order to yield good quality and cost-effective documentation.

Cross-References pattern addresses the problem of linking and relating different
documentation artefacts (e.g. explanations, models and source code of examples),
to provide good navigability between all the contents involved, and therefore to
minimize the obstacles to the strategies that readers spontaneously adopt when
trying to understand and learn something new.

Semantic Consistency pattern tells you how to cope with the difficulties of maintaining
the semantic consistency between related software artefacts during development
(source code, models, and documents) to enable their continual review and
modification throughout the lifecycle and thus continuously preserve its accuracy
and value for the readers.

Document Organization pattern provides hints of several kinds (e.g. storage, metadata,
guidelines, conventions, templates) that help to achieve a good organization of all
the possible documentation involved, to keep all the contents consistent, well
structured, well integrated, easy to browse, easy to find, and easy to maintain.

Content Publishing and Presentation pattern describes the ultimate activity of
documentation, the reason why it is produced and organized. The pattern
addresses issues on using documentation, not only to read contents in a
presentation format, but also to browse, search, select, and navigate through the
contents, what sometimes requires processing of contents (transforming, filtering,
composing, etc.), to present them in the most convenient format to the reader.

Tool Support pattern addresses the problem of ensuring quality and reducing the
typical high costs associated with the production and maintenance of framework
documentation. The pattern teaches you how to automate the documentation
process the best as possible, while retaining the flexibility and adaptability to
different developers and environments.

153

SugarLoafPLoP 2007 Proceedings Writers” Workshop

Pattern Target Audiences

You are about to start documenting a framework to preserve and communicate the
knowledge you have that might be helpful to others willing to understand it.

Problem It is commonly accepted that good technical documentation can significantly
improve the process of learning, understanding and reusing frameworks. However,
it is often hard, costly and tiresome to define and write good documentation for a
framework because we need to satisfy different audiences, to encompass several
purposes, and to support different kinds of reuse.

How to drive the documentation activities in order to effectively produce the
most valuable documents for its readers?

Forces Completeness. To be complete, the overall documentation of a framework usually
combines a lot of information that must be produced, organized and maintained
consistent. In concrete, it must include framework information about the
application domain covered, the specific purpose, how-to-use, how it works, and
also internal design details. As a result, this often requires combining a large
diversity of contents, gathered from different types of documents, possibly
represented in different notations, and with different presentation requirements.

Usefulness. To be useful, the contents must be propetly tailored to meet the needs of
each category of software engineers involved in framework-based application
development, which may play different roles, may have varying levels of
experience, and therefore look for different kinds of information.

Time and costs. To control documentation costs under affordable values and to
ensure production and maintenance times acceptable, it is wise and mandatory to
restrict or prioritize the set of documents and contents to produce.

Solution Start the process of documenting a framework by clearly defining and
prioritizing the audiences to be addressed.

Typically, there are five main kinds of framework users, with different
documentation requirements, to consider or not as target audience: framework
selectors, application developers, framework developers, framework maintainers, and developers of
other frameworfks |5].

Framework selector is someone (manager, project leader, developer) responsible for
deciding which frameworks to use in an application development project.

Framework selectors will look for a short description of the framework's putpose,
the domain covered (FRAMEWORK OVERVIEW) and an explanation of the most
important features of the framework, possibly illustrated with a set of examples
(SPIRAL. COOKBOOK, GRADED EXAMPLES).

Application developer is a software engineer that wants to customize a framework to
the needs of the application at hand. In a first place, they want to identify which
points must be customized (CUSTOMIZATION POINTS), and to know how to

154

SugarLoafPLoP 2007 Proceedings Writers” Workshop

implement such customizations, rather than to understand why it must be exactly
done that way.

The application developer needs prescriptive documentation capable to guide her
find out which hot spots must be used, which set of classes to subclass, which
methods to override, and which objects to interconnect (SPIRAL COOKBOOK). It
must be expected that the application developer is not knowledgeable on the
application domain and she is not an experienced software developet.

Framework developer is a software engineer involved in the design and implementation
of a framework. Framework developers must have a good understanding of the
overall architecture and its rationale.

They need also the most detailed view over the framework design internals
(DESIGN INTERNALS), the application domain (FRAMEWORK OVERVIEW), and the
hot spots that support its flexibility (CUSTOMIZATION POINTS). The information
needed must be described at several levels of abstraction, from a high level of
abstraction to a concrete level of detail. It usually contains several kinds of artifacts
ranging from architectural models and design patterns to abstract algorithms and
concrete source code (TRAVERSABLE CODE).

Framework maintainer is a software engineer responsible for the maintenance and
evolution of a framework. Usually, framework maintainers are the original
framework developers, but this is not always the case.

Their needs in terms of documentation are very similar to those of framework
developers, but the documentation has to be more descriptive, instead of
prescriptive, because original framework designers can’t predict how the
framework might be extended in the future through additional flexibility on
existing hot spots, or in additional hot spots. It is expected that the framework
maintainers are both domain experts and software experts.

Developers of other frameworks usually study existing frameworks, even frameworks for
other domains, to find ways of providing flexibility at the hot spots of the
framework they are developing.

They have special interest on information at a high level of abstraction, such as
abstract solutions and design patterns (DESIGN INTERNALS). The documentation
requirements are similar to those of framework maintainers, except that they don’t
need the concrete details about the framework, but rather the abstract ideas. It is
expected that framework developers are expert software designers but not
necessarily domain experts for the framework they are mining for ideas.

From all these audiences, application developers often represent the majority.
Framework developers are also a very important audience because they are authors
and intensive users of framework documentation simultaneously.

Consequences Once defined the concrete audiences to target, it becomes easier to decide which
types of documents are more important to write, which have higher priority, and
what to include in them, considering its usefulness to the audiences on target
(DOCUMENT CREATION). It becomes also easier to decide how to organize the
documents (DOCUMENT ORGANIZATION), and which are the most appropriate

155

SugarLoafPLoP 2007 Proceedings Writers” Workshop

views and formats to present them to target audiences (CONTENT PUBLISHING
AND PRESENTATION).

One possible drawback of defining target audiences is the risk of being more
pragmatic than it should be, and therefore to not consider other audiences not
considered of high-priority but that could also benefit from the documentation.

As a result, having in mind a specific audience, documentation usefulness can be
guaranteed, completeness relaxed, and this will help to reduce documentation
effort therefore being more effective.

KnownUses To have well-defined target audiences for a document is a good practice of
technical documentation, and although it can’t be proved that this pattern was
followed, for example, JUnit and HotDraw frameworks include different
documents having different audiences in mind, suggesting that existed some kind
of concern about defining audiences to target when writing documentation.

HotDraw. In a paper about the framework authored by Ralph Johnson [8], it is
presented a pattern language to document the HotDraw framework, comprising a
set of patterns, one for each recurrent problem of using the framework. In that
work, the goal is to document the design of the framework, possibly having in
mind, primarily, advanced framework users.

Junit. The document of JUnit [9], named “A Cook’s Tour”, is devoted to explain
how JUnit was designed, possibly targeted for advanced users, or other framework
developers. Another document, named “JUnit: Test infected: Programmers love
writing tests”, is clearly targeted for typical framework users.

156

SugarLoafPLoP 2007 Proceedings Writers” Workshop

Pattern Document Creation

You have decided the TARGET AUDIENCES and the types of documents more
valuable to them that must be created.

Problem Contents production typically includes the elaboration of technical documents and
models, and also the formatting and integration of documents and source code. In
addition, to support good contents navigability, it is also very important to cross-
reference all kinds of contents exhaustively.

To be useful and complete, framework documentation must include a lot of
contents, gathered from different types of documents, at different moments of the
development life cycle, and produced by different kinds of people. Besides
knowing what to document and to whom (TARGET AUDIENCES) it is also very
important to know who, how, and when to document.

How to produce the documents required in a cost-effective way,
orchestrating all participants involved, and promoting their cooperation?

Forces Quality. Good technical documentation is the ultimate goal of documentation
writers, and what readers definitely look for. But producing good quality
documentation comes with many issues, of which the difficulty of defining and
assessing its quality is perhaps the first one.

Discipline. A well-defined process identifying roles, techniques, activities, and
guidelines is very important to effectively producing documentation. Although
discipline by itself does not ensure the quality of an activity or final product, there
is however a direct relation between process maturity and product quality.
Discipline helps on improving productivity, reducing costs, and is fundamental to
enable cooperation in large teams. Very prescriptive guidelines and increased
formality can be used to improve discipline, but at the cost of higher inefficiency,
less pleasant activities, and constraining creativity.

Agility. As technical writing requires creativity, it is important to reduce formalities
to the minimum, if we want to face documentation as a set of activities that are
simple, flexcible, almost neutral, and easy to adapt. Iteration and feedback are also very
important to evolve quality of documents smoothly and naturally.

Cost. As documentation effort must not outweigh its benefits, it is important to
ensure appropriate mechanization of human activities, and automation of repetitive
tasks.

Value. Documents are written to satisfy the reader, so it is important to assess its
value to the reader.

Solution Create documents by following the most agile process allowed by your
project, guaranteeing that the final resulting artifacts have the required level
of quality and are the most valuable for the readers.

Below you can find a set of roles and practices to adopt to help you on improving
documentation agility.

157

SugarLoafPLoP 2007 Proceedings Writers” Workshop

Roles The documentation involves the collaboration of different kinds of people in
different phases of the process.

Developers, such as framework developers, and framework maintainers, ate
responsible for content creation mostly during the development phase.

Technical writers are responsible to structure, guide, review and conclude the
documentation;

Documentation managers are responsible for configuring and maintaining the
documentation base, namely the template documents, template instances, and
filtering, transforming and formatting documents according to the needs of each
audience.

Corepractices Depending on the writers” discipline, documentation managers can enforce or
flexibilize the documentation rules with the goal of achieving good quality. The
more flexible and informal the process, the more attractive it will be for the writers,
because formality often compromises creativity. However, too much flexibility may
result in inconsistent writing styles and presentation, if the writers are not well

disciplined.

Collective ownership. By default, all documents must be readable and editable by
anyone involved in the project. Collective ownership of documents usually leads to
better documents, because everyone can contribute, resulting in richer and more
complete documents. The documents can be reviewed later by a technical writer to
improve its homogeneity, consistency of terms, writing style and formatting.

Collaborative writing. Write in collaboration with other people, to assess the
understandability, completeness, and accuracy of the document.

Create simple documents, but just simple enough. A document easy to read must be
succinct. It shouldn’t contain everything, but only the enough information that
fulfills its purpose and the intended audience. The simplicity and understandability
of contents must be evaluated by the readers.

Create several documents at once. To represent all the aspects of a framework, and to
serve all the audiences and purposes, it is necessary to use different documents (e.g.
recipe, example, hook description, and pattern). Editing them in parallel can help
writers on “dumping” their knowledge more effectively, as writers can document
almost every aspect they have in mind without switching contexts.
Cross-references must be used to link the separated but related documents (CROSS-
REFERENCES).

Publish documents publicly. Publicly available documents, published for everyone to see,
support knowledge transfer and improves communication and understanding. The
feedback from readers is improved and the overall quality of documents is quickly
improved.

Document and update only when needed. To be cost-effective, documents should be
created and iteratively refined only when needed, not when desired.

Reuse documentation. Reuse contents and structure of existing documentation in order
to improve the productivity and quality of the documentation. Reusable contents
must be modular, closed, and readable in any order.

158

SugarLoafPLoP 2007 Proceedings Writers” Workshop

Supplementary Use simple tools. Simple tools can help readers focus more on the contents, rather
practices than on the presentation (SUPPORTING TOOLS). Good examples of simple but
effective documentation tools are wikis.

Define and follow documentation standards. Writers must agree and follow a common set
of documentation conventions and standards on a project.

Document it, to understand it. To document helps on formalizing ideas, by focusing on
single aspects, in isolation from others less relevant, and this helps on the
understanding process.

Consequences Once defined the documents to write, and in order to produce the most valuable
documents to the readers on target, it is important to adopt a documentation
process that satisfies the project needs and petrfectly balances cost, quality,
discipline and agility.

The adoption of agile documentation practices helps to reduce costs and maximize
the value to the reader, while promoting collaboration between team elements.

Know-Uses In order to achieve good quality documentation with small effort, several well-
documented open-source frameworks follow documentation processes
encompassing some of the agile practices above defined. Very good examples are
Apache and Eclipse frameworks.

Credits In first place, the authors would like to thank Linda Rising, our shepherd, for the
valuable comments and feedback provided during shepherding. We also want to
thank Neil Harrison, Uwe Zdun, Rosana Teresinha Vaccare Braga, and Ralph
Johnson, for the comments and feedback provided during the shepherding of
other patterns from this pattern language for documenting frameworks, and
Eduardo Fernandez, Kevlin Henney, Klaus Marquardt, Sergiy Alpaev, Sami
Lehtonen, Allan Kelly, lan Graham, Alexander Fillebornand, Martin Schmettow,
Michalis Hadjisimouand, Richard Gabriel, Joseph Yoder, Mark Perry, Maria, and
all the other participants of the writet’s workshops at VikingPLoP’2005,
EuroPLoP’2006, PLoP’2006, and Sugarl.oafPLoP’2007, for the motivation,
comments and suggestions they provided.

References

[1] Aguiar, A, and David, G. (2005). Patterns for Documenting Frameworks — Part I. In Proceedings of
VikingPLoP’2005, Helsinki, Finland (to be published).

[2] Aguiar, A., and David, G. (2000). Patterns for Documenting Frameworks — Part II. In Proceedings of
EuroPLoP’2000, Irsee, Germany (workshopped).

[3] Aguiar, A., and David, G. (2006). Patterns for Documenting Frameworks — Part III. In Proceedings
of PLoP’2006, Portland, Oregon, USA (workshopped).

[4] FEUP, doc-it project web site, http://doc-it.fe.up.pt/.

—
8]
—

Aguiar, A. (2003). A minimalist approach to framework documentation. PhD thesis, Faculdade de
Engenharia da Universidade do Porto.

—
(=)
—_

Hargis, G. (2004). Developing quality technical information. Prentice-Hall, 2nd edition.

—
~
—

Alexander, C., Ishikawa, S., and Silverstein, M. (1977). A Pattern Language. Oxford University Press.

—
o]
=

Johnson, R. (1992). Documenting frameworks using patterns. In Paepcke, A., editor, OOPSLA’92
Conference Proceedings, pages 63—76. ACM Press.

[9] Beck, K. and Gamma, E. (1997). JUnit homepage. Available from http://www.junit.org.

159

SugarLoafPLoP 2007 Proceedings Writers” Workshop

Appendix

This appendix briefly presents the artefact patterns that complement the process patterns
previously described. They address problems and solutions related with the
documents to produce (which kinds of documents to produce? what should they include? how
to relate them?).

Artefact Patterns Artefact patterns address problems related with the documentation itself, here seen
as an autonomous and tangible product independent of the process used to create
it. They provide guidance on choosing the kinds of documents to produce, how to
relate them, and what to include there.

Similarly to other technical documentation, the overall quality of framework
documentation is complex to determine and assess, and this is perhaps the first
issue. Documentation must have quality, that is, it must be easy to find, easy to
understand, and easy to use [6]. Task-orientation, organization, accuracy, and visual
effectiveness are among all documentation quality attributes, the most difficult
ones to achieve on framework documentation [5].

From the reader’s point of view, the most important issues are on providing
accurate task-oriented information, well-organized, understandable, and easy to
retrieve with search and query facilities. From the writer’s point of view, the key
issues are on selecting the contents to include, on choosing the best representation
for the contents, and on organizing the contents adequately, so that the
documentation results of good quality, while easy to produce and maintain.

Documentation Framework [pattems
Roadmap Overview first recipe —> is-related-to
where to start? how-to’s

Y
Spiral Error Recovery
Cookbook ermors Guide

uses

y
Graded
Examples

illustrate code
A4 \4
Customization Traversable
Points Code
how itworks? 1
Y
Design
Internals
index
Y
Reference
Guide

Figure 3 - Documentation artefact patterns and their relationships.

160

SugarLoafPLoP 2007 Proceedings Writers” Workshop

Patternsovenview T'o describe the patterns, we have adopted the Christopher Alexandet's pattern
torm: Name-Context-Problem-Solution-Example |7]. Before going to the detail of each
pattern, we will overview the pattern language with a brief summary of each
pattern’s intent. For contextual purposes, all the artefact patterns are overviewed
below and depicted in Figure 3 highlighting the two patterns described in this

papet.
Documentation Roadmap helps on deciding what to include in a first global view of the

documentation that can provide readers of different audiences with useful and
effective hints on what to read to acquire the knowledge they are looking for 0.

Framework Overview tells you to provide introductory information, in the form of a
framework overview, briefly describing the domain, the scope of the framework,
and the flexibility offered, because contextual information about the framework is
the first kind of information that a framework user looks 0.

Cookbook & Recipes describes how to provide readers with information that explains
how-to-use the framework to solve specific problems of application development,
and how to combine this prescriptive information with small amounts of
descriptive information to help users on minimally understanding what they are

doing [2].

Graded Examples describes how to provide and organize example applications
constructed with the framework and how to cross-reference them with the other
kinds of artefacts (cookbooks, patterns, and source code) [2].

Customization Points describes how to provide readers with task-oriented information
with more design detail than cookbooks and recipes so that readers can quickly
identify the points of the framework (hot-spots) they need to customize and thus
get a quick understanding about how they are supported (hooks) [3].

Design Internals explains how to provide detailed design information about what can
be adapted and how the adaptation is supported, by referring the patterns that are
used in its implementation and where they are instantiated [3].

Reference Guide tclls you what to include as reference information and how to
structure the documentation to make it the most complete and detailed as possible
to assist advanced users when looking for descriptive information about the
artefacts and constructs of the framework.

Traversable Code provides hints on how to organize and present source code, both of
the examples and the framework itself, when desired, to make it easy to browse
and navigate, from, and to, other software artefacts included in the overall
documentation, namely models and documents.

Error Recovery Guide cxplains how to help users on understanding and solving the
errors they encountered when using the framework by guiding users on the
customization process and revealing the most important design principles and
details.

161

SugarLoafPLoP 2007 Proceedings Writers” Workshop

Modelo de Melhoria do Processo de Software para Micro e
Pequenas Empresas baseado em Padroes — Discussao e
Levantamento Preliminar

Tarciane C. Andrade, Fabricio G. Freitasl, Jerffeson Teixeira de Souza

Universidade Estadual do Ceara (UECE)
Av. Paranjana, 1700, Campus do Itaperi
60.740-903, Fortaleza — CE

tarciane@gmail.com, fabriciogf@uece.br, jeffllarces.uece.br

Resumo. Este artigo inicia o levantamento e a discussdo de um conjunto de
Padrées de Processos de Software, aqui documentados sob a forma de Patlets,
desenvolvidos para lidar com as dificuldades encontradas na implantacdo de
Modelos de Melhoria do Processo de Software em Micro e Pequenas
Empresas — MPEs de Software. O objetivo é a extracdo das caracteristicas
comuns dos modelos de qualidade a fim de auxiliar na implantacdo da
qualidade de software nas MPEs. O conjunto de Padrdes de Processos de
Software é utilizado como um modelo base que permite a introducdo de
conceitos fundamentais de qualidade no processo de desenvolvimento de
software nessas empresas a baixo custo.

Palavras-chave: Melhoria do Processo de Software, Qualidade de Software,
Micro e Pequenas Empresas de Software, Padrdes de Processos, Patlets.

Abstract. This paper initiates a description and a discussion of a set of
Process Software Patterns, here documented as Patlets, developed to deal
with the difficulties found in the adoption of Software Process Improvement
Models on Small Software Organizations. The goal is the extraction of the
common characteristics of the quality models in order to facilitate the
adoption of software quality in Small Organizations. The set of Process
Software Patterns is to be used as an intermediate quality model, allowing the
introduction of basic concepts of quality in the software development process
in these organizations with low cost.

Keywords: Software Process Improvement, Software Quality, Small Software
Organizations, Process Patterns, Patlets.

1. Introducio

As empresas que trabalham com desenvolvimento de software possuem um desafio:
produgdo de software de qualidade. Esta qualidade estd relacionada principalmente ao
desenvolvimento de sistemas menos propensos a falhas e mais eficientes, ao
cumprimento de prazos e ao menor custo de desenvolvimento possivel.

Essa necessidade de produzir software de qualidade tem exigido cada vez mais
ferramentas e técnicas da Engenharia de Software. Neste sentido, organismos

! Apoio financeiro da Fundagdo Cearense de Pesquisa — FUNCAP.

162

SugarLoafPLoP 2007 Proceedings Writers” Workshop

empresariais, universidades e entidades de pesquisa t€m proposto metodologias
desenvolvimento de sistemas, bem como padrdes de software e técnicas para melhoria
da qualidade do processo e do produto de software com o intuito de possibilitar a
garantia da qualidade do software.

Em Engenharia de Software, um Padrdo de Software é uma descri¢do de uma
solugdo geral para um problema recorrente em qualquer das etapas de desenvolvimento
de um software [Coplien 1996]. Esses padrdes podem se apresentar de varias formas,
incluindo padrdes de andlise, padrdes de projeto, padrdes organizacionais e padrdes de
processo. Um Padrdo de Processo, segundo [Coplien 1996], descreve os processos
basicos, que associados a recomendacdes, definem praticas bem sucedidas e
relacionadas aos processos. O estabelecimento de padrdes de processo depende do
conhecimento vasto do dominio da aplicacdo daquele processo. No caso do dominio de
desenvolvimento de software varios padrdes sdo estabelecidos. Padrdes em geral, e
padrdes de processo em particular, ajudam na documentacio de boas solucdes de forma
que estas possam ser reutilizadas com maior facilidade. Os Partlets, [Coplien et. al.
2004], [Grone 2006], [Harrison 1999], sdo padrdes resumidos que contém somente 0s
elementos essenciais (nome, contexto, problema, solu¢do e usos conhecidos) e servem
para referenciar um padrdo completo ou como passo intermedidrio na documentagdo de
um padrido completo.

Existem, atualmente, diversos modelos de qualidade focados na melhoria do
processo de desenvolvimento como um todo, entre eles: ISO 9000:2000 [ISO 2000],
ISO/IEC 15504 [ISO 2003], ISO/IEC 12207 [ISO 2002], CMMI [SEI 2005], PSP [SEI
1997], TSP [SEI 2000], MR-MPS [SOFTEX 2006], PMBOK [PMI 2000] e ISO
10006:2000 [ISO 2000] os quais funcionam como guia de boas praticas durante o
processo de producdo de software. As grandes empresas (segundo [MCT 2005],
empresas com mais de 100 empregados) que atuam na 4rea de desenvolvimento de
software tém obtido €xito na implantacdo de tais modelos, principalmente em virtude da
disponibilidade de recursos humanos e financeiros. As Micro e Pequenas Empresas de
Software — MPEs (segundo [MCT 2005], empresas com até 10 e 50 empregados,
respectivamente), em contrapartida, podem encontrar dificuldade na tentativa de
implantacdo de tais modelos devido & grande quantidade de processos exigida por eles,
do elevado custo financeiro e da necessidade de envolvimento de vérios recursos em
diferentes papéis.

Nesse contexto, este artigo relata, inicialmente, os problemas enfrentados por
MPESs no ramo de software na tentativa de implantar os modelos de qualidade existentes
no mercado. Em seguida, é apresentado o resultado da extragdo de caracteristicas
comuns entre os principais modelos de qualidade de software existentes através da
documentacio dessas caracteristicas na forma de Padrdes de Processo, documentados
no formato de patlets. O foco do conjunto de Padrdes de Processos aqui apresentados
estd na garantia da qualidade de software em todo o processo de desenvolvimento. Além
de contribuir para superar as dificuldades encontradas na implantacio dos modelos de
qualidade de software e adequar a sua aplicagdo a realidade de poucos recursos das
MPEs de software, o conjunto de padrdes contribuird na constru¢do de um modelo de
qualidade simplificado. Dessa forma, o cendrio alcancado pela aplicacdo de tal modelo
simplificado introduz conceitos fundamentais da garantia da qualidade a baixo custo,
apresentando-se como um passo intermediario entre um ambiente de desenvolvimento

163

SugarLoafPLoP 2007 Proceedings Writers” Workshop

sem garantia da qualidade e a situagdo encontrada apds a implantagdo de um modelo de
qualidade completo.

2. Dificuldades Encontradas na Melhoria do Processo de Software nas
Micro e Pequenas Empresas

Nas ultimas duas décadas o SPI (Software Process Improvement) tem se tornado um
fator chave no aumento da produtividade e qualidade no desenvolvimento do software,
interferindo na competitividade das empresas de software e até mesmo na sobrevivéncia
no mercado. Os objetivos do SPI sdo produzir e garantir softwares de qualidade no
tempo estimado, dentro do or¢amento previsto e com as funcionalidades desejadas.

Virios modelos [ISO9000:2000 2000], [ISO12207 2002], [ISO15504 2003],
[CMMI 2005] e metodologias de SPI possuem abordagem direcionada para grandes
empresas de desenvolvimento de software. Entretanto, as MPEs se esforcam para tentar
implantar ou ainda adaptar estes modelos.

Serrano et. al. [Serrano et. al. 2006] apresentam que as dificuldades encontradas
pelas MPEs em implantar um modelo de qualidade de software se deve a falta de um
guia de implanta¢@o direcionado a estas empresas, tdo bem como o tempo e o custo para
tal implantacao.

Em [Oktaba 2006], Oktaba utiliza critérios para avaliar se os principais modelos
de SPI atendem as MPEs de software. Os critérios utilizados foram: adequag@o para
pequenas e médias empresas com baixos niveis de maturidade, baixo custo de
implantacdo e avaliacdo, especifico para desenvolvimento de software, definido como
um conjunto de processos baseados em praticas reconhecidas internacionalmente.
Nenhum dos modelos avaliados atendeu a todos estes requisitos.

Em [Laryd et. al. 2000], Laryd et. al. mostram a necessidade de iniciar o
processo de melhoria de qualidade do software o quanto antes nas MPEs. Eles retratam,
em primeiro lugar, a importancia de iniciar antes do caos se instalar. Se a primeira
solu¢do ndo for possivel, o melhor € iniciar o programa de melhoria de software
enquanto a empresa ainda € pequena, com poucos analistas e com um simples gerente,
por exemplo. Entretanto, se uma empresa estd tendo sucesso, ela tende a crescer. Tende
a aumentar a quantidade de analistas, de desenvolvedores, de gerentes por projetos, de
produtos e servicos. E neste ponto que se observa um aumento das dificuldades do
processo de desenvolvimento, pois se torna dificil de gerenciar, de agrupar as indmeras
versdes dos produtos entre outros. Para evitar esse tipo de problema, uma empresa deve
ter o foco no processo de melhoria do software antes mesmo que se torne necessario, ou
seja, mais ou menos no inicio da sua estruturacio.

Para [Kelly et. al. 1999], existem diferentes culturas entre pequenas e grandes
empresas. Em pequenas empresas os empregados esperam estar envolvidos em todos os
aspectos do processo de engenharia de software. Em tal situacdo, o processo de
melhoria de software € visto como introdug@o de burocracias que restringem a liberdade
individual.

Brodman e Habra et. al. em [Brodman et. al. 1997], [Habra et. al. 1999] fazem
uma adaptacdo no CMM para atender as MPEs. Entre os principais problemas
abordados quanto ao CMM que levaram a esta decisdo estdo: sobrecarga de
documentacio, necessidade de gerentes em muitas camadas, excesso de revisoes,

164

SugarLoafPLoP 2007 Proceedings Writers” Workshop

recursos limitados, altos custos com treinamentos, praticas irrelevantes e inadequadas as
micro e pequenas empresas.

Outras dificuldades encontradas para implantacdo de modelos de qualidade nas
MPEs sdo descritas em [Souza et. al. 2002], [Revankar et. al. 2006], [Herndon et. al.
2006]. Pequenas empresas possuem or¢amentos reduzidos para melhoria de processos,
0 que restringe até mesmo o investimento em treinamentos para os seus membros. Além
disso, a visdo do cliente deve acompanhar as mudangas na melhoria do processo de
software da empresa, pois € comum o cliente ter contato direto com a equipe de
desenvolvimento o que compromete o gerenciamento do projeto. Na auséncia de um
membro da equipe ndo ha substituto, podendo uma atividade ser cancelada. Um ponto
importante € o apoio da alta geréncia na mudanca de visdo da estrutura da empresa com
a implantag¢do do modelo de qualidade de software.

Por outro lado, as MPEs mesmo enfrentando todos os problemas, principalmente
com recursos limitados podem disseminar rapidamente os processos implantados, uma
vez que o nimero de empregados é comparativamente pequeno. Baseado na andlise dos
problemas acima, MPEs de software necessitam de uma abordagem diferenciada para
melhoria de processo em comparagdo com grandes empresas.

3. Conjunto de Patlets de Processos de Software para Micro e Pequenas
Empresas

Diante das dificuldades enfrentadas por MPEs, observaram-se dois tipos de abordagens
para a implantag¢do do processo de melhoria de software em tais empresas. A primeira
delas € a adequagdo dos modelos existentes com a escolha de apenas um subconjunto de
processos [Kelly et. al. 1999], [Habra et.al. 1999], [Serrano et. al. 2006], [Bezerra et. al.
2005], [Carmody 2006]. A outra abordagem € a criagdo de um modelo préprio tendo
como base os modelos existentes [Laryd et. al. 2000], [Silva et. al. 2003], [SOFTEX
2006], [Oktaba 2006], [Revankar et. al. 2006]. A escolha de uma destas abordagens
depende, entre outros fatores, do intuito de cada empresa, do or¢camento reservado, e da
existéncia ou ndo de algum processo de melhoria no desenvolvimento de software na
mesma. Contudo, ndo existe nenhuma abordagem satisfatéria e simples que permita as
empresas que ndo possuam um processo de garantia da qualidade bem definido,
implanta-la de tal forma que permita, em seguida, a aplicabilidade de qualquer um dos
modelos existentes de forma natural e com o minimo de custo.

Portanto, surge a oportunidade da elaboragdo de um conjunto de Padrdes de
Processos, baseados na obtengdo de caracteristicas comuns entre os modelos atuais, que
servird como guia de implementacdo de qualquer um dos modelos de qualidade. Assim,
o presente artigo propde uma nova abordagem para garantir a qualidade no processo de
desenvolvimento de software nas MPEs e facilitar, se for o caso, o emprego dos
modelos de qualidade existentes.

Como forma de iniciar o trabalho de levantamento dos Padrdes de Processo de
Software nos modelos de qualidade e adaptacdes existentes para MPEs de software foi
documentado um conjunto de patlets. Os patlets foram extraidos a partir do cruzamento
inicial de informacdes das duas abordagens de melhoria da qualidade de software
citadas anteriormente: processos dos modelos existentes atualmente e processos das
adaptacdes realizadas pelas MPEs.

165

SugarLoafPLoP 2007 Proceedings Writers” Workshop

No total foram obtidos seis patlets. Os patlets foram distribuidos em todo o
processo de desenvolvimento de software com levantamento inicial dos papéis de cada
membro da empresa. Neste momento, ndo foram citados os artefatos, também chamados
de produtos de trabalho, de entrada e saida de cada padréo de processo. Vale ressaltar
também que alguns patlets, futuramente, podem ser desmembrados em outros.

Os patlets estdo documentados e organizados de acordo com o seguinte formato:

e Nome do Padrao: descreve o nome do padrio, e referencia o contexto e o
problema. E através dele que o padrdo se torna conhecido;

¢ Contexto: descreve em quais circunstancias o problema surge;

¢ Problema: descreve o problema a ser resolvido;

¢ Solucao: descreve o que é necessdrio ser feito para resolver o problema;
¢ Usos Conhecidos: descreve aplicagdes do padrdo em modelos existentes.

Os patlets encontrados estao descritos de forma sucinta na Tabela 1:

166

SugarLoafPLoP 2007 Proceedings

Writers” Workshop

Tabela 1. Resumo dos Patlets Encontrados

Nome do Padrao

Problema

Solucao

Garantia da
Qualidade dos
Processos e dos
Produtos

Como assegurar que 0s
processos e produtos de trabalho
estdo de acordo com a
metodologia adotada?

Estabeleca critérios de
avaliag@o, como o qué,
quando e como serao
avaliados;

Revisdo por Pares

Como detectar os defeitos no
produto de trabalho?

Realize encontros formais ou
informais de revisao;

Geréncia de

Como controlar os produtos de

Cada membro do projeto deve

Configuracio trabalho e manter a integridade e | armazenar, atualizar e
rastreabilidade das suas versdes? | recuperar os seus respectivos
produtos de trabalho através
de sistema especifico;
Medigdo Como medir o software de forma | Estabeleca os objetivos das
quantitativa? medig¢des, as perguntas para
cada objetivo, e as métricas
que respondam as perguntas;
Verificagdo Como assegurar que os produtos | Realize testes funcionais,
de trabalho refletem Revisdo por Pares, testes de
apropriadamente os requisitos integracdo, por exemplo;
especificados por eles?
Validagdo Como assegurar que 0s Execute as validacdes através

requisitos do cliente foram
atendidos?

de testes de aceitagdo, testes
alfa e beta, teste de
desempenho, por exemplo;

A seguir, descricdo detalhada dos patlets encontrados:

Nome do Padrao: Garantia da Qualidade dos Processos e dos Produtos

Contexto: Durante todo o ciclo de desenvolvimento do software € necessdrio assegurar
que os processos estdo sendo seguidos e que os produtos de trabalho produzidos estio
de acordo com a metodologia, procedimentos e padrdes previamente definidos.

Problema: Como assegurar que os processos e produtos de trabalho estdo de acordo
com a metodologia, procedimentos e padrdes adotados e prover a melhoria continua?

167

SugarLoafPLoP 2007 Proceedings Writers” Workshop

Solucio:

Crie o papel do SQE (Software Quality Engineering) como responsavel por garantir
que os processos € produtos de trabalho estdo sendo seguidos dentro do projeto. O SQE
ndo deve acumular papéis em virtude da necessidade de imparcialidade para garantir a
qualidade.

Realize as atividades abaixo, com o papel do SQE:

Para avaliar os processos:

1. Estabeleca critérios de avaliagdao, como o qué, quando e como serdo avaliados;
2. Crie marcos (milestones®) no projeto para efetuar a avaliacdo dos produtos;

3. Utilize os critérios de avaliacdo, definidos anteriormente, para garantir a
aderé€ncia aos processos;

4. Identifique e registre as ndo conformidades encontradas;
Realize a¢des corretivas quando necessario;

6. Identifique e registre as li¢des aprendidas que podem melhorar o processo de
desenvolvimento no futuro.

Para avaliar os produtos de trabalho:

1. Defina os produtos de trabalho que devem ser avaliados;
2. Crie marcos no projeto para efetuar a avaliagdo;

3. Utilize o padrdo de Revisdo por Pares para revisar os produtos de trabalho de
forma a garantir a aderéncia a metodologia, padrdes e procedimentos;

4. Identifique e registre as ndo conformidades encontradas;
Realize a¢des corretivas quando necessdrio;

6. Identifique e registre as licdes aprendidas que podem melhorar o processo no
futuro.

Usos Conhecidos:

Herndon et. al. em [Herndon et. al. 2006] escolheram o processo de Garantia da
Qualidade dos Processos e dos Produtos do CMMI [SEI 2005], representag@o continua,
para implantar a melhoria da qualidade do software em duas MPEs.

Habra et. al. em [Habra et. al. 1999] construiram um micro modelo de avaliacao
baseado nos modelos CMMI e ISO/IEC 15504, chamado de OWPL, onde foram

2 Milestone ou marco é um evento programando que signifique a conclusdo de um trabalho principal ou de
um grupo de trabalhos relacionados. Um marco, pela defini¢do, ndo tem esforco ou uma duragdo
associada. Um marco é apenas uma bandeira no plano de desenvolvimento para significar que algum
trabalho terminou e é usado como um ponto de verificagdo do projeto para validar como o projeto estd
progredindo e revalidar o trabalho restante.

168

SugarLoafPLoP 2007 Proceedings Writers” Workshop

escolhidos oito processos, entre eles, o processo de Garantia da Qualidade dos
Processos.

Laryd et. al. em [Laryd et. al. 2000] fizeram uma adaptacdo do CMM para MPEs
e escolheram seis dreas de processos do CMM, entre elas, o processo de Garantia da
Qualidade dos Processos e dos Produtos. Aqui, eles criaram o papel do SQE para
assegurar a imparcialidade da garantia da qualidade. O SQE exerce um tnico papel no
projeto.

O ISO/IEC 15504 [ISO 2003] contém na categoria de processos de Suporte —
SUP, o processo de Garantia da Qualidade para aderéncia aos produtos de trabalho e aos
processos.

O CMMI [SEI 2005] utiliza este processo ao garantir que OS Processos
planejados estdo sendo implementados e garantir a entrega de produtos e servicos de
alta qualidade.

O MPS-BR [SOFTEX 2006] utiliza este processo para garantir que os produtos
de trabalho e a execugdo dos processos estdo em conformidade com os planos e recursos
pré-definidos.

Nome do Padrao: Revisdo por Pares

Contexto: Em varias fases do desenvolvimento de software é necessdrio descobrir os
defeitos que possam ser eliminados, incluindo: implementacdo incompleta dos
requisitos, problemas na integracdo com outros sistemas, interfaces de projeto
inadequadas, e erros de codificacdo.

Problema: Como detectar os defeitos no produto de trabalho?

Solucio:

1. Membro responsdvel pelo produto de trabalho a ser revisado: realize encontros
formais ou informais de revisio;

2. Se o produto de trabalho ndo possuir checklist dos atributos que precisa atender,
faco-o.

3. Entregue, na reunifo, o produto de trabalho com respectivo checklist para outro
membro do projeto revisar;

4. Outro membro do projeto: preencha o checklist para verificar a aderéncia do
produto de trabalho;

5. Devolva o produto de trabalho revisado ao membro responsavel com respectivo
checklist para ser analisado.

169

SugarLoafPLoP 2007 Proceedings Writers” Workshop

Usos Conhecidos:

O ISO/IEC 15504 [ISO 2003] utiliza o processo de Revisdo por Pares para
realizar a verificacdo dos produtos de trabalho no processo de Verificacdo.

No caso do CMMI [SEI 2005] este processo € uma atividade do processo de
Verificacdo como forma de garantir que os produtos de trabalho estdo em conformidade
com seus requisitos.

O TSP [SEI 2000] utiliza o processo de Revisdo para efetuar revisdes de codigo
e de projeto.

Nome do Padrao: Geréncia de Configuracdo

Contexto: Em virtude das constantes mudangas durante todas as fases da construc¢do do
software, ocorre a necessidade de controlar e manter a integridade e rastreabilidade
sistematica das versdes dos produtos de trabalho.

Problema: Como controlar os produtos de trabalho e manter a integridade e
rastreabilidade das suas versdes?

Solucio:

1. Identifique os produtos de trabalho, itens de configuracdo, que necessitam ser
controlados, por exemplo, produtos que sdo entregues aos clientes e produtos
internos, como documentos, diagramas e cédigos-fonte;

2. Estabeleca um mecanismo para gerenciar o controle de versdo, através de algum
sistema computacional de controle de versdo;

3. Cada membro do projeto deve armazenar, atualizar e recuperar 0s seus
respectivos produtos de trabalho no sistema;

4. Escolha um analista no projeto (papel de integrador) para ficar responsavel pela
definicdo e criacdo das linhas de base (baselines’) para uso interno ou para
entrega de produto ao cliente;

5. Disponibilize, através do sistema, arvore com histérico das versdes e com as
diferencas entre sucessivas linhas de base.

> Uma baseline ou linha de base reflete um instante especifico de um projeto e a situagéo exata de
determinados itens de configuragdo no momento da criagdo da mesma. Pode-se dizer que é uma
"fotografia" dos itens de configuracdo previamente especificados. Desta forma, a cada nova etapa
executada (requisitos, desenvolvimento, testes, homologacao, implantacdo,) a Geréncia de Configuragao
devera criar uma linha de base que servira como referéncia para o processo de desenvolvimento.

170

SugarLoafPLoP 2007 Proceedings Writers” Workshop

Usos Conhecidos:

Layrd e Orci em [Laryd et. al. 2000] fizeram uma adaptacio do CMM para
micro e pequenas e escolheram seis dreas de processos do CMM, entre elas, o processo
de Geréncia de Configuracdo.

Habra et. al. em [Habra et. al. 1999] construiram um micro modelo de avaliacdo,
chamado de OWPL, baseado nos modelos CMMI e ISO/IEC 15504, onde foram
escolhidos oito processos, entre eles, o processo de Geréncia de Configuracdo.

Revankar et. al. [Revankar et. al. 2006] desenvolveram um framework de
processos chamado de Rapid-Q com as melhores priticas do CMMI, ISO 9001 e
padroes do IEEE. O Rapid-Q possibilita a implantagdo e melhoria dos processos de
micro e pequenas empresas de forma modular, flexivel e com baixo custo. Entre os
processos escolhidos para compor o Rapid-Q estd o processo de Geréncia de

Configuragdo.

Carmody [Carmody 2006] implantou a melhoria dos processos na Universidade
de Medicina de Pittsburgh baseado no nivel 2 do CMMI e do ITIL [OGC 2001]. Entre
os processos escolhidos, estd o processo de Geréncia de Configuragdo.

O ISO/IEC 15504 [ISO 2002] contém na categoria de processos de Suporte —
SUP, o processo de Geréncia de Configuracdo para garantir o controle das versdes dos
produtos de trabalho.

O CMMI [SEI 2005] utiliza este processo ao garantir o controle dos itens de
configura¢do e manter as linhas de base.

O MPS-BR [SOFTEX 2006] utiliza este processo para estabelecer e manter a
integridade de todos os produtos de trabalho de um processo ou projeto e disponibiliza-
los a todos os envolvidos.

Nome do Padrao: Medicdo

Contexto: Durante todas as fases ciclo de desenvolvimento de software surge a
necessidade de medir as caracteristicas do software quantitativamente quanto, por
exemplo, a aspectos gerenciais e técnicos, para auxiliar no apoio a decisoes.

Problema: Como medir o software de forma quantitativa?

Solucio:

1. Estabeleca os objetivos da medi¢@o, que podem ser gerenciais e/ou técnicas, por
exemplo, “controlar as mudangas nos requisitos em determinado periodo”,
“reduzir defeitos” e “aumentar produtividade”;

171

SugarLoafPLoP 2007 Proceedings Writers” Workshop

2. Derive de cada objetivo as perguntas cujas respostas determinam se os objetivos
foram ou ndo alcancados, por exemplo, “qual o percentual de requisitos
alterados?”’;

3. A partir das perguntas, decida o que deve ser medido para ser capaz de
responder as perguntas adequadamente (definicdo das métricas), por exemplo,

G

“n° de requisitos alterados/n°® de requisitos alocados”, “ntimero de defeitos”;

4. Cada membro do projeto deve ficar responsédvel pela coleta dos dados referentes
ao seu escopo no projeto, por exemplo, o gerente de projeto deve ficar
responsdvel pela coleta da métrica “n° de requisitos alterados/n°® de requisitos
alocados”. A coleta deve ser realizada através de sistema computacional
especifico para coleta de métricas;

5. Disponibilize os resultados a todos os membros envolvidos no projeto.

Usos Conhecidos:

Em Franca et. al. [Franca et. al. 1998] define uma ferramenta para controle de
medi¢des para MPEs baseada no Goal Question Metric [Basili et. al. 1994], onde sdo
estabelecidos os objetivos a serem medidos, dos objetivos sdo geradas questdes e as
métricas surgem para responder as questdes propostas a fim de atender os objetivos
tracados.

Laryd e Orci em [Laryd et. al. 2000] fizeram uma adaptagdo do CMM para
MPEs e escolheram seis dreas de processos do CMM, entre elas, o processo de
Medicdo.

A norma ISO 9000:2000 [ISO 2000] estd organizada em cinco se¢des de

requisitos, entre elas a secdo de Medicdo, Andlise e Melhorias que tem como foco a
medig¢do, andlise dos dados e aperfeicoamento dos processos e produtos.

O ISO/IEC 15504 [ISO 2003] contém na categoria de processos, de Gestdo —
MAN, o processo de Medicdo para coletar e analisar dados de produtos e processos,
para apoiar nas decisdes. As medi¢des s@o realizadas através da identificacdo das
necessidades do projeto.

O CMMI [SEI 2005] utiliza este processo ao estabelecer os objetivos das
medicdes, ao definir os critérios e métricas. Além de analisar os resultados das
medig¢des e registra-las.

O PSP [ISO 1997] utiliza o processo de Medi¢do Pessoal para registrar
individualmente o tempo gasto em cada etapa do ciclo de desenvolvimento, por
exemplo.

O MPS-BR [SOFTEX 2006] utiliza este processo para coletar e analisar os
dados relativos aos produtos desenvolvidos e aos processos implementados na empresa
€ em seus projetos.

172

SugarLoafPLoP 2007 Proceedings Writers” Workshop

Nome do Padrao: Verificacdo

Contexto: Na tentativa de minimizar os defeitos e riscos associados ao longo de todo o
desenvolvimento do software, surge a necessidade de avaliar se os produtos de trabalho
atendem completamente aos requisitos para eles especificados ou condi¢des impostas a
eles nas atividades anteriores.

Problema: Como assegurar que os produtos de trabalho estdo sendo desenvolvidos
adequadamente, ou seja, que refletem apropriadamente os requisitos especificados por
eles?

Solucio:

1. Identifique os produtos de trabalho a serem verificados;

2. Defina os métodos de verificacdo para cada produto de trabalho, por exemplo,
testes funcionais, Revisdo por Pares, testes de integracdo;

3. Execute a verificacdo dos produtos de trabalho selecionados contra os seus
requisitos através dos métodos definidos anteriormente;

4. Analise e registre os resultados das verificacdes;

Realize a¢des corretivas quando necessério.

Usos Conhecidos:

Herndon e Salars em [Herndon et. al. 2006] escolheram o processo de
Verificacdo do CMMI [SEI 2005], representacdo continua, para garantir que oS
produtos de trabalho estdo em conformidade com seus requisitos.

O ISO/IEC 15504 [ISO 2003] contém na categoria de processos de Suporte —
SUP, o processo de Verificacdo para garantir que os produtos de trabalho estdo de
acordo com o0s requisitos.

O CMMI [SEI 2005] utiliza este processo ao definir os produtos de trabalhos a
serem verificados e utiliza o processo de Revisdo por Pares para verificar sua
conformidade.

O TSP [SEI 2000] utiliza o processo de Verificacdo para verificar os produtos de
trabalho quanto a projeto, logica, reutilizagdo e registra os defeitos encontrados e os
corrige.

O MPS-BR [SOFTEX 2006] utiliza este processo para confirmar que cada
servigo e/ou produto de trabalho do processo ou do projeto reflete apropriadamente os
requisitos especificados.

173

SugarLoafPLoP 2007 Proceedings Writers” Workshop

Nome do Padrao: Validacdo

Contexto: Durante a fase de construcdo do software ocorre a necessidade de garantir
que o software desenvolvido e/ou componente do software atende completamente aos
requisitos definidos pelo cliente.

Problema: Como assegurar que os requisitos para o software do cliente foram
atendidos?

Solucio:
1. Identifique os produtos de trabalho a serem validados, por exemplo, protétipos,
versdo alfa e beta;

2. Estabeleca o ambiente necessario pra executar a validagdo como equipamentos e
ferramentas de testes;

3. Execute as validagdes através de, por exemplo, testes de aceitagdo, testes alfa e
beta, teste de desempenho;

4. Analise e registre os resultados das atividades de validacéo;

Realize acdes corretivas quando necessario.

Usos Conhecidos:

Herndon e Salars em [Herndon et. al. 2006] escolheu, entre outros, o processo de
Validacdo do CMMI para assegurar que o produto desenvolvido e/ou componentes
estdo de acordo com os requisitos impostos pelo cliente.

O ISO/IEC 15504 [ISO 2003] contém na categoria de processos de Suporte —
SUP o processo de Validacdo para garantir que o produto produzido estd de acordo com
acordado com o cliente.

O CMMI [SEI 2005] utiliza este processo para identificar os produtos de
trabalhos a serem validados, executar a validacdo através de testes, analisar e registrar
os resultados.

O MPS-BR [SOFTEX 2006] utiliza este processo para confirmar que o produto
ou componente do produto atenderd ao seu uso pretendido quando colocado no
ambiente para qual foi desenvolvido.

174

SugarLoafPLoP 2007 Proceedings Writers” Workshop

4. Conclusao e Trabalhos Futuros

Diante do exposto, o presente trabalho estd voltado na documentacdo de um
conjunto de “boas praticas” para obtencdo de requisitos minimos da qualidade de
desenvolvimento de software a fim de reduzir as mudancas e custos ora sofridos com a
implantacdo dos modelos atuais. O levantamento inicial do conjunto de patlets aqui
proposto visa a unificagcdo das caracteristicas comuns dos modelos de qualidade com o
objetivo de auxiliar a implantacdo da qualidade de software em micro e pequenas
empresas reduzindo a necessidade de explorar e pesquisar qual dos modelos existentes
se adequaria melhor as suas realidades.

A relevancia deste trabalho de pesquisa estd contida no problema relacionado a
quantidade de modelos de melhoria de qualidade existentes hoje no mercado e na
dificuldade que micro e pequenas empresas de software enfrentam para iniciar o
processo de qualidade no desenvolvimento de software.

Os préximos passos do projeto incluem a captura, documentagio e refinamento
dos padrdes de processos extraidos dos modelos de melhoria de qualidade de software
existentes, bem como a criacdo dos artefatos de entrada e saida dos padrdes e a
definicio dos papéis de cada um no processo de desenvolvimento de software.
Posteriormente, serd realizada a valida¢do do conjunto de padrdes de processos através
de um estudo de caso com aplicabilidade em uma pequena empresa de software.

Espera-se com a conclusio do projeto obter um conjunto de padrdes de processo
de qualidade no desenvolvimento de software de tal forma que auxilie as empresas
interessadas em iniciar a implantacdo de um modelo de melhoria da qualidade. Com a
implantacdo desses futuros padrdes as empresas estardo aptas a, posteriormente, seguir
qualquer um dos modelos e obter a certificacdo desejada.

5. Agradecimentos

Especiais agradecimentos ao Prof. Sérgio Soares, nosso shepherd, pelos comentirios e
sugestdes importantes que ajudaram a melhorar o conteido deste artigo. Agradecemos
também aos colegas Anderson Brando, Ellen Polliana, Kleber Rocha, Rafael Braga,
Tiago Barros e todos os outros participantes do workshop de escritores, grupo B, do
SugarLoafPLoP’2007 pela motivagdo e comentarios essenciais ao aperfeicoamento do
trabalho.

Referéncias

Ahern, D., Armstrong, J., Clouse, A., Ferguson, J., Hayes, W. and Nidiffer, K. (2005)
“CMMI SCAMPI Distilled: Appraisals for Process Improvement”,
http://www.sei.cmu.edu/cmmi/adoption/books.html.

Anacleto, A., Wangenheim, C., Salviano, C. and Savi, R. (2003) “15504MPE -
Desenvolvendo um método para Avaliagdo de Processo de Software em MPEs
Utilizando a ISO/IEC 155047, SIMPROS - Simpésio Brasileiro de Melhoria de
Processos de Software, Recife.

Appleton, B. “Patterns and Software: Essential Concepts and Terminology”,
http://www.cmcrossroads.com/bradapp/docs/patterns-intro.html.

175

SugarLoafPLoP 2007 Proceedings Writers” Workshop

Basili, V., Caldiera, G., Rombach, H. (1994) “The Goal Question Metric Approach”,
Encyclopedia of Software Engineering.

Bezerra, 1., Carneiro, D., Nibon, R., Carneiro, R. and Araujo, S. (2005) “Capacitacao
em Melhoria de Processo de Software: Uma Experiéncia da Implantacio do SW-
CMM em um Grupo de Pequenas Empresas”, 2005.

Carmody, C. (2006) “A Giant Taking Small Steps”, Proceedings of the First
International Research Workshop for Process Improvement in Small Settings —
Selected Case Studies, Janeiro.

Coplien, J. and Schmidt, D. (1995) “Pattern Languages of Program Design”, Addison-
Wesley.

Coplien, J. O. (1996) “Software Patterns”, SIGS Books & Multimedia, USA.

Coplien, J. and Harrison, N. (2004) “Organizational Patterns of Agile Software
Development”, Prentice Hall.

Dangle, K., Larsen, P. and Shaw, M. (2005) “Software Process Improvement in Small
Organizations: A Case Study”, IEEE Computer Society, Dezembro.

Franca, L., Staa, A. and Lucena, C. (1998) “Medicdo de Software para Pequenas
Empresas: Uma Solucdo Baseada na Web”, PUC — Rio.

Grone, B. (2006) “Conceptual Patterns”, 13th Annual IEEE International Symposium
and Workshop on Engineering of Computer Based Systems.

Habra, N., Niyitugabira, E., Lamblin, A.C. and Renault, A., (1999) “Software Process
Improvement for Small Structures: First Results of a Micro-Evaluation Framework”,
in Proceedings of the European Conference on Software Process Improvement
SPI'99, Barcelona, Spain.

Habra, N., Niyitugabira, E., Lamblin, A.C. and Renault, A., (1999) “Software Process
Improvement in Small Organizations Using Gradual Evaluation Schema”, in
Proceedings of the International Conference on Product Focused Software Process
Improvement, Oulu, Finland, 381-396.

Harrison, N. (1999) “A Pattern Language for Shepherds: A Pattern Language for
Shepherding”, Proceedings of the 6th Annual Conference on the Pattern Languages
of Programs, p. 15-18, Agosto.

Herndon, M., Salars, S. (2006) “Two Case Studies in Implementing Model Based
Process Improvement in Small Organizations”, Proceedings of the First International
Research Workshop for Process Improvement in Small Settings — Process
Improvement Approaches and Models, Janeiro.

International Organization for Standardization. (2000) “ISO 9000:2000 Quality
Management System”, http://www.iso.org, Janeiro.

International Organization for Standardization. (2000) “ISO 10006:2000. Quality
management - Guidelines to quality in project management”, http://www.iso.org.

International Organization for Standardization. (2002) “ISO/IEC 12207 Information
Technology — Software Life Cycle Processes”, Amd, 1.

176

SugarLoafPLoP 2007 Proceedings Writers” Workshop

International Organization for Standardization. (2003) “ISO/IEC 15504: Information
Technology — Process Assessment”, http://www.isospice.com.

Johnson, D., Brodman, J. (1997) “Tailoring the CMM for Small Businesses, Small
Organizations, and Small Projects”, IEEE Computer Society, n° 8.

Kelly, D. and Culleton , B. (1999) “Process Improvement for Small Organizations.
Silicon & Software Systems”, IEEE, Outubro.

Laryd, A. and Orci, T. (2000) “Dynamic CMM for Small Organizations”, Proceedings
of the 1st Argentine Symposium on software Engineering (ASSE 2000), p. 133-149.

MCT - Ministério de Ciéncia e Tecnologia. (2005) “Pesquisa Nacional de Qualidade e
Produtividade no Setor de Software Brasileiro”, Brasil.

OGC-Office of Government Comerce. (2001) “ITIL: The Key to Managing IT Services
Best Practice for Service Support”. United Kingdom Stationery Office.

Oktaba, H. (2006) “MoProSoft: A Software Process Model for Small Enterprises”,
Proceedings of the First International Research Workshop for Process Improvement
in Small Settings — Process Improvement Approaches and Models, Janeiro.

Paulk, M. (1998) “Using the Software CMM in Small Organizations”, The Joint 1998
Proceedings of the Pacific Northwest Software Quality Conference and the Eighth
International Conference on Software Quality, p. 350-361.

Project Management Institute. (2000) “A Guide to the Project Management Body of
Knowledge - PMBOK Guide”.

Revankar, A., Mithare, R. and Nallagonda, V. (2006) “Accelerated Process
Improvements for Small Settings”, Proceedings of the First International Research
Workshop for Process Improvement in Small Settings — Selected Case Studies,
Janeiro.

Serrabo, M., Oca, C. and Cedilho, K. (2006) “An Experience on Implementing the
CMMI in a Small Organization Using the Team Software Process”, Proceedings of
the First International Research Workshop for Process Improvement in Small
Settings — Process Improvement Approaches and Models, Janeiro.

Silva, O., Borges, C., Salviano, C., Crespo, A., Sampaio, A. and Roullier, A. (2003)
“Aplicagdo da ISO/IEC TR 15504 na Melhoria do Processo de Desenvolvimento de
Software de uma Pequena Empresa”, Simpros.

Softex. (2006) “MPS.BR — Melhoria de Processo do Software Brasileiro,Guia Geral”,
Maio.

Software Engineering Institute. (1997) “The Personal Software Process — PSP”,
http://www.sei.cmu.edu/tsp/psp.html.

Software Engineering Institute. (2000) “TSP — The Team Software Process”, Technical
Report, http://www.sei.cmu.edu/tsp.html.

Software Engineering Institute. (2005) “Capability Maturity Model Integration -
CMMI”, http://www.sei.cmu.edu/cmmi.

Souza, A., Oliveira J. and Jino, M. (2002) “Riscos de Implantacio de Processo de
Software em Empresas do Centro-Oeste Brasileiro”, Universidade Catdlica de Goids.

177

SugarLoafPLoP 2007 Proceedings Writers” Workshop

A secure analysis pattern for handling legal cases

Eduardo B. Fernandez (*), David L. la Red M. (**), Jorge Forneron (***), Valeria E.
Uribe (**), and Gisela Rodriguez G. (**)

(*) Dept. of Computer Science and Eng., Florida Atlantic University, Boca Raton, FL, USA

(**) Dpto. de Informética, Facultad de Cs. Exactas, Universidad Nacional del Nordeste, Corrientes,
Argentina

(***) Dpto. de Informaética, Facultad de Ciencias Aplicadas, Universidad Nacional de Pilar, Pilar, Paraguay

Abstract

We present here a Secure Semantic Analysis Pattern (SSAP). This is an analysis pattern that combines
functional and security aspects. In particular, this SSAP is intended to describe the handling of legal cases,
where a client is either suing another party (a plaintiff) or is being defended from a suit (a defendant). To
describe SSAPs we have extended a common template with sections on possible attacks (the possible
attacks in each action of a use case), needed policies (to prevent or mitigate the attacks), and secure
structure (the class model of the solution with security constraints).

1. Introduction

We have proposed the use of Semantic Analysis Patterns (SAPs) to build conceptual
models of applications [Fer00]. A SAP is a composite pattern that corresponds to a few
fundamental use cases. Using SAPs is possible to build conceptual models in a simpler
and more reliable way. We have also developed a methodology to build secure systems
[Fer06a]. In this methodology we add instances of security patterns to the functional parts
of the conceptual model to define security constraints at the application level. These
constraints are then enforced by the lower architectural levels.

We can use SAPs as part of our secure system development methodology. We extend the
SAPs to consider possible attacks to the fundamental use cases that define it, and we
define policies to prevent the attacks. This is the application of an idea proposed in
[FerO6b] which emphasizes that the secure design of a system should be based on its
expected types of attacks. Since the SAPs are used to build the conceptual model of an
application, we have now a portion of a conceptual model where functional and security
aspects are integrated from the start. We call this a Secure Semantic Analysis Pattern
(SSAP). In particular, we present here a SSAP to handle legal cases. To describe SSAPs
we have extended the template of [Bus96] with sections on possible attacks (the possible
attacks in each activity of a use case), needed policies (to prevent or mitigate the attacks),
and secure structure (the class model of the solution with security constraints). SSAPs
follow the current tendency in security research of integrating business functions with
security aspects from the beginning of the development life cycle [Nag05, Sch06a].

Section 2 describes a specific SSAP, a pattern for the Secure Handling of Legal Cases.
As indicated, this pattern is intended for system developers trying to incorporate security
in their designs. We do not assume legal expertise and a glossary at the end of the paper
defines basic law terms.

178

SugarLoafPLoP 2007 Proceedings Writers” Workshop

2. Secure Handling of Legal Cases

This pattern describes the handling of legal cases where a client is either suing another
party (a plaintiff) or is being defended from a suit (a defendant). The pattern includes the
necessary policies (in the form of security patterns) to stop or mitigate the expected
attacks.

2.1 Example

The SueThem law firm is having trouble staying in business. It keeps some documents in
electronic form and others in paper. Documents are hard to find and get easily accessed
by unauthorized persons. It is hard for the company to keep track of their customers and
to know how much it should charge them. The conduction of cases is disorganized, which
leads to losing cases because of lack of preparation.

2.2 Context

A legal firm sues parties (persons, organizations, or groups) on behalf of their clients; it
can also defend their clients when they are sued. We call a legal case the sequence of
actions (process) needed to pursue a suit until its completion. The standard legal system
of most countries allows parties to sue other parties. There are different types of lawsuits
but they are not of interest here. Interactions between the people involved can be in
person, by telephone, by regular mail, or by email. Law firms are commercial entities and
must compete with other law firms for clients.

2.3 Problem

A law suit or defense implies a sequence of actions and generates many documents of
several types. If the firm doesn’t organize properly these actions and the corresponding
documents, it will have problems in conducting the suit or defense, which will result in
unnecessary expenses and in a higher possibility of losing the case. Because the
information handed in a case is very sensitive, there is motivation to misuse it. We need
to consider possible attacks and take measures to avoid them. We consider here the main
use cases in this process: Handle Legal Case (for a plaintiff), Handle Legal Case (for a
defendant), and its auxiliary use cases Keep Track of Costs, Research Case, and Billing.
Figure 1 shows the actors involved in these use cases. ‘Other’ represents here people
involved in the case such as witnesses or experts. There are other related use cases such
as writing of wills or divorce cases, which are left out for simplicity and to make the
pattern more reusable. How do we model this system to consider all these factors in a
balanced way?

The solution to this problem is affected by the following forces:

e Unpredictability of activities. The sequence of activities in a case is usually
unpredictable. Depositions, witness court appearances, lawyer briefs to the court
might be required in any sequence depending on the course of the case.

e Unpredictablity of people. Complex cases may require several lawyers with the
assistance of some secretaries. The actual number of these people might be hard to
predict. In addition to the defendant and the plaintiff (and their respective opponents)
we may need witnesses, experts, and other people. Who they are and when they are
needed depends on the case.

179

SugarLoafPLoP 2007 Proceedings

Writers” Workshop

e Logistics. The total effort and duration of a case is variable and we need to keep track
of expenses, time used, supplies, etc., so we can bill our clients.

e Precedent searching. Handling cases require searching for precedents (similar cases).
To do research for cases, lawyers and secretaries make use of libraries and the
Internet and may download many documents.

e Access control to information. The information about customers, billing, assignment
of lawyers, and other aspects related to a current case must be accessible only to

authorized persons.

e Control of documents.Legal documents can only be created by authorized persons and
their use (reading or modification) should also be controlled.

e Confidentality. Communications between lawyers and clients must be confidential.

e Auditability. Government regulations apply to law firms and their information must

be easily auditable.

Opponent

Handle Legal

o
X

Client ! As plaintiff
|
<\§include>>
AN
% Keep track
of costs
Other

\

\
As defendant \

<<extend
/

Research Case

—_——

7

Lawyer

/Secretary

Figure 1. Use cases for handling legal cases

2.4 Possible attacks

Figure 2 shows an activity diagram for the sequence for handling a case followed by
billing, tracking of costs, and related case research. Following the approach of [Fer06b],
in order to analyze the possible attacks (threats) we consider each activity in the activity
diagram of Figure 2 and see how it can be subverted by the attacker. In this diagram
External People indicates either the opponent or other people involved in the case. The

possible attacks are then:

180

SugarLoafPLoP 2007 Proceedings

Client Lawyer Secretary
Start
Case N
\\.‘
Contract
Make
Deposition
7/
/
K
i N
:Deposition ‘Precedent

&

. e — Co
Cost 't Appe
Outcome [¢———| Produce
Outcome

AS
Cost

A

Figure 2. Activity diagram of a case handling

181

y

Bill Client

Writers” Workshop

External people

Make
Deposition

:Deposition

SugarLoafPLoP 2007 Proceedings Writers” Workshop

Al In the “start case’ activity, the client or the responsible lawyer might be impostors.
A2 A lawyer might create a false contract.

A3 The client or the external people might give a false deposition.

A4 A lawyer may change a deposition.

A5 A lawyer or a secretary may produce intentionally incorrect precedents, briefs, or
costs.

A6 A secretary may produce an increased or decreased bill.

AT A lawyer may change some aspects of the outcome to collect a higher fee.

A8 A lawyer can disseminate client or case information for monetary gain.

A9 An external attacker may read/change case information or access client/lawyer
communications.

2.5 Solution

Because the handling of cases is rather unpredictable and we use a variety of knowledge
experts in its handling, this problem can be conveniently modeled as a Blackboard pattern
[Bus96]. The case itself becomes a blackboard and the experts providing knowledge to
the case are the lawyers, witnesses, or experts. The control is based on the status of the
case and is embodied in the scheduling of activities.

Structure

Figure 3 shows a class diagram of the conceptual model for the functional aspects of this
pattern. Class Case represent the case itself (in the role of Blackboard), and it includes as
components classes Cost (describes accrued costs), CaseDocument, Outcome (the result
of the case), and Scheduling (the control role of the Blackboard). A Client is responsible
for a case, and with each case there are some associated ExternalPeople (opponents,
witnesses, experts). A CaseDocument can be a Contract, a Precedent, a Brief, or a
Deposition. Lawyers and Secretaries are Employees of the Law Firm and can be
assigned to cases (we assume this assignment has been done beforehand). A Secretary in
the case keeps track of Costs. A Lawyer in the case is responsible for the general
conduction of the case, including scheduling.

Dynamics

Figure 4 shows a sequence diagram describing some typical steps for the use case Handle
Legal Case as Plaintiff or Defendant. The Client starts the case with the responsible
lawyer. This lawyer creates an instance of a case and later does some research for it. He
assigns an assistant lawyer to prepare a brief for the court and schedules the client to
make a deposition. The other use cases are simpler and not shown for conciseness.

182

SugarLoafPLoP 2007 Proceedings

Writers” Workshop

Employee Law Firm
CanSchedule WorksFor
name *
Scheduling D name
address
- . salary
activity AssignedTo
date/time
'\\\{subset}
\
\ ResponsibleFor 1
Lawyer Secretary
Client Case Cost speliialty | rank
name = %] number 4 - date -
startDate * _ KeepsTrackOf >
address * amount 1
endDate \(subset}
*
AssignedTo
1 *
Eg(terrllal e Outcome CaseDoc
eople
P date number K——
name startDate
address endDate
Figure 3. Class diagram for the Handle Legal Cases pattern.
Client respons@le lawyer2:
Lawyer:
T T T
I] I
i | l
startCase | :
create S| .~qee :
. |
I
i :
I
I
research !
I
prepareBrief :
create
>| Brief
:
_ make —
deposition
creatg :Deposition
|
’l_‘

Figure 4 Sequence diagram for use case ‘Handle Case’.

183

SugarLoafPLoP 2007 Proceedings Writers” Workshop

Secure structure
The attacks identified earlier mean that we need the following policies to avoid or
mitigate them:
Al Mutual authentication, to avoid impostors.
A2 Authorization to restrict only lawyers to create contracts, and logging to record
possible illegal actions from a lawyer.
A3 Logging, to keep records for future auditing that could detect false depositions.
A4 Authorization and document protection against change.
A5 Authorization and logging, to restrict who can perform these actions and to keep
records for future auditing.
A6 Logging, to record suspicious actions of a secretary.
AT Separation of duty. Two lawyers must concur on the fees to be charged.
A8 Logging, to record possible illegal actions of lawyers.
A9 Authorization and access control to stop external attacks and cryptography to protect
communications

From these policies we can define abstract security mechanisms to stop or mitigate the
identified threats. Figure 5 shows the relevant part of the conceptual model of Figure 3
with the addition of instances of Authentication, Authorization, and Logging patterns to
realize the identified policies. We assume that the authorization policies follow a Role-
Based Access Control (RBAC) model and the diagram defines the rights for each role.
Both the responsible lawyer (who interacts with the client), and the client must have
information to authenticate each other (requiring two instances of the Authenticator
pattern). The CaseLog (an instance of the Log pattern) records accesses to the case data.
We also need an instance of the Reference Monitor, not show here for simplicity (see
[Fer06b].

Example resolved

The SueThem law firm has now a systematic structure to conduct its cases. All its
documents are reflected in the conceptual model and can be easily retrieved and audited.
The company can now keep track of the costs associated with a case. Documents and
other case information can be protected from illegal access.

Consequences

This pattern has the following advantages:

e The Blackboard structure accommodates well unpredictable sequences of activities.

e We can assign lawyers and secretaries dynamically depending on the course of the
case.

e The model includes knowledge sources that can be the client, the opponent,
witnesses, expert witnesses, and other people.

e Itis possible to track the current costs of the case.

e Applying legal regulations to the company is easy because all documents are
described by classes with controlled access and we keep a log of accesses.

184

SugarLoafPLoP 2007 Proceedings

Writers” Workshop

Searching for precedents (similar cases) can be done as part of the case handling, we
can store this information for future use, and we can associate it to the different stages

of the case.

CaselLog

Lawyer

Authenticator

Case

Client

Authenticator

Liabilities include:

RLawyerRights

schedule
start
writeOpinion
close
openContract

Responsible

ALawyerRights

writeOpinion
chargeTime
writeBrief

AssignedTo

ClientRights

writeDeposition
readDeposition

SecRights

readDocs
createDocs

Figure 5. Security additions to the class diagram.

Secretary

The order in which some activities are performed has an effect in the outcome but the
lawyers must decide on the scheduling and the pattern does not help here.
We might not be able to find all possible attacks, which could allow some attacks to

still happen.

The actual implementation may allow new types of attacks. For example, code flaws
may allow an attacker to get control of the operating system and thus to the case data.

Effect on security:

185

SugarLoafPLoP 2007 Proceedings Writers” Workshop

e We can define precise role rights, e.g. an expert can only add to the information, not
change it, a lawyer can decide on the next step, bring new witnesses, but cannot
change depositions.

e A designer building a system of this type can produce software that performs its
functions and is at the same time reasonably secure.

e The RBAC structure enforces authorized access to the information and employees
can make sure that they are talking to the person they intend.

e Cryptographic methods can be added to prevent document modification, e.g. hashing
[Gol06].

Known uses
Many large law firms follow a similar structure.

See also

e The Blackboard pattern [Bus96] is the basis for the central function of the case.

e The client and the external people can be described by a Party pattern to indicate that
they can be individuals or organizations [Fow97].

e Assignment of lawyers and secretaries uses the Resource Assignment pattern [Fer05].

e The rights structure follows an RBAC pattern [Sch06b].

e Authentication is performed by means of instances of the Authenticator pattern
[Scho6b].

Acknowledgements

We thank our shepherd, Jorge Ortega Arjona, who provided valuable suggestions that
have clearly improved this paper. The Secure Systems Research Group at FAU
(www.cse.fau.edu/~security), and the participants in the writers’ workshop at
SugarLoafPLoP 2007 (Richard Gabriel, Joe Yoder, Ademar Aguiar, Maria Lencastre,
Paulo Borba, Rosana Braga, and Mark Perry) provided very useful comments.

References

[Bus96] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal. Pattern
Oriented Software Architecture: A System of Patterns, Volume 1, Wiley, 1996.

[Fer00] E.B. Fernandez and X. Yuan, “Semantic analysis patterns”, Procs. of 19th Int.
Conf. on Conceptual Modeling, ER2000, 183-195. Also available from:
http://www.cse.fau.edu/~ed/SAPpaper2.pdf

[Fer05] E.B.Fernandez, T. Sorgente, and M. VanHilst, "Constrained Resource
Assignment Description Pattern”. Proceedings of the Nordic Conference on Pattern
Languages of Programs, Viking PLoP 2005, Otaniemi, Finland, 23-25 September 2005.

[FerO6a] E. B. Fernandez, M.M. Larrondo-Petrie, T. Sorgente, and M. VanHilst, "A
methodology to develop secure systems using patterns”, Chapter 5 in "Integrating

186

SugarLoafPLoP 2007 Proceedings Writers” Workshop

security and software engineering: Advances and future vision", H. Mouratidis and P.
Giorgini (Eds.), IDEA Press, 2006, 107-126.

[FerO6b] E. B. Fernandez, M. VanHilst, M. M. Larrondo Petrie, S. Huang, "Defining
Security Requirements through Misuse Actions”, in Advanced Software Engineering:
Expanding the Frontiers of Software Technology, S. F. Ochoa and G.-C. Roman (Eds.),
International Federation for Information Processing, Springer, 2006, 123-137.

[Fow97] M. Fowler, Analysis Patterns-Reusable Object Models, Addison-Wesley, 1997.

[Gol06] D. Gollmann, Computer security (2" Ed.), Wiley, 2006.

[Nag05] N. Nagaratnam, A. Nadalin, M. Hondo, M. Mclntosh, and P. Austel, “Business-
driven application security: From modeling to managing secure applications”, IBM
Systems Journal, Vol. 44, No 4, 2005, 847-867.

[SchO6a] A. Schaad, “Security in Enterprise Resource Planning systems and Service-
Oriented architectures”, Procs. of SACMAT’06, ACM, June 2006, 69-70.

[Sch06b] M. Schumacher, E.B.Fernandez, D. Hybertson, F. Buschmann, and P.
Sommerlad, Security Patterns: Integrating security and systems engineering”, Wiley
2006.

Appendix. Glossary of legal terms

Brief--a formal document that sets forth the main contentions with supporting statements
or evidence.

Contract--a binding, legally enforceable agreement between two or more parties.
Defendant--a person required to make answer in a legal action or suit.
Deposition—a testimony taken down in writing under oath.

Expert—a person having or displaying special skill or knowledge derived from training
or experience.

Opponent--one that takes an opposite position (as in a debate, contest, or conflict).
Plaintiff--a person who brings a legal action.

Precedent--something done or said that may serve as an example or rule to authorize or
justify a subsequent act of the same or an analogous kind.

Suit--an action or process in a court for the recovery of a right or claim.

Witness--one who testifies in a cause or before a judicial tribunal.

187

SugarLoafPLoP 2007 Proceedings Writers” Workshop

State MVC': Estendendo o padrao MVC para uso no
desenvolvimento de aplicacoes para dispositivos moveis

Tiago Barros, Mauro Silva e Emerson Espinola

C.E.S.A.R - Centro de Estudos e Sistemas Avancados do Recife

{tgfb, mijcs, ele}@cesar.org.br

Resumo. Aplicacoes para dispositivos moveis podem ser implementadas para
vdrias plataformas diferentes, como J2ME, BREW, Symbian, Windows Mobile e
Embedded Linux. No entanto, apesar de diferentes, estas plataformas possuem
certa semelhangca em sua arquitetura, pois todas sdo dirigidas a eventos. O
Padrdao SMVC tem por objetivo capturar estas semelhangas ao propor uma ar-
quitetura em que possamos utilizar uma mdquina de estados dentro do padrdo
MVC.

Abstract. There are many different platforms for mobile application
development such as J2ME, BREW, Symbian, Windows Mobile and Embedded
Linux. Although different, they have some common architecture, because each
platform is event-driven. The SMVC pattern has the intent to catch these
common elements of all platforms by include a state machine inside MVC.

1. Introducao

Em desenvolvimento para dispositivos méveis as funcionalidades sdo muito centradas em
cendrios de uso baseados na interacdo com o usudrio. Tais questdes estdo facilmente rela-
cionadas com aspectos de manipulacao de eventos originados pelos mesmos. Esses even-
tos, no contexto da codificagcdo, sao observados sob as seguintes vertentes: apresentacao
do modelo de dados; gerenciamento e controle dos eventos; e manipulacdo da interface
com O usudrio.

O padrao de arquitetura MVC (Model-View-Controller) [Krasner and Pope 1998]
¢ bastante utilizado no desenvolvimento de aplicagdes para dispositivos méveis pois de-
termina a separacdo de uma aplicagdo em trés elementos. O Model é formado por en-
tidades que representam os dados da aplicacdo. A View tem por objetivo realizar a
apresentacdo destes dados e capturar os eventos do usudrio; sendo representada pelas
telas. O Controller faz a ligagdo entre o Model e a View, realizando o tratamento dos
eventos, atuando sobre o Model e alterando os elementos da View para representar a nova
forma dos dados.

Neste artigo, serd apresentada uma extensdo do padrao MVC para o desenvol-
vimento de aplicagdes para dispositivos méveis chamado State MVC (SMVC). O padrao
MVC seré instanciado para o contexto de aplicagdes para dispositivos méveis e dois niveis

Copyright (c) 2007, Tiago Barros, Mauro Silva e Emerson Espinola. Permissdo de cépia concedida
para a conferéncia SugarLoaf-PLoP 2007. Todos os outros direitos reservados.

188

SugarLoafPLoP 2007 Proceedings Writers” Workshop

a mais serdo sugeridos para que a manipulacdo de eventos seja realizada de maneira mais
eficiente e escaldvel.

O SMVC € aplicado em cendrios de desenvolvimento onde a mudanca de inter-
faces e camada de controle necessitem de rapidez e eficiéncia, sem que o modelo arqui-
tetural adotado seja um entrave a mudanga. O publico-alvo principal deste artigo sdo
desenvolvedores de aplicagdes para dispositivos moéveis.

2. SMVC
2.1. Objetivo

Fornecer uma arquitetura para desenvolvimento de aplica¢des para dispositivos méveis
baseada numa extensdo do MVC para uma maior eficiéncia, escalabilidade e melhor es-
crita de codigo.

2.2. Contexto

Ainda que o desenvolvimento para dispositivos mdveis necessite de ambientes que sdo
orientados a eventos, eles ndo dispdem de uma estrutura adequada para uma programagao
eficiente. E comum no desenvolvimento de aplicacdes em plataformas desta natureza
[Forman and Zahorjan 1994] - BREW, J2ME, Symbian, Embedded Linux e Windows
Mobile - que o cédigo seja confuso, mesclando em um tnico lugar o tratamento de todos
os eventos da aplicacdo. Neste codigo entdo, torna-se necessario adicionar diversas flags
de controle potencializando o ndmero de erros.

E importante ressaltar que as aplicacdes de interacio com o usudrio - especial-
mente para celulares - rodam em um tnico processo, nao permitindo assim o bloqueio de
uma aplicagdo em detrimento de outra. Para solucionar este conflito, as plataformas utili-
zam uma funcio de callback' que faz o tratamento dos eventos enviados para a aplicagio.

Muito embora esta solugdo seja de grande valia do ponto de vista de programacao,
uma Unica fun¢do para tratar todos eventos torna a aplica¢do cada vez mais complexa.
Neste momento, entdo, é natural que aparecam mecanismos de controle para represen-
tar os diferentes estados da aplicacdo, por exemplo: ao receber o evento eventX com
o flagl ligado (TRUE), uma determinada acdo deve ser tomada; recebendo o mesmo
evento eventX com flagl igual a FALSE outra acdo deve ser iniciada. Percebe-se que
os valores das flags sdo de fato os estados existentes na aplicac¢do e sdo eles que devem
ser tratados.

Desta forma, um tratamento adequado para os estados e eventos, além de tornar
a programacao mais simples e intuitiva, proporciona um maior desacoplamento e garante
uma melhor extensibilidade e manutenabilidade da aplicagao.

2.3. Problema

Como entdo manipular eventos e estados garantindo maior fator de produtividade (em li-
nhas de cddigo), facilidade na manutencao e, sobretudo, agregando escalabilidade a novas
funcionalidades? Imprimir simplesmente o padrao MVC nas solugdes para dispositivos
moéveis ndo garante o sucesso na implementacao.

'Mecanismo utilizado para a realizacio de operacdes assincronas. Uma fungio é passada como
pardmetro e chamada quando a operacdo termina.

189

SugarLoafPLoP 2007 Proceedings Writers” Workshop

A adogdo de padrdes arquiteturais que garantem a separacao eficiente entre inter-
face e controle facilitam o tratamento dos desafios inerentes a computagdo médvel.

2.4. Forcas

e A adicao de novas funcionalidades deve ser facilitada através do desacoplamento
do Controller e da View.

e Projetar a aplicacdo onde os estados sejam organizados como classes, com
métodos para tratar cada evento.

e Deve minimizar a utilizagdo de recursos (memoria) pela aplicacdo, proporcio-
nando um mecanismo para carrega-los quando necessario e liberd-los quando nao
estiverem mais em uso.

e A descentralizacdo do tratamento de eventos deve ser atingida através da
distribuicdo deste tratamento para os estados.

e A adi¢do, remog¢do e modificacdo de estados da aplicacdo devem ser feitas de
maneira a se evitar grande impacto na arquitetura.

e A reutilizacdo de telas comuns deve ser garantida, através de um mecanismo que
proporcione o gerenciamento destas telas.

2.5. Solucao

Para resolver o problema apresentado, um padrdo de projeto composto [Riehle 1997] cha-
mado State MVC ¢é sugerido. Este padrdo consiste na extensao do padrao MVC, baseada
na composi¢do entre os padroes State [Gamma et al. 1994] e Manager [Sommerlad 1997]
para representar o Controller do MVC, a fim de fornecer uma melhor manipulagdo e tra-
tamento de eventos e estados. Além disto, um mecanismo para o controle de telas também
baseado no padrao Manager implementa a View, proporcionando reutilizacdo de telas e
facilidade de manutencao.

2.6. Estrutura

A estrutura do SMVC € representada através do digrama de classes UML
[Booch et al. 1998] da Figura 1.

Abaixo segue a descri¢do de cada classe participante do padrio:

e Application
A classe Application representa o Model do padrao MVC. Além deste papel,
esta classe também faz a interface com a plataforma alvo, representando o ponto
de entrada da aplicacdo e possuindo métodos de inicializacdo (StartApp)
e finalizagdo da aplicagdo (StopApp), bem como os métodos para pausar
(PauseApp) e continuar (ResumeApp) a mesma.

e StateManager
A classe StateManager representa uma madaquina de estados, sendo res-
ponsavel pela transicdo dos estados da aplicacdo e por chamar o método do
estado que trata cada evento recebido pela aplicacdo. Dentro do padrao MVC,
esta classe, junto com os estados propriamente ditos, representa o Controller.

190

SugarLoafPLoP 2007 Proceedings

Writers” Workshop

O ScreenManager
StateManager
%ChangeScreen()
:ChangeState(} a ranslateEvent()
Handle Event{) Faint()
T *GetActiveScreen()
i :
O .
StateBase T
[&app - Application oy ScreenBase
&eventTable : Event*
cati “0OnActivate()
Application ’
*0nEnter() . L Oninactivate()
‘OnExit(} %screenrﬂanager ‘Paint(}
*0nResume() statellanager $TranslateEvent)
*N1apEvent()
&
*HandleEvent() ool
$StateBase() ,SSDAEES
‘PauseApp(}
%ResumeApp()

®

ConcreteScreen
ConcreteState

Figura 1. Diagrama de classes do padrao SMVC

e StateBase
StateBase representa um estado da aplicacdo. Esta € uma classe abstrata, da
qual todos os estados concretos devem herdar.

e ConcreteState
Deve ser criada uma classe ConcreteState para cada estado da aplicacao.
Cada ConcreteState deve implementar um método para cada evento a ser
tratado pelo estado.

e ScreenManager
ScreenManager € responsdvel por gerenciar as telas da aplicacdo. Esta classe,
junto com as telas propriamente ditas, representam a View do padrao MVC.

e ScreenBase
A classe ScreenBase € uma classe abstrata da qual todas as telas da aplicacao
devem herdar. Ela possui métodos para exibicdo dos dados da aplicacdo na tela
do dispositivo.

e ConcreteScreen
Cada tela da aplicacdo é uma ConcreteScreen. Esta classe herda de
ScreenBase e deve implementar seus métodos abstratos.

191

SugarLoafPLoP 2007 Proceedings Writers” Workshop

2.7. Dinamica

A Figura 2 mostra o diagrama de seqiiéncia da construcdo de uma aplicacio
que utilize o padraio SMVC. A aplicacio tomada por exemplo implementa dois
estados (StateA e StateB) e uma tela (Screenl), que sdo classes concre-
tas (implementacdes de ConcreteState e ConcreteScreen) que herdam de
StateBase e ScreenBase, respectivamente.

x®@ O O O [o

_ Platfom Agp_hcatmn StateManager _ StateA _ StateB - Screenhlanager - Screen

Construct()

Construct(maxStates)

StateA{StateMachine) : :
ate/(StateMachine) MapEvent(event, eventHandler)

Add(StateA) <

D‘{ ______________

StateB(StateMachine)

MapEvent{event; eventHandl er)

Add(StateB) | [=——

Construct(maxScreens)

Screeni()

i Add(Screent)

Figura 2. Construcao da aplicacao

O primeiro método chamado, ao inicializar a aplicagdo, é o método Construct
da classe Application. A chamada deste método deve estar integrada com a plata-
forma de desenvolvimento escolhida de forma que ele seja chamado na inicializa¢do da
aplicacdo. Este método € responsavel por instanciar os dados da aplicagdo, bem como
todos os estados e telas.

Cada estado criado, € responsavel por definir quais os eventos que ele vai tratar e
quais os métodos responsaveis por tratar cada evento, através do metodo MapEvent.

Na Figura 3 podemos ver a seqii€éncia de inicializacdo da aplicagdo. Depois de
todos os estados e telas da aplicacdo serem instanciados, o método StartApp da classe
Application € chamado, o qual deve definir o estado inicial do StateManager.

Ao definir o estado inicial, o0 método OnEnter deste estado € chamado, de-
vendo inicializar os dados necessdrios ao estado e definir qual serd a tela apresentada,
através do método ChangeScreen de ScreenManager. O método ChangeScreen
¢ responsavel por chamar o método OnInactivate da tela anterior (caso exista uma

192

SugarLoafPLoP 2007 Proceedings Writers” Workshop

_ Platfom - Application - StateManager _ StateA _ StateB - Screenhlanager - Screen

| Stata 5 5
H atApp()_ ChangeState(StateA) |

OnEnter()

ChangeScraien(ScreeM} : OnActivate() :
] =
Paint() L]

Figura 3. Inicializacao da aplicacao

tela anterior), para que seus dados sejam removidos da memoria, e chamar o método
OnActivate da tela atual, para que os dados desta tela sejam criados na memoria. De-
pois disto, serd chamado o método Paint para que a tela atual seja desenhada.

Depois desta inicializacao, a aplica¢do aguardard por eventos para serem tratados
pelo estado atual. A Figura 4 mostra o diagrama de seqii€ncia para dois exemplos de tra-
tamento de eventos pela aplicacdo, um evento de OK, e um evento de EXIT. A seqiiéncia
do tratamento de qualquer outro evento € andloga a estes mostrados.

Quando a aplicacdio recebe um evento, o método HandleEvent de
StateManager é chamado. Este método verifica qual € o estado atual da aplicacdo
e envia este evento para ser tratado, chamando o método HandleEvent deste estado.
No estado, caso o evento seja um evento de tecla ele serd traduzido para um evento signifi-
cativo, de acordo com a tela que estd sendo apresentada. No exemplo do primeiro evento,
se a tecla pressionada for a softkey da esquerda e, na tela, esta tecla representa a funcdo
OK, o evento de softkey da esquerda serd traduzido para OK.

Depois de traduzido, o estado ira verificar qual é o método responsavel por tratar
este evento e ird chama-lo para que execute. A execu¢do do método tratador do evento
podera acarretar em alteragdes no modelo ou na visualizac¢do da aplicacdo, através de cha-
madas de métodos de Application e ScreenManager, respectivamente. Também
¢ possivel mudar o estado da aplicacdo, alterando o estado atual através do método
ChangeState de StateManager.

2.8. Conseqiiéncias
O SMVC oferece as seguintes vantagens:

e Cdbdigo Modular
Assim como 0 MVC, o SMVC desacopla o comportamento do modelo de dados e
da visualizacdo. Além disto, o proprio comportamento € modularizado ao dividir
o Controller em um conjunto de estados.

e Extensibilidade e Manutenabilidade
Devido ao Controller ser implementado como maquina de estados, alterar ou adi-

193

SugarLoafPLoP 2007 Proceedings

Writers” Workshop

S ® O OO W i

- Platform - Application - StateManager

: HandIeEvent(eveni}

HandIeEvent(event:}

. Stated

[THandleEvent(event) :

ChangeState(StateB

- StateB - Screenlanager - Screen

TranslateEvéant(event}

OnExit()

anslateEvent(event]

HandleOK{)

1

OnEnter()

Paint()

Paint{ }

TranslateEvem(event}

StopApp()

HandIeEvent(event}i

TranslateEuent[evént}

_commandEXIT |

{ _______________
HandleEXIT()
FER—

Figura 4. Dinamica do tratamento de eventos

cionar novas funcionalidades consiste em alterar ou adicionar os estados corres-
pondentes, minimizando bastante o impacto destas mudangas na aplicacdo com-

pleta.
e Reutilizacdo de telas

Como o codigo de tratamento de eventos estd implementado nos estados
(Controller), podemos utilizar uma mesma tela em varios estados, evitando a
insercdo de flags no codigo das telas.

e Reducdo da memoria utilizada
Os estados da aplicagdo podem carregar os dados necessarios ao seu processa-
mento quando tornam-se ativos e liberar esta memoria ao tornarem-se inativos,
proporcionando um melhor aproveitamento da memoria do dispositivo ao evitar
que os dados necessarios a todos os estados estejam sempre na memaoria.

e Descentralizacdo do tratamento de eventos

194

SugarLoafPLoP 2007 Proceedings Writers” Workshop

Os eventos sdo tratados por métodos especificos de cada estado, evitando-se es-
crever uma unica fung¢do para tratar todos os eventos da aplicagdo.

Em consequéncia disto, também oferece as seguintes desvantagens:

e Aumento do nimero de classes
Com a introdu¢do de StateManager e ScreenManager além da
implementagdo das classes concretas para os estados e telas, hd4 um aumento no
nimero de classes. Para aplicacdes pequenas, a Variacao 1 (Secdo 2.10) do padrao
pode ser considerada.

e Duplicacdo de cédigo
Eventos tratados em vérios estados podem ter seu codigo de tratamento duplicado
na implementacdo dos estados. Neste caso, € sugerida a Variacdo 2 do padrao
(Secao 2.10), que implementa os estados de forma hierarquica, reusando eventos
comuns em niveis de estados intermediarios.

2.9. Implementacao
Para implementar o padrao SMVC, devemos seguir os seguintes passos:

1. Definir, dentro da plataforma escolhida, de que classe herdaremos a classe
Application. Por exemplo, em J2ME [J2ME 2007], seria a classe Midlet e
em BREW [BREW 2007] a estrutura AEEApplet.

2. Implementar os dois gerenciadores (ScreenManager e StateManager).
Como estas classes sdo classes genéricas, deverdo ser implementadas comple-
tamente desacopladas da aplicacdo, pois poderdo ser reutilizadas nas préximas
aplicacdes desenvolvidas.

3. Modelar a aplicagdo como uma méaquina de estados, verificando quais eventos
devem ser tratados por cada estado e quais telas serdo apresentadas. Neste ponto,
podemos definir se vamos utilizar as varia¢des sugeridas neste artigo.

4. Implementar cada estado modelado, definindo seus métodos tratadores de eventos.

. Implementar as telas da aplicagao.

9

2.9.1. Exemplo

Foi escolhida a plataforma BREW para demonstracdo do uso do padrao SMVC. Sera
mostrada a implementa¢do de uma aplicacao tradicional em BREW. Depois mostraremos
a implementa¢do do padrio proposto. Esta abordagem visa realizar uma anélise compa-
rativa da utilizacdo do SMVC.

Uma aplicacdo em BREW consiste nos seguintes elementos:

e Estrutura base da aplicacdo

Deve ser criada uma estrutura para a aplicacdo que contenha a estrutura
AEEApplet como primeiro elemento. Isto faz-se necessdrio visto que
AEEApplet € a base para qualquer aplicacio BREW e € utilizada internamente
nas fungdes de criagdo da aplicacdo. Declarando AEEApplet como primeiro
elemento da estrutura da nossa aplicacdo permite que se fagca um cast da estrutura
da nossa aplicacdo para a estrutura AEEApplet. Desta forma, pode-se passar
a estrutura da nossa aplicacdo como parametro para as fungdes do framework de
BREW.

195

SugarLoafPLoP 2007 Proceedings Writers” Workshop

e Fungdo de inicializagdo
Esta funcdo é responsavel por inicializar (alocar memoria) todos os dados da
aplicacao.

e Fungdo de finalizagdo
Esta fun¢do é chamada quando a aplicacdo termina e é responsavel por desalocar
toda a memoria alocada na funcdo de inicializacao.

e Funcdo de tratamento de eventos
E responsével por receber todos os eventos enviados a aplicagdo. Geralmente é
implementada como um grande switch que escolhe qual o tratamento adequado,
de acordo com o evento recebido.

Abaixo veremos um exemplo de codigo da estrutura base de uma aplicacio
BREW, bem como o cddigo das fun¢des de inicializacdo e finalizacdo da aplicagdo.

typedef struct _HelloWorld

{
AEEApplet a ; // First element of this structure must be AEEApplet
AEEDevicelInfo DeviceInfo; // the hardware device information

int appScreen; // holds application screen ID
} HelloWorld;

// this function is called when your application

// is starting up

boolean HelloWorld_InitAppData (HelloWorld * pMe)

{
// Get the device information for this handset.
pMe->DeviceInfo.wStructSize = sizeof (pMe->DevicelInfo);
ISHELL_GetDeviceInfo (pMe->a.m_pIShell, &pMe—->DevicelInfo);

return TRUE;

// this function is called when your application
// 1s exiting
void HelloWorld_FreeAppData (HelloWorld * pMe)
{
// insert your code here for freeing any
// resources you have allocated...

Quando a aplica¢do € inicializada, a funcdo HelloWorld_ InitAppData serd
chamada para que os recursos necessarios a aplicacdo sejam alocados. Depois disto, toda
a execucdo da aplicac@o passa a acontecer na funcdo HelloWorld_HandleEvent,
que serd mostrada a seguir.

static boolean HelloWorld_ HandleEvent (HelloWorldx pMe,
AEEEvent eCode,
uintl6 wParam,
uint32 dwParam)

// switch event code

switch (eCode)

{
// App 1s told it is starting up
case EVT_APP_START:

196

SugarLoafPLoP 2007 Proceedings Writers” Workshop

// application goes to first screen
pMe->appScreen = FIRST_SCREEN;
// send an event to this app to paint the
// screen
ISHELL_PostEvent (pMe->a->m_pIShell,
HELLOWORLD_CLSID,
EVT_USER_REPAINT,
OI
0);

return (TRUE) ;

// App is told it is exiting

case EVT_APP_STOP:

// do nothing, just return TRUE

// meaning event was recognized and app
// agrees to be terminated

return (TRUE) ;

// A key was pressed
case EVT_KEY:
// verify current screen
if (pMe->appScreen == FIRST_SCREEN)
{
// 1f key is softkey 1,
// goto sencond screen

if (wParam == AVK_SOFT1)
{
pMe->appScreen == SECOND_SCREEN;
}
}
else if (pMe->appScreen == SECOND_SCREEN)

{
// if key is softkey 1,
// goto first screen
if (wParam == AVK_SOFT1)
{
pMe—>appScreen == FIRST_SCREEN;
}
// if key is softkey 2,
// exit application
else if (wParam == AVK_SOFT2)
{
ISHELL_CloseApplet (pMe->a->m_pIShell, FALSE);

}
// send an event to this app to paint the
// screen
ISHELL_PostEvent (pMe—>a->m_pIShell,
HELLOWORLD_CLSID,
EVT_USER_REPATINT,
OI
0);
return (TRUE) ;

case EVT_USER_REPAINT:

197

SugarLoafPLoP 2007 Proceedings Writers” Workshop

if (pMe->appScreen == FIRST_SCREEN)
{

// Draw first screen

}
else if (pMe->appScreen == SECOND_SCREEN)

{

// Draw second screen

// All other events comes here.
// Once application becomes complex, this
// function will become very big.

return FALSE;

O cbdigo acima € um exemplo tipico de construcdo de aplicagdes para dispositivos
moveis. Podemos perceber claramente que a varidvel appScreen representa o controle
da tela ativa na aplicacdo. No entanto, analisando o tratamento do evento EVT_KEY,
visualizamos que esta variavel também € utilizada para representar o estado da aplicacao.

O crescimento de complexidade desta aplicacdo ira implicar na adi¢do de mais
varidveis como esta para determinar o controle das diversas situagdes de tela e estado.
Esta adicdo de flags proporciona uma pior manutenabilidade e uma maior sucessdo a
erros, por parte do desenvolvedor, além do excesso de diretivas if para verificar estes
valores.

Mostraremos abaixo, como resolver estes problemas ao aplicar o padrao SMVC
na construcao de aplica¢des para dispositivos moveis.

class Application : public AEEApplet
{
public:
// Application entry point for event handling
static bool HandleEvent (Application =*app,
UINT16 evCode,
UINT16 wParam,
UINT32 dwParam) ;

// App memory allocation
int Construct () ;

// App memory deallocation
static void FreeAppData (Application *app);

// Method that is called when app starts

void StartApp();

// Method that is called when app ends

void StopApp () ;

// Method that is called when app is suspended
void SuspendApp () ;

// Method that is called when app resumes its
// execution after being suspended

198

SugarLoafPLoP 2007 Proceedings

void ResumeApp () ;

private:

// State Manager object

StateManager

// Screen Manager object

ScreenManager

+*iStateManager;

*iScreenManager;

// Application data goes here...

}i

Writers” Workshop

A classe Application possuiainterface com a plataforma BREW, ao herdar da
estrutura AEEApplet. Além disto esta classe deve implementar os métodos necessarios
a sua execucdo, como os métodos de alocacdo e desalocacao da memoria utilizada pela
aplicacdo (Construct e FreeAppData), bem como o método HandleEvent, res-
ponsdvel por tratar todos os eventos recebidos.

bool Application::HandleEvent (Application xapp,

UINT16 event, ret = FALSE;

switch (evCode)

{

case EVT_APP_START:
{
app—->StartApp () ;
return (TRUE) ;

case EVT_APP_STOP:
{
app—>StopApp () ;
return (TRUE) ;

case EVT_APP_RESUME:
{
app—->Resumelpp () ;
return (TRUE) ;

case EVT_APP_SUSPEND:
{
app—>SuspendApp () ;
return (TRUE) ;

case EVT_KEY_PRESS:
case EVT_KEY:
case EVT_KEY_RELEASE:

// translate the key event in the current dialog
event = app->iScreenManager->TranslateEvent (aeCode,

UINT1l6 evCode,
UINT16 wParam,
UINT32 dwParam)

199

SugarLoafPLoP 2007 Proceedings Writers” Workshop

awParam,
adwParam) ;

// 1f event 1is not translated, use it "as is"

ret = app->iStateManager->HandleEvent (event,
awParam,
adwParam) ;

app->iScreenManager—->Repaint () ;

return ret;

// default: send the event to stateManager
default:
{

return app->iStateManager—->HandleEvent (evCode,
awParam,
adwParam) ;

} // switch evCode

return (FALSE) ;

Nesta implementagdo, o método HandleEvent ao receber os eventos de
Start, Stop, Suspend e Resume, ird chamar os métodos de Application res-
ponsdveis por tratd-los.

Caso seja um evento de tecla, este evento serd primeiramente traduzido pelo
ScreenManager, de acordo com a tela que estd sendo apresentada, e depois enviado ao
StateManager. Qualquer outro evento serd enviado diretamente ao St ateManager.

O método HandleEvent do StateManager serd entdo responsavel por enviar
o evento ao estado ativo, para que seja tratado pelo método correspondente.

Isto descentraliza completamente o tratamento de eventos, evitando a verificagao
de estados e telas atuais e proporcionando uma maior modularizacdo e extensibilidade do
codigo. Abaixo temos o codigo do método HandleEvent do StateManager.

int StateManager::HandleEvent (UINT16 evCode,
UINT16 wParam,
UINT16 dwParam)

int ret = FALSE;

// look for current state and send event to it
if (this->iCurrentState)
ret = this->iCurrentState->HandleEvent (aeCode,
awParam,
adwParam) ;

return ret;

O StateManager também possui 0 método ChangeState, que € responsdvel
por alterar o estado ativo, chamando os métodos OnExit e OnEnter do estado anterior
e do novo estado, respectivamente.

int StateManager::ChangeState (const UINT16 &alD)

200

SugarLoafPLoP 2007 Proceedings Writers” Workshop

int ret = FALSE;
StateBase #*state = this->Get (alID);

if (state)
{
// call OnExit from previous state
if (this->iCurrentState)
this—->iCurrentState—->0OnExit () ;

// change the state
this->iCurrentState = state;

// call OnEnter from new state
this->iCurrentState->OnEnter () ;

ret = TRUE;
}

return ret;

A implementagio do StateBase pode ser vista a seguir. O método MapEvent
€ responsavel por mapear eventos em métodos do estado. Este mapeamento pode ser
feito utilizando uma tabela de eventos e métodos. Esta tabela associa cada evento tratado

pelo estado a um método e pode ser consultada posteriormente para chamar o método
desejado.

// Event Handler method pointer
typedef bool (StateBase::xEventHandler) (UINT16 wParam, UINT32 dwParam);

int StateBase::MapEvent (UINT16 aEventCode,EventHandler aEventHandler)
{
int ret = FALSE;
if ((iCurrNumEvents >= 0) &&
(iCurrNumEvents < this—->iMaxEvents))

iEventTable[iCurrNumEvents] .iEventCode = aEventCode;
iEventTable[iCurrNumEvents] .iEventHandler = aEventHandler;
iCurrNumEvents++;
ret = TRUE;

}

return ret;

O método HandleEvent € responsdvel por verificar se o estado trata o evento
recebido e chamar o método correspondente.

int StateBase::HandleEvent (UINT16 evCode,
UINT16 wParam,
UINT32 dwParam)

int ret = FALSE;
for (int i=0; i<iCurrentNumEvents; i++)

{

// search for event handler in event table

201

SugarLoafPLoP 2007 Proceedings

if ((iEventTable[i].iEventCode ==

(iEventTable[i] .iEventHandler

// Call event handler for the
ret = (this->x (iEventTable[1i]

return ret;

.1EventHandler)) (awParam,

Writers” Workshop

evCode) &&
= NULL))

event evCode
adwParam) ;

O ScreenManager também é implementado de acordo com o padrao de projeto
Manager. O método ChangeScreen € responsavel por mudar a tela que estd sendo
exibida, bem como chamar o método Repaint para que a nova tela seja desenhada.

int ScreenManager::ChangeScreen (UINT16 aId)

{
int ret = FALSE;
ScreenBase *screen =
if

(screen != NULL)

this->iActiveScreenlId = ald;

screen = this->GetActiveScreen () ;
if (screen)
{
ret = screen->OnActivate();
if (ret == TRUE)

{
this—->Repaint ();

return ret;

}

2.10. Variacoes

this—->GetActiveScreen () ;

screen—->OnInactivate();

Na Variacao 1, é possivel alterar o padrao SMVC para que possua um unico Manager.
Desta forma, cada tela corresponderia a um tnico estado. Isto implica num menor nimero
de classes e reducdo do overhead, sendo recomendado para aplicacdes pequenas.

A Variacao 2 consiste em utilizar uma Hierarchical State Machine [Samek 2002]
para representar o Controller. Pertencem a uma super classe de estados, os eventos que
sdo tratados da mesma forma em vérios estados. Isto faz com que os estados da aplicacdo
herdem destes super estados, evitando, assim, a duplicacdo de c6digo no tratamento des-

tes eventos.

2.11. Usos Conhecidos

O padrao SMVC vem sendo utilizado no desenvolvimento de diversas aplicacdes para dis-
positivos méveis no CESAR. Por questdes de confidencialidade, ndo podemos listar no-
minalmente as aplicacdes, no entanto € possivel ter uma idéia dos dominios de aplicagdes

que utilizaram este padrao:

202

SugarLoafPLoP 2007 Proceedings Writers” Workshop

Aplicacdes multimidia;
Compartilhamento de imagem:;
Sincronizagdo de informagodes pessoais;
Aplicacoes de slide-show.

2.12. Padroes Relacionados

e MVC [Krasner and Pope 1998]. O SMVC extende o MVC ao fazer a composi¢ao
deste padrdao com os padroes State e Manager.

e State [Gamma et al. 1994]. O Controller do SMVC € implementado como uma
maquina de estados usando o padrao State.

e Manager [Sommerlad 1997]. A View e o Controller do SMVC utilizam o padrao
Manager para gerenciar as telas e estados da aplicacao.

e Hierarchical State Machine [Samek 2002]. Este padrao pode ser utilizado como
forma de reusar eventos comuns em niveis de estados intermediarios na Variagao
2 desse padrao.

e Observer [Gamma et al. 1994]. Este padrdao e o Controller do SMVC tém
objetivos semelhantes. Para cada estado, ambos padrdoes devem modificar seu
comportamento, ou seja, o comportamento de um objeto depende de um estado.

e Strategy [Gamma et al. 1994]. O SMVC e o Strategy se assemelham por terem
classes relacionadas que diferem somente nos seus comportamentos. Tais com-
portamentos sao encapsulados e sdo implementados como uma hierarquia de al-
goritmos.

Agradecimentos

Este trabalho foi suportado pelo C.E.S.A.R - Centro de Estudos e Sistemas
Avangados do Recife.

Agradecemos especialmente a Alexandre Sztajnberg, nosso shepherd, pelos co-
mentarios e sugestdes importantes que proporcionaram melhorias ao nosso padrao.

Referéncias

Booch, G., Rumbaugh, J., and Jacobson, L. (1998). The Unified Modeling Language User
Guide. Reading, MA. Addison-Wesley.

BREW (2007). Qualcomm brew - binary runtime environment for wireless. Disponivel
em http://www.qualcomm.com/brew/.

Forman, G. H. and Zahorjan, J. (1994). The challenges of mobile computing. /EEE.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1994). Design Patterns: Elements
of Object-Oriented Software. Addison-Wesley.

J2ME (2007). Sun - java 2 micro edition. Disponivel em http://java.sun.com/j2me/.

203

SugarLoafPLoP 2007 Proceedings Writers” Workshop

Krasner, G. and Pope, S. (1998). A cookbook for using the model view controller user
interface paradigm in smalltalk-80. In Journal of Object-Orientated Programming,
volume 1(3), pages 26—49.

Riehle, D. (1997). Composite design patterns. In OOPSLA ’97: Proceedings of the 12th
ACM SIGPLAN conference on Object-oriented programming, systems, languages, and
applications, pages 218-228, New York, NY, USA. ACM Press.

Samek, M. (2002). Practical Statecharts in C C++. CMP Books.

Sommerlad, P. (1997). The manager pattern. In Martin, R., Riehle, D., and Buschmann,
E., editors, Pattern Languages of Program Design 3. Addison-Wesley.

204

SugarLoafPLoP 2007 Proceedings Writers” Workshop

BulkLoader Pattern

Marcio Santos’, Uira Kulesza?, Carlos José Pereira de Lucena®

'DATASUS
{marcio.david } @datasus.gov.br

2 Departamento de Informatica — Pontificia Universidade Catélica do Rio de Janeiro (PUC-Rio)
{uira, lucena} @inf.puc-rio.br

Abstract. This paper describes the BulkLoader design pattern, which aims to
minimize the memory amount required by a process that transfers a huge data
amount without change the system architectural layers.

1. Intencao

Este artigo apresenta um padrdo de projeto, chamado BulkLoader, que tem o objetivo de
reduzir a quantidade de memodria utilizada em processos, onde hé transferéncia ou a criacdo de
grande quantidade de dados, de forma a ndo interferir na separacdo de camadas da aplicacao.

2. Exemplo

Esta secdo descreve um exemplo de um sistema de informacfo para gerenciamento de
agendas telefonicas. A Figura 1 representa uma arquitetura orientada a objetos deste sistema
seguindo o padrio arquitetural Layer [2]. De acordo com este padrio, cada camada deve se
comunicar com a camada inferior via uma interface bem definida. Tal interface contém o
conjunto de servigos que a camada oferece para a camada imediatamente superior. Alguns
padroes de projeto foram desenvolvidos de forma a refinar o padrdo Layer, no contexto de
sistemas de informacao, tais como: Service Layer [1] e Data Acess Object (DAO) [1].

A copia de informacdes a partir de uma fonte para um destino de dados é bastante
comum, contudo quando estamos em um sistema em camadas, este se torna um problema
mais complexo devido a especializagdo de cada camada como visto na Figura 1. Onde
fonte/destino de dados é um repositério onde dados sdo armazenados. Cada camada possui
responsabilidades especificas, seja ela negdcio, interface com o usudrio ou mesmo acesso a
dados.

Em geral, sdo utilizados trés tipos de estratégias para o processo de cOpia de dados a
partir de uma Fonte, s@o elas: (i) transformar todos os dados da Fonte em objetos em
memdria; (ii) copiar um a um os objetos da Fonte para o Destino, sendo esse tltimo um
repositério de acesso a dados; e (iii) acessar a Fonte de dados a partir da camada de negdcios.

205

SugarLoafPLoP 2007 Proceedings Writers” Workshop

Camada Cliente

Client

+HoadContact=()
+findContactByMamel)
+inserti]

Camada de Negdcio g

L]
SystemFacade

==TransferObject==
Contact
-name ; String L =iy Crelatom) em HindCaontactBynamel name : String)

—phone ; String Rt +HosdContactsl source | Source
+inzer(contact : Contact)

Ll

+ojethamel] ; String |
+getPhone) : String |

i
ContactDao O

+inser(contact)
+inzer(terator ; kerator)
+findByMamel name ; String 1 : Collection

?

Camada Dados

ContactJdbc

Figura 1: Arquitetura OO em camadas de um sistema de gerenciamento de contatos

A interagfo entre as camadas neste exemplo funciona da seguinte forma: a classe client
€ a classe que recebe as requisi¢cdes do usudrio e esta possui uma referéncia para a fachada
(classe systemFacade) que € responsavel pelo processamento das informagdes enviadas pela
camada cliente. Essa fachada mantém uma referéncia para um objeto do tipo ContactDaO
que € responsavel pela persisténcia de dados de um contact no banco de dados.

206

SugarLoafPLoP 2007 Proceedings Writers” Workshop

3. Contexto

Aplicagdes corporativas sdo projetadas atualmente seguindo as diretrizes do padrio
arquitetural Layer [2]. Nesse padrdo arquitetural, cada camada oferece servi¢os para a camada
imediatamente superior e requer servicos de camadas inferiores. Dessa forma, requisi¢des do
usudrio s@o feitas partindo da camada superior e, em geral, sdo atendidas pelas camadas
inferiores.

No desenvolvimento de sistemas de informacdo é freqiiente a transferéncia/cépia de
dados de uma fonte para um destino, podendo esta transferéncia ser feita de varias formas:
* Arquivo
o XML(eXtensible Markup Language)
o CSV(Comma Separated Value)
e Socket
o HTTP(Hiper text transfer Protocol)
o SOAP(Simple Object Acess Protocol)
o Adhoc
¢ Mensagens
o JMS(Java Message Service)
o E-mail
e Banco de dados

Durante o processo de cdpia, normalmente é necessdrio algum tipo de validag¢do destes
dados, seja ela para verificar se os dados estdo corretos ou se interessam ou ndo para a
aplicacdo. Apenas apds esse processo de validacido, tais dados podem entdo ser enviados para
o destino.

4. Problema

Como copiar uma grande quantidade de dados tendo validacdo destes dados sem violar a
separacao de camadas e de forma performatica com baixo custo de memoria ?

5. Forcas
As seguintes forcas emergem desse problema:

(1) Performance. Em um sistema corporativo geralmente a(s) fachada(s) gerenciam as
transagdes do sistema (através do uso de servicos de frameworks para gerenciamento de
transagcdes, tais como, EJB e Spring). Esse processo pode causar uma degradagdo do
desempenho do sistema, pois cada elemento para ser copiado gera uma nova transagdo,
tornando assim o processo muito lento;

(2) Camadas do sistema. Uma vez que a aplicacdo foi desenvolvida em camadas e estas
possuem responsabilidades bem definidas, ndo € interessante para a arquitetura que as
responsabilidades das camadas sejam modificadas para atender a funcionalidade de cépia de
dados. Ou seja, ndo ¢é interessante que a camada Cliente acesse diretamente os dados
armazenados no banco, ou a camada de negocio saiba qual a estrutura do arquivo que se esta
importando. Além disso, sempre que possivel é fundamental reusar funcionalidade de classes
jé implementadas para a arquitetura.

207

SugarLoafPLoP 2007 Proceedings Writers” Workshop

(3) Uso de memoria. A quantidade de memdria utilizada nao deve comprometer toda a
memoria disponivel do sistema. Isto pode ocorrer caso a quantidade de dados a serem
transferida seja muito elevada. Assim, deve-se restringir o uso de uma grande quantidade de
memdria, mesmo que isso venha a comprometer a performance do processo de transferéncia
de dados.

(4) Consisténcia do processamento. O processamento deve ser feito de forma atomica,
ou seja, se ocorrer alguma falha durante o processamento todos os dados anteriores serdo
descartados, sendo necessario reiniciar o processo novamente, evitando que a aplicacio fique
inconsistente. Uma das formas de alcangar esse processamento atdmico, € utilizar os servigos
de transacdes disponibilizados por frameworks ou plataformas, tais como, o Spring e EJB.

6. Solucao

O padrao BulkLoader propde, para esse problema de transferéncia de dados, uma
solugdo que realiza a composicdo de vérios padrdoes conhecidos. Ele adota os seguintes
padrdes:

(1) o Adapter[4] é usado para abstrair a fonte e o destino dos dados. Tal adapter deve
conter um objeto TransferObject [1], que é usado como buffer dos dados sendo transferidos;

(i1) o Iterator [4] usado para percorrer seqiiencialmente a fonte dos dados;

(iii) o Strategy [4] que permite definir diferentes estratégias de validagdo dos dados
sendo transferidos. Além de tornar possivel a reutilizacdo do Iterator para outras estruturas de
dados.

6.1. Estrutura Estdtica
Na Figura 2 € ilustrada a estrutura do padrdo BulkLoader. Ele possui 6 participantes:

® source — é responsdvel por prover uma abstragdo do tipo fisico onde os dados estdo
armazenados. Possui uma referéncia para uma instincia da classe TransferObject , que €
utilizada como buffer, evitando a criagdo de vdrias instdncias. Isso permite melhorar a
performance de duas formas: (i) evitando a criac@o de vdrias cdpias de objetos; e (ii) evitando
o processamento de um coletor de lixo de memdria (garbage collector) ou outras formas de
remocdo de instancias da memoria. Esta classe pode ser vista como a implementacdo do
padrdo Adapter [4] para a fonte de dados;

® Tterator — possui a responsabilidade de percorrer a fonte de dados que sera copiada.
Representa uma implementacdo do padrdo Iterator [4];

® TransferObject — define uma entidade do sistema, cujos dados estdo sendo
transferidos a partir de um source. Representa uma implementagdo do padrao TransferObject

[1];

® validator — esse sendo responsdvel pela validacdo dos dados que estdo sendo
transferidos do source para o Target. Ele € implementado seguindo as diretrizes do padrio
Strategy [4], de forma a permitir a variacdo de estratégias de validagdo. Diferentes tipos de
classes de validagdo podem ser criados em funcdo do objeto source e respectivos
TransferObject sendo considerados;

208

SugarLoafPLoP 2007 Proceedings Writers” Workshop

® Target — representa uma interface para a fonte de dados (datasource) onde serdo
armazenados os dados validos. Consiste numa implementacdo do padrao Adapter [4];

® Facade — sua responsabilidade € gerenciar o processo de cdpia e transagdes de negdcio
do sistema. Garante dessa forma, que o processo de transferéncia € atdmico, sendo delimitado
por uma transag¢do. Representa uma implementacao do padrao Facade [4].

= -butfer
SHECE TransferObject
+readObject() | TransferObject
Validator O lterator
+izvalid(ohject : TransferObject) +hashlexd() : boolean
+next(l : Ohject
=T ™
-~ .
-~ .
- 22USERE
_Flzes== &
- e
Facade Target
- — — — == —
=sesE
+HoadContactsl source | Source +inseH(terator ; keratar)

Figura 2: Visao estatica da estrutura do padrao.

6.2. Dindmica

A dinamica de cooperagdo dos participantes do padrdo BulkLoader foi dividida em
duas partes para simplificar o seu entendimento. A Figura 3 mostra o diagrama de
inicializacdo do padrio, enquanto a Figura 4 mostra a interacao principal do padrdo dentro do
processo de copia.

|

2 insért('rteratar:rteraturj
|
|

|
Figura 3: Cenario de Interacao ilustrando o processo de inicializacao do padrao

209

SugarLoafPLoP 2007 Proceedings Writers” Workshop

Na Figura 3, mostra-se o processo de inicializacdo do padrdo, onde 0 Facade cria o
Tterator passando como referéncia os objetos validator € 0 Source dos dados. Em
seguida, 0 Facade invoca 0 método insert () de um Target passando como pardmetro o
Iterator criado. Dessa forma delega para o Target o processo principal da cépia como
pode ser visto na Figura 4.

: Source 5 Ualidaturo

|
1: hiazhexti | |

2 readChbject . |
3 new —>| : TransferObject | |
I
& transferChiect | |
| s isvalidiobiect=transterObject) L
! |
{______'__B:tme___|_____
| I |
| | |
72 nest() T I | I
| | |
. | |
& tranzferObject | I

== e | |

3: inzertr tranzferOhject J | |
| |

T |
[[[
Figura 4: Cenario de Interacao do processo de cépia dos dados

Na Figura 4 ¢ ilustrada a intera¢do dos objetos no processo de cépia. O objeto Target
invoca 0 método hasNext () do Iterator com o objetivo de verificar se ainda hd algum
objeto a ser gravado. O Tterator invoca 0 método readobject () do Source que por sua vez
verifica se o buffer ja foi inicializado. Caso o buffer ndo tenha sido inicializado, 0 source
instancia 0 TransferObject e, em seguida, carrega no mesmo os respectivos valores da
transferéncia de dados. O source entdo devolve para o Iterator a instdncia do
TransferObject criada e este por sua vez acessa 0 Validator para validar tal objeto. Caso
tal objeto Transferobject seja valido, serd guardada uma referéncia para o mesmo, assim
retornando true para o Target. Em seguida, o Target invoca o método next () do Tterator
com o0 objetivo de recuperar a instincia de TransferObject armazenada. Finalmente, o
objeto Target invoca um método para armazenamento do objeto TransferObject, tal como o
método insert (). Esse processo se repete até que o Iterator ndo possua mais nenhum
objeto para ser processado.

7. Conseqiiéncias

Beneficios:

210

SugarLoafPLoP 2007 Proceedings Writers” Workshop

¢ Evita consumo de memoria durante o processo de copia;

e Torna o processo atdmico, pois todo o processo ocorre dentro da fachada, e esta € a
classe que delimita a transagc@o, além de reduzir o niimero de transagdes no sistema
durante o processo de transferéncia dos dados;

e Mantém a separacdo entre camadas sem violar sua estrutura.

Limitac6es / Desvantagens
¢ No contexto de sistemas distribuidos, caso o objeto fonte (source) dos dados esteja
localizado em uma madaquina remota, € necessario estender a estrutura do padrdo para
garantir o acesso remoto ao Source, através da implementacdo de um Proxy [4].
¢ Qutra desvantagem ¢ o aumento no nimero de classes.

8. Usos Conhecidos

O padrdo BulkLoader foi adotado no Sistema SISREG (Sistema de Regulacdo) [5] do
Ministério da Saide do Governo Federal.

O SISREG ¢é um sistema que foi desenvolvido seguindo as diretrizes do padrdo
arquitetural Layer[2]. Ele foi desenvolvido usando as seguintes tecnologias: linguagem de
programacao Java; bibliotecas (APIs) Servlet e JSP; e o framework EJB versao 1.1. O sistema
prové uma gama de servigos para seus usudrios, tais como: (i) marcacdo de consultas; (ii)
gerenciamento dos leitos hospitalares regulados pelo sistema; (iii) gerenciamento
or¢amentério das solicitacdes entre os municipios; e (iv) gerenciamento das solicitagdes de
internacdo baseadas em laudo médico.

O padrdo BulkLoader foi instanciado diversas vezes no contexto do sistema SISREG,
para implementagdo das seguintes funcionalidades:

® Processamentos de arquivos financeiros vindo do sistema AIH (Autorizacdo de
Internacdo Hospitalar), para verificacdo dos procedimentos de internagio que foram realmente
autorizados. Nesta instancia o source é um adaptador para o arquivo vindo do sistema AIH e
o adaptador destino é o pao de ocorréncias de erros do sistema SISREG;

¢ Sincronizacdo da base de dados de estabelecimentos de saide do SISREG com os dados
do cadastro nacional de estabelecimentos de Saide (CNES). Nesta instincia, 0 source € um
adaptador para a API JDBC que acessa a tabela de estabelecimentos de saide do CNES. O
adaptador destino € o pao de estabelecimentos de saide do sistema SISREG.

¢ Criacdo de agendas de consultas. Nesta instancia do padrdo o source foi implementado
nio como uma classe que l€ objetos provenientes de uma fonte de dados, mas sim como uma
classe que define um algoritmo de geracdo automdtica de agendas baseado em pardmetros
como: intervalo de datas para geracdo e escala do médico. O adaptador destino é o proprio
pao de agenda, disponivel no sistema SISREG;

9. Implementacao

A seguir serd apresentada a implementacdo da carga de um arquivo em um sistema em
camadas utilizando o exemplo descrito na secio Exemplo (Secdo 2). Onde serd realizado o
processamento de um arquivo de contatos no formato CSV (Comma Separated Values), onde
cada linha do arquivo contém o nome do contato e o seu telefone.

211

SugarLoafPLoP 2007 Proceedings Writers” Workshop

Na Figura 5 ilustra o diagrama de classes do exemplo (Secdo 2), adotando o padrdo
BulkLoader. Os esteredtipos representam os participantes do padrdo assumido por cada uma
das classes apresentadas.

Sera realizada a carga de uma grande quantidade de dados a partir do referido arquivo.
Neste caso a carga de uma agenda telefonica em formato de texto para um banco de dados
relacional. Durante este processo os dados extraidos do arquivo serdo validados (o nome do
contato ndo pode estar associado a nenhum contato na base de dados), e tais regras de
validacdo sdo definidas na classe ContactManager.

A seguir serdo apresentadas as classes e suas respectivas implementagdes utilizando-se
para isso da linguagem de programagdo Java.

212

SugarLoafPLoP 2007 Proceedings Writers” Workshop

Camada Cliente
Client
Source
— = = = = — +lpadContactz()
+readObject() : TransferObject 2<Use=> :;A';‘;ﬁ?g’tadawameo
I
| |
Camada de Negdcio |
==LSEEE
==TransferObject== |
Contact W
-name : String Facade
-phone : String S e S p—
TR +HoadCortacts(source © Source
+ojethamel] ;: String -
+oietPhone) : String .
terator (O coyzets Validator)
+hashlexd() : boolean +izWalicdi object : TransferOhject 1
+next(] : Object 7
- T
-
7 - *
4
Cartactiterior ContactManager
T
Camada Dados |
3
ContactDao O
ContactJdb
kil c_ — — — — _— _p|+inzert(contact)
+inzert(terator : kerator)
+findByMamel name : String 1 : Collection

Figura 5: Exemplo de Instanciacdo do padrao BulkLoader

213

SugarLoafPLoP 2007 Proceedings Writers” Workshop

Passo 1: Implementacao do Source

Representa o adaptador da fonte de dados que neste exemplo é um arquivo texto. A
classe source € responsdvel por ler o arquivo texto e carregar os dados deste arquivo para o
contato, neste exemplo funcionado como um buffer, com o objetivo de minimizar a
quantidade de memodria a ser utilizada do processamento do arquivo.

public class Source {
private Contact contact;

private BufferedReader br;
public Source (BufferedReader br) {

contact new Contact();
this.br br;

}

public boolean loadNext () {
String entity = null;

do {
entity = nextRecord();
load (entity);
// eventuais erros de processamento podem ser logados no
// banco de dados ou em um arquivo separado
} while (entity != null);
return entity != null;

}

public Contact readObject () {
if (!loadNext()) {
contact = null;

}

return contact;

}

private String nextRecord() {
try {
return br.readlLine();// retorna null se acabou o arquivo
} catch (IOException e) {
// pode ser gravado no log da aplicacao relativo ao processamento
return null;
}
}

private void load(String representacaoEntidade) {
if (representacaoEntidade != null) {
StringTokenizer st =
new StringTokenizer (representacaokEntidade, ",");
contact.setName (st.nextToken());
contact.setPhone (st.nextToken());

214

SugarLoafPLoP 2007 Proceedings Writers” Workshop

Passo 2: Implementacao do Iterator

Tterator é uma interface semelhante a interface do pattern Iterator [4]. E através
desta interface que o adaptador destino (Target) solicita referéncia para o préximo contato a

ser persistido na base de dados. Ela possui dois métodos hasNext () € next (), O primeiro
indica se ainda ha contatos a serem processados e o segundo retorna a instancia do contato a
ser processado.

public interface Iterator ({
public boolean hasNext () ;

public Object next();

Passo 3: Implementacao do TransferObject

Contact € a classe que representa os dados de um contato no caso nome e telefone,
que serdo transferidos do arquivo para o sistema.

public class Contact {
private String name;

private String phone;

public String getName () {
return name;

}

public void setName (String name) {
this.name = name;

}

public String getPhone () {
return phone;

}
public void setPhone(String phone) {

this.phone = phone;
}

215

SugarLoafPLoP 2007 Proceedings

Passo 4: Implementacao do DAO

Representa a interface do adaptador[4] de destino, especifico para a forma como sera
armazenada a entidade e desta forma seguindo o pattern Dao [1]. Esta interface serd utilizada
de duas formas uma pelo vaiidaTor e outra pela Facade.

public interface Dao {

public void insert (Iterator iterator);
public Contact findByName (String name) ;

Passo 5: Implementaciao de um DAO Concreto

Representa a implementacdo do adaptador Destino (Target). Neste exemplo consiste
na implementacdo da interface pao para gravar o contato em um banco de dados relacional
utilizado-se da API JDBC do java.

public class ContactDaoJdbc implements Dao {

public Contact findByName (String name) {

Connection connection = getConeccaol();
PreparedStatement ps =

connection.prepareStatement ("select * from contatcs where name = 2?2");
ps.setString(l, name);
ResultSet rs = ps.executeQuery();
Contact contact = null;
if (rs.first()){
contact = new Contact();
contact.setName (rs.getString(1l)
contact.setPhone(rs.getString(2
}

return contact;

)
)

)i

}

public void insert(Iterator iterator) {

Connection connection = getConeccaol();
PreparedStatement ps =
connection.prepareStatement ("insert into contacts wvalues(?,?)");
while (iterator.hasNext()) {
Contact contact = (Contact) iterator.next();

ps.setString(l, contact.getName());
ps.setString (2, contact.getPhone());
ps.addBatch() ;

216

Writers” Workshop

SugarLoafPLoP 2007 Proceedings Writers” Workshop

Passo 6: Implementacio do Iterator Concreto

Esta classe € responsavel por percorrer toda a fonte de dados de forma a solicitar a
validacdo dos dados para 0 validator a medida que tais dados sdo recuperados do adaptador
Source.

A dinamica de funcionamento envolvendo a classe Iterator é a seguinte: (i) o cliente
do Tterator acessa o método hasNext (); (ii) tal método recupera um conjunto de dados a
partir do objeto Source; e (iii) em seguida, delega para o validator a validacdo de tal
objeto. Se o objeto ndo for vélido serd recuperado outro no source. Se o objeto for valido,
ficara disponivel para o método next ().

public class ContactIterator implements Iterator ({
private Source source;

private Validator validador;
private Contact contact;

public ContactIterator (Validator validador, Source fonte) {
this.validador = validador;
this.source = fonte;

}

public boolean hasNext () {
boolean valid = false;

do {

contact = source.readObject ();

if (contact==null) {

valid = validador.isValid(contact);

}
// eventuais erros de processamento podem ser logados no
// banco de dados ou em um arquivo separado
} while (contact != null);

return valid && contact != null;

public Object next() {
return contact;

}

217

SugarLoafPLoP 2007 Proceedings Writers” Workshop

Passo 7: Implementacao do Validator

O validator define uma interface que representa de forma abstrata a estratégia de
validagdo dos contatos lidos do source. Implementacdes de tal interface devem ser criadas de
forma a definir implementacdes concretas da estratégia de validagdo. Dessa forma, a
implementagdo do Validator pode ser caracterizada como uma instanciacdo do padrido
Strategy [4]..

public interface Validator {

public boolean isValid(Contact contact);

Passo 8: Implementacao do Validator Concreto

Define a regra de negdcio de validacdo do objeto contact. Neste exemplo a regra de
negdcio necessita que ndo haja dois contatos com o mesmo nome. Para realizar tal validacdo
utiliza-se o adaptador destino, neste caso o D20, para realizar a consulta do contato por nome.
Caso ndo exista algum contato com o mesmo nome, 0 método isvalid() retorna true, caso
contrario retorna false.

public class ContactManager implements Validator {
private Dao dao;

public ContactManager (Dao dao) {
this.dao=dao;

}

public boolean isValid(Contact contato) {

Contact entidade = consulta(contato.getName());
return entidade==null;

}

private Contact consulta(String nome) {
return dao.findByName (nome) ;

}

218

SugarLoafPLoP 2007 Proceedings Writers” Workshop

Passo 9: Implementacio do Cliente

Classe responsdvel por receber a solicitacdo do usudrio e montar a requisicdo a
Facade. Esta classe tem o conhecimento da localizagdo do arquivo que serd processado e
desta forma ela consegue construir o adaptador Fonte dos dados.

public class Client {

public void load() {

try {
Facade facade = getFacade();
BufferedReader br =

new BufferedReader (new FileReader ("agenda.csv"));

Source source = new Source (br);
facade.load (source) ;

} catch (FileNotFoundException e) {
e.printStackTrace();

}

Passo 10: Implementaciao da Fachada

Classe responsavel por gerenciar as transagdes e servir de interface tnica para o
cliente. Essa classe também pode implementar regras de negécio do sistema.

public class Facade {

public void load(Source source) {
// Esse método deve ser delimitado por uma transacgédo
// Tecnologias como EJB (Session Beans) e Spring permitem que se
// faca isso via arquivos de configuracgéo
Dao dao = getDao();
ContactManager contactManager = getManager();
Iterator ite = new ContactIterator (source,contactManager) ;
dao.insert (ite);

}

private ContactManager getManager () {

}

219

SugarLoafPLoP 2007 Proceedings Writers” Workshop

10. Padroes Relacionados

O padrao BulkLoader pode ser visto como uma composi¢do de padrdes de projeto para
resolver o problema de transferéncia de dados descritos anteriormente. Os seguintes padrdes
fazem parte dessa composicao:

® Adapter [4]

Utilizado para abstrair o tipo de fonte de dados que 0 Source € 0 Target representam.
® DAO (Data Acess Object)[1]

Uma das formas para implementa¢@o dos adaptadores source € Target
o Strategy [4]

Pode ser utilizado para permitir a variagdo da estratégia de validagdo das entidades
vindas do Source.

e Jterator [4]

Utilizado para percorrer a fonte de dados seja ela o arquivo ou banco de dados ou
qualquer outro tipo de meio de armazenamento.

e Transfer Object[1]
E utilizado para armazenar temporariamente os dados, tal qual um buffer.
® Domain Object [3]

Esse padrio pode ser usado para armazenamento dos dados, contudo neste caso o
proprio objeto efetuaria as validagdes mais simples e de consisténcia do objeto.

Referéncias

[1] D. Alur, J. Crupi, D. Malks. Core J2EE Patterns: Best Pratices and Design Strategies.
Prentice Hall, 2001.

[2] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerland, M. Stal. Pattern-oriented
software architeture: a system of patterns. John Wiley & Sons Ltd, New York, 1999.

[3] M. Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley
Professional, 2003.

[4] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading, MA, 1995.

[5] SISREG - Sistema de Regulacdo, Ministério da Saide, DATASUS, Brazil, 2006. URL.:
http://www.portalsisreg.epm.br/

220

SugarLoafPLoP 2007

Pattern Applications

SugarLoafPLoP 2007 Pattern Applications

Colaboracéo entre padrdes arquiteturais, de projeto ede
interface na construcado do framework Athena

GabridlleD. Freitas!, Luciana V. Lourega!, Marcos C. d'Ornellas!

lUniversidade Federal de Santa Maria — Pds-Graduacdo em Engenharia de Producéo
Av. Roraima, Campus Universitario — 97105-900, Santa Maria, RS

{gabi, lourega, ornellas}einf.ufsm.br

Abstract. This paper presents a solution to implement the Athena framework
which is dedicated to builder graphical user interfaces. It makes interfaces is
a important activity into development process systems, because it through them
that the software will be obtain success. A way to builder those interfaces is use
frameworks. This way, the Athena framework aims to make easy construct im-
age segmentation applications. In order to implement this framework was used
a cooperation between architectural patterns, design patterns and graphical in-
terface patterns. This approach allowed some important characteristics, such
as legibility, easy maintenance and reusability of source-code.

Resumo. Este trabalho apresenta uma solucéo para implementar o framework
Athena, o qual é dedicado a construgdo de interfaces graficas. Produzir in-
terfaces gréaficas é uma atividade importante dentro do processo de desenvolvi-
mento de sistemas, uma vez que € por meio delas que o software sera bem suce-
dido. Uma forma de construir essas interfaces é por meio da adocéo de frame-
works. Assim, o framework Athena tem o objetivo de simplificar o processo de
desenvolvimento de aplicagdes de segmentacdo de imagens. Para implementar
esse framework foi utilizada uma cooperacgdo entre padrdes arquiteturais, de
projeto e de interface. Essa abordagem permitiu caracteristicas como legibili-
dade, facil manutencao e reusabilidade de codigo-fonte.

1. Introducéo

Atualmente, a industria de desenvolvimento de software tem crescido e ganhado
destaque, tornando-se um mercado bastante competitivo, no qual a qualidade do software
é fator preponderante, influenciando o sucesso ou o fracasso de um sistema. Nesse con-
texto, o software, para ser considerado de qualidade, deve apresentar atributos, como,
facilidade de extensao, flexibilidade, portabilidade e confianca. Dessa forma, o reuso é
um principio importante uma vez que permite a construcao de sistemas pela aplicacdo de
unidades bem especificadas e testadas.

Existem diversas formas de reuso, como por exemplo, reuso de cédigo, de pro-
jeto, de componentes, de design, de arquitetura, padrdes, frameworks, entre outros. Con-
forme Fayad [Fayad et al. 1999], um framework é um conjunto de classes cooperantes
gue constroem um projeto reutilizavel para uma determinada categoria de software. Com
a utilizacdo de um arcabouco de classes (ou framework), tem-se a definigdo da arquitetura
da aplicacéo, da estrutura geral, da divisdo do problema em classes, das responsabilidades

223

SugarLoafPLoP 2007 Pattern Applications

de cada uma dessas classes, da colaboracédo entre os objetos e também, do fluxo de con-
trole do sistema.

Com a generalizacdo dos usuarios, a queda do preco do hardware e a aceitacdo
da Internet ocorreu a popularizacdo do uso dos computadores. Esse fato gerou o cres-
cente interesse no projeto e na implementacdo de interfaces humano-computador. Nesse
contexto, as interfaces estdo sendo consideradas as “embalagens” dos softwares e, como
consequéncia, se as mesmas forem de facil utilizacdo e de simples aprendizado, o usuario
tende a utilizar a aplicacao [Nielsen 1993].

Atualmente, 60% de todo o cddigo em um programa € dedicado a construgdo de
interfaces gréaficas. Sendo assim, frameworks facilitam a construcdo de interfaces grafi-
cas por proverem um conjunto de componentes e mecanismos para combinar esses com-
ponentes, a fim de implementar uma interface completa. O framework Athena prové
componentes que permitem a criacdo de interfaces humano-computador no dominio da
segmentacdo de imagens, e, para a construcao dessa ferramenta, tornou-se necessario a
utilizacdo de diversos padroes.

Dessa forma, o presente trabalho esta organizado como segue: na se¢édo 2 € de-
scrito o framework Athena, e na secdo 3 sdo apresentados os principais algoritmos de
segmentacao que formam o dominio de atuacdo do Athena. A forma como os padrdes ar-
quiteturais, de projeto e de interface foram utilizados na construcao do Athena é discutida
na secao 4. As considerages finais sobre a pesquisa sao apresentadas na sec¢ao 5.

2. Framework Athena

De acordo com Schmidt [Schmidt et al. 2004], os frameworks mais utilizados para
a construcdo de interfaces graficas sdo wxWindows!, Java Foundation Classes Swing? e
Qt3. Essas ferramentas apresentam caracteristicas gerais para a construgdo de qualquer
tipo de interface gréfica, como componentes graficos, caixas de dialogos, tratamento de
eventos, estruturas de dados, dentre outros.

A luz das pesquisas realizadas [Freitas 2006], percebe-se a existéncia de uma la-
cuna no campo do processamento de imagens, o que se deve a caréncia de um framework
dedicado a construcdo de interfaces graficas para algoritmos de segmentacéo de imagens.
Dessa forma, o Athena tenta preencher essa falha, uma vez que tal framework, além de
apresentar a maioria das caracteristicas de ferramentas semelhantes, por meio da utiliza-
cdo da APl Swing, implementa o fluxo de controle comum para as diversas aplicacdes de
segmentacao de imagens.

Como vantagens do Athena citam-se ainda o leiaute predefinido das interfaces, o
fluxo de controle das aplicagOes e a arquitetura de sistemas que necessitem de algorit-
mos de segmentacdo de imagens na solucdo de seus problemas. Para tanto, este frame-
work apresenta um conjunto de componentes inter-relacionados os quais permitem que
as operacOes graficas, comuns ao dominio do problema, estejam mapeadas, bem como
providencia a arquitetura bésica e o fluxo de controle desse tipo de aplicacéo.

Portanto, o framework Athena pode liberar o desenvolvedor da tarefa massiva de

pagina oficial do framework: http://www.wxwidgets.org.
2Disponivel em http://java.sun.com/products/jfc.
3pagina oficial do framework: http://www.trolltech.com/products/qt.

224

SugarLoafPLoP 2007 Pattern Applications

combinar componentes graficos, permitindo que os mesmos dediquem-se especificamente
aos problemas de segmentacdo de imagens. Dessa forma, o framework Athena prové aos
desenvolvedores de ferramentas, no dominio da segmentac&o de imagens que necessitam
de visualizacdo cientifica de dados, uma forma facilitada para implementar as interfaces
gréficas de suas aplicacdes.

3. Dominio da Segmentacdo de | magens

Um dos passos fundamentais no processo de reduzir informacéo na imagem € a
segmentacdo. Dividir a imagem em regides é Util para identificar unidades estruturais
na cena ou para distinguir objetos de interesse. Assim, a segmentacdo é descrita como
0 processo que subdivide uma imagem em partes ou objetos constituintes. Essa € uma
técnica analoga ao processo visual humano, o qual separa o objeto principal do fundo da
imagem [Russ 1999], constituindo uma etapa decisiva na compreenséo da cena.

Segundo Facon [Facon 2001], a segmentacdo pode ser realizada com base em
similaridades, descontinuidades, proximidades ou outras caracteristicas presentes na ima-
gem em questdo. A segmentacdo para imagens monocromaticas é realizada com base
nas propriedades de valores de niveis de cinza, que sdo a descontinuidade e similari-
dade [Gonzales and Woods 2000].

Na primeira categoria, descontinuidade, a abordagem é particionar a imagem
baseada em mudancas bruscas nos niveis de cinza, que ocorrem nas bordas entres os
objetos. A segunda classe de métodos baseia-se em similaridades entre as regies da ima-
gem, e as principais técnicas sdo algoritmos de threshold, de crescimento de regides e de
divisdo-fuséo.

3.1. Limiarizagéo (Threshold)

Nessa modalidade de segmentacdo, o objetivo € separar os pixels que pertencem
ao primeiro plano, ou foreground, dos pixels do fundo da imagem, ou background. O
resultado é uma imagem binaria, s6 com duas classes: o fundo preto e os objetos brancos,
ou o contrario. Esse método utiliza o histograma para selecionar um valor de limiar.

Por exemplo, uma imagem de 8 bits, em niveis de cinza, apresenta pixels cujos
brilhos variam de 0 a 255. Escolhe-se um valor de limiar (ou threshold) de 127, fazendo
com que os pixels que estiverem acima desse valor recebam valor um, e os pixels com
valores inferiores a 127 serdo transformados para zero (preto) caso a imagem segmentada
seja binaria (1 bit). A Figura 1 mostra um exemplo de uma imagem segmentada por meio
do método de threshold, utilizando a ferramenta Quantiphase [Miranda 2004].

3.2. Detecgédo de Descontinuidades

A forma mais simples para procurar descontinuidades € por meio da varredura
da imagem com uma mascara de convolucdo (filtragem), na qual os valores numéricos de
peso representam o tipo da mascara [Gonzales and Woods 2000]. Esse processo baseia-se
ndo somente no valor do pixel em anélise, mas também na vizinhancga desse ponto.

Uma borda é o limite entre duas regifes com distribui¢fes distintas de niveis de
cinza. Quando tais regides sao homogéneas, a transicao entre duas regides pode ser detec-
tada com base na descontinuidade dos niveis de cinza. Na Figura 2 tem-se um exemplo
da operacdo de deteccédo de bordas.

225

SugarLoafPLoP 2007 Pattern Applications

(a) (b) ()

Figura 1. Segmentacgao por Threshold. (a) Imagem original. (b) Imagem segmen-
tada com um threshold de 127. (c) Imagem segmentada com um threshold de
194.

Figura 2. Segmentacédo por Deteccdo de Bordas. (a) Imagem original. (b) Imagem
segmentada com o operador Frei-Chen de tamanho 3x3 com limiar de 127.

3.3. Crescimento de Regides

A deteccdo de regides em uma imagem pode ser realizada com o objetivo de ex-
trair uma determinada area ou particionar a imagem em um conjunto de regibes distin-
tas [Facon 2001]. Geralmente, as regides sdéo homogéneas apresentando uma propriedade
local constante que pode ser o nivel de cinza médio. A técnica de crescimento de regides
agrupa pixels em sub-regides ou regifes maiores comegando por um conjunto de pixels
chamados sementes. A partir deles, a regido cresce com a adicdo de pixels desde que
esses respeitem o critério de similaridade (nivel de cinza). Um exemplo de segmentacao
por crescimento de regides pode ser visualisado na Figura 3.

Figura 3. Segmentacéo por Crescimento de Regibes. (a) Imagem original com
sementes. (b) Imagem segmentada.

226

SugarLoafPLoP 2007 Pattern Applications

4. Os padres empregados para construir o framework Athena

Quando desenvolvedores experientes trabalhnam em um problema particular, ndo é
comum apresentarem uma solucdo completamente nova. Geralmente, os desenvolvedores
recorrem a problemas similares que tenham sido resolvidos e reusam a esséncia dessa
solucdo para resolver o novo problema [Buschmann et al. 1996]. A idéia de identificar
padrdes de problemas para desenvolvimento de sistemas, por meio de catdlogos como
os de Gamma et. al [Gamma et al. 2000] e Buschmann et. al [Buschmann et al. 1996],
trouxe uma nova forma de se pensar em projetos de software. Atualmente, diversos tipos
de padrdes sdo descritos na literatura, como por exemplo, padrées de testes, de interfaces
gréficas, de projeto, arquiteturais, entre outros.

Ainda, conforme descrito na se¢do 1, um framework € uma forma de reuso, tanto
de codigo como de projeto, sendo formado por um conjunto de componentes que in-
teragem para prover a solugdo comum ao dominio do problema. Um padrdo é uma
forma de descrever um problema a ser resolvido, uma solucdo e o contexto no qual a
solucdo trabalha [Buschmann et al. 1996]. Com base nessas defini¢fes, é possivel afir-
mar que um framework serd composto por diversos padrfes e esses por sua vez Sao
mais abstratos que os frameworks [Johnson 1997]. Dessa forma, diversos padroes, en-
tre eles arquiteturais, de projeto e de interface, foram utilizados para construir o frame-
work Athena, possibilitando o reuso de codigo, da arquitetura e do fluxo de controle
das aplicacdes envolvendo segmentacdo de imagens. Esses padrdes foram encontrados
em livros ([Buschmann et al. 1996], [Gamma et al. 2000] e [Tidwell 2006]) e em sites
como http://hilside.net.

4.1. Padr&o arquitetural Layer

De acordo com Buschmann et. al [Buschmann et al. 1996], um padrdo arquite-
tural expressa a estrutura e a organizacao de sistemas de software. Esse tipo de padrédo
prové um conjunto predefinido de subsistemas, especificando suas responsabilidades e
incluindo regras para organizar os relacionamentos entre esses subsistemas.

O contexto do padrédo Layer € um sistema complexo que exige uma decomposicéo,
onde cada camada seria responsavel por tarefas distintas [Buschmann et al. 1996]. Com
esse padrdo, a mudanga em um componente ndo afetaria outros, pois eles estariam bem
encapsulados, cada qual em sua camada. Esse é exatamente o contexto do framework
Athena, o qual é um sistema formado por diversas sub-tarefas, como por exemplo, en-
trada e saida de arquivos, fluxo de controle, interfaces graficas e bibliotecas utilizadas
para desenvolver o framework. Além disso, é importante que cada componente ao ser
implementado, apresente a caracteristica de isolamento de mudancas.

O padréo Layer foi empregado na arquitetura do Athena a fim de organiza-la evi-
tando a desestruturacdo dos componentes. Além disso, o Layer facilita a implementacéo,
0 reuso de camada e de componentes, permite mudangas sem afetar o resto do sistema e
possibilita que as dependéncias sejam mantidas localmente. A escolha desse ndo foi triv-
ial, tendo em vista que foi necessario um forte embasamento teoérico para escolher qual
padréo arquitetural se adequaria as propostas do framework.

Sendo assim, o framework Athena é estruturado em trés camadas: a camada base
formada pela linguagem de programacdo JAVA e as bibliotecas Swing e JAI; a camada

227

SugarLoafPLoP 2007 Pattern Applications

intermediéria, de entrada e saida de arquivos, mensagens e interfaces graficas; a camada
superior constituida pelo componente principal.

A base da estrutura é utilizada para implementar os componentes do Athena. O
nivel intermediario dessa arquitetura tem o objetivo de prover interfaces graficas aos al-
goritmos de segmentacao de imagens e o topo é responsavel pelo fluxo de controle e es-
trutura do framework. A arquitetura do Athena, organizada conforme o padrdo Layer,
pode ser visualizada na Figura 4. Essa estrutura segue uma variante do padréo, co-
nhecida como Relaxed Layered System, que € menos restritiva sobre o relacionamento
entre as camadas, permitindo que cada camada utilize os servigos dos niveis inferi-

ores [Buschmann et al. 1996].
[
principal

enmada/saida I aul I

+ abrirAraulve & + dererminarSementes]
g - nxihirll?l oI @ + gerarllistograma mantagans
&+ sabvarfrquive @l + gerarMloscora

& + selacionarLimiar

Figura 4. Arquitetura do framework Athena conforme o padrao Layer.

4.2. Padrao de projeto Strategy

Algumas classes especiais foram criadas, a partir de determinados padrdes, para
implementar a arquitetura do framework. Nesse sentido, o padrdo Strategy foi adap-
tado, originando a classe strategyComponente, adotada para definir qual compo-
nente o desenvolvedor necessita utilizar. O padrdo de projeto Strategy tem o objetivo
de definir uma familia de algoritmos, encapsular cada um deles e torna-los intercam-
bidveis [Gamma et al. 2000]. Strategy permite que o algoritmo varie independentemente
dos clientes que o utilizam.

A escolha do desenvolvedor é realizada com base em uma lista de constantes,
chamadas de estratégias, as quais representam os componentes desenvolvidos. A 16-
gica de programacdo, para a escolha dos componentes, ¢ implementada pelo método
escolheComponente. Por exemplo, para instanciar o componente abrir Arquivo,
o desenvolvedor precisa escolher a estratégia de numero O (representada pela cons-
tante abrir); para 0 componente salvar Arquivo, escolhe-se a estratégia 1 (constante
salvar), e assim sucessivamente. O diagrama que estrutura 0s componentes do Athena
é mostrado na figura 5.

4.3. Padr&o de projeto Facade

De acordo com Buschmann et. al [Buschmann et al. 1996], ao se utilizar o padrao
Layer, estruturando o sistema em estratos, é necessario definir uma interface de acesso a
essas camadas. A luz de suas idéias, o ponto de acesso ao sistema poderia ser implemen-
tado utilizando o padréo de projeto Facade. Deste modo, outra classe especial, utilizada

228

SugarLoafPLoP 2007 Pattern Applications

drate gyCompaonsnts

simplementas | dyghtop: JDwsktopPane
- sxibiimagens Vector
- numercJansia; int

|
principal

+ ascalheComponanta|int @ vaid -
+ guiExibirAtivadal : int

= MBS e T
gul

A] @ + determinarSemente s]
abrirArquive sxiblimagem salvarArgquive § + gerarHistograma mensagens
@ + gerarMascara -
A & + selecionarlimiar

==

acessoCamadalnferior

imagem: Planarimage
parametrosEntrada; Vector

- -

avisaObserveriPlanarimage) ; veld
getimagem() ; vold
getParametrosi) . Object
sstimagem{Planarmage) : void
setParametros]) : void

* ok ok b

Figura 5. Diagrama simplificado que representa a arquitetura do framework
Athena.

na implementacéo da arquitetura e do fluxo de controle, é a acessoCamadaInferior.
A partir do padrdo Facade a classe acessoCamadaInferior foi adaptada para faci-
litar a utilizac&o do Athena pelos desenvolvedores. Esse padréo de projeto tem o objetivo
de prover uma interface de acesso unificada para um subsistema [Gamma et al. 2000].
Esse padrao define também uma interface de alto nivel que torna o subsistema mais facil
de ser utilizado. Ao se empregar o Facade facilita-se a comunicacdo e minimiza-se as
dependéncias do subsistema. A escolha desse padrédo foi simples uma vez que devido ao
objetivo de prover uma interface de acesso unificado ao framework, o padrao encaixou-se
perfeitamente no problema encontrado.

A classe acessoCamadaInferior é necessaria para padronizar a forma como
os algoritmos de segmentacdo, implementados pelos desenvolvedores, irdo acessar o
Athena. Essa classe apresenta o atributo imagem (do tipo P1lanarImage?), que ar-
mazena a imagem acessada pelo usuério, e o atributo parametrosEntrada, do tipo
Vector, que contem os pardmetros de entrada para tais algoritmos.

Conforme a arquitetura do Athena, ilustrada na figura 5, o fluxo de controle do
framework est4 assim definido: o desenvolvedor escolhe qual componente instanciar por
meio da estratégia; o componente escolhido fornece uma interface grafica que permite ao
usuario determinar os parametros de entrada para o processo de segmentacdo. O desen-
volvedor implementa o seu algoritmo de segmentacao acessando 0s atributos da classe
acessoCamadaInferior. O resultado dessa segmentacdo € uma imagem que deve
ser armazenada nessa mesma classe.

Por exemplo, para um algoritmo de crescimento de regides € necessario que
0 usuario defina um conjunto de pontos chamados sementes. Esses pontos devem
ser armazenados no vetor parametrosEntrada. O desenvolvedor, a partir desses

4Classe ofertada pela biblioteca JAI que armazena os pixels de uma imagem.

229

SugarLoafPLoP 2007 Pattern Applications

pontos, implementa a logica para a segmentacdo, sendo que a imagem resultado é
salva no atributo imagem. Dessa forma, evita-se que o desenvolvedor tenha que
entender toda a implementacdo do framework, sendo necessério conhecer a classe
acessoCamadalnferior.

4.4. Padr&o de projeto Observer

O padréo de projeto Observer tem a finalidade de definir uma dependéncia um-
para-muitos entre objetos, de maneira que, quando um objeto muda de estado, todos 0s
seus dependentes serdo notificados e atualizados automaticamente. Dessa forma, para
atualizar a imagem resultado na tela da aplicacdo, foi inevitavel instanciar um método
chamado avisaObserver, concebido com base no padrdo Observer descrito por
Gamma et. al [Gamma et al. 2000]. Assim, a medida que o atributo imagem sofre uma
alteracdo, 0 método avisaObserver informa ao componente exibirlmagem que a
imagem foi modificada e solicita que essa alteracdo seja mostrada na tela da aplicacéo.

4.5. Padrao de projeto Command

As principais finalidades do framework sdo: a combinagdo dos componentes, a
utilizacdo/combinacdo dos componentes implementados fora da estrutura do Athena, o
iIsolamento de mudangas, a facilidade de extensdo e manutengéo. Para isso, criou-se uma
estrutura genérica (ilustrada na figura 6) que é seguida por todos os componentes a fim de
alcancar esses objetivos.

principalComponente winterfacen
commandinterface

Vi

guiComponente

P

metodosComponente

i mplernenta s

METHOD_EXTENSION
+ instanciaSegmentacao{acessoCamadalnferior) : void

Figura 6. Diagrama de classe que define a estrutura interna de cada componente
do Athena

Nessa estrutura, tem-se a classe guiComponente que implementa a inter-
face commandInterface, uma adaptacdo do padrdo Command descrito por Gamma
et. al [Gammaetal. 2000]. Em Java, as acBes de cada elemento grafico presente,
em uma interface, sdo gerenciados pelo método actionPerformed e pelo ob-
jeto ActionEvent [Welfer 2005]. Entretanto, esse processo sobrecarrega 0 método
actionPerformed, fazendo com que todas as agdes dos componentes sejam definidas
na classe onde actionPerformed é implementado. Esta € uma solucdo possivel, con-
tudo é de dificil manutencdo e deselegante.

Uma solucdo para essa problematica é adotar o padrdo Command para modularizar
as requisicdes. Dessa forma, cada elemento grafico (um botdo, um icone, um menu,
um combo box, entre outros) € implementado como uma nova classe. Cada uma dessas

230

SugarLoafPLoP 2007 Pattern Applications

classes herdam as caracteristicas da interface publica chamada commandInterface,
que é o objeto command. Entretanto, a escolha do padrdo ndo foi trivial, uma vez que
varios padrdes poderiam resolver a probleméatica. O padrdo Command acaba gerando
uma explosdo de pequenas classes (uma para cada componente grafico), mas a legibili-
dade e a organizacdo do cddigo, providos pelo uso do padréo, tornam essa desvantagem
irrelevante. Um exemplo de cddigo para essa solucédo é apresentado no codigo 1.

Cabdigo 1: Manipulando requisi¢des do usuario de forma mais elegante.

01. //especificagdo do objeto Command em um arquivo

02. public interface commandInterface {

03. public void ExecuteAction() ;

04. }

05. //invocando o objeto Command na guiComponente

06. public void actionPerformed (ActionEvent e) {

07. commandInterface obj = (commandInterface)e.getSource() ;
08. obj.ExecuteAction() ;

09. }

10. //Classe alusiva a um componente grdfico

11. class BotaoOk extends JButton implements commandInterface(
13. public void ExecuteAction () {

14. dispose() ;

15. }

16. }

4.6. Os padrdes deinterface adotados nos componentes do Athena

Os padrdes de interface tém a finalidade de auxiliar os projetistas a resolver proble-
mas de design de interfaces Web ou interfaces para aplicac6es desktop. Da mesma forma
que os padrdes arquiteturais e de projeto apresentam uma solucdo estruturada para pro-
blemas que frequientemente se repetem, os padrdes de interface também provém solucdes
para problemas recorrentes, mas no dominio de construcédo de interfaces graficas. A iden-
tificacdo desses padrdes foi trivial, uma vez que a literatura ([Tidwell 2006]) apresenta
diversos exemplos visuais da aplicacdo dos padrées, o que simplifica e facilita o processo
de escolha, por meio da analise do problema e da solucdo de cada padréo.

O padrédo Titled Sections é adotado quando existem diversos objetos de infor-
macao, sendo que tais objetos precisam ser arranjados espacialmente em uma area li-
mitada. Além disso, o usuario precisa rapidamente compreender a informacao e executar
a acdo dependendo dessa informacdo. Dessa forma, o padrdo indica que todos 0s ob-
jetos devem ser arranjados, com base no conteudo de cada informagdo em uma grade.
Quando o usudrio interage com uma interface com essa organizacgao, ele se sentira mais
confortavel para trabalhar [Tidwell 2006].

Para desenvolver o componente ger ar M ascar a foi necessario a unido dos compo-
nentes selecionar Limiar e gerar Histograma porque o usuario deve escolher um valor de
limiar interagindo com o histograma da imagem. Deste modo, percebe-se a importancia

231

SugarLoafPLoP 2007 Pattern Applications

de organizar tais elementos em uma unica interface empregando o padréo Titled Sections,
visto que esse padrdo tem a finalidade de separar se¢Ges por contetdo [Tidwell 2006].

Assim, ao aplicar o padrédo Titled Sections, a interface do componente fica sepa-
rada em duas secdes: a superior, que apresenta a configuracdo do operador de deteccao
(tipo e tamanho da méscara); a inferior, na qual ocorre a selecdo do valor de limiar com-
binando os componentes gerar Histograma e selecionarLimiar. A interface do compo-
nente é ilustrada na figura 7.

I] Detecg o de Comenos o o [H
Configun s ha tla Ml a

Sach -
Fris Chaen -

Figura 7. A interface do componente gerarMascara com o emprego do padrao
Titled Sections.

O padréo Fill-in-the-blanks é utilizado quando um ou mais campos em um for-
mulério devam ser preenchidos. Como é necessario solicitar uma entrada do usuério,
geralmente um texto ou nimero, € importante clarificar qual a informacéo a ser fornecida
pelo mesmo. Esse padréo auxilia a interface a tornar-se auto-explicativa, mostrando para
0 usuario qual entrada a digitar ou a escolher. Para a constru¢do do componente selecio-
narLimiar, adotou-se esse padrdo, visto que 0 mesmo auxilia o usuario a compreender
a forma de interagdo com o sistema [Tidwell 2006]. A interface grafica do componente
pode ser visualizada na figura 8.

[Sogmuntagho por Threshold o oo
Hisingrams da inagem

Figura 8. A interface do componente selecionarLimiar emprega o padrao Fill-in-
the-Blanks (areas retangulares).

232

SugarLoafPLoP 2007 Pattern Applications

O padrdo Dropdown Chooser estende o conceito de menu usando um painel para
exibir um valor mais complexo. O problema a ser resolvido é a situacdo na qual o
usuario tem que fornecer entradas com base em um conjunto de dados. Segundo Tid-
well [Tidwell 2006] esse padrao facilita a interacdo do usuario, a medida que melhora a
compreensdo da interface.

J& o padrdo Illustrated Choices é adotado quando se deseja utilizar imagens, ao in-
Vés de textos, para mostrar as opg¢des disponiveis. De acordo com Tidwell [Tidwell 2006],
a aplicacdo desse padrdao diminui a carga cognitiva do usuario e, além disso, torna a in-
terface mais atraente. Esses dois padrdes de interface foram utilizados no componente
abrir Arquivo. O primeiro foi utilizado para permitir a escolha do diretério onde a ima-
gem esta armazenada; o segundo, foi aplicado para diminuir a carga cognitiva do usuario,
permitindo que o mesmo “veja” qual arquivo sera acessado. A figura 9 mostra a interface
do componente abrir Arquivo.

ot el e et

Tl

{rvmd i

| il

P o cnniiane

LD T

T Y R T T -

Figura 9. Interface do componente abrirArquivo. A area circulada representa a
aplicacdo do padréo lllustrated Choices; a area sob o retdngulo mostra o emprego
do padrédo Dropdown Chooser.

5. Conclusao

A principal contribuicdo do trabalho é o propio framework Athena, tendo em vista
que 0 mesmo apresenta solugBes aos problemas inerentes a construcao de interfaces gra-
ficas no dominio da segmentacdo de imagens tornando-se uma nova ferramenta, uma vez
que ndo foi possivel encontrar um framework semelhante na literatura. Para construir
esse framework, tornou-se essencial adotar diversos padrdes, dentre eles, padrdes arquite-
turais, de projeto e de interface.

Nesse sentido, o padréo Layer foi escolhido porque permite estruturar o frame-
work em camadas com funcbes bem definidas, evitando uma estrutura complexa, com
diversos componentes sem ligacao l6gica. Esse padrdo propiciou também o isolamento
de mudancas em cada camada, 0 que se torna essencial no ambiente académico de desen-
volvimento de sistemas para a segmentagéo de imagens.

Do mesmo modo, outros padrdes foram empregados para definir a arquitetura do
framework, como por exemplo, o padrdo Strategy que simplificou a forma pela qual os
desenvolvedores escolhnem os componentes. O padrdo Facade foi importante a medida
que possibilitou criar um mecanismo para instancia¢do dos algoritmos de segmentacao
de imagens, implementados pelos desenvolvedores, sem obriga-los a conhecer todos 0s
detalhes de construcdo do framework.

233

SugarLoafPLoP 2007 Pattern Applications

O padrao Observer auxiliou na implementagdo de um método que permitiu infor-
mar 0 componente exibirl magem que uma imagem, resultado da aplicacéo do algoritmo
de segmentacdo, precisa ser mostrada para o usuario. Outro padrdo de projeto importante
foi o Command o qual pode-se implementar uma solugédo elegante para o tratamento de
requisicdes dos usudrios realizadas via interface grafica.

Portanto, os diversos padrbes que foram utilizados no processo de desenvolvi-
mento do framework Athena possibilitaram o reuso de cddigo, da arquitetura e do fluxo
de controle das aplicacbes envolvendo segmentacdo de imagens. Nao obstante, a apli-
cacdo desses padrdes permitiu a criacdo de um framework de forma funcional, garantido
a legibilidade, o reuso de codigo e a facilidade de extensdo do framework.

Referéncias

Buschmann, F., Meunier, R., Rohnert, H., Sommerland, P., and Stal, M. (1996). Pattern
- oriented software architecture: a system of patterns. John Wiley & Sons Ltd, New
York.

Facon, J. (2001). Processamento e Analise de Imagens. Curso de Mestrado em Infor-
matica Aplicada. Pontificia Universidade Catolica, Parana.

Fayad, M., Schmidt, D., and Johnson, R. (1999). Implementing Application Frameworks:
Object-Oriented Frameworks at Work. Wiley Computer Publishing, New York.

Freitas, G. D. (2006). Athena: um framework para a construcgéo de interfaces humano-
computador no dominio da segmentacdo de imagens. Dissertacdo de mestrado, Pro-
grama de P6s-Graduagdo em Engenharia de Producdo(PPGEP)- Universidade Federal
de Santa Maria.

Gamma, E., Johnson, R., Helm, R., and Vlissides, J. (2000). Padrdes de Projeto -
SolugBes Reutilizaveis de Software Orientado a Objetos. Bookman, Porto Alegre.

Gonzales, R. C. and Woods, R. E. (2000). Processamento de Imagens Digitais. Edgard
Blucher, S&o Paulo.

Johnson, R. E. (1997). Components, frameworks, patterns. ACM Special Interest Group
on Software Engineering, pages 10-17.

Miranda, A. N. (2004). QuantiPhase: um programa de processamento e analise de ima-
gens para a caracterizacdo da composicdo e homogeneidade de materiais. Trabalho
de conclusédo de curso, Curso de Ciéncia da Computacdo- Universidade Federal de
Santa Maria.

Nielsen, J. (1993). Usability Engineering. Academic Press, New York.
Russ (1999). The Image Processing Handbook. CRC Press LLC, Sao Paulo.

Schmidt, D. C., Gokhale, A., and Natarajan, B. (2004). Leveraging application frame-
works. ACM Press. Vol. 2, Issue 5, pages 66—75.

Tidwell, J. (2006). Designing Interfaces: Patterns for Effective Interaction Design.
O’Reilly’s . Disponivel em: http://designinginterfaces.com/.

Welfer, D. (2005). Padrdes de Projeto no desenvolvimento de sistemas de processamento
de imagens. Dissertacdo de mestrado, Programa de Pos-Graduagdo em Engenharia de
Producdo(PPGEP)- Universidade Federal de Santa Maria.

234

SugarLoafPLoP 2007 Pattern Applications

Uma proposta de ambiente para apoiar a utilizacao de
padroes de software e requisitos de teste no desenvolvimento
de aplicacoes

Alessandra Chan'; Maria I. Cagnin?, José C. Maldonado', Rosana T. V. Braga''

"nstituto de Ciéncias Matematicas e de Computacdo
Universidade de Sdo Paulo
Caixa Postal 668 — 13560-970 — Sao Carlos — SP — Brasil

2Programa de P6s-Graduagio em Ciéncia da Computacio
Centro Universitario Euripides de Marilia
Caixa Postal 2041 — 17525-901 — Marilia — SP — Brasil

alechan@icmc.usp.br, istela@univem.edu.br,

jcmaldon@icmc.usp.br, rtvb@icmc.usp.br

Resumo. O emprego de padroes de software, requisitos de teste, métodos e pro-
cessos de desenvolvimento na criacdo de aplicacoes pode aumentar a produtivi-
dade das equipes e a qualidade do produto final. No entanto, hd caréncia por
ferramentas que apoiem engenheiros de software no emprego de padroes de
software nas diversas etapas de um processo de desenvolvimento e que aux-
iliem na validagdo das solucoes utilizadas. Assim, este artigo apresenta a
proposta de um ambiente Web para desenvolvimento apoiado por padroes e
requisitos de teste, com enfoque nos seus requisitos, arquitetura e aspectos de
implementacdo. Durante o desenvolvimento de software, o ambiente apresenta
ao engenheiro de software sugestoes de padroes que solucionam problemas es-
pecificos de cada etapa do processo, juntamente com requisitos de teste para
auxiliar a validagdo das aplicagées desenvolvidas com o apoio do ambiente.

Abstract. The use of software patterns, test requirements, methods and develop-
ment processes in the creation of applications can increase teams productivity
and the final product quality. However, there is a lack for tools supporting users
on the use of software patterns in the many stages of a development process, be-
yond assisting the validation of the reused solutions. Thus, this article presents
a proposal of a Web environment for development supported by patterns and test
requirements, with focus on its requirements, architecture, and implementation
aspects. During software development, the environment presents to the software
engineer suggestions of patterns that resolve specific problems at each process
stage. For each pattern, the environment also offers test requirements for assist-
ing the validation of applications developed with the environment support.

* Apoio financeiro do CNPq
t Apoio financeiro da Fapesp

235

SugarLoafPLoP 2007 Pattern Applications

1. Introducao

Padrdes de software constituem uma técnica eficaz de redso, mas utiliza-los em projetos
de desenvolvimento requer um certo custo, principalmente por causa da sua complex-
idade. Além disso, existe uma grande quantidade de padrdes na literatura, utilizando
normas distintas de nomenclatura e defini¢do, dificultando a consulta pelo padrdao ade-
quado a ser empregado [Pressman 2005]. Assim, € necessdrio que o projetista possua
um conhecimento de diversos padrdes para que utilize os mais adequados na solucao de
problemas.

Atualmente, ha uma preocupacdo com teste dos artefatos resultantes de desen-
volvimento com redso. A atividade de VV&T (Verificacdo, Validagdo e Teste) € uma
das principais para a garantia de qualidade, minimizando erros e riscos associados ao de-
senvolvimento [Rocha et al. 2001]. No entanto, essa atividade ¢ uma das mais onerosas
da Engenharia de Software [Maldonado et al. 2004, Myers 2004, Pressman 2005] e, no
mundo competitivo atual, cresce a importancia do desenvolvimento de software de alta
qualidade, com precos acessiveis e em tempo reduzido [Chan 2005]. Nesse contexto, uma
das dificuldades encontradas € a avaliacdo da qualidade do padrdo que se deseja utilizar,
pois hé poucos indicios de como ele foi validado e de como validar a solugdo utilizada.
Uma das opg¢Oes para resolver esse problema € adicionar uma se¢dao no padrao para aux-
iliar os engenheiros de software a validar a solugdo por ele proposta [Cagnin et al. 2005].

Outro ponto a ser considerado sdo os problemas que ocorrem durante o desen-
volvimento e manutencio de aplicacdes, que podem ser evitados por meio da utilizagdo
de processos de desenvolvimento disciplinados, métodos, técnicas e ferramentas, além de
também colaborarem para construcdo de aplicagdes com maior qualidade.

Nesse contexto, ferramentas automatizadas t€ém um papel importante para que
métodos possam ser empregados corretamente, além de apoiar e agilizar o redso de
padroes de software. O teste de aplicacOes também pode ser auxiliado pela utilizagao
de ferramentas, permitindo maior rapidez e confianca na producdo de dados sobre a
execucao.

Atualmente, ferramentas auxiliam engenheiros de software de diversas maneiras,
como por exemplo, para apoiar a implementa¢do, modelagem de diagramas, controle de
versao, consulta a padroes de software e teste de software. No entanto, ndo foram encon-
trados na literatura ambientes e ferramentas que apoiassem a utilizacao de padrdes durante
as diversas etapas de um processo de desenvolvimento, além de apoiar a associacdo de di-
retrizes de teste para facilitar a validacdo das solugdes reusadas. Assim, neste artigo é
proposto o desenvolvimento de um ambiente que apodie a consulta e aplicagdo de padroes
de software em cada etapa do processo de desenvolvimento de software, documentando
o uso dos padrdes nas vérias atividades, além de informar aos engenheiros de software os
requisitos de teste necessdrios para a validagdo do padrao utilizado.

Esta secdo contém uma breve introdu¢ao sobre o contexto e motivagao do tra-
balho proposto. As demais se¢des deste artigo estdo organizadas nos seguintes topicos: a
Secdo 2 resume os conceitos basicos que envolvem o ambiente proposto, a Secdo 3 cita
alguns trabalhos relacionados sobre ferramentas e ambientes encontrados atualmente na
literatura, a Secdo 4 apresenta a proposta do ambiente e a Secdo 5 apresenta as conclusdes
sobre o assunto tratado e os trabalhos futuros.

236

SugarLoafPLoP 2007 Pattern Applications

2. Conceitos Basicos

Esta secdo apresenta um resumo dos conceitos basicos para o entendimento dos temas
que envolvem o trabalho proposto. Os seguintes topicos sdo abordados: defini¢do de
padrdes de software e descricdo de elementos obrigatérios em sua composicdo (Secao
2.1), diferenca entre processo e método de desenvolvimento (Secdo 2.2), descri¢do de
terminologias utilizadas dentro das atividades de VV&T e o conceito de requisito de teste
considerado neste trabalho (Secao 2.3).

2.1. Padroes de Software

No final da década de 70, Christopher Alexander introduziu na drea da arquitetura as
primeiras definicdes sobre padrdes e linguagem de padrdes, além de descrever o seu
método de documentagio [Alexander 1977, Alexander 1979]. Posteriormente, na década
de 80, surgiram os primeiros padrdes na drea de software, com o intuito de captar a es-
trutura essencial e o raciocinio de uma familia de solu¢cdes bem sucedidas e comprovadas
para um problema recorrente que ocorre dentro de um certo contexto [Appleton 2000].
Além de identificar a solu¢do para um problema, padrées também devem explicar o
porqué da necessidade da solucao [Appleton 2000].

Padrdes tém sido documentados em diferentes formatos [Braga 2003]. No en-
tanto, algumas informacdes sdo consideradas essenciais para diferenciar um padrio
de uma descricdo qualquer de um par “problema/solu¢ao”, permitindo a sua busca e
utilizacdo correta [Meszaros and Doble 1996]. Segundo o padrao “Presenca de Elemento
Obrigatorio” (Mandatory Element Present), da linguagem de padrdes de Meszaros e
Doble (1996), os seguintes elementos sao obrigatorios em um padrao: “Nome do Padrio”,
“Problema”, “Solu¢do”, “Contexto” e “Forcas”.

Padrdes de Software podem trazer beneficios tanto as areas ligadas diretamente ao
projeto e implementacdo, quanto as areas de outras disciplinas que fornecem suporte ao
desenvolvimento de sistemas. Entretanto, se mal utilizados também podem trazer desvan-
tagens como, por exemplo, a perda de eficiéncia causada pela adicao de classes ou de no-
vas camadas da aplicacdo e a diminui¢do da legibilidade e da manutenibilidade por causa
do aumento da complexidade do c6digo com a divisdo de classes, mensagens, linhas de
cddigo e niveis hierdrquicos de classes [Santos 2004].

Em razdo da grande quantidade de padrdes de software encontrados na literatura,
€ necessdrio atentar para sua qualidade. Uma das maneiras de selecionar bons padroes é
verificar se possuem os elementos obrigatdrios e se foram utilizados em pelo menos trés
aplicagdes. Além disso, uma outra forma do usudrio selecionar e verificar a qualidade de
um padrdo € adicionar uma sec¢do especial descrevendo como proceder para validar nio
somente o padrao como também as aplicacOes criadas a partir dele, conforme sugerido
por Cagnin et al. (2005).

2.2. Processos e Métodos de Desenvolvimento

Software € um produto complexo, dificil de desenvolver e testar. Freqiientemente, um
software pode apresentar comportamentos inesperados e indesejados, podendo causar
sérios problemas e perdas. Assim, pesquisadores t€ém se esfor¢cado para aumentar a qual-
idade do software. Uma das hipoteses € que ha uma relagdo direta entre a qualidade do
processo e a qualidade do software desenvolvido [Fuggetta 2000].

237

SugarLoafPLoP 2007 Pattern Applications

Um processo de desenvolvimento de software € o conjunto coerente de politicas,
estruturas organizacionais, tecnologias, procedimentos, atividades e artefatos que sdao
necessdrios para entender, desenvolver, implantar e manter um produto de software
[Fuggetta 2000, Segrini et al. 2006].

No entanto, ndo € trivial decidir o que deve ser incluido em um processo de de-
senvolvimento, pois devem ser consideradas as caracteristicas da equipe de desenvolvi-
mento e do projeto, o nivel de conhecimento em Engenharia de Software, os propositos da
organizagdo, o orcamento disponivel, entre outros fatores. Assim, cada organizac¢ao deve
definir os seus processos e melhord-los constantemente, de acordo com a experiéncia
adquirida durante os projetos [Segrini et al. 2006]. Rocha et al. (2001) consideram trés
etapas na definicio de uma abordagem flexivel de processos: defini¢do de processos
padrdo para a organizagdo, especializacdo dos processos padrdo e instanciagdo para pro-
jetos especificos.

Processos de desenvolvimento, como os propostos por Pressman (2005) e por Mu-
rugesan e Ginige (2005), ndo definem um método para a sua utiliza¢do [Bianchini 2005].
Segundo o diciondrio [Houaiss 2006], método € o “procedimento, técnica ou meio de
se fazer alguma coisa”. Um método ensina como desenvolver um software, utilizando
como base um conjunto de principios basicos da Engenharia de Software que abrangem
principios de cada drea da tecnologia, incluindo atividades de modelagem e outras
técnicas descritivas [Pressman 2005].

Para o emprego correto de processos e métodos, ferramentas e ambientes podem
fornecer apoio automatizado ou semi-automatizado. Diversos estudos podem ser encon-
trados na literatura atual e alguns deles sdo citados na Secao 3.

Também merecem destaque os estudos voltados para Web (World Wide Web),
pois as suas aplicacdes t€m se tornado muito importantes no mundo de negécios glob-
alizado atual. Assim, também € crescente a preocupacdo por processos € métodos para
desenvolvimento Web. No caso de aplicacdes Web, para gerenciar corretamente o de-
senvolvimento e manuten¢do, € necessario utilizar técnicas e principios tradicionais de
Engenharia de Software combinados com tratamento dos aspectos especificos da Web
[Brambilla et al. 2002, Bianchini 2005]. Com relagao aos métodos de desenvolvimento
para Web, podem ser encontrados atualmente vérios estudos [Koch 2000, Ceri et al. 2000,
Conallen 2002].

No contexto do trabalho de Bianchini (2005), esses métodos estdo sendo estuda-
dos e avaliados para identificar qual o mais apropriado no desenvolvimento de aplicacdes
para a Web. Considerando o estado atual do trabalho, o processo de desenvolvimento
utilizado por Conallen (2002), pode ser considerado apropriado no desenvolvimento de
aplicagoes Web e tem sido empregado em estudos de caso para confirmar essa adequagao.
O processo proposto por Conallen (2002) é baseado no RUP (Rational Unified Process)
[Kruchten 2000] e propde a utilizacdo do WAE (Web Application Extension), que de-
fine esteredtipos para a representa¢do mais clara dos elementos e regras de negdcio das
aplicacdes para a Web.

Também € importante destacar que, em razao da grande quantidade de padroes de
software existentes na literatura atual, € dificil para o usudrio identificar o mais adequado a
ser utilizado em uma etapa de um processo de desenvolvimento. Repositorios de padroes

238

SugarLoafPLoP 2007 Pattern Applications

podem ser encontrados [Marinho et al. 2003, Bolchini et al. 2002], mas € necessario que
o usudrio tenha um conhecimento prévio da existéncia do padrdo para saber em qual
momento utiliza-lo.

Assim, com relacdo a apresentacdo de solugcdes existentes, um ambiente que,
seguindo um processo de desenvolvimento disciplinado, apdie o usudrio na organizacao e
exibicao de padroes de software previamente cadastrados, pode auxiliar no emprego cor-
reto dessas solucdes comprovadas, minimizando esfor¢cos e melhorando a qualidade do
produto de software.

2.3. Requisitos de Teste

Um software deve ser previsivel e consistente sem oferecer surpresa aos seus usuarios.
[Myers 2004]. Mesmo que o processo de desenvolvimento de software utilize uma série
de técnicas, métodos e ferramentas, erros no produto ainda podem ocorrer. Assim, um
conjunto de atividades, denominadas de Garantia de Qualidade de Software, sdo intro-
duzidas durante todo o processo de desenvolvimento de software, destacando-se as ativi-
dades de VV&T, que visam minimizar riscos e erros associados. O teste é a atividade
mais utilizada nesse contexto e constitui um dos elementos para fornecer evidéncias da
confiabilidade do software [Maldonado 1991, Maldonado et al. 2004].

Dentro da terminologia utilizada nas atividades de VV&T, os seguintes termos sao
diferenciados: defeito, engano, erro e falha. O defeito corresponde ao passo, processo ou
defini¢do de dados incorretos. O engano € a acdo humana que produz um resultado incor-
reto no programa. O erro € a diferenca entre o dado obtido e o dado esperado. A falha é
a produgdo de uma saida diferente da exigida na especificagdo [Maldonado et al. 2004].

Na atividade de teste € realizada uma andlise dinamica do produto, sendo utilizada
para a identificacdo de erros e eliminacdo de falhas e defeitos [Maldonado et al. 2004].
Para localizar a maior quantidade possivel de falhas e defeitos, testes devem ser con-
duzidos de maneira sistematica e casos de testes devem ser projetados utilizando técnicas
disciplinadas [Pressman 2005].

Segundo Myers (2004), é impraticavel e geralmente impossivel encontrar todos
os erros de um programa. Assim, uma estratégia deve ser estabelecida antes de iniciar os
testes [Myers 2004], para que seja coberta adequadamente a l6gica do programa e para
garantir que as condi¢des do projeto tenham sido cumpridas [Pressman 2005].

Quatro etapas compdem o teste de software: planejamento de teste, projeto de
casos de teste, execugdo e avaliagdo dos resultados [Maldonado et al. 2004, Myers 2004,
Pressman 2005]. Essas etapas devem ser desenvolvidas ao longo do processo de desen-
volvimento e geralmente sao concretizadas em trés fases: teste de unidade, de integracao
e de sistema [Maldonado et al. 2004].

Casos de teste sdao criados seguindo os requisitos de teste, que sdo definidos a
partir de critérios de teste, que, por sua vez, sao estabelecidos de acordo com as técnicas
de teste escolhidas. De acordo com o tipo de informacao que se deseja testar, escolhe-
se a técnica de teste. Em geral, quatro técnicas sdo utilizadas: Teste Funcional, Teste

Estrutural, Teste Baseado em Erros e Teste Baseado em Mdquinas de Estados Finitos
[Maldonado et al. 2004].

Ap0s escolher a técnica, segue-se um critério de teste para avaliar a adequacgao do

239

SugarLoafPLoP 2007 Pattern Applications

teste e para estabelecer o conjunto de requisitos de teste que serdo utilizados para gerar os
casos de teste. Requisitos de teste contém a idéia do que deve ser testado, ndo informando
como deve ser realizado esse teste [Wilkinson 2003]. Por fim, casos de teste sao criados
com os dados de entrada que devem ser informados ao software e a descri¢do das saidas
esperadas [Myers 2004].

A atividade de VV&T € uma das mais onerosas no desenvolvimento de software
[Rocha et al. 2001]. A associa¢do de requisitos de teste a padroes de software pode aux-
iliar engenheiros de software na verificagio das solucdes propostas e reduzir o tempo de-
spendido na atividade de VV&T [Cagnin et al. 2005]. Outra maneira de reduzir o tempo
¢ o desenvolvimento de ferramentas de automatiza¢ao, que sao importantes no suporte a
atividade de teste, propiciando maior qualidade e produtividade [Maldonado et al. 2004].

Assim, um ambiente ou ferramenta que apdie e esclareca o usudrio quanto a
utilizacdo de requisitos de teste ao empregar um padrao de software pode auxiliar a mini-
mizar omissdes no teste de suas aplicagdes e reduzir o tempo da atividade de VV&T.

3. Trabalhos Relacionados

Como mencionado na Sec¢do 1, ferramentas sao utilizadas para fornecer apoio automati-
zado ou semi-automatizado no emprego de métodos de desenvolvimento Web. Além de
auxiliar no emprego de métodos, ferramentas podem também ser utilizadas para auxiliar
engenheiros de software a empregarem padrdes de projeto na criacao de suas aplicacoes
[Marinho et al. 2003] e para apoiar a atividade de VV&T. Outro recurso que pode ser uti-
lizado s@o os ambientes, empregados no auxilio de geréncia de processos de desenvolvi-
mento de software. Ferramentas e ambientes minimizam a complexidade no desenvolvi-
mento, evitam erros de usudrios inexperientes ao utilizarem os métodos ou os padroes,
além de prevenir contra a omissdo na verificacdo, validacdo e teste de aplicacdes. Alguns
trabalhos sobre ambientes e ferramentas podem ser citados, sendo que cada um deles pode
fornecer auxilio na drea de processo de desenvolvimento de software, padroes de software
ou requisitos de teste.

Para apoiar e acompanhar o emprego de processos de desenvolvimento de soft-
ware t€m-se, por exemplo, o ambiente WebAPSEE (Web Process-Centered Software En-
gineering Environments) [Lima et al. 2006] e a ferramenta ODE (Ontology-based soft-
ware Development Environment) [Segrini et al. 2006]. O WebAPSEE ¢ utilizado para
auxiliar na modelagem e manuten¢ao de processos, enquanto a ODE é empregada para a
definicdo de processos de ODE [Falbo et al. 2004].

Diversas ferramentas tém sido construidas para fornecer apoio no emprego de
padroes de software. Dentre os trabalhos, podemos citar: o repositorio de padrdes pro-
posto por Marinho et al. (2003) que € integrado ao RUP; o repositério de padrdes
de projeto para hipermidia e aplicacdes Web, denominado HPR (Hypermedia Design
Patterns Repository) [Bolchini et al. 2002]; o ambiente FRED (FRamework EDitor)
[Hakala et al. 2001] utilizado no desenvolvimento Java por meio de prototipacdo; € o
Jramework GREN (Gestao de REcursos de Neg6cio) [Braga 2003] utilizado para auxiliar
no desenvolvimento de aplicacdes utilizando a linguagem de padroes GRN (Gestdo de

Recursos de Negdcio) [Braga 2003].

Para auxiliar na automatizacdo de teste sdo encontradas na literatura ferramentas
como: a Proteste [Price and Zorzo 1990], que fornece apoio ao teste estrutural de progra-

240

SugarLoafPLoP 2007 Pattern Applications

mas em Pascal; a Atac (Automatic Test Analysis for C) [Horgan and Mathur 1992], que
apdia a aplicagdo dos critérios estruturais de fluxo de controle e de dados em programas
C e C++; a JaBUTi (Java Bytecode Understanding and Testing) [Vincenzi et al. 2003],
utilizada para o teste de programas Java; a PokeTool (Potential Uses Criteria Tool for
Program Testing) [Chaim 1991], que apdia a aplicacdo dos critérios de teste Todos-Nos,
Todos-Arcos e Potenciais-Usos [Maldonado 1991]; e a Proteum [Delamaro 1993] que
apdia o teste de mutagdo para programas desenvolvidos na linguagem C.

Apesar das inimeras ferramentas e ambientes encontrados atualmente para aux-
iliar individualmente o emprego de processos de desenvolvimento de software, ou a
aplicacdo de padrdes de projeto ou o apoio ao teste de software, ndo foram encon-
tradas ferramentas ou ambientes que auxiliassem engenheiros de software a acompanhar
a execucdo dos seus projetos apoiando a aplicacdo de padrdes nas diversas etapas de um
processo de desenvolvimento de software. Além disso, ainda ndo existem ferramentas ou
ambientes que incluam uma se¢do para auxiliar na validacdo de padrdes, uma vez que a
proposta € recente.

Atualmente existem aplicagdes Web para acompanhamento de projetos, mas nao
foram encontradas aplicagdes Web que apresentem ao usudrio os padroes de software mais
adequados para serem empregados na execucdo de uma etapa do processo de desenvolvi-
mento. Em geral, repositdrios, como o HPR, apenas servem como uma base para consulta
sendo necessario que, ao deparar-se com um problema, o usudrio lembre da existéncia do
padrao para poder consulté-lo.

4. Proposta do Ambiente

Nesta secao descreve-se a proposta de um ambiente Web de apoio ao uso de padrdes
de software e requisitos de teste durante o processo de desenvolvimento de software
[Chan 2005]. Esta secdo estd dividida nos seguintes topicos: a Secdo 4.1 apresenta os
requisitos do ambiente, a Se¢do 4.2 explica a arquitetura adotada no desenvolvimento do
ambiente e a Secdo 4.3 contém a descri¢do dos aspectos de implementagdo considerados
no trabalho proposto.

4.1. Requisitos do Ambiente

O ambiente proposto € destinado a engenheiros de software que desejam acompanhar o
andamento do projeto de suas aplicacdes utilizando padrdes de software durante o pro-
cesso de desenvolvimento e reusando requisitos de teste associados a esses padrdes de
software. Resumidamente, o ambiente possui duas fungdes principais: cadastro de pro-
cessos de desenvolvimento (e suas respectivas fases, atividades, artefatos, padroes e requi-
sitos de testes) e uso desses processos em projetos de desenvolvimento. Assim, o usuério
tem no ambiente o suporte necessdrio para definir os processos de desenvolvimento da
organizagdo e utiliza-los em projetos concretos. O desenvolvimento de aplicagdes Web
pode ser realizado utilizando o ambiente, contanto que seja cadastrado e utilizado um
processo que trate das peculiaridades desse tipo de aplicagdes. Além de permitir o de-
senvolvimento para a Web, o ambiente é uma aplicagdo Web permitindo que usudrios
compartilhem padrdes de software, melhorando a qualidade de seus projetos.

Como pode ser observado no modelo conceitual do ambiente (Figura 1), existem
dois tipos de usudrios: o engenheiro de software e o administrador. O engenheiro de

241

SugarLoafPLoP 2007 Pattern Applications

software é capaz de executar as funcionalidades de: cadastro, geréncia, instanciacio e
acompanhamento da execugdo de processos de desenvolvimento; criagdo e geréncia de
projetos; criagdo, geréncia e instanciacao de padrdes de software; criagdo e geréncia de
requisitos de teste; criacdo e geréncia de diagramas de classes e de todos os elemen-
tos necessarios na construcao desses diagramas; geracao de arquivos XMI; impressao de
relatorios; e busca dos elementos cadastrados no ambiente. Além de executar todas as
funcionalidades disponibilizadas para um engenheiro de software, o administrador é ca-
paz de cadastrar, visualizar e gerenciar as contas dos usudrios e € o unico capaz de alterar
as informacdes de um processo cadastrado no “Repositério do Ambiente”, que é descrito
com mais detalhes na Secao 4.3.

gerencia

Projeto
0.n
0.n
utiliza
0.n 1
Usuario deiing Processo de Desenvolmento
O.n 0O.n
% 0.n wtiliza
POSSLI
o.n
1.h .
possu
- — Faze Atividad
Engenheiro de Software Administrador on 1n Minade
.
e
execLiada por
Artefato 0.n 1

Papel

Diagrama de Classe

0.n on
po s Sorsaud
1.n o.n
ass0ciacdo &

Classe de Projeto Requisito de Teste Padrio de Software

on /<7 i& 1

Classe de Eqguivaléncia
. 1.0

' Uitz g

i] 1.n
Atributo “alor Limite
utiiizadz em
A

0.n Estrutura da Solugéo

Figura 1. Modelo Conceitual do Ambiente.

242

SugarLoafPLoP 2007 Pattern Applications

Como mencionado na Secdo 2.2, uma abordagem flexivel sobre processos envolve
trés etapas: a definicdo, especializagdo e instanciagdo do processo. Assim, o ambiente
proposto apoia o cadastro de processos de desenvolvimento, permitindo que os usudrios
escolham seus elementos e informem a obrigatoriedade de cada um deles, dando a liber-
dade de definir e especializar de acordo com suas necessidades. Também fornece apoio
a instanciagdo de processos, por meio de projetos a eles associados, permitindo o acom-
panhamento da execugdo das fases e atividades para a produgdo de artefatos necessarios
ao projeto. Deve-se observar que no modelo conceitual da Figura 1 ndo estdo incluidos
0s conceitos pertinentes a instanciagao de processos.

Com relacdo a estrutura do processo de desenvolvimento, ela aborda elementos
basicos do RUP, no entanto, ndo sdo utilizados todos eles para que o usudrio tenha uma
maior liberdade na defini¢do dos seus processos de desenvolvimento. Cada processo é
composto de fases que, por sua vez, sdo compostas de atividades. A execucdo de uma
atividade € atribuida a uma pessoa que desempenha um papel no desenvolvimento do
produto. Uma atividade descreve os procedimentos de como o trabalho deve ser real-
izado e pode receber artefatos de entrada e produzir artefatos de saida. Um artefato é
um produto de trabalho gerado com a execugdo de uma atividade, por exemplo, modelos,
elementos de modelo, cédigo-fonte e documentos [Conallen 2002].

O ambiente proposto auxilia na producao de artefatos que sdo utilizados para iden-
tificar a execugdo das atividades e, conseqiientemente, das fases de um processo de de-
senvolvimento. Inicialmente, o apoio € fornecido para a criacdo de diagramas de classes,
sendo acrescentado incrementalmente o auxilio ao desenvolvimento de outros artefatos.
Também pode ser utilizado para armazenar informagdes a respeito dos artefatos produzi-
dos, como por exemplo, onde estdo localizados e os padrdes de software utilizados, con-
forme discutido na Secao 4.3.

Padroes de software sao cadastrados no ambiente e associados a uma fase ou ativi-
dade do processo de desenvolvimento. Assim, quando o usudrio estiver em uma determi-
nada fase ou atividade dentro de um projeto que siga tal processo, uma lista de padroes
de software € sugerida a ele, permitindo que visualize quais padroes podem ser aplicados
naquele momento e registrando no ambiente o uso desse padrao. Pode-se também atribuir
a cada padrao uma identificacdo do dominio ao qual pertence, para facilitar o uso desse
padrio em projetos de um dominio em particular.

A representagdo conceitual de um padrao de software por meio de classes de pro-
jeto e associacdes € realizada na estrutura da solugdo. Para serem utilizados nos diagra-
mas de classes criados com o apoio do ambiente, padrdes de software precisam ser instan-
ciados, ou seja, o usudrio deve informar os nomes dos elementos que compdem a estrutura
da solucao do padrdao no contexto do projeto. Na Tabela 1 é apresentada a descri¢cao do
caso de uso “Instanciar Padrao de Software”, incluindo a descricdo dos passos para exe-
cutar essa operacao. O ambiente permite que mais de um padrdo seja instanciado em uma
fase ou atividade, ja que padrdes (de projeto por exemplo) podem ser usados em conjunto
para solucionar um problema.

Seguindo a proposta feita por Cagnin et al. (2005), os padrdes de software
cadastrados no ambiente possuem uma secado especial com descri¢do de requisitos de teste
que podem ser utilizados para validar esse padrdo e, conseqilientemente, a aplicacio sendo

243

SugarLoafPLoP 2007 Pattern Applications

Tabela 1. Caso de Uso “Instanciar Padrao de Software”

Caso de Uso: Instanciar Padriao de Software

Atores Principais: Administrador ou Engenheiro de Software

Interessados e Interesses: Engenheiro de Software: deseja criar uma instancia de um padrao de soft-
ware para ser utilizado em um diagrama de classes. A instanciacao € realizada para que os elementos
de um padrdo de software sejam renomeados adequadamente no contexto do projeto.

Pré-Condicao: Administrador ou Engenheiro de Software autenticado no ambiente.

Pos-Condicao: Uma instancia de um padrdo de software € criada e associada a um diagrama de
classes

Fluxo Basico

Ator Sistema
1. O usuario estd preenchendo o formulario de
inser¢do de itens em um diagrama de classes,
clica na opcao de “Procurar” do campo “Padrao
de Software”, seleciona um padrio de software
da lista apresentada e clica no botdo “Ok”.

2. O ambiente verifica se foi selecionado um dos
padrdes de software da lista.

3. O ambiente exibe a pagina de instancia¢do de
padrdo de software com o formuldrio que deve
ser preenchido. Sao apresentadas todas as classes
da estrutura da solu¢@o e para cada uma delas é
apresentado o campo “Nome da Classe Instanci-
ada”. Sdo apresentados todos os relacionamen-
tos da estrutura da solucdo e para cada um de-
les é apresentado o campo “Nome do Relaciona-
mento”. Também sdo exibidos dois botdes, sendo
eles “Salvar” e “Cancelar”

4. O usuario preenche os campos do formulario

de cadastro
5. O usuario clica no botdo “Salvar” para enviar | 6. O ambiente verifica se todos os campos “Nome

as informacdes. da Classe Instanciada” foram preenchidos.
7. O ambiente salva as informa¢des da instancia

do padrio de software.
8. O ambiente exibe a pagina anterior, ou seja,

o diagrama de classes que estava sendo alterado
pelo usudrio.

desenvolvida. Esses requisitos de teste podem ser reusados em conjunto com os padroes
de software, ou seja, podem ser reaproveitados pelo usudrio na elaboragao e execucao da
atividade de VV&T.

Classes de projeto sdo cadastradas previamente para poderem ser empregadas nos
diagramas de classes e nas estruturas da solucdo de padroes de software. O usudrio pode
criar requisitos de teste para validar os atributos de uma classe de projeto contida em
uma estrutura da solucdo de um padrdo. Em sua primeira versdo, o ambiente permite o
uso somente de classes de equivaléncia e valor limite, mas outros tipos de requisitos de
teste podem ser incluidos com a evolugdo do ambiente. Caso o usudrio opte por utilizar
um outro ambiente ou ferramenta para continuar o desenvolvimento de sua aplicagdo, é
fornecida a op¢ao de exportacdo dos diagramas de classes produzidos pelo ambiente pro-
posto, sendo armazenados em um arquivo no padrao XMI (XML Metadata Interchange)
[World Wide Web Consortium 2005]. Assim, o usudrio pode importar para essas outras
ferramentas ou ambientes o arquivo XMI criado. Também € permitido que o usudrio
importe para o ambiente proposto os diagramas de classes no formato XMI.

244

SugarLoafPLoP 2007

4.2. A Arquitetura

Na Figura 2 é apresentada a arquitetura do ambiente proposto. E utilizada a ar-
quitetura de trés camadas e o padrdo arquitetural MVC (Model-View-Controller)
[Krasner and Pope 1988]. Na Camada de Apresentacio, a Visao € responsavel por
armazenar as informacgdes enviadas pelo Navegador do Cliente e envii-las para o
Controlador, que por sua vez, é responsdvel por processar as informacdes recebidas,
transformando-as em solicitacdes para a Camada de Aplicacao. Na Camada de
Aplicacao, o Modelo realiza o processamento da l6gica do negdcio, enviando os da-
dos para a Camada de Persisténcia, ou requisitando informacdes dela. A Camada de
Persisténcia realiza a busca por dados e o armazenamento de informa¢des no Banco de
Dados do ambiente.

Navegador do Cliente

Camada de Apresentacao

Controlador Visao

Camada de Aplicagdo

@ Modelo ™

Procasso de Dasenvolvimento
i Instdncia do Processo de
_ Atividade Desenvolvimento
Diagrama de Classe
Administrador e
Engenheiro de S i
Software

L o (oo d@i
Padrao de Software)
Instancia do Padrao de
Software

Requisito de Tests
Esirutura da caup
(Solicio) C \Valor Limite)

Equivaléncia

:

Camada de Persisténcia

e SGBD
Persisténcia

t

Banco de Dados

Figura 2. Modelo da arquitetura do ambiente.

245

Pattern Applications

SugarLoafPLoP 2007 Pattern Applications

4.3. Aspectos de Implementacao

O ambiente proposto neste artigo € uma aplicacdo para a Web e esta sendo implementado
em Java [Sun Microsystems, Inc. 1999], por ser uma linguagem de programacgdo orien-
tada a objetos, simples, robusta, interpretada, portavel, distribuida, de arquitetura neutra,
segura, de alto desempenho, multithreaded e dinamica [Sun Microsystems, Inc. 1999].

Por ser uma aplicagdo Web, o processo de desenvolvimento proposto por Conallen
(2002) esta sendo utilizado para o projeto do ambiente. Para permitir que aplicacdoes Web
sejam modeladas nos diagramas de classes criados pelo ambiente, os esteredtipos pro-
postos pelo WAE [Conallen 2002], que é uma extensdao da UML (Unified Modeling Lan-
guage) [OMG’s 2006], estdao sendo disponibilizados para a modelagem das caracteristicas
especificas desse tipo de aplicacdes.

Com relacdo ao armazenamento de processos de desenvolvimento no ambiente,
para que um usudrio tenha a flexibilidade de escolher entre manter restrito o acesso aos
processos por ele criados ou permitir o compartilhamento com os outros usudrios do
ambiente, dois tipos de repositdrios de processos de desenvolvimento sdao oferecidos: o
“Repositério do Ambiente” e o “Repositério do Usudrio”. No primeiro, todos os usudrios
do ambiente podem visualizar e utilizar os processos nele cadastrados, no entanto, ndo
podem altera-los. No segundo, apenas os donos do repositério podem utilizar e alterar os
processos nele cadastrados.

Como mencionado na Se¢do 4.1, o ambiente auxilia na producdo de artefatos.
Como o ambiente estd sendo desenvolvido utilizando uma abordagem incremental, a
principio, esse auxilio restringe-se apenas a criagdo de diagramas de classes, sendo que
outros tipos de artefatos podem ser criados separadamente e informados ao ambiente por
meio do nome do arquivo gerado e do caminho para recuperd-lo. Futuramente, outros
tipos de apoio ao desenvolvimento de artefatos podem ser incorporados ao ambiente.

A medida que os artefatos sdo produzidos ou informados, o ambiente considera
as atividades e, conseqilientemente, as fases como executadas para que o usudrio possa
acompanhar a evolugio do seu projeto. E oferecida uma op¢io para que o usudrio informe
que o projeto foi finalizado. Apds informar a finalizagdo, o ambiente automaticamente
realiza a verificag@o das fases e atividades marcadas como executadas. Caso alguma fase
ou atividade obrigatéria ndo tenha sido marcada como executada, o ambiente alerta o
usudrio sobre a impossibilidade de finalizar o projeto. No entanto, se apenas fases ou
atividades opcionais ndo tiverem sido executadas, o ambiente apenas avisa sobre quais
delas ndo foram executadas e sobre o sucesso na finalizagdo do projeto.

Como mencionado na Sec¢do 2.1, alguns elementos sdo considerados obrigatdrios
em um padrao. Assim, o ambiente permite, para cada padrao de sofware, o cadastrado
dos atributos: “Nome do Padrao”, “Problema”, “Soluciao”, “Contexto”, “For¢a”, “Estru-
tura da Solucao”, “Requisito de Teste”, “Exemplo”, “Contexto Resultante”, “Raciocinio”,
“Padrodes Relacionados”, “Usos Conhecidos” e “Etapa do Processo de Desenvolvimento™.
E por meio do atributo “Etapa do Processo de Desenvolvimento” que o ambiente recon-
hece quais padrdes sugerir para o usudrio em uma fase ou atividade.

O campo “Estrutura da Solucao” é opcional e seu conteido é empregado na
instanciagdo do padrdo, permitindo a criac@o de partes do diagrama de classes. Por exem-
plo, se uma das fases do processo for a “Modelagem do Sistema” e uma de suas atividades

246

SugarLoafPLoP 2007 Pattern Applications

for a “Criac@o do Diagrama de Classes”, ao empregar um padrao nessa atividade, a estru-
tura de sua solucdo pode ser importada, instanciada e as classes passam a fazer parte do
diagrama de classes. Se outros padroes também forem aplicdveis nessa mesma atividade,
eles podem ser instanciados e as novas classes devem ser incorporadas ao diagrama de
classes final.

Caso o campo “Estrutura da Solu¢do” ndo tenha sido informado pelo engenheiro
de software, o padrdo nao pode ser instanciado em detalhes, sendo utilizado apenas nas
fases e atividades que nao envolvem a criacdo de diagrama de classes. Mesmo nao sendo
utilizado na construgdo de artefatos, € importante informar os padrdes utilizados nas fases
e atividades para que sejam documentados no ambiente, permitindo o acompanhamento
da evolucao do projeto em conjunto com o emprego dos padrdes e fornecendo a base para
futuras andlises estatisticas que podem auxiliar os engenheiros de software no desenvolvi-
mento de outros projetos.

O campo “Requisito de Teste” permite ao usudrio informar os requisitos de teste
para auxiliar na validacdo dos padrdes de software cadastrados no ambiente. Con-
siderando que a estratégia de teste utilizada pelo usudrio depende de diversos fatores,
como por exemplo, custos e cronogramas, ndo estd sendo considerada uma abordagem
especifica para a criacdo dos requisitos de teste para a validacdo dos padrdes de software,
ou seja, o usudrio tem a liberdade na elaboracgdo e associacao dos requisitos de teste. De-
vido ao carater incremental no desenvolvimento do ambiente, em um primeiro momento,
o suporte ao cadastro de requistos de teste deve ser realizado apenas para os critérios
Andlise do Valor Limite e Particionamento de Equivaléncia.

Destaca-se que cada Classe de Equivaléncia é considerada como um requisito de
teste no ambiente. Assim, o usudrio pode utilizar apenas o critério Particionamento de
Equivaléncia, mas nio pode utilizar somente o critério Andlise do Valor Limite. Podem
ser cadastrados valores limites, mas para que possam ser visualizados como requisitos de
teste, devem ser geradas as classes de equivaléncia desses valores. A funcionalidade para
gerar automaticamente classes de equivaléncia a partir de valores limites € oferecida pelo
ambiente.

5. Conclusao

Processos e métodos de desenvolvimento, padroes de software, ferramentas e ambi-
entes t€ém o objetivo comum de apoiar engenheiros de software no desenvolvimento de
aplicacoes. Explorando o suporte comum a esses temas, 0 ambiente proposto neste artigo
tém por objetivo fornecer flexibilidade para o usudrio cadastrar processos de desenvolvi-
mento e acompanhar a sua execucao, sugerir automaticamente padroes de software para
serem empregados nas fases e atividades do processo de desenvolvimento escolhido pelo
usudrio, além de também apoiar a atividade de VV&T por oferecer requisitos de teste
para validar os padrdes cadastrados no ambiente.

Com o aumento da quantidade de padrdes existentes, cresce também a dificuldade
na visualizag@o e escolha dos padrdes mais adequados a serem empregados em um pro-
jeto. Muitas vezes, engenheiros de software sequer recordam a existéncia de um padrao
de software e da solucdo por ele proposta. Assim, ao sugerir automaticamente os padroes
cadastrados e relacionados a uma fase ou atividade de um processo de desenvolvimento, o
ambiente pode minimizar as chances do usudrio deixar de utilizar um padrao de software

247

SugarLoafPLoP 2007 Pattern Applications

por ndo lembrar a existéncia da solucao, além de auxilid-lo na visualiza¢do das solugdes
existentes. No entanto, um ponto a ser considerado € a qualidade dos padrdes armazena-
dos no ambiente. Futuramente planeja-se estabelecer um filtro no cadastro ou um critério
de remog¢ao para que apenas padrdes de software validos sejam mantidos e repassados
entre os usudrios, evitando que soluc¢des invalidas comprometam os projetos.

Outro problema € a falha na validacido de padrdes de software. Na maioria das
vezes, quem utiliza os padrdes ndo sdo as pessoas que os desenvolveram. Assim, € im-
portante para o engenheiro de software ter diretrizes de como testar a solucdo proposta
pelo padrao. Seguindo a sugestdo de Cagnin et al. (2005), o ambiente proposto permite a
associacdo de requisitos de teste a padroes de software para auxiliar usudrios na validacao
dos padrdes de software utilizados, podendo minimizar o tempo despendido na atividade
de VV&T.

Uma vez que os padroes de software tenham sido acrescentados ao ambiente,
novos processos de desenvolvimento incorporados ao ambiente também podem fazer uso
dos padrdes, ja que ao incluir um processo de desenvolvimento € possivel associar os
padroes existentes a cada uma de suas fases ou atividades. Além disso, havendo requisitos
de teste associados ao padrao, esses requisitos sdo automaticamente validos no contexto
do novo processo.

O ambiente estd sendo desenvolvido de maneira incremental, fornecendo apoio,
em um primeiro momento, a construcao de diagramas de classes e ao cadastro de requistos
de teste utilizando os critérios Anélise do Valor Limite e Particionamento de Equivaléncia.
Assim, para as fases e atividades que ndo envolvem a construc¢do de diagramas de classes,
o usudrio pode utilizar o ambiente para acompanhar e controlar o emprego de padroes. No
entanto, em trabalhos futuros planeja-se adicionar apoio a construg¢do de outros artefatos
para que o suporte ao emprego de padrdes torne-se mais efetivo gradativamente. Também
espera-se que, além de apoio ao cadastro a outros critérios de teste, 0 ambiente também
forneca um suporte maior a validacdo de padrdes de software utilizados no desenvolvi-
mento de aplicagdes, como por exemplo, a criacao de casos de teste.

Referéncias

Alexander, C. (1977). A Pattern Language. Oxford University Press.

Alexander, C. (1979). The Timeless Way of Building. Oxford University Press.

Appleton, B. (2000). Patterns and software: Essential concepts and terminology. Online.

Bianchini, S. L. (2005). Avaliacdo de Metodologias de Desenvolvimento de Sistemas
Web. Master’s thesis, ICMC/USP, Sao Carlos/SP - Brasil. em andamento.

Bolchini, D., Garzotto, F., Paolini, P.,, Lowe, D., Cantoni, L., Nanard, J., Rossi, G.,
Schwabe, D., and Ruggeri, R. (2002). HPR - Hypermedia Design Patterns Reposi-
tory. Online.

Braga, R. T. V. (2003). Um Processo para Construgdo e Instancia¢cdo de Frameworks
Baseados em uma Linguagem de Padroes para um Dominio Especifico. PhD thesis,
ICMC/USP, Sao Carlos/SP - Brasil.

Brambilla, M., Comai, S., and Fraternali, P. (2002). Hypertext Semantics For Web Ap-
plications. In SEBD Italian National Conference on DataBase Systems, Portoferraio -
Italy.

Cagnin, M. L., Braga, R. T. V., Germano, F., Chan, A., and Maldonado, J. C. (2005).
Extending Patterns with Testing Implementation. In SugarLoafPlop’2005, V Confer-

248

SugarLoafPLoP 2007 Pattern Applications

encia Latino-Americana em Linguagens de Padroes para Programacdo, Campos do
Jordao/SP - Brasil. Submetido.

Ceri, S., Fraternali, P., and Bongio, A. (2000). Web modeling language (WebML): a
modeling language for designing web sites. In 9th International World Wide Web
Conference, pages 1-22, Amsterdam.

Chaim, M. L. (1991). Poke-tool: Uma Ferramenta Para Suporte ao Teste Estru-
tural de Programas Baseado em Andlise de Fluxo de Dados. Master’s thesis,
DCA/FEEC/UNICAMP, Campinas/SP - Brasil.

Chan, A. (2005). Um Ambiente de Apoio ao Uso de Padroes de Software e Requisitos
de Teste no Desenvolvimento de Aplicacoes Web. Master’s thesis, ICMC/USP, Sao
Carlos/SP - Brasil. em andamento.

Conallen, J. (2002). Buildind Web Applications with UML. Addison-Wesley, 2nd. edition.

Delamaro, M. E. (1993). Proteum - Um ambiente de teste baseado na analise de mutantes.
Master’s thesis, ICMC/USP, Sao Carlos/SP - Brasil.

Falbo, R. A., Ruy, F. B., Pezzin, J., and Moro, R. D. (2004). Ontologias e Ambientes
de Desenvolvimento de Software Semanticos. In JIISIC 04 - 1V Jornadas Iberoameri-
canas de Ingenieria del Software e Ingenieria del Conocimiento, Madri - Espanha.

Fuggetta, A. (2000). Software Process: A Roadmap. In ICSE’00 - Future of Software
Engineering Track, pages 25-34, Limerick - Ireland.

Hakala, M., Hautamiki, J., Koskimies, K., Paakki, J., Viljamaa, A., and Viljamaa, J.
(2001). Architecture-Oriented Programming Using FRED. In ICSE °01: Proceed-
ings of the 23rd International Conference on Software Engineering, pages 823-824,
Washington/DC - USA. IEEE Computer Society.

Horgan, J. R. and Mathur, A. P. (1992). Assessing Testing Tools in Research and Educa-
tion. IEEE Software, 9(3):61-69.

Houaiss, A. (2006). Dicionario Houaiss da Lingua Portuguesa. Online.

Koch, N. (2000). Software Engineering for Adaptive Hypermedia Systems: Refer-
ence Model, Modeling Techniques and Development Process. PhD thesis, Ludwig-
Maximilians University, Munich - Germany.

Krasner, G. E. and Pope, S. T. (1988). A cookbook for using the model view controller
user interface paradigm in Smalltalk-80. In Journal of Object-Orientated Program-
ming, volume 1, pages 26—49.

Kruchten, P. (2000). The Rational Unified Process: An Introduction. Addison-Wesley,
2th. edition. 298 p.

Lima, A., Costa, A., Franca, B., Reis, C. A. L., and Reis, R. Q. (2006). Geréncia Flexivel
de Processos de Software com o Ambiente WebAPSEE. In SBES’06 - XIII Sessdo de
Ferramentas do SBES, pages 97-102, Florian6polis/SC - Brasil.

Maldonado, J. C. (1991). Critérios Potenciais Usos: Uma Contribuicdo ao Teste Estru-
tural de Software. PhD thesis, DCA/FEE/UNICAMP, Campinas/SP - Brasil.

Maldonado, J. C., Barbosa, E. F., Vincenzi, A. M. R., and Marcio Eduardo Delamaro,
Simone Rocio Senger Souza, M. J. (2004). Introdugdo ao Teste de Software. Nota
Didatica.

Marinho, F., Santos, M., Pinto, R. N., and Andrade, R. (2003). Uma Proposta de um
Repositério de Padrdoes de Software Integrado ao RUP. In SugarLoafPlop Proceeding
2003, The Third Latin American Conference on Pattern Languages of Programming,
pages 277-290, Porto de Galinhas/PE - Brasil.

249

SugarLoafPLoP 2007 Pattern Applications

Meszaros, G. and Doble, J. (1996). MetaPatterns: A Pattern Language for Pattern Writing.
In PLoP’1996 - Proceedings of the 8th Pattern Languages of Programs Conference,
Monticello/Illinois - USA.

Myers, G. J. (2004). The art of software testing. John Wiley & Sons, Inc., 2th. edition.

OMG’s (2006). UML Resource Page. Online.

Pressman, R. S. (2005). Engenharia de Software. McGraw-Hill, 6th. edition.

Price, A. M. and Zorzo, A. (1990). Visualizando o Fluxo de Controle de Programas.
In SBES’1990 - 1V Simpdsio Brasileiro de Engenharia de Software, Aguas de Sao
Pedro/SP - Brasil.

Rocha, A. R. C., Maldonado, J. C., and K, C. W. (2001). Qualidade de Software: Teoria
e Prdtica. Prentice Hall, 1th. edition.

Santos, M. S. (2004). Uma Proposta para a Integracdao de Modelos de Padroes de Software
com Ferramentas de Apoio ao Desenvolvimento de Sistemas. Master’s thesis, UFC,
Fortaleza/CE - Brasil.

Segrini, B. M., Bertollo, G., and Falbo, R. A. (2006). Evoluindo a Defini¢do de Processos
de Software em ODE. In SBES’06 - XIII Sessdo de Ferramentas do SBES, pages 109—
114, Florian6polis/SC - Brasil.

Sun Microsystems, Inc. (1999). The Java Language: An Overview. Online.

Vincenzi, A. M. R., Wong, W. E., Delamaro, M. E., and Maldonado, J. C. (2003). JaBUTi:
A Coverage Analysis Tool for Java Programs. In Sessdo de Ferramentas do 17°
Simpdosio Brasileiro de Engenharia de Software, Manaus, AM, Brasil.

Wilkinson, G. (2003). Tests Without Specs. Professional Tester Magazine.

World Wide Web Consortium (2005). Extensible Markup Language Metadata Inter-
change (XMI). Online.

250

SugarLoafPLoP 2007 Pattern Applications

A Process to Create Analysis Pattern Languages
for Specific Domains”

Rosana T. V. Braga', Reginaldo Ré?, Paulo Cesar Masiero!

nstituto de Ciéncias Matematicas e de Computagio — ICMC
Universidade de Sao Paulo - USP
Caixa Postal 668 — 13.560-970 — Sao Carlos — SP — Brazil

2Universidade Tecnolégica Federal do Paran4
Campus Campo Mourdo
Caixa Postal 271 — 87301-005 — Campo Mourdo — PR — Brazil

rtvb@icmc.usp.br, reginaldo@utfpr.edu.br, masiero@icmc.usp.br

Abstract. Pattern languages are a powerful instrument through which knowl-
edge about a specific domain can be documented. When composed of analysis
patterns, they can help novice developers to model systems belonging to a wide
variety of applications in a particular domain. We show a process to system-
atically produce a pattern language for a specific domain. The process starts
with the identification of the domain functionality, then patterns are created to
solve individual problems found in the domain, and finally relationships among
patterns are established. Two analysis pattern languages created by the authors
are used to illustrate the proposed process.

1. Introduction

Software patterns document proven solutions for common problems that occur during
software development [Gamma et al. 1995], so that they can be reused by inexperienced
developers when facing the same problems. The grouping of patterns into a pattern lan-
guage improves reuse even more, as they can lead to the design of complete applica-
tions [Brugali and Menga 1999]. A pattern language is a structured collection of patterns
that support each other to transform requirements and restrictions into an architecture
[Coplien 1998]. A pattern language represents the temporal sequence of decisions that
lead to the complete design of an application, so it can become a method to guide the
development process [Brugali et al. 2000].

In this work, we are particularly interested in using pattern languages to help
novices to model specific-domain systems. So, the patterns of a pattern language can
be used as a guide through which he can find the solutions to each problem he faces when
modeling an application in a certain domain. Each pattern solves a problem and results in
a context that is used as input to other patterns of the pattern language. But how are pat-
tern languages developed? How are the patterns defined in a way that they can be easily
applied when modeling applications in a specific domain?

Our research group has developed three pattern languages [Braga et al. 1999,
Ré et al. 2001, Pazin et al. 2004], after studying many others available in the lit-
erature [Alexander et al. 1977, Aarsten et al. 2000, Beck and Cunningham 1987,

*Financial support from FAPESP

251

SugarLoafPLoP 2007 Pattern Applications

Brown and Whitenack 1996, Cunningham 1995, Meszaros and Doble 1998]. During the
submission of our pattern languages for publishing, a common question among reviewers
was about how we have created the pattern language. In fact, there is not much written
about this process, as reported in the Related Work Section. The development of a
pattern language requires a deep knowledge about the domain. Nevertheless, a systematic
process could be very useful to achieve a meaningful pattern language.

Thus, considering the absence of a well-defined and detailed process to create
pattern languages, we found important to describe our process, so that other domain ex-
perts can use it to document their knowledge about particular domains in the form of a
pattern language. We consider that, if we have pattern languages for as many domains
as possible, software development will be eased, as developers will have a starting point
for modeling their applications. Furthermore, to leverage reuse to lower abstraction lev-
els, frameworks can be built based on pattern languages, as proposed in another work
of our research group [Braga and Masiero 2002b], in such a way that the framework
and the corresponding pattern language are used together to produce domain-specific
applications [Braga and Masiero 2002c]. Also, tools can be developed to help the in-
stantiation of this framework based only in the knowledge about the pattern language
[Braga and Masiero 2003, Pazin 2004, Shimabukuro et al. 2006], allowing the develop-
ment to concentrate in the system requirements instead of design and implementation
details.

This paper describes a process for creating a domain-specific pattern language,
composed of analysis patterns that can be further used to model concrete applications in
the same domain. Section 2 summarizes related work regarding writing pattern languages.
Section 3 gives an overview of the process. In Section 4 we describe the first step of the
process, which aims at producing a domain class model. In Section 5 we show how to
define an initial set of patterns, that will be refined to produce the pattern language. In
Section 6 we present the process for creating a pattern language graph, to show the order
in which the patterns are used and their interaction. In Section 7 we give details of how
to describe each pattern individually. In Section 8 we show how to validate the pattern
language. Finally, in Section 9, we make our concluding remarks.

2. Related Work

The work of Meszaros [Meszaros and Doble 1998] provides useful guidelines for pat-
tern writing, including several problems and solutions for pattern language writing, but
the focus is on the patterns format and disposition of the patterns throughout the pat-
tern language, i.e., nothing is mentioned about how to discover the patterns based on the
knowledge about a particular domain, or how to organize them or to delimit their scope.

Cunningham [Cunningham 1994] provides several hints about the sequence of
activities to perform when conceiving a pattern language, based on his experience in
writing the CHECKS pattern language [Cunningham 1995]. Though short, his hints are
easy to understand and helped to guide us in the creation of our process.

Buschmann and others [Buschmann et al. 1996] describe a process for pattern
mining that focuses on the creation of individual patterns that will be possibly joined
to form a pattern system. Although a pattern system ties its constituent patterns together,
it does not have the compromise of being complete like a pattern language, which needs to

252

SugarLoafPLoP 2007 Pattern Applications

have at least one pattern available for every aspect of the construction and implementation
of software systems, with no gaps or blanks [Buschmann et al. 1996]. Although they do
not present a process for pattern language creation, they stress the importance of having
complete pattern languages to cover substantial part of the design space of the respective
domains. The rules of thumb that they present to mine new patterns are often applica-
ble when describing each pattern of a pattern language. For example, “find at least three
examples where a particular recurring design or implementation problem is solved effec-
tively by using the same solution schema” is a guideline that can help finding candidate
patterns to form the pattern language.

3. Process overview

Analysis pattern languages for specific domains could be straightfully developed, without
the need of an application domain class model. However, a domain class model is useful
during the development of a pattern language, as the patterns represent a well-succeeded
structure of solutions for problems in the same context [Riehle and Zullighoven 1996].
Our process presents a set of activities that, from a domain class model, obtained through
the first phase of our general process, aims at creating a pattern language. The activities
to be conducted for the creation of the pattern language, the resources needed to execute
them, and the results obtained for each activity are presented in Figure 1.

Domain

Engineer Exgerier:ce in Experience in
Experience Information oo Pattern Experience in
l about Domain 1 Languages Domains
Existing l
systems 11 12 i i
~—————p Domain Model > Patterns 1.3 Exp:ar::enrc;.n "
Creation Domain | Determination LPaﬂem Grafode Languages
Model & a:%uage_ Fluxo de 4
Patterns of raph Creation plicaga
" Rgversgi ol Language 14
ngineering > P Pattern
Other domain
Techniques patterns Writing Languag Pattern
. Language
Analisys/
Design Software Requirements Lpﬂt‘!ern —
Patterns Specification of —p Va:':gu:gn -
Applications of Domain SnCaran

Domain
Model

Figure 1. Pattern Language Creation Process

4. Starting point: a domain analysis model

Patterns are usually documented based on software development practice. Consequently,
to build a pattern language that covers applications in a certain domain, it is necessary to
observe the solutions that are commonly employed to solve recurring problems in that do-
main. Thus, the starting point for creating a pattern language is to obtain a model for the
target domain, i.e., a model that captures the functionality present in the majority of appli-
cations in that domain (step 1.1 of Figure 1). Independently of how the information about
the domain is obtained, our process states that both static and dynamic models should
be produced at the end of this step. The static model can be expressed using an object
oriented notation, as for example a UML [Rational 2000] (Unified Modeling Language)
class diagram, showing only classes, attributes, and methods that are common to all appli-
cations in the domain. Generic names should be assigned to these classes, attributes and

253

SugarLoafPLoP 2007 Pattern Applications

methods, and they should be properly explained in the respective domain glossary. Rela-
tionship among classes also need generic names that reflect semantic aspects inherent to
the domain. The dynamic model can be expressed, for example, by UML sequence dia-
grams, which show the communication between objects to implement system operations.
Again, they should be defined with generic names. UML use case diagrams can also be
created to show dynamic aspects of the domain, focusing on the behavior that is common
to all applications.

The target domain model can be obtained by several means: a domain analysis
can be conducted, using techniques such as those described by Gomaa [Gomaa 1996]
or those selected by Prieto-Diaz [Prieto-Diaz and Arango 1991]; a reverse engineering
can be done in existing applications of the domain, similarly to what has been done by
Ré et. al. [Ré et al. 2001] for the on-line auctions domain; or the practical experience
in the development of applications in a particular domain can be used, as occurred dur-
ing the creation of the GRN pattern language [Braga et al. 1999]. In the last two cases,
experience about a domain can be obtained by building or reverse engineering several
systems in the target domain, at least three as recommended by Roberts and Johnson
[Roberts and Johnson 1998], obtaining intermediate models that represent each of the
three systems. These different models of applications in the same domain can then be
generalized to produce a domain analysis model [Ré€ et al. 2001]. They can be compared
with each other and, if a certain element is present in the three systems, there is a high
probability that it will be part of the domain model. As a matter of fact, a difficult de-
cision needs to be made at this point by the domain engineer, about whether or not each
element is common to the domain. This decision involves other factors, as for example
the personal experience of the domain engineer and specific goals to be achieved with the
resulting domain model.

Tools that provide automated mechanisms to reverse engineer legacy systems
could be useful in this step. More than obtaining models of the system in higher ab-
straction levels, these tools could also help finding existing patterns in code. However,
this work did not consider the aid of these tools, so all the work was manually done. This
issue could be target of future work.

To illustrate this step, we consider the on-line auction domain, for which we have
created a pattern language [Ré et al. 2001]. Three existing systems were (manually) re-
verse engineered: Arremate.com', iBazar?, and eBay’. These systems were active when
the reverse engineering was conducted, but nowadays iBazar has been incorporated to
eBay. Intermediate models with dozens of classes were obtained for each of them. Fig-
ure 2 illustrates part of the domain analysis model obtained at the end of this step, with
seventeen classes representing the main functionalities of an auction. The complete model
contains forty classes.

Notice that the domain model contains, besides entities with their attributes, meth-
ods, and relationships, more abstract operations that denote the behavior inherent to an
entity, which are useful to better understand the domain concepts. Operations are more
than methods, as they reflect how system events are treated by the software (probably

'http://www.arremate.com
’http://www.ibazar.com.br
Shttp://www.ebay.com

254

SugarLoafPLoP 2007

User

IdCode: Integer

name: String[30]

interesting

belongs To
. 1

Category

Pattern Applications

Auction

DutchAuction

name: String[20]

SSN: String[9]
birthDate: Date
gender: Char
scholarLevel: Integer

description: String[30]

belonggq To

country: String[20

ZipCode: String[9]
phoneNumber: String[9]
userType: Char

msgNewAuction: Char
msgNewBid: Char
msgContractChanged: Char
msgAuctionClosed: Char
msgNewOffers: Char
msgProductsFound: Char
msgUserStatus: Char
msgWatchedAuctionClosed: Char
msgBidNotification: Char
msgAuctionOpened: Char
msgAuctionClosedWithoutWinner: Char

msgAuctionWinner: Char

notifyNewUser ()
?registerConfirmation ()
!'sendPassword ()
tconsultContactInfo ()

B —

blockUser ()

annualGains: Float

address: String[30]

city: String[30] select Favorite
state: String([2] 1 0.4

belongs To

!listFavorites()

status: Char
isRestricted: Boolean
title: String[30]
openPrice: Float
dateToOpen: Date
timeToOpen: Time
duration: Time
isPrivate: Boolean
paymentMode: Char
deliveryMode: Char
isRestored: Boolean
paymentPolicy: Char

numberOfVisitors: Integer

A

quantity: Float

defineWinner ()

Resource

description: String[30
photol: File

photo2: File

photo3: File

locale: String[30
country: String[20
imével: Char

Isearch()
ladvancedSearch ()
!'searchCategory ()
IsearchTheme ()

classified by

1

Theme

+description: String(30]

Seller

1
1

paymentDetail: Char

!consultContactInfo

1

. ——

offer

!listAuctionsByBuyer (
!listAuctionsBySeller ()

!listRestrictedAuctions ()

!'s ctionDetails ()
!'showSellerDetails ()
defineWinner ()
!?cancelAuction (
confirmBid ()

close()
!sendSellerDetails ()
!sendBuyerDetails ()
tnotifyWinner ()
tnotifySeller ()
!search ()
rchBySeller ()
rchByBuyer ()

!searchClosedAuctions ()
!advancedSearch ()
!?anticipatedClose ()
!sendNextWinnerDetails ()
visitorsCounter ()
!listEndingAuctions ()
!listOpenedAuctions ()
!listHotAuctions ()
!listRecomendedAuctions ()
!listFeaturedAuctions ()

S .

StandardAuction

defineWinner ()

defineNextWinner ()

BuyAuction

buyPrice: Float

defineWinner ()

close ()

ReservePriceAuction

reservePrice: Float

defineWinner ()

defineNextWinner ()

Increment

minValueBid: Float
maxValueValue: Float 1

incrementValue: Float

computelncrement ()

proxyBidder

maxValueBid: Float

insertBid()

has

1
0 indicate
qualify | «

Reputation

1

Buyer

1

indicate

comments: String[

isPublic: Boolean

100]

!consultContactInfo ()
1 qualify

date: Date

vote: Integer

changeVoteStatus: Integer

enables

1 1

start offer

1

Bid

value: Float

?insertVote ()

!listBuyerVotes ()

!listReceivedVotes ()

!listVotesByAuction ()
!listInsertedVotes ()

DutchBid

quantity: Float

offer

date: Date

time: Time

cancelComments: String[100

+cancelResponse: Integer

11istBidsByAuction (
?cancel ()
bidDenied ()
checkBidIncrement ()
?enableProxyBidder ()

Figure 2. Partial Domain Model for On-line Auctions

invoking more than one method of several different classes). In our notation, extended
from UML, we use special characters before operation names to denote certain types of
behavior. For example, we use the interrogation (?) and exclamation (!) marks to denote
input and output operations, respectively.

5. Partitioning the domain model into a initial list of patterns

The domain analysis model resulting from the previous step is used as basis for identifying
the patterns that compose the pattern language (step 1.2 of Figure 1). This activity is
often dependent on the knowledge and experience about patterns possessed by the pattern
language developer. However, some guidelines should be followed so that the patterns are
defined in a uniform way and with higher possibility of being reused:

1. Existing patterns in the literature should be analyzed, as some of them are likely to
be present in the domain analysis model. Pattern repositories should be searched,
specially with automatic tools, to ease this task. When a pattern is found, the
problem solved by it should be specialized to the specific domain, originating
a new pattern that should be assigned a name reflecting the domain-specific

255

SugarLoafPLoP 2007 Pattern Applications

problem. Durign the creation of the pattern language for the online auction
[Ré et al. 2001], several patterns were found in the literature to represent items
to be dealt with by the application, as for example the patterns ITEM DESCRIP-
TION[Coad et al. 1997] and TYPE-OBJECT [Johnson and Woolf 1998]. So, these
patterns were specialized to the resource being auctioned and originated the first
pattern, which was named IDENTIFY THE RESOURCE.

2. Other analysis pattern languages, for similar domains, should be studied and their
patterns should be observed, e.g., their documentation and relationship. This con-
tributes to enhance the knowledge about patterns and improves the chance of de-
veloping more correct and reusable patterns. At this point, a format for the patterns
can be chosen or, at least, two or three possible formats can be identified. In the
Online Auction (OA) example, the GRN pattern language [Braga et al. 1999] was
used as basis for formatting the patterns.

3. The pattern definition should begin by identifying the basic classes of the domain
model obtained in the previous step. Basic classes are those involved in basic
or main system functions represented in the domain model, i.e., those that are
present in all systems belonging to the domain. This concept is equivalent to the
“core types” defined by Cheesman and Daniels [Cheesman and Daniels 2001] or
to the frozen spots of a framework [Buschmann et al. 1996]. For example, in the
OA domain model of Figure 2, classes Buyer, Seller, Resource, Auction, and Bid
are basic, as they appear in any instances of this domain. Other classes present
in the domain model are complementary classes, as they can appear in certain
systems but not in others.

4. Basic classes identified using the previous guideline should be studied in order to
discover groups of two or more classes that are responsible for important system
functions. This can be done based on the domain class model itself, for example
by highlighting them with a different color or creating smaller models relative to
each function. For example, in Figure 2 we can group classes around Bid (Dutch-
Bid, ProxyBidder and Increment), as they all refer to behavior regarding bids.
It must be observed that this is an incremental process, so later on it could be
changed if necessary. It must also be noticed that the classes belonging to a group
are not necessarily all basic classes, as will be explained in the next guideline.
These groups of classes will represent the main patterns of the pattern language,
as long as each pattern should refer to a specific function performed in the do-
main. This improves reuse, because patterns with short, well defined, and focused
problem/solution pairs are created.

5. Differently from basic classes, complementary classes add improvements to a pat-
tern, or add a different function not present in the domain model. Complementary
classes usually represent functionalities that are optional for the correct function-
ing of systems in the studied domain. So, they are more likely to become optional
patterns, i.e., patterns that can be applied or not when modeling a particular sys-
tem, or they can be joined to existing patterns to form pattern variants, so that they
are considered as optional pattern elements. Again, the pattern language devel-
oper has to decide how to establish which classes make a pattern. The possibility
of creating optional patterns allows them to be ignored during the usage of the pat-
tern language, in case the functionality they offer is not necessary in the particular
application. For example, in the OA domain, the Favorite class is a complemen-

256

SugarLoafPLoP 2007 Pattern Applications

tary class, as it does not appear in all auctions that were investigated in the reverse
engineering. So, the pattern language author has two alternatives: he could create
a separate pattern to include this behavior, or he could add an optional element in
an existing pattern (even if it is a mandatory pattern). In our case, we have chosen
to create a separate pattern, named ENABLE FAVORITE. It should be highlighted
that the concepts of basic and complementary classes are equivalent to the con-
cepts of mandatory and optional features in domain analysis, specially for product
lines engineering.

6. Each pattern should be named - a task that can be eased by observing its functions.
This name is important, as it abstracts the pattern content and allow its identifica-
tion and usage by other analysts. Meszaros and Doble [Meszaros and Doble 1998]
suggest several conventions for pattern naming, as for example, to use an evoca-
tive pattern name, a noun phrase name, or a meaningful metaphor name. In our
example, we have chosen to name patterns with phrases.

7. After identifying and naming patterns, a table can be constructed containing the
pattern name, the problem solved by the pattern, and a summary of the proposed
solution, , as suggested by Meszaros and Doble [Meszaros and Doble 1998]. This
table helps the pattern language developer to keep consistency and to follow each
pattern goal during the remaining steps of the process. See the initial list for the
OA patterns in Table 1.

In summary, the resulting artifacts for this step are a list of patterns, together with
a general description for each of them and information about the classes that compose
them. These results will be used in the remaining steps to write the individual patterns.

6. The pattern language graph

In step 1.3 a graph is defined to show the patterns interaction or the patterns application
flow. Basically, the graph contains pattern names and the order in which they can be
applied, showing also which patterns are mandatory or optional. This information can be
obtained in the summary table produced in the previous step. The graph has to show how
patterns are disposed and how they are applied to obtain the class model for a specific
application. The order in which patterns are applied is usually also shown as a special
pattern component, named “Next Patterns”, which is defined during the pattern writing
(step 1.4).

It is important to notice that the graph shows only the interaction among patterns,
i.e., the order in which patterns are applied during the modeling of applications, but it is
not intended to show how the resulting system works, i.e., it is not a flowchart. The graph
presents a coherent way in which to apply or operate the patterns to achieve the desired
solution.

Besides being influenced by the optional patterns, the patterns application flow
is also influenced by other pattern elements, such as their variants, optional classes, and
elements. Cases may occur in which: a) the application of a certain pattern implies the
inclusion of certain elements in other patterns; b) the application of a pattern requires the
application of another pattern; c) one pattern should be chosen among several patterns; d)
the application of a pattern excludes the application of another pattern; or e) a pattern can
only be applied if another pattern has been previously applied. For example, in Figure 2,

257

SugarLoafPLoP 2007 Pattern Applications

Table 1. Summary of the pattern language
Pattern Problem
IDENTIFY THE | How do you represent the busi-
RESOURCE (1) | ness resources auctioned by the
system?
ENABLE How does your application al-
FAVORITE (2) low that resource categories of
more interest be established for
the customers?
AUCTION THE | How do you handle the different
RESOURCE (3) | types of resource auctions per-

formed by your application?
PROMOTE How does your application sup-

NEGOTIATION (4)) port the negotiation among auc-
tion trading parties?

HANDLE How does your application deal

BIDS (5) with the different types of bids
related to the several types of
auction?

MANAGE THE | How does your system manage

AUCTION the rules followed by the auction

HOUSE (6) house involved in the auctioning
process?

MANAGE How can your application pro-

REPUTATION (7)| vide subsidies for the parties to
evaluate each other trustability?
HANDLE How can your application pro-
REFUNDING (8) | vide ways to refund fees that
were unduly charged?

ENABLE How does your application man-

MESSAGES (9) | age the messages sent to cus-
tomers?

HANDLE How does your application man-

ADVERTISEMENT age auction advertising?
(10)

the Dutch Bid class belongs to a variant of pattern HANDLE BIDS, and it can only be used
if the Dutch Auction variant of pattern AUCTION THE RESOURCE has been used. So, a
dependency can exist among patterns and/or pattern variants application.

A strategy that can be followed when determining the patterns application order
is to start with patterns that represent the most basic domain functionalities and gradually
add patterns that represent more specific functionalities. Finally, the optional patterns
are added, because they represent problems not always present in domain applications.
However, the best place to place an optional pattern should be carefully analyzed, as it
often depends on the application of a mandatory pattern or should be applied immediately
after it. As mentioned before, a mandatory pattern can have optional elements, and thus
cases can occur in which the inclusion of an optional element of a mandatory pattern can
also imply in other further dependencies.

258

SugarLoafPLoP 2007 Pattern Applications

The OA Pattern Language graph is shown in Figure 3. The main language
patterns are split between two categories. The first is composed of required patterns
— (HIDENTIFY THE RESOURCE, (3)AUCTION THE RESOURCE, (5)HANDLE BIDS,
(6)MANAGE THE AUCTION HOUSE, (7Y MANAGE REPUTATION, (8)HANDLE REFUND-
ING, (10)HANDLE ADVERTISEMENT — which should be always applied, as they repre-
sent the essential requirements of an OA system. The second category is formed by pat-
terns that are only desirable — (2)ENABLE FAVOURITES, (4)PROMOTE NEGOTIATION,
(9)ENABLE MESSAGES — but not strictly necessary.

Required Patterns Optional Patterns

/- N\

|(1) IDENTIFY THE RESOURCE }\\

(2) ENABLE FAVORITE |

v
| (3) AUCTION THE RESOURCE <

| | (4) PROMOTE NEGOTIATION |

v
| (5) HANDLE BIDS }4/:/

|

(6) MANAGE THE
AUCTION HOUSE

|
el
|
|
|

| (7) MANAGE REPUTATION |

N

| (8) HANDLE REFUNDING | |

\LA{ (9) ENABLE MESSAGES |
A

| (10) HANDLE ADVERTISEME\IT

I J

Figure 3. Pattern Language Application Graph

7. Details of each pattern

A pattern is much more than a class structure and its description: it presents all the context
information in which it can be applied, the problem it solves, as well as the forces that act
to form the solution [Fowler 1997]. So, the pattern writing activity (step 1.4) has to be
carefully conducted so that each pattern can be correctly reused. The guidelines proposed
by Meszaros [Meszaros and Doble 1998] are very useful to produce well-written patterns,
so we recommend their use and reinforce them with some basic recommendations for
writing concise patterns.

The pattern language developer needs to establish a format for describing each
pattern. However, independently of the format chosen, for analysis patterns there are
some elements that are more likely to be present, such as “name”, “context”, “prob-
lem”, “structure”, “participants”, “related patterns”, and “next patterns”. The same for-
mat should be used for all patterns, although some elements might be optional. There are

2 [13 2 (13

259

SugarLoafPLoP 2007 Pattern Applications

several proposals in the literature for structuring patterns, among which we can mention
the Alexander format [Alexander et al. 1977], from which it was abstracted the Portland
Pattern Form; the Coplien format [Coplien and (eds) 1996]; and the GoF Pattern Form
[Gamma et al. 1995].

Having chosen an appropriate format, the pattern writing begins based on the gen-
eral pattern description and the information about the classes that compose the pattern,
obtained in step 1.2. This means that the pattern solution is the first item to be written, as
it was already defined in step 1.2 and, thus, it is easier to work with. The problem solved
by the pattern was also previously identified, so now it can be written and refined, if nec-
essary. The forces are the next item to be described, based on the problem/solution pair.
Considerations about the context in which the solution is applicable are made, trying to
raise questions about the many issues that lead to the solution and that could be modified
to attend other requirements or different contexts. At this time, pattern variants can be
discovered and included in the pattern language.

To improve the pattern description, the developer can search other patterns in the
same (or correlate) domain, so that analogies can be done to reuse the experience of other
pattern developers. Moreover, during this search the developer can find other patterns
for which the pattern being written is a variant, or patterns that complement it or can be
joined to other pattern languages. Thus, this searching process is important to ensure
that the pattern language references all co-related existing patterns, supplying alternative
solutions in case the current pattern is not applicable. The developer can also search
for analysis and design patterns that enhance the proposed solutions, complementing the
pattern language with references to other patterns or adopting the patterns as a real part
of the pattern language.

The documentation of each pattern is a time consuming task, usually demanding
several iterations to obtain a satisfactory result. While the patterns are being written in
detail, other patterns can be identified, as well as different relationships that might require
to alter the pattern graph. The pattern community recommends that every pattern language
be submitted to a writers’ workshop, for example by submitting it to a PLoP (Pattern
Languages of Programs) Conference, where the developer can improve it based on the
opinions of other experienced pattern authors. The pattern mining process suggested by
Buschmann and others [Buschmann et al. 1996] also contains this specific step of making
a writers’ workshop.

To illustrate this step we show, in Figure 4, part of a pattern of the OA Pattern
Language, which is responsible for handling the different types of online auctions. This
pattern has several optional elements, as for example the various types of auction. During
the pattern instantiation, the application developer chooses the types that fit the business
rules of the specific online auction being developed. Also, there are variants that can
be applied if necessary. Notice that there is a “Following Patterns” section to guide the
pattern language user during the instantiation process.

8. Validation

The pattern language validation (step 1.5) finishes the process of pattern language creation
from a domain class model. The goal is to validate the pattern language through its
application to different systems of the domain. Basically, this activity consists of studying

260

SugarLoafPLoP 2007 Pattern Applications

attributes, but other attributes may be added, depending on the particular insta

AUCTION THE RESOURCE the participant.
e Participant Role: Represents the role played by the participant in a specific auc
Context which can beSource Party or Destination Party (see below).

Your application deals with resources that have already been identified and categorized. The

resource auction may be considered as a property transference, in which a resource owned

by a party becomes owned by another party. When a trade is done through an auctio

the resource is put on sale by a trading party and several other parties try to buy it for th?xample

lowest possible price. There are several types of auctions that provide various options faFigure 2 presents an example of the)@&TION THE RESOURCE pattern adopted by

the trading parties, each with its own rules to define which of the buying parties will be thethe online auction site Arremate.com, which uddsiltiple Auction for both
winner. single and multiple product items. Arremate.com also uses two other auction t
Reserve Price Auction and Winner Auction , which is an instantia-
Problem tion of the Purchase Auction . eBay usesDutch Auction to trade mul-
How do you handle the different types of resource auctions performed by your application#iple product items andtandard Auction to trade only one item. It also pro
videsReserve Price Auction andPurchase Auction . iBazar has only
Forces Standard Auction andReserve Price Auction

e Information about the participants must be stored, both to supply the information
needed for the trading process and for the system functioning. Product User

e Itis important that several auction types be available, observing those that are more -
appropriate to certain types of resource, the quantity of auctioned resources, effi- 1. 1
ciency, and restrictions imposed by certain auction types, considering the environ- Has ¥

ment in which the trade occurs: the Internet. 4 ¥
User Role
Auction |:l

Auctions A

IDcode
. title
Therefore: startDate
Create classes to represent the different auction types and distinguish the roles played by Zﬁgg;’:e
participants. endDate Buyer
InitialPrice N . "
Structure shippingDetals Iconsult contact information
. . shippingPayment
Figure 1 shows the class diagram for the@¥10N THE RESOURCEpattern. paymentPolicy «Offers Seller
paymentDetails
— status 1. 1| 1consult contact information
Participant warranty
N numberOfVisit
Resource Ipresent Reserve Price Auction
1 ?close reservePrice
“?anticipated close 1 ?define winner
Has ¥ | « Destination Party ?define winner 2define second winner
‘ i Iconsult contact information Vst auction by buyer i
1r Participant Role ! Wiist auction by seller er]er Auction
AAuctions I#ist opened auctions 5”"5”353?"%
, Source Party t#ist ending auctions < adleﬂ"e winner
«Offers l#search by title fclose
Auction [1.+ 1 | consult contact information tsearch by seller Multiple Auction
Dcode - l#search closed auctions quantity
title t#tadvanced search 2define winner
startDate Standard Auction count number of visit 2define second winner
:tarl;l'lme ?define winner
“’aD“’" 2define second winner .
endDate Figure 2: AUCTION THE RESOURCEexample
initialPrice Reserve Price Auction
transportDetail reservePrice
transporlPaymenl ™ 2define winner
z:y:Z::;ZI":_‘VS ?2define second winner
y ! Variants
status Purchase Auction
Lp;:::;‘ purchasePrice To make the pattern language useful to different auction types, new classes represen
2diose Z‘C’Eﬁsf(‘: winner auction rules may be added as specializations ofhetion class. These new auctio
?anticipated close - types may need new attributes and methods. .)
?define winner Dbutch Auction In some systemStandard Auction is replaced bMultiple Auction
t#list auction by destination party (- quantity In this caseMultiple Auction is used both for auctions of a single item and f
Wlist auction by source party 2define winner several items
1#list opened auctions 2define second winner :
Wlist ending auctions :
1 i .
Wasareh by source pary Multiple Auction
Wsearch closed auctions quantit - Related Patterns
l#advanced search ?define winner 0 i aati
i 2define second winner This pattern is an application of patterns@oCIATION-OBJECT and TIME ASSOCIA-
TION. It is also a combined application of patternse®IFiC ITEM-TRANSACTION and
. . PARTICIPANT-TRANSACTION. The different auction types can be implemented using
Figure 1: Structure diagram forCTION THE RESOURCE STRATEGY design pattern.

Following Patterns

- After applying the AICTION THE RESOURCEpattern try to use theROMOTE NEGOTIA-
Participants TION pattern. If it is not applicable, then use thakbLE BIDs pattern.

e Participant: Represents the party - organization or person - who intends to auction or
acquire aresource. It has two specialized clasSesce Party andDestination Party
(see below). Notice that the same participant can play both roles in different auctions.
This is guaranteed by the use of thels pattern. ThestatusLogin attribute
indicates whether the participant has suppliedsode andpassword and,
therefore, can effectively participate in the auctions. It is important to notice that
passwords need special treatment during design, through a security policy , but we
are not considering such issues in this pattern language. This class has some basic

Figure 4. Example of a Pattern in the Online Auction Pattern Language

the requirements documents of applications being modeled, studying and applying the
pattern language based on the requirements document, and evaluating the class model,
comparing the desirable requirements with the application class model.

An important aspect to be considered here is the fact that other applications, rather

261

SugarLoafPLoP 2007 Pattern Applications

than those used to build the pattern language, must be modeled using the pattern language
to enhance its validation and, also, to improve the language itself, as new features can be
incorporated to it.

However, it should be clear that a complete validation of the pattern language
is a very difficult task, as a great number of applications would have to be modeled to
guarantee its uselfulness. Our experience shows that the validation process should try to
model a set of applications that use, at least once, each pattern and pattern variant of the
pattern language.

Figure 5 shows part of a model obtained through the application of the OA Pattern
Language, as a first step for the development of a specific online auction system (Arre-
mate.com). The tags show the roles played by each class in the corresponding patterns.
Notice that, in this particular OA system, only reserve price and standard auction are
allowed, and almost all patterns were applicable (except pattern #9).

9. Concluding Remarks

In this work we present a systematic process to obtain a pattern language for a specific
domain. This pattern language is composed of analysis patterns that can be applied when
modeling applications in that domain. It helps novices to model applications, as each pat-
tern contains insights about the problems to solve in the domain, as well as the solutions
that better solve these problems.

Representing domain knowledge through pattern languages is an effective way
of easing systems modeling. Our research group has conducted an experiment in which
students and professionals had to produce the analysis models of information systems
using or not a pattern language to support them. The results have shown that better
models were produced in less time when using the pattern language, when compared
to those groups that did not use it. These experiments are described in detail elsewhere
[Braga et al. 2003].

After creating the pattern language, it is easier to develop one or more
frameworks that can be used to instantiate the patterns and to create concrete ap-
plications. This can be done by following the process proposed in another work
[Braga and Masiero 2002b]. A tool to automatically instantiate such framework can also
be built [Braga and Masiero 2002a, Braga and Masiero 2003]. The construction of prod-
uct lines for a specific domain can also be easied using such an approach, as the pattern
language could be considered as a domain-specific language used to model concrete mem-
bers of a product family.

Even though we are aware that a pattern language should be complete, as men-
tioned in Section 2, we can not guarantee that pattern languages created using our process
will have this feature. We provide some conditions for that, such as delimiting the scope
of the pattern language and reverse engineering at least three meaningful applications in
the domain, so that the minimum common functionalities are available. But, of course,
new functionalities can appear after the pattern language is created. Thus, we can say it
is complete in a certain moment in time and within a certain scope, but we cannot ensure
its everlasting completeness.

262

SugarLoafPLoP 2007 Pattern Applications

User P#3:Participant P#6:Auction iBazar
pseudonym House U0 Places p Advertisement
firstName : . startDate
lastName maxTimeEvaluation 1 * | endDate
) * » 1 | maxTimeUpdateEvaluation
e-mail Uses ; : status
maxTimeSecondWinner
password) . ?start ad
maxTimeUpdateAuction 2end ad
address Message maxTimeAdvertisement / :
plr;oneNumber P#9: date Tshow rules *
city . time 2 -
; Message ?accept rules P#10:
ZipCode textMsg ?login Advertisement
country readingStatus NE
sex messag
dateOfBirth -4 Receives ;‘gﬁzw new s is Advertised in A
statusLogin * 1 1send «_Sends N
Tnofify register 0.*
?confirm register . Marks - " Conducts b« Auction
Isend password again IDcode
1 1 | 0.* * | title
P#5: Rt startDate
P#3: Marked startTime
Has'y¥ Participant Role Marked duration
* / Pr———— endDate
- Hlist marked auctions . initialPrice
User Role Bid ist auctions in process Austion || increment
value I#list auctions finished uction transportDetails
date
JAN) status
time Ipresent
B comment o « Has 1| 2close
Bid mm ?define winner
Does ' I#list auctions by destination party
A\ 1.* I#list auctions by source party
— P#7:_ H#list opened auctions
P#3: Reputation I#list ending auctions
Destination | | AOffers #search by title
Party i#search by source party
Reputation 0.* 1| #search closed auctions
1 comment I#advanced search
1.4 Qualifies 0-" “AEnables
Buyer h ds;g 1.0 01 | A
1 Indicates » 0-" [; |
Iconsult contact information ! #list received votes
lilist issued votes
0. | 1#list votes
P#3: -4 Qualifies -
Source 0.
Party
1
1 .
Seller Indicates B Offers p-
Iconsult contact information | 1 P#4:Question
0..
is Related to A
Question
questionText 0.*
date P#1:Resource
time | Product |)
1#list auction history P#1: 4 [tte <«Auctions
1#list seller history Category dﬁs;:ntplon -
i . photo -) ;
His pource histo I R v a— Reserve_Price_Auction
yis Answered by #list by category [)iizefirr\:ZF\:vrilr?ﬁer
* I i ?
0.. Category ;#search by title p#3:Reserve || vder
P#4: name l#search by category Price Auction
Answer P, description I#advanced search
answerText Wist by name
date 1#search by name Standard Auction
time

P#3:Standard
1 0.2 ction 2define winner

N winner
is SubCategory of p-

Figure 5. Example of a System modeled using the Online Auction Pattern Lan-
guage

References

Aarsten, A., Brugali, D., and Menga, G. (2000). A CIM Framework and Pattern Lan-
guage, pages 21-42. Domain-Specific Application Frameworks: Frameworks Experi-
ence by Industry, M. Fayad, R. Johnson, —John Willey and Sons.

Alexander, C. et al. (1977). A Pattern Language. Oxford University Press, New York.
Beck, K. and Cunningham, W. (1987). Using pattern languages for object-oriented

263

SugarLoafPLoP 2007 Pattern Applications

programs. Relatério Técnico n. CR-87-43. available on January 2007 at the URL:
http://c2.com/doc/ocopsla87.html.

Braga, R. T. V,, Germano, F. S. R., and Masiero, P. C. (1999). A pattern language for
business resource management. In 6th Pattern Languages of Programs Conference
(PLoP’99), Monticello — IL, USA.

Braga, R. T. V., Germano, F. S. R., and Masiero, P. C. (2003). Experiments on pattern
language-based modeling. In 17° SIMPOSIO BRASILEIRO DE ENGENHARIA DE
SOFTWARE (SBES 2003), Manaus — AM, Brazil.

Braga, R. T. V. and Masiero, P. C. (2002a). GREN-Wizard: a tool to instantiate the GREN
framework. In Caderno de Ferramentas do 160 Simpdsio Brasileiro de Engenharia de
Software (SBES 2002), pages 408-413, Gramado-RS.

Braga, R. T. V. and Masiero, P. C. (2002b). A process for framework construction based
on a pattern language. In Proceedings of the 26th Annual International Computer
Software and Applications Conference (COMPSAC), pages 615-620, IEEE Computer
Society, Oxford-England.

Braga, R. T. V. and Masiero, P. C. (2002¢c). The role of pattern languages in the in-
stantiation of object-oriented frameworks. Lecture Notes on Computer Science, 2426-
Advances in Object-Oriented Information Systems:122—131.

Braga, R. T. V. and Masiero, P. C. (2003). Building a wizard for framework instantiation
based on a pattern language. Lecture Notes on Computer Science, 2817-Evolution of
Object-Oriented Information Systems:95-106.

Brown, K. and Whitenack, B. G. (1996). Crossing Chasms: A Pattern language for
Object-RDBMS Integration, The Static Patterns, pages 227-238. Addison-Wesley. in
Vlissides et al., 1996 Pattern Languages of Program Design 2.

Brugali, D. and Menga, G. (1999). Frameworks and pattern languages: an intriguing
relationship. ACM Computing Surveys, 32(1):2-7.

Brugali, D., Menga, G., and Aarsten, A. (2000). A Case Study for Flexible Manufacur-
ing Systems, pages 85-99. Domain-Specific Application Frameworks: Frameworks
Experience by Industry, M. Fayad, R. Johnson, —John Willey and Sons.

Buschmann, F. et al. (1996). Pattern-Oriented Software Architecture - A System of Pat-
terns. Wiley.

Cheesman, J. and Daniels, J. (2001). UML Components. Addison-Wesley.

Coad, P, North, D., and Mayfield, M. (1997). Object Models: Strategies, Patterns and
Applications. Yourdon Press, 2 edition.

Coplien, J. O. (1998). Software Design Patterns: Common Questions and Answers, pages
311-320. Cambridge University Press. in L. Rising - The Patterns Handbook: Tech-
niques, Strategies, and Applications.

Coplien, J. O. and (eds), D. S. (1996). Pattern Languages of Program Design. Addison-
Wesley, Reading-MA.

264

SugarLoafPLoP 2007 Pattern Applications

Cunningham, W. (1994). Tips for writing pattern languages. Available
on January 2007 at the URL: http://www.c2.com/cgi/wiki?
TipsForWritingPatternLanguages.

Cunningham, W. (1995). The CHECKS Pattern Language of Information Integrity, pages
145-155. Addison-Wesley. in J. Coplien and D. Schmidt (eds.) - Pattern Languages of
Program Design.

Fowler, M. (1997). Analysis Patterns. Addison-Wesley.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). Design Patterns: Elements
of Reusable Object-Oriented Software. Addison Wesley.

Gomaa, H. (1996). Reusable software requirements and architectures for families of
systems. Journal of Systems and Software, pages 189-202.

Johnson, R. E. and Woolf, B. (1998). Type Object, pages 47-65. Addison-Wesley. in
Martin, R.C.; Riehle, D.; Buschmann, F. Pattern Languages of Program Design 3.

Meszaros, G. and Doble, J. (1998). A Pattern Language for Pattern Writing, chapter 29,
pages 529-574. Reading-MA, Addison-Wesley.

Pazin, A. (2004). GAwWCRe: Um gerador de aplicacdes baseadas na web para o dominio
de gestdo de clinicas de reabilitacdo (in portuguese). Master’s thesis, Universidade
Federal de Sao Carlos, Sao Carlos — SP.

Pazin, A., Penteado, R., and Masiero, P. C. (2004). SiGCli: A pattern language for reha-
bilitation clinics management. In 4* Conferéncia Latino-Americana em Linguagem de
Padrées para Programagdo (SugarLoafPlop), Porto das Dunas - CE, Brasil.

Prieto-Diaz, R. and Arango, G. (1991). Domain Analysis and Software System Modeling.
IEEE Computer Science Press Tutorial.

Ré, R., Braga, R. T. V., and Masiero, P. C. (2001). A Pattern Language for Online Auc-
tions. In 8th Pattern Languages of Programs Conference (PLoP’2001), Monticello —
IL, USA.

Rational, C. (2000). Unified Modeling Language. available on January 2007 at the URL:
http://www.rational.com/uml/references.

Riehle, D. and Zullighoven, H. (1996). Theory and Practice of Object Systems, volume 2,
chapter Understanding and Using Patterns in Softwre Development. John Wiley &
Sons, New York — NY, USA.

Roberts, D. and Johnson, R. (1998). Evolving Frameworks: A Pattern Language for De-
veloping Object-Oriented Frameworks, pages 471-486. Pattern Languages of Program
Design 3, Martin, R.C., Riehle, D. , Buschmann, F. — Addison-Wesley.

Shimabukuro, E. K., Masiero, P. C., and Braga, R. T. V. (2006). Captor: Um gerador
de aplicagdes configurdvel (in portuguese). In Anais da XIII Sessdo de Ferramentas
do XX Simpdsio Brasileiro de Engenharia de Software, pages 121-128, Floriandpolis,
SC, Brazil.

265

SugarLoafPLoP 2007 Pattern Applications

POREI: Patterns-Oriented Requirements Elicitation
Integrated — Proposta de um Metamodelo Orientado a
Padréao para Integracao do Processo de Eliciacéo de
Requisitos

Kleber Rocha de Oliveira*?, Mauro de Mesquita Spinola

Tecnologia em Sistemas de Informacao — Faculdades Integradas de Bauru (FIB)
17056-100 — Bauru — SP — Brasil

Departamento de Engenharia de Producio — Universidade de S&o Paulo (USP)
Cidade Universitaria — Caixa Postal 61.548 — 05508-900 — S&o Paulo — SP - Brasil

kleber@softvip.com.br, mauro.spinola@poli.usp.br

Abstract. The requirements elicitation is essential to the success of software
development projects. Many papers have been written that promulgate specific
elicitation methods. However, none have yet modeled elicitation in a way that
makes clear the critical role played by situational knowledge. This paper
presents a unified model of the requirements elicitation process that
emphasizes the applying the concepts of patterns as it transforms the current
state of the business requirements and the situation to an improved
understanding of the requirements and, potentially, a modified situation. The
values of this model are: (1) an improved understanding of elicitation helps
analysts improve their elicitation efforts and (2) as we improve our ability to
perform elicitation, we improve the likelihood that systems we create will meet
their intended customers’ needs.

Resumo. A atividade de eliciacdo de requisitos € essencial para o sucesso de
projetos de software. Muitos artigos difundem apenas os métodos de eliciagdo
de requisitos. Entretanto, € incomum encontrar artigos que modelem a
eliciacdo como um meio de estabelecer a compreenséo e o entendimento de
problemas nas diversas situacfes. Este artigo apresenta um modelo do
processo de eliciacédo de requisitos que prioriza a aplicacdo dos conceitos de
padrdes (patterns) na compreensdo das necessidades da organizagdo. Os
principais beneficios do modelo sdo: (1) Melhorar a compreensdo no
processo de eliciacdo e (2) Como podemos evoluir nossas habilidades na
execucdo das atividades de eliciagdo, tornando dessa maneira mais
compreensiveis necessidades dos usuarios.

1. Introducéo

Analistas experientes possuem maior facilidade na atividade de construcdo de software
por adquirirem conhecimentos de solugdes recorrentes que podem ser aplicadas em
diversas situacGes similares. Tais solu¢des podem ser documentadas adequadamente no

266

SugarLoafPLoP 2007 Pattern Applications

formato de padrées, sendo que, um padrdo pode ser visto como a descricdo de uma
solucdo de um problema recorrente em um determinado ambiente para facilitar a sua
utilizagdo diversas vezes, sem, no entanto implementar a solu¢cdo da mesma forma duas
vezes [Sommerville and Sawyer 1997].

Na Engenharia de Software, a idéia de padrdes encapsulam as melhores solucdes
baseadas em anos de desenvolvimento de aplicacdes, observacdo e experiéncia. Para
encontrar a melhor solugéo, o desenvolvedor deve entender o problema, o contexto e as
forcas que governam esse problema [Gause and Weinberg 1990]. Dessa forma, 0s
padrdes ajudam na construcdo de sistemas confidveis, seguindo os passos de outras
construcdes de sistemas de sucesso [Harrison, Foote and Rohnert 1990].

Alexander (1979) postula que a proposicao por tras dos padrdes diz respeito ao
fato de que a qualidade dos sistemas de software pode também ser medida
objetivamente. Ele sabia que as estruturas ndo poderiam estar separadas do problema
que tentavam resolver. Portanto, em sua pesquisa para identificar e descrever
consisténcia da qualidade de projeto, ele percebeu que teria que observar diferentes
estruturas projetadas para resolver o mesmo problema [Gamma et.al. 1995]. A esta
concepcao, como sabido, deu-se 0 nome de padrdes, na qual definiu como “uma solucéo
para um problema em um determinado contexto” [Alexander 1979].

Assim como em outras areas, a aplicabilidade dos conceitos de patterns na
Engenharia de Requisitos vém sendo aprimorada nos ultimos anos, e os resultados de
cada solucgéo sdo armazenados para que possam ser reutilizados em novos projetos, mas
habitualmente de forma ndo estruturada [Shalloway and Trott 2004]. Portanto, esta
pesquisa visa propor um arcabouco baseado em padrdes, relacionados ao processo de
eliciacao® de requisitos de software, baseado nos preceitos que levaram Gamma et al. a
criar solugbes padronizadas as diversas situacdes encontradas na Andlise Orientada a
Objeto. O intuito é aplicar o modelo na integracdo dos métodos de eliciacdo de acordo
com cada situacdo, proporcionando ao engenheiro de requisitos a compreensdo dos
problemas. Este modelo recebe a denominagdo POREI - Patterns-Oriented
Requirements Engineering Integrated.

2. Patterns e a Producéo do Software

No ambito da engenharia, o arquiteto Alexander observou a semelhanca nas solucfes
pertinentes a arquitetura urbanista, na qual foi suficiente para que pudesse postular o
famoso conceito de patterns, através da trilogia “A timeless way to builting, A pattern
language e The Oregon Experiment” que constituem o ideério coeso do arquiteto, na
qual defendia a seguinte proposicao:

(...) Cada padréo descreve um problema que se coloca, vez
por outra, em nosso entorno, e traz em si mesmo o nucleo da
solugdo para esse problema, de tal forma que se possa

! Atividade também ¢ identificada pelo verbo “elicitar’, porém, ndo se recomenda a utilizacdo deste termo, uma vez
que, a mesma deriva-se de “elicit”, proveniente da lingua inglesa,e ausente (até 2007) no idioma portugués,
segundo a Academia Brasileira de Letras. Debates sobre o termo tém mostrado que “elicitar” é na verdade uma
composi¢do de véarios verbos da lingua portuguesa, como segue: eliciar + clarear + extrair + descobrir, ou seja,
tornar explicito, obter o maximo de informagdo para o conhecimento do objeto em questéo [Leite 1989]. O verbo
“eliciar” é o que mais se aproxima do termo inglés, portanto, tem sido recomendado sua utilizagdo no meio
académico, inclusive optado nesta artigo.

267

SugarLoafPLoP 2007 Pattern Applications

utilizar essa solugdo mais de um milhdo de vezes, sem
necessidade de repeti-la nunca da mesma maneira
[Alexander 1979].

O conceito foi adotado e expandido posteriormente por Gamma et. al. (1995) na
obra Design Patterns, onde aborda tais doutrinas para solucionar problemas
relacionados a analise orientada a objetivo na construcdo de software. Pesquisas
direcionadas a producdo de software baseadas nos estudos de patterns tem sido
amplamente difundida, visto os resultados obtidos pelo cientista computacional Richard
Gabriel, que vislumbrou caminhos na aventura tedrica de Alexander.

No eléastico mundo do conhecimento, ndo é incomum a migracdo de enunciados
e de principios de um campo da ciéncia para explicar fenbmenos de outra origem
epistemoldgica. E se a concepcdo arquitetural se alicer¢a em analogias, parece razoavel
admitir uma interpretacdo inversa, onde um certo paradigma tedrico do pensamento
arquitetdnico possa estimular a interpretacdo de problemas de projetos de outra area da
criacdo contemporanea [Buschmann 1996] [Gause and Weinberg 1990].

No prefacio do livro de Gabriel (1996), Christopher Alexander deixa
transparecer surpresa com o fato, mas também alguma magoa pela incompreensdo de
Seus pares:

“(...) O que teve de fascinante para mim, na verdade,
inteiramente surpreendente, foi que no ensaio dele (Gabriel),
um cientista da computagéo, para mim um desconhecido, e
com quem nunca havia me encontrado, me pareceu entender
mais sobre o que tenho feito e o0 que venho tentando em meu
proprio campo, do que meus proprios colegas arquitetos”.
(Alexander, preféacio [Gabriel 1996]).

Gabriel (1996) percebe e pde em evidéncia naquele conjunto de ensaios a
relacdo possivel entre 0 método gerador de formas e estruturas de Alexander e a
oportunidade de propor uma acepgdo no campo dos sistemas orientados ao objeto. Isso,
em esséncia, se da pelo reconhecimento de que, em um caso e outro, 0 processo € o de
associacdo de “entidades” que funcionam como blocos de uma linguagem. Nos dois
casos se esta diante de processos que projetardo por analogias. Apds a detalhada
interpretacdo do pensamento de Alexander, langa algumas bases para o
desenvolvimento de uma teoria propria, de certa maneira apontando ja os caminhos de
uma interface cognitiva distinta, isto é, uma diferente forma de construir o
conhecimento através de um processo de simulacdo que, no caso, se vale do
isomorfismo entre entidades arquiteténicas e partes de uma linguagem computacional.
Na concepcao de linguagem (informatica) de Gabriel estdo presentes, entre 0s principais
aspectos da “teoria alexandriana”:

i) A capacidade de geracdo de padrBes como partes intercambiaveis, capazes de
metamorfoses conforme a atividade e a posicdo geométrica que ocuparem no programa;

ii) A geracéo de softwares caracterizados pela autonomia semantica entre suas partes;

iii) A construcdo de softwares habitaveis, ou seja, configurados por linhas de codigo
compreensiveis por um grande nimero de pessoas da comunidade informética;

iv) O desenvolvimento de softwares que possam evoluir a partir de um crescimento
incremental e;

268

SugarLoafPLoP 2007 Pattern Applications

v) Quando necesséarios, softwares complexos poderiam ser estruturados através de
conexdes com outros programas pré-existentes.

De muitas maneiras, a idéia sintetizada como linguagem de padrdes, vis-a-vis 0
sentido de totalidades, sugere um processo de sucessivos acoplamentos, de partes
maiores ou menores, na conformacéo da estrutura do software ou de um sistema. Pode-
se entdo falar que isso revela um modo onde estrutura e organizagdo convergem para a
idéia de rede, que se realiza nos muitos planos de coordenacao e controle do processo.

Até mesmo em jogos, 0s conceitos de patterns sdo aplicaveis. Wright (2001),
criador do SimCity, afirma que sua inspiracdo original para o jogo foram as 256 regras
de design contidas no livro “A Pattern Language”, [Alexander 1979], cada qual baseada
em um aspecto do comportamento humano. A idéia basica € que o projeto de construcéo
deve refletir aspectos desse comportamento em diferentes escalas.

A aplicacdo de patterns para o entendimento do problema e captura dos
requisitos de um sistema véem sendo difundido entre diversos grupos de pesquisa, onde
inclusive se produz certa quantidade de artigos sobre o tema e suas aplicabilidades, de
forma satisfatéria. Um grupo que tem forte destaque nesta linha de pesquisa é a alemd
Deutsches Elektronen-Synchrotron (DESY) Socios da Associacdo de Helmholtz, é um
centro de pesquisa nacional apoiado por fundos de divida publica, localizada em
Hamburg e Zeuthen (Brandenburg), reconhecidamente um dos principais centros de
aceleragdo gravitica (prétons e elétrons) no mundo [Deutsches 2006].

Portanto, propor um modelo para orientar o levantamento de requisitos, baseado
nas praticas primarias e corolarios de patterns se torna plenamente viavel, pois além de
agilizar o processo de eliciacdo dos requisitos de software, pode aumentar a qualidade
dos documentos gerados no projeto, inclusive observar falhas nos processos
organizacionais, consequentemente sugerir mudancas e melhorias.

3. Reuso Aplicado a Engenharia

Reuso de artefatos em geral tem sido um objetivo primordial em Engenharia de
Requisitos. A propria utilizacdo do termo reuso € uma demonstracdo do quanto reuso é
essencial e também do quanto ele ndo esta sendo atingido. Todas as tradicionais
disciplinas de Engenharia estdo tdo intrinsecamente baseadas na grande quantidade de
reuso de elementos, que o termo reuso nem € mencionado. Afinal reuso é parte
integrante de praticamente tudo que se faz em Engenharia. Estas clausulas comuns
formam uma boa definicdo de Engenharia, pois estdo relacionadas com a criacdo de
solucBes eficientes, para problemas préaticos, através da aplicacdo de conhecimento
cientifico, construindo coisas a servico da condi¢cdo humana [Sawyer , Sommerville and
Viller 1997].

Para atingir este objetivo, uma Engenharia utiliza conhecimentos cientificos
sobre dominios tecnoldgicos que estdo codificados de uma forma que seja diretamente
util para um engenheiro. Deste modo este conhecimento codificado prové respostas para
questdes que ocorrem comumente na pratica. Ou seja, este conhecimento deve ser
reutilizado para a geracdo de solugdes [Czarnecki and Eisenercker 2002].

Engenharia também pode ser entendida pela distin¢do entre trabalho criativo e
trabalho rotineiro. Trabalhos rotineiros sdo aqueles que envolvem a solucdo de
problemas conhecidos e, portanto facilitam a reutilizacdo de grande parte de outras

269

SugarLoafPLoP 2007 Pattern Applications

solugdes ja aplicadas a problemas similares. A construcdo de uma rodovia por
engenheiros civis é geralmente um trabalho rotineiro. A menos que o relevo da regido
seja tdo diferente que requeira solugdes novas. Nestes casos, onde solugbes novas séo
necessérias, o trabalho a ser realizado é denominado de trabalho criativo. Engenharia
estd fortemente relacionada com trabalhos rotineiros [Sawyer , Sommerville and Viller
1997].

4. Reutilizacdo de Requisitos

Uma das caracteristicas de um processo de desenvolvimento maduro de software é a
reutilizacdo de artefatos gerados em seus ciclos iniciais e intermediarios [Sommerville
and Sawyer 1997] [Paulk 1993]. No caso da reutilizacdo de requisitos deve-se
contemplar explicitamente 0 modelo de processos, assim como ter um suporte
automatizado. Os principais motivos de aplicar técnicas de reutilizagdo em Engenharia
de Requisitos, ao menos neste ponto de vista, ndo é simplesmente reduzir custos e
aumentar a qualidade, que evidentemente sdo fundamentais, mas também ter boa
performance em produtividade, cumprindo dessa forma os prazos estabelecidos pelos
contratos.

A introducdo sistematica da reutilizacdo em Engenharia de Requisitos pode
levar a uma troca radical entre os planejamentos habituais sobre o processo a seguir,
conduzindo a fazer uma Engenharia de Requisitos baseadas em componentes, de forma
similar a como esta sendo produzido em nivel de implementacéo.

Oportunamente, poderia alegar situacBes em que o Engenheiro de Requisitos
dispde de um repositorio suficientemente rico, o processo de eliciacdo-analise-
documentacdo-validacdo vai ser substituido por outro em que, as funcbes que
necessitam de um cliente, se obtiverem os requisitos selecionados em uma série de
requisitos, nos quais relacionamos rastreabilidade, indicam que os componentes de
software deveriam organizar-se para implementar um sistema que dé ao cliente a
solugédo de seus problemas. Esta situacdo seria parecida com que a produz quando se
adquire um produto modular pré-fabricado: o cliente escolhe de um catalogo em funcéo
de suas necessidades, conhecendo desde o primeiro momento o custo de sua escolha
[Sommerville and Sawyer 1997].

5. Modelo PORELI: Patterns-Oriented Requirements Elicitation Integrated

O modelo apreciado na figura 1, assim como os preceitos de Alexander (1979), cada
padrdo descreve um problema que ocorre repetidamente no nosso ambiente e, portanto,
descreve o cerne da solucdo desse problema, de tal forma que pode-se utilizar essa
solucéo diversas vezes repetitivamente, sem nunca fazé-la duas vezes do mesmo modo
[Alexander 1979].

Para que 0s processos sejam mais reutilizaveis, organizagdes precisam expressar
elementos comuns e varidveis dentro de um processo. Frameworks fornecem um
mecanismo para obter esta reutilizacdo e sdo bem apropriados para dominios onde
varias aplicaces similares sdo construidas varias vezes, partindo-se apenas de idéias
[Hollenback and Frakes 1996). Pesquisas voltadas para patterns também tém mostrado
que eles sdo ferramentas efetivas para a reutilizagdo [Meszaros and Doble 1998]
[Gamma et. al. 1995].

270

SugarLoafPLoP 2007 Pattern Applications

Portanto, tais pesquisas anteriores serviram para aplicar a idéia de padrbes de
projeto a padrdes de requisitos. Aqui € descrita uma estrutura para catalogar e descrever
padrbes de projeto. Como se vé na figura abaixo, foram identificados 20 padrdes de
requisitos, contemplados por muitas pesquisas, mas nédo aplicados de forma estruturada.

Ambiente Dominio da Informacao
Dinamico Estatico Estrutural

Dominio
Cognitivo

Figura 1. Modelo de Padréo de Requisitos?®

Existem diversos formatos ou templates para a descricdo de padrBes de
requisitos de softwares. Alguns sdo quase puramente textuais escritos em prosa livre,
enguanto outros sdo mais estruturados [Gamma et.al. 1995]. Embora haja tantas op¢oes,
ndo existe um formato padronizado pela comunidade de software, principalmente
porque diferentes tipos e dominios de padrbes podem exigir diferentes maneiras de
apresentar tais padrGes. Mesmo assim, ha certo consenso geral sobre elementos
essenciais que devem ser contemplados e comunicados por qualquer padréo,
independentemente do formato utilizado [Gamma et.al. 1995] [Shalloway and Trott
2004].

5.1. Definicéo dos elementos do modelo

As notacBes graficas, embora sejam importantes e Uteis, ndo sdo suficientes. Elas
simplesmente capturam o produto final do processo de projeto como relacionamento
entre 0s casos de usos e demais diagramas, Para reutilizar os requisitos, devemos
também registrar decisdes, alternativas e analises de custos e beneficios que levaram a
ele. E evidente que exemplos concretos reforcam o conhecimento sobre o tema e o
problema [Gamma et.al. 1995] [Shalloway and Trott 2004].

Assim como o0 conceito de Design Patterns, serd descrito os padrdes de
requisitos usando um formato consistente, ou seja, cada padréo € dividido em se¢Oes de
acordo com suas caracteristicas que envolvem: o Nome, a ldentificacdo, o Problema, a
Solucdo, o Ambiente, as Forcas, e principalmente os Exemplos. Tal gabarito fornece
uma estrutura uniforme as informacdes, tornando os padrdes de requisitos mais faceis
de aprender, comparar e usar.

A relacdo dos padrdes de requisitos catalogados neste modelo, assim como suas
classificacdo e intencdes sdo listados na tabela 1 que segue:

2 O Ambiente, a Classificacéo e os Tipos de Requisitos que fazem parte do modelo apresentado (figura 1), ndo foram
criados pelos autores, ou seja, sdo contemplados e utilizados plenamente pela comunidade de software. S&o
principios que refletem o que tem sido aprendido sobre projetos em sistemas de informacéo, de alta qualidade para
problemas especificos.

271

SugarLoafPLoP 2007 Pattern Applications

Tabela 1. Catalogo de padrGes de Requisitos
Padrio Descricio
User Beconhecer wmudrcs oque terfio diveto de uso do sisterna da infrernagio.
Scere Transreait reatdade visal o a atrosfera dos beaw onde decorre a agio.
Eshogar maneras pela cual se realza wma operagio, segqmdo detenamardas
niornas, método ou técrica.
Cloptest Discnrmar idéias de wna fimermatidade, expondo o graude fonmabdade ou
de mireadade erdre as fases,
Orgarzar iwidades planejadas 4 determmadas proporedes e destmada a
renrir-se 01 astar-se a otras widades andlogas, devanas rareras,
fornandn wrn todo borogéneo e fimeonal.
Indicar relagio erdre as partes (de o todo) néo-fimeonaks de oo sisterna,
Lgoresate | ernoue cada wroa delas mardérn a anforora e a consisténcla propmas.
Inferir schre dispoetrore, fico ou bgico, que faz a adaptacio entre o
Interface | sbterna e o sudnn, 4 respeto da s
Security Ihnstrar sobre dispostiroos, fisico ou lageo, relatn-ns a seguranga dos dades
{atmrs mtanghes).
Cuahficar as propredades, atindos e condigies dos recmrsos que ersobem
a constgin do skterna da rdbrrmagio e quarhficar waa escala de valores
sl fue pennte svabar e, conseqilerdernerde, apomear, acelar ou recusar,
cjuakjuer dispostineo do seterma.
Corrbmar terapo dhl aphcado, de certo dispostirm, fxco oubgico, ao ssterna
Dhpability | cque proporcone performance sabefatdnia e garanba dos processos.
Dirionary Deefmir goesdnn de tewoos, siga, nomenclaturss splhicados aos processos de
HEZOCKS,
atmctwe | [ivverdanar estnihara fisica pela qual as indorrnagies 1r8o fhor.
. | Escaher tecrolgas (ferramentas e recmsos), meétodo e processo de
Tpleneitaton repkrnerdacin d%amssl’éema ; &
Rotear mforrmagdes, ehedandd todos os pordos de dbastecmendo e
Lrchtectre | reorgarzacio dos pacotes de dades e estraibra das mdbnnagtes.

. I Fropor uso de corponentes de conexin aos dispostiveos, bzeos e ficos, do

Process

sEtetna.
... | Belaconar ocorréncias dos flon atematios e restigdes a0 cendnos do
Relatumship auterna.
Variatomn E:-:pmm.r possivels vanagies das excegies oconidas ros fhos das
irformagdes ern fimgio do cordexto.
T Estnatwrar métodos e prafcas contmeertes relareos a recperagio de falhas

no sistemas.

Mlanerrer | Detectar desnios nos fhioos de irdotrnactes e derdficar suas abemattras.

it Flaraficar ongers das exceges, on sga, eshogar o roodo na qual ocorre sua
Origm CONCERGED.

Os padrbes podem variar de acordo com sua granularidade e no nivel de
abstracdo. Pois cada padrdo tem suas peculiaridades e torna-se necessario organiza-los
de maneira a fazer sentido sua aplicacdo. Portanto, nés classificamos os padrbes de
requisitos por dois critérios (figura 1). O primeiro critério, baseado no conhecimento do
Dominio da Informacao, reflete o tipo de requisito identificados em qualquer ambiente.
Os padrGes podem, nessa visdo, ter a caracteristicas de serem dinamicos, estaticos,
estrutural e inversos. Os padrGes dindmicos estdo relacionados com o0s requisitos

272

SugarLoafPLoP 2007 Pattern Applications

funcionais de um sistema da informacgéo. Os padrdes estaticos estdo relacionados com
0s requisitos ndo-funcionais do sistema, e que refletem a qualidade do sistema. Ja os
padrdes estruturais estdo ligados aos requisitos técnicos, e por fim, os padrdes de
excecdo, relacionados aos requisitos de excegéo, ou seja, expdem os fluxos alternativos,
assim como regras e exce¢des a regra basica de parte do sistema.

O segundo critério, chamado Dominio Cognitivo, especifica se 0 padrdo se
aplica ao Conhecimento, Compreensdo, Aplicacdo, Anélise e Sintese. Na tabela 2 segue
as descricdes desses Dominios Cognitivos.

Tabela 2. Dominios Cognitivos

Sdo informagdes de idéias ¢ fendmenos atmazenados, podendo ser especifico,
Conhecimento | geral, abstrato ou estrutural. Designa modo de operagdes ¢ técnicas gerais do
tratamento de temas ¢ problemas.

Grau de entendimento ou percepeiio de algo que estd sendo transmitido sem
Compreensiio | necessariamente relacioni-la com outras matérias ou ver todas as suas
implicagdes.

Uso da abstragio em situagdes especificas ¢ coneretas. Podem apresentar-se

Aplicagido | sob forma de idéias gerais, normas de procedimento ou método geral. Podera
ser ainda prineipios, leis, teorias que devem ser recordadas ¢ aplicadas.

Divisdo de uma communicagido em seus elementos ou partes constituintes, de
i modo que a relativa hierarquia de idéias apareg¢a claramente ou a relagiio
Anilise e : ! :] " i
entre as idéias expressas se evidencie. Busca identificagéio destas conexdes e

interagdes entre elementos.

Envolvemn a reumio, ordenag¢io ¢ combmagio de segmentos, partes,
Sintese elementos, em um padriio ou estrutura anteriormente nédo especificadas. Exige
a combinag¢fio de partes da experiéneia prévia com novo material.

Existem diversas maneiras de se organizar os padrdes, pois as maiorias dos
padrdes devem ser usados em conjunto. Por exemplo, o padrdo User é frequentemente
usado com o Scene e o Interface. Alguns padrdes resultam em requisitos semelhantes,
embora tenham intencGes diferentes. Outros padrdes sdo alternativos: O Quality pode
ser um padrdo alternativo para o Architecture.

Outra forma, ainda, de organizar padrdes de requisitos é de acordo com que eles
mencionam outros padrées no modelo de relacionamento. A figura 2 ilustra estes
relacionamentos graficamente.

273

SugarlLoafPLoP 2007

Pattern Applications

Drability Security Structure Recover
p combinar tempo L1til 1 o n ilustrar dispositiva fisico 1 n 1 estruturar[nétndns de 0.n
i . a 1.n recuperagio de falhas - 0.n
Dicionary Origin
Adaregate 0.n
0..n 2
fDrmngrcumpnnentes de
u.n definir glossario planificarorigens conexdo aos dispositivos
indicar relagdoentre as pEtekmos das exceghes .
partes ndo-funcionais estruturarmetodos e
praticas contingentes
1 n 1.0 0.1
Module discriminar funcionalidades Context “iariation
exprimir variagdes 0 1
1.0 1 TN das excepfies 1 il
£ Cormponent propor uso de componentes Irmplementation
eshogarmaneiras pela qual
se realiza uma operagdo 0. 1.n 1.n
1 n
Frocess rotear informagdes
T de implementacdo
transmitir realidade wisual
1
detectar desvios nos 1 : Architecture
Maneuver fluxos de informagaes Scene reconhecer usuarios User
; 5 . : [] 1.n
L F I . ..n oA
inferir sobre dispositivos qualiﬁcaras
relacionar ocorréncias dos da usahilidade propriedades
fluxo alternativos e restricdes
1.n detectar as caracteristicas 0.n
0.n Interface do artefato QA uality
Relationship 1.n o.n

Figura 2. Relacionamento dos Padrdes de Eliciacdo de Requisitos.

274

SugarLoafPLoP 2007 Pattern Applications

5.2. Como os padroes solucionam problemas de projeto

Os padrbes de requisitos solucionam muitos dos problemas que os engenheiros de
requisitos enfrentam diariamente, e de muitas maneiras diferentes. Apresentaremos a
seguir varios problemas e como os padrdes de requisitos solucionam:

- Definindo os usuérios (stakeholders): Basicamente todos os sistemas sofrem o impacto
da participacdo de pessoas, empresas (fornecedores, clientes, parceiros, terceirizados
etc) e até coisas (servidores, outros sistemas, tecnologias em geral etc). Com este padréo
é possivel identificar usuarios ou coisas que sofrem influéncia direta e indiretamente do
sistema e definir seu papel, responsabilidades e relaciona-los aos cenérios afins.

- Eliciando os cenérios: Os cenarios sdo sequéncias de interacdes entre o sistema entre o
sistema e seus atores. Um conjunto de cenarios pode dar uma boa descri¢cdo de como o
sistema Serd sempre usada descricdo minima como a descricdo do sistema antes de
entrar no cenario (pré-condigdes), o fluxo de eventos, as exce¢des, atividades paralelas
e as descrigdes dos estados do sistema apoés a atividade do cenério. O padrdo favorece a
reutilizacdo destes fluxo de eventos e suas ligacOes, reduzindo dessa forma o trabalho
de eliciar determinados requisitos.

- Definindo a qualidade do produto: Muitos dos requisitos seguem normas de qualidade
de produtos e processos, como as publicadas pela 1SO, SEI/CMU, NBR, BS entre
outros 6rgdos regulamentadores espalhados pelo mundo. A qualidade com que as
informacdes chegam ao seu receptor € muito importante, portando tratar desses itens é
fundamental para agradar aos usuarios e patrocinadores dos projetos. Os padrbes neste
caso auxiliam na escolha da norma e seu conjunto de critérios de acordo com o historico
de aplicabilidade como se fosse uma “jurisprudéncia” na area de Engenharia de
Software.

- Quantificando o tempo util da tecnologia: Quanto tempo leva para certa tecnologia se
defasar? Quanto ndo tem profissionais com conhecimento necessario para manipulé-1o0?
Ou quando o fornecedor deixa de produzir tal ferramenta? Ou talvez quando as
informacdes ndo chegam da forma, velocidade e consisténcia, que deveria chegar ao seu
receptor? Portanto o padrdo de requisitos, de maneira analoga a percep¢do do usuario
em relacdo seu carro, sua casa, poderd criar critério que determinem a validade de
determinadas tecnologias em relagdo ao produto que estd comprando. Esses limites
seriam determinados levando em conta critérios como estrutura necessaria para garantir
a satisfacdo dos usuarios, tempo de resposta a uma determinar tomada de deciséo, e
obviamente deveriam ser calibradas com o passar do tempo através de aplicacdo de
benchmarking.

- Familiarizar com os termos, siglas e conceitos desconhecidos: Técnica que procura
descrever os simbolos de uma linguagem na area de Engenharia de Requisitos da-se o
nome de Léxico Ampliado da Linguagem (LAL) [Leite et.al., 1997]. A idéia central do
LAL ¢ a existéncia da linguagem da aplicacdo. Esta idéia parte do principio que no
universo de informagdes existe uma ou mais culturas e que cada cultura (grupo social)
tem sua linguagem propria. Portanto, o principal objetivo (e desafio) a ser perseguido
pelos engenheiros de requisitos € a identificagdo de palavras ou frases (peculiares) ao
meio social da aplicacdo sob estudo. Somente apo6s a identificacdo dessas frases e
palavras é que se procurara seu significado. A estratégia de eliciar € ancorada na sintaxe

275

SugarLoafPLoP 2007 Pattern Applications

da linguagem, gerar um glossario indexado que a possibilita de confrontar seus
significados e rastrear suas aplicabilidades dentro de um contexto definido.

6. Concluséao

O modelo, que faz parte de uma pesquisa de doutorado, vislumbra os beneficios que a
padronizacdo pode fornecer quando se estabelece uma estrutura aplicavel a qualquer
situacdo. Embora seja evidente a necessidade de uma boa documentacgdo que oriente o
profissional em sua jornada no processo de eliciagdo dos requisitos, a proposta de
utilizar os conceitos de padrbes traz mais eficiéncia na identificacdo dos elementos
chaves do ambiente de informacéo e proporciona a reusabilidade com mais qualidade,
mapeando a solucdo de problemas recorrente a producéo de software.

A rastreabilidade é também um item a ser observado, pois muitas dessas
solucdes dependem de outros artefatos para gerar o resultado esperado, e 0 modelo
proposto traz essa ligacdo encapsulada em cada um dos padrdes proposto.

Enfim, as mesmas necessidades e desafios encontrados em outras areas da
Engenharia séo refletidos na area de construcdo de Sistemas de Informacdes, portanto
ndo se devem fechar os olhos para as idéias e solugdes que se encontram proximos e
passiveis de exploracdo, experimentacdo, adaptacao.

Referéncias

Alexander, C. (1979) “The Timeless Way of Building”, Oxford University Press.

Buschmann, F. et al.(1996) “ Pattern Oriented Software Architecture: A System of
Patterns”, John Wiley & Sons.

Czarnecki, K., Eisenercker, U.W.(2002) “Generative Programming”,Addison-Wesley.
Deutsches.(2006) “Elektronen-Synchrotron: DESY, http://www.desy.de, Agosto.

Gabriel, R. P. (1996) “Patterns of Software: Tales from the software community”,
Oxford: Oxford University Press.

Gamma, E. et al.(1995) “Design Patterns: Elements of Reusable Object-Oriented
Software”, Reading, MA : Addison-Wesley.

Gause, D. C., Weinberg, G. M.(1990) “Are Your Lights On? How to Figure Out What
the Problem Really Is”. 1ed. USA : Dorset House Publishing Co. Inc., 157 p.

Harrison, N.; Foote, B.; Rohnert, H.(1999) “Pattern Languages of Program Design”,
Addison-Wesley.

Hollenbach, C. ; Frakes, W.(1996) “Software Process Reuse in an Industrial Setting”,
Fourth international Conference on Software Reuse, Orlando, Florida, IEEE
Computer Society Press, Los Alamitos, CA, pp 22-30.

Leite, J.C.S.P. (1989) “Viewpoint Analysis: A case Study”, IWSSD'89 Fifth
International Workshop on Software Specification and Design. (Pittsburg,
Pensylvania, USA) 1ed.USA : ACM Sigsoft Engineering. Proceedings, may, p111-
119.

276

SugarLoafPLoP 2007 Pattern Applications

Leite, J.C.S.P. et al.(1997) “Enhancing a Requirements Baseline with Scenarios”,
ISRE'97 Third International Symposium on Requirements Engineering. (Annapolis,
Maryland, USA) 1ed.USA: IEEE CSP, Los Alamitos, CA.Proceedings, p 44-53.

Meszaros, G.; Doble, J. (1998) “A Pattern Language for Pattern Writing”, Reading, MA
. Addison-Wesley.

Paulk, M. C. et al.(1993) “Capability Maturity Model for Software”, Version 1.1.
Technical Report CMU/SEI-93-TR-024, Software Engineering Institute, Carnegie
Mellon University, http://www.sei.cmu.edu, Junho.

Sawyer, P.; Sommerville, 1.; Viller, S. (1997) “Requirements Process Improvement
Through The Phased Introduction of Good Practice”, Software Process -
Improvement and Practice, http://www.comp.lancs.ac.uk, Junho.

Shalloway, A; Trott, J.(2004) “Explicando padrfes de projeto : uma nova perspectiva
em projeto orientado a objeto”, traducdo Ana M. de Alencar Price. Porto Alegre:
Bookman.

Sommerville, 1.; Sawyer, P. (1997) “Requirements Engineering (A Good Practice
Guide)”, 1led. England : John Wiley & Sons Ltd, 391p.

Wright, R.(2001) “Game design: theory and practice”, Interview in ROUSE Il11, Plano,
Texas: Wordware Publishing.

277

SugarLoafPLoP 2007 Pattern Applications

Aplicando Padroes de Projeto em Computago Movel
Mauro Strelow Storch, André Rauber Du Bois, Adenauer Correa Yamin

! Escola de Inforratica - Universidade Calica de Pelotas(UCPEL)
Pelotas — RS — Brasil

{mst or ch, duboi s, adenauer }@icpel . t che. br

Resumo. Asrede de computadores@&siem constante evolég, causando tam-

bém uma evolp de toda a estrutura da compuag que atua sobre elas.
Hoje em dia existeméarios recursos computacionais conectados em rede, e
pesquisadores tentam tirar proveito do poder computacional dispbnas re-

des de larga escala. Uma nova abordagem para se aproveitar esses recursos se-
ria o uso da mobilidade debddligo, ou programas fveis. Um programa ovel

pode iniciar sua exec@® em uma @quina da rede e depois mover-se para
outra maquina onde continua a sua exeéo¢ Apesar das vantagens adquiri-
das com o uso da computag nbvel, esse tipo de sistema ainganuito difcil

de programar. O objetivo deste traball®implementar padies de projeto

gue tornem maisakil a programaéo de sistemas com mobilidade deligo.
Foram identificados pades de computé@p nmbdvel e estes foram modelados
como paddes de projeto do tipo Template Method. A grande vantagem desses
padrdesé que o programador o precisa se preocupar com a prograraac

de baixo fivel desse tipo de sistema, ele apenas escolhe cpadis projeto

gue descreve o comportamentoval desejado. Para testar os péess desen-
volvidos nesse trabalho, implementou-se uma agenda colaborativa didaibu
gue usa os padres de projeto identificados para implementar todddtga de
mobilidade de édigo do sistema.

Abstract. Nowadays almost all computing resources are connected in networks,
and researchers are trying to take advantage of the computational power avali-
able in large scale networks. A promissing aproach is to use code mobility, or
software mobility. A mobile program can initiate its execution in a host and then
move itself to another host where it continues its execution. Despite the advan-
tages acquired with mobile computation, this kind of system is still very difficult
to program. The objetive of this work is to design Java classes that encapsulate
common patterns of mobile computation. These classes should help in the de-
velopment of systems that use code mobility. We have identified three common
patterns of mobile computation and implemented them as Template Method de-
sign patterns. The advantage of these patterns is that the programmer does not
need to worry about the low level details of programming mobile systems, he
just has to choose the mobility pattern that describes the desired mobile behav-
ior. To test the mobility patterns developed in this work, a distributed meeting
scheduler was implemented that uses the design patterns identified to implement
all the code mobility of the system.

278

SugarLoafPLoP 2007 Pattern Applications

1. Introducao

As redes de computadores @stem constante evolag, principalmente com a
disseminago da Internet. Junta evolu@o das estruturas de red@, tami&m a evolugo
do software que atua sobre essas estruturaséid ik poder compartilhar informaes
atra\es da rede abriu um leque muito grande dedeggara utiliza@o de seus recursos.
A partir dai surgiram linhas de pesquisaor® para o compartilhamento de inforndes,
mas tamem para o compartilhamento de todos os recursos que uma rede de computa-
dores pode oferecer. Uma abordagem para o compartilhamento de recursos em redes de
larga escala seria o uso th@bilidade de édigoou programas rveis[Fuggetta et al. 1998].
Um programa ravel possui a capacidade de mover-se entre&gumas de uma rede e
executar suas instries em qualquer uma delas. Desta forma um prograteinpode
utilizar os recursos dispdreis localmente em cada uma daaquinas da rede, em uma
perspectiva muito mais flexel que aquela explorada com componentes disttdmiem
localiza@es pe-fixadas.

Alem de especificar o algoritmo a ser executado, um prograavelnamtem
deve descreverarios outros aspectos @eordena@o do aplicativo, e.g., como o pro-
grama sex dividido entre as arias naquinas do sistema, quando partes do programa
devem ser movidas, comuni@a; sincronizago etc. Dessa maneira, a implemeatade
programas que utilizam computss noveisé tio ou mais ditcil do que a implement&p
de sistemas distrilddos tradicionais. O objetivo deste trabab@apresentar pages de
projeto para computap nbvel que facilitem a programag desse tipo de sistema. Os
padides apresentados neste artigo facultam ao programador especificar esse tipo de sis-
tema usando um maioivel de abstrago.

Em [Du Bois et al. 2005b] foram identificado®$r padbes como de uso recor-
rentes na computaop nmovel.

Neste artig@ apresentada a modelagem desseeadiomo untemplate method.
Sendo assim, estes pads foram implementados como classes abstratas na linguagem de
programagoJaval[Java 2006]. Essas classes abstratas permitem que o prograraador n
se preocupe com 0s aspectos de baixelrda coordendp de programas oveis. Ao
desenvolver uma aplicag nbvel o programador deve apenas escolher ogmdgue mel-
hor descreve a aplicaQ e estender a super-classe do dadmplementando &todos
abstratos que descrevem as compigagiue sé&o executadal®calmentenas naquinas
gue a computap nbvel ira visitar. Aspectos como sincroniZege comunicaio das
computages ndveis §i0 herdados da classe pai.

Este artigee organizado da seguinte maneira: nad®e®; os conceitos de Pées
de Projeto, incluindo o pado de projetdemplate method, e compugnbvel S0 re-
visados. Em seguida, na @c3, os padies de projeto para prograndacnbvel a0 ap-
resentados. Para demonstrar a usabilidade do®$emdesenvolvidos, a implemerdac
de uma agenda colaborativa distiithaé descrita na Sép 4. A agenda usa os péés de
projeto identificados para implementar toda a comusicate ©digo movel do sistema.
Finalmente os trabalhos relacionados e as codekigio discutidos nas sees (Seg@o 5)
e (Se@o 6) respectivamente.

279

SugarLoafPLoP 2007 Pattern Applications

2. Fundamentos

2.1. Padrdes de Projeto

Historicamente os Pades de Projeto foram identificados pelo arquiteto Christo-
pher Alexander no final dos anos 70, que fez a seguinte afirm&a@a padéo descreve
um problema no nosso ambiente elwleo da sua soludp, de tal forma que vécpossa
usar essa soliip mais de um mibo de vezes, sem nuncad&dn da mesma maneira.
Embora Alexander estivesse falando de padrde constri@gs civis, o que ele diz ver-
dadeiro em rel&@o aos padyes de projeto utilizados na compiag No centro de ambos
os tipos de padres esio as soluges para os problemas em seu devido contexto.

Um padé&o descreve uma solag para um problema que ocorre com fieacia
durante o desenvolvimento de software, podendo ser considerado como um par "pro-
blema/solugo”’[Bushamnn and Meunier 1995]. O uso de [iedr proporciona um vo-
cabubrio comum para a comunicag entre projetistas, criando absfiag num ivel su-
perior ao de classes e garantindo uniformidade na estrutura do software [Gall et al. 1996].

Os Padbes de Projetod classificados, de acordo com a granularidadeed de
abstrag@o, em tés categorias diferentes [Gamma et al. 1998p &las:

e De Criagao: Criar ou instanciar objetos.

e Estrutural: Reunir objetos existentes.

e Comportamental: Prover uma maneira de manifestar comportamentdvééx
(variavel).

Os paddes de projeto para compudagnbvel descritos na ség 3 $io modelados
comoTemplate Methods classificados como pdils do tipo comportamental. Basica-
mente um pado Template Metho@ uma classe abstrata que define uatadogabarito
e descreve o esqueleto de um algoritmo, postergando a @efiskcalguns passos para as
sub-classes. Este pa@drpermite que sub-classes redefinam certos passos de um algoritmo
sem mudar sua estrutura.

2.2. Computa@o Movel

Computa@o Movel pode ser definida de diferentes formas dependendwoeda
Quando falamos dbardware, associamos esse termo a mobilidasied dos equipa-
mentos, commotebooks laptops. Poem naarea desoftwarechamamos Computag
Movel quando um programa se move entre equipamentos interligados por uma rede de
computadores [Cardelli 1999].

Este artigo trata sobre CompugadViovel naarea desoftware, ou sejanobilidade
de ddigo. Nesse caso, uma comp@agrovel pode iniciar sua execag em um nodo
de uma rede e em certo ponto ser movida para um outro nodo da estruturaiditribu
dando continuidade a sua exegag¢ Assim a comput@p pode ser executada localmente
em \arios nodos, utilizando o aximo dos recursos dispmeis na rede.

A mobilidade de software traz tardim vantagens para os @sios de dispositivos
moveis. Um usario de um dispositivo de pouco poder computacional pode enviar um
programa para ser executado nos recursos computacionais existentes em uma rede e re-
conectar novamente mais tarde para receber os resultados dessa camputac

280

SugarLoafPLoP 2007 Pattern Applications

3. Padrdes de Projeto para Computagéo Movel
3.1. Formas Recorrentes de Computaip Movel

Em [Du Bois et al. 2005b], foram identificadog$rformas recorrentes de compu-
tacdo nbvel que ocorrem em sistemas de aqéisige informages distribidos [Callan 2000].
Nesse tipo de sistemartias bases de dad@osanalisadas em busca de alguma info@mac
em comum. Este tipo de aplicgé considerada unigiller Application para a computa-
cao movel [Fuggetta et al. 1998]. Os pédss identificadosa®:

e Mmap: Descreve o multicast de compuag aos nodos de uma rede.

e Mfold: Descreve uma computag que visita uma lista de nodos executando ins-
trugdes e recolhendo valores.

e Mzipper. Descreve uma computag que visita os nodos de uma rede buscando
um valor comum em todos 0s nodos.

No artigo citado, os pades &o identificados e implementados em uma ex@ens
para mobilidade deddigo da Linguagem funcional Haskell [Haskell 2006]. Os padr
sao implementados contésqueletos de Mobilidade, i.dunges de alta ordem, que en-
capsulam pades recorrentes de compudiacnovel. Uma das principais vantagens dos
Esqueletos para Mobilidadefacilitar a programao de aplicages ndveis. Essa facili-
dade ocorre pois 0 programad@mse preocupa com o0s aspectos de baixel mla mo-
bilidade de édigo, mas apenas com a implemeatada computap que se&x executada
localmentenos nodos da rede.

Um dos problemas dassqueletos de mobilidadeo fato de eles estarem modela-
dos e implementados em uma linguagem de pesquisa, usando um paradigma de progra-
magio de difcil aceitag@o no mercado de desenvolvimento de software. O objetivo desta
se@o do artigee modelar e implementar os pads identificados em [Du Bois et al. 2005b]
usando a linguagem de progrardaclava. Os nomes dos paes foram inspirados
em fun@es ftpicas de linguagens funcionais cujo comportamento, embaoacom-
porte distribui@o e/ou mobilidade, assemelham-se aos@esdpropostos. Dessa maneira
pretendemos tornar maiadil a programa&o de sistemas com mobilidade de software
pois 0s padies estaio descritos, modelados e implementados usando um paradigma de
programago largamente utilizado no mercado. Para isso osteadsefio modelados
como paddes de projeto do tiptemplate method implementados usando a linguagem
de programad@o Java.

3.2. Estrutura para Mobilidade dos Padrdes

Para desenvolver os Paes de Projeto para CompudagMovel, foi necesaria
a implementago de uma estrutura baseada $otketpara mover e executar programas
remotamente utilizando os recursos existentes na linguagem de progmiaae.

A estruturaé composta basicamente desicomponentes:

1. InterfaceExecut e- Interface Java que descreve como executar objetos remota-
mente. Possui uranico nétodo abstratexecut ar () que deve ser implemen-
tado por todos os objetos a serem executados remotamente.

2. Classdrenpt eCr eat e- Esta classe possui doighodos estticos para a cridp
remota de objetos. O @wodocr eat eS recebe como argumentos umadguina

281

SugarLoafPLoP 2007 Pattern Applications

remota e um objeto do tipBxecut e, e move uma ingincia do objeto para a
maquina remota. Assim que o objetamovido, o seu &todoexecut ar () &
chamado. O resultado da chamadax&cut ar () , um objeto do tipder i a-
| i zabl e, & enviado de volta para aaguina que chamou oétodocr eat eS. A
classeRenot eCr eat e possui tambm um nétodocr eat eA queé uma verao
as$ncrona do ratodocr eat €S, ou seja, executa o objeto remotamente sem es-
perar por uma resposta.

3. ServidorJMSer ver - E um servidor presente em todas asquinas do sistema.
Ele recebe objetos enviados pel@todoscr eat €S e cr eat eA e 0s executa
automaticamente.

A estrutura implementada bem mais simples que outras existentes em java, e.g., RMI
[Grosso 2001] e Voyager [Voyager 2006], disponibilizando somente os reclasuo$
necesarios para o desenvolvimento dos @@l de projeto.

3.3. O PadaoMrap

O padéo mais simples de computag; mbvel identificadoé o Mrap, tamkem
chamado déMulticast. Esse pado define uma aplicap que envia uma computag a
todos ohostsde uma lista passada como @aretro. Qvirep retorna uma lista, do mesmo
tamanho da lista deost s, que coném o resultado da execg das computégs, como
pode ser visto na Figura 1.

nodo nodo 3 podo 4
comp comp /

Mmap

nodo 1

Figura 1. mmap - Multicast

A Figura 2 apresenta o diagrama UML da modelagerivtdmp como um padio
de projetoTemplate Method. A classe abstrifaap possui um atributo privadbost s
gue coném os nodos da rede a serem visitad@ésimicializado atra&s do construtor da
classe. Qunico método que o programador deve implementar quando estende a classe
Mrap € o netodo abstratexecut ar () que descreve o que a compwtageve fazer
em cada uma dasaquinas que visita. O @todogoMrap() € o netodogabarito da
classe, que deve ser chamado para gMeap seja ativado.

Na Figura 3 um exemplo simples de usoMuap € apresentado. A clas§k a
herda as funcionalidade de mobilidade do padvhap e a sua exec@p consiste em
visitar uma lista ddostse imprimir a string A a! !’ em cadahost. Como o resultado
retornado pela computag remota irrelevante, elé simplesmente ignorado no exemplo.

3.4. O Pad@aoM ol d

Este padiio descreve uma compugque visita uma lista de nodos em uma rede,
executando uma computag em cada nodo e combinando os resultados produzidos us-

282

SugarLoafPLoP 2007 Pattern Applications

<<Interface>> RemoteCreate
Execute
+createA(b:Execute,host:String): void
— J+executar(): Serializable +createS(b:Execute,host:String): Serializabl

+hosts: String[]

+<<create>> Mmap(hosts:String[]l)f = = = = = = = = = = = = = =
+goMmap(): Serializable[]
——————— 4D> +executar(): Serializable

|
I
1
! Mmap
|
|
1
1

Figura 2. Diagrama de Classes do Padr ao Mrap
class O a extends Mmap{
A a(String[] hosts){ super(hosts); }

public String executar(){
Systemout.printin("dal!l");
return "Ck";

}

public static void main(String[] args){
String [] hosts = (...) // lista de hosts

A a oi =new 4 a(hosts);
oi . GoMmap();

Figura 3. Exemplo de uso do Mrap

ando um operador. Quando atingé@lima maquina a ser visitada, i ol d devolve o
resultado da computag para a raquina inicial. A Figura 4 ilustra o funcionamento deste
pad@o.

A Figura 5 apresenta o diagrama UML da classe que implementaagdds| d.
Da mesma forma que bhap, este foi modelado como uma classe abstrata onde foi
definido um nétodo gabarito (goM ol d()) respoasgel pela mobilidade e doisatodos
abstratosexecut ar () eoper ador () que devem ser implementados quando a classe
M ol d for estendida. O @todoexecut ar () descreve a computag que Sex execu-
tada em cada nodo e oétodooper ador () & responavel por combinar os resultados
produzidos em um acumulador. O construtor da cl&dsd d recebe como argumen-

mfold mfold
[—

nodo 2 nodo 3 nodo 4
mfold resultado
nodo 1

Figura 4. Mfold - Sistema de Aquisic 4o de Informag¢ Ges

283

SugarLoafPLoP 2007 Pattern Applications

tos um valor inicial para o acumulador e a lista de nodos a seigtados. O netodo
gabaritogoM ol d() & usado para iniciar a exe@a;doM ol d.

<<Interface>> RemoteCreate
Execute
+createA(b:Execute,host:String): void
— J+executar(): Serializable +createS(b:Execute,host:String): Serializabl

/

Mfold

+hosts: String[]
+acum: Serializable

+<<create>> Mfold(hosts:String[],acum:Serializable) - -
+goMfold(): Serializable

——————— -D +executar(): Serializable
+operador(a:Serializable,acuml:Serializable): Serializable

Figura 5. Diagrama de Classes do Padr ao Mol d

O programa da Figura 6 usa o padiM ol d para visitar nodos de uma rede
e coletar seus nomes. O construtor da cl&3seet or recebe como argumentos uma
lista vazia, usada como acumulador e a lista de nodos a serem visitadogto@om
execut ar () usaget Host Nane() para pegar bost nane e o metodooper ador ()
combina os nomes de todas asquinas visitadas em uma string. @t@dogoM ol d()
dentro domai n inicia a execugo doM ol d e retorna uma string contendo o nome de
todas as raquinas visitadas pela compugagrovel.

cl ass Col etor extends M ol d{

Col etor (String[] hosts){
super (hosts,"");
}

public Serializable executar(){

String res="",
try{

res=| net Addr ess. get Local Host () . get Host Nane() ;
}catch(Exception e){Systemout.println(e);}
return res;

}

public Serializable operador(Serializable incluir,
Seri al i zabl e acunul ador) {
return (acunulador + " " + incluir);

}

public static void main(String[] args)
throws Excepti on{
(.-2)

String [] hosts = (...) // lista de hosts
Col et or c=new Col et or (hosts);

resul t ado=c. goM ol d();
System out. println(resul tado);

Figura 6. Exemplo de uso do Padr &o M ol d

Registra-se que algumas aplidag implementadas com o padiM ol d tamkem

284

SugarLoafPLoP 2007 Pattern Applications

podem ser implementadas usando o patitrap, porem os programas t&o um compor-
tamento operacional completamente diferente, como pode ser visto nas figuras 1 e 4, i.e.,
noMrmap o controle da aplicaip retorna sempre para aquina inicial e o paé&oM ol d
sempre executa@ntinua@o da computago na poxima naquina a ser visitada.

3.5. O Padiao Mei pper

O Padio Mzi pper descreve uma computag nbvel que tenta encontrar um
valor que seja satisfatio a todos 0os nodos de uma rede. O vaadestado com um
predicado em cada nodo, e caso o predicado falhe, a corapuagovida para o nodo
inicial da rede, onde um novo valérgerado e a busca recomecada. A Figura 7 ilustra o
comportamento do padio.

- ST mz1pper
,,:Wi,mzl)per
nodo 2 nodo 3 nodo 4
mzipp _,,f,,,,,f""l';’esultado
nodo 1

Figura 7. Comportamento do Mzi pper

A Figura 8 mostra o digrama UML do padrMzi pper . No construtogé passada
a lista de nodos que a compudagdevea visitar. O nétodogoMezi pper () € o metodo
gabarito, e os @todo abstratoexecut ar () e predi cado() se@o implementados
pelas sub-classes. Oétodoexecut ar () € sempre chamado no primeiro nodo da
lista para gerar um valor inicial. Esse varvalidado nos demais usando @todo
pr edi cado(). Quando o predicado falha, a comp@aé movida novamente para o
primeiro nodo e um novo valdr gerado usando@xecut ar () . O Mzi pper termina
guando todos os nodos concordaram com um valor ou quando o nodo idiciglode
mais gerar valores para serem comparados.

<<Interface>>

RemoteCreate
Execute
+createA(b:Execute,host:String): void
— J+executar(): Serializable +createS(b:Execute,host:String): Serializabl

+hosts: String[]

+<<create>> Mzipper(hosts:String[]) p === == === = = = =
+goMzipper(): Serializable
——————— 4D> +executar(): Serializable
+predicado(a:Serializable): boolean

|
I
1
! Mzipper
|
|
1
1

Figura 8. Diagrama de Classes do Padr ao Mzi pper

285

SugarLoafPLoP 2007 Pattern Applications

O programa da Figura 9 apresenta um programa simples questggatrar um
horéario livre em agendas distrilias nas raquinas de umarede. Cetodoexecut ar ()
busca um hdrio livre na naquina inicial. Este haério € enBo testado em todas as
maquinas usando o @odopr edi cado(). Se uma das Aguinas A0 possui esse
horario livre, a computago volta para a primeiraaguina e chama o@todoexecut ar ()
novamente para que este gere um nov@hor

cl ass Agenda extends Mi pper{

public Horario executar(){
return (horarioLivre());

publ i ¢ bool ean predi cado(Horario horaAtual){
if (verificaHorario(horaAtual)) return true;
el se return fal se;

}

public static void main(String[] args){
Seri al i zabl e respost a;
Agenda agenda=new Agenda();

respost a=agenda. goMzi pper () ;
if(respostal! =null){
Systemout.println("Hora livre nas agendas:" + resposta);

}
}
}

Figura 9. Exemplo de uso do padr &o Mezi pper

4. Estudo de Caso: Agenda Colaborativa Distribida

Nesta sego descrevemos a implemerdagde uma aplicaép nmbvel que usa 0s
padides de projeto descritos para implementar todesta de computdges no sistema.
A aplicag@@o € umaagenda colaborativa distridda que consiste em uma agenda que
possui uma lista de compromissos e permite agendar compromissos com outras agendas
distribudas pela rede. O objetivo da apliéag@ disparar uma comput@g novel que
visita agendas em aguinas remotas tentando achar umahiordispofivel em todas as
agendas para marcar um compromisso. Quandoarib@ achado, este deve ser comuni-
cado a todas as agendas que participam do sistema. Essag@papaesenta dois pams
de mobilidade. O primeiré a ickia de uma computao quevisita nodos da rede e realiza
acbes, ou seja, visitar os nodos procurando pel@tior Na sego 3 vimos dois pades
gue apresentam esse comportamento, i.&f, @ d e o Mzi pper. O segundo pado
de computago nbvel & a ickia de enviar uma compuag para todas asaquinas, ou
sejaMrap, informando o haario do compromisso. Nas@ximas seg@es, duas diferentes
implementades da agenda colaboratidosapresentadas usando os padrdescritos an-
teriormente.

A Figura 10 mostra a janela principal da agenda distdéu Esta possui dois
botbes que representam os dois Pedrde Projeto para ProgrardagMovel utilizados
para validago dos hatrios. Logo abaixo dos b@és ta uma lista onde encontram-se
os enderecos IP dasaguinas onde e&b rodando as outras agendas (apbesgguais a

286

SugarLoafPLoP 2007 Pattern Applications

esta). Essa lista pode ser modificada a@sale dois bdies (add, remove), & nela que
0 uslario indica com quais agendas deseja marcar o evento, ou seja, 6epadmente
irao visitar os enderecos selecionados.

i pgenda Colaborativa Distribuida

| sair

Hora | Compromisso
&:00 14/110/105 12:18:48
g:30 10:30

ggg Freuniao Geral Revisda de Material de Expediente
10:00 mfold | mazipper

10:30 Revisdo de Material de Expediente 102.168.0.234
11:00 200.132.12.190

11:30
12:00 192.168.1.19

12:30 Almogo com Amigos
1300

1330

14:00

14:30

149:00 Entrega dos Boleting Informativos
146:30

16:00

16:30

17:00

17:30

18:00 Ligar para Pedra

18:30
19:00

Add | Remove

Figura 10. Janela Principal da Aplica¢ &o

4.1. Agendamento com o Padio Mfold

O agendamento de eventos em agendas remotas usandaolfaalr d &€ acionado
com umclick no bo&onf ol d da aplica&o.

O objetivo doM ol d na agenda visitar uma lista de aguinas e computar a
intersec@o das listas de harios livres de todas asaquinas. A agenda implementada
estende a super-clasgeol d implementando os gtodosoper ador eexecut ar. O
métodooper ador () retorna a interse@p de dois arrays com hamos dispoiveis e
0 métodoexecut a() & usado para ler localmente em cadagoina um arquivo que
coném os hoarios livres de cada agenda. Depois de executagtodogoM ol d(), o
M ol d visita todas os hosts pegando osdr@s livres de cada agenda (execut ar ())
e computando a interseig desses harios (oper ador ()). No final dvf ol d retorna
os hoérios livres comuns todas as @quinas. O resultade apresentado ao Lo
gue escolhe um dos hanios para a reuaid. O hoario selecionad@ enfo enviado para
todas as agendas atémvdoMrap, que faz omulticastde uma computap que faz o
agendamento em todos os hosts dahorescolhido.

4.2. Agendamento usando o Paéwo Mzi pper

Na implementago da agenda distribda a super-classkzi pper € estendida
de forma parecida com o programa apresentado na Figura %t@aexecut ar ()
e implementado de forma a buscar umarar livre na agenda da aquina em que
chamado, sendo somente executado na primeaguina a ser visitada. Ag chamar
execut ar (), o Mzi pper visita as outras @quinas testando o hao livre com o
métodopr edi cado (). predi cado() recebe como argumento o aoio livre cor-
rente e compara este com os dmiws livres da raquina sendo visitada. Se o hdp
sendo pesquisado tagrn esh livre na naquina corrente, ki pper visita a pbxima

287

SugarLoafPLoP 2007 Pattern Applications

méaquina da lista. Caso co@trio, oMzi pper volta para a primeira aAguina e gera um
novo ho#ério para ser pesquisado usando novamexiex ut ar () . No final temos como
resposta um hario que est livre em todas as aguinas, ou um valor nulo , que indica
gue rao existe um hario livre comuma todas as agendas visitadas. $3&opper con-
segue achar um hario livre, a reuriio € marcada em todas as agendas usardoap,
assim como foi feito na implementag com oM ol d.

4.3. Comparag@o da aplica@o dos padioes

Apesar da mobilidade necésm na Agenda distribda poder ser descrita us-
ando os padresMzi pper e Mol d, o padéo de mobilidade presente nas diferentes
implementadesé bem diferente. Na implemengesgusando d/ki pper, a computago
move pelas raquinas carregando apenan ho@ario para ser agendado. Toda a vez que
esse hadrrio € negado por uma das agendas a compuotaolta para a primeira agenda
e pede um novo hario. B na implementa&p usando dff ol d, a computago car-
rega umdista de hoarios livres, e vai cruzando essa lista com as listas encontradas em
cada uma das aguinas que visita. A implementag usando &f ol d parece ser mais
oportuna para a agenda distfitha ja que a lista de harios a ser carregadapequena.
Dessa maneira a compudagriio precisa voltar para aaguina inicial toda a vez que um
horario & negado por uma aguina remota. Quando a lista de valores a serem compara-
dos nas raquinas remotas grande, por exemplo um banco de dados, fica praticamente
impossvel carregar toda a base de dados junto com a confuiagvel. Nesse caso o0
pad@oMzi pper & o mais adequado.

5. Trabalhos Relacionados

Os padodes apresentados neste texto modelados damplate Methodspodem
ser assciados @dgortithmic SkeletongCole 1989], que &o abstrages para programag
paralela, geralmente implementadas em linguagens funcionais contefude alta or-
dem, que encapsulam paeés de paralelismo, comuni@;e/ou sincronismo de tarefas.
Abstra@es de mais altoiwel para a programag distribuda tami@ém eséo surgindo,
como por exempl®@ehavioursa linguagem Erlang [Erlang 2006]. Compldagrovel &
um campo relativamente mais novo mas que vem crescendo. Exiat&an linguagens
moveis, e.g., [Conchon and Fessant 1999, Du Bois et al. 2005a, Wojciechowski 2000, Knabe 199¢
Voyager 2006, Cardelli 1995], pam poucas abstraes de alto tvel para programap
foram desenvolvidas. Podemos destacaviobility Skeletons, descritos na $ec¢3, nos
guais se baseam este trabalho.

Em [Wojciechowski 2000], uma plataforma para compatagbvel baseada em
agente® apresentada. A plataforma utiliza uma linguagem chaMadedic Pic{Wojciechowski 2000]
gue estende a linguagepitt [C.Pierce and Turner 1997] com primitivas para mobilidade.
As primitivas o divididas em duas classes: primitivasbdexo e alto nivel. As primiti-
vas debaixo rivel descrevem migra&p e sincronizego de computdies, como por exem-
plo a primitivam gr at e t o0 que move a computag corrente para um outro nodo da
rede. As primitivas dalto nivel sdo implementadas usando as primitivas de baixelre
fornecem uma maior absti@g para a comunicag de computdies baseada no nome dos
agentes e @ em sua localizé&p. Os padies apresentados neste artigo fornecem uma
abstrag@o para programag ainda maior pois cada padrencapsulaarios aspectos de
um algoritmo para comunicag de computdies.

288

SugarLoafPLoP 2007 Pattern Applications

Outros trabalhosjjestudaram pades de projeto para compuagnovel, prin-
cipalmente narea de agentes, e.g. [Lima et al. 2004] gmorestes trabalhos focam mais
na modelagem do sistema do que na facilidade de progeaneaigeutilizago de édigo.

6. Conclusio e Trabalhos Futuros

Este trabalho apresentou um estudo sobre a espeaiGagmplementap de
padides de projeto (design patterns) que representam formas recorrentes de mobilidade
de @digo. Mais especificamente, foram descritos, usandodeadie projeto do tipo
Template Method, formas de mobilidade que ocorrensistemas de aquisip de infor-
mages distribiidos, assim como descrito em [Du Bois et al. 2005b]. As contrdasglo
trabalho foram: apresentar as formas de mobilidade em um paradigma de pr@ga&mac
nota@o largamente utilizada na iastria de software - facilitando assim o seu entendi-
mento, implementar e demonstrar o uso dos pesliatrags de exemplos. Os pdars
de projeto apresentados facilitam a prograawadge software vel ja que &o formas
reusaveis de 0digo: basta o programador entender o padiescrito para que ele possa
reusar o 6digo dos padies atra@s de heranca. Am disso, quando o programador usa
0s padbes, ele 8 precisa especificar as compuias que s&o executaddscalmenteem
cada nodo da rede. Toda a distrilaoge sincronizego das tarefaé herdada da classe-
pai. Para testar os pdgrs desenvolvidos nesse trabalho, foi implementada uma amicac
uma agenda colaborativa distrida, que usa os pdiks de projeto identificados para im-
plementar toda a comunicag de édigo nbvel do sistema.

Existem \arias linhas para projetos futuros. A estrutura implementada para mo-
bilidade dos padiesé baseada elBocket® portantceé necesario que a classe do objeto
movel esteja presente em todas 0s nodos da estruturaé lesgproblema pois aumenta
0 conjunto comum de software em todos os nodos para que o sistéueh floncione.

O problema pode ser solucionado modificando a estrutura de mobilidade para que esta
faca a atualizep remota de classes ou a&awlo uso de uma estrutura pervasiva como
por exemplo oEXEHDA [Yamim 2004] ouVoyager[Voyager 2006]. Uma outrarea

de projeto futuro seria a identificag e implementaip de outros pades recorrentes de
computa@o novel atraes da aalise de programas@weis p existentes ou baseados em
outros trabalhos, e.g. [Lima et al. 2004].

A estrutura de mobilidade e @digo fonte dos Pades de Projeto para Progra-
mago Movel sho de dormio plblico e podem ser acessados em [Strelow Storch 2006].

Referéncias
Bushamnn, F. and Meunier, R. (1998) system of Patterns. New York, NY, USA: ACM
Press / Addison Wesley Publishing Co.

Callan, J. (2000). Distributed information retrieval. pages 127-150. Advances in infor-
mation retrieval in Kluwer Academic Publishers.

Cardelli, L. (1995). A language with distributed scope.Qanference Record of POPL
'95: 22nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, San Francisco, Calif., pages 286—297, New York, NY.

Cardelli, L. (1999). Mobility and security. IRroceedings of the NATO Advanced Study
Institute on Foundations of Secure Computation, pages 3-37, Marktoberdorf, Ger-
many.

289

SugarLoafPLoP 2007 Pattern Applications

Cole, M. (1989). Algorithmic Skeletons: Structured Management of Parallel Computa-
tion. Pitman.

Conchon, S. and Fessant, F. L. (1999). Jocaml: Mobile agents for Objective-Caml. In
First International Symposium on Agent Systems and Applications (ASA’99)/Third In-
ternational Symposium on Mobile Agents (MA’99), Palm Springs, CA, USA.

C.Pierce, B. and Turner, D. N. (1997). Pict: A programming language based on the pi
calculus. Technical report, Computer Science Department, Indiana University.

Du Bois, A. R., Trinder, P., and Loidl, H.-W. (2005ajHaskell: mobile computation in a
purely functional languagdournal of Universal Computer Science, 11(7):1234-1254.

Du Bois, A. R., Trinder, P., and Loidl, H.-W. (2005b). Towards Mobility Skeletons.
Parallel Processing Letters, 15(3):273-288.

Erlang (2006). Erlang. WWW page, http://www.erlang.org/.

Fuggetta, A., Picco, G., and Vigna, G. (1998). Understanding Code Mobllignsac-
tions on Software Engineering, 24(5):342-361.

Gall, H. C., Klosch, R. R., and Mittermeir, R. T. (1996). Application patterns in re-
engineering: ldentifying and using reusable concept$itrinternational Conference
on Information Processing and Management of Uncertainty in Knowlege-Based Sys-
tems, pages pp. 1099-1106.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1998%ign Patterns. Addison-
Wesley.

Grosso, W. (2001)Java RMI. O'Reilly.
Haskell (2006). Linguagem Haskell. http://www.haskell.org.
Java (2006). Linguagem Java. http://java.sun.com.

Knabe, F. C. (1995)Language Support for Mobile Agents. PhD thesis, School of Com-
puter Science, Carnegie mellon University.

Lima, E. F. A., Machado, P. D., Sampaio, F. R., and Figueiredo, J. C. A. (2004). An
approach to modelling and applying mobile agent design patteAGM Software
Engineering Notes, 29(4).

Strelow Storch, M. (2006). Pables de projeto para compuie nmovel.
http://atlas.ucpel.tche.br/"mstorch.

Voyager (2006). Voyager System. http://www.recursionsw.com/voyager.htm.

Wojciechowski, P. T. (2000).Nomadic Pict: Language and Infrastructure Design for
Mobile Computation. PhD thesis, Wolfson College, University of Cambridge.

Yamim, A. C. (2004). Arquitetura para um Ambiente de Grade Computacional
Direcionado as Aplica@es Distribuidas, Mveis e Conscientes do Contexto da
Computaéo Pervasiva. Tese de doutorado, Univesidade Federal do Rio Grande do
Sul.

290

SugarLoafPLoP 2007 Pattern Applications

Utilizacdo de Padrdes para Otimizar a Automacao de
Testes Funcionais de Software*

Rafael Braga de Oliveira'®, Francisco Nauber Bernardo Géis®,
Jerffeson Teixeira de Souza®, Pedro Porfirio Muniz Farias*

'Universidade de Fortaleza (UNIFOR)
Av. Washington Soares, 1321 — Fortaleza — CE — Brasil

2Universidade Estadual do Ceara (UECE)
Av. Paranjana, 1700 - Fortaleza — CE - Brasil

3Servico Federal de Processamento de Dados (SERPRO)
Av. Pontes Vieira, 832 - Fortaleza — CE - Brasil

{rafael.oliveira, francisco.gois}@serpro.gov.br,
jeff@larces.uece.br, porfirio@unifor.br

Resumo. A automacdo de testes funcionais tem se tornado um evidente atrativo para equipes de
desenvolvimento de software. Tal fato se deve principalmente a grande redugdo de custo
observada a médio e a longo prazos com o uso desta pratica. Este artigo propde a aplicacéo de
padrdes para otimizar a automacdo de testes funcionais de software, introduzindo beneficios
como o aumento da reusabilidade e da manutenibilidade de scripts de teste, e a facilidade de
inclusdo de novos casos de teste. O uso de padrdes na automacdo de testes funcionais
representa uma aplicacdo inovadora de padrBes e um diferencial em relacdo as técnicas de
automacdo de testes funcionais citadas na literatura.

Palavras-chave: automacdo de testes; testes funcionais; teste de software, padrdes de projeto.

Abstract: The functional testing automation has become a real interest to software development
teams, mainly because of the great cost reduction observed on medium and long terms with the
use of this practice. This article proposes the application of patterns to optimize the software
functional testing automation, introducing benefits as the increase of reusability and
maintainability of tests scripts, and the facility of including new test cases. The use of patterns
on functional testing automation represents an innovative application of patterns and a
improvement in relation to the techniques of the functional testing automation mentioned on the
literature.

Keywords: testing automation; functional testing; software testing, regression testing, design
patterns.

1. Introducao

Para minimizar o custo e proporcionar maior qualidade no desenvolvimento de
software, inUmeros estudos ressaltam a importancia de um processo de teste efetivo [1,
2, 3, 4, 16]. Desta forma, quanto mais eficiente e mais eficaz for o teste, menor sera o
custo dos reparos e maior sera a qualidade do produto.

! The authors thank SERPRO for supporting this work.

Copyright © 2007, Rafael Braga de Oliveira, Francisco Nauber Bernardo Gois, Jerffeson Teixeira de
Souza and Pedro Porfirio Muniz Farias. Permission is granted to copy for the SugarloafPLoP 2007
Conference. All other rights are reserved.

201

SugarLoafPLoP 2007 Pattern Applications

Evidentemente, quanto mais tarde um defeito é encontrado maior é o custo de
sua corre¢do, podendo, em casos extremos, causar danos irrepardveis. Isto amplia o
incentivo a adocdo de mecanismos eficazes e eficientes para a realizacdo de testes
efetivos.

Testar um software é uma tarefa meticulosa e pode se tornar cansativa. Neste
contexto, a automacado de parte dos testes é uma alternativa para proporcionar a entrega
de produtos mais confiaveis ao cliente.

Automatizar testes corresponde a desenvolver um novo cédigo, portanto exige
um esforgo adicional em relagdo a testes realizados manualmente. Normalmente, o
planejamento e a elaboragdo de testes automatizados requerem mais tempo do que o
necessario para testes manuais. A principal vantagem é que a execucdo dos testes
automatizados é muito mais rapida e torna-se possivel repetir a realizacdo dos testes
num baixo custo e numa velocidade bastante superior. Segundo Fewster [2], testes
manuais que levariam horas para serem concluidos, podem ser executados em minutos,
quando automatizados.

Os testes podem ser divididos em testes caixa-branca, onde temos acesso ao
cddigo fonte do programa, e testes caixa-preta, onde ndo se conhece a estrutura interna
do sistema. Os testes caixa-preta sdo realizados navegando na interface do sistema,
introduzindo dados e selecionando op¢bes, com o0 objetivo, normalmente, de verificar se
as funcionalidades (testes funcionais) estdo implementadas de acordo com as
especificagdes.

Os testes caixa-preta podem ser automatizados através da criagdo e na execucao
de scripts de teste utilizando ferramentas Record and Playback. Estas ferramentas
permitem a criacdo de scripts na forma de programas [3], 0s quais simulam ac¢des de um
usuario sob a interface do sistema. No contexto deste artigo, a automacao de testes
funcionais se limita a criagdo e a execucdo de scripts de teste utilizando tais
ferramentas.

Para sistemas de grande porte, podem ser necessarias centenas de scripts para
implementar a automacéo dos testes. Algumas técnicas, como Data-driven e Keyword-
driven [2], tém sido propostas no intuito de tornar os scripts mais manuteniveis.
Também tém sido desenvolvidos frameworks de forma a organizar e estruturar o uso
destes scripts [10, 11, 12].

Neste artigo, apresenta-se um framework denominado FuncTest, que, além de
aplicar as duas técnicas citadas, faz o uso de padrdes [6, 7, 8] para otimizar o projeto de
automacao de testes funcionais. Foram utilizados a arquitetura MV C [6], o padrdao DAO
(Data Acess Object) [8, 19] e, em duas situacdes, o padrdo Factory Method [5].

Scripts de teste sdo, de fato, programas. Portanto, podem se beneficiar da
utilizacdo de padrbes. Todavia, como normalmente sdo gerados automaticamente ou
produzidos a partir de trechos de cddigos gerados automaticamente, ndo foram
encontrados registros da utilizacdo de padrdes em frameworks usados na automagéo de
testes funcionais. Recentemente, em [21], foram utilizados padrdes para automatizar
testes unitarios (caixa-branca).

292

SugarLoafPLoP 2007 Pattern Applications

Além de contribuir para a estruturacdo e organizacdo de scripts de teste, o
framework FuncTest, no contexto da automagao de testes funcionais construidos atraves
de ferramentas Record and Playback, representa um enfoque inovador do uso de
padroes.

Com a utilizacdo do padréo de arquitetura MVC, associa-se cada passo de um
caso de teste, através de uma tabela, ao seu script correspondente. Isto permite, como
vantagem, uma independéncia entre casos de teste e scripts. Esta independéncia
possibilita que um projetista desenvolva os casos de teste enquanto outro
implementador, com experiéncia no desenvolvimento de scripts, encarrega-se de
desenvolvé-los.

O padrdo DAO utilizado acrescentou o beneficio de fornecer transparéncia no
acesso aos dados e permitir que os dados de teste persistam em bases de dados distintas.
A geracdo dos objetos DAO foi implementada através de uma aplicacdo do padréo
Factory Method. O padrdo Factory Method também foi utilizado para a selecdo dos
scripts de teste.

O framework FuncTest se encontra em uso por especialistas de teste de uma
grande empresa estatal de desenvolvimento de software. O processo de
desenvolvimento utilizado na equipe é uma adaptacdo do RUP aderente ao nivel 2 do
CMMI. Uma versdo preliminar do framework foi premiada em um congresso
promovido pela empresa em 2006. A versdo atual, além de aperfeicoar a aplicacdo de
padrdes, contempla a utilizacdo de técnicas relevantes para a literatura, bem como
permite configurar a automagéo através de arquivos XML.

Na préxima secdo, discorreremos sobre técnicas para a criacdo de scripts
funcionais de teste, evidenciando-se problemas que serdo tratados em secdes
subsequentes através do uso de padrdes. Na secdo 3, abordaremos os padrdes utilizados.
Na secdo 4, apresentaremos o framework proposto. Por fim, na secdo 5, serdo
apresentados a concluséo e os trabalhos futuros.

2. Técnicas para Criacdo de Scripts Funcionais

Através de ferramentas Record and Playback, podemos gerar scripts automaticamente
através da gravacdo de acOes de usuario sobre a interface da aplicacdo ou simplesmente
programar os scripts.

Normalmente, os scripts gerados pelas ferramentas Record and Playback
deverdo ser alterados ou, até mesmo, ser inteiramente programados. Por exemplo,
devem ser excluidos comandos desnecessarios inseridos pela ferramenta e utilizadas
boas praticas de programacao possiveis, como a inclusdo de comentarios para esclarecer
a logica do codigo.

Em [2], s@o apresentadas as seguintes técnicas para construgdo de scripts:

e Scripts Lineares;
e Scripts Estruturados;

293

SugarLoafPLoP 2007 Pattern Applications

e Scripts Compartilhados;
e Scripts Data-Driven;
e Scripts Keyword-Driven.

2.1 Scripts Lineares

Os scripts lineares sdo aqueles desenvolvidos utilizando-se unicamente a técnica Record
and Playback. Portanto, sdo gravados durante a execucdo de um teste manual. Estes
scripts conservam todos os comandos realizados durante a gravagdo. O uso desta
técnica ndo exige conhecimento de programacgdo por parte do testador. Entretanto, pode
limitar o reuso e a manutencgéo dos scripts gerados.

Seguem algumas das limitacdes observadas:

e scripts longos e ilegiveis: normalmente um Unico script para cada caso de
teste;

e presenca de dados “hard-coded”: ocorre quando o script possui dados de teste
em seu codigo;

e Scripts pouco coesos: scripts que realizam outras atividades além de acGes
sobre a interface de usuario, que é o seu principal proposito;

e vulneraveis a mudancas do sistema sob teste.

2.2 Scripts Estruturados

A criacdo de scripts estruturados, assim como na programacao estruturada, pressupde a
utilizacdo de instrucdes de controle, como sele¢des e interacdes. Além disso, um script
pode chamar outro script. Este mecanismo pode ser usado para dividir scripts grandes
em scripts menores e mais gerenciaveis, melhorando o reuso e a manutenibilidade dos
scripts.

Embora estes scripts sejam mais flexiveis, nao estdo isentos de dados “hard-
coded” e as chamadas entre eles trazem uma dependéncia que desfavorece o reuso dos
mesmaos.

2.3 Scripts Compartilhados

Scripts compartilhados sdo aqueles utilizados por mais de um caso de teste. O uso desta
técnica visa identificar tarefas repetitivas que possam ser reutilizadas. O
compartilhamento destes scripts pode ser feito entre casos de teste de um mesmo
sistema ou de diferentes sistemas. Embora esta técnica aumente o reuso dos scripts, 0s
mesmos ainda podem apresentar dados “hard-coded” e chamadas que os tornam
dependentes.

294

SugarLoafPLoP 2007

2.4 Scripts Data-driven

Uma das técnicas amplamente utilizadas e essenciais para tornar a automacdo mais
reutilizavel € a técnica Data-driven. Esta técnica propde a independéncia entre o cddigo
do script e a massa de dados utilizada durante o teste, evitando dados “hard-coded”.
Para aplica-la, os dados de entrada deverdo ser eliminados do corpo do script e inseri-
los em arquivos de dados independentes ou tabelas. A principal vantagem desta
independéncia entre o cddigo dos scripts e os dados de teste é permitir que o script seja
reutilizado para varios conjuntos de dados de entrada. Além disso, novos testes podem
ser adicionados sem o conhecimento da linguagem de programagdo de script
correspondente.

A ilustracdo seguinte (Figura 1), adaptada de [2], apresenta um exemplo
simplificado do uso desta técnica.

Script original: IncluilAluno Script de Controle: ControleAluno I I Arquivo: DadosAluno

FocusOn 'Inclui Aluno' For each record in DadosAluno "Alunol' Ve rTa
lun , rY.,. SEL

Type 'Alunol' "A1unal ' 02 1T
L Aluno M T2

Type *M1' Read NOME s)
Read MATRICULA rrae Wt B

Type 'T1' 311 ' ' ' ' '
Aluno4', 'M4', 'T4
T MouseCli > F T 2

LeftMouseClick 'OK' Read TURMA "AlunoS', 'MS', ‘TS’
"Alunoé', 'M6', 'T6'
FocusOn 'Inclui Aluno' AL ,,' % P

Ll 111 :l’

2 ’

' ',

FocusOn 'Inclui Aluno' Type 'NOME' e,
Type “Aluno2t Type 'MATRICULA'
Type a2 Type 'TURMA

Type 'T2°' 5 S TOR?
LeftMouseClick 'OK' Eefriouseclack oK

'M8', 'T8'
'M9', 'T9'

Figura 1 — Exemplo Simplificado de Aplicacdo da Técnica Data-Driven

2.5 Scripts Keyword-driven

A técnica Keyword-driven propde a modularizacdo dos scripts, de maneira que cada
mabdulo seja representado por uma keyword e possua um script a ele associado. As
keywords podem representar eventos simples, como um clique num botdo, a serem
aplicados na interface do sistema [12], ou eventos mais complexos como, por exemplo,
0 processamento de uma op¢do do sistema que envolva navegar em varias telas.
Independente da complexidade do modulo, as keywords representam acdes, de maior ou
menor complexidade, sobre a interface do sistema.

A figura 2, adaptada de [2], ilustra como esta técnica pode ser aplicada. No
exemplo, temos trés casos de teste. Cada linha do caso de teste possui uma keyword e 0s
dados a ela associados. Para cada keyword, existe um script de suporte especifico, o
qual sera responsavel por realizar suas a¢6es correspondentes.

Associando-se a técnica Keyword-driven a técnica Data-driven, podemos
garantir a independéncia tanto dos dados quanto das a¢des de teste [10].

295

Pattern Applications

SugarLoafPLoP 2007

Script de Controle

Loggin

For each CascDeTeste
For each record in CascDeTeste
Read 'Keyword'

EndFor
EndFor

Call the correspondent script

-+ FazerMatricula

. CancelarMarticula

.. IncluirDisciplina

Pattern Applications

Scripts de Suporte

ExcluirDisciplina

.. IncluirProfessor

.. ExcluirProfessor

Casos de Teste

c T 1 %
CasoDeTestel CasoDeTeste3

Loggin administrador adm
FazerMatricula Pedro
CancelarMarticula Pedro

Loggin administrador adm
CasoDeTeste2 In Professor
Professor

Arnaldo

Arnaldo

ulx

Loggin administrador
IncluirDisciplina Célculo

ExcluirDisciplina Célculo

Figura 2 — Exemplo Simplificado de Aplicagdo da Técnica Keyword-driven

E importante entender que o projeto de automagdo de testes deve ser tratado
como qualquer outro projeto de desenvolvimento de software. Portanto, a estruturacéo
dos testes automatizados pode ser significativamente aprimorada através do uso
apropriado de padrdes. Na proxima secdo, serdo indicados os padrdes utilizados na
formulacdo do framework proposto.

3. Utilizacao de Padroes

O framework FuncTest faz uso dos padrdes Factory Method e DAO. Nesta secdo,
descreveremos brevemente tais padrdes para, posteriormente, evidenciarmos suas
aplicacBes no framework.

3.1 Padrao Factory Method

O padrdo Factory Method [5], também conhecido como Virtual Constructor, €
especificado utilizando dois niveis: um nivel abstrato e um nivel concreto.

No nivel abstrato, especifica-se a utilizacdo de um construtor virtual, o Factory
Method. Assim, lidando, neste nivel, com a construcdo virtual de objetos, ainda sem
antecipar a classe dos objetos que serdo criados. No nivel concreto, sdo criadas classes
que estendem as classes abstratas, implementando apropriadamente o construtor virtual.

No diagrama da Figura 3, tem-se, no nivel abstrato, um objeto da classe abstrata
Creator para a criacdo de objetos da classe abstrata Product. Como ambas as classes sdo
abstratas, ndo é possivel, neste nivel, antecipar a classe concreta que sera utilizada.

Especifica-se, entdo, o método abstrato FactoryMethod(), que prevé a devolugdo
do produto desejado como resultado. Este método funciona como um construtor virtual.

296

SugarLoafPLoP 2007 Pattern Applications

No nivel concreto, tem-se as classes ConcreteProduct, subclasse da classe
Product, e a classe ConcreteCreator, subclasse da classe Creator.

A classe ConcreteCreator implementa o construtor virtual através do método
FactoryMethod(), que retorna um objeto da Classe ConcreteProduct.

Creator

Product F
actoryMethod() ,
53 roduct = FactoryMethod()
AnOperation() Op=-———— i Reymiahod)
ConcreteProduct ["--————---—1 ConcreleCreator
FactoryMethod(} ©-f ------1 return new ConcreteProduct

Figura 3 - Diagrama de Classes do Padr&o Factory Method [5]

3.2 Padrdo DAO

O padrdo DAO encapsula 0 modo de acesso aos dados, tornando a obtencdo dos dados
transparente para as classes de negocio, e permite a utilizacdo de fontes de dados
distintas. Este padrdo elimina a necessidade de conhecimento prévio da fonte de dados e
dos tipos de drivers e interfaces utilizados para acesso a persisténcia.

No diagrama da Figura 4, é apresentado o relacionamento entre os participantes
deste padréo.

BusinessOhject DataAccessObject
uses l gncapsulates Liatasouice
- |
- . |
S
™ . Obtainsimodifies |
e createsiuses
. |
- . |
o Y
TransferOhject

Figura 4 — Diagrama de Classes do Padrédo DAO [19]
A classe BussinessObiject é a classe de negécio que utilizara o padrdo através de

chamada a classe DataAccessObject. A classe DataAccessObject implementa a forma
de acesso as dados, retornando um objeto da classe TransferObject. A classe

297

SugarLoafPLoP 2007 Pattern Applications

DataSource representa a forma de acesso que € encapsulada pela classe
DataAccessObject e, normalmente, refere-se a uma classe que implementa a interface
JDBC, no caso de um sistema J2EE.

4. O Framework FuncTest

O framework FuncTest esta sendo utilizado dentro de um processo de desenvolvimento
aderente ao nivel 2 do CMMI com o objetivo de melhorar a produtividade na
automatizacéo de testes funcionais.

O FuncTest foi desenvolvido com a utilizagdo da ferramenta Rational XDE
Tester [13, 15, 17], mas poderé ser adaptado a ferramentas similares que também gerem
cddigo Java.

O Rational XDE Tester utiliza uma instancia do Eclipse, um ambiente de
desenvolvimento integrado (IDE - Integrated Development Environment). Nela, cada
script é gravado ou programado como uma classe Java. A ferramenta dispde de um
mapa de objetos que registra uma pontuacao para cada objeto do browser, baseado em
suas caracteristicas. Isto permite que a ferramenta identifique os objetos durante a
execugdo de um script.

O FuncTest permite que os scripts contenham somente acdes de interacdo com
interface de usuario. Desta forma, outras responsabilidades, como chamada a outros
scripts, acesso a dados e controle de erros, sdo desvinculadas dos scripts, fortalecendo o
reuso e a manutenibilidade dos mesmos.

Nossa proposta prevé a criacdo de suites de teste que contém um ndmero
arbitrario de casos de teste. Cada caso de teste € composto por varios steps. Aplicando-
se a técnica Keyword-driven, associa-se cada passo do caso de teste a uma keyword.

Utilizando a arquitetura MVC, um controlador associa cada keyword ao script
que devera ser executado.

A arquitetura do FuncTest (Figura 5) permite o controle independente de
chamada dos scripts. Desta forma, evitamos que um script chame outro script,
eliminando o acoplamento entre eles. A sequéncia de execucdo dos scripts é dada
através da sequiéncia de steps do caso de teste.

Como propde a técnica Data-driven, os dados de teste sdo mantidos
desvinculados dos scripts. Assim, eles poderdo ser mais facilmente mantidos e
reutilizados. Cada step esta associado aos dados de teste necessarios a sua execucao.

O framework permite que erros, 0s quais interromperiam a execucdo da suite de
testes, possam ser manipulados por scripts especificamente construidos com esta
finalidade.

208

SugarLoafPLoP 2007

View

~

~

/ Controller

~

/ Model \

Get Test Cases

\
\
\
\

v

CasoDeTestel.xml

Suite.xml

<CasoDeTeste1>...
<CasoDeTeste2>...

<CasoDeTeste3>...

<Step3>

DataSource.xml

<DataSource1>
...<Banco>...

<DataSource2>

...<Banco>...

Erros.xml

<Excecao1>ScriptExcecaoT...
<Excecao2>ScriptExcecao?...

CasoDeTeste2.xml

CasoDeTeste3.xml
<Step1>...
<Step2>...
<DataSource>...

Test Case

Get Next Step
i

j
/

/
/

/
/
/

Get Step Data

Get Step Script

Call Script

N

| '
A

H

v

[=—— FabricaDA0”™

v

_

Scripts

“>._,| <Step1>Script1...

/

Log de Execugdo

Figura 5 — Diagrama de Classes do Padrdo DAO [19]

Pattern Applications

Banco.xml

<Banco1>ClasseDAO1...
<Banco2>ClasseDAO?2...

<Banco3>ClasseDAOS...

Scripts.xml

<Step2>Script2...
<Step3>Script3...

Descreveremos na secdo 4.1 os pacotes do framework distribuidos segundo a

arquitetura MVC.

O framework é configurado através de um conjunto de arquivos XML. Assim, sO
€ necessario manipular cédigo java na elaboracdo dos scripts. Na secdo 4.2,
descreveremos os arquivos de configuracdo do framework.

O funcionamento do FuncTest serd abordado na secdo 4.3, através de um
diagrama de seqiiéncia. Na secdo 4.4, sera realizada uma correspondéncia entre as

classes preconizadas nos padrdes e aquelas implementadas no framework.

4.1 Pacotes do Framework

O framework é formado basicamente pelos pacotes Model, View e Controller, e um
conjunto de arquivos de configuracdo. O diagrama de classes a seguir (Figura 6) mostra
uma visao resumida dos referidos pacotes, contemplando as suas principais classes.

299

SugarLoafPLoP 2007 Pattern Applications

View Controller

/| Principal } { controtador | controladorErro
L] ! |

.
/1
» a

\

ICasoTeste

\
\

\
\ obtains/modifies
\

Model

AbstractFabricaScript

FabricaScript 7
+ create() : void i DataSource
i
! I DAOBanco encapsulates P>
i
V A

ConcreteScript

FabricaDAO

-

RationalTestScript

AbstractFabricaDAO

Figura 6 — Diagrama de Classes Resumido do FuncTest

O funcionamento do framework serd detalhado adiante, onde podera ser
esclarecido o papel de seus participantes.

4.2 Arquivos de Configuracao

Os arquivos de configuracdo usados pelo FuncTest seguem o formato XML. Sao

eles:

Suite.xml;
NomeDoCasoDeTeste>.xml;
Scripts.xml;

Erros.xml,

Banco.xml;

DataSource.xml.

Os dois primeiros arquivos, Suite.xml e <NomeDoCasoDeTeste>.xml, persistem
0s dados da camada de vis&o.

Os arquivos Scripts.xml e Erros.xml estdo associados a camada de controle. O
arquivo Scripts.xml representa a tabela onde o Controlador associa cada step do caso de

300

SugarLoafPLoP 2007 Pattern Applications

teste ao script que serd executado. O arquivo Erros.xml representa a tabela que registra
0s scripts de tratamento de erro a serem chamados pelo Controlador de erros.

A camada de modelo é constituida por um conjunto de scripts e seus respectivos
dados.

Em cada step, estd indicado seu respectivo datasource. O arquivo
Datasource.xml indica as informacdes associadas a cada datasource, incluindo o nome
do SGBD a ser utilizado. Para cada SGBD, o arquivo Banco.xml informa uma classe
correspondente no padrdo DAO.

A estrutura de cada um desses arquivos sera detalhada a seguir.
Suite.xml

E formado pelo conjunto de tags denominadas CasoTeste. Cada uma desta tags possuira
duas secoes:

Nome: representa 0 nome do caso de teste;

Arquivo: representa o0 nome do arquivo XML com a descrigdo do caso de teste.

<CasoTeste>
<Nome>NomeDoCasoDeTestel</Nome>
<Arquivo>NomeDoCasoDeTeste.xml</Arquivo>
</CasoTeste>
<CasoTeste>
<Nome>NomeDoCasoDeTeste2</Nome>
<Arquivo>NomeDoCasoDeTeste.xml</Arquivo>
</CasoTeste>

Quadro 1 - Template para criacdo do arquivo Suite.xml

<NomeDoCasoDeTeste>.xml

Para cada caso de teste, deve ser criado um arquivo correspondente. Estes arquivos
serdo formados pelo conjunto de tags denominadas step. Cada tag step possuira quatro
elementos:

Nome: representa 0 nome do step;

DataSource: esta tag € opcional. Ela define uma fonte de dados (datasource) para os
dados de teste. E definida quando o step contemple a inclusdo de dados na interface de
USUArio;

Numero: esta tag é opcional. Corresponde ao numero de vezes que o script serd
executado. Deverdo existir dados de teste distintos a serem utilizados para cada
execucdo do script.

301

SugarLoafPLoP 2007 Pattern Applications

<step>
<Nome>Step01l</Nome>
<Tipo>Script</Tipo>

</step>

<step>
<Nome>Step02</Nome>
<DataSource>NomeDataSource00</DataSource>
<Numero>000</Numero>

</step>

Quadro 2 - Template para criacéo dos arquivos <NomeDoCasoDeTeste>.xml

Scripts.xml
Contém uma tag indicando o script correspondente a cada step dos casos de teste.

<scripts>
<Step0l1>Script01</Step01>
<Step02>Script02</Step02>
</scripts>

Quadro 3 - Template para criacdo dos arquivos Scripts.xml

DataSource.xml

Para cada step cuja tag <Tipo> possua o valor “Datasource”, devera ser descrita a
respectiva fonte de dados. O arquivo Datasource.xml é um repositorio que contém as
descricBes das diversas fontes de dados utilizadas. No template do Quadro 5 temos um
datasource denominado <NomeDataSource01>. As fontes de dados sdo descritas por
tags que representam a string de conexao, o nome do banco, a tabela de dados, o login e
a senha do datasource, o nome do driver, 0 numero de colunas a ser selecionado na
tabela e 0 nome da coluna para a ordenacao da consulta.

<DadosDeTeste>
<NomeDataSource01l>
<Conexao>StringConexao</Conexao>
<Tabela>NomeTabela</Tabela>
<Login>Login</Login>
<Driver>NomeDriver</Driver>
<Senha>Senha</Senha>
<Colunas>NumeroColunasTabela</Colunas>
<Banco>Banco01</Banco>
<Ordenado>ColunaParaOrdenacao</Ordenado>
</NomeDataSource01>
</DadosDeTeste>

Quadro 4 - Template para criacéo dos arquivos DataSource.xml

302

SugarLoafPLoP 2007 Pattern Applications

Banco.xml

Para cada banco de dados, contém uma tag <NomeBanco> que indica a classe DAO
correspondente.

<bancos>
<ORACLE>DAOOracle</ORACLE>
<SQLSERVER>DAOSQLServer</SQLSERVER>
<DB2>DAODB2</DB2>
<ACESS>DAOAccess</ACESS>
<INTERBASE>DAOInterbase</INTERBASE>
<MYSQL>DAOMySQL</MYSQL>
<SYBASE>DAOSybase</SYBASE>

</bancos>

Quadro 5 - Template para criacdo dos arquivos Banco.xml

Erros.xml

E formado por um conjunto de tags, cada uma associando uma Excecdo ao script que
sera executado para o tratamento correspondente.

<erros>
<Excecaol>Nome.do.Script.que.trata.a.Excecaol </Excecaol>
<Excecao2>Nome.do.Script.que.trata.a.Excecao2 </Excecao2>
</erros>

Quadro 6 - Template para criacdo dos arquivos Erros.xml

A apropriada configuracdo dos arquivos XML permitira a associacdo dos passos
dos casos de teste aos scripts a serem executados com os respectivos dos dados de teste,
se for o caso.

4.3 Uso dos Padrdes na Automacao de Testes Funcionais

Temos duas utilizaces do Factory Method no framework FuncTest. Na primeira
utilizacdo, temos uma Factory para criacdo de scripts. Neste caso, o framework delega a
Factory a decisdo de qual script sera criado. Na segunda utilizacdo, temos uma Factory
para geracdo de um Objeto DAO. Objeto DAO ¢ utilizado para recuperar os dados de
teste.

Os diagramas de classe a seguir (Figuras 7 e 8) evidenciam respectivamente 0s
dois usos do padrdo Factory Method no framework.

303

SugarLoafPLoP 2007 Pattern Applications

RationalTestScript AbstractFabricaScript script=create))
+ create) : void
FabricaScript
ConcreteScript

+ create{step : Step) : RationalTestScript

+ createinome : String) : RationalTestScript

return new ConcreteScript T

Figura 7 — Uso do Padréo Factory Method para a criagdo de scripts de teste

IDAO AbstractFabricaDAO

DAOBanco FabricaDAO

< ____________

Figura 8 — Uso do Padréo Factory Method para a criacdo dos objetos DAO

Na tabela 1, é apresentada uma correspondéncia entre os participantes do padréo
Factory Method e as classes do framework que implementam este padréo.

Participantes do Padréo Factory Participantes Correspondentes no FuncTest
Method Fabrica Script Fabrica DAO
Product Rational TestScript IDAO
ConcreteProduct ConcreteScript DAO
Creator AbstractFabricaScript AbstractFabricaDAO
ConcreteCreator FabricaScript FabricaDAO

Tabela 1 — Correspondéncia entre participantes do Factory Method e participantes do FuncTest

O diagrama de classes abaixo (Figura 9) evidencia o uso do padrdo DAO no framework.

Controlador DAOBanco DataSource
usesp> encapsulates P>
P |
~. ' createsfuses
ohtainsimodifies R :
s <\, \L/
Object

Figura 9 — Uso do Padr@o DAO para selecionar a massa de teste

304

SugarLoafPLoP 2007 Pattern Applications

Na tabela 2, é apresentada uma correspondéncia entre os participantes do padréo
DAO e as participantes do framework que implementam este padrao.

Participantes do Padrao DAO Participantes Correspondentes no FuncTest
BusinessObject Controlador
DataAccessObject DAOBanco
DataSource DataSource
TransferObject Object[]

Tabela 2 — Correspondéncia entre participantes do DAO e participantes do FuncTest

4.4 Funcionamento do Framework

O funcionamento do FuncTest sera apresentado com base no Diagrama de Seqiiéncia a
seguir (Figura 10).

O | :FabricaDAOl | : DAOBanco | | : FahricaScript

: Controlador T T T
| 1: getTestCases Wj

|

|

|

2 executa | !

3 : ’L
|

2.1: getSteps
2.2 createDAO)

2.3 retornaDados

2.4: create

2.5: callScript)

]T_I

Figura 10 — Diagrama de Sequéncia Simplificado do framework FuncTest

A classe Principal inicia o processo de automacdo requisitando a classe Util,
responsavel por deserializar os arquivos XML, os casos de teste contidos no arquivo
Suite.xml. Em seguida, através de um loop, para cada caso de teste, a classe Principal
cria um objeto casoTeste, instancia da classe CasoTeste, e solicita a sua execucao ao
método executa() da classe Controlador, passando o objeto criado.

Para cada objeto casoTeste, a classe Controlador requisita a classe Util a leitura
0 arquivo <NomeDoCasoDeTeste>.xml recuperando os steps do caso de teste
correspondente.

305

SugarLoafPLoP 2007 Pattern Applications

Em cada Step, se existir uma tag <DataSource>, serdo recuperadas as
informacdes da fonte de dados armazenadas no arquivo Datasource.xml. Dentre estas
informacdes, consta, na tag <Banco>, o SGBD utilizado.

Em seguida, é solicitada a classe FabricaDAO a criacdo do objeto DAOBanco
apropriado ao SGBD informado. Entdo a classe Controlador, através do método
retornaDados(), solicita ao objeto DAOBanco os dados de teste a serem utilizados no
script.

Apobs recuperar os dados do banco, a classe Controlador solicita a classe
FabricaScript o script associado ao step corrente. A FabricaScript, entdo, retorna o
script informado no arquivo Scripts.xml. Portanto, existe um construtor virtual de
objetos DAO, e outro para a criagdo de objetos Script.

Caso tenha sido informado o nimero de execugdes necessarias ao script, é feito
um loop que iré repetir a execucdo do script para os dados retornados no objeto DAO
correspondente.

Havendo falha durante a automacéo, a classe Controlador requisita o tratamento
do erro a classe ControladorErro, a qual escolhera o script informado no arquivo
Erros.xml.

Na secdo 5 serdo apresentados a concluséo e os trabalhos futuros.

5. Conclusao

Scripts gerados a partir de ferramentas Record and Playback normalmente sdo pouco
reutilizaveis e pouco manuteniveis. De forma a minorar este problema, frameworks que
utilizam as técnicas Data-driven e Keyword-driven tém sido propostos para a
automacao de testes funcionais.

Neste artigo, foi apresentado um framework para a automacdo de testes
sistémicos funcionais denominado FuncTest, que, além das técnicas Data-driven e
Keyword-driven, utiliza a arquitetura MVC e os padrdes Factory Method e DAO para
aprimorar a manutenibilidade e a reusabilidade de projetos de automacdo. O uso de
padrdes em frameworks para automacdo de testes funcionais conduzidos através de
ferramentas Record and Playback representou um enfoque inovador da utilizacdo de
padroes.

A experiéncia de utilizacdo do framework mostra que este é efetivo quando
automatizamos telas de entrada, consulta e saida de dados. Funcionalidades que
envolvem a execucdo de processos batch ou telas com regras de negocio complexas
nem sempre Sao passiveis ou viaveis de automacao.

Nos casos onde a interacdo entre usuario e a tela da aplicacdo € facilmente
mapeada, o framework se torna uma ferramenta agil e efetiva. Utilizando o framework
em testes de regressao, diversos erros ja foram encontrados nas aplicac@es testadas. As
dificuldades encontradas na utilizacdo do framework estéo relacionadas ao processo de
configuracdo dos arquivos XML.

O uso do FuncTest num processo de desenvolvimento aderente ao nivel 2
CMMI trouxe, dentre outros, 0s seguintes beneficios ao projeto de teste:

306

SugarLoafPLoP 2007

desacoplamento, através da arquitetura MV C, entre passos do caso de caso de
teste e scripts a serem executados;

independéncia entre scripts e dados de teste, segundo a técnica Data-driven;

modularizacdo dos scripts, através da técnica Keyword-driven, com o controle
independente de chamada de suas chamadas e conseqlente reducdo do
acoplamento entre eles;

facilidade de inclusdo de novos casos de teste nas suites de teste;

transparéncia no acesso aos dados e independéncia em relacdo ao SGBD
utilizado, obtidas através do padrdao DAO;

controle de erros centralizado;

melhoria no tempo de execucdo de testes, uma vez que scripts de tratamento
de erro sdo invocados automaticamente reduzindo as paradas por excecoes;

configuragdo do framework através de um conjunto de arquivos XML,
tornando necessaria a manipulacdo codigo java apenas na elaboracdo dos
scripts;

melhoria da reusabilidade e da manutenibilidade de scripts;

melhor legibilidade de codigo.

A utilizacdo do framework exige, obviamente, as seguintes contrapartidas:

curva de aprendizado para utilizacdo do framework;

custo para a configuracdo do framework.

Estdo sendo realizadas medi¢cdes que indiquem a produtividade obtida com a
utilizacdo do framework.

Além da analise dos resultados obtidos com as medi¢6es, como trabalho futuro,
adaptaremos o framework para a utilizacdo da técnica model-based testing [9, 14],
possibilitando a geracdo automatica de casos de teste.

6. Referéncias Bibliograficas

[1] MYERS, Glenford J. The Art of Software Testing. New York: John Wiley & Sons,
Second Edition, 2004.

[2] FEWSTER, Mark, GRAHAM, Dorothy. Software Test Automation. Addison-
Wesley Professional; 1st edition, 1999.

[3] DUSTIN, Elfriede. Effective Software Testing: 50 Specific Ways to Improve Your
Testing. Addison-Wesley Professional; 1st edition, 2002.

307

Pattern Applications

SugarLoafPLoP 2007 Pattern Applications

[4] DUSTIN, Elfriede, RASHKA, Jeff, PAUL, John. Automated Software Testing:
Introduction, Management, and Performance. Addison-Wesley Professional; Bk&CD
Rom edition, 1999.

[5] GAMMA, E., HELM, R., JOHNSON, R., VLISSIDES, J. Design Patterns: Elements
of Reusable Object-Oriented Software, Addison-Wesley, 1995.

[6] BUSCHMANN, Frank, MEUNIER, Regine, ROHNERT, Hans, SOMMERLAD,
Peter, STAL, Michael. Pattern-Oriented Software Architecture: A System of
Patterns. New York: John Wiley & Sons, 1996.

[7] SCHMIDT, Douglas, STAL, Michael, ROHNERT, Hans, BUSCHMANN, Frank.
Pattern-Oriented Software Architecture: Patterns for Concurrent and Networked
Objects, Volume 2. October 2000.

[8] ALUR, Deepak, MALKS, Dan, CRUPI, John. Core J2EE Patterns: Best Practices
and Design Strategies, 2 Ed. California: Sun Microsystems, 2003.

[9] DALAL, S. R., JAIN, A., KARUNANITHI, N., BELLCORE, N., LEATON, J. M.,
LOTT, C. M., PATTON, G. C., HOROWITZ, B. M. Model-Based Testing in
Practice. International Conference on Software Engineering, 1999.

[10] FANTINATO, Marcelo, et al. AutoTest — Um Framework Reutilizavel para a
Automacéo de Teste Funcional de Software. Simposio Brasileiro de Qualidade de
Software, 2004.

[11] Framework automation with IBM Rational Functional Tester: Data-driven.

Disponivel em http://www-128.ibm.com/developerworks/rational/library/05/
1108 kelly/.

[12] Framework automation with IBM Rational Functional Tester: Keyword-driven.
Disponivel em http://www-128.ibm.com/developerworks/rational/library/06/
0523 kelly/.

[13] Data Driven Testing: How to Create a Data Driven Test with XDE Tester.
Disponivel em http://www-128.ibm.com/developerworks/rational/library/384.html.

[14] I. K. El-Far and J. A. Whittaker, “Model-Based Software Testing”. Encyclopedia
of Software Engineering (edited by J. J. Marciniak). Wiley, 2001

[15] Testing Java and Web applications with IBM Rational XDE Tester. Disponivel em
http://www-128.ibm.com/developerworks/rational/library/390.html.

[16] PRESSMAN, Roger. Engenharia de Software, 52 Edicdo. McGraw-Hill, 2002.

[17] Testing IBM Workplace with IBM Rational XDE Tester. Disponivel em
http://www-128.ibm.com/developerworks/lotus/library/xde-tester/.

[19] Core J2EE Patterns - Data Access Object. Disponivel em
http://java.sun.com/blueprints/corej2eepatterns/Patterns/DataAccessObject.html.

[20] Kaner, C., “Improving the Maintainability of Automated Test Suites”, Proceedings
of the Thenth International Quality Week, 1997.

[21] Meszaros, Gerard. XUnit Test Patterns: Refactoring Test Code. Prentice Hall,
2007.

308

http://www-128.ibm.com/developerworks/rational/library/05/
http://www-128.ibm.com/developerworks/rational/library/06/%200523_kelly/
http://www-128.ibm.com/developerworks/rational/library/06/%200523_kelly/
http://www-128.ibm.com/developerworks/rational/library/384.html
http://www-128.ibm.com/developerworks/rational/library/390.html
http://www-128.ibm.com/developerworks/lotus/library/xde-tester/
http://java.sun.com/blueprints/corej2eepatterns/Patterns/DataAccessObject.html

	inicio
	corpo_sem_inicio
	WW
	blank
	ww
	1 - Padrões para apoio ao desenvolvimento de Políticas de Privacidade
	2 - The Error Handling Aspect Design Pattern
	3- Applying Scrum and Organizational Patterns to Multi-site Software Development
	4 - Um Padrão para Requisitos Duplicados
	5 - Analysis patterns for Customer Relationship Management (CRM)
	6 - The Parallel Layers Pattern
	7 - Paginador de Objetos
	8 - Padrão AutenticaConexão
	9 - Linguagem de Padroes para Avaliacao de Conhecimento em Objetos de Aprendizagem – Parte I
	10 - Patterns for Documenting Frameworks – Process
	11 - Modelo de Melhoria do Processo de Software para Micro e Pequenas Empresas baseado em Padrões – Discussão e Levantamento Preliminar
	12 - A secure analysis pattern for handling legal cases
	13 - State MVC Estendendo o padrõo MVC para uso no desenvolvimento de aplicacçõs para dispositivos móveis
	14 - Bulkloader

	PA
	blank
	pa
	1 - Colaboração entre padrões arquiteturais, de projeto e de interface na construção do framework Athena
	2 - Uma proposta de ambiente para apoiar a utilizacao de padroes de software e requisitos de teste no desenvolvimento de aplicacoes
	3 - A Process to Create Analysis Pattern Languages for Specific Domains
	4 - POREI Patterns-Oriented Requirements Elicitation Integrated – Proposta de um Metamodelo Orientado a Padrao para Integração do Processo de Eliciação de Requisitos
	5 - Aplicando Padroes de Projeto em Computacao Movel
	6 - Utilização de Padrões para Otimizar a Automação de Testes Funcionais de Software

